WO2021046836A1 - Internode measurement configuration signaling - Google Patents

Internode measurement configuration signaling Download PDF

Info

Publication number
WO2021046836A1
WO2021046836A1 PCT/CN2019/105818 CN2019105818W WO2021046836A1 WO 2021046836 A1 WO2021046836 A1 WO 2021046836A1 CN 2019105818 W CN2019105818 W CN 2019105818W WO 2021046836 A1 WO2021046836 A1 WO 2021046836A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
measurement configuration
camping frequency
frequency
information
Prior art date
Application number
PCT/CN2019/105818
Other languages
French (fr)
Inventor
Peng Cheng
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/105818 priority Critical patent/WO2021046836A1/en
Priority to PCT/CN2019/108386 priority patent/WO2021046933A1/en
Publication of WO2021046836A1 publication Critical patent/WO2021046836A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the following relates generally to wireless communications and more specifically to internode measurement configuration signaling.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may initiate a cell reselection process to switch from communicating on a first cell to communicating on a second cell.
  • the UE may receive conflicting information from the two cells regarding frequency measurement configurations.
  • Conflicting measurement configurations may cause inefficiencies and latency in cell reselection and measurement procedures.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support internode measurement configuration signaling.
  • the described techniques provide for using internode signaling between cells to ensure that a user equipment (UE) undergoing cell reselection may have accurate measurement configuration information.
  • a UE may be camping on a first cell and may determine to reselect to a second cell.
  • the UE may perform cell reselection by receiving a radio resource control (RRC) release message, at which point the UE may measure non-camping frequencies at the second cell.
  • RRC radio resource control
  • the UE may use measurement configuration information and synchronization signal block (SSB) information received in the RRC release message for performing early measurement of the non-camping frequencies.
  • the first cell and the second cell may communicate over internode signaling and exchange measurement configuration information, so that the first cell accurately indicates the measurement configuration of the second cell to the UE in the RRC release message.
  • RRC radio resource control
  • SSB synchronization signal block
  • a method of wireless communications at a UE may include receiving a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell, receiving a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency, and measuring the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell, receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency, and measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
  • the apparatus may include means for receiving a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell, receiving a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency, and measuring the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell, receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency, and measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for measuring the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for measuring the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency until expiry of a validity timer indicated by the RRC release message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for measuring the non-camping frequency at the second cell using the second measurement configuration for the non-camping frequency.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication in the RRC release message indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration, and measuring the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the indication in the RRC release message.
  • the first measurement configuration for the non-camping frequency and the second measurement configuration for the non-camping frequency includes a SSB measurement configuration.
  • the internode signaling includes SSB-based measurement timing configuration (SMTC) information, SSB subcarrier spacing information, SSB to measure information, synchronization signal received signal strength indicator (RSSI) measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
  • SMTC measurement timing configuration
  • RSSI synchronization signal received signal strength indicator
  • the internode signaling includes a measurement timing configuration message, an early measurement configuration exchange message, a UE context response message, or a combination thereof.
  • a method of wireless communications at a first cell is described.
  • the method may include configuring a first measurement configuration for a non-camping frequency for a UE, identifying a cell re-selection by the UE from the first cell to a second cell, and receiving, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to configure a first measurement configuration for a non-camping frequency for a UE, identify a cell re-selection by the UE from the first cell to a second cell, and receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
  • the apparatus may include means for configuring a first measurement configuration for a non-camping frequency for a UE, identifying a cell re-selection by the UE from the first cell to a second cell, and receiving, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
  • a non-transitory computer-readable medium storing code for wireless communications at a first cell is described.
  • the code may include instructions executable by a processor to configure a first measurement configuration for a non-camping frequency for a UE, identify a cell re-selection by the UE from the first cell to a second cell, and receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first measurement configuration for the non-camping frequency may be the same as the second measurement configuration for the non-camping frequency, and transmitting a RRC release message to the UE including the first measurement configuration for the non-camping frequency based on the determining.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first measurement configuration for the non-camping frequency may be different than the second measurement configuration for the non-camping frequency, and transmitting a RRC release message to the UE including the second measurement configuration for the non-camping frequency based on the determining.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first measurement configuration for the non-camping frequency may be different than the second measurement configuration for the non-camping frequency, and refraining from transmitting a RRC release message to the UE based on the determining.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting an indication in a RRC release message to the UE indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a request to the second cell for the internode signaling based on the cell re-selection.
  • the first measurement configuration for the non-camping frequency and the second measurement configuration for the non-camping frequency includes a SSB measurement configuration.
  • the internode signaling includes SMTC information, SSB subcarrier spacing information, SSB to measure information, synchronization signal RSSI measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
  • the internode signaling includes a measurement timing configuration message, an early measurement configuration exchange message, a UE context response message, or a combination thereof.
  • the UE may be inactive.
  • FIG. 1 illustrates an example of a wireless communications system that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process flow that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • FIGs. 4 and 5 show block diagrams of devices that support internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • FIG. 6 shows a block diagram of a communications manager that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • FIG. 7 shows a diagram of a system including a device that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • FIGs. 8 and 9 show block diagrams of devices that support internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • FIG. 10 shows a block diagram of a communications manager that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • FIG. 11 shows a diagram of a system including a device that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • FIGs. 12 through 15 show flowcharts illustrating methods that support internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • a cell reselection process may include a user equipment (UE) changing from communicating on one cell to a different cell.
  • the cells may be associated with the same base station or with two different base stations.
  • Cell reselection may be initiated based on a change in cell quality.
  • a UE may be camped on a cell which may be associated with a certain set of cell quality criteria, such as reference signal received power (RSRP) , reference signal received quality (RSRQ) , and other cell quality measurements.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • a UE may continue to perform cell measurements for other cells, or may receive information about other cells including cell quality measurements from a base station serving the cell that the UE is camped on. The information received may indicate that a different cell may have a higher quality, which may be an indication for the UE to initiate cell reselection.
  • a UE may be camped on a set of frequencies of a first cell served by a first base station.
  • the UE may monitor and utilize these frequencies for communications at the first cell
  • the UE may identify that a cell reselection process may occur based on one or more factors.
  • the UE may periodically receive a system information block (SIB) from the first base station including information about the first cell, and measurement configuration information for non-camping frequencies for other cells.
  • SIB system information block
  • the UE may not currently be camped on these frequencies, as they may be associated with a different cell, but the UE may ultimately camp on these frequencies as the result of the cell reselection process.
  • the first cell may transmit a release message to the UE (e.g., a radio resource control (RRC) release message) .
  • RRC radio resource control
  • the SIB transmitted by the first cell and the release message may include information elements (IEs) which may provide information to the UE about a measurement configuration at the first cell and at other cells.
  • IEs information elements
  • the second cell may periodically transmit a SIB for frequencies that the UE is not currently camped on in the second cell.
  • This SIB may also include IEs which may provide information to the UE about measurement configurations at the second cell and other cells.
  • the IEs in the first SIB, second SIB, and the release message may include information about SSB configurations for a set of frequencies (e.g., camping frequencies and non-camping frequencies) , a validity timer, a frequency list, and common control signaling.
  • the SSB configuration may include the same IEs as the SIB transmitted by the first cell, but the information in the IEs may differ.
  • a UE may receive a SIB from the second cell and a release message in the first cell.
  • the UE may also receive a SIB from the first cell.
  • the release message from the first cell may override the SIB from the first cell.
  • the SIB from the second cell and the RRC release message from the first cell may have similar information elements, the information contained in the IEs may differ.
  • the UE may receive a first RRC release message from the first cell as well as a SIB from the first cell, both of which may contain an SSB configuration for a particular frequency (e.g., f2 SSB) .
  • the UE may use this SSB configuration to release from the first cell and to connect with the second cell.
  • the second cell may transmit a SIB to the UE with an SSB configuration (e.g., also an f2 SSB) , which may be different than the SSB configuration used by the UE to release from the first cell (e.g., based on a received RRC release message) .
  • an SSB configuration e.g., also an f2 SSB
  • This conflicting information may cause inefficiencies in measuring SSBs and reselecting to the second cell.
  • the information in IEs corresponding to the timing of the SMTC may be based on the timing reference at the first cell (which transmits the release message to the UE) .
  • the second cell may not be synchronized with the first cell, and thus an SMTC received from the second cell (e.g., via a SIB from the second cell) may not match the SMTC of the first cell received from the first cell in the release message.
  • the first cell and the second cell may be unable to exchange some of the SSB configuration information (e.g., ssb-ToMeasure information) . If such information were exchanged between cells, the SSB to measure information may not collide between cells. If the SSB configuration information is not exchanged, however, a UE may have two sets of different configuration information for RSRP and RSRQ measurement information. This may cause inefficiencies during cell reselection, as the UE may not have accurate and updated information on which SSBs to measure at the second cell, and which non-camping frequencies to measure.
  • some of the SSB configuration information e.g., ssb-ToMeasure information
  • the first cell and second cell may communicate using internode signaling in order to ensure that the UE receives consistent measurement configuration information from the one or more cells.
  • the source cell and target cell may exchange early measurement configuration information, which the source cell may include in the RRC release message transmitted to the UE.
  • the UE may therefore receive the same information in the RRC release message from the source cell and in the system information message (e.g., a SIB) from the target cell. In this way, the UE can be configured to use the information from the RRC release message or the system information from the second cell, since the information between the two messages is consistent.
  • the source cell may determine not to transmit an RRC release message to the UE based on the internode signaling.
  • the UE may utilize the measurement configuration information received in the system information message from the target cell in order to perform early measurements of non-camping frequencies of particular SSBs at the target cell.
  • the measurement configuration information may inform the UE about frequencies and SSB configurations at the second cell. Based on the measurement configuration information, the UE may perform early measurements of the non-camping frequencies.
  • the early measurements may include cell quality measurements about the frequencies and the SSB associated with the second cell. These measurements may be early measurements because they occur before the UE fully camps on the frequencies of the second cell. During this process, the UE may still be connected to the first and camped on frequencies at the first cell.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with respect to process flow diagrams. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to internode measurement configuration signaling.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a UE 115 may determine to initiate a cell reselection process, and may transition from communicating in one cell with one base station 105 to another cell served by another base station 105. In some cases, a UE 115 may reselect between two cells served by the same base station 105.
  • a first base station 105 and a second base station 105 may periodically transmit SIBs to UEs 115.
  • the SIBs may include SSB configurations, measurement configuration (e.g., for early measurements) and other information.
  • the information in these SIB may be used by a UE 115 during a cell reselection process for performing early measurements at a cell that the UE 115 switches to.
  • a first base station 105 and a second base station 105 may communicate using internode signaling, and the second base station 105 may transmit information about an early measurement configuration corresponding to non-camping frequencies at a cell served by the second base station 105.
  • the first base station 105 may compare the early measurement configuration received from the second base station 105 with early measurement configuration corresponding to frequencies at a cell served by the first base station 105. Based on this comparison, the first base station 105 may transmit an RRC release message containing early measurement configuration information to a UE 115 undergoing cell reselection.
  • the RRC release message may be used by the UE 115 to measure non-camping frequencies at the cell served by the second base station 105 in order to continue cell reselection.
  • the first base station 105 may determine not to transmit an RRC release message.
  • the UE 115 may determine that it has not received an RRC release message, and may instead use measurement configuration information received in a SIB from the second cell in order to continue cell reselection and perform early measurements.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communication system 100.
  • the wireless communications system 200 may include base stations 105-a and 105-b and UE 115-a, which may be examples of a base station 105 and UEs 115 as described with reference to FIG. 1.
  • Base station 105-a may serve a cell and a geographic coverage area 110-a
  • base station 105-b may serve a second cell and a second geographic coverage area 110-b.
  • Base stations 105-a and 105-b may communicate via internode link 205.
  • Base station 105-a may communicate with UE 115-a over communicate link 210-a, and base station 105-b may communicate with UE 115-a over communication link 210-b.
  • UE 115-a may perform cell reselection from a cell served by base station 105-a to a cell served by base station 105-b. In some cases, UE 115-a may perform cell reselection between two cells served by the same base station 105 (e.g., base station 105-a) .
  • a UE 115-a may initiate a cell reselection process.
  • UE 115-a may be camping on a set of frequencies corresponding to a cell corresponding to base station 105-a.
  • UE 115-a may determine to reselect from the cell at base station 105-a to a second cell at base station 105-b.
  • the second cell at base station 105-b may be associated with a set of non-camping frequencies.
  • This cell reselection may be based on a comparison of cell quality between the cells, and may be based on RSRP, RSRQ, signal to interference plus noise ratio (SINR) , or another cell quality measurement.
  • SINR signal to interference plus noise ratio
  • Base station 105-a may periodically broadcast or transmit a SIB.
  • UE 115-a may receive a SIB by monitoring broadcast links, and may receive the SIB over communication link 210-a.
  • Base station 105-b may also periodically broadcast or transmit a SIB (e.g., a system information message 225) , which may be received over communication link 210-b by UE 115-a, based on UE 115-a monitoring for broadcast transmissions.
  • SIBs may be examples of a system information message.
  • the SIBs may contain SSB configuration information for non-camping frequencies, as well as a list of SSB frequencies for early measurement and the associated cell list.
  • the SIBs may also contain common control signaling, including a cell quality threshold, an indication of reporting quantity (e.g., RSRP, RSRQ, SINR information) , and an indication of beam reporting.
  • a cell quality threshold e.g., RSRP, RSRQ, SINR information
  • an indication of beam reporting e.g., RSRP, RSRQ, SINR information
  • the SIB transmitted by base station 105-a may have the same information as the SIB transmitted by base station 105-b, or in other cases the information contained in the respective SIBs may be different.
  • Base station 105-a may identify the initiation of a cell reselection process by UE 115-a. For example, base station 105-a may identify that UE 115-a is reselecting to a second cell served by base station 105-b. Base station 105-a may have a first measurement configuration for both camping frequencies at the first cell and for non-camping frequencies at other cells, such as the second cell served by base station 105-a. This measurement configuration may be periodically transmitted to UE 115-a in a SIB. In order for the UE 115-a to continue the cell reselection process, base station 105-a may in some cases transmit RRC release message 220 to UE 115-a over communications link 210-a in dedicated signaling.
  • the RRC release message 220 may contain similar information as the SIB transmitted by base station 105-a. If UE 115-a receives both an RRC release message 220 and a SIB from base station 105-a, the RRC release message 220 may override the SIB, and UE 115-a may use the RRC release message 220 (and corresponding measurement and SSB configuration information) to measure non-camping frequencies at the base station 105-b.
  • base station 105-b may also periodically transmit system information message 225 (e.g., a SIB) to UE 115-a.
  • System information message 225 may include a second measurement configuration for non-camping frequencies at the second cell associated with base station 105-b.
  • the information in system information message 225 may conflict with information received in RRC release message 220. This may be due to the measurement configuration information transmitted in system information message 225 being more accurate than measurement configuration information about non-camping frequencies in the RRC release message transmitted by the first cell.
  • base station 105-a and 105-b may communicate measurement configurations in internode signaling 205.
  • base station 105-a may transmit a request for internode signaling to base station 105-b over internode link 205.
  • the request may indicate to base station 105-b that UE 115-a may reselect to a cell served by base station 105-b, and the request may include a request for accurate early measurement configuration information for an SSB configuration at the cell served by base station 105-b.
  • base station 105-b may transmit a second measurement configuration 215 over internode link 205 to base station 105-a.
  • Measurement configuration 215 may include early measurement configuration information for non-camping frequencies at the second cell.
  • the early measurement configuration information may include SSB configuration information for the non-camping frequencies.
  • the measurement configuration 215 may include measurement configurations for a set of frequencies corresponding to multiple cells, and in other cases the measurement configuration 215 may include information specific to non-camping frequencies at the second cell.
  • UE 115-a may use the same non-camping frequencies at the first cell as at the second cell, or in other cases UE 115-a may use different frequencies.
  • UE 115-a may be camped on a set of frequencies at the first cell, and measurement configuration may include information regarding non-camping frequencies at the second cell.
  • the SSB configuration information may include SMTC information, SSB subcarrier spacing information (e.g., ssbSubcarrierSpacing) , SSB to measure information (e.g., ssb-ToMeasure) , synchronization signal RSSI measurement information (e.g., ss-RSSI-Measurement) , a number of SSBs to average for cell measurement derivation information (e.g., nrofSS-BlocksToAverage) , an absolute threshold for consolidation of measurement per reference signal index information (e.g., abThreshSS-ClocksConsolidation) , a frequency band indicator (e.g., FreqBandIndicatorNR) , derive SSB index from cell information (e.g., deriveSSB-IndexFromCell) , a validity timer, a frequency list, common control signaling, or a combination thereof.
  • SSB subcarrier spacing information e.g
  • the measurement configuration 215 may be transmitted using an existing measurement timing configuration message (e.g., MeasurementTimingConfiguration message) , or in existing UE context response messaging (in cases where the UE 115 is inactive) .
  • the measurement configuration 215 may also be transmitted to base station 105-ain a new backhaul message (e.g., EarlyMeasurementConfigurationExchange message) .
  • Base station 105-a may compare the second measurement configuration received from base station 105-b with the first measurement configuration information previously determined at base station 105-a. In some cases, the second measurement configuration received from base station 105-b may be the same as the first measurement configuration information for non-camping frequencies at base station 105-a. In this case, base station 105-a may transmit RRC release message 220 over communication link 210-a to UE 115-a, including the first measurement configuration for non-camping frequencies, which UE 115-a may use to measure non-camping frequencies at base station 105-b.
  • base station 105-a may determine that the first measurement configuration is different from the second measurement configuration received from base station 105-b. In this case, base station 105-a may update the RRC release message with the second communication configuration, and may transmit the RRC release message 220 to UE 115-a over communication link 210-a.
  • RRC release message 220 transmitted by base station 105-a to UE 115-a may include an indication of whether UE 115-a uses the first measurement configuration (from the RRC release message 220) or the second measurement configuration (from system information message 225) .
  • UE 115-a may use the included SSB configuration for measuring non-camping frequencies at base station 105-b.
  • UE 115-a may use the information in the RRC release message 220 until the expiration of a validity timer (which may also be information included in the RRC release message 220) .
  • UE 115-a may continue to use SMTC cell timing information (contained in RRC release message 220) for base station 105-b after the cell reselection process had completed.
  • UE 115-a may communicate based on the assumption that the network is across frequency synchronized.
  • base station 105-a may determine not to transmit the RRC release message 220 based on determining that the first measurement configuration is different from the second measurement configuration. Base station 105-a may therefore not transmit SSB configuration information in dedicated signaling (e.g., in the RRC release message) , and may transmit the updated SSB configuration for non-camping frequencies in the SIB. In this case, UE 115-a may measure non-camping frequencies at base station 105-b based on measurement configuration information contained in system information message 225 transmitted from base station 105-b over communications link 210-b. UE 115-a may acquire the SSB configuration from system information message 225 received from base station 110-b.
  • dedicated signaling e.g., in the RRC release message
  • UE 115-a may not be able to acquire the SSB configuration for the cell served by base station 105-b. In this cases, UE 115-a may not perform early measurements for the non-camping frequencies at the second cell associated with base station 105-b.
  • FIG. 3 illustrates an example of a process flow 300 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • process flow 300 may implement aspects of wireless communication systems 100 and 200.
  • Process flow 300 may include base station 105-c, which may correspond to a first cell and may be an example of base station 105-a as described with respect to wireless communication system 200, and may also be an example of a base station 105 as described with respect to wireless communications system 100.
  • Process flow 300 may also include base station 105-d, which may be an example of base station 105-b as described with respect to wireless communications system 200, and may also be an example of a base station 105 as described with respect to wireless communications system 100.
  • Process flow 300 may also include UE 115-b which may be an example of UE 115-a as described with respect to wireless communications system 200 and may also be an example of a UE 115 as described with respect to wireless communications system 100.
  • UE 115-b may initiate a cell reselection process to reselect from a cell associated with base station 105-c to a cell associated with base station 105-d. In some cases, UE 115-b may reselect between two cells at one base station (e.g., base station 105-c) .
  • base station 105-c may transmit a first system information message to UE 115-b.
  • the system information message may be an example of a periodically transmitted first SIB associated with the first cell at base station 105-c.
  • the system information message may include measurement configuration information for frequencies at the cell corresponding to base station 105-c, and may also include measurement configuration information for non-camping frequencies at the cell associated with base station 105-d, and other cells.
  • base station 105-c may configure a first measurement configuration for a non-camping frequency for UE 115-b.
  • the first measurement configuration may correspond to the same measurement configuration transmitted in the system information message at 305, or may be different measurement configuration information based on updated information.
  • the first measurement configuration for the non-camping frequency may include SSB measurement configuration information.
  • base station 105-c may identify a cell reselection by UE 115-c from a first cell associated with base station 105-c to a second cell associated with base station 105-d.
  • UE 115-b may also identify cell reselection at 315.
  • base station 105-c may transmit a request to the second cell (associated with base station 105-d) for the internode signaling based on the cell reselection.
  • base station 105-c may receive, from base station 105-d, internode signaling including a second measurement configuration for the non-camping frequency based on the cell reselection.
  • the internode signaling may include a measurement timing configuration message, an early measurement configuration message, a UE context response message, or a combination thereof.
  • the UE context response message may be transmitted in cases where UE 115-b is inactive.
  • the internode signaling may include SMTC information, SSB subcarrier spacing information, SSB to measure information, synchronization RSSI measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
  • base station 105-c may determine that the first measurement configuration for the non-camping frequency is the same as the second measurement configuration for the non-camping frequency. At 330, base station 105-c may then transmit a RRC release message to UE 115-b including the first measurement configuration for the non-camping frequency based on the determination.
  • base station 105-c may determine that the first measurement configuration for the non-camping frequency is different than the second measurement configuration for the non-camping frequency. In some of these cases, base station 105-c may transmit a RRC release message at 330 to UE 115-a, including the second measurement configuration for the non-camping frequency based on the determination. In other of these cases, base station 105-c may refrain from transmitting a RRC release message to UE 115-b based on determining that the first measurement configuration for the non-camping frequency is different than the second measurement configuration for the non-camping frequency.
  • base station 105-c may transmit an indication in a RRC release message to UE 115-b indicating to UE 115-b to measure the non-camping frequency at the second cell (associated with base station 105-c) using the first measurement configuration or the second measurement configuration.
  • UE 115-b may receive RRC release message at 330.
  • UE 115-b may receive the RRC release message at 330 from a first cell (associated with base station 105-c) based on a cell reselection from the first cell to a second cell (associated with base station 105-d) , where the RRC release message includes a first measurement configuration for a non- camping frequency and may be based on internode signaling between the first cell and the second cell.
  • UE 115-b may receive a system information message (e.g., a SIB) from the second cell (e.g., base station 105-d) , where the system information message from the second cell includes a second measurement configuration for the non-camping frequency.
  • a system information message e.g., a SIB
  • UE 115-b may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message received at 330. In some cases, at 340 UE 115-b may measure the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency. In other cases, at 340 UE 115-b may measure the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency until expiry of a validity timer indicated by the RRC release message. In other cases, UE 115-b may at 340 measure the non-camping frequency at the second cell using the second measurement configuration for the non-camping frequency.
  • UE 115-b may receive an indication in the RRC release message indicating to UE 115-a to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration. In this case, UE 115-b may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the indication in the RRC release message.
  • the first measurement configuration for the non-camping frequency at the second measurement configuration for the non-camping frequency, as received by UE 115-a may include a SSB measurement configuration.
  • FIG. 4 shows a block diagram 400 of a device 405 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the device 405 may be an example of aspects of a UE 115 as described herein.
  • the device 405 may include a receiver 410, a communications manager 415, and a transmitter 420.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to internode measurement configuration signaling, etc. ) . Information may be passed on to other components of the device 405.
  • the receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 410 may utilize a single antenna or a set of antennas.
  • the communications manager 415 may receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell, receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency, and measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
  • the communications manager 415 may be an example of aspects of the communications manager 710 described herein.
  • the communications manager 415 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 415 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 415, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 415, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 420 may transmit signals generated by other components of the device 405.
  • the transmitter 420 may be collocated with a receiver 410 in a transceiver module.
  • the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 420 may utilize a single antenna or a set of antennas.
  • the UE communications manager 415 described herein may be implemented as a chipset of a wireless modem, and the receiver 410 and the transmitter 420 may be implemented as sets of analog components (e.g., amplifiers, filters, phase shifters, antennas, etc. )
  • the wireless modem may obtain and decode signals from the receiver 410 over a receive interface, and may output signals for transmission to the transmitter 420 over a transmit interface.
  • communications manager 415 may be implemented to realize one or more potential advantages.
  • One implementation may allow a UE 115 to save power and increase battery life by more efficiently and accurately indicating to the UE 115 which frequencies and SSB configurations to use for early measurement processes during cell reselection. Additionally or alternatively, a UE 115 may use less overhead signaling to coordinate the transmission of the correct information from one or more base stations 105, which may also save power and increase battery life at the UE 115.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a device 405, or a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 535.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to internode measurement configuration signaling, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may be an example of aspects of the communications manager 415 as described herein.
  • the communications manager 515 may include a release component 520, a system information component 525, and a reselection component 530.
  • the communications manager 515 may be an example of aspects of the communications manager 710 described herein.
  • the release component 520 may receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell.
  • the system information component 525 may receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency.
  • the reselection component 530 may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
  • the transmitter 535 may transmit signals generated by other components of the device 505.
  • the transmitter 535 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 535 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 535 may utilize a single antenna or a set of antennas.
  • a processor may efficiently perform early measurements of a second cell based on receiving an RRC release message, a system information message, or both by controlling receiver 510.
  • the processor may also operate the reselection component 530 to measure non-camping frequencies at the second cell, which may in some cases be based on receiving the RRC release message.
  • the operations of the processor may allow the UE 115 to more accurately perform early measurements during cell reselection.
  • FIG. 6 shows a block diagram 600 of a communications manager 605 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein.
  • the communications manager 605 may include a release component 610, a system information component 615, a reselection component 620, and a determination component 625. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the release component 610 may receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell.
  • the internode signaling includes SSB-based measurement timing configuration (SMTC) information, SSB subcarrier spacing information, SSB to measure information, synchronization signal received signal strength indicator (RSSI) measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
  • SMTC measurement timing configuration
  • RSSI synchronization signal received signal strength indicator
  • the internode signaling includes a measurement timing configuration message, an early measurement configuration exchange message, a UE context response message, or a combination thereof.
  • the system information component 615 may receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency.
  • the reselection component 620 may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
  • the reselection component 620 may measure the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency.
  • the reselection component 620 may measure the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency until expiry of a validity timer indicated by the RRC release message.
  • the reselection component 620 may measure the non-camping frequency at the second cell using the second measurement configuration for the non-camping frequency.
  • the reselection component 620 may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the indication in the RRC release message.
  • the determination component 625 may receive an indication in the RRC release message indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration.
  • the first measurement configuration for the non-camping frequency and the second measurement configuration for the non-camping frequency includes a synchronization signal block (SSB) measurement configuration.
  • SSB synchronization signal block
  • FIG. 7 shows a diagram of a system 700 including a device 705 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the device 705 may be an example of or include the components of device 405, device 505, or a UE 115 as described herein.
  • the device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a transceiver 720, an antenna 725, memory 730, and a processor 740. These components may be in electronic communication via one or more buses (e.g., bus 745) .
  • buses e.g., bus 745
  • the communications manager 710 may receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell, receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency, and measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
  • the I/O controller 715 may manage input and output signals for the device 705.
  • the I/O controller 715 may also manage peripherals not integrated into the device 705.
  • the I/O controller 715 may represent a physical connection or port to an external peripheral.
  • the I/O controller 715 may utilize an operating system such as or another known operating system.
  • the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 715 may be implemented as part of a processor.
  • a user may interact with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
  • the transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 730 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 730 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 740.
  • the processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting internode measurement configuration signaling) .
  • the code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a base station 105 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 820.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to internode measurement configuration signaling, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may configure a first measurement configuration for a non-camping frequency for a UE, identify a cell re-selection by the UE from the first cell to a second cell, and receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
  • the communications manager 815 may be an example of aspects of the communications manager 1110 described herein.
  • the communications manager 815 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 815, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 815 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 815, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 815, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 820 may transmit signals generated by other components of the device 805.
  • the transmitter 820 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 820 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 820 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a device 805, or a base station 105 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 935.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to internode measurement configuration signaling, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may be an example of aspects of the communications manager 815 as described herein.
  • the communications manager 915 may include a release module 920, a reselection module 925, and an internode signaling component 930.
  • the communications manager 915 may be an example of aspects of the communications manager 1110 described herein.
  • the release module 920 may configure a first measurement configuration for a non-camping frequency for a UE.
  • the reselection module 925 may identify a cell re-selection by the UE from the first cell to a second cell.
  • the internode signaling component 930 may receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
  • the transmitter 935 may transmit signals generated by other components of the device 905.
  • the transmitter 935 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 935 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 935 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a communications manager 1005 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the communications manager 1005 may be an example of aspects of a communications manager 815, a communications manager 915, or a communications manager 1110 described herein.
  • the communications manager 1005 may include a release module 1010, a reselection module 1015, an internode signaling component 1020, and an indication component 1025. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the release module 1010 may configure a first measurement configuration for a non-camping frequency for a UE.
  • the release module 1010 may determine that the first measurement configuration for the non-camping frequency is the same as the second measurement configuration for the non-camping frequency.
  • the release module 1010 may transmit a RRC release message to the UE including the first measurement configuration for the non-camping frequency based on the determining.
  • the release module 1010 may determine that the first measurement configuration for the non-camping frequency is different than the second measurement configuration for the non-camping frequency.
  • the release module 1010 may transmit a RRC release message to the UE including the second measurement configuration for the non-camping frequency based on the determining.
  • the release module 1010 may refrain from transmitting a RRC release message to the UE based on the determining.
  • the first measurement configuration for the non-camping frequency and the second measurement configuration for the non-camping frequency includes a synchronization signal block (SSB) measurement configuration.
  • SSB synchronization signal block
  • the internode signaling includes SSB-based measurement timing configuration (SMTC) information, SSB subcarrier spacing information, SSB to measure information, synchronization signal received signal strength indicator (RSSI) measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
  • SMTC measurement timing configuration
  • RSSI synchronization signal received signal strength indicator
  • the reselection module 1015 may identify a cell re-selection by the UE from the first cell to a second cell.
  • the internode signaling component 1020 may receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
  • the internode signaling component 1020 may transmit a request to the second cell for the internode signaling based on the cell re-selection.
  • the internode signaling includes a measurement timing configuration message, an early measurement configuration exchange message, a UE context response message, or a combination thereof.
  • the UE is inactive.
  • the indication component 1025 may transmit an indication in a RRC release message to the UE indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration.
  • FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of or include the components of device 805, device 905, or a base station 105 as described herein.
  • the device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1150) .
  • buses e.g., bus 1150
  • the communications manager 1110 may configure a first measurement configuration for a non-camping frequency for a UE, identify a cell re-selection by the UE from the first cell to a second cell, and receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
  • the network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1130 may include RAM, ROM, or a combination thereof.
  • the memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein.
  • the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1140 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1140.
  • the processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting internode measurement configuration signaling) .
  • the inter-station communications manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a release component as described with reference to FIGs. 4 through 7.
  • the UE may receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a system information component as described with reference to FIGs. 4 through 7.
  • the UE may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a reselection component as described with reference to FIGs. 4 through 7.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may configure a first measurement configuration for a non-camping frequency for a UE.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a release module as described with reference to FIGs. 8 through 11.
  • the base station may identify a cell re-selection by the UE from the first cell to a second cell.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a reselection module as described with reference to FIGs. 8 through 11.
  • the base station may receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by an internode signaling component as described with reference to FIGs. 8 through 11.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may configure a first measurement configuration for a non-camping frequency for a UE.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a release module as described with reference to FIGs. 8 through 11.
  • the base station may identify a cell re-selection by the UE from the first cell to a second cell.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a reselection module as described with reference to FIGs. 8 through 11.
  • the base station may receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by an internode signaling component as described with reference to FIGs. 8 through 11.
  • the base station may determine that the first measurement configuration for the non-camping frequency is different than the second measurement configuration for the non-camping frequency.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a release module as described with reference to FIGs. 8 through 11.
  • the base station may transmit a RRC release message to the UE including the second measurement configuration for the non-camping frequency based on the determining.
  • the operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a release module as described with reference to FIGs. 8 through 11.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may configure a first measurement configuration for a non-camping frequency for a UE.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a release module as described with reference to FIGs. 8 through 11.
  • the base station may identify a cell re-selection by the UE from the first cell to a second cell.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a reselection module as described with reference to FIGs. 8 through 11.
  • the base station may receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by an internode signaling component as described with reference to FIGs. 8 through 11.
  • the base station may transmit an indication in a RRC release message to the UE indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by an indication component as described with reference to FIGs. 8 through 11.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. One or more cells may communicate over internode signaling to coordinate measurement configurations. A user equipment (UE) may receive a radio resource control (RRC) release message from a first cell based on a cell reselection process of the UE from the first cell to the second cell. The RRC release message may include a first measurement configuration for a non-camping frequency, and may be based on internode signaling between the first cell and the second cell. The UE may also receive a system information message from a second cell, which may include a second measurement configuration for the non-camping frequency. The UE may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.

Description

INTERNODE MEASUREMENT CONFIGURATION SIGNALING
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to internode measurement configuration signaling.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A UE may initiate a cell reselection process to switch from communicating on a first cell to communicating on a second cell. In some cases, the UE may receive conflicting information from the two cells regarding frequency measurement configurations. Conflicting measurement configurations may cause inefficiencies and latency in cell reselection and measurement procedures.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support internode measurement configuration signaling. Generally, the described techniques provide for using internode signaling between cells to ensure that a user equipment (UE) undergoing cell reselection may have accurate measurement configuration  information. A UE may be camping on a first cell and may determine to reselect to a second cell. The UE may perform cell reselection by receiving a radio resource control (RRC) release message, at which point the UE may measure non-camping frequencies at the second cell. The UE may use measurement configuration information and synchronization signal block (SSB) information received in the RRC release message for performing early measurement of the non-camping frequencies. The first cell and the second cell may communicate over internode signaling and exchange measurement configuration information, so that the first cell accurately indicates the measurement configuration of the second cell to the UE in the RRC release message.
A method of wireless communications at a UE is described. The method may include receiving a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell, receiving a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency, and measuring the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell, receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency, and measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for receiving a RRC release message from a first cell based on  a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell, receiving a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency, and measuring the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell, receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency, and measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for measuring the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for measuring the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency until expiry of a validity timer indicated by the RRC release message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for measuring the non-camping frequency at the second cell using the second measurement configuration for the non-camping frequency.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication in the RRC release message indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration, and measuring the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the indication in the RRC release message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first measurement configuration for the non-camping frequency and the second measurement configuration for the non-camping frequency includes a SSB measurement configuration.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the internode signaling includes SSB-based measurement timing configuration (SMTC) information, SSB subcarrier spacing information, SSB to measure information, synchronization signal received signal strength indicator (RSSI) measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the internode signaling includes a measurement timing configuration message, an early measurement configuration exchange message, a UE context response message, or a combination thereof.
A method of wireless communications at a first cell is described. The method may include configuring a first measurement configuration for a non-camping frequency for a UE, identifying a cell re-selection by the UE from the first cell to a second cell, and receiving, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
An apparatus for wireless communications at a first cell is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the  apparatus to configure a first measurement configuration for a non-camping frequency for a UE, identify a cell re-selection by the UE from the first cell to a second cell, and receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
Another apparatus for wireless communications at a first cell is described. The apparatus may include means for configuring a first measurement configuration for a non-camping frequency for a UE, identifying a cell re-selection by the UE from the first cell to a second cell, and receiving, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
A non-transitory computer-readable medium storing code for wireless communications at a first cell is described. The code may include instructions executable by a processor to configure a first measurement configuration for a non-camping frequency for a UE, identify a cell re-selection by the UE from the first cell to a second cell, and receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first measurement configuration for the non-camping frequency may be the same as the second measurement configuration for the non-camping frequency, and transmitting a RRC release message to the UE including the first measurement configuration for the non-camping frequency based on the determining.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first measurement configuration for the non-camping frequency may be different than the second measurement configuration for the non-camping frequency, and transmitting a RRC release message to the UE including the second measurement configuration for the non-camping frequency based on the determining.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first measurement configuration for the non-camping frequency may be  different than the second measurement configuration for the non-camping frequency, and refraining from transmitting a RRC release message to the UE based on the determining.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting an indication in a RRC release message to the UE indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting a request to the second cell for the internode signaling based on the cell re-selection.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first measurement configuration for the non-camping frequency and the second measurement configuration for the non-camping frequency includes a SSB measurement configuration.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the internode signaling includes SMTC information, SSB subcarrier spacing information, SSB to measure information, synchronization signal RSSI measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the internode signaling includes a measurement timing configuration message, an early measurement configuration exchange message, a UE context response message, or a combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE may be inactive.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a process flow that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
FIGs. 4 and 5 show block diagrams of devices that support internode measurement configuration signaling in accordance with aspects of the present disclosure.
FIG. 6 shows a block diagram of a communications manager that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
FIG. 7 shows a diagram of a system including a device that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
FIGs. 8 and 9 show block diagrams of devices that support internode measurement configuration signaling in accordance with aspects of the present disclosure.
FIG. 10 shows a block diagram of a communications manager that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
FIG. 11 shows a diagram of a system including a device that supports internode measurement configuration signaling in accordance with aspects of the present disclosure.
FIGs. 12 through 15 show flowcharts illustrating methods that support internode measurement configuration signaling in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A cell reselection process may include a user equipment (UE) changing from communicating on one cell to a different cell. The cells may be associated with the same base  station or with two different base stations. Cell reselection may be initiated based on a change in cell quality. For example, a UE may be camped on a cell which may be associated with a certain set of cell quality criteria, such as reference signal received power (RSRP) , reference signal received quality (RSRQ) , and other cell quality measurements. A UE may continue to perform cell measurements for other cells, or may receive information about other cells including cell quality measurements from a base station serving the cell that the UE is camped on. The information received may indicate that a different cell may have a higher quality, which may be an indication for the UE to initiate cell reselection.
A UE may be camped on a set of frequencies of a first cell served by a first base station. The UE may monitor and utilize these frequencies for communications at the first cell The UE may identify that a cell reselection process may occur based on one or more factors. The UE may periodically receive a system information block (SIB) from the first base station including information about the first cell, and measurement configuration information for non-camping frequencies for other cells. The UE may not currently be camped on these frequencies, as they may be associated with a different cell, but the UE may ultimately camp on these frequencies as the result of the cell reselection process. In order to continue cell reselection, and for the UE to camp on frequencies at a different cell, the first cell may transmit a release message to the UE (e.g., a radio resource control (RRC) release message) .
The SIB transmitted by the first cell and the release message may include information elements (IEs) which may provide information to the UE about a measurement configuration at the first cell and at other cells.
The second cell may periodically transmit a SIB for frequencies that the UE is not currently camped on in the second cell. This SIB may also include IEs which may provide information to the UE about measurement configurations at the second cell and other cells. The IEs in the first SIB, second SIB, and the release message may include information about SSB configurations for a set of frequencies (e.g., camping frequencies and non-camping frequencies) , a validity timer, a frequency list, and common control signaling. The SSB configuration may include the same IEs as the SIB transmitted by the first cell, but the information in the IEs may differ.
A UE may receive a SIB from the second cell and a release message in the first cell. In some cases, the UE may also receive a SIB from the first cell. In this case, the release message from the first cell may override the SIB from the first cell. Although the SIB from the second cell and the RRC release message from the first cell may have similar information elements, the information contained in the IEs may differ. The UE may receive a first RRC release message from the first cell as well as a SIB from the first cell, both of which may contain an SSB configuration for a particular frequency (e.g., f2 SSB) . The UE may use this SSB configuration to release from the first cell and to connect with the second cell. However, the second cell may transmit a SIB to the UE with an SSB configuration (e.g., also an f2 SSB) , which may be different than the SSB configuration used by the UE to release from the first cell (e.g., based on a received RRC release message) . This conflicting information may cause inefficiencies in measuring SSBs and reselecting to the second cell.
For example, the information in IEs corresponding to the timing of the SMTC may be based on the timing reference at the first cell (which transmits the release message to the UE) . However, the second cell may not be synchronized with the first cell, and thus an SMTC received from the second cell (e.g., via a SIB from the second cell) may not match the SMTC of the first cell received from the first cell in the release message.
In another example, the first cell and the second cell may be unable to exchange some of the SSB configuration information (e.g., ssb-ToMeasure information) . If such information were exchanged between cells, the SSB to measure information may not collide between cells. If the SSB configuration information is not exchanged, however, a UE may have two sets of different configuration information for RSRP and RSRQ measurement information. This may cause inefficiencies during cell reselection, as the UE may not have accurate and updated information on which SSBs to measure at the second cell, and which non-camping frequencies to measure.
In order to resolve inconsistencies between signaling from a first cell and a second cell during a cell reselection process by a UE, the first cell and second cell may communicate using internode signaling in order to ensure that the UE receives consistent measurement configuration information from the one or more cells. The source cell and target cell may exchange early measurement configuration information, which the source cell may include in the RRC release message transmitted to the UE. The UE may therefore receive the same  information in the RRC release message from the source cell and in the system information message (e.g., a SIB) from the target cell. In this way, the UE can be configured to use the information from the RRC release message or the system information from the second cell, since the information between the two messages is consistent. In some cases, the source cell may determine not to transmit an RRC release message to the UE based on the internode signaling. In this case, the UE may utilize the measurement configuration information received in the system information message from the target cell in order to perform early measurements of non-camping frequencies of particular SSBs at the target cell.
The measurement configuration information may inform the UE about frequencies and SSB configurations at the second cell. Based on the measurement configuration information, the UE may perform early measurements of the non-camping frequencies. The early measurements may include cell quality measurements about the frequencies and the SSB associated with the second cell. These measurements may be early measurements because they occur before the UE fully camps on the frequencies of the second cell. During this process, the UE may still be connected to the first and camped on frequencies at the first cell.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with respect to process flow diagrams. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to internode measurement configuration signaling.
FIG. 1 illustrates an example of a wireless communications system 100 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal  electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier  may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial  resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s = 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small  cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or  MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150.  The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that  use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple  signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive  beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
UE 115 may determine to initiate a cell reselection process, and may transition from communicating in one cell with one base station 105 to another cell served by another base station 105. In some cases, a UE 115 may reselect between two cells served by the same base station 105.
first base station 105 and a second base station 105 may periodically transmit SIBs to UEs 115. The SIBs may include SSB configurations, measurement configuration (e.g., for early measurements) and other information. The information in these SIB may be used by a UE 115 during a cell reselection process for performing early measurements at a cell that the UE 115 switches to.
first base station 105 and a second base station 105 may communicate using internode signaling, and the second base station 105 may transmit information about an early measurement configuration corresponding to non-camping frequencies at a cell served by the second base station 105. The first base station 105 may compare the early measurement configuration received from the second base station 105 with early measurement configuration corresponding to frequencies at a cell served by the first base station 105. Based on this comparison, the first base station 105 may transmit an RRC release message containing early measurement configuration information to a UE 115 undergoing cell reselection. The RRC release message may be used by the UE 115 to measure non-camping frequencies at the cell served by the second base station 105 in order to continue cell reselection.
In some cases, the first base station 105 may determine not to transmit an RRC release message. In this case, the UE 115 may determine that it has not received an RRC release message, and may instead use measurement configuration information received in a SIB from the second cell in order to continue cell reselection and perform early measurements.
FIG. 2 illustrates an example of a wireless communications system 200 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communication system 100. The wireless communications system 200 may include base stations 105-a and 105-b and UE 115-a, which may be examples of a base station 105 and UEs 115 as described with reference to FIG. 1. Base station 105-a may serve  a cell and a geographic coverage area 110-a, and base station 105-b may serve a second cell and a second geographic coverage area 110-b. Base stations 105-a and 105-b may communicate via internode link 205. Base station 105-a may communicate with UE 115-a over communicate link 210-a, and base station 105-b may communicate with UE 115-a over communication link 210-b. UE 115-a may perform cell reselection from a cell served by base station 105-a to a cell served by base station 105-b. In some cases, UE 115-a may perform cell reselection between two cells served by the same base station 105 (e.g., base station 105-a) .
A UE 115-a may initiate a cell reselection process. UE 115-a may be camping on a set of frequencies corresponding to a cell corresponding to base station 105-a. UE 115-a may determine to reselect from the cell at base station 105-a to a second cell at base station 105-b. The second cell at base station 105-b may be associated with a set of non-camping frequencies. This cell reselection may be based on a comparison of cell quality between the cells, and may be based on RSRP, RSRQ, signal to interference plus noise ratio (SINR) , or another cell quality measurement.
Base station 105-a may periodically broadcast or transmit a SIB. UE 115-a may receive a SIB by monitoring broadcast links, and may receive the SIB over communication link 210-a. Base station 105-b may also periodically broadcast or transmit a SIB (e.g., a system information message 225) , which may be received over communication link 210-b by UE 115-a, based on UE 115-a monitoring for broadcast transmissions. These SIBs may be examples of a system information message. The SIBs may contain SSB configuration information for non-camping frequencies, as well as a list of SSB frequencies for early measurement and the associated cell list. The SIBs may also contain common control signaling, including a cell quality threshold, an indication of reporting quantity (e.g., RSRP, RSRQ, SINR information) , and an indication of beam reporting. In some cases, the SIB transmitted by base station 105-a may have the same information as the SIB transmitted by base station 105-b, or in other cases the information contained in the respective SIBs may be different.
Base station 105-a may identify the initiation of a cell reselection process by UE 115-a. For example, base station 105-a may identify that UE 115-a is reselecting to a second cell served by base station 105-b. Base station 105-a may have a first measurement  configuration for both camping frequencies at the first cell and for non-camping frequencies at other cells, such as the second cell served by base station 105-a. This measurement configuration may be periodically transmitted to UE 115-a in a SIB. In order for the UE 115-a to continue the cell reselection process, base station 105-a may in some cases transmit RRC release message 220 to UE 115-a over communications link 210-a in dedicated signaling. The RRC release message 220 may contain similar information as the SIB transmitted by base station 105-a. If UE 115-a receives both an RRC release message 220 and a SIB from base station 105-a, the RRC release message 220 may override the SIB, and UE 115-a may use the RRC release message 220 (and corresponding measurement and SSB configuration information) to measure non-camping frequencies at the base station 105-b.
However, base station 105-b may also periodically transmit system information message 225 (e.g., a SIB) to UE 115-a. System information message 225 may include a second measurement configuration for non-camping frequencies at the second cell associated with base station 105-b. In some cases, the information in system information message 225 may conflict with information received in RRC release message 220. This may be due to the measurement configuration information transmitted in system information message 225 being more accurate than measurement configuration information about non-camping frequencies in the RRC release message transmitted by the first cell. In order to resolve the conflict, base station 105-a and 105-b may communicate measurement configurations in internode signaling 205.
Based on identifying the cell reselection process, base station 105-a may transmit a request for internode signaling to base station 105-b over internode link 205. The request may indicate to base station 105-b that UE 115-a may reselect to a cell served by base station 105-b, and the request may include a request for accurate early measurement configuration information for an SSB configuration at the cell served by base station 105-b.
Based on receiving the request for internode signaling, base station 105-b may transmit a second measurement configuration 215 over internode link 205 to base station 105-a. Measurement configuration 215 may include early measurement configuration information for non-camping frequencies at the second cell. The early measurement configuration information may include SSB configuration information for the non-camping frequencies. In some cases, the measurement configuration 215 may include measurement  configurations for a set of frequencies corresponding to multiple cells, and in other cases the measurement configuration 215 may include information specific to non-camping frequencies at the second cell. Further, UE 115-a may use the same non-camping frequencies at the first cell as at the second cell, or in other cases UE 115-a may use different frequencies. For example, UE 115-a may be camped on a set of frequencies at the first cell, and measurement configuration may include information regarding non-camping frequencies at the second cell.
The SSB configuration information may include SMTC information, SSB subcarrier spacing information (e.g., ssbSubcarrierSpacing) , SSB to measure information (e.g., ssb-ToMeasure) , synchronization signal RSSI measurement information (e.g., ss-RSSI-Measurement) , a number of SSBs to average for cell measurement derivation information (e.g., nrofSS-BlocksToAverage) , an absolute threshold for consolidation of measurement per reference signal index information (e.g., abThreshSS-ClocksConsolidation) , a frequency band indicator (e.g., FreqBandIndicatorNR) , derive SSB index from cell information (e.g., deriveSSB-IndexFromCell) , a validity timer, a frequency list, common control signaling, or a combination thereof.
The measurement configuration 215 may be transmitted using an existing measurement timing configuration message (e.g., MeasurementTimingConfiguration message) , or in existing UE context response messaging (in cases where the UE 115 is inactive) . The measurement configuration 215 may also be transmitted to base station 105-ain a new backhaul message (e.g., EarlyMeasurementConfigurationExchange message) .
Base station 105-a may compare the second measurement configuration received from base station 105-b with the first measurement configuration information previously determined at base station 105-a. In some cases, the second measurement configuration received from base station 105-b may be the same as the first measurement configuration information for non-camping frequencies at base station 105-a. In this case, base station 105-a may transmit RRC release message 220 over communication link 210-a to UE 115-a, including the first measurement configuration for non-camping frequencies, which UE 115-a may use to measure non-camping frequencies at base station 105-b.
In other cases, base station 105-a may determine that the first measurement configuration is different from the second measurement configuration received from base  station 105-b. In this case, base station 105-a may update the RRC release message with the second communication configuration, and may transmit the RRC release message 220 to UE 115-a over communication link 210-a.
RRC release message 220 transmitted by base station 105-a to UE 115-a may include an indication of whether UE 115-a uses the first measurement configuration (from the RRC release message 220) or the second measurement configuration (from system information message 225) .
In either case where the UE 115-a receives an RRC release message 220, UE 115-a may use the included SSB configuration for measuring non-camping frequencies at base station 105-b. UE 115-a may use the information in the RRC release message 220 until the expiration of a validity timer (which may also be information included in the RRC release message 220) . For example, UE 115-a may continue to use SMTC cell timing information (contained in RRC release message 220) for base station 105-b after the cell reselection process had completed. In this case, UE 115-a may communicate based on the assumption that the network is across frequency synchronized.
Alternatively, base station 105-a may determine not to transmit the RRC release message 220 based on determining that the first measurement configuration is different from the second measurement configuration. Base station 105-a may therefore not transmit SSB configuration information in dedicated signaling (e.g., in the RRC release message) , and may transmit the updated SSB configuration for non-camping frequencies in the SIB. In this case, UE 115-a may measure non-camping frequencies at base station 105-b based on measurement configuration information contained in system information message 225 transmitted from base station 105-b over communications link 210-b. UE 115-a may acquire the SSB configuration from system information message 225 received from base station 110-b. In some cases, UE 115-a may not be able to acquire the SSB configuration for the cell served by base station 105-b. In this cases, UE 115-a may not perform early measurements for the non-camping frequencies at the second cell associated with base station 105-b.
FIG. 3 illustrates an example of a process flow 300 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. In some examples, process flow 300 may implement aspects of  wireless communication systems  100 and 200. Process flow 300 may include base station 105-c, which may correspond to a  first cell and may be an example of base station 105-a as described with respect to wireless communication system 200, and may also be an example of a base station 105 as described with respect to wireless communications system 100. Process flow 300 may also include base station 105-d, which may be an example of base station 105-b as described with respect to wireless communications system 200, and may also be an example of a base station 105 as described with respect to wireless communications system 100. Process flow 300 may also include UE 115-b which may be an example of UE 115-a as described with respect to wireless communications system 200 and may also be an example of a UE 115 as described with respect to wireless communications system 100. UE 115-b may initiate a cell reselection process to reselect from a cell associated with base station 105-c to a cell associated with base station 105-d. In some cases, UE 115-b may reselect between two cells at one base station (e.g., base station 105-c) .
At 305, base station 105-c may transmit a first system information message to UE 115-b. The system information message may be an example of a periodically transmitted first SIB associated with the first cell at base station 105-c. The system information message may include measurement configuration information for frequencies at the cell corresponding to base station 105-c, and may also include measurement configuration information for non-camping frequencies at the cell associated with base station 105-d, and other cells.
At 310, base station 105-c may configure a first measurement configuration for a non-camping frequency for UE 115-b. The first measurement configuration may correspond to the same measurement configuration transmitted in the system information message at 305, or may be different measurement configuration information based on updated information. The first measurement configuration for the non-camping frequency may include SSB measurement configuration information.
At 315, base station 105-c may identify a cell reselection by UE 115-c from a first cell associated with base station 105-c to a second cell associated with base station 105-d. UE 115-b may also identify cell reselection at 315.
At 320, in some cases base station 105-c may transmit a request to the second cell (associated with base station 105-d) for the internode signaling based on the cell reselection.
At 325, base station 105-c may receive, from base station 105-d, internode signaling including a second measurement configuration for the non-camping frequency  based on the cell reselection. The internode signaling may include a measurement timing configuration message, an early measurement configuration message, a UE context response message, or a combination thereof. The UE context response message may be transmitted in cases where UE 115-b is inactive. The internode signaling may include SMTC information, SSB subcarrier spacing information, SSB to measure information, synchronization RSSI measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
In some cases, base station 105-c may determine that the first measurement configuration for the non-camping frequency is the same as the second measurement configuration for the non-camping frequency. At 330, base station 105-c may then transmit a RRC release message to UE 115-b including the first measurement configuration for the non-camping frequency based on the determination.
In other cases, base station 105-c may determine that the first measurement configuration for the non-camping frequency is different than the second measurement configuration for the non-camping frequency. In some of these cases, base station 105-c may transmit a RRC release message at 330 to UE 115-a, including the second measurement configuration for the non-camping frequency based on the determination. In other of these cases, base station 105-c may refrain from transmitting a RRC release message to UE 115-b based on determining that the first measurement configuration for the non-camping frequency is different than the second measurement configuration for the non-camping frequency.
In some cases, at 330, base station 105-c may transmit an indication in a RRC release message to UE 115-b indicating to UE 115-b to measure the non-camping frequency at the second cell (associated with base station 105-c) using the first measurement configuration or the second measurement configuration.
In some cases where base station 105-c determines to transmit an RRC release message at 330, UE 115-b may receive RRC release message at 330. UE 115-b may receive the RRC release message at 330 from a first cell (associated with base station 105-c) based on a cell reselection from the first cell to a second cell (associated with base station 105-d) , where the RRC release message includes a first measurement configuration for a non- camping frequency and may be based on internode signaling between the first cell and the second cell.
At 335, UE 115-b may receive a system information message (e.g., a SIB) from the second cell (e.g., base station 105-d) , where the system information message from the second cell includes a second measurement configuration for the non-camping frequency.
At 340, UE 115-b may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message received at 330. In some cases, at 340 UE 115-b may measure the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency. In other cases, at 340 UE 115-b may measure the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency until expiry of a validity timer indicated by the RRC release message. In other cases, UE 115-b may at 340 measure the non-camping frequency at the second cell using the second measurement configuration for the non-camping frequency.
In some cases, at 330, UE 115-b may receive an indication in the RRC release message indicating to UE 115-a to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration. In this case, UE 115-b may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the indication in the RRC release message.
The first measurement configuration for the non-camping frequency at the second measurement configuration for the non-camping frequency, as received by UE 115-a may include a SSB measurement configuration.
FIG. 4 shows a block diagram 400 of a device 405 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The device 405 may be an example of aspects of a UE 115 as described herein. The device 405 may include a receiver 410, a communications manager 415, and a transmitter 420. The device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to internode measurement configuration signaling, etc. ) . Information may be passed on to other components of the device 405. The receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 410 may utilize a single antenna or a set of antennas.
The communications manager 415 may receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell, receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency, and measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message. The communications manager 415 may be an example of aspects of the communications manager 710 described herein.
The communications manager 415, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 415, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 415, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 415, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O)  component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 420 may transmit signals generated by other components of the device 405. In some examples, the transmitter 420 may be collocated with a receiver 410 in a transceiver module. For example, the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The transmitter 420 may utilize a single antenna or a set of antennas.
In some examples, the UE communications manager 415 described herein may be implemented as a chipset of a wireless modem, and the receiver 410 and the transmitter 420 may be implemented as sets of analog components (e.g., amplifiers, filters, phase shifters, antennas, etc. ) The wireless modem may obtain and decode signals from the receiver 410 over a receive interface, and may output signals for transmission to the transmitter 420 over a transmit interface.
The actions performed by communications manager 415 as described herein may be implemented to realize one or more potential advantages. One implementation may allow a UE 115 to save power and increase battery life by more efficiently and accurately indicating to the UE 115 which frequencies and SSB configurations to use for early measurement processes during cell reselection. Additionally or alternatively, a UE 115 may use less overhead signaling to coordinate the transmission of the correct information from one or more base stations 105, which may also save power and increase battery life at the UE 115.
FIG. 5 shows a block diagram 500 of a device 505 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a device 405, or a UE 115 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 535. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to internode measurement configuration signaling, etc. ) .  Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may be an example of aspects of the communications manager 415 as described herein. The communications manager 515 may include a release component 520, a system information component 525, and a reselection component 530. The communications manager 515 may be an example of aspects of the communications manager 710 described herein.
The release component 520 may receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell.
The system information component 525 may receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency.
The reselection component 530 may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
The transmitter 535 may transmit signals generated by other components of the device 505. In some examples, the transmitter 535 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 535 may be an example of aspects of the transceiver 720 described with reference to FIG. 7. The transmitter 535 may utilize a single antenna or a set of antennas.
A processor (e.g., controlling the receiver 510, the transmitter 535, or the transceiver 720) may efficiently perform early measurements of a second cell based on receiving an RRC release message, a system information message, or both by controlling receiver 510. The processor may also operate the reselection component 530 to measure non-camping frequencies at the second cell, which may in some cases be based on receiving the RRC release message. The operations of the processor may allow the UE 115 to more accurately perform early measurements during cell reselection.
FIG. 6 shows a block diagram 600 of a communications manager 605 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein. The communications manager 605 may include a release component 610, a system information component 615, a reselection component 620, and a determination component 625. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The release component 610 may receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell.
In some cases, the internode signaling includes SSB-based measurement timing configuration (SMTC) information, SSB subcarrier spacing information, SSB to measure information, synchronization signal received signal strength indicator (RSSI) measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
In some cases, the internode signaling includes a measurement timing configuration message, an early measurement configuration exchange message, a UE context response message, or a combination thereof.
The system information component 615 may receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency.
The reselection component 620 may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
In some examples, the reselection component 620 may measure the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency.
In some examples, the reselection component 620 may measure the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency until expiry of a validity timer indicated by the RRC release message.
In some examples, the reselection component 620 may measure the non-camping frequency at the second cell using the second measurement configuration for the non-camping frequency.
In some examples, the reselection component 620 may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the indication in the RRC release message.
The determination component 625 may receive an indication in the RRC release message indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration.
In some cases, the first measurement configuration for the non-camping frequency and the second measurement configuration for the non-camping frequency includes a synchronization signal block (SSB) measurement configuration.
FIG. 7 shows a diagram of a system 700 including a device 705 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The device 705 may be an example of or include the components of device 405, device 505, or a UE 115 as described herein. The device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a transceiver 720, an antenna 725, memory 730, and a processor 740. These components may be in electronic communication via one or more buses (e.g., bus 745) .
The communications manager 710 may receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell, receive a system  information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency, and measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message.
The I/O controller 715 may manage input and output signals for the device 705. The I/O controller 715 may also manage peripherals not integrated into the device 705. In some cases, the I/O controller 715 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 715 may utilize an operating system such as 
Figure PCTCN2019105818-appb-000001
or another known operating system. In other cases, the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 715 may be implemented as part of a processor. In some cases, a user may interact with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
The transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 730 may include random-access memory (RAM) and read-only memory (ROM) . The memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 730 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable  logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 740 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 740. The processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting internode measurement configuration signaling) .
The code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 8 shows a block diagram 800 of a device 805 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a base station 105 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 820. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to internode measurement configuration signaling, etc. ) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may configure a first measurement configuration for a non-camping frequency for a UE, identify a cell re-selection by the UE from the first cell to a second cell, and receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection. The communications manager 815 may be an example of aspects of the communications manager 1110 described herein.
The communications manager 815, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 815, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 815, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 815, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 815, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 820 may transmit signals generated by other components of the device 805. In some examples, the transmitter 820 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 820 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The transmitter 820 may utilize a single antenna or a set of antennas.
FIG. 9 shows a block diagram 900 of a device 905 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a device 805, or a base station 105 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter 935. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to internode measurement configuration signaling, etc. ) .  Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may be an example of aspects of the communications manager 815 as described herein. The communications manager 915 may include a release module 920, a reselection module 925, and an internode signaling component 930. The communications manager 915 may be an example of aspects of the communications manager 1110 described herein.
The release module 920 may configure a first measurement configuration for a non-camping frequency for a UE.
The reselection module 925 may identify a cell re-selection by the UE from the first cell to a second cell.
The internode signaling component 930 may receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
The transmitter 935 may transmit signals generated by other components of the device 905. In some examples, the transmitter 935 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 935 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11. The transmitter 935 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a communications manager 1005 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The communications manager 1005 may be an example of aspects of a communications manager 815, a communications manager 915, or a communications manager 1110 described herein. The communications manager 1005 may include a release module 1010, a reselection module 1015, an internode signaling component 1020, and an indication component 1025. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The release module 1010 may configure a first measurement configuration for a non-camping frequency for a UE.
In some examples, the release module 1010 may determine that the first measurement configuration for the non-camping frequency is the same as the second measurement configuration for the non-camping frequency.
In some examples, the release module 1010 may transmit a RRC release message to the UE including the first measurement configuration for the non-camping frequency based on the determining.
In some examples, the release module 1010 may determine that the first measurement configuration for the non-camping frequency is different than the second measurement configuration for the non-camping frequency.
In some examples, the release module 1010 may transmit a RRC release message to the UE including the second measurement configuration for the non-camping frequency based on the determining.
In some examples, the release module 1010 may refrain from transmitting a RRC release message to the UE based on the determining.
In some cases, the first measurement configuration for the non-camping frequency and the second measurement configuration for the non-camping frequency includes a synchronization signal block (SSB) measurement configuration.
In some cases, the internode signaling includes SSB-based measurement timing configuration (SMTC) information, SSB subcarrier spacing information, SSB to measure information, synchronization signal received signal strength indicator (RSSI) measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
The reselection module 1015 may identify a cell re-selection by the UE from the first cell to a second cell.
The internode signaling component 1020 may receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
In some examples, the internode signaling component 1020 may transmit a request to the second cell for the internode signaling based on the cell re-selection.
In some cases, the internode signaling includes a measurement timing configuration message, an early measurement configuration exchange message, a UE context response message, or a combination thereof.
In some cases, the UE is inactive.
The indication component 1025 may transmit an indication in a RRC release message to the UE indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration.
FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The device 1105 may be an example of or include the components of device 805, device 905, or a base station 105 as described herein. The device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1150) .
The communications manager 1110 may configure a first measurement configuration for a non-camping frequency for a UE, identify a cell re-selection by the UE from the first cell to a second cell, and receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection.
The network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless  transceiver. The transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1130 may include RAM, ROM, or a combination thereof. The memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein. In some cases, the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1140 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1140. The processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting internode measurement configuration signaling) .
The inter-station communications manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1135 may be  stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 12 shows a flowchart illustrating a method 1200 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The operations of method 1200 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 4 through 7. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1205, the UE may receive a RRC release message from a first cell based on a cell re-selection from the first cell to a second cell, where the RRC release message includes a first measurement configuration for a non-camping frequency and is based on internode signaling between the first cell and the second cell. The operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by a release component as described with reference to FIGs. 4 through 7.
At 1210, the UE may receive a system information message from the second cell, where the system information message from the second cell includes a second measurement configuration for the non-camping frequency. The operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a system information component as described with reference to FIGs. 4 through 7.
At 1215, the UE may measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based on the RRC release message. The operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a reselection component as described with reference to FIGs. 4 through 7.
FIG. 13 shows a flowchart illustrating a method 1300 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 8 through 11. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1305, the base station may configure a first measurement configuration for a non-camping frequency for a UE. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a release module as described with reference to FIGs. 8 through 11.
At 1310, the base station may identify a cell re-selection by the UE from the first cell to a second cell. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a reselection module as described with reference to FIGs. 8 through 11.
At 1315, the base station may receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by an internode signaling component as described with reference to FIGs. 8 through 11.
FIG. 14 shows a flowchart illustrating a method 1400 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 8 through 11. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1405, the base station may configure a first measurement configuration for a non-camping frequency for a UE. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a release module as described with reference to FIGs. 8 through 11.
At 1410, the base station may identify a cell re-selection by the UE from the first cell to a second cell. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a reselection module as described with reference to FIGs. 8 through 11.
At 1415, the base station may receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by an internode signaling component as described with reference to FIGs. 8 through 11.
At 1420, the base station may determine that the first measurement configuration for the non-camping frequency is different than the second measurement configuration for the non-camping frequency. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a release module as described with reference to FIGs. 8 through 11.
At 1425, the base station may transmit a RRC release message to the UE including the second measurement configuration for the non-camping frequency based on the determining. The operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a release module as described with reference to FIGs. 8 through 11.
FIG. 15 shows a flowchart illustrating a method 1500 that supports internode measurement configuration signaling in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 8 through 11. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a  base station may perform aspects of the functions described below using special-purpose hardware.
At 1505, the base station may configure a first measurement configuration for a non-camping frequency for a UE. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a release module as described with reference to FIGs. 8 through 11.
At 1510, the base station may identify a cell re-selection by the UE from the first cell to a second cell. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a reselection module as described with reference to FIGs. 8 through 11.
At 1515, the base station may receive, from the second cell, internode signaling including a second measurement configuration for the non-camping frequency based on the cell re-selection. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by an internode signaling component as described with reference to FIGs. 8 through 11.
At 1520, the base station may transmit an indication in a RRC release message to the UE indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by an indication component as described with reference to FIGs. 8 through 11.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) ,  Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of  example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (40)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    receiving a radio resource control (RRC) release message from a first cell based at least in part on a cell re-selection from the first cell to a second cell, wherein the RRC release message comprises a first measurement configuration for a non-camping frequency and is based at least in part on internode signaling between the first cell and the second cell;
    receiving a system information message from the second cell, wherein the system information message from the second cell comprises a second measurement configuration for the non-camping frequency; and
    measuring the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based at least in part on the RRC release message.
  2. The method of claim 1, further comprising:
    measuring the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency.
  3. The method of claim 2, further comprising:
    measuring the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency until expiry of a validity timer indicated by the RRC release message.
  4. The method of claim 1, further comprising:
    measuring the non-camping frequency at the second cell using the second measurement configuration for the non-camping frequency.
  5. The method of claim 1, further comprising:
    receiving an indication in the RRC release message indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration; and
    measuring the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based at least in part on the indication in the RRC release message.
  6. The method of claim 1, wherein the first measurement configuration for the non-camping frequency and the second measurement configuration for the non-camping frequency comprises a synchronization signal block (SSB) measurement configuration.
  7. The method of claim 1, wherein the internode signaling comprises SSB-based measurement timing configuration (SMTC) information, SSB subcarrier spacing information, SSB to measure information, synchronization signal received signal strength indicator (RSSI) measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
  8. The method of claim 1, wherein the internode signaling comprises a measurement timing configuration message, an early measurement configuration exchange message, a UE context response message, or a combination thereof.
  9. A method for wireless communications at a first cell, comprising:
    configuring a first measurement configuration for a non-camping frequency for a user equipment (UE) ;
    identifying a cell re-selection by the UE from the first cell to a second cell; and
    receiving, from the second cell, internode signaling comprising a second measurement configuration for the non-camping frequency based at least in part on the cell re-selection.
  10. The method of claim 9, further comprising:
    determining that the first measurement configuration for the non-camping frequency is the same as the second measurement configuration for the non-camping frequency; and
    transmitting a radio resource control (RRC) release message to the UE comprising the first measurement configuration for the non-camping frequency based at least in part on the determining.
  11. The method of claim 9, further comprising:
    determining that the first measurement configuration for the non-camping frequency is different than the second measurement configuration for the non-camping frequency; and
    transmitting a radio resource control (RRC) release message to the UE comprising the second measurement configuration for the non-camping frequency based at least in part on the determining.
  12. The method of claim 9, further comprising:
    determining that the first measurement configuration for the non-camping frequency is different than the second measurement configuration for the non-camping frequency; and
    refraining from transmitting a radio resource control (RRC) release message to the UE based at least in part on the determining.
  13. The method of claim 9, further comprising:
    transmitting an indication in a radio resource control (RRC) release message to the UE indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration.
  14. The method of claim 9, further comprising:
    transmitting a request to the second cell for the internode signaling based at least in part on the cell re-selection.
  15. The method of claim 9, wherein the first measurement configuration for the non-camping frequency and the second measurement configuration for the non-camping frequency comprises a synchronization signal block (SSB) measurement configuration.
  16. The method of claim 9, wherein the internode signaling comprises SSB-based measurement timing configuration (SMTC) information, SSB subcarrier spacing  information, SSB to measure information, synchronization signal received signal strength indicator (RSSI) measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
  17. The method of claim 9, wherein the internode signaling comprises a measurement timing configuration message, an early measurement configuration exchange message, a UE context response message, or a combination thereof.
  18. The method of claim 17, wherein the UE is inactive.
  19. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive a radio resource control (RRC) release message from a first cell based at least in part on a cell re-selection from the first cell to a second cell, wherein the RRC release message comprises a first measurement configuration for a non-camping frequency and is based at least in part on internode signaling between the first cell and the second cell;
    receive a system information message from the second cell, wherein the system information message from the second cell comprises a second measurement configuration for the non-camping frequency; and
    measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based at least in part on the RRC release message.
  20. The apparatus of claim 19, wherein the instructions are further executable by the processor to cause the apparatus to:
    measure the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency.
  21. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    measure the non-camping frequency at the second cell using the first measurement configuration for the non-camping frequency until expiry of a validity timer indicated by the RRC release message.
  22. The apparatus of claim 19, wherein the instructions are further executable by the processor to cause the apparatus to:
    measure the non-camping frequency at the second cell using the second measurement configuration for the non-camping frequency.
  23. The apparatus of claim 19, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive an indication in the RRC release message indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration; and
    measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based at least in part on the indication in the RRC release message.
  24. The apparatus of claim 19, wherein the first measurement configuration for the non-camping frequency and the second measurement configuration for the non-camping frequency comprises a synchronization signal block (SSB) measurement configuration.
  25. The apparatus of claim 19, wherein the internode signaling comprises SSB-based measurement timing configuration (SMTC) information, SSB subcarrier spacing information, SSB to measure information, synchronization signal received signal strength indicator (RSSI) measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from  cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
  26. The apparatus of claim 19, wherein the internode signaling comprises a measurement timing configuration message, an early measurement configuration exchange message, a UE context response message, or a combination thereof.
  27. An apparatus for wireless communications at a first cell, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    configure a first measurement configuration for a non-camping frequency for a user equipment (UE) ;
    identify a cell re-selection by the UE from the first cell to a second cell; and
    receive, from the second cell, internode signaling comprising a second measurement configuration for the non-camping frequency based at least in part on the cell re-selection.
  28. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the first measurement configuration for the non-camping frequency is the same as the second measurement configuration for the non-camping frequency; and
    transmit a radio resource control (RRC) release message to the UE comprising the first measurement configuration for the non-camping frequency based at least in part on the determining.
  29. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the first measurement configuration for the non-camping frequency is different than the second measurement configuration for the non-camping frequency; and
    transmit a radio resource control (RRC) release message to the UE comprising the second measurement configuration for the non-camping frequency based at least in part on the determining.
  30. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the first measurement configuration for the non-camping frequency is different than the second measurement configuration for the non-camping frequency; and
    refrain from transmitting a radio resource control (RRC) release message to the UE based at least in part on the determining.
  31. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit an indication in a radio resource control (RRC) release message to the UE indicating to the UE to measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration.
  32. The apparatus of claim 27, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit a request to the second cell for the internode signaling based at least in part on the cell re-selection.
  33. The apparatus of claim 27, wherein the first measurement configuration for the non-camping frequency and the second measurement configuration for the non-camping frequency comprises a synchronization signal block (SSB) measurement configuration.
  34. The apparatus of claim 27, wherein the internode signaling comprises SSB-based measurement timing configuration (SMTC) information, SSB subcarrier spacing information, SSB to measure information, synchronization signal received signal strength indicator (RSSI) measurement information, a number of SSBs to average for cell measurement derivation information, an absolute threshold for consolidation of measurement per reference signal index information, a frequency band indicator, derive SSB index from  cell information, a validity timer, a frequency list, common control signaling, or a combination thereof.
  35. The apparatus of claim 27, wherein the internode signaling comprises a measurement timing configuration message, an early measurement configuration exchange message, a UE context response message, or a combination thereof.
  36. The apparatus of claim 35, wherein the UE is inactive.
  37. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for receiving a radio resource control (RRC) release message from a first cell based at least in part on a cell re-selection from the first cell to a second cell, wherein the RRC release message comprises a first measurement configuration for a non-camping frequency and is based at least in part on internode signaling between the first cell and the second cell;
    means for receiving a system information message from the second cell, wherein the system information message from the second cell comprises a second measurement configuration for the non-camping frequency; and
    means for measuring the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based at least in part on the RRC release message.
  38. An apparatus for wireless communications at a first cell, comprising:
    means for configuring a first measurement configuration for a non-camping frequency for a user equipment (UE) ;
    means for identifying a cell re-selection by the UE from the first cell to a second cell; and
    means for receiving, from the second cell, internode signaling comprising a second measurement configuration for the non-camping frequency based at least in part on the cell re-selection.
  39. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    receive a radio resource control (RRC) release message from a first cell based at least in part on a cell re-selection from the first cell to a second cell, wherein the RRC release message comprises a first measurement configuration for a non-camping frequency and is based at least in part on internode signaling between the first cell and the second cell;
    receive a system information message from the second cell, wherein the system information message from the second cell comprises a second measurement configuration for the non-camping frequency; and
    measure the non-camping frequency at the second cell using the first measurement configuration or the second measurement configuration based at least in part on the RRC release message.
  40. A non-transitory computer-readable medium storing code for wireless communications at a first cell, the code comprising instructions executable by a processor to:
    configure a first measurement configuration for a non-camping frequency for a user equipment (UE) ;
    identify a cell re-selection by the UE from the first cell to a second cell; and
    receive, from the second cell, internode signaling comprising a second measurement configuration for the non-camping frequency based at least in part on the cell re-selection.
PCT/CN2019/105818 2019-09-13 2019-09-13 Internode measurement configuration signaling WO2021046836A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/105818 WO2021046836A1 (en) 2019-09-13 2019-09-13 Internode measurement configuration signaling
PCT/CN2019/108386 WO2021046933A1 (en) 2019-09-13 2019-09-27 Internode measurement configuration signaling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105818 WO2021046836A1 (en) 2019-09-13 2019-09-13 Internode measurement configuration signaling

Publications (1)

Publication Number Publication Date
WO2021046836A1 true WO2021046836A1 (en) 2021-03-18

Family

ID=74865997

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/105818 WO2021046836A1 (en) 2019-09-13 2019-09-13 Internode measurement configuration signaling
PCT/CN2019/108386 WO2021046933A1 (en) 2019-09-13 2019-09-27 Internode measurement configuration signaling

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108386 WO2021046933A1 (en) 2019-09-13 2019-09-27 Internode measurement configuration signaling

Country Status (1)

Country Link
WO (2) WO2021046836A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193543A1 (en) * 2022-04-06 2023-10-12 Oppo广东移动通信有限公司 Cell measurement method and apparatus, terminal device and computer-readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130210443A1 (en) * 2010-09-07 2013-08-15 Nokia Siemens Networks Oy Mobility in Heterogeneous Network Environments
CN109428767A (en) * 2017-08-22 2019-03-05 华为技术有限公司 Processing method, terminal device and the network equipment of measurement configuration information
WO2019085782A1 (en) * 2017-10-30 2019-05-09 中国移动通信有限公司研究院 Measurement configuration negotiation method during dual connection to different systems, base station and terminal
CN110035567A (en) * 2018-01-11 2019-07-19 维沃移动通信有限公司 A kind of measurement method and user terminal of reference signal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10791562B2 (en) * 2017-01-05 2020-09-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in wireless communication system
WO2019015570A1 (en) * 2017-07-17 2019-01-24 Cheng, Yu-Hsin Method and apparatus for power saving in a wireless communication system
CN110035447B (en) * 2018-01-11 2021-09-24 维沃移动通信有限公司 Measurement configuration method and terminal equipment
US10873985B2 (en) * 2018-02-14 2020-12-22 Htc Corporation Device and method of handling a dual connectivity with base stations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130210443A1 (en) * 2010-09-07 2013-08-15 Nokia Siemens Networks Oy Mobility in Heterogeneous Network Environments
CN109428767A (en) * 2017-08-22 2019-03-05 华为技术有限公司 Processing method, terminal device and the network equipment of measurement configuration information
WO2019085782A1 (en) * 2017-10-30 2019-05-09 中国移动通信有限公司研究院 Measurement configuration negotiation method during dual connection to different systems, base station and terminal
CN110035567A (en) * 2018-01-11 2019-07-19 维沃移动通信有限公司 A kind of measurement method and user terminal of reference signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "DC and CA enhancements", 3GPP DRAFT; RP-190972_STATUS REPORT FOR MULTI-RAT DUAL-CONNECTIVITY AND CARRIER AGGREGATION ENHANCEMENTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Newport Beach, USA; 20190603 - 20190606, 2 June 2019 (2019-06-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051747181 *
ZTE CORPORATION, SANECHIPS: "Further consideration on early measurement reporting", 3GPP DRAFT; R2-1907095 FURTHER CONSIDERATION ON EARLY MEASUREMENT REPORTING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 6, XP051711392 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193543A1 (en) * 2022-04-06 2023-10-12 Oppo广东移动通信有限公司 Cell measurement method and apparatus, terminal device and computer-readable storage medium

Also Published As

Publication number Publication date
WO2021046933A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
WO2020252684A1 (en) New radio synchronization signal block related idle measurement configuration
EP3991505A1 (en) Triggering resource allocation configuration switching for sidelink communications
EP4018730A1 (en) Uplink power control via mac-ce messaging
WO2022094903A1 (en) Relay selection based on early measurement in l2 relay
US20240056918A1 (en) Vehicle-to-everything cell reselection
EP4336892A1 (en) Early measurements for logged minimization of drive test
US11923971B2 (en) Modulation and coding scheme table selection for sidelink communications
WO2022147642A1 (en) Backward handover procedures for l2 relay mobility
WO2022041115A1 (en) A method for protocol stack sharing in dual connectivity
WO2022000484A1 (en) Wake-up signal design for multiple multicast sessions
WO2021046836A1 (en) Internode measurement configuration signaling
EP4133823A1 (en) Wireless device transmit and receive capability in sidelink control information
US11758592B2 (en) Implicit beam indication
US11711761B2 (en) Techniques for delay reduction and power optimization using a set of antenna modules
WO2022170556A1 (en) Additional user equipment identifier for paging response
WO2023070359A1 (en) An enhanced ue mechanism to increase the chance for irat redirection
WO2022187990A1 (en) Paging occasion update using a registration request
WO2021232408A1 (en) Connection recovery in dual subscriber service
WO2021223135A1 (en) Sharing bar cell information in dual new radio user equipment
US20230217497A1 (en) Uplink timing advance estimation from sidelink
WO2022170573A1 (en) A rapid signaling release solution after paging response
WO2023087174A1 (en) Conditional handover between direct and sidelink path switch
WO2023044600A1 (en) Techniques for managing local remote user equipment identifier
WO2022155869A1 (en) Candidate cell detection for standalone mode
WO2021223056A1 (en) Data stall recovery in wireless communications systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945379

Country of ref document: EP

Kind code of ref document: A1