WO2024026862A1 - 一种传输测量配置信息的方法、装置以及可读存储介质 - Google Patents

一种传输测量配置信息的方法、装置以及可读存储介质 Download PDF

Info

Publication number
WO2024026862A1
WO2024026862A1 PCT/CN2022/110666 CN2022110666W WO2024026862A1 WO 2024026862 A1 WO2024026862 A1 WO 2024026862A1 CN 2022110666 W CN2022110666 W CN 2022110666W WO 2024026862 A1 WO2024026862 A1 WO 2024026862A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
configuration information
gap
measurement gap
user equipment
Prior art date
Application number
PCT/CN2022/110666
Other languages
English (en)
French (fr)
Inventor
胡子泉
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280003079.6A priority Critical patent/CN117859367A/zh
Priority to PCT/CN2022/110666 priority patent/WO2024026862A1/zh
Publication of WO2024026862A1 publication Critical patent/WO2024026862A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a method, device and readable storage medium for transmitting measurement configuration information.
  • the user equipment In the wireless communication system, the user equipment (User Equipment, UE) needs to perform mobility measurements on the measurement object (Measurement Object, MO) configured by the network device, where the MO corresponds to the neighbor cell signal or the signal of other carriers to be measured.
  • the UE reports the measurement results of the mobility measurement to the network device, and the network device determines the current communication status of the UE based on the measurement results to facilitate mobility management of the UE. Due to UE processing cost and shape limitations, the UE can only work at the same frequency point at the same time, and at that time it can only perform mobility measurements on the MO centered on that frequency point.
  • the UE can send and receive data (TX/RX) in the serving cell while measuring.
  • TX/RX data transmission
  • the UE must suspend data transmission (TX/RX) with the serving cell during measurement and resume after the measurement is completed.
  • Communication with the serving cell The time interval during which the UE pauses communication with the serving cell to measure neighbor cell signals is called the measurement gap (Meas Gap, MG).
  • the network device will configure multiple MOs for the UE that need to be measured based on measurement gaps.
  • the problem of multiple MOs competing for the same measurement gap needs to be solved.
  • the present disclosure provides a method, device and readable storage medium for transmitting measurement configuration information.
  • the present disclosure provides a method for receiving measurement configuration information, which is executed by user equipment.
  • the method includes:
  • measurements of the corresponding measurement objects are performed in different measurement intervals.
  • the user equipment learns the measurement objects configured by the network device and the measurement gap configuration information through the measurement configuration information issued by the network device, and combines the measurement configuration information to perform measurements of the measurement objects in different measurement gaps, thereby Measurements of different measurement objects can be effectively dispersed to overcome the problem of being unable to perform measurements of multiple measurement objects in parallel due to UE capability limitations.
  • the measurement of corresponding measurement objects is performed in different measurement gaps according to the measurement configuration information, including:
  • determining the expanded measurement period of at least one measurement object based on the measurement configuration information includes:
  • each measurement group includes at least one measurement object that meets the set conditions
  • the expanded measurement period of each measurement object in each measurement group is determined.
  • determining at least one measurement group corresponding to the measurement gap configuration information includes:
  • the measured measurement object is determined as the second measurement group.
  • determining based on the measurement gap configuration information to obtain a measurement period after expansion of each measurement object in each measurement group includes:
  • each of the measurement groups determine the carrier-specific spreading factor corresponding to the measurement group based on the number of measurement objects in the measurement group and the proportional coefficient corresponding to the measurement group;
  • the proportional coefficient corresponding to the measurement group is defined by a protocol.
  • measurements of corresponding measurement objects are performed at different measurement intervals within the extended measurement period, including:
  • the measurement of each measurement object in the measurement group is alternately performed.
  • the measurement configuration information indicates measurement gap configuration information of at least one measurement gap type, and the measurement gap configuration information of each measurement gap type is used to support the measurement of at least one corresponding measurement object.
  • the method further includes:
  • the measurement of corresponding measurement objects is performed in different measurement intervals according to the measurement configuration information, including:
  • the measurement gap configuration information that sets the measurement gap type, measurements of the corresponding measurement objects are performed in different measurement gaps.
  • the method further includes:
  • the priority identifier is defined by a protocol.
  • the method further includes:
  • the measurement gap types supported by the user equipment include at least one of the following:
  • the present disclosure provides a method for sending measurement configuration information, which is executed by a network device.
  • the method includes:
  • the network device delivers measurement configuration information to the user equipment, so that the user equipment combines the measurement configuration information to perform measurements on the corresponding measurement objects in different measurement gaps to overcome the inability to perform multiple measurements in parallel due to UE capability limitations. Problems with object measurement.
  • the method further includes:
  • the measurement configuration information is determined according to the capability information and a first correspondence relationship, where the first correspondence relationship is a correspondence relationship between a measurement gap type and a measurement object supported by the measurement gap type.
  • the measurement gap types supported by the user equipment include at least one of the following:
  • the measurement configuration information is also used to indicate a priority identifier corresponding to the measurement gap configuration information of at least one measurement gap type.
  • the present disclosure provides a device for receiving measurement configuration information, which may be used to perform the steps performed by user equipment in the above-mentioned first aspect or any possible design of the first aspect.
  • the user equipment can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • the device may include a transceiver module and a processing module coupled to each other, wherein the transceiver module may be used to support the communication device to communicate, and the processing module may be used by the communication device to perform processing operations, such as generating The information/message needs to be sent, or the received signal is processed to obtain the information/message.
  • the transceiver module is configured to receive measurement configuration information sent by the network device, where the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information;
  • the processing module is configured to perform measurements of corresponding measurement objects in different measurement intervals according to the measurement configuration information.
  • the present disclosure provides an apparatus for sending measurement configuration information, which may be used to perform the steps performed by a network device in the above second aspect or any possible design of the second aspect.
  • the network device can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • the device may include a transceiver module, where the transceiver module may be used to support the communication device to communicate.
  • the transceiver module is configured to send measurement configuration information to the user equipment, where the measurement configuration information is used to indicate the measurement object to be measured and measurement gap configuration information of at least one measurement gap type.
  • the present disclosure provides a communication device, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the first aspect or any one of the first aspects. possible designs.
  • the present disclosure provides a communication device, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the second aspect or any one of the second aspects. possible designs.
  • the present disclosure provides a computer-readable storage medium, in which instructions (or computer programs, programs) are stored. When called and executed on a computer, the computer is caused to execute the above-mentioned third step. Any possible design of the aspect or first aspect.
  • the present disclosure provides a computer-readable storage medium in which instructions (or computer programs, programs) are stored, which when called and executed on a computer, cause the computer to execute the above-mentioned Two aspects or any possible design of the second aspect.
  • Figure 1 is a schematic diagram of a wireless communication system architecture provided by an embodiment of the present disclosure
  • Figure 2 is a flow chart of a method of transmitting measurement configuration information according to an exemplary embodiment
  • Figure 3 is a flow chart of another method of transmitting measurement configuration information according to an exemplary embodiment
  • Figure 4 is a flow chart of a method of receiving measurement configuration information according to an exemplary embodiment
  • Figure 5 is a flow chart of another method of receiving measurement configuration information according to an exemplary embodiment
  • Figure 6 is a flow chart of another method of receiving measurement configuration information according to an exemplary embodiment
  • Figure 7 is a flow chart of another method of receiving measurement configuration information according to an exemplary embodiment
  • Figure 8 is a flow chart of a method of sending measurement configuration information according to an exemplary embodiment
  • Figure 9 is a flow chart of another method of sending measurement configuration information according to an exemplary embodiment
  • Figure 10 is a schematic diagram of a measurement scenario according to an exemplary embodiment
  • Figure 11 is a schematic diagram of a measurement scenario according to another exemplary embodiment.
  • Figure 12 is a schematic diagram of a measurement scenario according to another exemplary embodiment
  • Figure 13 is a block diagram of a device for receiving measurement configuration information according to an exemplary embodiment
  • Figure 14 is a block diagram of user equipment according to an exemplary embodiment
  • Figure 15 is a block diagram of a device for sending measurement configuration information according to an exemplary embodiment
  • Figure 16 is a block diagram of a communication device according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • a method for transmitting measurement configuration information can be applied to a wireless communication system 100 , which may include a user equipment 101 and a network device 102 .
  • the user equipment 101 is configured to support carrier aggregation and can be connected to multiple carrier units of the network device 102, including a primary carrier unit and one or more secondary carrier units.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • WiMAX global Internet microwave access
  • CRAN cloud radio access network
  • 5G fifth generation
  • 5G new wireless (new radio, NR) communication system
  • PLMN public land mobile network
  • the user equipment 101 shown above can be a terminal, an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, a mobile terminal, a wireless communication device, a terminal Agent or terminal device, etc.
  • the user equipment 101 may be equipped with a wireless transceiver function, which can communicate (such as wireless communication) with one or more network devices of one or more communication systems, and accept network services provided by the network devices.
  • the network devices here include but are not Limited to network device 102 shown.
  • the user equipment 101 can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, a device with Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or terminal devices in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 102 may be an access network device (or access network site).
  • access network equipment refers to equipment that provides network access functions, such as wireless access network (radio access network, RAN) base stations and so on.
  • the network device 102 may specifically include a base station (BS), or a base station and a wireless resource management device for controlling the base station, etc.
  • the network device 102 may also include relay stations (relay devices), access points, and base stations in future 5G networks, base stations in future evolved PLMN networks, or NR base stations, etc.
  • Network device 102 may be a wearable device or a vehicle-mounted device.
  • the network device 102 may also be a communication chip having a communication module.
  • the network device 102 includes but is not limited to: the next generation base station (gnodeB, gNB) in 5G, the evolved node B (evolved node B, eNB) in the LTE system, the radio network controller (radio network controller, RNC), Node B (NB) in the WCDMA system, wireless controller under the CRAN system, base station controller (BSC), base transceiver station (BTS) in the GSM system or CDMA system, home Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP) or mobile switching center, etc.
  • the next generation base station gNB
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • FIG. 2 illustrates a method of transmitting measurement configuration information according to an exemplary embodiment. As shown in Figure 2, the method includes steps S201 to S202, specifically:
  • Step S201 The network device 102 sends measurement configuration information to the user equipment 101.
  • the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information.
  • Step S202 The user equipment 101 performs measurements of the corresponding measurement objects in different measurement intervals according to the received measurement configuration information.
  • MOs measurement objects
  • the embodiments of the present disclosure are applied to a scenario where the measurement gaps configured for multiple measurement objects conflict, that is, a scenario where multiple MOs may compete for measurement gaps at the same location.
  • the network device 102 may configure different measurement gaps for different measurement objects in the measurement gap configuration information, so that the user equipment 101 performs measurements respectively in different measurement gaps.
  • the user equipment 101 combines the measurement configuration information to extend the measurement period, and performs measurements in different measurement intervals within the extended measurement period.
  • the user equipment 101 learns the measurement objects configured by the network device 102 and the measurement gap configuration information through the measurement configuration information sent by the network device 102, and combines the measurement configuration information to perform measurement of the measurement objects in different measurement gaps. Measurement, so that the measurements of different measurement objects can be effectively dispersed to overcome the problem of being unable to perform measurements of multiple measurement objects in parallel due to UE capability limitations.
  • An embodiment of the present disclosure provides a method for transmitting measurement configuration information.
  • the method includes steps S201' to S203', specifically:
  • Step S201' the network device 102 sends measurement configuration information to the user equipment 101.
  • the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information.
  • Step S202' The user equipment 101 determines the expanded measurement cycle of at least one measurement object based on the received measurement configuration information.
  • step S203' the user equipment 101 performs measurements on the corresponding measurement objects in different measurement gaps within the extended measurement period.
  • MOs measurement objects
  • the embodiments of the present disclosure are applied to a scenario where the measurement gaps configured for multiple measurement objects conflict, that is, a scenario where multiple MOs may compete for measurement gaps at the same location.
  • the measurement configuration information indicates measurement gap configuration information of at least one measurement gap type, and the measurement gap configuration information of each measurement gap type is used to support the measurement of at least one corresponding measurement object.
  • the measurement gap type may be: concurrent measurement gap (Concurrent Gap), network configured small measurement gap (Network Controlled Small Gap, NCSG) ) or preconfigured measurement gap (Pre-MG).
  • the network device 102 can configure up to 3 sets of measurement gap configuration information for the user equipment 101 at the same time.
  • the measurement gap in the NCSG includes: the time period (ML) during which the MO measurement is performed and the visible interruption length (VIL) on both sides of the ML.
  • ML time period
  • VIL visible interruption length
  • Pre-MG defines that the measurement gap has two states: activated preconfigured gap and deactivated preconfigured gap.
  • the network device 102 can change the activation and deactivation status of the Pre-MG according to Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • a deactivated Pre-MG indicates that the measurement pattern (gap pattern) of the Pre-MG is invalid, such as its corresponding measurement gap configuration information.
  • the measurement gap configuration information under each measurement gap type can support the corresponding MO.
  • the measurement gap types and their supported measurement objects can be found in Table 1 below.
  • the MOs supported by Concurrent Gap include:
  • NR is based on the measurement of Synchronization Signal Block (SSB);
  • SSB Synchronization Signal Block
  • NR is based on the measurement of downlink channel state information reference signal (Channel-State-Information Reference Signal, CSI-RS);
  • CSI-RS Channel-State-Information Reference Signal
  • RSTD Reference Signal Time Difference
  • NR is based on the measurement of Positioning Reference Signal (PRS).
  • PRS Positioning Reference Signal
  • MOs supported by NCSG include:
  • SSB-based intra-frequency measurement including deactivated secondary carrier frequency (SCC) measurement and dormant secondary cell (Scell) measurement;
  • SCC deactivated secondary carrier frequency
  • Scell dormant secondary cell
  • NCSG if the user equipment 101 is configured with Inter-RAT GSM measurement, Inter-RAT UTRAN measurement, PRS measurement or inter-frequency CSI-RS measurement, NCSG is not applicable.
  • MOs supported by Pre-MG include:
  • MOs supported when Pre-MG is activated include:
  • E-UTRA Inter-RAT RSTD and Cell ID-based enhanced positioning technology Enhanced Cell-ID, E-CID
  • MOs supported when Pre-MG is deactivated include:
  • the following information may be indicated in the measurement gap configuration information of different measurement gap types: the measurement identifier (Meas ID) corresponding to the measurement gap configuration information, the duration of the measurement gap, the measurement gap period, the measurement gap The starting offset value and the identification of the measurement gap (Gap ID).
  • the Meas ID is used to associate the measurement gap configuration information with the corresponding MO
  • the Gap ID is used to associate the measurement gap with the corresponding frequency point to be measured.
  • the same frequency point to be measured can correspond to multiple MOs, so the same measurement configuration information may be used to perform measurements on multiple MOs.
  • the extended measurement period can be determined using the method corresponding to this embodiment. It can be understood that in the following embodiments, the method of extending the measurement period is exemplarily described by using measurement configuration information that sets the measurement gap type.
  • the user equipment 101 can extend the measurement period of each MO based on the measurement gap configuration information to obtain the extended measurement period.
  • the original measurement period is defined by the protocol, such as filtering of 3-5 measurement results (sample points).
  • one measurement result can be obtained in one measurement gap period, so the measurement period satisfies:
  • Measurement period number of sample points (number of samples) ⁇ measurement gap period.
  • the user equipment 101 extends the measurement period by an agreed coefficient with the network equipment 102 .
  • the user equipment 101 determines a carrier specific scaling factor (CSSF) of each MO, and the CSSF is used to extend the measurement period of the corresponding MO. Measurements are performed within the extended measurement period of each MO to perform measurements of MOs using the same measurement gap configuration in a time-divided manner.
  • CSSF carrier specific scaling factor
  • Measurement gap configuration information applies to MO1 and MO2.
  • the measurement gap configuration information indicates: the starting offset value of the measurement gap is t0, the duration of the measurement gap is L, and the measurement gap period is T0.
  • MO1 and MO2 may compete for the same measurement gap.
  • the measurement period is N*T0, where N represents the number of sample points.
  • the carrier-specific scaling factors of MO1 and MO2 are determined respectively, and their measurement periods are extended, so that within the measurement period, MO1 and MO2 can alternately use the measurement gaps for measurement to overcome the inability to perform multiple tasks in parallel due to UE capability limitations. A question of MO measurement.
  • the user equipment 101 learns the measurement objects configured by the network device 102 and the measurement gap type of the measurement gap configuration information through the measurement configuration information issued by the network device 102, and combines the measurement gap configuration information to determine the extended measurement cycle. Perform measurements corresponding to the measurement object. Therefore, during the measurement process, the measurement period of at least one measurement object will be adaptively lengthened, so that the measurement period can also be used to measure other measurement objects to overcome the inability to perform multiple MO measurements in parallel due to UE capability limitations. question.
  • FIG. 3 illustrates a method of transmitting measurement configuration information according to an exemplary embodiment. As shown in Figure 3, the method includes steps S301 to S305, specifically:
  • Step S301 The user equipment 101 sends capability information to the network device 102.
  • the capability information is used to indicate the measurement gap type supported by the user equipment 101.
  • Step S302 The network device 102 determines measurement configuration information based on the received capability information and a first correspondence relationship, where the first correspondence relationship is a correspondence relationship between the measurement gap type and the measurement objects supported by the measurement gap type.
  • Step S303 The network device 102 sends measurement configuration information to the user equipment 101.
  • the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information.
  • Step S304 The user equipment 101 determines the expanded measurement cycle of at least one measurement object based on the received measurement configuration information.
  • Step S305 The user equipment 101 performs measurements on the corresponding measurement objects in different measurement gaps within the extended measurement period.
  • the measurement configuration information indicates measurement gap configuration information of at least one measurement gap type, and the measurement gap configuration information of each measurement gap type is used to support the measurement of at least one corresponding measurement object.
  • the measurement gap type supported by the user equipment 101 may be at least one of the following: concurrent measurement gap (Concurrent Gap), network-configured small measurement gap (Network Controlled Small Gap, NCSG), predetermined measurement gap Configure the measurement gap (Pre-MG).
  • the measurement gap configuration information under each measurement gap type can support the corresponding MO, that is, there is a first correspondence between the measurement gap type and the MOs supported by the measurement gap type.
  • the first correspondence relationship may be as shown in Table 1.
  • Table 1 Y represents the MO supported by the measurement gap type.
  • the network device 102 is configured according to the capabilities of the user equipment 101 and the first corresponding relationship. Compared with the way in which network devices are configured when the first corresponding relationship is unknown in the related art, the present disclosure can perform more reasonable configurations to meet different measurement requirements; it can also avoid the limitation of network devices being unable to know the first corresponding relationship. When , a measurement gap type that does not support the measurement object to be measured is configured.
  • the user equipment 101 can extend the measurement period of the corresponding MO based on the measurement gap configuration information to combine the measurement periods that originally share the same measurement gap. MO spread out.
  • the network device 102 reasonably configures the corresponding measurement configuration information for the user equipment 101 according to the measurement gap type supported by the user equipment 101 and the first corresponding relationship, so that the user equipment 101 can perform reasonable measurement according to the corresponding measurement requirements. Measurement. It can also be avoided that the network device configures a measurement gap type that does not support the measurement object to be measured when it cannot learn the restriction of the first correspondence relationship. At the same time, measuring in conjunction with the expanded measurement cycle can effectively overcome the problem of measurement gap conflicts.
  • the embodiment of the present disclosure provides a method for receiving measurement configuration information, which is executed by the user equipment 101.
  • Figure 4 illustrates a method of receiving measurement configuration information according to an exemplary embodiment. As shown in Figure 4, the method includes steps S401 to S402, specifically:
  • Step S401 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information.
  • Step S402 According to the measurement configuration information, perform measurements of the corresponding measurement objects in different measurement intervals.
  • MOs measurement objects
  • the embodiments of the present disclosure are applied to a scenario where the measurement gaps configured for multiple measurement objects conflict, that is, a scenario where multiple MOs may compete for measurement gaps at the same location.
  • the network device 102 may configure different measurement gaps for different measurement objects in the measurement gap configuration information, so that the user equipment 101 performs measurements respectively in different measurement gaps.
  • the user equipment 101 combines the measurement configuration information to extend the measurement period, and performs measurements in different measurement intervals within the extended measurement period.
  • the user equipment 101 learns the measurement objects configured by the network device 102 and the measurement gap configuration information through the measurement configuration information sent by the network device 102, and combines the measurement configuration information to perform measurement of the measurement objects in different measurement gaps. Measurement, so that the measurements of different measurement objects can be effectively dispersed to overcome the problem of being unable to perform measurements of multiple measurement objects in parallel due to UE capability limitations.
  • the embodiment of the present disclosure provides a method for receiving measurement configuration information, which is executed by the user equipment 101.
  • the method includes steps S401' to S403', specifically:
  • Step S401' the user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information.
  • Step S402' determine the expanded measurement period of at least one measurement object based on the measurement configuration information.
  • Step S403' perform measurements corresponding to the measurement objects at different measurement intervals within the extended measurement period.
  • the measurement configuration information indicates the measurement gap configuration information of at least one measurement gap type.
  • the measurement gap configuration information of each measurement gap type is used to support the measurement of at least one corresponding measurement object. See Table 1 shown.
  • the measurement gap type may be: concurrent measurement gap (Concurrent Gap), network configured small measurement gap (Network Controlled Small Gap, NCSG) or preconfigured measurement gap (Pre-MG).
  • the following information may be indicated in the measurement gap configuration information of different measurement gap types: the measurement identifier (Meas ID) corresponding to the measurement gap configuration information, the duration of the measurement gap, the measurement gap period, the measurement gap The starting offset value and the identification of the measurement gap (Gap ID).
  • the Meas ID is used to associate the measurement gap configuration information with the corresponding MO
  • the Gap ID is used to associate the measurement gap with the corresponding frequency point to be measured.
  • the same frequency point to be measured can correspond to multiple MOs, so the same measurement configuration information may be used to perform measurements on multiple MOs.
  • the user equipment 101 may determine the expanded measurement period of each MO corresponding to the measurement gap configuration information.
  • the user equipment 101 can extend the measurement period of each MO based on the measurement gap configuration information to obtain the extended measurement period. .
  • the measurement period the number of sample points (number of samples) ⁇ the measurement gap period.
  • the user equipment 101 extends the measurement period by an agreed coefficient with the network equipment 102 .
  • the user equipment 101 determines a carrier specific scaling factor (CSSF) of each MO, and the CSSF is used to extend the measurement period of the corresponding MO.
  • CSSF carrier specific scaling factor
  • the extended measurement period CSSF * measurement period. Measurements are performed within the extended measurement period of each MO to perform measurements of MOs using the same measurement gap configuration in a time-divided manner.
  • MO measurements are performed alternately within the extended measurement period.
  • Measurement gap configuration information applies to MO1 and MO2.
  • the measurement gap configuration information indicates: the starting offset value of the measurement gap is t0, the measurement gap duration is L, and the measurement gap period is T0.
  • MO1 and MO2 may compete for the same measurement gap.
  • the measurement period is N*T0, where N represents the number of sample points.
  • the carrier-specific scaling factors of MO1 and MO2 are determined respectively, and their measurement periods are extended, so that MO1 and MO2 alternately use the measurement gaps for measurement to overcome the problem of being unable to perform multiple MO measurements in parallel due to UE capability limitations.
  • the user equipment 101 learns the measurement objects configured by the network device 102 and the measurement gap type of the measurement gap configuration information through the measurement configuration information issued by the network device 102, and combines the measurement gap configuration information to re-determine the measurement cycle execution. Corresponding to the measurement of the measurement object. Therefore, during the measurement process, the original measurement period of at least one measurement object will be adaptively lengthened, so that other measurement objects can also be measured within this measurement period to overcome the impact of mobility caused by different measurement objects competing for measurement gaps. Measurement process issues.
  • the embodiment of the present disclosure provides a method for receiving measurement configuration information, which is executed by the user equipment 101.
  • Figure 5 illustrates a method of receiving measurement configuration information according to an exemplary embodiment. As shown in Figure 5, the method includes steps S501 to S504, specifically:
  • Step S501 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information.
  • Step S502 The user equipment 101 determines at least one measurement group corresponding to the measurement gap configuration information; wherein each measurement group includes at least one measurement object that meets the set conditions.
  • Step S503 The user equipment 101 determines the expanded measurement period of each measurement object in each measurement group according to the measurement gap configuration information.
  • Step S504 The user equipment 101 performs measurements corresponding to the measurement objects in different measurement gaps within the extended measurement period.
  • the measurement configuration information indicates the measurement gap configuration information of at least one measurement gap type.
  • the measurement gap configuration information of each measurement gap type is used to support the measurement of at least one corresponding measurement object. See Table 1 shown.
  • the measurement gap configuration information may support different measurement objects due to its different types.
  • the measurement objects in the measurement gap configuration information are grouped.
  • the measurement gap configuration information for setting the measurement gap type may indicate the following information: the measurement identifier (Meas ID) corresponding to the measurement gap configuration information, the measurement gap The duration, measurement gap period, starting offset value of the measurement gap and identification of the measurement gap (Gap ID).
  • the Meas ID is used to associate the measurement gap configuration information with the corresponding MO
  • the Gap ID is used to associate the measurement gap with the corresponding frequency point to be measured.
  • the same frequency point to be measured can correspond to multiple MOs, so the same measurement configuration information may be used to perform measurements on multiple MOs.
  • the set measurement gap type may be any of the following: concurrent measurement gap (Concurrent Gap), network configured small measurement gap (Network Controlled Small Gap, NCSG) or preconfigured measurement gap (Pre-MG).
  • concurrent measurement gap Concurrent Gap
  • network configured small measurement gap Network Controlled Small Gap, NCSG
  • Pre-MG preconfigured measurement gap
  • At least one measurement group corresponding to the set measurement gap type is determined.
  • the one with a higher priority among the at least one measurement gap type is used as the set measurement gap type.
  • the set condition may be to meet the same frequency characteristics. For example, whether it is a same-frequency measurement or whether it is a different-frequency measurement.
  • the MO measured at the same frequency is determined as a measurement group, and the MO measured at different frequencies is determined as a measurement group.
  • each measurement group determine the expanded measurement period for each measurement object in the measurement group.
  • the measured objects in each measurement group have the same expanded measurement period.
  • measurements of each measurement object in the measurement group are alternately performed.
  • the measurement objects corresponding to the measurement gap configuration information are divided into measurement groups, and the expanded measurement period of the measurement objects is determined according to the groups.
  • the embodiment of the present disclosure provides a method for receiving measurement configuration information, which is executed by the user equipment 101.
  • the method includes steps S501, S502', S503 and S504, specifically:
  • Step S501 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information.
  • Step S502' the user equipment 101 determines the measurement objects based on co-frequency measurement among the at least one measurement object corresponding to the measurement gap configuration information as the first measurement group, and/or sets the measurement gap type among the at least one measurement object corresponding to the measurement gap type.
  • the measurement objects based on non-co-frequency measurement are determined as the second measurement group.
  • Step S503 The user equipment 101 determines the expanded measurement period of each measurement object in each measurement group according to the measurement gap configuration information.
  • Step S504 The user equipment 101 performs measurements corresponding to the measurement objects in different measurement gaps within the extended measurement period.
  • the measurement configuration information indicates the measurement gap configuration information of at least one measurement gap type.
  • the measurement gap configuration information of each measurement gap type is used to support the measurement of at least one corresponding measurement object. See Table 1 shown.
  • the measurement gap configuration information may support different measurement objects due to its different types.
  • the measurement objects in the measurement gap configuration information are grouped.
  • the network device 102 may indicate the corresponding supported multiple MOs in the measurement gap configuration information that sets the measurement gap type through the measurement configuration information delivered. After receiving the measurement configuration information, the user equipment 101 groups multiple MOs corresponding to the set measurement gap type.
  • the set measurement gap type may be any of the following: concurrent measurement gap (Concurrent Gap), network configured small measurement gap (Network Controlled Small Gap, NCSG) or preconfigured measurement gap (Pre-MG).
  • the MOs are grouped according to the frequency characteristics of each MO. For example, the MO based on same-frequency measurement is the first measurement group, and the MO based on inter-frequency measurement is the second measurement group.
  • the embodiment of the present disclosure provides a method for receiving measurement configuration information, which is executed by the user equipment 101.
  • the method includes steps S501, S502, S503’, S503” and S504, specifically:
  • Step S501 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information.
  • Step S502 The user equipment 101 determines at least one measurement group corresponding to the measurement gap configuration information; wherein each measurement group includes at least one measurement object that meets the set conditions.
  • Step S503' In each measurement group, the user equipment 101 determines the carrier-specific spreading factor corresponding to the measurement group according to the number of measurement objects in the measurement group and the proportional coefficient corresponding to the measurement group.
  • Step S503 expand the measurement period of the corresponding measurement object according to the carrier-specific spreading factor, and obtain the expanded measurement period of each measurement object.
  • Step S504 The user equipment 101 performs measurements corresponding to the measurement objects in different measurement gaps within the extended measurement period.
  • the method includes steps S501, S502', S503', S503" and S504.
  • the measurement configuration information indicates the measurement gap configuration information of at least one measurement gap type.
  • the measurement gap configuration information of each measurement gap type is used to support the measurement of at least one corresponding measurement object. See Table 1 shown.
  • the measurement gap configuration information may support different measurement objects due to its different types.
  • the measurement objects in the measurement gap configuration information are grouped.
  • the type of measurement gap configuration information is the set measurement gap type as an example.
  • the set measurement gap type can be any of the following: concurrent measurement gap (Concurrent Gap), network configured small Measurement gap (Network Controlled Small Gap, NCSG) or preconfigured measurement gap (Pre-MG).
  • each measurement group corresponds to a carrier specific spreading factor (CSSF).
  • the carrier-specific spreading factor may include: a carrier-specific spreading factor CSSFwithingap that needs to measure a gap, and a carrier-specific spreading factor CSSFoutside that does not require a gap.
  • the measurement objects based on co-frequency measurement among at least one measurement object corresponding to the set measurement gap type are determined as the first measurement group, and/or at least one measurement corresponding to the set measurement gap type is Among the objects, the measurement objects based on non-co-frequency measurement are determined as the second measurement group.
  • the first measurement group corresponds to the first proportional coefficient K1
  • the second measurement group corresponds to the second proportional coefficient K2.
  • the number of MOs in the first measurement group is m1
  • the number of MOs in the second measurement group is m2.
  • the carrier specific spreading factor CSSF is greater than 1.
  • the proportional coefficient corresponding to the measurement group is defined by the protocol.
  • the scaling factor is 50% or 75%, etc.
  • the expanded measurement period of each MO in the measurement group may be determined accordingly.
  • the measurement gap period of the MO indicated in the measurement gap configuration information is T0
  • the carrier-specific expansion factor corresponding to the measurement group where the MO is located is CSSF
  • the CSSF is greater than 1, so the expanded measurement period can be expanded by CSSF times based on the original measurement period.
  • measurements of each measurement object in the measurement group are alternately performed at different measurement intervals within the extended measurement period corresponding to the measurement group.
  • the user equipment 101 determines the extended measurement period corresponding to the MO based on the measurement configuration information and the carrier-specific extension factor to overcome the problem of being unable to perform multiple MO measurements in parallel due to UE capability limitations.
  • the embodiment of the present disclosure provides a method for receiving measurement configuration information, which is executed by the user equipment 101.
  • Figure 6 illustrates a method of receiving measurement configuration information according to an exemplary embodiment. As shown in Figure 6, the method includes steps S601 to S603, specifically:
  • Step S601 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information of at least one measurement gap type.
  • the measurement gap configuration information of each measurement gap type is Used to support the measurement of at least one corresponding measurement object.
  • Step S602 In response to a conflict in the location of the measurement gaps indicated by the measurement gap configuration information of at least one measurement gap type, determine the one with the highest priority based on the priority identifier corresponding to the measurement gap configuration information of at least one measurement gap type. Measurement gap configuration information for a specified measurement gap type.
  • Step S603 The user equipment 101 performs measurements of the corresponding measurement objects in different measurement gaps according to the measurement gap configuration information that sets the measurement gap type.
  • the set measurement gap type may be: concurrent measurement gap (Concurrent Gap), network configured small measurement gap (Network Controlled Small Gap, NCSG) or preconfigured measurement gap (Pre-MG).
  • Concurrent Gap type measurement gap configuration information if the measurement gap period in the Concurrent Gap type is the same as the measurement gap period in the NCSG type ( ML+2VIL) overlap, it is considered that there is a conflict between the two types of measurement gaps.
  • the user equipment 101 performs corresponding measurements according to one type of measurement gap configuration information according to different types of priorities.
  • the user equipment 101 determines the measurement object based on co-frequency measurement among at least one measurement object corresponding to the set measurement gap type as the first measurement group, and/or determines the measurement object corresponding to the set measurement gap type.
  • the measurement objects based on non-co-frequency measurement among the at least one measurement object are determined as the second measurement group.
  • the expanded measurement period (Tn) of each MO is determined accordingly. ).
  • Tn CSSF*N*T0.
  • N represents the number of sample points.
  • the priority identification is protocol defined.
  • the user equipment 101 performs measurements according to the measurement gap configuration information setting the measurement gap type with the highest priority according to the priorities of different measurement gap types in the measurement configuration information. It can be understood that the methods of the embodiments of the present disclosure can be executed independently or in conjunction with the methods of the foregoing embodiments.
  • the embodiment of the present disclosure provides a method for receiving measurement configuration information, which is executed by the user equipment 101.
  • the method includes steps S601 to S604, specifically:
  • Step S601 the user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information of at least one measurement gap type.
  • the measurement gap configuration information of each measurement gap type is Used to support the measurement of at least one corresponding measurement object.
  • Step S601' the user equipment 101 receives the information indicating the priority identifier sent by the network device 102.
  • Step S602 In response to a conflict in the location of the measurement gap indicated by the measurement gap configuration information of at least one measurement gap type, determine the one with the highest priority based on the priority identifier corresponding to the measurement gap configuration information of at least one measurement gap type. Measurement gap configuration information for a specified measurement gap type.
  • Step S603 The user equipment 101 performs measurements of the corresponding measurement objects in different measurement gaps according to the measurement gap configuration information that sets the measurement gap type.
  • the network device 102 simultaneously indicates the priority identifier in the measurement configuration information.
  • the network device 102 indicates the priority identification through sent RRC signaling.
  • the network device 102 indicates the priority identification through the sent downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the user equipment 101 learns the priority identifiers of different measurement gap types according to the instructions of the network device 102.
  • the embodiment of the present disclosure provides a method for receiving measurement configuration information, which is executed by the user equipment 101.
  • Figure 7 illustrates a method of receiving measurement configuration information according to an exemplary embodiment. As shown in Figure 7, the method includes steps S701 to S703, specifically:
  • Step S701 The user equipment 101 sends capability information to the network device 102.
  • the capability information is used to indicate the measurement gap type supported by the user equipment.
  • Step S702 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information.
  • Step S703 According to the measurement configuration information, perform measurements of the corresponding measurement objects in different measurement intervals.
  • the measurement configuration information is determined by the network device 102 based on the capability information.
  • the measurement gap types supported by the user equipment 101 include at least one of the following:
  • the user equipment 101 reports capability information to the network device 102 so that the network device 102 can configure measurement objects and measurement gap configuration information according to the capabilities of the user equipment 101.
  • the embodiment of the present disclosure provides a method for sending measurement configuration information, which is executed by the network device 102 .
  • Figure 8 illustrates a method of receiving measurement configuration information according to an exemplary embodiment. As shown in Figure 8, the method includes step S801, specifically:
  • Step S801 The network device 102 sends measurement configuration information to the user equipment 101.
  • the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information.
  • the measurement configuration information indicates the measurement gap configuration information of at least one measurement gap type.
  • the measurement gap configuration information of each measurement gap type is used to support the measurement of at least one corresponding measurement object. See Table 1 shown.
  • the following information may be indicated in the measurement gap configuration information of different measurement gap types: the measurement identifier (Meas ID) corresponding to the measurement gap configuration information, the duration of the measurement gap, the measurement gap period, the measurement gap The starting offset value and the identification of the measurement gap (Gap ID).
  • the Meas ID is used to associate the measurement gap configuration information with the corresponding MO
  • the Gap ID is used to associate the measurement gap with the corresponding frequency point to be measured.
  • the same frequency point to be measured can correspond to multiple MOs, so the same measurement configuration information may be used to perform measurements on multiple MOs.
  • the network device 102 delivers measurement configuration information to the user equipment 101, so that the user equipment 101 combines the measurement configuration information to perform measurements of the corresponding measurement objects in different measurement gaps to overcome the inability to perform parallel execution due to UE capability limitations. Problems with multiple MO measurements.
  • the embodiment of the present disclosure provides a method for sending measurement configuration information, which is executed by the network device 102 .
  • Figure 9 illustrates a method of receiving measurement configuration information according to an exemplary embodiment. As shown in Figure 9, the method includes steps S901 to S903, specifically:
  • Step S901 The network device 102 receives the capability information sent by the user equipment 101.
  • the capability information is used to indicate the measurement gap type supported by the user equipment 101.
  • Step S902 The network device 102 determines the measurement configuration information according to the capability information and the first correspondence relationship, where the first correspondence relationship is the correspondence relationship between the measurement gap type and the measurement objects supported by the measurement gap type.
  • Step S903 The network device 102 sends measurement configuration information to the user equipment 101.
  • the measurement configuration information is used to indicate the measurement object to be measured and measurement gap configuration information of at least one measurement gap type.
  • the measurement gap types supported by the user equipment include at least one of the following:
  • the measurement gap configuration information under each measurement gap type can support the corresponding MO, that is, there is a first correspondence between the measurement gap type and the MOs supported by the measurement gap type.
  • the first correspondence relationship may be as shown in Table 1.
  • Table 1 Y represents the MO supported by the measurement gap type.
  • the network device 102 reasonably configures the corresponding measurement configuration information for the user equipment 101 according to the measurement gap type supported by the user equipment 101 and the first corresponding relationship, so that the user equipment 101 can perform reasonable measurement according to the corresponding measurement requirements. Measurement. At the same time, measurement combined with the extended measurement period can effectively overcome the problem of being unable to perform multiple MO measurements in parallel due to UE capability limitations.
  • the embodiment of the present disclosure provides a method for sending measurement configuration information, which is executed by the network device 102 .
  • the method includes step S801, or the method includes steps S901 to S903, wherein:
  • the measurement configuration information is also used to indicate a priority identifier corresponding to the measurement gap configuration information of at least one measurement gap type.
  • the network device 102 simultaneously indicates the priority identifier in the measurement configuration information.
  • the network device 102 indicates the priority identification through sent RRC signaling.
  • the network device 102 indicates the priority identification through the sent DCI.
  • the network device 102 delivers priority identifiers of different measurement gap types to the user equipment 101, so that the user equipment 101 can select a measurement gap type with a high priority based on the priority identifier, and configure the measurement gap according to this type.
  • Information to perform MO measurements is not limited to MO measurements.
  • the network device 102 can configure measurement gap configuration information of multiple measurement gap types for them.
  • the measurement gap configuration information is used to indicate the measurement gap configuration corresponding to MO1 and MO2. Corresponding measurement gap configuration.
  • MO1 and MO2 may need to occupy the same measurement gap (such as Gap#) for measurement. At this time, it is considered that MO1 and MO2 will compete for the same measurement gap.
  • Example 1 After receiving the measurement configuration information of the network device 102, the user equipment 101 will re-determine the extended measurement periods of MO1 and MO2 in order to overcome the problem of MO1 and MO2 competing for the measurement gap.
  • the user equipment 101 can determine MO1 and MO2 as the first measurement group, and there are two MOs in this measurement group.
  • the protocol defines that the proportional coefficient corresponding to this measurement group is K1.
  • measurements of MO1 and MO2 will be performed alternately in each extended measurement cycle.
  • user equipment 101 can perform the following measurements:
  • MO2 can also be measured at the measurement gaps corresponding to t0, (t0+2T0), (t0+4T0)..., and at the corresponding measurement gaps of t1, (t1+2T0), (t1+4T0)... MO1 is measured at the measurement gap.
  • This example is only for illustration and does not limit the measurement sequence of the measurement object.
  • the user equipment 101 can separately measure the measurement objects that originally compete for the same measurement gap based on the measurement configuration information and the carrier-specific expansion factor. This can not only effectively complete the measurement of such measurement objects, but also overcome the competition problem.
  • the user equipment 101 can determine a type of measurement gap configuration information with the highest priority in the measurement configuration information, and perform measurements based on the measurement gap configuration information with the highest priority.
  • the first measurement gap configuration information of the Concurrent Gap type and the second measurement gap configuration information of the Pre-MG type are configured, and the priority identifiers of the two are synchronously indicated.
  • the user equipment 101 selects one type of measurement gap configuration information according to the priority identifier. If the priority of the first measurement gap configuration information is high, the corresponding MO measurement is performed based on the first measurement gap configuration information; if the priority of the second measurement gap configuration information is high, the corresponding MO measurement is performed based on the second measurement gap configuration information.
  • the network device 102 is configured with the following MO to be measured:
  • MO1 SSB-based same-frequency measurement without measurement gap
  • MO2 SSB-based same-frequency measurement that requires a measurement gap; and all synchronization signal block measurement timing configuration (SMTC) timings of MO1 coincide with the measurement gap length of MO2;
  • SMTC synchronization signal block measurement timing configuration
  • MO3 Inter-frequency measurement based on CSI-RS
  • MO4 SSB-based inter-frequency measurement that requires gap measurement
  • MO5 NR based on PRS measurement
  • MO6 E-UTRA Inter-RAT measurement.
  • the network device 102 determines the first measurement gap configuration information of the Concurrent Gap type based on the capability information reported by the user equipment 101 and the first correspondence shown in Table 1 to perform the above-mentioned measurements of MO2 to MO6. And the measurement configuration information is delivered to the user equipment 101.
  • the measurement configuration information may include: the first measurement configuration information and the MO to be measured as above.
  • the user equipment 101 After receiving the measurement configuration information, the user equipment 101 determines MO1 and MO2 measured at the same frequency as the first measurement group, and determines the measurement objects MO3 to MO6 outside the first measurement group as the second measurement group.
  • the expanded measurement period T1 of MO1 is: CSSFwithingap*N*T0
  • the expanded measurement period T2 of MO2 is: CSSFwithingap*N*T0
  • T0 is the relationship between MO1 and MO2 indicated in the measurement configuration information. Measure the gap period. Referring to Example 2 and Figure 11, within the extended measurement period, the user equipment 101 performs measurements of MO1 and MO2 respectively in different periods of the measurement gap.
  • K2 is the proportional coefficient corresponding to the second measurement group defined by the protocol
  • 4 is the number of MOs in the second measurement group.
  • the network device 102 is configured with the following MO to be measured:
  • MO1 SSB-based same-frequency measurement without measurement gap
  • MO2 SSB-based same-frequency measurement that requires a measurement gap; and all synchronization signal block measurement timing configuration (SMTC) timings of MO1 coincide with the measurement gap length of MO2;
  • SMTC synchronization signal block measurement timing configuration
  • MO3 Inter-frequency measurement based on CSI-RS
  • MO4 SSB-based inter-frequency measurement that requires gap measurement
  • MO5 NR based on PRS measurement
  • MO6 E-UTRA Inter-RAT measurement.
  • the network device 102 determines the second measurement gap configuration information of the Pre-MG type based on the capability information reported by the user equipment 101 and the first correspondence shown in Table 1, to perform the above-mentioned MO2, MO3, MO4, and MO6. Measurement. And the measurement configuration information is delivered to the user equipment 101.
  • the measurement configuration information may include: second measurement configuration information and the above MO to be measured.
  • the user equipment 101 After receiving the measurement configuration information, the user equipment 101 determines MO1 and MO2 measured at the same frequency as the first measurement group, and determines the measurement objects MO3, MO4, and MO6 outside the first measurement group as the second measurement group.
  • the network device can also configure other measurement gap configuration information for MO5 measurement.
  • the network device 102 is configured with the following MO to be measured:
  • MO1 SSB-based same-frequency measurement without measurement gap
  • MO2 SSB-based same-frequency measurement that requires a measurement gap; and all synchronization signal block measurement timing configuration (SMTC) timings of MO1 coincide with the measurement gap length of MO2;
  • SMTC synchronization signal block measurement timing configuration
  • MO3 Inter-frequency measurement based on CSI-RS
  • MO4 SSB-based inter-frequency measurement that requires gap measurement
  • MO5 NR based on PRS measurement
  • MO6 E-UTRA Inter-RAT measurement.
  • the network device 102 determines the first measurement gap configuration information of the Concurrent Gap type and the second measurement gap configuration information of the Pre-MG type based on the capability information reported by the user equipment 101 and the first correspondence shown in Table 1, and Deliver measurement configuration information to the user equipment 101.
  • the measurement configuration information may include: first measurement gap configuration information, second measurement gap configuration information, priority identifiers of the two types of measurement gap configuration information, and the MO to be measured as above.
  • the user equipment 101 selects the one with a higher priority among the first measurement gap configuration information and the second measurement gap configuration information as the set measurement gap configuration information according to the priority identifier.
  • the measurement gap configuration information is set to the first measurement gap configuration information, the way in which the user equipment 101 determines the measurement period after MO extension can be found in Example 4.
  • the measurement gap configuration information is set to the second measurement gap configuration information, the way in which the user equipment 101 determines the measurement period after MO extension can be found in Example 5.
  • embodiments of the present disclosure also provide a device for receiving measurement configuration information.
  • the device can have the functions of the user equipment 101 in the above method embodiments, and can be used to perform the above method embodiments. of steps performed by the user device 101.
  • This function can be realized by hardware, or it can be realized by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 1300 shown in Figure 13 can serve as the user equipment 101 involved in the above method embodiment, and perform the steps performed by the user equipment 101 in the above method embodiment.
  • the communication device 1300 may include a transceiver module 1301 and a processing module 1302 coupled to each other.
  • the transceiver module 1301 may be used to support the communication device to communicate.
  • the transceiver module 1301 may have a wireless communication function, for example, through a wireless air interface. Communicate wirelessly with other communication devices.
  • the processing module 1302 can be used by the communication device to perform processing operations, such as generating information/messages that need to be sent, or processing received signals to obtain information/messages.
  • the transceiver module 1301 is configured to receive measurement configuration information sent by the network device, where the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information;
  • the processing module 1302 is configured to perform measurements of corresponding measurement objects in different measurement intervals according to the measurement configuration information.
  • the processing module 1302 is further configured to determine an expanded measurement period of at least one measurement object based on the measurement configuration information; and execute the corresponding measurement objects respectively in different measurement gaps within the expanded measurement period. Measurement.
  • the processing module 1302 is further configured to determine at least one measurement group corresponding to the measurement gap configuration information; wherein each measurement group includes at least one measurement object that meets the set conditions;
  • the expanded measurement period of each measurement object in each measurement group is determined.
  • the processing module 1302 is further configured to determine the measurement object based on co-frequency measurement among the at least one measurement object corresponding to the measurement gap configuration information as the first measurement group, and/or configure the measurement gap Among the at least one measurement object corresponding to the information, the measurement object based on non-co-frequency measurement is determined as the second measurement group.
  • the processing module 1302 is further configured to, in each measurement group, determine the carrier-specific spreading factor corresponding to the measurement group based on the number of measurement objects in the measurement group and the proportional coefficient corresponding to the measurement group;
  • the measurement period of the corresponding measurement object is expanded according to the carrier-specific expansion factor, and the expanded measurement period of each measurement object is obtained.
  • the proportional coefficient corresponding to the measurement group is defined by the protocol.
  • the processing module 1302 is further configured to alternately perform measurements of each measurement object in the measurement group at different measurement gaps within the extended measurement period corresponding to the measurement group.
  • the measurement configuration information indicates measurement gap configuration information of at least one measurement gap type, and the measurement gap configuration information of each measurement gap type is used to support the measurement of at least one corresponding measurement object.
  • the priority in response to a conflict in the location of the measurement gap indicated by the measurement gap configuration information of at least one measurement gap type, the priority is determined based on the priority identifier corresponding to the measurement gap configuration information of at least one measurement gap type.
  • the highest-level measurement gap configuration information that sets the measurement gap type in response to a conflict in the location of the measurement gap indicated by the measurement gap configuration information of at least one measurement gap type, the priority is determined based on the priority identifier corresponding to the measurement gap configuration information of at least one measurement gap type. The highest-level measurement gap configuration information that sets the measurement gap type.
  • the processing module 1302 is further configured to perform measurements of the corresponding measurement objects in different measurement gaps according to the measurement gap configuration information that sets the measurement gap type.
  • the transceiver module 1301 is further configured to receive information sent by the network device indicating the priority identification.
  • the priority identification is protocol defined.
  • the transceiver module 1301 is also configured to send capability information to the network device, where the capability information is used to indicate the measurement gap type supported by the user equipment.
  • the measurement gap types supported by the user equipment include at least one of the following:
  • the device 1400 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the device 1400 may include one or more of the following components: a processing component 1402, a memory 1404, a power supply component 1406, a multimedia component 1408, an audio component 1410, an input/output (I/O) interface 1412, a sensor component 1414, and communications component 1416.
  • a processing component 1402 a memory 1404, a power supply component 1406, a multimedia component 1408, an audio component 1410, an input/output (I/O) interface 1412, a sensor component 1414, and communications component 1416.
  • Processing component 1402 generally controls the overall operations of device 1400, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1402 may include one or more processors 1420 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 1402 may include one or more modules that facilitate interaction between processing component 1402 and other components. For example, processing component 1402 may include a multimedia module to facilitate interaction between multimedia component 1408 and processing component 1402.
  • Memory 1404 is configured to store various types of data to support operations at device 1400 . Examples of such data include instructions for any application or method operating on device 1400, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 1404 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic or optical disk.
  • Power supply component 1406 provides power to various components of device 1400.
  • Power supply components 1406 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 1400 .
  • Multimedia component 1408 includes a screen that provides an output interface between device 1400 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. A touch sensor can not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • multimedia component 1408 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 1410 is configured to output and/or input audio signals.
  • audio component 1410 includes a microphone (MIC) configured to receive external audio signals when device 1000 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 1404 or sent via communications component 1416 .
  • audio component 1410 also includes a speaker for outputting audio signals.
  • the I/O interface 1412 provides an interface between the processing component 1402 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 1414 includes one or more sensors for providing various aspects of status assessment for device 1400 .
  • the sensor component 1414 can detect the open/closed state of the device 1400, the relative positioning of components, such as the display and keypad of the device 1400, the sensor component 1414 can also detect the position change of the device 1400 or a component of the device 1400, the user The presence or absence of contact with device 1400, device 1400 orientation or acceleration/deceleration and temperature changes of device 1400.
  • Sensor assembly 1414 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1414 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1414 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communications component 1416 is configured to facilitate wired or wireless communications between device 1400 and other devices.
  • Device 1400 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1416 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • communications component 1416 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1400 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 1404 including instructions, which are executable by the processor 1420 of the device 1400 to complete the above method is also provided.
  • non-transitory computer-readable storage media may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • embodiments of the present disclosure also provide a device for sending measurement configuration information.
  • This device can have the functions of the network device 102 in the above method embodiments, and can be used to perform the above method embodiments. of steps performed by network device 102.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device 1500 shown in Figure 15 can serve as the network device 102 involved in the above method embodiment, and perform the steps performed by the network device 102 in the above method embodiment.
  • the device 1500 may include a transceiver module 1501, where the transceiver module 1501 may be used to support the communication device to communicate.
  • the transceiver module 1501 is configured to send measurement configuration information to the user equipment, where the measurement configuration information is used to indicate the measurement object to be measured and the measurement gap configuration information.
  • the transceiver module 1501 is further configured to receive capability information sent by the user equipment, where the capability information is used to indicate the measurement gap type supported by the user equipment;
  • the device 1500 also includes a processing module coupled to the transceiver module 1502.
  • the processing module is configured to determine the measurement configuration information according to the capability information and a first correspondence relationship, where the first correspondence relationship is the measurement gap type and the measurement gap type support. corresponding relationship between the measurement objects.
  • the measurement gap types supported by the user equipment include at least one of the following:
  • the measurement configuration information is also used to indicate a priority identifier corresponding to the measurement gap configuration information of the at least one measurement gap type.
  • the communication device When the communication device is a network device 102, its structure may also be as shown in Figure 16.
  • the device 1600 includes a memory 1601, a processor 1602, a transceiver component 1603, and a power supply component 1606.
  • the memory 1601 is coupled to the processor 1602 and can be used to store programs and data necessary for the communication device 1600 to implement various functions.
  • the processor 1602 is configured to support the communication device 1600 to perform corresponding functions in the above method, and the functions can be implemented by calling a program stored in the memory 1601 .
  • the transceiver component 1603 may be a wireless transceiver, which may be used to support the communication device 1600 to receive signaling and/or data through a wireless air interface, and to send signaling and/or data.
  • the transceiver component 1603 may also be called a transceiver unit or a communication unit.
  • the transceiver component 1603 may include a radio frequency component 1604 and one or more antennas 1605.
  • the radio frequency component 1604 may be a remote radio unit (RRU). Specifically, It can be used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the one or more antennas 1605 can be specifically used for radiating and receiving radio frequency signals.
  • the processor 1602 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit.
  • the radio frequency unit performs radio frequency processing on the baseband signal and then sends the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1602.
  • the processor 1602 converts the baseband signal into data and processes the data. for processing.
  • the user equipment learns the measurement objects configured by the network device and the measurement gap configuration information through the measurement configuration information issued by the network device, and combines the measurement gap configuration information to perform measurements of the measurement objects in different measurement gaps.
  • measurements of different measurement objects can be effectively dispersed to overcome the problem of being unable to perform measurements on multiple measurement objects in parallel due to UE capability limitations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种传输测量配置信息的方法、装置及可读存储介质,所述方法包括:接收网络设备发送的测量配置信息,所述测量配置信息用于指示待测量的测量对象以及测量间隙配置信息;根据所述测量间隙配置信息,在不同的测量间隙分别执行对应测量对象的测量。本公开方法中,用户设备通过网络设备下发的测量配置信息,获知网络设备配置的测量对象以及测量间隙配置信息,并结合测量配置信息在不同的测量间隙中分别执行测量对象的测量,从而可以有效将不同测量对象的测量分散开,以克服由于UE能力限制无法并行执行多个测量对象测量的问题。

Description

一种传输测量配置信息的方法、装置以及可读存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种传输测量配置信息的方法、装置及可读存储介质。
背景技术
在无线通信系统中,用户设备(User Equipment,UE)需对网络设备配置的测量对象(Measurement Object,MO)进行移动性测量,其中,MO对应于待测量的邻区信号或者其他载波的信号。UE将移动性测量的测量结果上报至网络设备,网络设备根据测量结果确定当前UE的通信状况,以便于对UE进行移动性管理。由于UE加工成本及形状限制,UE在同一时刻只能工作在同一频点,在该时刻也只能对以该频点为中心的MO进行移动性测量。
对于与UE工作频点同频的邻区信号的测量,UE可在测量的同时,在服务小区收发数据(TX/RX)。对于与UE工作频点不同频率的邻区信号(异频邻区)或者不同系统的邻区信号的测量,UE在测量时须暂停与服务小区的数据传输(TX/RX),测量结束后恢复与服务小区的通信。UE暂停与服务小区通信以测量邻区信号的时间间隔称为测量间隙(Meas Gap,MG)。
一般而言,网络设备会为UE配置多个需基于测量间隙进行测量的MO。需解决多个MO竞争相同测量间隙的问题。
发明内容
本公开提供了一种传输测量配置信息的方法、装置及可读存储介质。
第一方面,本公开提供一种接收测量配置信息的方法,被用户设备执行,所述方法包括:
接收网络设备发送的测量配置信息,所述测量配置信息用于指示待测量的测量对象以及测量间隙配置信息;
根据所述测量配置信息,在不同的测量间隙分别执行对应测量对象的测量。
本公开的方法中,用户设备通过网络设备下发的测量配置信息,获知网络设备配置的测量对象以及测量间隙配置信息,并结合测量配置信息在不同的测量间隙中分别执行测量对象的测量,从而可以有效将不同测量对象的测量分散开,以克服由于UE能力限制无法并行执行多个测量对象测量的问题。
在一些可能的实施方式中,所述根据所述测量配置信息,在不同的测量间隙中分别执行对应测量对象的测量,包括:
根据所述测量配置信息,确定至少一个测量对象的扩展后的测量周期;
在扩展后的测量周期内的不同测量间隙,分别执行对应测量对象的测量。
在一些可能的实施方式中,所述根据所述测量配置信息,确定至少一个测量对象的扩展后的测量周期,包括:
确定测量间隙配置信息对应的至少一个测量组;其中,每个所述测量组中包括满足设定条件的至少一个测量对象;
根据所述测量间隙配置信息,确定每个所述测量组中的每个所述测量对象扩展后的测量周期。
在一些可能的实施方式中,所述确定测量间隙配置信息对应的至少一个测量组,包括:
将所述测量间隙配置信息对应的至少一个测量对象中基于同频测量的测量对象确定为第一测量组,和/或,将所述测量间隙配置信息对应的至少一个测量对象中基于非同频测量的测量对象确定为第二测量组。
在一些可能的实施方式中,所述根据所述测量间隙配置信息,确定每个所述测量组中的每个所述测量对象扩展后得到测量周期,包括:
在每个所述测量组中,根据所述测量组中测量对象的个数以及所述测量组对应的比例系数,确定所述测量组对应的载波特定扩展因子;
根据所述载波特定扩展因子扩展对应的所述测量对象的测量周期,获得每个所述测量对象扩展后的测量周期。
在一些可能的实施方式中,所述测量组对应的比例系数为协议定义的。
在一些可能的实施方式中,所述在扩展后的测量周期内的不同测量间隙,分别执行对应测量对象的测量,包括:
在测量组对应的扩展后的测量周期内的不同测量间隙,交替执行测量组中每个测量对象的测量。
在一些可能的实施方式中,所述测量配置信息指示至少一种测量间隙类型的测量间隙配置信息,每种测量间隙类型的测量间隙配置信息用于支持对应的至少一个测量对象的测量。
在一些可能的实施方式中,所述方法还包括:
响应于所述至少一种测量间隙类型的测量间隙配置信息指示的测量间隙的位置存在冲突,根据所述至少一种测量间隙类型的所述测量间隙配置信息对应的优先级标识,确定优先级最高的设定测量间隙类型的测量间隙配置信息。
在一些可能的实施方式中,所述根据所述测量配置信息,在不同的测量间隙分别执行对应测量对象的测量,包括:
根据所述设定测量间隙类型的测量间隙配置信息,在不同的测量间隙分别执行对应测量对象的测量。
在一些可能的实施方式中,所述方法还包括:
接收所述网络设备发送的用于指示所述优先级标识的信息。
在一些可能的实施方式中,所述优先级标识为协议定义的。
在一些可能的实施方式中,所述方法还包括:
向网络设备发送能力信息,所述能力信息用于指示所述用户设备支持的测量间隙类型。
在一些可能的实施方式中,所述用户设备支持的测量间隙类型包括以下中的至少一种:
并发测量间隙;
网络配置的小的测量间隙;
预配置测量间隙。
第二方面,本公开提供一种发送测量配置信息的方法,被网络设备执行,所述方法包括:
向用户设备发送测量配置信息,所述测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
本公开的方法中,网络设备向用户设备下发测量配置信息,以便于用户设备结合测量配置信息在不同的测量间隙分别执行对应测量对象的测量,以克服由于UE能力限制无法并行执行多个测量对象测量的问题。
在一些可能的实施方式中,所述方法还包括:
接收用户设备发送的能力信息,所述能力信息用于指示所述用户设备支持的测量间隙类型;
根据所述能力信息以及第一对应关系,确定所述测量配置信息,其中,所述第一对应关系为测量间隙类型与测量间隙类型支持的测量对象的对应关系。
在一些可能的实施方式中,所述用户设备支持的测量间隙类型包括以下中的至少一种:
并发测量间隙;
网络配置的小的测量间隙;
预配置测量间隙。
在一些可能的实施方式中,所述测量配置信息还用于指示至少一种测量间隙类型的所述测量间隙配置信息对应的优先级标识。
第三方面,本公开提供一种接收测量配置信息的装置,该装置可用于执行上述第一方面或第一方面的任一可能的设计中由用户设备执行的步骤。该用户设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第三方面所示装置时,该装置可包括相互耦合的收发模块以及处理模块,其中,收发模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行上述第一方面所述步骤时,收发模块,被配置为接收网络设备发送的测量配置信息,所述测量配置信息用于指示待测量的测量对象以及测量间隙配置信息;
处理模块,被配置为根据所述测量配置信息,在不同的测量间隙分别执行对应测量对 象的测量。
第四方面,本公开提供一种发送测量配置信息的装置,该装置可用于执行上述第二方面或第二方面的任一可能的设计中由网络设备执行的步骤。该网络设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第四方面所示装置时,该装置可包括收发模块,其中,收发模块可用于支持通信装置进行通信。
在执行上述第二方面所述步骤时,收发模块,被配置为用户设备发送测量配置信息,所述测量配置信息用于指示待测量的测量对象以及至少一种测量间隙类型的测量间隙配置信息。
第五方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能的设计。
第六方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第二方面或第二方面的任意一种可能的设计。
第七方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
第八方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是根据一示例性实施例示出的一种传输测量配置信息的方法的流程图;
图3是根据一示例性实施例示出的另一种传输测量配置信息的方法的流程图;
图4是根据一示例性实施例示出的一种接收测量配置信息的方法的流程图;
图5是根据一示例性实施例示出的另一种接收测量配置信息的方法的流程图;
图6是根据一示例性实施例示出的另一种接收测量配置信息的方法的流程图;
图7是根据一示例性实施例示出的另一种接收测量配置信息的方法的流程图;
图8是根据一示例性实施例示出的一种发送测量配置信息的方法的流程图;
图9是根据一示例性实施例示出的另一种发送测量配置信息的方法的流程图;
图10是根据一示例性实施例示出的测量场景示意图;
图11是根据另一示例性实施例示出的测量场景示意图;
图12是根据另一示例性实施例示出的测量场景示意图;
图13是根据一示例性实施例示出的一种接收测量配置信息的装置的框图;
图14是根据一示例性实施例示出的用户设备的框图;
图15是根据一示例性实施例示出的一种发送测量配置信息的装置的框图;
图16是根据一示例性实施例示出的通信装置的框图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例提供的一种传输测量配置信息的方法可应用于无线通信系统100,该无线通信系统可以包括用户设备101和网络设备102。其中,用户设备101被配置为支持载波聚合,并可连接至网络设备102的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通 信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备101可以是终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或终端设备等。该用户设备101可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备进行通信(如无线通信),并接受网络设备提供的网络服务,这里的网络设备包括但不限于图示网络设备102。
其中,用户设备101可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
网络设备102可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备102具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备102还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备102可以是可穿戴设备或车载设备。网络设备102也可以是具有通信模块的通信芯片。
比如,网络设备102包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
本公开实施例中提供了一种传输测量配置信息的方法。参照图2,图2是根据一示例性实施例示出的一种传输测量配置信息的方法,如图2所示,该方法包括步骤S201~S202,具体的:
步骤S201,网络设备102向用户设备101发送测量配置信息,测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
步骤S202,用户设备101根据接收的测量配置信息,在不同的测量间隙分别执行对应测量对象的测量。
在一些可能的实施方式中,待测量的测量对象(MO)可以是多个,网络设备102为用户设备101配置待执行移动性测量的MO。
在一些可能的实施方式中,本公开实施例应用于多个测量对象被配置的测量间隙存在冲突的场景,即多个MO可能会竞争相同位置的测量间隙的场景。
在一些可能的实施方式中,网络设备102可在测量间隙配置信息中,为不同的测量对象配置不同的测量间隙,以便于用户设备101在不同的测量间隙分别执行测量。
在一些可能的实施方式中,用户设备101结合测量配置信息进行测量周期的扩展,在扩展后的测量周期内的不同测量间隙分别执行测量。
本公开实施例中,用户设备101通过网络设备102下发的测量配置信息,获知网络设备102配置的测量对象以及测量间隙配置信息,并结合测量配置信息在不同的测量间隙中分别执行测量对象的测量,从而可以有效将不同测量对象的测量分散开,以克服由于UE能力限制无法并行执行多个测量对象测量的问题。
本公开实施例中提供了一种传输测量配置信息的方法。该方法包括步骤S201’~S203’,具体的:
步骤S201’,网络设备102向用户设备101发送测量配置信息,测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
步骤S202’,用户设备101根据接收的测量配置信息,确定至少一个测量对象的扩展后的测量周期。
步骤S203’,用户设备101在扩展后的测量周期内的不同测量间隙,分别执行对应测量对象的测量。
在一些可能的实施方式中,待测量的测量对象(MO)可以是多个,网络设备102为用户设备101配置待执行移动性测量的MO。
在一些可能的实施方式中,本公开实施例应用于多个测量对象被配置的测量间隙存在冲突的场景,即多个MO可能会竞争相同位置的测量间隙的场景。
在一些可能的实施方式中,测量配置信息指示至少一种测量间隙类型的测量间隙配置信息,每种测量间隙类型的测量间隙配置信息用于支持对应的至少一个测量对象的测量。
在一些可能的实施方式中,结合3GPP的版本17(R17)测量间隙增强项目中,测量间隙类型可以是:并发测量间隙(Concurrent Gap)、网络配置的小的测量间隙(Network Controlled Small Gap,NCSG)或者预配置测量间隙(Pre-MG)。
在一示例中,在Concurrent Gap中,网络设备102可同时为用户设备101配置至多3套测量间隙配置信息。
在一示例中,在NCSG中的测量间隙包含:进行MO测量的时间段(ML)以及ML 两侧的可见的中断长度(VIL)。相较于传统测量间隙,NCSG仅在VIL处产生中断,而ML内不影响用户设备101与服务小区的数据传输。
在一示例中,Pre-MG中定义了测量间隙有两种状态:激活(activated)的预配置gap和去激活(de-activated)的预配置gap。网络设备102可以根据无线资源控制(Radio Resource Control,RRC)信令更改Pre-MG的激活和去激活状态。去激活的Pre-MG表明该Pre-MG的测量模式(gap pattern)失效,如其对应的测量间隙配置信息失效。
在一些可能的实施方式中,每种测量间隙类型下的测量间隙配置信息,可支持对应的MO。其中,测量间隙类型与其支持的测量对象可参见下表1。
在一示例中,Concurrent Gap支持的MO包括:
NR基于同步信号块(Synchronization Signal Block,SSB)的测量;
NR基于下行信道状态信息参考信号(Channel-State-Information Reference Signal,CSI-RS)的测量;
E-UTRA inter-RAT测量;
E-UTRAN inter-RAT的参考信号时间差(Reference Signal Time Difference,RSTD)测量;
NR基于定位参考信号(Positioning Reference Signal,PRS)的测量。
在一示例中,NCSG支持的MO包括:
基于SSB的同频测量(intra-frequency measurement),包括去激活辅载波频率(SCC)测量和休眠的辅小区(Scell)的测量;
基于SSB的异频测量(inter-frequency measurement);
Inter-RAT E-UTRAN测量。
本示例中,若用户设备101配置有Inter-RAT GSM测量、Inter-RAT UTRAN测量、PRS测量或者异频CSI-RS测量,则不适用NCSG。
在一示例中,Pre-MG支持的MO包括:
当Pre-MG为激活时支持的MO包括:
需要测量间隙的基于SSB的同频或异频测量;
基于CSI-RS的异频测量;
E-UTRA Inter-RAT测量;
E-UTRA Inter-RAT RSTD和基于Cell ID的增强定位技术(Enhanced Cell-ID,E-CID)测量;
UTRA Inter-RAT测量;
当Pre-MG为去激活时支持的MO包括:
不需测量间隙的基于SSB的同频测量或者异频测量;
基于CSI-RS的同频测量。
在一些可能的实施方式中,不同测量间隙类型的测量间隙配置信息中,可指示如下信息:该测量间隙配置信息对应的测量标识(Meas ID)、测量间隙的持续时长、测量间隙周期、测量间隙的起始偏置值以及测量间隙的标识(Gap ID)。其中,Meas ID用于关联该测量间隙配置信息与对应的MO,Gap ID用于关联测量间隙与对应的待测频点。同一待测频点可对应多个MO,因此相同的测量配置信息可能用于执行多个MO的测量。
其中,对于每种类型的测量间隙配置信息而言,均可以采用本实施方式对应的方法确定扩展后的测量周期。可以理解的,以下实施例中以设定测量间隙类型的测量配置信息进行示例性描述扩展测量周期的方式。
在一些可能的实施方式中,在测量间隙配置信息用于执行多个MO测量的场景中,用户设备101可基于测量间隙配置信息,对每个MO的测量周期进行扩展,获得扩展后的测量周期。其中,原始的测量周期由协议定义,例如为3-5个测量结果(样本点)的滤波。一般在一个测量间隙周期中可以得到一个测量结果,因此测量周期满足:
测量周期=样本点数量(number of samples)×测量间隙周期。
在一示例中,用户设备101以与网络设备102的约定系数,对测量周期进行扩展。
在一示例中,用户设备101确定每个MO的载波特定扩展因子(carrier specific scaling factor,CSSF),CSSF用于扩展对应的MO的测量周期。在每个MO的扩展后的测量周期内进行测量,以分时地执行使用相同测量间隙配置的MO的测量。
在一示例中:
测量间隙配置信息适用于MO1和MO2。该测量间隙配置信息指示:测量间隙的起始偏置值为t0,测量间隙持续时长为L测量间隙周期为T0。MO1和MO2可能竞争相同的测量间隙。本示例中,测量周期为N*T0,其中N表示样本点数量。结合图11所示,分别确定MO1和MO2的载波特定缩放因子,扩展其测量周期,从而在该测量周期内可令MO1和MO2交替利用测量间隙进行测量,以克服由于UE能力限制无法并行执行多个MO测量的问题。
本公开实施例中,用户设备101通过网络设备102下发的测量配置信息,获知网络设备102配置的测量对象以及测量间隙配置信息的测量间隙类型,并结合测量间隙配置信息以扩展后的测量周期执行对应测量对象的测量。由此在测量过程中,至少一个测量对象的测量周期会适应性的变长,因此在该测量周期内也可以用于测量其他测量对象,以克服由于UE能力限制无法并行执行多个MO测量的问题。
本公开实施例中提供了一种传输测量配置信息的方法。参照图3,图3是根据一示例 性实施例示出的一种传输测量配置信息的方法,如图3所示,该方法包括步骤S301~S305,具体的:
步骤S301,用户设备101向网络设备102发送能力信息,能力信息用于指示用户设备101支持的测量间隙类型。
步骤S302,网络设备102根据接收的能力信息以及第一对应关系,确定测量配置信息,其中,第一对应关系为测量间隙类型与测量间隙类型支持的测量对象的对应关系。
步骤S303,网络设备102向用户设备101发送测量配置信息,测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
步骤S304,用户设备101根据接收的测量配置信息,确定至少一个测量对象的扩展后的测量周期。
步骤S305,用户设备101在扩展后的测量周期内的不同测量间隙,分别执行对应测量对象的测量。
在一些可能的实施方式中,测量配置信息指示至少一种测量间隙类型的测量间隙配置信息,每种测量间隙类型的测量间隙配置信息用于支持对应的至少一个测量对象的测量。
在一些可能的实施方式中,用户设备101支持的测量间隙类型可以是如下中的至少一种:并发测量间隙(Concurrent Gap),网络配置的小的测量间隙(Network Controlled Small Gap,NCSG),预配置测量间隙(Pre-MG)。
在一些可能的实施方式中,每种测量间隙类型下的测量间隙配置信息,可支持对应的MO,也即测量间隙类型与测量间隙类型支持的MO之间存在第一对应关系。
在一示例中,第一对应关系可参照表1所示,表1中Y表示测量间隙类型支持的MO。
表1
Figure PCTCN2022110666-appb-000001
Figure PCTCN2022110666-appb-000002
在一些可能的实施方式中,网络设备102根据用户设备101的能力以及第一对应关系进行配置。相较于相关技术中网络设备在未知第一对应关系即进行配置的方式,本公开可进行更合理的配置,以满足不同的测量需求;也可以避免网络设备在无法获知第一对应关系的限制时,配置了不支持待测量的测量对象的测量间隙类型。
在一些可能的实施方式中,在测量间隙配置信息用于执行多个MO测量的场景中,用户设备101可基于测量间隙配置信息,扩展对应的MO的测量周期,以将原本共用相同测量间隙的MO分散开。
本公开实施例中,网络设备102根据用户设备101支持的测量间隙类型以及第一对应关系,为用户设备101合理配置对应的测量配置信息,以便于用户设备101能够根据对应的测量需求进行合理的测量。也可以避免网络设备在无法获知第一对应关系的限制时,配置了不支持待测量的测量对象的测量间隙类型。同时,结合扩展后的测量周期进行测量,可有效克服测量间隙冲突的问题。
本公开实施例中提供了一种接收测量配置信息的方法,被用户设备101执行。参照图4,图4是根据一示例性实施例示出的一种接收测量配置信息的方法,如图4所示,该方法包括步骤S401~S402,具体的:
步骤S401,用户设备101接收网络设备102发送的测量配置信息,测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
步骤S402,根据测量配置信息,在不同的测量间隙分别执行对应测量对象的测量。
在一些可能的实施方式中,待测量的测量对象(MO)可以是多个,网络设备102为用户设备101配置待执行移动性测量的MO。
在一些可能的实施方式中,本公开实施例应用于多个测量对象被配置的测量间隙存在冲突的场景,即多个MO可能会竞争相同位置的测量间隙的场景。
在一些可能的实施方式中,网络设备102可在测量间隙配置信息中,为不同的测量对象配置不同的测量间隙,以便于用户设备101在不同的测量间隙分别执行测量。
在一些可能的实施方式中,用户设备101结合测量配置信息进行测量周期的扩展,在扩展后的测量周期内的不同测量间隙分别执行测量。
本公开实施例中,用户设备101通过网络设备102下发的测量配置信息,获知网络设备102配置的测量对象以及测量间隙配置信息,并结合测量配置信息在不同的测量间隙中分别执行测量对象的测量,从而可以有效将不同测量对象的测量分散开,以克服由于UE能力限制无法并行执行多个测量对象测量的问题。
本公开实施例中提供了一种接收测量配置信息的方法,被用户设备101执行。该方法包括步骤S401’~S403’,具体的:
步骤S401’,用户设备101接收网络设备102发送的测量配置信息,测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
步骤S402’,根据测量配置信息,确定至少一个测量对象的扩展后的测量周期。
步骤S403’,在扩展后的测量周期内的不同测量间隙,分别执行对应测量对象的测量。
在一些可能的实施方式中,测量配置信息指示至少一种测量间隙类型的测量间隙配置信息,每种测量间隙类型的测量间隙配置信息用于支持对应的至少一个测量对象的测量,可参见表1所示。
在一些可能的实施方式中,测量间隙类型可以是:并发测量间隙(Concurrent Gap)、网络配置的小的测量间隙(Network Controlled Small Gap,NCSG)或者预配置测量间隙(Pre-MG)。
在一些可能的实施方式中,不同测量间隙类型的测量间隙配置信息中,可指示如下信息:该测量间隙配置信息对应的测量标识(Meas ID)、测量间隙的持续时长、测量间隙周期、测量间隙的起始偏置值以及测量间隙的标识(Gap ID)。其中,Meas ID用于关联该测量间隙配置信息与对应的MO,Gap ID用于关联测量间隙与对应的待测频点。同一待测频点可对应多个MO,因此相同的测量配置信息可能用于执行多个MO的测量。
在一些可能的实施方式中,对于每种测量间隙类型的测量间隙配置信息中,用户设备101可确定该测量间隙配置信息对应的每个MO的扩展后的测量周期。
在一些可能的实施方式中,在测量间隙配置信息用于执行多个MO测量的场景中,用户设备101可基于测量间隙配置信息,对每个MO的测量周期进行扩展,获得扩展后的测量周期。其中,测量周期=样本点数量(number of samples)×测量间隙周期。
在一示例中,用户设备101以与网络设备102的约定系数,对测量周期进行扩展。
在一示例中,用户设备101确定每个MO的载波特定扩展因子(carrier specific scaling factor,CSSF),CSSF用于扩展对应的MO的测量周期。例如,扩展后的测量周期=CSSF*测量周期。在每个MO的扩展后的测量周期内进行测量,以分时地执行使用相同测量间隙配置的MO的测量。
在一些可能的实施方式中,在扩展后的测量周期内,交替进行MO的测量。
在一示例中:
测量间隙配置信息适用于MO1和MO2。该测量间隙配置信息指示:测量间隙的起始偏置值为t0,测量间隙持续时长为L,测量间隙周期为T0。MO1和MO2可能竞争相同的测量间隙。本示例中,测量周期为N*T0,其中N表示样本点数量。结合图11所示,分别确定MO1和MO2的载波特定缩放因子,扩展其测量周期,从而令MO1和MO2交替利用测量间隙进行测量,以克服由于UE能力限制无法并行执行多个MO测量的问题。
本公开实施例中,用户设备101通过网络设备102下发的测量配置信息,获知网络设备102配置的测量对象以及测量间隙配置信息的测量间隙类型,并结合测量间隙配置信息以重新确定测量周期执行对应测量对象的测量。由此在测量过程中,至少一个测量对象的 原始测量周期会适应性的变长,因此在该测量周期内也可以用于测量其他测量对象,以克服不同测量对象竞争测量间隙导致的影响移动性测量过程问题。
本公开实施例中提供了一种接收测量配置信息的方法,被用户设备101执行。参照图5,图5是根据一示例性实施例示出的一种接收测量配置信息的方法,如图5所示,该方法包括步骤S501~S504,具体的:
步骤S501,用户设备101接收网络设备102发送的测量配置信息,测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
步骤S502,用户设备101确定测量间隙配置信息对应的至少一个测量组;其中,每个测量组中包括满足设定条件的至少一个测量对象。
步骤S503,用户设备101根据测量间隙配置信息,确定每个测量组中的每个测量对象扩展后的测量周期。
步骤S504,用户设备101在扩展后的测量周期内的不同测量间隙,分别执行对应测量对象的测量。
在一些可能的实施方式中,测量配置信息指示至少一种测量间隙类型的测量间隙配置信息,每种测量间隙类型的测量间隙配置信息用于支持对应的至少一个测量对象的测量,可参见表1所示。
在一些可能的实施方式中,测量间隙配置信息由于其类型不同,可能对应支持不同的测量对象。本实施方式中,对该测量间隙配置信息中的测量对象进行分组。
在一些可能的实施方式中,以设定测量间隙类型为例,设定测量间隙类型的测量间隙配置信息中,可指示如下信息:该测量间隙配置信息对应的测量标识(Meas ID)、测量间隙的持续时长、测量间隙周期、测量间隙的起始偏置值以及测量间隙的标识(Gap ID)。其中,Meas ID用于关联该测量间隙配置信息与对应的MO,Gap ID用于关联测量间隙与对应的待测频点。同一待测频点可对应多个MO,因此相同的测量配置信息可能用于执行多个MO的测量。
在一些可能的实施方式中,设定测量间隙类型可以是如下中的任一种:并发测量间隙(Concurrent Gap)、网络配置的小的测量间隙(Network Controlled Small Gap,NCSG)或者预配置测量间隙(Pre-MG)。对于其他类型的测量配置信息的实施方式,可参见设定测量间隙类型的实施方式。
在一示例中,确定设定测量间隙类型对应的至少一个测量组。
在一示例中,在至少一种测量间隙类型对应的测量间隙冲突时,将至少一种测量间隙类型中优先级高的作为设定测量间隙类型。确定设定测量间隙类型对应的至少一个测量组。
在一些可能的实施方式中,设定条件可以是满足相同的频率特征。例如,是否为同频测量,或者是否为异频测量。
在一个示例中,在设定测量间隙类型对应的至少一个测量对象中,将同频测量的MO 确定为一个测量组,将异频测量的MO确定为一个测量组。在每个测量组中,确定该测量组中每个测量对象扩展后的测量周期。
在一示例中,每个测量组中的测量对象,扩展后的测量周期相同。
在一些可能的实施方式中,在测量组对应的扩展后的测量周期内,交替执行测量组中每个测量对象的测量。
本公开实施例中,对测量间隙配置信息对应的测量对象,进行划分测量组,按分组确定测量对象扩展后的测量周期。
本公开实施例中提供了一种接收测量配置信息的方法,被用户设备101执行。该方法包括步骤S501、S502’、S503和S504,具体的:
步骤S501,用户设备101接收网络设备102发送的测量配置信息,测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
步骤S502’,用户设备101将测量间隙配置信息对应的至少一个测量对象中基于同频测量的测量对象确定为第一测量组,和/或,将设定测量间隙类型对应的至少一个测量对象中基于非同频测量的测量对象确定为第二测量组。
步骤S503,用户设备101根据测量间隙配置信息,确定每个测量组中的每个测量对象扩展后的测量周期。
步骤S504,用户设备101在扩展后的测量周期内的不同测量间隙,分别执行对应测量对象的测量。
在一些可能的实施方式中,测量配置信息指示至少一种测量间隙类型的测量间隙配置信息,每种测量间隙类型的测量间隙配置信息用于支持对应的至少一个测量对象的测量,可参见表1所示。
在一些可能的实施方式中,测量间隙配置信息由于其类型不同,可能对应支持不同的测量对象。本实施方式中,对该测量间隙配置信息中的测量对象进行分组。
在一些可能的实施方式中,网络设备102通过下发的测量配置信息,可在设定测量间隙类型的测量间隙配置信息中指示对应支持的多个MO。用户设备101在接收到测量配置信息后,对设定测量间隙类型对应的多个MO进行分组。
在一些可能的实施方式中,设定测量间隙类型可以是如下中的任一种:并发测量间隙(Concurrent Gap)、网络配置的小的测量间隙(Network Controlled Small Gap,NCSG)或者预配置测量间隙(Pre-MG)。
在一些可能的实施方式中,依据各MO的频率特征进行分组。例如,基于同频测量的MO为第一测量组,基于异频测量的MO为第二测量组。
本公开实施例中提供了一种接收测量配置信息的方法,被用户设备101执行。该方法包括步骤S501、S502、S503’、S503”和S504,具体的:
步骤S501,用户设备101接收网络设备102发送的测量配置信息,测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
步骤S502,用户设备101确定测量间隙配置信息对应的至少一个测量组;其中,每个测量组中包括满足设定条件的至少一个测量对象。
步骤S503’,用户设备101在每个测量组中,根据测量组中测量对象的个数以及测量组对应的比例系数,确定测量组对应的载波特定扩展因子。
步骤S503”,根据载波特定扩展因子扩展对应的测量对象的测量周期,获得每个测量对象扩展后的测量周期。
步骤S504,用户设备101在扩展后的测量周期内的不同测量间隙,分别执行对应测量对象的测量。
或者该方法包括步骤S501、S502’、S503’、S503”和S504。
在一些可能的实施方式中,测量配置信息指示至少一种测量间隙类型的测量间隙配置信息,每种测量间隙类型的测量间隙配置信息用于支持对应的至少一个测量对象的测量,可参见表1所示。
在一些可能的实施方式中,测量间隙配置信息由于其类型不同,可能对应支持不同的测量对象。本实施方式中,对该测量间隙配置信息中的测量对象进行分组。本实施例以测量间隙配置信息的类型为设定测量间隙类型为例进行说明,其中,设定测量间隙类型可以是如下中的任一种:并发测量间隙(Concurrent Gap)、网络配置的小的测量间隙(Network Controlled Small Gap,NCSG)或者预配置测量间隙(Pre-MG)。
在一些可能的实施方式中,每个测量组对应一个载波特定扩展因子(CSSF)。根据该测量组对应MO是否需要测量gap,载波特定扩展因子可以包括:需要测量gap的载波特定扩展因子CSSFwithingap,和不需要gap的载波特定扩展因子CSSFoutside。
在一些可能的实施方式中,将设定测量间隙类型对应的至少一个测量对象中基于同频测量的测量对象确定为第一测量组,和/或,将设定测量间隙类型对应的至少一个测量对象中基于非同频测量的测量对象确定为第二测量组。
在一示例中,第一测量组对应第一比例系数K1,第二测量组对应第二比例系数K2。
在一示例中,第一测量组中MO个数为m1,第二测量组中MO个数为m2。
在一示例中,第一测量组对应的载波特定扩展因子CSSF1满足:CSSF1=K1*m1。
在一示例中,第二测量组对应的载波特定扩展因子CSSF2满足:CSSF2=K2*m2。
在一示例中,载波特定扩展因子CSSF大于1。
在一些可能的实施方式中,测量组对应的比例系数为协议定义的。
在一示例中,比例系数是50%或75%等。
在一些可能的实施方式中,在确定每个测量组对应的载波特定扩展因子后,可对应确定该测量组中每个MO扩展后的测量周期。
在一些可能的实施方式中,在测量间隙配置信息中指示的MO的测量间隙周期为T0,该MO所在测量组对应的载波特定扩展因子为CSSF,则该MO扩展后的测量周期Tn满足:Tn=CSSF*N*T0,其中,N表示样本点数量,扩展前的测量周期=N*T0。
其中,CSSF大于1,由此扩展后的测量周期可在原始的测量周期基础上扩展CSSF倍。
在一些可能的实施方式中,在测量组对应的扩展后的测量周期内的不同测量间隙,交替执行测量组中每个测量对象的测量。
本公开实施例中,用户设备101在测量配置信息的基础上,结合载波特定扩展因子确定MO对应的扩展后的测量周期,以克服由于UE能力限制无法并行执行多个MO测量的问题
本公开实施例中提供了一种接收测量配置信息的方法,被用户设备101执行。参照图6,图6是根据一示例性实施例示出的一种接收测量配置信息的方法,如图6所示,该方法包括步骤S601~S603,具体的:
步骤S601,用户设备101接收网络设备102发送的测量配置信息,测量配置信息用于指示待测量的测量对象以及至少一种测量间隙类型的测量间隙配置信息,每种测量间隙类型的测量间隙配置信息用于支持对应的至少一个测量对象的测量。
步骤S602,响应于至少一种测量间隙类型的测量间隙配置信息指示的测量间隙的位置存在冲突,根据至少一种测量间隙类型的测量间隙配置信息对应的优先级标识,确定优先级最高的为设定测量间隙类型的测量间隙配置信息。
步骤S603,用户设备101根据设定测量间隙类型的测量间隙配置信息,在不同的测量间隙分别执行对应测量对象的测量。
在一些可能的实施方式中,设定测量间隙类型可以是:并发测量间隙(Concurrent Gap)、网络配置的小的测量间隙(Network Controlled Small Gap,NCSG)或者预配置测量间隙(Pre-MG)。
在一些可能的实施方式中,以网络设备102配置:Concurrent Gap类型的测量间隙配置信息与NCSG类型的测量间隙配置信息为例,若Concurrent Gap类型中测量间隙的时段与NCSG类型中测量间隙时段(ML+2VIL)重叠,则认为两种类型的测量间隙存在冲突。
此场景下,用户设备101根据不同类型的优先级,按其中一种类型的测量间隙配置信息执行对应的测量。
在一些可能的实施方式中,用户设备101将设定测量间隙类型对应的至少一个测量对象中基于同频测量的测量对象确定为第一测量组,和/或,将设定测量间隙类型对应的至少一个测量对象中基于非同频测量的测量对象确定为第二测量组。
在一些可能的实施方式中,在设定测量间隙类型对应的第一测量组和第二测量组中,分别确定每个测量组中测量对象的个数m以及对应的比例系数K,从而确定该测量组对应的载波特定扩展因子CSSF=K*m。
在一些可能的实施方式中,根据每个测量组对应的载波特定扩展因子,以及该测量组中每个MO被配置的测量间隙周期(T0),对应确定每个MO扩展后的测量周期(Tn)。其中,Tn=CSSF*N*T0。其中,N表示样本点数量。
在一些可能的实施方式中,优先级标识为协议定义的。
本公开实施例中,用户设备101根据测量配置信息中不同测量间隙类型的优先级,按优先级最高的设定测量间隙类型的测量间隙配置信息进行测量。可以理解的,本公开实施例的方法可以与前述实施例的方法独立执行或者配合执行。
本公开实施例中提供了一种接收测量配置信息的方法,被用户设备101执行。该方法包括步骤S601~S604,具体的:
步骤S601,用户设备101接收网络设备102发送的测量配置信息,测量配置信息用于指示待测量的测量对象以及至少一种测量间隙类型的测量间隙配置信息,每种测量间隙类型的测量间隙配置信息用于支持对应的至少一个测量对象的测量。
步骤S601’,用户设备101接收网络设备102发送的用于指示优先级标识的信息。
步骤S602,响应于至少一种测量间隙类型的测量间隙配置信息指示的测量间隙的位置存在冲突,根据至少一种测量间隙类型的测量间隙配置信息对应的优先级标识,确定优先级最高的为设定测量间隙类型的测量间隙配置信息。
步骤S603,用户设备101根据设定测量间隙类型的测量间隙配置信息,在不同的测量间隙分别执行对应测量对象的测量。
在一些可能的实施方式中,网络设备102在测量配置信息中同时指示优先级标识。
在一些可能的实施方式中,网络设备102通过发送的RRC信令指示优先级标识。
在一些可能的实施方式中,网络设备102通过发送的下行控制信息(Downlink Control Information,DCI)指示优先级标识。
本公开实施例中,用户设备101根据网络设备102的指示,获知不同测量间隙类型的优先级标识。
本公开实施例中提供了一种接收测量配置信息的方法,被用户设备101执行。参照图7,图7是根据一示例性实施例示出的一种接收测量配置信息的方法,如图7所示,该方法包括步骤S701~S703,具体的:
步骤S701,用户设备101向网络设备102发送能力信息,能力信息用于指示用户设备支持的测量间隙类型。
步骤S702,用户设备101接收网络设备102发送的测量配置信息,测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
步骤S703,根据测量配置信息,在不同的测量间隙分别执行对应测量对象的测量。
在一些可能的实施方式中,测量配置信息是网络设备102根据能力信息确定的。
在一些可能的实施方式中,用户设备101支持的测量间隙类型包括以下中的至少一种:
并发测量间隙;
网络配置的小的测量间隙;
预配置测量间隙。
本公开实施例中,用户设备101向网络设备102上报能力信息,以便于网络设备102可以根据用户设备101的能力进行配置测量对象以及测量间隙配置信息。
本公开实施例中提供了一种发送测量配置信息的方法,被网络设备102执行。参照图8,图8是根据一示例性实施例示出的一种接收测量配置信息的方法,如图8所示,该方法包括步骤S801,具体的:
步骤S801,网络设备102向用户设备101发送测量配置信息,测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
在一些可能的实施方式中,测量配置信息指示至少一种测量间隙类型的测量间隙配置信息,每种测量间隙类型的测量间隙配置信息用于支持对应的至少一个测量对象的测量,可参见表1所示。
在一些可能的实施方式中,不同测量间隙类型的测量间隙配置信息中,可指示如下信息:该测量间隙配置信息对应的测量标识(Meas ID)、测量间隙的持续时长、测量间隙周期、测量间隙的起始偏置值以及测量间隙的标识(Gap ID)。其中,Meas ID用于关联该测量间隙配置信息与对应的MO,Gap ID用于关联测量间隙与对应的待测频点。同一待测频点可对应多个MO,因此相同的测量配置信息可能用于执行多个MO的测量。
本公开实施例中,网络设备102向用户设备101下发测量配置信息,以便于用户设备101结合测量配置信息在不同的测量间隙分别执行对应测量对象的测量,以克服由于UE能力限制无法并行执行多个MO测量的问题。
本公开实施例中提供了一种发送测量配置信息的方法,被网络设备102执行。参照图9,图9是根据一示例性实施例示出的一种接收测量配置信息的方法,如图9所示,该方法包括步骤S901~S903,具体的:
步骤S901,网络设备102接收用户设备101发送的能力信息,能力信息用于指示用户设备101支持的测量间隙类型。
步骤S902,网络设备102根据能力信息以及第一对应关系,确定测量配置信息,其中,第一对应关系为测量间隙类型与测量间隙类型支持的测量对象的对应关系。
步骤S903,网络设备102向用户设备101发送测量配置信息,测量配置信息用于指示待测量的测量对象以及至少一种测量间隙类型的测量间隙配置信息。
在一些可能的实施方式中,用户设备支持的测量间隙类型包括以下中的至少一种:
并发测量间隙;
网络配置的小的测量间隙;
预配置测量间隙。
在一些可能的实施方式中,每种测量间隙类型下的测量间隙配置信息,可支持对应的MO,也即测量间隙类型与测量间隙类型支持的MO之间存在第一对应关系。
在一示例中,第一对应关系可参照表1所示,表1中Y表示测量间隙类型支持的MO。
本公开实施例中,网络设备102根据用户设备101支持的测量间隙类型以及第一对应关系,为用户设备101合理配置对应的测量配置信息,以便于用户设备101能够根据对应 的测量需求进行合理的测量。同时,结合扩展后的测量周期进行测量,可有效克服由于UE能力限制无法并行执行多个MO测量的问题。
本公开实施例中提供了一种发送测量配置信息的方法,被网络设备102执行。该方法包括步骤S801,或者该方法包括步骤S901~S903,其中:
测量配置信息还用于指示至少一种测量间隙类型的测量间隙配置信息对应的优先级标识。
在一些可能的实施方式中,网络设备102在测量配置信息中同时指示优先级标识。
在一些可能的实施方式中,网络设备102通过发送的RRC信令指示优先级标识。
在一些可能的实施方式中,网络设备102通过发送的DCI指示优先级标识。
本公开实施例中,网络设备102向用户设备101下发不同测量间隙类型的优先级标识,以便于用户设备101可结合优先级标识选取优先级高的测量间隙类型,按该类型的测量间隙配置信息执行MO测量。
为进一步描述本公开实施例的方法,以下列举几个具体示例。
示例一:
如图10所示,对于待测量的MO1和MO2而言,网络设备102可为二者配置多种测量间隙类型的测量间隙配置信息,测量间隙配置信息用以指示MO1对应的测量间隙配置和MO2对应的测量间隙配置。
例如,在一种测量间隙类型的测量间隙配置信息中可指示:MO1和MO2的测量间隙的起始偏置值为t0,二者测量间隙的持续时长均为L以及测量间隙周期T0。结合测量间隙周期T0可获得测量周期N*T0,其中N表示样本点数量。例如,N=5。
结合图10的示意,MO1和MO2可能需要占据相同的测量间隙(如Gap#)进行测量,此时认为MO1和MO2会竞争相同测量间隙。
示例二:
在示例一的基础上,用户设备101在接收到网络设备102的测量配置信息后,为克服MO1和MO2竞争测量间隙的问题,用户设备101会重新确定MO1和MO2扩展后的测量周期。
假设MO1和MO2均为同频测量,用户设备101则可将MO1和MO2确定为第一测量组,该测量组中有2个MO。协议定义该测量组对应的比例系数为K1。
用户设备101确定第一测量组对应的载波特定扩展因子CSSF1为:CSSF1=K1*2。例如,CSSF1=2。
进一步,用户设备101确定MO1扩展后的测量周期为T1=CSSF1*N*T0=2*N*T0,MO2扩展后的测量周期为T2=CSSF1*N*T0=2*N*T0,其中N表示样本点数量,例如N=5。
如图11所示,依据测量间隙配置信息在每个扩展后的测量周期内都会交替执行MO1 和MO2的测量,如用户设备101可进行如下测量:
在t0、(t0+2T0)、(t0+4T0)……对应的测量间隙处进行MO1的测量;
在t1、(t1+2T0)、(t1+4T0)……对应的测量间隙处进行MO2的测量。
可以理解的,也可以在t0、(t0+2T0)、(t0+4T0)……对应的测量间隙处进行MO2的测量,在t1、(t1+2T0)、(t1+4T0)……对应的测量间隙处进行MO1的测量,本示例仅作示意而非限定测量对象的测量顺序。
从而本示例中,用户设备101根据测量配置信息以及载波特定扩展因子,可以对原本竞争相同测量间隙的测量对象分别测量,既可以有效完成此类测量对象的测量,又可以克服竞争问题。
示例三:
如图12所示,对于网络设备102可能配置的三种类型(Concurrent Gap、NCSG和Pre-MG)的测量间隙配置信息而言,若三种类型对应的测量间隙在任一周期产生如图12所示的测量间隙重叠,即表明三种类型的测量间隙配置信息之间存在冲突。
此时,结合网络设备102所指示的优先级标识,用户设备101可确定测量配置信息中优先级最高的一种类型的测量间隙配置信息,依据该优先级最高的测量间隙配置信息执行测量。
例如,网络设备102下发的测量配置信息中,配置了Concurrent Gap类型的第一测量间隙配置信息,以及Pre-MG类型的第二测量间隙配置信息,并同步指示了二者的优先级标识。
用户设备101在第一测量间隙配置信息和第二测量间隙配置信息存在图12所示意的冲突时,根据优先级标识选取一种测量间隙配置信息。若第一测量间隙配置信息的优先级高,则依据第一测量间隙配置信息执行对应MO测量;若第二测量间隙配置信息的优先级高,则依据第二测量间隙配置信息执行对应MO测量。
示例四:
首先,网络设备102配置了如下待测量的MO:
MO1:不需要测量间隙的基于SSB的同频测量;
MO2:需要测量间隙的基于SSB的同频测量;且MO1的所有同步信号块测量定时配置(SMTC)时机都与MO2的测量间隙长度重合;
MO3:基于CSI-RS的异频测量;
MO4:需要测量间隙的基于SSB的异频测量;
MO5:NR基于PRS的测量;
MO6:E-UTRA Inter-RAT测量。
然后,网络设备102根据用户设备101上报的能力信息以及表1所示的第一对应关系,确定了Concurrent Gap类型的第一测量间隙配置信息,用以执行上述MO2~MO6的测量。并向用户设备101下发测量配置信息,该测量配置信息可以包括:第一测量配置信息以及如上待测量的MO。
用户设备101在接收到测量配置信息后,将同频测量的MO1和MO2确定为第一测量组,将第一测量组之外的测量对象MO3~MO6确定为第二测量组。
在第一测量组中,其载波特定扩展因子CSSFwithingap=K1*2,其中,K1为协议定义的第一测量组对应的比例系数,2为第一测量组中MO的个数。则第一测量组中:MO1扩展后的测量周期T1为:CSSFwithingap*N*T0,MO2的扩展后的测量周期T2为:CSSFwithingap*N*T0,T0为测量配置信息中指示的MO1和MO2的测量间隙周期。参考示例二及图11,在扩展后的测量周期内,用户设备101在测量间隙的不同周期分别执行MO1和MO2的测量。
在第二测量组中,其载波特定扩展因子CSSFwithingap=K2*4,其中,K2为协议定义的第二测量组对应的比例系数,4为第二测量组中MO的个数。按第一测量组的方式,分别确定第二测量组中每个MO对应的扩展后的测量周期,并按扩展后的测量周期执行测量。
示例五:
首先,网络设备102配置了如下待测量的MO:
MO1:不需要测量间隙的基于SSB的同频测量;
MO2:需要测量间隙的基于SSB的同频测量;且MO1的所有同步信号块测量定时配置(SMTC)时机都与MO2的测量间隙长度重合;
MO3:基于CSI-RS的异频测量;
MO4:需要测量间隙的基于SSB的异频测量;
MO5:NR基于PRS的测量;
MO6:E-UTRA Inter-RAT测量。
然后,网络设备102根据用户设备101上报的能力信息以及表1所示的第一对应关系,确定了Pre-MG类型的第二测量间隙配置信息,用以执行上述MO2,MO3,MO4,MO6的测量。并向用户设备101下发测量配置信息,该测量配置信息可以包括:第二测量配置信息以及如上待测量的MO。
用户设备101在接收到测量配置信息后,将同频测量的MO1和MO2确定为第一测量组,将第一测量组之外的测量对象MO3,MO4,MO6确定为第二测量组。
在第一测量组中,其载波特定扩展因子CSSFwithingap=K1*2,其中,K1为协议定义的第一测量组对应的比例系数,2为第一测量组中MO的个数。分别确定第一测量组中每 个MO的扩展后的测量周期,并可参考示例二及图11在测量间隙的不同周期分别执行MO1和MO2的测量。
在第二测量组中,其载波特定扩展因子CSSFwithingap=K2*3,其中,K2为协议定义的第二测量组对应的比例系数,3为第二测量组中MO的个数。分别确定第二测量组中每个MO的扩展后的测量周期,并按扩展后的测量周期执行测量。
本示例中,若第二测量间隙配置信息去激活,则此时用户设备101无法基于第二测量间隙配置信息测量MO2,MO3,MO4和MO6。可以理解的,本示例中网络设备还可配置其他测量间隙配置信息用于MO5的测量。
示例六:
首先,网络设备102配置了如下待测量的MO:
MO1:不需要测量间隙的基于SSB的同频测量;
MO2:需要测量间隙的基于SSB的同频测量;且MO1的所有同步信号块测量定时配置(SMTC)时机都与MO2的测量间隙长度重合;
MO3:基于CSI-RS的异频测量;
MO4:需要测量间隙的基于SSB的异频测量;
MO5:NR基于PRS的测量;
MO6:E-UTRA Inter-RAT测量。
然后,网络设备102根据用户设备101上报的能力信息以及表1所示的第一对应关系,确定了Concurrent Gap类型的第一测量间隙配置信息以及Pre-MG类型的第二测量间隙配置信息,并向用户设备101下发测量配置信息。
该测量配置信息可以包括:第一测量间隙配置信息、第二测量间隙配置信息、两种测量间隙配置信息的优先级标识以及如上待测量的MO。
用户设备101根据优先级标识,选择第一测量间隙配置信息和第二测量间隙配置信息中优先级高的作为设定测量间隙配置信息。
当设定测量间隙配置信息为第一测量间隙配置信息,用户设备101确定MO扩展后的测量周期的方式可参见示例四。
当设定测量间隙配置信息为第二测量间隙配置信息,用户设备101确定MO扩展后的测量周期的方式可参见示例五。
基于与以上方法实施例相同的构思,本公开实施例还提供一种接收测量配置信息的装置,该装置可具备上述方法实施例中的用户设备101的功能,并可用于执行上述方法实施例提供的由用户设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬 件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图13所示的通信装置1300可作为上述方法实施例所涉及的用户设备101,并执行上述方法实施例中由用户设备101执行的步骤。如图13所示,该通信装置1300可包括相互耦合的收发模块1301以及处理模块1302,其中,收发模块1301可用于支持通信装置进行通信,收发模块1301可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。处理模块1302可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行由用户设备101实施的步骤时,收发模块1301,被配置为接收网络设备发送的测量配置信息,测量配置信息用于指示待测量的测量对象以及测量间隙配置信息;
处理模块1302,被配置为根据测量配置信息,在不同的测量间隙分别执行对应测量对象的测量。
在一些可能的实施方式中,处理模块1302还被配置为,根据测量配置信息,确定至少一个测量对象的扩展后的测量周期;在扩展后的测量周期内的不同测量间隙,分别执行对应测量对象的测量。
在一些可能的实施方式中,处理模块1302还被配置为,确定测量间隙配置信息对应的至少一个测量组;其中,每个测量组中包括满足设定条件的至少一个测量对象;
根据测量间隙配置信息,确定每个测量组中的每个测量对象扩展后的测量周期。
在一些可能的实施方式中,处理模块1302还被配置为,将测量间隙配置信息对应的至少一个测量对象中基于同频测量的测量对象确定为第一测量组,和/或,将测量间隙配置信息对应的至少一个测量对象中基于非同频测量的测量对象确定为第二测量组。
在一些可能的实施方式中,处理模块1302还被配置为,在每个测量组中,根据测量组中测量对象的个数以及测量组对应的比例系数,确定测量组对应的载波特定扩展因子;
根据载波特定扩展因子扩展对应的测量对象的测量周期,获得每个测量对象扩展后的测量周期。
在一些可能的实施方式中,测量组对应的比例系数为协议定义的。
在一些可能的实施方式中,处理模块1302还被配置为,在测量组对应的扩展后的测量周期内的不同测量间隙,交替执行测量组中每个测量对象的测量。
在一些可能的实施方式中,测量配置信息指示至少一种测量间隙类型的测量间隙配置信息,每种测量间隙类型的测量间隙配置信息用于支持对应的至少一个测量对象的测量。
在一些可能的实施方式中,响应于至少一种测量间隙类型的测量间隙配置信息指示的测量间隙的位置存在冲突,根据至少一种测量间隙类型的测量间隙配置信息对应的优先级标识,确定优先级最高的设定测量间隙类型的测量间隙配置信息。
在一些可能的实施方式中,处理模块1302还被配置为,根据设定测量间隙类型的测量间隙配置信息,在不同的测量间隙分别执行对应测量对象的测量。
在一些可能的实施方式中,收发模块1301还被配置为,接收网络设备发送的用于指示 优先级标识的信息。
在一些可能的实施方式中,优先级标识为协议定义的。
在一些可能的实施方式中,收发模块1301还被配置为向网络设备发送能力信息,能力信息用于指示用户设备支持的测量间隙类型。
在一些可能的实施方式中,用户设备支持的测量间隙类型包括以下中的至少一种:
并发测量间隙;
网络配置的小的测量间隙;
预配置测量间隙。
当该接收配置信息的装置为用户设备101时,其结构还可如图14所示。装置1400可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图14,装置1400可以包括以下一个或多个组件:处理组件1402,存储器1404,电源组件1406,多媒体组件1408,音频组件1410,输入/输出(I/O)的接口1412,传感器组件1414,以及通信组件1416。
处理组件1402通常控制装置1400的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1402可以包括一个或多个处理器1420来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1402可以包括一个或多个模块,便于处理组件1402和其他组件之间的交互。例如,处理组件1402可以包括多媒体模块,以方便多媒体组件1408和处理组件1402之间的交互。
存储器1404被配置为存储各种类型的数据以支持在设备1400的操作。这些数据的示例包括用于在装置1400上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1406为装置1400的各种组件提供电力。电源组件1406可以包括电源管理系统,一个或多个电源,及其他与为装置1400生成、管理和分配电力相关联的组件。
多媒体组件1408包括在装置1400和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1408包括一个前置摄像头和/或后置摄像头。当设备1400处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1410被配置为输出和/或输入音频信号。例如,音频组件1410包括一个麦克风(MIC),当装置1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1404或经由通信组件1416发送。在一些实施例中,音频组件1410还包括一个扬声器,用于输出音频信号。
I/O接口1412为处理组件1402和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1414包括一个或多个传感器,用于为装置1400提供各个方面的状态评估。例如,传感器组件1414可以检测到设备1400的打开/关闭状态,组件的相对定位,例如组件为装置1400的显示器和小键盘,传感器组件1414还可以检测装置1400或装置1400一个组件的位置改变,用户与装置1400接触的存在或不存在,装置1400方位或加速/减速和装置1400的温度变化。传感器组件1414可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1414还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1414还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1416被配置为便于装置1400和其他设备之间有线或无线方式的通信。装置1400可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1416经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件1416还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1400可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1404,上述指令可由装置1400的处理器1420执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
基于与以上方法实施例相同的构思,本公开实施例还提供一种发送测量配置信息的装置,该装置可具备上述方法实施例中的网络设备102的功能,并可用于执行上述方法实施例提供的由网络设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图15所示的装置1500可作为上述方法实施例所涉及的网络设备102,并执行上述方法实施例中由网络设备102执行的步骤。如图15所示,该装置1500可包括收发模块1501,其中,收发模块1501可用于支持通信装置进行通信。
在执行由网络设备102实施的步骤时,收发模块1501被配置为,向用户设备发送测量配置信息,测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
在一些可能的实施方式中,收发模块1501还被配置为,接收用户设备发送的能力信息,所述能力信息用于指示所述用户设备支持的测量间隙类型;
装置1500还包括与收发模块1502耦合的处理模块,处理模块被配置为,根据能力信息以及第一对应关系,确定测量配置信息,其中,所述第一对应关系为测量间隙类型与测量间隙类型支持的测量对象的对应关系。
在一些可能的实施方式中,用户设备支持的测量间隙类型包括以下中的至少一种:
并发测量间隙;
网络配置的小的测量间隙;
预配置测量间隙。
在一些可能的实施方式中,测量配置信息还用于指示所述至少一种测量间隙类型的所述测量间隙配置信息对应的优先级标识。
当该通信装置为网络设备102时,其结构还可如图16所示。以基站为例说明通信装置的结构。如图16所示,装置1600包括存储器1601、处理器1602、收发组件1603、电源组件1606。其中,存储器1601与处理器1602耦合,可用于保存通信装置1600实现各功能所必要的程序和数据。该处理器1602被配置为支持通信装置1600执行上述方法中相应的功能,所述功能可通过调用存储器1601存储的程序实现。收发组件1603可以是无线收发器,可用于支持通信装置1600通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件1603也可被称为收发单元或通信单元,收发组件1603可包括射频组件1604以及一个或多个天线1605,其中,射频组件1604可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线1605具体可用于进行射频信号的辐射和接收。
当通信装置1600需要发送数据时,处理器1602可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1600时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1602,处理器1602将基带信号转换为数据并对该数据进行处理。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本公开旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真 正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
本公开实施例中,用户设备通过网络设备下发的测量配置信息,获知网络设备配置的测量对象以及测量间隙配置信息,并结合测量间隙配置信息在不同的测量间隙中分别执行测量对象的测量,从而可以有效将不同测量对象的测量分散开,以克服由于UE能力限制无法并行执行多个测量对象测量的问题。

Claims (24)

  1. 一种接收测量配置信息的方法,被用户设备执行,所述方法包括:
    接收网络设备发送的测量配置信息,所述测量配置信息用于指示待测量的测量对象以及测量间隙配置信息;
    根据所述测量配置信息,在不同的测量间隙分别执行对应测量对象的测量。
  2. 如权利要求1所述的方法,其中,
    所述根据所述测量配置信息,在不同的测量间隙中分别执行对应测量对象的测量,包括:
    根据所述测量配置信息,确定至少一个测量对象的扩展后的测量周期;
    在扩展后的测量周期内的不同测量间隙,分别执行对应测量对象的测量。
  3. 如权利要求2所述的方法,其中,
    所述根据所述测量配置信息,确定至少一个测量对象的扩展后的测量周期,包括:
    确定测量间隙配置信息对应的至少一个测量组;其中,每个所述测量组中包括满足设定条件的至少一个测量对象;
    根据所述测量间隙配置信息,确定每个所述测量组中的每个所述测量对象扩展后的测量周期。
  4. 如权利要求3所述的方法,其中,
    所述确定测量间隙配置信息对应的至少一个测量组,包括:
    将所述测量间隙配置信息对应的至少一个测量对象中基于同频测量的测量对象确定为第一测量组,和/或,将所述测量间隙配置信息对应的至少一个测量对象中基于非同频测量的测量对象确定为第二测量组。
  5. 如权利要求3所述的方法,其中,
    所述根据所述测量间隙配置信息,确定每个所述测量组中的每个所述测量对象扩展后的测量周期,包括:
    在每个所述测量组中,根据所述测量组中测量对象的个数以及所述测量组对应的比例系数,确定所述测量组对应的载波特定扩展因子;
    根据所述载波特定扩展因子扩展对应的所述测量对象的测量周期,获得每个所述测量对象扩展后的测量周期。
  6. 如权利要求5所述的方法,其中,
    所述测量组对应的比例系数为协议定义的。
  7. 如权利要求3所述的方法,其中,
    所述在扩展后的测量周期内的不同测量间隙,分别执行对应测量对象的测量,包括:
    在所述测量组对应的扩展后的测量周期内的不同测量间隙,交替执行所述测量组中每个测量对象的测量。
  8. 如权利要求1至6任一项所述的方法,其中,
    所述测量配置信息指示至少一种测量间隙类型的测量间隙配置信息,每种测量间隙类型的测量间隙配置信息用于支持对应的至少一个测量对象的测量。
  9. 如权利要求8所述的方法,其中,所述方法还包括:
    响应于所述至少一种测量间隙类型的测量间隙配置信息指示的测量间隙的位置存在冲突,根据所述至少一种测量间隙类型的所述测量间隙配置信息对应的优先级标识,确定优先级最高的为设定测量间隙类型的测量间隙配置信息。
  10. 如权利要求9所述的方法,其中,
    所述根据所述测量配置信息,在不同的测量间隙分别执行对应测量对象的测量,包括:
    根据所述设定测量间隙类型的测量间隙配置信息,在不同的测量间隙分别执行对应测量对象的测量。
  11. 如权利要求9所述的方法,其中,所述方法还包括:
    接收所述网络设备发送的用于指示所述优先级标识的信息。
  12. 如权利要求9所述的方法,其中,
    所述优先级标识为协议定义的。
  13. 如权利要求1至6任一项所述的方法,其中,所述方法还包括:
    向网络设备发送能力信息,所述能力信息用于指示所述用户设备支持的测量间隙类型。
  14. 如权利要求13所述的方法,其中,所述用户设备支持的测量间隙类型包括以下中的至少一种:
    并发测量间隙;
    网络配置的小的测量间隙;
    预配置测量间隙。
  15. 一种发送测量配置信息的方法,被网络设备执行,所述方法包括:
    向用户设备发送测量配置信息,所述测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
  16. 如权利要求15所述的方法,其中,所述方法还包括:
    接收用户设备发送的能力信息,所述能力信息用于指示所述用户设备支持的测量间隙类型;
    根据所述能力信息以及第一对应关系,确定所述测量配置信息,其中,所述第一对应关系为测量间隙类型与测量间隙类型支持的测量对象的对应关系。
  17. 如权利要求15或16所述的方法,其中,所述用户设备支持的测量间隙类型包括以下中的至少一种:
    并发测量间隙;
    网络配置的小的测量间隙;
    预配置测量间隙。
  18. 如权利要求15或16任一项所述的方法,其中,
    所述测量配置信息还用于指示至少一种测量间隙类型的所述测量间隙配置信息对应的优先级标识。
  19. 一种接收测量配置信息的装置,被配置于用户设备,所述装置包括:
    收发模块,用于接收网络设备发送的测量配置信息,所述测量配置信息用于指示待测量的测量对象以及测量间隙配置信息;
    处理模块,用于根据所述测量配置信息,在不同的测量间隙分别执行对应测量对象的测量。
  20. 一种发送测量配置信息的装置,被配置于网络设备,所述装置包括:
    收发模块,用于用户设备发送测量配置信息,所述测量配置信息用于指示待测量的测量对象以及测量间隙配置信息。
  21. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-14中任一项所述的方法。
  22. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求15-18中任一项所述的方法。
  23. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-14中任一项所述的方法。
  24. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求15-18中任一项所述的方法。
PCT/CN2022/110666 2022-08-05 2022-08-05 一种传输测量配置信息的方法、装置以及可读存储介质 WO2024026862A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280003079.6A CN117859367A (zh) 2022-08-05 2022-08-05 一种传输测量配置信息的方法、装置以及可读存储介质
PCT/CN2022/110666 WO2024026862A1 (zh) 2022-08-05 2022-08-05 一种传输测量配置信息的方法、装置以及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110666 WO2024026862A1 (zh) 2022-08-05 2022-08-05 一种传输测量配置信息的方法、装置以及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024026862A1 true WO2024026862A1 (zh) 2024-02-08

Family

ID=89848392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110666 WO2024026862A1 (zh) 2022-08-05 2022-08-05 一种传输测量配置信息的方法、装置以及可读存储介质

Country Status (2)

Country Link
CN (1) CN117859367A (zh)
WO (1) WO2024026862A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282794A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种测量方法、装置及系统
CN114727315A (zh) * 2021-01-04 2022-07-08 联发科技(新加坡)私人有限公司 并发间隙配置方法和用户设备
WO2022150136A1 (en) * 2021-01-07 2022-07-14 Intel Corporation Ue capability support for multiple concurrent and independent measurement gap configurations

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282794A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种测量方法、装置及系统
CN114727315A (zh) * 2021-01-04 2022-07-08 联发科技(新加坡)私人有限公司 并发间隙配置方法和用户设备
WO2022150136A1 (en) * 2021-01-07 2022-07-14 Intel Corporation Ue capability support for multiple concurrent and independent measurement gap configurations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussion on pre-configured measurement gap", 3GPP DRAFT; R4-2118013, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052061779 *

Also Published As

Publication number Publication date
CN117859367A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2022188076A1 (zh) 传输配置指示状态配置方法、装置及存储介质
WO2024026862A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2024007228A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2024007263A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2023206239A1 (zh) 一种传输保护时间间隔信息的方法、装置及可读存储介质
WO2024026747A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2023221044A1 (zh) 一种测量间隙的配置方法、装置及可读存储介质
WO2023221130A1 (zh) 一种测量方法、装置、设备及存储介质
WO2024026754A1 (zh) 一种传输测量配置信息的方法、装置、设备以及存储介质
WO2024059977A1 (zh) 一种执行或发送指示信息的方法、装置、设备及存储介质
WO2023236195A1 (zh) 一种传输时域资源配置信息的方法、装置及可读存储介质
WO2024020811A1 (zh) 一种传输参考信号测量结果的方法、装置及存储介质
WO2024040477A1 (zh) 一种测量方法、确定辅小区的方法、装置、设备以及介质
WO2024060119A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2024011459A1 (zh) 一种测量方法、装置、设备以及可读存储介质
WO2023184254A1 (zh) 一种传输测量配置信息的方法、装置及可读存储介质
WO2024156116A1 (zh) 一种传输配置信息和指示信息的方法、装置及存储介质
WO2024031253A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2024113193A1 (zh) 一种传输信息的方法、装置及可读存储介质
WO2024065511A1 (zh) 一种传输定位辅助信息的方法、装置以及可读存储介质
WO2024060153A1 (zh) 一种发送或监听下行控制信息的方法、装置、设备或介质
WO2023178623A1 (zh) 一种监听唤醒信号的方法、装置及可读存储介质
WO2024026633A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质
WO2023115284A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2024159460A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280003079.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953667

Country of ref document: EP

Kind code of ref document: A1