WO2024026747A1 - 一种传输测量配置信息的方法、装置以及可读存储介质 - Google Patents

一种传输测量配置信息的方法、装置以及可读存储介质 Download PDF

Info

Publication number
WO2024026747A1
WO2024026747A1 PCT/CN2022/110062 CN2022110062W WO2024026747A1 WO 2024026747 A1 WO2024026747 A1 WO 2024026747A1 CN 2022110062 W CN2022110062 W CN 2022110062W WO 2024026747 A1 WO2024026747 A1 WO 2024026747A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
measurement
configuration information
network device
user equipment
Prior art date
Application number
PCT/CN2022/110062
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/110062 priority Critical patent/WO2024026747A1/zh
Priority to CN202280003009.0A priority patent/CN117837223A/zh
Publication of WO2024026747A1 publication Critical patent/WO2024026747A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a method, device and readable storage medium for transmitting measurement configuration information.
  • the network energy saving project aims to study technologies to reduce energy consumption of network equipment.
  • the energy consumption of network equipment can be reduced by dynamically switching some space units.
  • the beam or reference signal (Reference Signal, RS) sent by the network device will change. For example, the relevant beam is turned off, or the related reference signal is turned off, etc.
  • RRM radio resource management
  • the present disclosure provides a method, device and readable storage medium for transmitting measurement configuration information.
  • the present disclosure provides a method for sending measurement configuration information, which is executed by a first network device.
  • the method includes:
  • the measurement configuration information is used to indicate whether the reference signal to be measured in the radio resource management RRM measurement of the neighboring cell and/or serving cell by the user equipment is a first type reference signal, so
  • the first type of reference signal is a reference signal that can be dynamically turned off.
  • the first network device delivers measurement configuration information to the serving user equipment to indicate whether the reference signal to be measured by the user equipment during the RRM measurement process is a reference signal that can be dynamically turned off. Therefore, the user equipment learns the type of the reference signal to be measured according to the measurement configuration information, so as to facilitate adaptive measurement processing and ensure the quality of the measurement results.
  • the method further includes:
  • the method further includes:
  • the first duration is the maximum duration for which the first type of reference signal can be turned off, or the first duration is a set value.
  • the indication information is used to respectively indicate the first duration corresponding to each of the first type reference signals, or,
  • the indication information is used to respectively indicate the first duration corresponding to the first type of reference signal in each neighboring cell, or,
  • the indication information is used to indicate the first duration corresponding to the first type reference signals in multiple neighboring cells.
  • the method further includes:
  • the first duration is defined by the protocol.
  • the reference signal to be measured is a synchronization signal block SSB or a downlink channel state information reference signal CSI-RS.
  • the present disclosure provides a method for receiving measurement configuration information, which is executed by user equipment.
  • the method includes:
  • Receive measurement configuration information sent by the first network device corresponding to the serving cell is used to indicate: the reference signal to be measured in the radio resource management RRM measurement of the neighboring cell and/or the serving cell by the user equipment. Whether it is a first-type reference signal, which is a reference signal that can be dynamically turned off;
  • the user equipment receives the measurement configuration information delivered by the first network device to learn whether the reference signal to be measured during the RRM measurement process is a reference signal that can be dynamically turned off. Therefore, the user equipment can perform adaptive measurement processing according to the type of the reference signal to be measured, which is beneficial to ensuring the quality of the measurement results.
  • the method further includes:
  • the measurement period is determined according to the first duration, and the measurement period lasts longer than the first duration.
  • determining the measurement period based on the first duration includes:
  • the measurement period is determined according to a first duration corresponding to a reference measurement period when the reference signal to be measured is not configured to be dynamically turned off.
  • the first duration is the maximum duration for which the first type of reference signal can be turned off, or the first duration is a set value.
  • the method further includes:
  • the first duration is defined by the protocol.
  • performing neighbor cell and/or serving cell RRM measurement according to the measurement configuration information includes:
  • Neighbor cell and/or serving cell RRM measurements are performed during the measurement period.
  • the method further includes:
  • the sample value obtained by RRM measurement of the neighboring cell and/or serving cell being lower than the parameter threshold, the sample value is not included in the measurement results to be reported.
  • the method further includes:
  • the parameter threshold is defined by a protocol.
  • the present disclosure provides a method for sending measurement configuration information, which is executed by a second network device.
  • the method includes:
  • the notification message is used to indicate whether the user equipment in the serving cell of the first network device has a reference signal to be measured for RRM measurement of the cell corresponding to the second network device.
  • the first type of reference signal is a reference signal that can be dynamically turned off.
  • the second network device can inform the first network device whether its corresponding reference signal used for RRM measurement is a reference signal that can be dynamically turned off. This is so that after the first network device is informed, it can deliver measurement configuration information related to instructing the neighbor cell RRM measurement to the user equipment.
  • the present disclosure provides an apparatus for sending measurement configuration information, which may be used to perform the steps performed by the first network device in the above-mentioned first aspect or any possible design of the first aspect.
  • the first network device can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • the device may include a transceiver module, and the transceiver module may be used to support the communication device to communicate.
  • the transceiver module is configured to send measurement configuration information to the user equipment, where the measurement configuration information is used to indicate that the user equipment performs radio resource management of neighboring cells and/or serving cells.
  • the reference signal to be measured in the RRM measurement is a first-type reference signal
  • the first-type reference signal is a reference signal that can be dynamically turned off.
  • the present disclosure provides a device for receiving measurement configuration information, which may be used to perform the steps performed by user equipment in the above second aspect or any possible design of the second aspect.
  • the user equipment can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • the device may include a transceiver module and a processing module coupled to each other, wherein the transceiver module may be used to support the communication device to communicate, and the processing module may be used by the communication device to perform processing operations, such as generating The information/message needs to be sent, or the received signal is processed to obtain the information/message.
  • the transceiver module is configured to receive measurement configuration information sent by the first network device corresponding to the serving cell, where the measurement configuration information is used to indicate that the user equipment performs neighbor cell and/or Or whether the reference signal to be measured in the radio resource management RRM measurement of the serving cell is a first-type reference signal, and the first-type reference signal is a reference signal that can be dynamically turned off;
  • a processing module configured to perform neighbor cell and/or serving cell RRM measurement according to the measurement configuration information.
  • the present disclosure provides an apparatus for sending measurement configuration information, which may be used to perform the steps performed by the second network device in the above third aspect or any possible design of the third aspect.
  • the second network device can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • the device may include a transceiver module, and the transceiver module may be used to support the communication device to communicate.
  • the transceiver module is configured to send a notification message to the first network device, where the notification message is used to indicate: the user equipment in the serving cell of the first network device, the Whether the reference signal to be measured for RRM measurement in the cell corresponding to the second network device is a first-type reference signal, and the first-type reference signal is a reference signal that can be dynamically turned off.
  • the present disclosure provides a communication device, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the first aspect or any one of the first aspects. possible designs.
  • the present disclosure provides a communication device, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the second aspect or any one of the second aspects. possible designs.
  • the present disclosure provides a communication device, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the third aspect or any one of the third aspects. possible designs.
  • the present disclosure provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions (or computer programs, programs) that, when called and executed on a computer, cause the computer to execute the above-mentioned first step. Any possible design of the aspect or first aspect.
  • the present disclosure provides a computer-readable storage medium in which instructions (or computer programs, programs) are stored. When called and executed on a computer, the computer is caused to execute the above-mentioned instructions.
  • the present disclosure provides a computer-readable storage medium in which instructions (or computer programs, programs) are stored. When called and executed on a computer, the computer is caused to execute the above-mentioned instructions.
  • Figure 1 is a schematic diagram of a wireless communication system architecture provided by an embodiment of the present disclosure
  • Figure 2 is a flow chart of a method of transmitting measurement configuration information according to an exemplary embodiment
  • Figure 3 is a flow chart of a method of transmitting measurement configuration information according to an exemplary embodiment
  • Figure 4 is a flow chart of a method of sending measurement configuration information according to an exemplary embodiment
  • Figure 5 is a flow chart of another method of sending measurement configuration information according to an exemplary embodiment
  • Figure 6 is a flow chart of a method of receiving measurement configuration information according to an exemplary embodiment
  • Figure 7 is a flow chart of another method of receiving measurement configuration information according to an exemplary embodiment
  • Figure 8 is a flow chart of another method of receiving measurement configuration information according to an exemplary embodiment
  • Figure 9 is a flow chart of a method of sending measurement configuration information according to an exemplary embodiment
  • Figure 10 is a block diagram of a device for sending measurement configuration information according to an exemplary embodiment
  • Figure 11 is a block diagram of a communication device according to an exemplary embodiment
  • Figure 12 is a block diagram of a device for sending measurement configuration information according to another exemplary embodiment
  • Figure 13 is a block diagram of a device for receiving measurement configuration information according to an exemplary embodiment
  • Figure 14 is a block diagram of user equipment according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • a method for transmitting measurement configuration information can be applied to a wireless communication system 100 , which may include a first network device 101 , a second network device 102 and a user equipment 103 .
  • the first network device 101 is a network device corresponding to the serving cell where the user equipment 103 is located, and the second network device 102 may be a network device corresponding to a neighboring cell.
  • the user equipment 103 is configured to support carrier aggregation and can be connected to multiple carrier units of the first network device 101 or the second network device 102, including a primary carrier unit and one or more secondary carrier units.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • WiMAX global Internet microwave access
  • CRAN cloud radio access network
  • 5G fifth generation
  • 5G new wireless (new radio, NR) communication system
  • PLMN public land mobile network
  • the user equipment 103 shown above may be a terminal, an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, a mobile terminal, a wireless communication device, a terminal Agent or terminal device, etc.
  • the user equipment 103 may have a wireless transceiver function, which can communicate (such as wireless communication) with one or more network devices of one or more communication systems, and accept network services provided by the network devices.
  • the network devices here include but are not Limited to the network equipment shown.
  • the user equipment 103 may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, or a device with Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or terminal devices in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the first network device 101 or the second network device 102 may be an access network device (or access network site).
  • access network equipment refers to equipment that provides network access functions, such as wireless access network (radio access network, RAN) base stations and so on.
  • the first network device 101 or the second network device 102 may specifically include a base station (BS), or a base station and a wireless resource management device for controlling the base station, etc.
  • the network device 102 may also include relay stations (relay devices), access points, and base stations in future 5G networks, base stations in future evolved PLMN networks, or NR base stations, etc.
  • the first network device 101 or the second network device 102 may be a wearable device or a vehicle-mounted device.
  • the first network device 101 or the second network device 102 may also be a communication chip having a communication module.
  • the first network device 101 or the second network device 102 includes but is not limited to: a next-generation base station (gnodeB, gNB) in 5G, an evolved node B (evolved node B, eNB) in the LTE system, and a wireless network controller.
  • a next-generation base station gnodeB, gNB
  • eNB evolved node B
  • RNC radio network controller
  • node B node B (node B, NB) in the WCDMA system
  • wireless controller under the CRAN system base station controller (BSC), base transceiver station in the GSM system or CDMA system ( base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point, TP) or mobile switching center, etc.
  • BSC base station controller
  • BTS base transceiver station in the GSM system or CDMA system
  • home base station for example, home evolved nodeB, or home node B, HNB
  • baseband unit baseband unit
  • TRP transmitting and receiving point
  • TP mobile switching center
  • the spatial unit of the network device can be dynamically turned off, during the period when the space unit is turned off, there is no opportunity to transmit the relevant reference signal. Since the user equipment 103 does not know that the reference signal to be measured is dynamically turned off, if the period during which the user equipment 103 performs RRM measurement overlaps with the period during which the spatial unit is turned off, the user equipment 103 will still directly measure the reference signal to be measured. As a result, the measurement results obtained during the measurement period cannot reflect the actual reference signal reception quality. Therefore, the measurement problem in this scenario needs to be solved.
  • Embodiments of the present disclosure provide a method for transmitting measurement configuration information.
  • Figure 2 illustrates a method of transmitting measurement configuration information according to an exemplary embodiment. As shown in Figure 2, the method includes steps S201 to S202, specifically:
  • Step S201 the first network device 101 sends measurement configuration information to the user equipment 103.
  • the measurement configuration information is used to indicate whether the reference signal to be measured in the radio resource management RRM measurement of the neighboring cell and/or serving cell by the user equipment 103 is the first.
  • the first type of reference signal is a reference signal that can be dynamically turned off.
  • Step S202 The user equipment 103 performs neighbor cell and/or serving cell RRM measurement according to the received measurement configuration information.
  • the first network device 101 is a network device corresponding to the serving cell where the user equipment 103 is located.
  • the neighbor cell is the cell corresponding to the second network device 102.
  • the first network device 101 may deliver the RRM measurement configuration corresponding to the neighboring cell and the serving cell to the user equipment 103 respectively.
  • the first network device 101 delivers first measurement configuration information, which is used to indicate whether the reference signal to be measured can be dynamically turned off when the user equipment 103 performs RRM measurement of the serving cell.
  • the first network device 101 delivers second measurement configuration information, which is used to indicate whether the reference signal to be measured can be dynamically turned off when the user equipment 103 performs RRM measurement of a neighboring cell.
  • the reference signal to be measured may be a Synchronization Signal Block (SSB), or the reference signal to be measured may be a downlink channel state information reference signal (Channel-State-Information Reference Signal, CSI-RS).
  • SSB Synchronization Signal Block
  • CSI-RS downlink channel state information reference signal
  • the user equipment 103 may measure at least one of the following quality parameters of the reference signal to be measured:
  • RSSI Received Signal Strength Indication
  • RSRP Reference Signal Received Power
  • the value obtained by the user equipment 103 by measuring any of the above parameters of the reference signal to be measured is recorded as a sample value.
  • the user equipment 103 may perform adaptive measurement processing.
  • the user equipment 103 does not measure the first type of reference signal during the RRM measurement process.
  • the user equipment 103 performs RRM measurement and filters or eliminates sample values corresponding to the first type of reference signal.
  • the user equipment 103 extends the measurement time of the first type of reference signal in the RRM measurement process, that is, extends the measurement period.
  • the first network device 101 delivers measurement configuration information to the serving user equipment 103 to indicate whether the reference signal to be measured by the user equipment 103 during the RRM measurement process is a reference signal that can be dynamically turned off. Therefore, the user equipment 103 learns the type of the reference signal to be measured according to the measurement configuration information, so as to facilitate adaptive measurement processing and ensure the quality of the measurement results.
  • Embodiments of the present disclosure provide a method for transmitting measurement configuration information.
  • Figure 3 illustrates a method of transmitting measurement configuration information according to an exemplary embodiment. As shown in Figure 3, the method includes steps S301 to S304, specifically:
  • Step S301 the second network device 102 sends a notification message to the first network device 101.
  • the notification message is used to instruct the user equipment 103 in the serving cell of the first network device 101 to perform RRM on the cell corresponding to the second network device 102.
  • the reference signal to be measured is a first-type reference signal.
  • the first-type reference signal is a reference signal that can be dynamically turned off.
  • Step S302 The first network device 101 determines the measurement configuration information according to the received notification message; the measurement configuration information is used to indicate whether the reference signal to be measured in the radio resource management RRM measurement of the neighboring cell and/or the serving cell is performed by the user equipment 103.
  • the first type of reference signal is a reference signal that can be dynamically turned off.
  • Step S303 The first network device 101 sends measurement configuration information to the user equipment 103.
  • Step S304 The user equipment 103 performs neighbor cell and/or serving cell RRM measurement according to the received measurement configuration information.
  • the first network device 101 is a network device corresponding to the serving cell where the user equipment 103 is located
  • the second network device 102 is a network device corresponding to the neighboring cell.
  • the reference signal to be measured may be SSB, or CSI-RS.
  • the first network device 101 determines whether the reference signal to be measured in neighbor cell RRM measurement by the user equipment 103 can be dynamically turned off through the notification message of the second network device 102, and then configures the corresponding signal for the user equipment 103.
  • Measurement configuration information is used to indicate whether the reference signal to be measured by the user equipment 103 during the RRM measurement process is a reference signal that can be dynamically turned off.
  • the embodiment of the present disclosure provides a method of sending measurement configuration information, which method is executed by the first network device 101.
  • Figure 4 illustrates a method of sending measurement configuration information according to an exemplary embodiment. As shown in Figure 4, the method includes step S401, specifically:
  • Step S401 the first network device 101 sends measurement configuration information to the user equipment 103.
  • the measurement configuration information is used to indicate whether the reference signal to be measured in the radio resource management RRM measurement of the neighboring cell and/or serving cell by the user equipment 103 is the first.
  • the first type of reference signal is a reference signal that can be dynamically turned off.
  • the reference signal to be measured may be SSB, or CSI-RS.
  • the first type of reference signal can be dynamically turned off.
  • the spatial unit corresponding to the first type of reference signal can be dynamically closed by the network device to save energy consumption.
  • the spatial unit may include: an antenna unit, a transmit port (TX port), a transceiver link (TRX chain), an antenna panel (panel), etc.
  • TX port transmit port
  • TRX chain transceiver link
  • panel panel
  • the first network device 101 may send downlink control information (Downlink Control Information, DCI) to the user equipment 103, and the DCI carries measurement configuration information.
  • DCI Downlink Control Information
  • the first network device 101 indicates the measurement configuration information to the user equipment 103 through a media access control layer control element (MAC CE).
  • MAC CE media access control layer control element
  • the measurement configuration information may also indicate the type of RRM measurement.
  • the measurement configuration information indicates that the type of RRM measurement is: intra-frequency measurement that requires measurement intervals (with gaps), or intra-frequency measurement that does not require measurement intervals (without gaps).
  • the measurement configuration information indicates that the type of RRM measurement is: inter-frequency measurement that requires measurement intervals (with gaps), or inter-frequency measurement that does not require measurement intervals (without gaps).
  • the measurement configuration information also indicates measurement-related resource configuration.
  • the measurement configuration information indicates a movement speed identifier of the user equipment 103.
  • the measurement configuration information indicates whether discontinuous reception (Discontinuous Reception, DRX) is configured.
  • the first network device 101 may deliver the RRM measurement configuration corresponding to the neighboring cell and the serving cell to the user equipment 103 respectively.
  • the first network device 101 delivers first measurement configuration information, which is used to indicate whether the reference signal to be measured can be dynamically turned off when the user equipment 103 performs RRM measurement of the serving cell.
  • the first network device 101 delivers second measurement configuration information, which is used to indicate whether the reference signal to be measured can be dynamically turned off when the user equipment 103 performs RRM measurement of a neighboring cell.
  • the first network device 101 delivers measurement configuration information to the serving user equipment 103 to indicate whether the reference signal to be measured by the user equipment 103 during the RRM measurement process is a reference signal that can be dynamically turned off. Therefore, the user equipment 103 learns the type of the reference signal to be measured according to the measurement configuration information, so as to facilitate adaptive measurement processing and ensure the quality of the measurement results.
  • the embodiment of the present disclosure provides a method of sending measurement configuration information, which method is executed by the first network device 101.
  • Figure 5 illustrates a method of sending measurement configuration information according to an exemplary embodiment. As shown in Figure 5, the method includes steps S501 to S502, specifically:
  • Step S501 The first network device 101 receives a notification message sent by the second network device 102 corresponding to the neighboring cell.
  • the notification message is used to indicate whether the reference signal to be measured in the RRM measurement of the neighboring cell by the user equipment 103 is a first-type reference signal. .
  • Step S502 The first network device 101 sends measurement configuration information to the user equipment 103.
  • the measurement configuration information is used to indicate whether the reference signal to be measured in the radio resource management RRM measurement of the neighboring cell and/or serving cell by the user equipment 103 is the first.
  • the first type of reference signal is a reference signal that can be dynamically turned off.
  • the second network device 102 corresponding to the neighboring cell notifies the first network device 101 in advance whether the reference signal to be measured in the RRM measurement is of the first type. reference signal.
  • the first network device 101 determines the measurement configuration information for neighbor cell RRM measurement.
  • the first network device 102 corresponding to the serving cell may determine the measurement configuration information for performing RRM measurement on the serving cell.
  • the first network device 101 may deliver corresponding measurement configuration information to the user equipment 103 according to the measurement scenario.
  • the reference signal to be measured may be SSB, or CSI-RS.
  • the first network device 101 learns whether the reference signal to be measured when performing neighbor cell RRM measurement can be turned off according to the notification message of the second network device 102, so that the user equipment 103 can be informed in a timely and effective manner.
  • the embodiment of the present disclosure provides a method of sending measurement configuration information, which method is executed by the first network device 101.
  • the method includes the following steps S401 to S402, specifically:
  • Step S401 the first network device 101 sends measurement configuration information to the user equipment 103.
  • the measurement configuration information is used to indicate whether the reference signal to be measured in the radio resource management RRM measurement of the neighboring cell and/or serving cell by the user equipment 103 is the first.
  • the first type of reference signal is a reference signal that can be dynamically turned off.
  • Step S402 The first network device 101 sends indication information indicating the first duration to the user equipment.
  • the method includes the following steps S501 to S503, specifically:
  • Step S501 The first network device 101 receives a notification message sent by the second network device 102 corresponding to the neighboring cell.
  • the notification message is used to indicate whether the reference signal to be measured in the RRM measurement of the neighboring cell by the user equipment 103 is a first-type reference signal. .
  • Step S502 The first network device 101 sends measurement configuration information to the user equipment 103.
  • the measurement configuration information is used to indicate whether the reference signal to be measured in the radio resource management RRM measurement of the neighboring cell and/or serving cell by the user equipment 103 is the first.
  • the first type of reference signal is a reference signal that can be dynamically turned off.
  • Step S503 The first network device 101 sends indication information indicating the first duration to the user equipment.
  • step S401 and step S402 can be exchanged, or executed synchronously; the execution order of step S503 and step S502 can be exchanged, or executed synchronously.
  • the reference signal to be measured may be SSB, or CSI-RS.
  • the first network device 101 sends measurement configuration information and indication information to the user equipment 103 respectively.
  • the measurement configuration information includes indication information, that is, the measurement configuration information not only indicates whether the reference signal to be measured is the first type of reference signal, but also indicates the first duration.
  • the first network device 101 carries the indication information through DCI.
  • the first duration (T) is the maximum duration for which the first type of reference signal can be turned off.
  • the first time period (T) is a set value.
  • the user equipment 103 determines the measurement period of the RRM measurement according to the first duration.
  • the measurement period includes a first duration.
  • the first duration may be protocol defined.
  • the first time period may be informed by the second network device 102 to the first network device 101 .
  • step S402 or step S503 the method may further include the following step S400:
  • Step S400 The first network device 101 receives the first duration sent by the second network device 102.
  • the first network device 101 can also indicate to the user equipment 103 the maximum duration for which the first type of reference signal can be turned off, so that the user equipment 103 can determine an appropriate measurement period based on the duration, which is beneficial to ensuring RRM. The accuracy and reasonableness of the measurement results.
  • the embodiment of the present disclosure provides a method of sending measurement configuration information, which method is executed by the first network device 101.
  • the method includes steps S401 to S402, or steps S501 to S503;
  • the indication information is used to respectively indicate the first duration corresponding to each first type reference signal, or,
  • the indication information is used to respectively indicate the first duration corresponding to the first type of reference signal in each neighboring cell, or,
  • the indication information is used to indicate the first duration corresponding to the first type reference signals in multiple neighboring cells.
  • the reference signal to be measured is SSB or CSI-RS.
  • SSB or CSI-RS is the first type of reference signal.
  • SSB and CSI-RS are the first type of reference signals.
  • each first type reference signal is configured with a corresponding first duration.
  • SSB is configured with a corresponding first duration
  • CSI-RS is configured with a corresponding first duration
  • each neighboring cell is configured with a corresponding first duration.
  • the reference signal to be measured by RRM corresponding to the neighboring cell includes SSB and CSI-RS, and both the SSB and CSI-RS of the neighboring cell correspond to the same first duration.
  • multiple neighboring cells are configured with the same first duration.
  • all neighboring cells corresponding to the serving cell of the user equipment 103 are configured with the same first duration, and the SSB or CSI-RS in all neighboring cells also correspond to the same first duration.
  • the first network device 101 can configure different types of indication information for the user equipment 103 to indicate the first duration of the first type of reference signal, so that the user equipment 103 can determine a reasonable measurement period based on the first duration. .
  • Embodiments of the present disclosure provide a method of receiving measurement configuration information, which method is executed by the user equipment 103.
  • Figure 6 illustrates a method of receiving measurement configuration information according to an exemplary embodiment. As shown in Figure 6, the method includes steps S601 to S602, specifically:
  • Step S601 The user equipment 103 receives the measurement configuration information sent by the first network device 101 corresponding to the serving cell.
  • the measurement configuration information is used to indicate that the user equipment 103 performs the radio resource management RRM measurement of the neighboring cell and/or the serving cell to be measured.
  • the reference signal is a first-type reference signal.
  • the first-type reference signal is a reference signal that can be dynamically turned off.
  • Step S602 The user equipment 103 performs neighbor cell and/or serving cell RRM measurement according to the measurement configuration information.
  • the first network device 101 is a network device corresponding to the serving cell where the user equipment 103 is located
  • the second network device 102 is a network device corresponding to the neighboring cell.
  • the reference signal to be measured may be SSB, or CSI-RS.
  • the user equipment 103 can measure at least one of the following quality parameters of the reference signal to be measured: RSSI, RSRP, and RSRQ, and any quality parameter of the reference signal to be measured is measured. The value is recorded as the sampling value.
  • the user equipment 103 may perform adaptive measurement processing.
  • the user equipment 103 does not measure the first type of reference signal during the RRM measurement process.
  • the user equipment 103 performs RRM measurement and filters or eliminates sample values corresponding to the first type of reference signal.
  • the user equipment 103 extends the measurement time of the first type of reference signal in the RRM measurement process.
  • the user equipment 103 receives the measurement configuration information sent by the first network device 101 to learn whether the reference signal to be measured during the RRM measurement process is a reference signal that can be dynamically turned off. Therefore, the user equipment 103 can perform adaptive measurement processing according to the type of the reference signal to be measured, which is beneficial to ensuring the quality of the measurement results.
  • Embodiments of the present disclosure provide a method of receiving measurement configuration information, which method is executed by the user equipment 103.
  • the method includes steps S601, S601' and S602, specifically:
  • Step S601 The user equipment 103 receives the measurement configuration information sent by the first network device 101 corresponding to the serving cell.
  • the measurement configuration information is used to indicate that the user equipment 103 performs the radio resource management RRM measurement of the neighboring cell and/or the serving cell to be measured.
  • the reference signal is a first-type reference signal.
  • the first-type reference signal is a reference signal that can be dynamically turned off.
  • Step S601' determine the measurement period according to the first duration, and the duration of the measurement period is longer than the first duration.
  • Step S602 The user equipment 103 performs neighbor cell and/or serving cell RRM measurement according to the measurement configuration information.
  • the first duration is the maximum duration for which the first type of reference signal can be turned off.
  • the first duration is a set value.
  • the protocol defines a corresponding reference measurement period when the reference signal to be measured is not configured to be dynamically turned off during the RRM measurement process.
  • the network equipment will not close its corresponding space unit for saving energy consumption or other reasons.
  • Reference signals that are not configured to be dynamically closed are considered to have no shutdown period.
  • the user equipment 103 can determine the measurement period based on relevant parameters configured by the first network device 101 and relevant rules defined by the protocol.
  • step S601' may be performed through the following step S601":
  • Step S601 the user equipment 103 determines the measurement period according to the first duration and the reference measurement period corresponding to when the reference signal to be measured is not configured to be dynamically turned off.
  • the sum of the first duration and the reference measurement period is used as the new measurement period in this embodiment (denoted as the first measurement period). That is, by extending the first duration based on the reference measurement period, the measurement period in this embodiment is obtained, so that the user equipment 103 can perform RRM measurements in the extended measurement period, thereby improving the problem caused by the reference signal to be measured being turned off. The phenomenon that the actual measurement period is reduced, thereby weakening the impact of the reduction of the actual measurement period on the measurement results.
  • the user equipment 103 may determine the measurement period in combination with the measurement configuration information and the first duration.
  • the measurement configuration information is also configured with a movement speed identifier of the user equipment 103.
  • the movement speed identifier indicates a high speed
  • the user equipment 103 may determine a measurement period according to the identifier and the first duration.
  • the determined measurement period in this example may be smaller than the first measurement period in the previous example.
  • the user equipment 103 in combination with the first duration during which the first type of reference signal can be turned off, can extend the measurement period according to the first duration.
  • Embodiments of the present disclosure provide a method of receiving measurement configuration information, which method is executed by the user equipment 103.
  • Figure 7 illustrates a method of receiving measurement configuration information according to an exemplary embodiment. As shown in Figure 7, the method includes steps S701 to S703, specifically:
  • Step S701 The user equipment 103 receives the measurement configuration information sent by the first network device 101 corresponding to the serving cell.
  • the measurement configuration information is used to indicate that the user equipment 103 performs radio resource management RRM measurement of the neighboring cell and/or the serving cell to be measured.
  • the reference signal is a first-type reference signal.
  • the first-type reference signal is a reference signal that can be dynamically turned off.
  • Step S702 Determine a measurement period based on the first duration, and the measurement period lasts longer than the first duration.
  • Step S703 The user equipment 103 performs neighbor cell and/or serving cell RRM measurement during the measurement period.
  • the first duration is the maximum duration for which the first type of reference signal can be turned off.
  • the first duration is a set value.
  • the user equipment 103 can determine the measurement period based on relevant parameters configured by the first network device 101 and relevant rules defined by the protocol.
  • the user equipment 103 determines the measurement period (denoted as the first measurement period) based on the first duration and the corresponding reference measurement period when the reference signal to be measured is not configured to be dynamically turned off.
  • the user equipment 103 performs the RRM measurement of the neighboring cell in a first measurement period that is longer than the reference measurement period.
  • the first duration is configured by the first network device 101 for the user device 103, and the first network device 101 can learn the first duration from the second network device 102.
  • the method further includes the following step S701' before step S702:
  • Step S701' the user equipment 103 receives the indication information sent by the first network device 101 for indicating the first duration.
  • the measurement configuration information includes indication information.
  • the first duration is protocol-defined.
  • the user equipment 103 in combination with the first duration during which the first type of reference signal can be turned off, can extend the measurement period according to the first duration to reduce the impact of turning off the first type of reference signal on the measurement results.
  • Embodiments of the present disclosure provide a method of receiving measurement configuration information, which method is executed by the user equipment 103.
  • Figure 8 illustrates a method of receiving measurement configuration information according to an exemplary embodiment. As shown in Figure 8, the method includes steps S801 to S804, specifically:
  • Step S801 The user equipment 103 receives the measurement configuration information sent by the first network device 101 corresponding to the serving cell.
  • the measurement configuration information is used to indicate that the user equipment 103 performs radio resource management RRM measurement of the neighboring cell and/or the serving cell to be measured.
  • the reference signal is a first-type reference signal.
  • the first-type reference signal is a reference signal that can be dynamically turned off.
  • Step S802 Determine a measurement period based on the first duration, and the measurement period lasts longer than the first duration.
  • Step S803 The user equipment 103 performs neighbor cell and/or serving cell RRM measurement according to the measurement configuration information.
  • Step S804 In response to the sample value obtained by the RRM measurement of the neighboring cell and/or the serving cell being lower than the parameter threshold, the sample value is not included in the measurement results to be reported.
  • the method includes steps S801, S803 and S804.
  • the first duration is the maximum duration for which the first type of reference signal can be turned off.
  • the first duration is a set value.
  • the user equipment 103 determines the measurement period according to the first duration and the corresponding reference measurement period when the reference signal to be measured is not configured to be dynamically turned off. RRM measurements are performed during the measurement period.
  • the reference signal to be measured is SSB or CSI-RS.
  • the user equipment 103 can measure at least one of the following quality parameters of the reference signal to be measured: RSSI, RSRP, and RSRQ, and any quality parameter of the reference signal to be measured is measured. The value is recorded as the sampling value.
  • each quality parameter has a corresponding parameter threshold value.
  • the sampled value when the sampled value is lower than the corresponding parameter threshold, it indicates that the reference signal corresponding to the sampled value may be in a closed state, and the sampled value cannot accurately reflect the reception quality of the reference signal.
  • sampling values that are lower than the corresponding parameter threshold are not reported, and only sampling values that are not lower than the parameter threshold are reported.
  • the parameter threshold is configured by the first network device 101 for the user equipment.
  • the method of this example also includes the following step S801':
  • Step S801' the user equipment 103 receives the parameter threshold value indicated by the first network device 101.
  • the parameter threshold value may be carried in the measurement configuration information.
  • the parameter threshold value may be indicated through DCI or Radio Resource Control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the parameter threshold is defined by the protocol.
  • the parameter threshold value corresponding to the RSSI defined by the protocol is -110 decibel milliwatts (dBmW).
  • the user equipment 103 performs RRM measurement on the SSB or CSI-RS during the measurement period. If the obtained RSSI sample value is lower than -110dBmW, the sample value is discarded and not included in the measurement results to be reported.
  • the user equipment 103 filters the values adopted in the RRM measurement process through the parameter threshold and eliminates sampling results that are lower than the parameter threshold. This can remove the sampling results corresponding to the period when the reference signal is turned off, reduce the impact of the period when the reference signal is turned off on the RRM measurement results, and ensure the authenticity and reliability of the measurement results so that the measurement results can truly reflect the actual reception quality of the reference signal. .
  • the first duration defined by the protocol is T, and when the reference signal to be measured is not configured to be dynamically turned off, the corresponding reference measurement period is T0.
  • the user equipment 103 prolongs the measurement of the reference signal to be measured by extending the measurement period, thereby improving the phenomenon that the actual measurement period is reduced due to the reference signal to be measured being turned off, thereby weakening the impact of the actual measurement period on the measurement results. Influence.
  • the parameter threshold value corresponding to the RSSI defined by the protocol is -110dBmW.
  • the first duration defined by the protocol is T, and when the reference signal to be measured is not configured to be dynamically turned off, the corresponding reference measurement period is T0.
  • the filtering method of the parameter threshold value is combined with the method of extending the measurement period.
  • the phenomenon that the actual measurement period is reduced due to the turning off of the reference signal to be measured can be improved.
  • the parameter threshold value can also be used to extend the measurement period. Screen the sampling values obtained after extending the measurement period to improve the rationality of the measurement results and avoid unreasonable sampling values from affecting the accuracy of the measurement results.
  • Embodiments of the present disclosure provide a method of sending measurement configuration information, which is executed by the second network device 102 .
  • Figure 9 illustrates a method of sending measurement configuration information according to an exemplary embodiment. As shown in Figure 9, the method includes step S901, specifically:
  • Step S901 The second network device 102 sends a notification message to the first network device 101.
  • the notification message is used to instruct the user equipment 103 in the serving cell of the first network device 101 to perform RRM on the cell corresponding to the second network device 102.
  • Whether the reference signal to be measured is a first-type reference signal.
  • the first-type reference signal is a reference signal that can be dynamically turned off.
  • the cell corresponding to the second network device 102 is the neighboring cell involved in the previous embodiment.
  • the second network device 102 may inform the first network device 101 whether its corresponding reference signal used for RRM measurement is a reference signal that can be dynamically turned off. This is so that after the first network device 101 is informed, it can deliver measurement configuration information related to instructing neighbor cell RRM measurement to the user equipment.
  • the embodiment of the present disclosure also provides a device for sending measurement configuration information.
  • the device can have the function of the first network device 101 in the above method embodiment, and can be used to perform the above method implementation.
  • the example provides steps performed by the first network device 101.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 1000 shown in Figure 10 can serve as the first network device 101 involved in the above method embodiment, and perform the steps performed by the first network device 101 in the above method embodiment.
  • the communication device 1000 may include a transceiver module 1001, where the transceiver module 1001 may be used to support the communication device to communicate.
  • the transceiver module 1001 may have a wireless communication function, such as being able to communicate wirelessly with other communication devices through a wireless air interface. .
  • the transceiver module 1001 When performing the steps implemented by the first network device 101, the transceiver module 1001 is configured to send measurement configuration information to the user equipment.
  • the measurement configuration information is used to instruct the user equipment to perform radio resource management RRM of the neighboring cell and/or serving cell.
  • RRM radio resource management
  • Whether the reference signal to be measured during the measurement is a first-type reference signal.
  • the first-type reference signal is a reference signal that can be dynamically turned off.
  • the transceiver module 1001 is further configured to receive a notification message sent by the second network device corresponding to the neighboring cell.
  • the notification message is used to indicate whether the reference signal to be measured in the neighbor cell RRM measurement is performed by the user equipment. It is the first type of reference signal.
  • the transceiver module 1001 is further configured to send indication information indicating the first duration to the user equipment.
  • the first duration is the maximum duration for which the first type of reference signal can be turned off, or the first duration is a set value.
  • the indication information is used to respectively indicate the first duration corresponding to each first type reference signal, or,
  • the indication information is used to respectively indicate the first duration corresponding to the first type of reference signal in each neighboring cell, or,
  • the indication information is used to indicate the first duration corresponding to the first type reference signals in multiple neighboring cells.
  • the transceiving module 1001 is further configured to receive the first duration sent by the second network device.
  • the first duration is protocol-defined.
  • the reference signal to be measured is a synchronization signal block SSB or a downlink channel state information reference signal CSI-RS.
  • the communication device When the communication device is the first network device 101, its structure may also be as shown in Figure 11. Taking a base station as an example to illustrate the structure of a communication device. As shown in Figure 11, the device 1100 includes a memory 1101, a processor 1102, a transceiver component 1103, and a power supply component 1106.
  • the memory 1101 is coupled to the processor 1102 and can be used to store programs and data necessary for the communication device 1100 to implement various functions.
  • the processor 1102 is configured to support the communication device 1100 to perform corresponding functions in the above method, and the functions can be implemented by calling a program stored in the memory 1101 .
  • the transceiver component 1103 may be a wireless transceiver, which may be used to support the communication device 1100 to receive signaling and/or data through a wireless air interface, and to send signaling and/or data.
  • the transceiver component 1103 may also be called a transceiver unit or a communication unit.
  • the transceiver component 1103 may include a radio frequency component 1104 and one or more antennas 1105.
  • the radio frequency component 1104 may be a remote radio unit (RRU). Specifically, It can be used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the one or more antennas 1105 can be specifically used for radiating and receiving radio frequency signals.
  • the processor 1102 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit.
  • the radio frequency unit performs radio frequency processing on the baseband signal and then sends the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1102.
  • the processor 1102 converts the baseband signal into data and processes the data. for processing.
  • the embodiment of the present disclosure also provides a device for sending measurement configuration information.
  • the device can have the function of the second network device 102 in the above method embodiment, and can be used to perform the above method implementation. Examples provide steps performed by the second network device 102.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 1200 shown in Figure 12 can serve as the second network device 102 involved in the above method embodiment, and perform the steps performed by the second network device 102 in the above method embodiment.
  • the communication device 1200 may include a transceiver module 1201, where the transceiver module 1201 may be used to support the communication device to communicate.
  • the transceiver module 1201 may have a wireless communication function, such as being able to communicate wirelessly with other communication devices through a wireless air interface. .
  • the transceiver module 1201 When performing the steps implemented by the second network device 102, the transceiver module 1201 is configured to send a notification message to the first network device, where the notification message is used to indicate that the user equipment in the serving cell of the first network device is responsible for the first network device.
  • the reference signal to be measured for RRM measurement in the cell corresponding to the second network device is a first-type reference signal.
  • the first-type reference signal is a reference signal that can be dynamically turned off.
  • the communication device When the communication device is the second network device 102, its structure may also be shown in FIG. 11 .
  • embodiments of the present disclosure also provide a device for receiving measurement configuration information.
  • the device can have the functions of the user equipment 103 in the above method embodiments, and can be used to perform the above method embodiments. of steps performed by the user device 103.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device 1300 shown in Figure 13 can serve as the user equipment 103 involved in the above method embodiment, and perform the steps performed by the user equipment 103 in the above method embodiment.
  • the device 1300 may include a transceiver module 1301 and a processing module 1302 that are coupled to each other.
  • the transceiver module 1301 may be used to support the communication device to communicate.
  • the transceiver module 1301 may have a wireless communication function, such as being able to communicate with the communication device through a wireless air interface. Other communication devices communicate wirelessly.
  • the processing module 1302 can be used by the communication device to perform processing operations, such as generating information/messages that need to be sent, or processing received signals to obtain information/messages.
  • the transceiver module 1301 When performing the steps implemented by the user equipment 103, the transceiver module 1301 is configured to receive measurement configuration information sent by the first network device corresponding to the serving cell.
  • the measurement configuration information is used to indicate that the user equipment performs operations on neighboring cells and/or serving cells.
  • the reference signal to be measured in the radio resource management RRM measurement is the first type of reference signal, and the first type of reference signal is a reference signal that can be dynamically turned off;
  • the processing module 1302 is configured to perform neighboring cell and/or serving cell RRM measurement according to the measurement configuration information.
  • the processing module 1302 is further configured to determine the measurement period according to the first duration, and the measurement period lasts longer than the first duration.
  • the processing module 1302 is further configured to determine the measurement period according to the first duration and the reference measurement period corresponding to when the reference signal to be measured is not configured to be dynamically turned off.
  • the first duration is the maximum duration for which the first type of reference signal can be turned off, or the first duration is a set value.
  • the transceiving module 1301 is further configured to receive indication information indicating the first duration sent by the first network device.
  • the first duration is protocol-defined.
  • the processing module 1302 is further configured to perform neighboring cell and/or serving cell RRM measurement during the measurement period.
  • the processing module 1302 is also configured to, in response to the sample value obtained by the RRM measurement of the neighboring cell and/or the serving cell being lower than the parameter threshold, not include the sample value in the measurement results to be reported. .
  • the transceiver module 1301 is further configured to receive the parameter threshold value indicated by the first network device.
  • the parameter threshold is defined by the protocol.
  • the device 1400 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the device 1400 may include one or more of the following components: a processing component 1402, a memory 1404, a power supply component 1406, a multimedia component 1408, an audio component 1410, an input/output (I/O) interface 1412, a sensor component 1414, and communications component 1416.
  • a processing component 1402 a memory 1404, a power supply component 1406, a multimedia component 1408, an audio component 1410, an input/output (I/O) interface 1412, a sensor component 1414, and communications component 1416.
  • Processing component 1402 generally controls the overall operations of device 1400, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1402 may include one or more processors 1420 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 1402 may include one or more modules that facilitate interaction between processing component 1402 and other components. For example, processing component 1402 may include a multimedia module to facilitate interaction between multimedia component 1408 and processing component 1402.
  • Memory 1404 is configured to store various types of data to support operations at device 1400 . Examples of such data include instructions for any application or method operating on device 1400, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 1404 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic or optical disk.
  • Power supply component 1406 provides power to various components of device 1400.
  • Power supply components 1406 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 1400 .
  • Multimedia component 1408 includes a screen that provides an output interface between device 1400 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. A touch sensor can not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • multimedia component 1408 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 1410 is configured to output and/or input audio signals.
  • audio component 1410 includes a microphone (MIC) configured to receive external audio signals when device 1000 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 1404 or sent via communications component 1416 .
  • audio component 1410 also includes a speaker for outputting audio signals.
  • the I/O interface 1412 provides an interface between the processing component 1402 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 1414 includes one or more sensors for providing various aspects of status assessment for device 1400 .
  • the sensor component 1414 can detect the open/closed state of the device 1400, the relative positioning of components, such as the display and keypad of the device 1400, the sensor component 1414 can also detect the position change of the device 1400 or a component of the device 1400, the user The presence or absence of contact with device 1400, device 1400 orientation or acceleration/deceleration and temperature changes of device 1400.
  • Sensor assembly 1414 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1414 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1414 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communications component 1416 is configured to facilitate wired or wireless communications between device 1400 and other devices.
  • Device 1400 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1416 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • communications component 1416 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1400 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 1404 including instructions, which are executable by the processor 1420 of the device 1400 to complete the above method is also provided.
  • non-transitory computer-readable storage media may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the first network device delivers measurement configuration information to the serving user equipment to indicate whether the reference signal to be measured by the user equipment during the RRM measurement process is a reference signal that can be dynamically turned off. Therefore, the user equipment learns the type of the reference signal to be measured according to the measurement configuration information, so as to facilitate adaptive measurement processing and ensure the quality of the measurement results.

Abstract

本公开提供一种传输测量配置信息的方法、装置及可读存储介质,所述方法包括:向用户设备发送测量配置信息,所述测量配置信息用于指示:所述用户设备进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号。本公开的方法中,第一网络设备为服务的用户设备下发测量配置信息,以指示用户设备在RRM测量过程中待测量的参考信号是否为可被动态关闭的参考信号。从而用户设备根据测量配置信息获知待测量参考信号的类型,以便于进行适应的测量处理,有利于保证测量结果的质量。

Description

一种传输测量配置信息的方法、装置以及可读存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种传输测量配置信息的方法、装置及可读存储介质。
背景技术
在第三代合作伙伴计划协议(3rd Generation Partnership Project,3GPP)版本18(Release18,R18)中,网络节能(network energy saving)项目旨在研究降低网络设备能耗的技术。其中,可通过动态的开关一些空间单元实现降低网络设备的能耗。在动态的开关空间单元的过程中,会导致网络设备发送的波束或参考信号(Reference Signal,RS)发生变化,例如,相关波束被关闭,或者相关参考信号被关闭等。
在空间单元被关闭的时段,相关参考信号没有传输时机。需解决空间单元可被动态关闭场景下,用户设备(User Equipment,UE)进行无线资源管理(Radio Resource Management,RRM)测量的测量时段与空间单元的被关闭时段重叠时的测量问题。
发明内容
本公开提供了一种传输测量配置信息的方法、装置及可读存储介质。
第一方面,本公开提供一种发送测量配置信息的方法,被第一网络设备执行,所述方法包括:
向用户设备发送测量配置信息,所述测量配置信息用于指示:所述用户设备进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号。
本公开的方法中,第一网络设备为服务的用户设备下发测量配置信息,以指示用户设备在RRM测量过程中待测量的参考信号是否为可被动态关闭的参考信号。从而用户设备根据测量配置信息获知待测量参考信号的类型,以便于进行适应的测量处理,有利于保证测量结果的质量。
在一些可能的实施方式中,所述方法还包括:
接收所述邻区对应的第二网络设备发送的通知消息,所述通知消息用于指示:所述用户设备进行邻区RRM测量中待测量的参考信号是否为所述第一类参考信号。
在一些可能的实施方式中,所述方法还包括:
向所述用户设备发送用于指示第一时长的指示信息。
在一些可能的实施方式中,所述第一时长为所述第一类参考信号可被关闭的最大时长,或者所述第一时长为设定值。
在一些可能的实施方式中,
所述指示信息用于分别指示每个所述第一类参考信号对应的所述第一时长,或者,
所述指示信息用于分别指示每个邻区下所述第一类参考信号对应的所述第一时长,或者,
所述指示信息用于指示多个邻区下所述第一类参考信号均对应的所述第一时长。
在一些可能的实施方式中,所述方法还包括:
接收第二网络设备发送的所述第一时长。
在一些可能的实施方式中,所述第一时长为协议定义的。
在一些可能的实施方式中,所述待测量的参考信号为同步信号块SSB或者下行信道状态信息参考信号CSI-RS。
第二方面,本公开提供一种接收测量配置信息的方法,被用户设备执行,所述方法包括:
接收服务小区对应的第一网络设备发送的测量配置信息,所述测量配置信息用于指示:所述用户设备进行邻区和/或所述服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号;
根据所述测量配置信息执行邻区和/或服务小区RRM测量。
本公开的方法中,用户设备接收第一网络设备下发的测量配置信息,以获知在RRM测量过程中待测量的参考信号是否为可被动态关闭的参考信号。从而用户设备可根据待测量参考信号的类型进行适应的测量处理,有利于保证测量结果的质量。
在一些可能的实施方式中,所述方法还包括:
根据第一时长确定测量时段,所述测量时段持续的时长大于所述第一时长。
在一些可能的实施方式中,所述根据第一时长确定测量时段,包括:
根据第一时长与所述待测量的参考信号不被配置为可动态关闭时对应的参考测量时段,确定所述测量时段。
在一些可能的实施方式中,所述第一时长为所述第一类参考信号可被关闭的最大时长,或者所述第一时长为设定值。
在一些可能的实施方式中,所述方法还包括:
接收所述第一网络设备发送的用于指示所述第一时长的指示信息。
在一些可能的实施方式中,所述第一时长为协议定义的。
在一些可能的实施方式中,所述根据所述测量配置信息执行邻区和/或服务小区RRM测量,包括:
在所述测量时段执行邻区和/或服务小区RRM测量。
在一些可能的实施方式中,所述方法还包括:
响应于所述邻区和/或服务小区RRM测量获得的采样值低于参数门限值,在待上报的测量结果中不计入所述采样值。
在一些可能的实施方式中,所述方法还包括:
接收所述第一网络设备指示的所述参数门限值。
在一些可能的实施方式中,所述参数门限值为协议定义的。
第三方面,本公开提供一种发送测量配置信息的方法,被第二网络设备执行,所述方法包括:
向第一网络设备发送通知消息,所述通知消息用于指示:在第一网络设备的服务小区中的用户设备,对所述第二网络设备对应的小区进行RRM测量的待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号。
本公开的方法中,第二网络设备可告知第一网络设备,其对应的被用于RRM测量的参考信号是否为可被动态关闭的参考信号。以便于第一网络设备获知后,可向用户设备下发用于指示进行邻区RRM测量相关的测量配置信息。
第四方面,本公开提供一种发送测量配置信息的装置,该装置可用于执行上述第一方面或第一方面的任一可能的设计中由第一网络设备执行的步骤。该第一网络设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第四方面所示装置时,该装置可包括收发模块,收发模块可用于支持通信装置进行通信。
在执行上述第一方面所述步骤时,收发模块,被配置为向用户设备发送测量配置信息,所述测量配置信息用于指示:所述用户设备进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号。
第五方面,本公开提供一种接收测量配置信息的装置,该装置可用于执行上述第二方面或第二方面的任一可能的设计中由用户设备执行的步骤。该用户设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第五方面所示装置时,该装置可包括相互耦合的收发模块以及处理模块,其中,收发模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行上述第二方面所述步骤时,收发模块,被配置为接收服务小区对应的第一网络设备发送的测量配置信息,所述测量配置信息用于指示:所述用户设备进行邻区和/或所述服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号;
处理模块,被配置为根据所述测量配置信息执行邻区和/或服务小区RRM测量。
第六方面,本公开提供一种发送测量配置信息,该装置可用于执行上述第三方面或第三方面的任一可能的设计中由第二网络设备执行的步骤。该第二网络设备可通过硬件结构、 软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第六方面所示装置时,该装置可包括收发模块,收发模块可用于支持通信装置进行通信。
在执行上述第三方面所述步骤时,收发模块,被配置为向第一网络设备发送通知消息,所述通知消息用于指示:在第一网络设备的服务小区中的用户设备,对所述第二网络设备对应的小区进行RRM测量的待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号。
第七方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能的设计。
第八方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第二方面或第二方面的任意一种可能的设计。
第九方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第三方面或第三方面的任意一种可能的设计。
第十方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
第十一方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计。
第十二方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是根据一示例性实施例示出的一种传输测量配置信息的方法的流程图;
图3是根据一示例性实施例示出的一种传输测量配置信息的方法的流程图;
图4是根据一示例性实施例示出的一种发送测量配置信息的方法的流程图;
图5是根据一示例性实施例示出的另一种发送测量配置信息的方法的流程图;
图6是根据一示例性实施例示出的一种接收测量配置信息的方法的流程图;
图7是根据一示例性实施例示出的另一种接收测量配置信息的方法的流程图;
图8是根据一示例性实施例示出的另一种接收测量配置信息的方法的流程图;
图9是根据一示例性实施例示出的一种发送测量配置信息的方法的流程图;
图10是根据一示例性实施例示出的一种发送测量配置信息的装置的框图;
图11是根据一示例性实施例示出的通信装置的框图;
图12是根据另一示例性实施例示出的一种发送测量配置信息的装置的框图;
图13是根据一示例性实施例示出的一种接收测量配置信息的装置的框图;
图14是根据一示例性实施例示出的用户设备的框图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例提供的一种传输测量配置信息的方法可应用于无线通信系统100,该无线通信系统可以包括第一网络设备101、第二网络设备102以及用户设备103。
其中,第一网络设备101为用户设备103所在的服务小区对应的网络设备,第二网络 设备102可以是邻区对应的网络设备。用户设备103被配置为支持载波聚合,并可连接至第一网络设备101或第二网络设备102的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备103可以是终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或终端设备等。该用户设备103可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备进行通信(如无线通信),并接受网络设备提供的网络服务,这里的网络设备包括但不限于图示网络设备。
其中,用户设备103可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
第一网络设备101或第二网络设备102可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。第一网络设备101或第二网络设备102具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备102还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。第一网络设备101或第二网络设备102可以是可穿戴设备或车载设备。第一网络设备101或第二网络设备102也可以是具有通信模块的通信芯片。
比如,第一网络设备101或第二网络设备102包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
在网络设备的空间单元可被动态关闭的场景中,在空间单元被关闭的时段,相关参考信号没有传输时机。由于用户设备103不知道待测量的参考信号发生了动态关闭,因此若用户设备103进行RRM测量的时段与空间单元的被关闭时段存在重叠,用户设备103仍会直接对待测量的参考信号作测量,导致在测量时段获得的测量结果无法反应实际的参考信号接收质量。因此需解决此场景下的测量问题。
本公开实施例提供了一种传输测量配置信息的方法。参照图2,图2是根据一示例性实施例示出的一种传输测量配置信息的方法,如图2所示,该方法包括步骤S201~S202,具体的:
步骤S201,第一网络设备101向用户设备103发送测量配置信息,测量配置信息用于指示:用户设备103进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
步骤S202,用户设备103根据接收的测量配置信息执行邻区和/或服务小区RRM测量。
在一些可能的实施方式中,第一网络设备101为用户设备103所在服务小区对应的网络设备。邻区是第二网络设备102所对应的小区。
在一些可能的实施方式中,第一网络设备101可分别向用户设备103下发邻区与服务小区对应的RRM测量配置。
在一示例中,第一网络设备101下发第一测量配置信息,用于指示用户设备103进行服务小区的RRM测量时待测量的参考信号是否可被动态关闭。
在一示例中,第一网络设备101下发第二测量配置信息,用于指示用户设备103进行邻区的RRM测量时待测量的参考信号是否可被动态关闭。
在一些可能的实施方式中,待测量的参考信号可以是同步信号块(Synchronization Signal Block,SSB),或者,待测量的参考信号可以是下行信道状态信息参考信号(Channel-State-Information Reference Signal,CSI-RS)。
在一些可能的实施方式中,用户设备103在RRM测量过程中,可测量待测量参考信号的以下中至少一种质量参数:
接收信号强度指示(Received Signal Strength Indication,RSSI);
参考信号接收功率(Reference Signal Received Power,RSRP);
参考信号接收质量(Reference Signal Received Quality,RSRQ);
用户设备103测量待测量参考信号的以上任一参数所得的值记为采样值。
在一些可能的实施方式中,用户设备103在获知测量配置信息后,可执行适应性测量处理。
在一示例中,依据协议约定,用户设备103在RRM测量过程中,不对第一类参考信号进行测量。
在一示例中,用户设备103进行RRM测量,并对第一类参考信号对应的采样值进行筛选或剔除。
在一示例中,用户设备103延长RRM测量过程中第一类参考信号测量的时间,即延长测量时段。
本公开实施例中,第一网络设备101为服务的用户设备103下发测量配置信息,以指示用户设备103在RRM测量过程中待测量的参考信号是否为可被动态关闭的参考信号。从而用户设备103根据测量配置信息获知待测量参考信号的类型,以便于进行适应的测量处理,有利于保证测量结果的质量。
本公开实施例提供了一种传输测量配置信息的方法。参照图3,图3是根据一示例性实施例示出的一种传输测量配置信息的方法,如图3所示,该方法包括步骤S301~S304,具体的:
步骤S301,第二网络设备102向第一网络设备101发送通知消息,通知消息用于指示:在第一网络设备101的服务小区中的用户设备103,对第二网络设备102对应的小区进行RRM测量的待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
步骤S302,第一网络设备101根据接收的通知消息,确定测量配置信息;测量配置信息用于指示:用户设备103进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
步骤S303,第一网络设备101向用户设备103发送测量配置信息。
步骤S304,用户设备103根据接收的测量配置信息执行邻区和/或服务小区RRM测量。
在一些可能的实施方式中,第一网络设备101是用户设备103所在服务小区对应的网络设备,第二网络设备102是邻区对应的网络设备。
在一些可能的实施方式中,待测量的参考信号可以是SSB,或者,CSI-RS。
本公开实施例中,第一网络设备101通过第二网络设备102的通知消息,确定用户设备103进行邻区RRM测量中待测量的参考信号是否可被动态关闭,然后为用户设备103配置相应的测量配置信息,以指示用户设备103在RRM测量过程中待测量的参考信号是否为可被动态关闭的参考信号。
本公开实施例提供了一种发送测量配置信息的方法,该方法被第一网络设备101执行。参照图4,图4是根据一示例性实施例示出的一种发送测量配置信息的方法,如图4所示,该方法包括步骤S401,具体的:
步骤S401,第一网络设备101向用户设备103发送测量配置信息,测量配置信息用于指示:用户设备103进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信 号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
在一些可能的实施方式中,待测量的参考信号可以是SSB,或者,CSI-RS。
在一些可能的实施方式中,第一类参考信号可被动态关闭。例如,第一类参考信号对应的空间单元可被网络设备动态关闭,以节约能耗。
在一示例中,空间单元比如可以包括:天线单元、发射端口(TX port)、收发链路(TRX chain)和天线面板(panel)等。空间单元被动态关闭,会使对应的参考信号被动态关闭。
在一些可能的实施方式中,第一网络设备101可向用户设备103发送下行控制信息(Downlink Control Information,DCI),在DCI中携带测量配置信息。
在一些可能的实施方式中,第一网络设备101通过媒体接入控制层控制单元(Media Access Control Control Element,MAC CE)向用户设备103指示测量配置信息。
在一些可能的实施方式中,测量配置信息中还可以指示RRM测量的类型。
在一示例中,测量配置信息中指示RRM测量的类型是:需要测量间隔(with gaps)的同频测量(intra-frequency),或者不需要测量间隔(without gaps)的同频测量。
在一示例中,测量配置信息中指示RRM测量的类型是:需要测量间隔(with gaps)的异频测量(inter-frequency),或者不需要测量间隔(without gaps)的异频测量。
在一些可能的实施方式中,测量配置信息中还指示测量相关的资源配置。
在一示例中,测量配置信息中指示用户设备103的移动速度标识。
在一示例中,测量配置信息中指示是否配置了不连续接收(Discontinuous Reception,DRX)。
在一些可能的实施方式中,第一网络设备101可分别向用户设备103下发邻区与服务小区对应的RRM测量配置。
在一示例中,第一网络设备101下发第一测量配置信息,用于指示用户设备103进行服务小区的RRM测量时待测量的参考信号是否可被动态关闭。
在一示例中,第一网络设备101下发第二测量配置信息,用于指示用户设备103进行邻区的RRM测量时待测量的参考信号是否可被动态关闭。
本公开实施例中,第一网络设备101为服务的用户设备103下发测量配置信息,以指示用户设备103在RRM测量过程中待测量的参考信号是否为可被动态关闭的参考信号。从而用户设备103根据测量配置信息获知待测量参考信号的类型,以便于进行适应的测量处理,有利于保证测量结果的质量。
本公开实施例提供了一种发送测量配置信息的方法,该方法被第一网络设备101执行。参照图5,图5是根据一示例性实施例示出的一种发送测量配置信息的方法,如图5所示,该方法包括步骤S501~S502,具体的:
步骤S501,第一网络设备101接收邻区对应的第二网络设备102发送的通知消息,通知消息用于指示:用户设备103进行邻区RRM测量中待测量的参考信号是否为第一类参考信号。
步骤S502,第一网络设备101向用户设备103发送测量配置信息,测量配置信息用于指示:用户设备103进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
在一些可能的实施方式中,在对邻区进行RRM测量的场景中,邻区对应的第二网络设备102预先向第一网络设备101通知,RRM测量中待测量的参考信号是否为第一类参考信号。
在一些可能的实施方式中,第一网络设备101在接收到通知消息后,对应确定进行邻区RRM测量的测量配置信息。
在一些可能的实施方式中,在对服务小区进行RRM测量的场景中,服务小区对应的第一网络设备102可确定进行服务小区RRM测量的测量配置信息。
在一些可能的实施方式中,第一网络设备101可根据测量场景,向用户设备103下发对应的测量配置信息。
在一些可能的实施方式中,待测量的参考信号可以是SSB,或者,CSI-RS。
本公开实施例中,第一网络设备101根据第二网络设备102的通知消息,获知进行邻区RRM测量时待测量的参考信号是否可被关闭,以便于能够及时有效的告知用户设备103。
本公开实施例提供了一种发送测量配置信息的方法,该方法被第一网络设备101执行。
该方法包括如下步骤S401~S402,具体的:
步骤S401,第一网络设备101向用户设备103发送测量配置信息,测量配置信息用于指示:用户设备103进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
步骤S402,第一网络设备101向用户设备发送用于指示第一时长的指示信息。
或者,该方法包括如下步骤S501~S503,具体的:
步骤S501,第一网络设备101接收邻区对应的第二网络设备102发送的通知消息,通知消息用于指示:用户设备103进行邻区RRM测量中待测量的参考信号是否为第一类参考信号。
步骤S502,第一网络设备101向用户设备103发送测量配置信息,测量配置信息用于指示:用户设备103进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
步骤S503,第一网络设备101向用户设备发送用于指示第一时长的指示信息。
其中,步骤S401与步骤S402的执行顺序可调换,或者同步执行;步骤S503与步骤S502的执行顺序可调换,或者同步执行。
在一些可能的实施方式中,待测量的参考信号可以是SSB,或者,CSI-RS。
在一些可能的实施方式中,第一网络设备101向用户设备103分别发送测量配置信息和指示信息。
在一些可能的实施方式中,测量配置信息包含指示信息,即测量配置信息中除指示待 测量的参考信号是否为第一类参考信号,还指示第一时长。
在一些可能的实施方式中,第一网络设备101通过DCI携带指示信息。
在一些可能的实施方式中,第一时长(T)为第一类参考信号可被关闭的最大时长。
在一些可能的实施方式中,第一时长(T)是设定值。
在一些可能的实施方式中,用户设备103根据第一时长,确定RRM测量的测量时段。
在一示例中,测量时段包含第一时长。
在一些可能的实施方式中,该第一时长可以是协议定义的。
在一些可能的实施方式中,该第一时长可以是第二网络设备102告知第一网络设备101的。
在一示例中,在步骤S402或者步骤S503之前,该方法还可以包括如下步骤S400:
步骤S400,第一网络设备101接收第二网络设备102发送的第一时长。
本公开实施例中,第一网络设备101设备还可以向用户设备103指示第一类参考信号可被关闭的最大时长,以便于用户设备103可以根据该时长确定合适的测量时段,有利于保证RRM测量结果的准确性及合理性。
本公开实施例提供了一种发送测量配置信息的方法,该方法被第一网络设备101执行。该方法包括步骤S401~S402,或者包括步骤S501~S503;
其中,指示信息用于分别指示每个第一类参考信号对应的第一时长,或者,
指示信息用于分别指示每个邻区下第一类参考信号对应的第一时长,或者,
指示信息用于指示多个邻区下第一类参考信号均对应的第一时长。
在一些可能的实施方式中,待测量的参考信号为SSB或者CSI-RS。
在一示例中,SSB或者CSI-RS是第一类参考信号。
在一示例中,SSB和CSI-RS是第一类参考信号。
在一些可能的实施方式中,每个第一类参考信号配置有对应的第一时长。
例如,SSB配置有对应的第一时长,CSI-RS配置有对应的第一时长。
在一些可能的实施方式中,每个邻区配置有对应的第一时长。
例如,邻区对应的待RRM测量的参考信号包括SSB和CSI-RS,该邻区的SSB和CSI-RS均对应于相同的第一时长。
在一些可能的实施方式中,多个邻区配置有相同的第一时长。
例如,用户设备103服务小区对应的所有邻区均配置有相同的第一时长,所有邻区下的SSB或CSI-RS也即对应相同的第一时长。
本公开实施例中,第一网络设备101可为用户设备103配置不同类型的指示信息,以指示第一类参考信号的第一时长,以便于用户设备103可以根据第一时长确定合理的测量时段。
本公开实施例提供了一种接收测量配置信息的方法,该方法被用户设备103执行。参 照图6,图6是根据一示例性实施例示出的一种接收测量配置信息的方法,如图6所示,该方法包括步骤S601~S602,具体的:
步骤S601,用户设备103接收服务小区对应的第一网络设备101发送的测量配置信息,测量配置信息用于指示:用户设备103进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
步骤S602,用户设备103根据测量配置信息执行邻区和/或服务小区RRM测量。
在一些可能的实施方式中,第一网络设备101是用户设备103所在服务小区对应的网络设备,第二网络设备102是邻区对应的网络设备。
在一些可能的实施方式中,待测量的参考信号可以是SSB,或者,CSI-RS。
在一些可能的实施方式中,用户设备103在RRM测量过程中,可测量待测量参考信号的以下中至少一种质量参数:RSSI、RSRP和RSRQ,对待测量参考信号的任一质量参数进行测量所得的值记为采样值。
在一些可能的实施方式中,用户设备103在获知测量配置信息后,可执行适应性测量处理。
在一示例中,依据协议约定,用户设备103在RRM测量过程中,不对第一类参考信号进行测量。
在一示例中,用户设备103进行RRM测量,并对第一类参考信号对应的采样值进行筛选或剔除。
在一示例中,用户设备103延长RRM测量过程中第一类参考信号测量的时间。
本公开实施例中,用户设备103接收第一网络设备101下发的测量配置信息,以获知在RRM测量过程中待测量的参考信号是否为可被动态关闭的参考信号。从而用户设备103可根据待测量参考信号的类型进行适应的测量处理,有利于保证测量结果的质量。
本公开实施例提供了一种接收测量配置信息的方法,该方法被用户设备103执行。该方法包括步骤S601、S601’和S602,具体的:
步骤S601,用户设备103接收服务小区对应的第一网络设备101发送的测量配置信息,测量配置信息用于指示:用户设备103进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
步骤S601’,根据第一时长确定测量时段,测量时段持续的时长大于第一时长。
步骤S602,用户设备103根据测量配置信息执行邻区和/或服务小区RRM测量。
在一些可能的实施方式中,第一时长为第一类参考信号可被关闭的最大时长。
在一些可能的实施方式中,第一时长为设定值。
在一些可能的实施方式中,协议中定义了RRM测量过程中待测量的参考信号不被配置为可动态关闭时对应的参考测量时段。其中,不被配置为可动态关闭的参考信号,网络 设备不会因节约能耗或其他原因而关闭其对应的空间单元,不被配置为可动态关闭的参考信号认为无关闭时段。
在一些可能的实施方式中,用户设备103在获知第一时长后,可依据第一网络设备101配置的相关参数以及协议定义的相关规则,确定测量时段。
在一示例中,步骤S601’可以是通过如下步骤S601”执行:
步骤S601”,用户设备103根据第一时长与待测量的参考信号不被配置为可动态关闭时对应的参考测量时段,确定测量时段。
在一示例中,将第一时长与参考测量时段的和,作为本实施例中新的测量时段(记为第一测量时段)。也即通过在参考测量时段的基础上延长第一时长,获得本实施例中的测量时段,以便于用户设备103在延长的测量时段中进行RRM测量,从而可以改善因待测量参考信号关闭而导致实际测量时段减少的现象,进而减弱实际测量时段减少对测量结果的影响。
在一些可能的实施方式中,用户设备103可结合测量配置信息和第一时长确定测量时段。
在一示例中,测量配置信息中还配置了用户设备103的移动速度标识。当该移动速度标识为指示高速度时,用户设备103可根据该标识及第一时长确定测量时段,该示例中所确定的测量时段可小于前一示例中的第一测量时段。
本公开实施例中,结合第一类参考信号可被关闭的第一时长,用户设备103可根据该第一时长延长测量时段。
本公开实施例提供了一种接收测量配置信息的方法,该方法被用户设备103执行。参照图7,图7是根据一示例性实施例示出的一种接收测量配置信息的方法,如图7所示,该方法包括步骤S701~S703,具体的:
步骤S701,用户设备103接收服务小区对应的第一网络设备101发送的测量配置信息,测量配置信息用于指示:用户设备103进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
步骤S702,根据第一时长确定测量时段,测量时段持续的时长大于第一时长。
步骤S703,用户设备103在测量时段执行邻区和/或服务小区RRM测量。
在一些可能的实施方式中,第一时长为第一类参考信号可被关闭的最大时长。
在一些可能的实施方式中,第一时长为设定值。
在一些可能的实施方式中,用户设备103在获知第一时长后,可依据第一网络设备101配置的相关参数以及协议定义的相关规则,确定测量时段。
在一示例中,用户设备103根据第一时长和待测量的参考信号不被配置为可动态关闭时对应的参考测量时段,确定测量时段(记为第一测量时段)。
在一些可能的实施方式中,用户设备103在较参考测量时段更长的第一测量时段中执 行邻区的RRM测量。
在一些可能的实施方式中,第一时长是第一网络设备101为用户设备103配置的,第一网络设备101可从第二网络设备102获知第一时长。
在一示例中,该方法在步骤S702之前还包括如下步骤S701’:
步骤S701’,用户设备103接收第一网络设备101发送的用于指示第一时长的指示信息。
在一示例中,测量配置信息包含指示信息。
在一些可能的实施方式中,第一时长为协议定义的。
本公开实施例中,结合第一类参考信号可被关闭的第一时长,用户设备103可根据该第一时长延长测量时段,以减少第一类参考信号关闭对测量结果的影响。
本公开实施例提供了一种接收测量配置信息的方法,该方法被用户设备103执行。参照图8,图8是根据一示例性实施例示出的一种接收测量配置信息的方法,如图8所示,该方法包括步骤S801~S804,具体的:
步骤S801,用户设备103接收服务小区对应的第一网络设备101发送的测量配置信息,测量配置信息用于指示:用户设备103进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
步骤S802,根据第一时长确定测量时段,测量时段持续的时长大于第一时长。
步骤S803,用户设备103根据测量配置信息执行邻区和/或服务小区RRM测量。
步骤S804,响应于邻区和/或服务小区RRM测量获得的采样值低于参数门限值,在待上报的测量结果中不计入采样值。
或者,该方法包括步骤S801、S803和S804。
在一些可能的实施方式中,第一时长为第一类参考信号可被关闭的最大时长。
在一些可能的实施方式中,第一时长为设定值。
在一些可能的实施方式中,用户设备103根据第一时长和待测量的参考信号不被配置为可动态关闭时对应的参考测量时段,确定测量时段。在测量时段中执行RRM测量。
在一些可能的实施方式中,待测量的参考信号为SSB或者CSI-RS。
在一些可能的实施方式中,用户设备103在RRM测量过程中,可测量待测量参考信号的以下中至少一种质量参数:RSSI、RSRP和RSRQ,对待测量参考信号的任一质量参数进行测量所得的值记为采样值。
在一些可能的实施方式中,每种质量参数具有对应的参数门限值。
在一些可能的实施方式中,采样值低于对应的参数门限值时,表明采样值对应的参考信号可能处于关闭状态,则该采样值无法准确体现参考信号的接收质量。
在一些可能的实施方式中,在待上报的测量结果中,对低于对应参数门限值的采样值不进行上报,仅上报不低于参数门限值的采样值。
在一些可能的实施方式中,参数门限值是第一网络设备101为用户设备配置的。
在一示例中,本示例的方法还包括如下步骤S801’:
步骤S801’,用户设备103接收第一网络设备101指示的参数门限值。
在一示例中,参数门限值可在测量配置信息中携带。
在一示例中,参数门限值可通过DCI或无线资源控制(Radio Resource Control,RRC)信令指示。
在一些可能的实施方式中,参数门限值为协议定义的。
为便于理解本实施例,以下列举几个示例进行说明。
示例一:
协议定义的RSSI对应的参数门限值为-110分贝毫瓦(dBmW)。
用户设备103在测量时段内对SSB或者CSI-RS进行RRM测量,若所得RSSI的采样值低于-110dBmW,则该采样值舍弃,不计入待上报的测量结果中。
本示例中,用户设备103通过参数门限值,对RRM测量过程中的采用值进行筛选,剔除低于参数门限值的采样结果。从而可以去除参考信号被关闭时段所对应的采样结果,减少参考信号被关闭时段对RRM测量结果的影响,保证测量结果的真实性和可靠性,以便于测量结果能够真实反映参考信号的实际接收质量。
示例二:
协议定义的第一时长为T,待测量的参考信号不被配置为可动态关闭时对应的参考测量时段为T0。
用户设备103确定测量时段T1=(T+T0),并在此T1时段内对SSB或者CSI-RS进行RRM测量。
本示例中,用户设备103通过延长测量时段的方式,延长对待测量参考信号的测量,从而可以改善因待测量参考信号关闭而导致实际测量时段减少的现象,进而减弱实际测量时段减少对测量结果的影响。
示例三:
协议定义的RSSI对应的参数门限值为-110dBmW。
协议定义的第一时长为T,待测量的参考信号不被配置为可动态关闭时对应的参考测量时段为T0。
用户设备103确定测量时段T1=(T+T0),并在此T1时段内进行RRM测量。
对于此T1时段内RSSI的采样值,将低于-110dBmW的采样值舍弃,不计入待上报的测量结果中。
本示例中,将参数门限值的筛选方式与延长测量时段的方式相结合,既可以通过延长测量时段改善因待测量参考信号关闭而导致实际测量时段减少的现象,还可以通过参数门限值对延长测量时段后所得的采样值进行筛选,提升测量结果的合理性,避免不合理的采样值影响测量结果的准确性。
本公开实施例提供了一种发送测量配置信息的方法,该方法被第二网络设备102执行。参照图9,图9是根据一示例性实施例示出的一种发送测量配置信息的方法,如图9所示,该方法包括步骤S901,具体的:
步骤S901,第二网络设备102向第一网络设备101发送通知消息,通知消息用于指示:在第一网络设备101的服务小区中的用户设备103,对第二网络设备102对应的小区进行RRM测量的待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
在一些可能的实施方式中,第二网络设备102对应的小区即前述实施例中涉及的邻区。
本公开实施例中,第二网络设备102可告知第一网络设备101,其对应的被用于RRM测量的参考信号是否为可被动态关闭的参考信号。以便于第一网络设备101获知后,可向用户设备下发用于指示进行邻区RRM测量相关的测量配置信息。
基于与以上方法实施例相同的构思,本公开实施例还提供一种发送测量配置信息的装置,该装置可具备上述方法实施例中的第一网络设备101的功能,并可用于执行上述方法实施例提供的由第一网络设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图10所示的通信装置1000可作为上述方法实施例所涉及的第一网络设备101,并执行上述方法实施例中由第一网络设备101执行的步骤。如图10所示,该通信装置1000可包括收发模块1001,其中,收发模块1001可用于支持通信装置进行通信,收发模块1001可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。
在执行由第一网络设备101实施的步骤时,收发模块1001被配置为,向用户设备发送测量配置信息,测量配置信息用于指示:用户设备进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
在一些可能的实施方式中,收发模块1001还被配置为,接收邻区对应的第二网络设备发送的通知消息,通知消息用于指示:用户设备进行邻区RRM测量中待测量的参考信号是否为第一类参考信号。
在一些可能的实施方式中,收发模块1001还被配置为,向用户设备发送用于指示第一时长的指示信息。
在一些可能的实施方式中,第一时长为第一类参考信号可被关闭的最大时长,或者第一时长为设定值。
在一些可能的实施方式中,指示信息用于分别指示每个第一类参考信号对应的第一时长,或者,
指示信息用于分别指示每个邻区下第一类参考信号对应的第一时长,或者,
指示信息用于指示多个邻区下第一类参考信号均对应的第一时长。
在一些可能的实施方式中,收发模块1001还被配置为,接收第二网络设备发送的第一时长。
在一些可能的实施方式中,第一时长为协议定义的。
在一些可能的实施方式中,待测量的参考信号为同步信号块SSB或者下行信道状态信息参考信号CSI-RS。
当该通信装置为第一网络设备101时,其结构还可如图11所示。以基站为例说明通信装置的结构。如图11所示,装置1100包括存储器1101、处理器1102、收发组件1103、电源组件1106。其中,存储器1101与处理器1102耦合,可用于保存通信装置1100实现各功能所必要的程序和数据。该处理器1102被配置为支持通信装置1100执行上述方法中相应的功能,所述功能可通过调用存储器1101存储的程序实现。收发组件1103可以是无线收发器,可用于支持通信装置1100通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件1103也可被称为收发单元或通信单元,收发组件1103可包括射频组件1104以及一个或多个天线1105,其中,射频组件1104可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线1105具体可用于进行射频信号的辐射和接收。
当通信装置1100需要发送数据时,处理器1102可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1100时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1102,处理器1102将基带信号转换为数据并对该数据进行处理。
基于与以上方法实施例相同的构思,本公开实施例还提供一种发送测量配置信息的装置,该装置可具备上述方法实施例中的第二网络设备102的功能,并可用于执行上述方法实施例提供的由第二网络设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图12所示的通信装置1200可作为上述方法实施例所涉及的第二网络设备102,并执行上述方法实施例中由第二网络设备102执行的步骤。如图12所示,该通信装置1200可包括收发模块1201,其中,收发模块1201可用于支持通信装置进行通信,收发模块1201可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。
在执行由第二网络设备102实施的步骤时,收发模块1201被配置为,向第一网络设备发送通知消息,通知消息用于指示:在第一网络设备的服务小区中的用户设备,对第二网络设备对应的小区进行RRM测量的待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号。
当该通信装置为第二网络设备102时,其结构还可参照图11所示。
基于与以上方法实施例相同的构思,本公开实施例还提供一种接收测量配置信息的装置,该装置可具备上述方法实施例中的用户设备103的功能,并可用于执行上述方法实施例提供的由用户设备103执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图13所示的装置1300可作为上述方法实施例所涉及的用户设备103,并执行上述方法实施例中由用户设备103执行的步骤。如图13所示,该装置1300可包括相互耦合的收发模块1301以及处理模块1302,其中,收发模块1301可用于支持通信装置进行通信,收发模块1301可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。处理模块1302可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行由用户设备103实施的步骤时,收发模块1301被配置为,接收服务小区对应的第一网络设备发送的测量配置信息,测量配置信息用于指示:用户设备进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,第一类参考信号为可被动态关闭的参考信号;
处理模块1302被配置为,根据测量配置信息执行邻区和/或服务小区RRM测量。
在一些可能的实施方式中,处理模块1302还被配置为,根据第一时长确定测量时段,测量时段持续的时长大于第一时长。
在一些可能的实施方式中,处理模块1302还被配置为,根据第一时长与待测量的参考信号不被配置为可动态关闭时对应的参考测量时段,确定测量时段。
在一些可能的实施方式中,第一时长为第一类参考信号可被关闭的最大时长,或者第一时长为设定值。
在一些可能的实施方式中,收发模块1301还被配置为,接收第一网络设备发送的用于指示第一时长的指示信息。
在一些可能的实施方式中,第一时长为协议定义的。
在一些可能的实施方式中,处理模块1302还被配置为,在测量时段执行邻区和/或服务小区RRM测量。
在一些可能的实施方式中,处理模块1302还被配置为,响应于邻区和/或服务小区RRM测量获得的采样值低于参数门限值,在待上报的测量结果中不计入采样值。
在一些可能的实施方式中,收发模块1301还被配置为,接收第一网络设备指示的参数门限值。
在一些可能的实施方式中,参数门限值为协议定义的。
当该接收配置信息的装置为用户设备101时,其结构还可如图14所示。装置1400可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图14,装置1400可以包括以下一个或多个组件:处理组件1402,存储器1404,电源组件1406,多媒体组件1408,音频组件1410,输入/输出(I/O)的接口1412,传感器组件1414,以及通信组件1416。
处理组件1402通常控制装置1400的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1402可以包括一个或多个处理器1420来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1402可以包括一个或多个模块,便于处理组件1402和其他组件之间的交互。例如,处理组件1402可以包括多媒体模块,以方便多媒体组件1408和处理组件1402之间的交互。
存储器1404被配置为存储各种类型的数据以支持在设备1400的操作。这些数据的示例包括用于在装置1400上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1406为装置1400的各种组件提供电力。电源组件1406可以包括电源管理系统,一个或多个电源,及其他与为装置1400生成、管理和分配电力相关联的组件。
多媒体组件1408包括在装置1400和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1408包括一个前置摄像头和/或后置摄像头。当设备1400处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1410被配置为输出和/或输入音频信号。例如,音频组件1410包括一个麦克风(MIC),当装置1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1404或经由通信组件1416发送。在一些实施例中,音频组件1410还包括一个扬声器,用于输出音频信号。
I/O接口1412为处理组件1402和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1414包括一个或多个传感器,用于为装置1400提供各个方面的状态评估。例如,传感器组件1414可以检测到设备1400的打开/关闭状态,组件的相对定位,例如组件为装置1400的显示器和小键盘,传感器组件1414还可以检测装置1400或装置1400一 个组件的位置改变,用户与装置1400接触的存在或不存在,装置1400方位或加速/减速和装置1400的温度变化。传感器组件1414可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1414还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1414还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1416被配置为便于装置1400和其他设备之间有线或无线方式的通信。装置1400可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1416经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件1416还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1400可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1404,上述指令可由装置1400的处理器1420执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本公开旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
本公开的方法中,第一网络设备为服务的用户设备下发测量配置信息,以指示用户设备在RRM测量过程中待测量的参考信号是否为可被动态关闭的参考信号。从而用户设备根据测量配置信息获知待测量参考信号的类型,以便于进行适应的测量处理,有利于保证测量结果的质量。

Claims (28)

  1. 一种发送测量配置信息的方法,被第一网络设备执行,所述方法包括:
    向用户设备发送测量配置信息,所述测量配置信息用于指示:所述用户设备进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号。
  2. 如权利要求1所述的方法,其中,所述方法还包括:
    接收所述邻区对应的第二网络设备发送的通知消息,所述通知消息用于指示:所述用户设备进行邻区RRM测量中待测量的参考信号是否为所述第一类参考信号。
  3. 如权利要求1所述的方法,其中,所述方法还包括:
    向所述用户设备发送用于指示第一时长的指示信息。
  4. 如权利要求3所述的方法,其中,
    所述第一时长为所述第一类参考信号可被关闭的最大时长,或者所述第一时长为设定值。
  5. 如权利要求3所述的方法,其中,
    所述指示信息用于分别指示每个所述第一类参考信号对应的所述第一时长,或者,
    所述指示信息用于分别指示每个邻区下所述第一类参考信号对应的所述第一时长,或者,
    所述指示信息用于指示多个邻区下所述第一类参考信号均对应的所述第一时长。
  6. 如权利要求3所述的方法,其中,所述方法还包括:
    接收第二网络设备发送的所述第一时长。
  7. 如权利要求3所述的方法,其中,
    所述第一时长为协议定义的。
  8. 如权利要求1所述的方法,其中,
    所述待测量的参考信号为同步信号块SSB或者下行信道状态信息参考信号CSI-RS。
  9. 一种接收测量配置信息的方法,被用户设备执行,所述方法包括:
    接收服务小区对应的第一网络设备发送的测量配置信息,所述测量配置信息用于指示:所述用户设备进行邻区和/或所述服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号;
    根据所述测量配置信息执行邻区和/或服务小区RRM测量。
  10. 如权利要求9所述的方法,其中,所述方法还包括:
    根据第一时长确定测量时段,所述测量时段持续的时长大于所述第一时长。
  11. 如权利要求10所述的方法,其中,
    所述根据第一时长确定测量时段,包括:
    根据第一时长与所述待测量的参考信号不被配置为可动态关闭时对应的参考测量时 段,确定所述测量时段。
  12. 如权利要求10所述的方法,其中,
    所述第一时长为所述第一类参考信号可被关闭的最大时长,或者所述第一时长为设定值。
  13. 如权利要求10所述的方法,其中,所述方法还包括:
    接收所述第一网络设备发送的用于指示所述第一时长的指示信息。
  14. 如权利要求10所述的方法,其中,
    所述第一时长为协议定义的。
  15. 如权利要求10所述的方法,其中,
    所述根据所述测量配置信息执行邻区和/或服务小区RRM测量,包括:
    在所述测量时段执行邻区和/或服务小区RRM测量。
  16. 如权利要求9至15任一项所述的方法,其中,所述方法还包括:
    响应于所述邻区和/或服务小区RRM测量获得的采样值低于参数门限值,在待上报的测量结果中不计入所述采样值。
  17. 如权利要求16所述的方法,其中,所述方法还包括:
    接收所述第一网络设备指示的所述参数门限值。
  18. 如权利要求16所述的方法,其中,
    所述参数门限值为协议定义的。
  19. 一种发送测量配置信息的方法,被第二网络设备执行,所述方法包括:
    向第一网络设备发送通知消息,所述通知消息用于指示:在第一网络设备的服务小区中的用户设备,对所述第二网络设备对应的小区进行RRM测量的待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号。
  20. 一种发送测量配置信息的装置,被配置于第一网络设备,所述装置包括:
    收发模块,用于向用户设备发送测量配置信息,所述测量配置信息用于指示:所述用户设备进行邻区和/或服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号。
  21. 一种接收测量配置信息的装置,被配置于用户设备,所述装置包括:
    收发模块,用于接收服务小区对应的第一网络设备发送的测量配置信息,所述测量配置信息用于指示:所述用户设备进行邻区和/或所述服务小区的无线资源管理RRM测量中待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号;
    处理模块,用于根据所述测量配置信息执行邻区和/或服务小区RRM测量。
  22. 一种发送测量配置信息的装置,被配置于第二网络设备,所述装置包括:
    收发模块,用于向第一网络设备发送通知消息,所述通知消息用于指示:在第一网络设备的服务小区中的用户设备,对所述第二网络设备对应的小区进行RRM测量的待测量的参考信号是否为第一类参考信号,所述第一类参考信号为可被动态关闭的参考信号。
  23. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-8中任一项所述的方法。
  24. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求9-18中任一项所述的方法。
  25. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求19所述的方法。
  26. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-8中任一项所述的方法。
  27. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求9-17中任一项所述的方法。
  28. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求18所述的方法。
PCT/CN2022/110062 2022-08-03 2022-08-03 一种传输测量配置信息的方法、装置以及可读存储介质 WO2024026747A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/110062 WO2024026747A1 (zh) 2022-08-03 2022-08-03 一种传输测量配置信息的方法、装置以及可读存储介质
CN202280003009.0A CN117837223A (zh) 2022-08-03 2022-08-03 一种传输测量配置信息的方法、装置以及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110062 WO2024026747A1 (zh) 2022-08-03 2022-08-03 一种传输测量配置信息的方法、装置以及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024026747A1 true WO2024026747A1 (zh) 2024-02-08

Family

ID=89848170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110062 WO2024026747A1 (zh) 2022-08-03 2022-08-03 一种传输测量配置信息的方法、装置以及可读存储介质

Country Status (2)

Country Link
CN (1) CN117837223A (zh)
WO (1) WO2024026747A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505638A (zh) * 2018-05-16 2019-11-26 维沃移动通信有限公司 测量控制方法、终端和网络侧设备
CN111247752A (zh) * 2018-09-28 2020-06-05 联发科技股份有限公司 层一参考信号接收功率测量
CN112073163A (zh) * 2019-06-11 2020-12-11 中国电信股份有限公司 邻小区配置信息传输方法和系统、计算机可读存储介质
WO2022109955A1 (zh) * 2020-11-26 2022-06-02 Oppo广东移动通信有限公司 一种信息指示方法及装置、终端设备、网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505638A (zh) * 2018-05-16 2019-11-26 维沃移动通信有限公司 测量控制方法、终端和网络侧设备
CN111247752A (zh) * 2018-09-28 2020-06-05 联发科技股份有限公司 层一参考信号接收功率测量
CN112073163A (zh) * 2019-06-11 2020-12-11 中国电信股份有限公司 邻小区配置信息传输方法和系统、计算机可读存储介质
WO2022109955A1 (zh) * 2020-11-26 2022-06-02 Oppo广东移动通信有限公司 一种信息指示方法及装置、终端设备、网络设备

Also Published As

Publication number Publication date
CN117837223A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
WO2024026747A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2024045137A1 (zh) 一种传输配置信息的方法、装置以及可读存储介质
WO2024007228A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2024031253A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2024031459A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质
WO2023115284A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2024026754A1 (zh) 一种传输测量配置信息的方法、装置、设备以及存储介质
WO2023184254A1 (zh) 一种传输测量配置信息的方法、装置及可读存储介质
WO2024016356A1 (zh) 一种测量参考信号的方法、装置及可读存储介质
WO2023056651A1 (zh) 一种接收或发送测量配置信息的方法、装置、设备及存储介质
WO2024040477A1 (zh) 一种测量方法、确定辅小区的方法、装置、设备以及介质
WO2023060576A1 (zh) 一种发送或接收能力指示信息的方法、装置、设备及介质
WO2023070279A1 (zh) 一种传输能力指示信息的方法、装置、及可读存储介质
WO2024059977A1 (zh) 一种执行或发送指示信息的方法、装置、设备及存储介质
WO2023201471A1 (zh) 一种传输信号质量阈值信息的方法、装置及可读存储介质
WO2024016174A1 (zh) 一种传输配置信息的方法、装置、设备以及可读存储介质
WO2023097523A1 (zh) 一种小区测量方法、装置及可读存储介质
WO2023221130A1 (zh) 一种测量方法、装置、设备及存储介质
WO2024026862A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2024060119A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2024065511A1 (zh) 一种传输定位辅助信息的方法、装置以及可读存储介质
WO2024007338A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2023236195A1 (zh) 一种传输时域资源配置信息的方法、装置及可读存储介质
WO2023082201A1 (zh) 一种发送或处理关闭通知的方法、装置及可读存储介质
WO2023236116A1 (zh) 一种传输唤醒信号的方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953557

Country of ref document: EP

Kind code of ref document: A1