WO2023056651A1 - 一种接收或发送测量配置信息的方法、装置、设备及存储介质 - Google Patents

一种接收或发送测量配置信息的方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023056651A1
WO2023056651A1 PCT/CN2021/122927 CN2021122927W WO2023056651A1 WO 2023056651 A1 WO2023056651 A1 WO 2023056651A1 CN 2021122927 W CN2021122927 W CN 2021122927W WO 2023056651 A1 WO2023056651 A1 WO 2023056651A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
different
configuration information
user equipment
information
Prior art date
Application number
PCT/CN2021/122927
Other languages
English (en)
French (fr)
Inventor
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/122927 priority Critical patent/WO2023056651A1/zh
Priority to CN202180003233.5A priority patent/CN116261878A/zh
Publication of WO2023056651A1 publication Critical patent/WO2023056651A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular to a method, device, device and storage medium for receiving or sending measurement configuration information.
  • NTN Non-Terrestrial Networks
  • the first cell Cell 1 is adjacent to the second cell Cell 2, wherein the first cell Cell 1 corresponds to the first satellite, the second cell Cell 2 corresponds to the second satellite, and the first satellite and the second satellite Being in different orbits, the transmission delay difference between the first satellite and the second satellite is relatively large.
  • the user equipment User Equipment, UE
  • the UE will not be able to accurately measure The target cell cell2.
  • the present disclosure provides a method, device, device and storage medium for receiving or sending measurement configuration information.
  • a method for receiving measurement configuration information is provided, and the method is executed by a user equipment, wherein,
  • the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different;
  • different SMTCs are set for different adjacent cells to be measured corresponding to the same measurement object, so that the user equipment can measure different adjacent cells to be measured under the same carrier at different times, and the transmission delay between different cells When the difference is large, the measurement of the adjacent cells can still be completed, thereby overcoming the problem that the measurement of the adjacent cells cannot be completed due to the large transmission delay difference between different cells.
  • the method also includes:
  • the measurement assistance information includes the transmission delay difference between the satellite corresponding to the serving cell and the satellite corresponding to the neighboring cell to be measured.
  • the method also includes:
  • the measurement assistance information includes location information of the user equipment; wherein the location information of the user equipment is used by the network device to calculate the corresponding serving cell according to the location information of the user equipment The transmission delay difference between the satellite and the satellite corresponding to the neighboring cell to be tested.
  • the SMTC of the neighboring cell to be measured corresponding to the same measurement object in the measurement configuration information is determined by the network device according to the corresponding transmission delay difference.
  • the method also includes:
  • receiving indication information from the network device for instructing the user equipment to report the measurement assistance information includes:
  • the offset values in SMTCs of different neighbor cells to be measured corresponding to the same measurement object are different.
  • the period values in the SMTCs of different neighbor cells to be measured corresponding to the same measurement object are the same or different.
  • the duration values in the SMTCs of different neighbor cells to be measured corresponding to the same measurement object are the same or different.
  • the measurement gap configurations of different to-be-measured neighboring cells corresponding to the same measurement object are different;
  • the measurement gap configuration includes:
  • Gap offset value Gap offset value, gap length, gap repeat period, gap timing advance.
  • a method for sending measurement configuration information is provided, and the method is executed by a user equipment, wherein,
  • the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighbor cells to be measured corresponding to the same measurement object are different; the The measurement configuration information is used for the user equipment to measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • the method also includes:
  • the measurement assistance information includes a transmission delay difference between a satellite corresponding to a serving cell and a satellite corresponding to a neighboring cell to be measured.
  • the method also includes:
  • the measurement assistance information includes location information of the user equipment
  • the method also includes:
  • the method also includes:
  • sending indication information to the user equipment for instructing the user equipment to report the measurement assistance information includes:
  • Radio link control RRC signaling Sending radio link control RRC signaling, medium access control MAC signaling or downlink control information including indication information to the user equipment; wherein the indication information is used to instruct the user equipment to report the measurement assistance information.
  • the offset values in SMTCs of different neighbor cells to be measured corresponding to the same measurement object are different.
  • the period values in the SMTCs of different neighbor cells to be measured corresponding to the same measurement object are the same or different.
  • the duration values in the SMTCs of different neighbor cells to be measured corresponding to the same measurement object are the same or different.
  • the measurement gap configurations of different to-be-measured neighboring cells corresponding to the same measurement object are different;
  • the measurement gap configuration includes:
  • Gap offset value Gap offset value, gap length, gap repeat period, gap timing advance.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device may be used to execute the steps executed by the network device in the above first aspect or any possible design of the first aspect.
  • the network device can realize each function in the above-mentioned methods in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module coupled to each other, wherein the transceiver module may be used to support the communication device to perform communication, and the processing module may be used for the communication device to perform processing operations, Such as generating information/messages that need to be sent, or processing received signals to obtain information/messages.
  • the transceiver module is configured to receive measurement configuration information from the network device; wherein the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, the The SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different; the processing module is used to measure the neighboring cells to be measured corresponding to the measurement object according to the measurement configuration information.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device may be used to execute the steps performed by the user equipment in the above second aspect or any possible design of the second aspect.
  • the user equipment can implement each function in the above methods in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module coupled to each other, wherein the transceiver module may be used to support the communication device to communicate, and the processing module may be used to perform processing operations by the communication device, Such as generating information/messages that need to be sent, or processing received signals to obtain information/messages.
  • the transceiver module is used to send measurement configuration information to the user equipment; wherein the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the same The SMTCs of different neighboring cells to be measured corresponding to the measurement object are different; the measurement configuration information is used for the user equipment to measure the neighboring cells to be measured corresponding to the measurement object according to the measurement configuration information.
  • the present disclosure provides a communication system, which may include the communication device shown in the third aspect and the communication device shown in the fourth aspect.
  • the communication device shown in the third aspect may be composed of software modules and/or hardware components.
  • the communication device shown in the fourth aspect may be composed of software modules and/or hardware components.
  • the present disclosure provides a communication device, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program, so as to realize the first aspect or any one of the first aspect possible design.
  • the present disclosure provides a communication device, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program, so as to realize the second aspect or any one of the second aspect possible design.
  • the present disclosure provides a computer-readable storage medium, where instructions (or computer programs, programs) are stored in the computer-readable storage medium, and when they are invoked and executed on a computer, the computer executes the above-mentioned first Any one of the possible designs of the aspect or first aspect.
  • the present disclosure provides a computer-readable storage medium, where instructions (or computer programs, programs) are stored in the computer-readable storage medium, and when they are invoked and executed on a computer, the computer executes the above-mentioned first Any one of the possible designs of the second aspect or the second aspect.
  • Fig. 1 is a schematic diagram of a satellite communication method according to an exemplary embodiment
  • Fig. 2 is a schematic diagram of a communication system according to an exemplary embodiment
  • Fig. 3 is a flowchart showing the transmission of measurement configuration information according to an exemplary embodiment
  • Fig. 4 is a structural diagram of an apparatus for sending measurement configuration information according to an exemplary embodiment
  • Fig. 5 is a structural diagram of another device for sending measurement configuration information according to an exemplary embodiment
  • Fig. 6 is a structural diagram of an apparatus for receiving measurement configuration information according to an exemplary embodiment
  • Fig. 7 is a structural diagram of another device for receiving measurement configuration information according to an exemplary embodiment.
  • the method for transmitting measurement configuration information may be applied to a wireless communication system 100 , and the wireless communication system may include a user equipment 101 and a network device 102 .
  • the user equipment 101 is configured to support carrier aggregation, and the user equipment 101 can be connected to multiple carrier components of the network device 102, including a primary carrier component and one or more secondary carrier components.
  • wireless communication system 100 may be applicable to both low-frequency scenarios and high-frequency scenarios.
  • Application scenarios of the wireless communication system 100 include but are not limited to long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, global Interoperability microwave access (worldwide interoperability for micro wave access, WiMAX) communication system, cloud radio access network (cloud radio access network, CRAN) system, future fifth-generation (5th-Generation, 5G) system, new wireless (new radio, NR) communication system or future evolved public land mobile network (public land mobile network, PLMN) system, etc.
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • WiMAX global Interoperability microwave access
  • cloud radio access network cloud radio access network
  • CRAN cloud radio access network
  • 5G fifth-generation
  • new wireless new radio, NR
  • future evolved public land mobile network public land
  • the user equipment 101 (user equipment, UE) shown above may be a terminal (terminal), an access terminal, a terminal unit, a terminal station, a mobile station (mobile station, MS), a remote station, a remote terminal, or a mobile terminal (mobile terminal) , wireless communication equipment, terminal agent or user equipment, etc.
  • the user equipment 101 may have a wireless transceiver function, which can communicate with one or more network devices of one or more communication systems (such as wireless communication), and accept network services provided by the network devices, where the network devices include but not The illustration is limited to network device 102 .
  • the user equipment 101 may be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (PDA) device, a Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, user equipment in future 5G networks or user equipment in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 102 may be an access network device (or called an access network site).
  • the access network device refers to a device that provides a network access function, such as a radio access network (radio access network, RAN) base station and the like.
  • the network device 102 may specifically include a base station (base station, BS), or include a base station and a radio resource management device for controlling the base station, and the like.
  • the network device 102 may also include a relay station (relay device), an access point, a base station in a future 5G network, a base station in a future evolved PLMN network or an NR base station, and the like.
  • the network device 102 may be a wearable device or a vehicle-mounted device.
  • the network device 102 may also be a communication chip with a communication module.
  • the network device 102 includes but is not limited to: a next-generation base station (gnodeB, gNB) in 5G, an evolved node B (evolved node B, eNB) in an LTE system, a radio network controller (radio network controller, RNC), Node B (node B, NB) in WCDMA system, wireless controller under CRAN system, base station controller (basestation controller, BSC), base transceiver station (base transceiver station, BTS) in GSM system or CDMA system, home Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP) or mobile switching center, etc.
  • a next-generation base station gNB
  • eNB evolved node B
  • eNB evolved node B
  • RNC radio network controller
  • Node B node B
  • BTS base transceiver station
  • FIG. 3 is a flowchart of a method for transmitting measurement configuration information according to an exemplary embodiment. As shown in FIG. 3 , the method includes:
  • Step S31 the network device 102 sends measurement configuration information to the user equipment 101; wherein, the measurement configuration information includes more than one SSB-based RRM Configuration Timing Measurement (SMTC) corresponding to the same measurement object, so The SMTCs of different neighbor cells to be measured corresponding to the same measurement object are different.
  • SMTC SSB-based RRM Configuration Timing Measurement
  • Step S32 the user equipment 101 receives the measurement configuration information from the network device 102 .
  • Step S33 the user equipment 101 measures the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • a measurement object is a carrier corresponding to a cell.
  • different SMTCs are set for different adjacent cells to be measured corresponding to the same measurement object, so that the user equipment can measure different adjacent cells to be measured under the same carrier at different times, and the transmission delay between different cells When the difference is large, the measurement of the adjacent cells can still be completed, thereby overcoming the problem that the measurement of the adjacent cells cannot be completed due to the large transmission delay difference between different cells.
  • An embodiment of the present disclosure provides a method for receiving measurement configuration information, the method is executed by a user equipment, and the method includes:
  • Step S1 receiving measurement configuration information from the network device; wherein, the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different ;
  • Step S2 measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • the SMTC includes an offset value offset, a period periodt, and a duration.
  • different SMTCs are set for different adjacent cells to be measured corresponding to the same measurement object, and the user equipment can measure different adjacent cells to be measured under the same carrier at different times, and the transmission delay between different cells When the difference is large, the measurement of the adjacent cells can still be completed, thereby overcoming the problem that the measurement of the adjacent cells cannot be completed due to the large transmission delay difference between different cells.
  • An embodiment of the present disclosure provides a method for receiving measurement configuration information, the method is executed by a user equipment, and the method includes:
  • Step S0 sending measurement assistance information to the network device;
  • the measurement assistance information includes the transmission delay difference between the satellite corresponding to the serving cell and the satellite corresponding to the neighboring cell to be measured.
  • Step S1 receiving measurement configuration information from the network device; wherein, the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different ;
  • Step S2 measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • the SMTC of the neighboring cell to be measured corresponding to the same measurement object in the measurement configuration information is determined by the network device according to the corresponding transmission delay difference.
  • the offset value in the SMTC of the neighbor cell to be measured corresponding to the same measurement object in the measurement configuration information is determined by the network device according to the corresponding transmission delay difference.
  • An embodiment of the present disclosure provides a method for receiving measurement configuration information, the method is executed by a user equipment, and the method includes:
  • Step S0 sending measurement assistance information to the network device; wherein the measurement assistance information includes location information of the user equipment; wherein the location information of the user equipment is used by the network device according to the location of the user equipment
  • the information calculates the transmission delay difference between the satellite corresponding to the serving cell and the satellite corresponding to the adjacent cell to be measured.
  • Step S1 receiving measurement configuration information from the network device; wherein, the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different ;
  • Step S2 measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • the SMTC of the neighboring cell to be measured corresponding to the same measurement object in the measurement configuration information is determined by the network device according to the corresponding transmission delay difference.
  • the offset value in the SMTC of the adjacent cell to be measured corresponding to the same measurement object in the measurement configuration information is determined by the network device according to the corresponding transmission delay difference.
  • An embodiment of the present disclosure provides a method for receiving measurement configuration information, the method is executed by a user equipment, and the method includes:
  • Step S0' receiving indication information for instructing the user equipment to report the measurement assistance information from the network equipment.
  • Step S0 sending measurement assistance information to the network device; wherein the measurement assistance information includes location information of the user equipment; wherein the location information of the user equipment is used by the network device according to the location of the user equipment
  • the information calculates the transmission delay difference between the satellite corresponding to the serving cell and the satellite corresponding to the adjacent cell to be measured.
  • Step S1 receiving measurement configuration information from the network device; wherein, the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different .
  • Step S2 measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • receiving indication information from the network device in step S0' for instructing the user equipment to report the measurement assistance information includes: receiving a wireless link including indication information from the network device Control RRC signaling, medium access control MAC signaling or downlink control information; wherein, the indication information is used to instruct the user equipment to report the measurement assistance information.
  • An embodiment of the present disclosure provides a method for receiving measurement configuration information, the method is executed by a user equipment, and the method includes:
  • Step S1 receiving measurement configuration information from the network device; wherein, the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different .
  • Step S2 measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • the offset value offset in the SMTC of different neighbor cells to be measured corresponding to the same measurement object is different, and the period value is the same or different, and the duration value is the same or different .
  • the transmission delay difference between the serving cell and the target cell 1 is d1
  • the transmission delay difference between the serving cell and the target cell 2 is d2
  • the SMTC configuration of cell 1 is SMTC#1 ⁇ Offset1, Period1, Duration1 ⁇
  • the SMTC configuration of cell 2 is SMTC#2 ⁇ Offset2, Period2, Duration2 ⁇
  • Offset1 is different from Offset2
  • Period1 and Period2 can have the same or different values
  • Duration1 and Duration2 can have the same or different values.
  • the measurement gap configurations of different to-be-measured neighboring cells corresponding to the same measurement object are different;
  • the measurement gap configuration includes:
  • Gap offset value Gap offset value, gap length, gap repeat period, gap timing advance.
  • An embodiment of the present disclosure provides a method for sending measurement configuration information, the method is executed by the network device 102, and the method includes:
  • Step S30 sending measurement configuration information to the user equipment; wherein, the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different ;
  • the measurement configuration information is used by the user equipment to measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • different SMTCs are set for different adjacent cells to be measured corresponding to the same measurement object, and the user equipment can measure different adjacent cells to be measured under the same carrier at different times, and the transmission delay between different cells When the difference is large, the measurement of the adjacent cells can still be completed, thereby overcoming the problem that the measurement of the adjacent cells cannot be completed due to the large transmission delay difference between different cells.
  • An embodiment of the present disclosure provides a method for sending measurement configuration information, the method is executed by the network device 102, and the method includes:
  • Step S10 receiving measurement assistance information sent by the user equipment; the measurement assistance information includes the transmission delay difference between the satellite corresponding to the serving cell and the satellite corresponding to the neighboring cell to be measured.
  • Step S30 sending measurement configuration information to the user equipment; wherein, the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different ;
  • the measurement configuration information is used by the user equipment to measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • An embodiment of the present disclosure provides a method for sending measurement configuration information, the method is executed by the network device 102, and the method includes:
  • Step S10' receiving measurement assistance information sent by the user equipment;
  • the measurement assistance information includes location information of the user equipment;
  • Step S20 calculating the transmission delay difference between the satellite corresponding to the serving cell and the satellite corresponding to the neighbor cell to be measured according to the location information of the user equipment.
  • Step S30 sending measurement configuration information to the user equipment; wherein, the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different ;
  • the measurement configuration information is used by the user equipment to measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • An embodiment of the present disclosure provides a method for sending measurement configuration information, the method is executed by the network device 102, and the method includes:
  • Step S10 receiving measurement assistance information sent by the user equipment; the measurement assistance information includes the transmission delay difference between the satellite corresponding to the serving cell and the satellite corresponding to the neighboring cell to be measured.
  • Step S30' according to the transmission delay difference, determine the SMTC of the corresponding adjacent cell to be measured corresponding to the same measurement object.
  • Step S30 sending measurement configuration information to the user equipment; wherein, the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different ;
  • the measurement configuration information is used by the user equipment to measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • An embodiment of the present disclosure provides a method for sending measurement configuration information, the method is executed by the network device 102, and the method includes:
  • Step S10' receiving measurement assistance information sent by the user equipment;
  • the measurement assistance information includes location information of the user equipment;
  • Step S20 calculating the transmission delay difference between the satellite corresponding to the serving cell and the satellite corresponding to the neighbor cell to be measured according to the location information of the user equipment.
  • Step S30' according to the transmission delay difference, determine the SMTC of the corresponding adjacent cell to be measured corresponding to the same measurement object.
  • Step S30 sending measurement configuration information to the user equipment; wherein, the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different ;
  • the measurement configuration information is used by the user equipment to measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • An embodiment of the present disclosure provides a method for sending measurement configuration information, the method is executed by the network device 102, and the method includes:
  • Step S10' sending indication information for instructing the user equipment to report the measurement assistance information to the user equipment.
  • Step S20' receiving measurement assistance information sent by the user equipment; the measurement assistance information includes the transmission delay difference between the satellite corresponding to the serving cell and the satellite corresponding to the neighboring cell to be measured.
  • the measurement assistance information includes the location information of the user equipment; and the transmission delay difference between the satellite corresponding to the serving cell and the satellite corresponding to the neighbor cell to be measured is calculated according to the location information of the user equipment.
  • Step S30' according to the transmission delay difference, determine the SMTC of the corresponding adjacent cell to be measured corresponding to the same measurement object.
  • Step S30 sending measurement configuration information to the user equipment; wherein, the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different ;
  • the measurement configuration information is used by the user equipment to measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • sending indication information to the user equipment for instructing the user equipment to report the measurement assistance information includes: sending a wireless link including the indication information to the user equipment Control RRC signaling, medium access control MAC signaling or downlink control information; wherein, the indication information is used to instruct the user equipment to report the measurement assistance information.
  • An embodiment of the present disclosure provides a method for sending measurement configuration information, the method is executed by the network device 102, and the method includes:
  • Step S30 sending measurement configuration information to the user equipment; wherein, the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, and the SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different ;
  • the measurement configuration information is used by the user equipment to measure the neighbor cell to be measured corresponding to the measurement object according to the measurement configuration information.
  • the offset value offset in the SMTC of different neighbor cells to be measured corresponding to the same measurement object is different, and the period value is the same or different, and the duration value is the same or different .
  • the measurement gap configurations of different to-be-measured neighboring cells corresponding to the same measurement object are different;
  • the measurement gap configuration includes:
  • Gap offset value Gap offset value, gap length, gap repeat period, gap timing advance.
  • the embodiment of the present disclosure also provides a communication device, which can have the function of the network device 102 in the above method embodiment, and can be used to implement the network device provided by the above method embodiment. Steps performed by device 102.
  • This function can be implemented by hardware, and can also be implemented by software or hardware executes corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 400 shown in FIG. 4 may serve as the network device involved in the above method embodiment, and execute the steps performed by the network device in the above method embodiment.
  • the communication device 400 may include a transceiver module 401 and a processing module 402 , and the transceiver module 401 and the processing module 402 are coupled to each other.
  • the transceiver module 401 can be used to support the communication device 400 to communicate, and the transceiver module 401 can have a wireless communication function, for example, it can perform wireless communication with other communication devices through a wireless air interface.
  • the processing module 402 can be used to support the communication device 400 to perform the processing actions in the above method embodiments, including but not limited to: generating information and messages sent by the transceiver module 401, and/or demodulating signals received by the transceiver module 401 decoding and so on.
  • the transceiver module 401 When executing the steps implemented by the network device 102, the transceiver module 401 is configured to send measurement configuration information to the user equipment; wherein the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, the The SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different; the measurement configuration information is used for the user equipment to measure the neighboring cells to be measured corresponding to the measurement object according to the measurement configuration information.
  • the communication device When the communication device is a network device 102, its structure may also be as shown in FIG. 5 .
  • the structure of the communication device will be described by taking the base station as an example.
  • the device 500 includes a memory 501 , a processor 502 , a transceiver component 503 , and a power supply component 506 .
  • the memory 501 is coupled with the processor 502 and can be used to save the programs and data necessary for the communication device 500 to realize various functions.
  • the processor 502 is configured to support the communication device 500 to execute corresponding functions in the above methods, and the functions may be implemented by calling programs stored in the memory 501 .
  • the transceiver component 503 may be a wireless transceiver, and may be used to support the communication device 500 to receive signaling and/or data and send signaling and/or data through a wireless air interface.
  • the transceiver component 503 may also be called a transceiver unit or a communication unit, and the transceiver component 503 may include a radio frequency component 504 and one or more antennas 505, wherein the radio frequency component 504 may be a remote radio unit (remote radio unit, RRU), specifically It can be used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals, and the one or more antennas 505 can be specifically used for radiating and receiving radio frequency signals.
  • RRU remote radio unit
  • the processor 502 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit, and the radio frequency unit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 502, and the processor 502 converts the baseband signal into data and converts the data to process.
  • the embodiment of the present disclosure also provides a communication device, which can have the function of the user equipment 101 in the above method embodiment, and can be used to execute the user equipment provided by the above method embodiment. Steps performed by device 101.
  • This function can be implemented by hardware, and can also be implemented by software or hardware executes corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communications apparatus 600 shown in FIG. 6 may serve as the user equipment involved in the above method embodiments, and execute the steps performed by the user equipment in the above method embodiments.
  • the communication device 600 may include a transceiver module 601 and a processing module 602 , and the transceiver module 601 and the processing module 602 are coupled to each other.
  • the transceiver module 601 can be used to support the communication device 600 to communicate, and the transceiver module 601 can have a wireless communication function, for example, it can perform wireless communication with other communication devices through a wireless air interface.
  • the processing module 602 can be used to support the communication device 600 to perform the processing actions in the above method embodiments, including but not limited to: generating information and messages sent by the transceiver module 601, and/or demodulating signals received by the transceiver module 601 decoding and so on.
  • the transceiver module 601 When executing the steps implemented by the user equipment 102, the transceiver module 601 is configured to receive measurement configuration information from the network device; wherein the measurement configuration information includes more than one SSB-based measurement time configuration SMTC corresponding to the same measurement object, so The SMTCs of different neighboring cells to be measured corresponding to the same measurement object are different; the processing module 602 is configured to measure the neighboring cells to be measured corresponding to the measurement object according to the measurement configuration information.
  • the device 700 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 700 may include one or more of the following components: processing component 702, memory 704, power supply component 706, multimedia component 708, audio component 710, input/output (I/O) interface 712, sensor component 714, and communication component 716 .
  • the processing component 702 generally controls the overall operations of the device 700, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 702 may include one or more processors 720 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 702 may include one or more modules that facilitate interaction between processing component 702 and other components. For example, processing component 702 may include a multimedia module to facilitate interaction between multimedia component 708 and processing component 702 .
  • Memory 704 is configured to store various types of data to support operations at device 700 . Examples of such data include instructions for any application or method operating on device 700, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 704 can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 706 provides power to various components of the device 700 .
  • Power components 706 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 700 .
  • the multimedia component 708 includes a screen that provides an output interface between the device 600 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 708 includes a front camera and/or a rear camera. When the device 700 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 710 is configured to output and/or input audio signals.
  • the audio component 710 includes a microphone (MIC), which is configured to receive external audio signals when the device 700 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 704 or sent via communication component 716 .
  • the audio component 710 also includes a speaker for outputting audio signals.
  • the I/O interface 712 provides an interface between the processing component 702 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 714 includes one or more sensors for providing various aspects of status assessment for device 700 .
  • the sensor component 714 can detect the open/closed state of the device 700, the relative positioning of components, such as the display and keypad of the device 700, and the sensor component 714 can also detect a change in the position of the device 700 or a component of the device 700 , the presence or absence of user contact with the device 700 , the device 700 orientation or acceleration/deceleration and the temperature change of the device 700 .
  • Sensor assembly 714 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 714 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 714 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 716 is configured to facilitate wired or wireless communication between the apparatus 700 and other devices.
  • the device 700 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 716 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 616 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 700 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 704 including instructions, which can be executed by the processor 720 of the device 600 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种传输测量配置信息的方法、装置、设备及存储介质,应用于无线通信技术领域,此方法包括:从网络设备接收测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。本公开中,为同一测量对象对应的不同待测邻小区分别设置不同的SMTC,使用户设备在不时刻对同一载波下的不同待测邻小区进行测量,在不同小区之间传输时延差较大时仍然可以完成对邻小区的测量,从而克服由于不同小区之间传输时延差较大造成的无法完成邻小区测量的问题。

Description

一种接收或发送测量配置信息的方法、装置、设备及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种接收或发送测量配置信息的方法、装置、设备及存储介质。
背景技术
在非地面网络(Non-Terrestrial Networks,NTN)中,处于不同轨道的卫星的传输时延差比较大,最大可达几百毫秒。
图1所示,第一小区Cell 1与第二小区Cell 2相邻,其中,第一小区Cell 1对应于第一卫星,第二小区Cell 2对应于第二卫星,第一卫星和第二卫星处于不同的轨道,第一卫星和第二卫星的传输时延差较大。在用户设备(User Equipment,UE)即将从Cell 1进入到Cell 2,由于第一卫星和第二卫星之间存在较大的传输时延差,根据现有的测量配置机制,UE将无法准确测量目标小区cell2。
因此由于传输时延差大造成无法完成邻小区测量的问题是需要解决的技术问题。
发明内容
有鉴于此,本公开提供了一种接收或发送测量配置信息的方法、装置、设备及存储介质。
第一方面,提供了一种接收测量配置信息的方法,此方法被用户设备执行,其中,
从网络设备接收测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;
根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
本公开实施例中,为同一测量对象对应的不同待测邻小区分别设置不同的SMTC,使用户设备在不时刻对同一载波下的不同待测邻小区进行测量,在不同小区之间传输时延差较大时仍然可以完成对邻小区的测量,从而克服由于不同小区之间传输时延差较大造成的无法完成邻小区测量的问题。
在一些可能的实施方式中,所述方法还包括:
向网络设备发送测量辅助信息;所述测量辅助信息包括服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
在一些可能的实施方式中,所述方法还包括:
向网络设备发送测量辅助信息;所述测量辅助信息包括所述用户设备的位置信息;其中,所述用户设备的位置信息用于由所述网络设备根据所述用户设备的位置信息计算服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
在一些可能的实施方式中,所述测量配置信息中同一测量对象对应的待测邻小区的SMTC是由所述网络设备根据相应的传输时延差确定的。
在一些可能的实施方式中,所述方法还包括:
从所述网络设备接收用于指示所述用户设备上报所述测量辅助信息的指示信息。
在一些可能的实施方式中,从所述网络设备接收用于指示所述用户设备上报所述测量辅助信息的指示信息,包括:
从所述网络设备接收包括指示信息的无线链路控制RRC信令、媒体接入控制MAC信令或下行控制信息;其中,所述指示信息用于指示所述用户设备上报所述测量辅助信息。
在一些可能的实施方式中,所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的偏置值不同。
在一些可能的实施方式中,所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的周期值相同或者不同。
在一些可能的实施方式中,所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的时长值相同或者不同。
在一些可能的实施方式中,所述同一测量对象对应的不同待测邻小区的测量间隙配置不同;
所述测量间隙配置包括:
间隙偏置值、间隙长度、间隙重复周期、间隙定时提前量。
第二方面,提供了一种发送测量配置信息的方法,此方法被用户设备执行,其中,
向用户设备发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;所述测量配置信息用于由所述用户设备根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
在一些可能的实施方式中,所述方法还包括:
接收所述用户设备发送的测量辅助信息;所述测量辅助信息包括服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
在一些可能的实施方式中,所述方法还包括:
接收所述用户设备发送的测量辅助信息;所述测量辅助信息包括所述用户设备的位置信息;
根据所述用户设备的位置信息计算服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
在一些可能的实施方式中,所述方法还包括:
根据所述传输时延差确定同一测量对象对应的相应的待测邻小区的SMTC。
在一些可能的实施方式中,所述方法还包括:
向所述用户设备发送用于指示所述用户设备上报所述测量辅助信息的指示信息。
在一些可能的实施方式中,向所述用户设备发送用于指示所述用户设备上报所述测量辅助信息的指示信息,包括:
向所述用户设备发送包括指示信息的无线链路控制RRC信令、媒体接入控制MAC信令或下行控制信息;其中,所述指示信息用于指示所述用户设备上报所述测量辅助信息。
在一些可能的实施方式中,所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的偏置值不同。
在一些可能的实施方式中,所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的周期值相同或者不同。
在一些可能的实施方式中,所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的时长值相同或者不同。
在一些可能的实施方式中,所述同一测量对象对应的不同待测邻小区的测量间隙配置不同;
所述测量间隙配置包括:
间隙偏置值、间隙长度、间隙重复周期、间隙定时提前量。
第三方面,本公开实施例提供一种通信装置。该通信装置可用于执行上述第一方面或第一方面的任一可能的设计中由网络设备执行的步骤。该网络设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第三方面所示通信装置时,该通信装置可包括相互耦合的收发模块以及处理模块,其中,收发模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行上述第一方面所述步骤时,收发模块,用于从网络设备接收测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;处理模块用于根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
第四方面,本公开实施例提供一种通信装置。该通信装置可用于执行上述第二方面或第二方面的任一可能的设计中由用户设备执行的步骤。该用户设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第四方面所示通信装置时,该通信装置可包括相互耦合的收发模块以及处理模块,其中,收发模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行上述第二方面所述步骤时,收发模块用于向用户设备发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;所述测量配置信息用于由所述用户设备根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
第五方面,本公开提供一种通信系统,该通信系统可以包括第三方面所示的通信装置以及第四方面所示的通信装置。其中,第三方面所示的通信装置可由软件模块和/或硬件组件构成。第四方面所示的通信装置可由软件模块和/或硬件组件构成。
第六方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能的设计。
第七方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第二方面或第二方面的任意一种可能的设计。
第八方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
第九方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计。
上述第二方面至第九方面及其可能的设计中的有益效果可以参考对第一方面及其任一可能的设计中的所述方法的有益效果的描述。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是根据一示例性实施例示出的卫星通信方式示意图;
图2是根据一示例性实施例示出的通信系统的示意图;
图3是根据一示例性实施例示出的传输测量配置信息的流程图;
图4是根据一示例性实施例示出的一种发送测量配置信息的装置的结构图;
图5是根据一示例性实施例示出的另一种发送测量配置信息的装置的结构图;
图6是根据一示例性实施例示出的一种接收测量配置信息的装置的结构图;
图7是根据一示例性实施例示出的另一种接收测量配置信息的装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
如图2所示,本公开实施例提供的传输测量配置信息的方法可应用于无线通信系统100,该无线通信系统可以包括用户设备101以及网络设备102。其中,用户设备101被配置为支持载波聚合,用户设备101可连接至网络设备102的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex, TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备101(user equipment,UE)可以是终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或用户设备等。该用户设备101可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备进行通信(如无线通信),并接受网络设备提供的网络服务,这里的网络设备包括但不限于图示网络设备102。
其中,用户设备101可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的用户设备或者未来演进的PLMN网络中的用户设备等。
网络设备102可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备102具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备102还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备102可以是可穿戴设备或车载设备。网络设备102也可以是具有通信模块的通信芯片。
比如,网络设备102包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
本公开实施例提供了一种传输测量配置信息的方法。参照图3,图3是根据一示例性实施例示出的一种传输测量配置信息的方法的流程图,如图3所示,此方法包括:
步骤S31,网络设备102向用户设备101发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置(SSB-based RRM Configuration Timing Measurement,SMTC),所述同一测量对象对应的不同待测邻小区的SMTC不同。
步骤S32,用户设备101从网络设备102接收所述测量配置信息。
步骤S33,用户设备101根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
在一些可能的实施方式中,测量对象(measurement object)为小区对应的载波。
本公开实施例中,为同一测量对象对应的不同待测邻小区分别设置不同的SMTC,使用户设备在不时刻对同一载波下的不同待测邻小区进行测量,在不同小区之间传输时延差较大 时仍然可以完成对邻小区的测量,从而克服由于不同小区之间传输时延差较大造成的无法完成邻小区测量的问题。
本公开实施例提供了一种接收测量配置信息的方法,此方法被用户设备执行,此方法包括:
步骤S1,从网络设备接收测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;
步骤S2,根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
在一些可能的实施方式中,SMTC包括偏置值offset、周期periodt和时长duration。
本公开实施例中,为同一测量对象对应的不同待测邻小区分别设置不同的SMTC,用户设备能够在不时刻对同一载波下的不同待测邻小区进行测量,在不同小区之间传输时延差较大时仍然可以完成对邻小区的测量,从而克服由于不同小区之间传输时延差较大造成的无法完成邻小区测量的问题。
本公开实施例提供了一种接收测量配置信息的方法,此方法被用户设备执行,此方法包括:
步骤S0,向网络设备发送测量辅助信息;所述测量辅助信息包括服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
步骤S1,从网络设备接收测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;
步骤S2,根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
在一些可能的实施方式中,所述测量配置信息中同一测量对象对应的待测邻小区的SMTC是由所述网络设备根据相应的传输时延差确定的。
在一些可能的实施方式中,所述测量配置信息中同一测量对象对应的待测邻小区的SMTC中的偏置值是由所述网络设备根据相应的传输时延差确定的。
本公开实施例提供了一种接收测量配置信息的方法,此方法被用户设备执行,此方法包括:
步骤S0,向网络设备发送测量辅助信息;其中,所述测量辅助信息包括所述用户设备的位置信息;其中,所述用户设备的位置信息用于由所述网络设备根据所述用户设备的位置信息计算服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
步骤S1,从网络设备接收测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;
步骤S2,根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
在一些可能的实施方式中,所述测量配置信息中同一测量对象对应的待测邻小区的SMTC是由所述网络设备根据相应的传输时延差确定的。
在一些可能的实施方式中,所述测量配置信息中同一测量对象对应的待测邻小区的 SMTC中的偏置值是由所述网络设备根据相应的传输时延差确定的。
本公开实施例提供了一种接收测量配置信息的方法,此方法被用户设备执行,此方法包括:
步骤S0’,从所述网络设备接收用于指示所述用户设备上报所述测量辅助信息的指示信息。
步骤S0,向网络设备发送测量辅助信息;其中,所述测量辅助信息包括所述用户设备的位置信息;其中,所述用户设备的位置信息用于由所述网络设备根据所述用户设备的位置信息计算服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
步骤S1,从网络设备接收测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同。
步骤S2,根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
在一些可能的实施方式中,步骤S0’中从所述网络设备接收用于指示所述用户设备上报所述测量辅助信息的指示信息,包括:从所述网络设备接收包括指示信息的无线链路控制RRC信令、媒体接入控制MAC信令或下行控制信息;其中,所述指示信息用于指示所述用户设备上报所述测量辅助信息。
本公开实施例提供了一种接收测量配置信息的方法,此方法被用户设备执行,此方法包括:
步骤S1,从网络设备接收测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同。
步骤S2,根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
在一些可能的实施方式中,所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的偏置值offset不同、并且周期值相同或者不同、并且时长值相同或者不同。
在一示例中,服务小区与目标小区1(cell 1)的传输时延差为d1,服务小区与目标小区2(cell 2)的传输时延差为d2,cell 1的SMTC配置为SMTC#1{Offset1,Period1,Duration1},cell 2的SMTC配置为SMTC#2{Offset2,Period2,Duration2},其中,Offset1与Offset2不同,Period1与Period2值可相同或不同,Duration1与Duration2值可相同或不同。
在一些可能的实施方式中,所述同一测量对象对应的不同待测邻小区的测量间隙配置不同;
所述测量间隙配置包括:
间隙偏置值、间隙长度、间隙重复周期、间隙定时提前量。
本公开实施例提供了一种发送测量配置信息的方法,此方法被网络设备102执行,此方法包括:
步骤S30,向用户设备发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小 区的SMTC不同;所述测量配置信息用于由所述用户设备根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
本公开实施例中,为同一测量对象对应的不同待测邻小区分别设置不同的SMTC,用户设备能够在不时刻对同一载波下的不同待测邻小区进行测量,在不同小区之间传输时延差较大时仍然可以完成对邻小区的测量,从而克服由于不同小区之间传输时延差较大造成的无法完成邻小区测量的问题。
本公开实施例提供了一种发送测量配置信息的方法,此方法被网络设备102执行,此方法包括:
步骤S10,接收所述用户设备发送的测量辅助信息;所述测量辅助信息包括服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
步骤S30,向用户设备发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;所述测量配置信息用于由所述用户设备根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
本公开实施例提供了一种发送测量配置信息的方法,此方法被网络设备102执行,此方法包括:
步骤S10’,接收所述用户设备发送的测量辅助信息;所述测量辅助信息包括所述用户设备的位置信息;
步骤S20,根据所述用户设备的位置信息计算服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
步骤S30,向用户设备发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;所述测量配置信息用于由所述用户设备根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
本公开实施例提供了一种发送测量配置信息的方法,此方法被网络设备102执行,此方法包括:
步骤S10,接收所述用户设备发送的测量辅助信息;所述测量辅助信息包括服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
步骤S30’,根据所述传输时延差确定同一测量对象对应的相应的待测邻小区的SMTC。
步骤S30,向用户设备发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;所述测量配置信息用于由所述用户设备根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
本公开实施例提供了一种发送测量配置信息的方法,此方法被网络设备102执行,此方法包括:
步骤S10’,接收所述用户设备发送的测量辅助信息;所述测量辅助信息包括所述用户设备的位置信息;
步骤S20,根据所述用户设备的位置信息计算服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
步骤S30’,根据所述传输时延差确定同一测量对象对应的相应的待测邻小区的SMTC。
步骤S30,向用户设备发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;所述测量配置信息用于由所述用户设备根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
本公开实施例提供了一种发送测量配置信息的方法,此方法被网络设备102执行,此方法包括:
步骤S10’,向所述用户设备发送用于指示所述用户设备上报所述测量辅助信息的指示信息。
步骤S20’,接收所述用户设备发送的测量辅助信息;所述测量辅助信息包括服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。或者,所述测量辅助信息包括所述用户设备的位置信息;根据所述用户设备的位置信息计算服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
步骤S30’,根据所述传输时延差确定同一测量对象对应的相应的待测邻小区的SMTC。
步骤S30,向用户设备发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;所述测量配置信息用于由所述用户设备根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
在一些可能的实施方式中,步骤S10’中向所述用户设备发送用于指示所述用户设备上报所述测量辅助信息的指示信息,包括:向所述用户设备发送包括指示信息的无线链路控制RRC信令、媒体接入控制MAC信令或下行控制信息;其中,所述指示信息用于指示所述用户设备上报所述测量辅助信息。
本公开实施例提供了一种发送测量配置信息的方法,此方法被网络设备102执行,此方法包括:
步骤S30,向用户设备发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;所述测量配置信息用于由所述用户设备根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
在一些可能的实施方式中,所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的偏置值offset不同、并且周期值相同或者不同、并且时长值相同或者不同。
在一些可能的实施方式中,所述同一测量对象对应的不同待测邻小区的测量间隙配置不同;
所述测量间隙配置包括:
间隙偏置值、间隙长度、间隙重复周期、间隙定时提前量。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的网络设备102的功能,并可用于执行上述方法实施例提供的由网络设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图4所示的通信装置400可作为上述方法实施例所涉及的网络设备,并执行上述方法实施例中由网络设备执行的步骤。如图4所示,该通信装置400可包括收发模块401以及处理模块402,该收发模块401以及处理模块402之间相互耦合。该收发模块401可用于支持通信装置400进行通信,收发模块401可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。处理模块402可用于支持该通信装置400执行上述方法实施例中的处理动作,包括但不限于:生成由收发模块401发送的信息、消息,和/或,对收发模块401接收的信号进行解调解码等等。
在执行由网络设备102实施的步骤时,收发模块401用于向用户设备发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;所述测量配置信息用于由所述用户设备根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
当该通信装置为网络设备102时,其结构还可如图5所示。以基站为例说明通信装置的结构。如图5所示,装置500包括存储器501、处理器502、收发组件503、电源组件506。其中,存储器501与处理器502耦合,可用于保存通信装置500实现各功能所必要的程序和数据。该处理器502被配置为支持通信装置500执行上述方法中相应的功能,所述功能可通过调用存储器501存储的程序实现。收发组件503可以是无线收发器,可用于支持通信装置500通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件503也可被称为收发单元或通信单元,收发组件503可包括射频组件504以及一个或多个天线505,其中,射频组件504可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线505具体可用于进行射频信号的辐射和接收。
当通信装置500需要发送数据时,处理器502可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置500时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器502,处理器502将基带信号转换为数据并对该数据进行处理。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的用户设备101的功能,并可用于执行上述方法实施例提供的由用户设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图6所示的通信装置600可作为上述方法实施例所涉及的用户设备,并执行上述方法实施例中由用户设备执行的步骤。如图6所示,该通信装置600可包括收发模块601以及处理模块602,该收发模块601以及处理模块602之间相互耦合。该收发模块601可用于支持通信装置600进行通信,收发模块601可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。处理模块602可用于支持该通信装置600执行上述方法实施例中的处理动作,包括但不限于:生成由收发模块601发送的信息、消息,和/或,对收发模块601接收的信号进行解调解码等等。
在执行由用户设备102实施的步骤时,收发模块601,用于从网络设备接收测量配置信 息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;处理模块602,用于根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
当该通信装置为用户设备101时,其结构还可如图7所示。装置700可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,装置700可以包括以下一个或多个组件:处理组件702,存储器704,电源组件706,多媒体组件708,音频组件710,输入/输出(I/O)的接口712,传感器组件714,以及通信组件716。
处理组件702通常控制装置700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件702可以包括一个或多个处理器720来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件702可以包括一个或多个模块,便于处理组件702和其他组件之间的交互。例如,处理组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在设备700的操作。这些数据的示例包括用于在装置700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件706为装置700的各种组件提供电力。电源组件706可以包括电源管理系统,一个或多个电源,及其他与为装置700生成、管理和分配电力相关联的组件。
多媒体组件708包括在所述装置600和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当设备700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当装置700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
I/O接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,用于为装置700提供各个方面的状态评估。例如,传感器组件714可以检测到设备700的打开/关闭状态,组件的相对定位,例如所述组件为装置700的显示器和小键盘,传感器组件714还可以检测装置700或装置700一个组件的位置改变,用户与装置700接触的存在或不存在,装置700方位或加速/减速和装置700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附 近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件716被配置为便于装置700和其他设备之间有线或无线方式的通信。装置700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件616还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器704,上述指令可由装置600的处理器720执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
为同一测量对象对应的不同待测邻小区分别设置不同的SMTC,使用户设备在不时刻对同一载波下的不同待测邻小区进行测量,在不同小区之间传输时延差较大时仍然可以完成对邻小区的测量,从而克服由于不同小区之间传输时延差较大造成的无法完成邻小区测量的问题。

Claims (26)

  1. 一种接收测量配置信息的方法,此方法被用户设备执行,其中,
    从网络设备接收测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;
    根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
  2. 如权利要求1所述的方法,其中,
    所述方法还包括:
    向网络设备发送测量辅助信息;所述测量辅助信息包括服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
  3. 如权利要求1所述的方法,其中,
    所述方法还包括:
    向网络设备发送测量辅助信息;所述测量辅助信息包括所述用户设备的位置信息;其中,所述用户设备的位置信息用于由所述网络设备根据所述用户设备的位置信息计算服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
  4. 如权利要求2或3所述的方法,其中,
    所述测量配置信息中同一测量对象对应的待测邻小区的SMTC是由所述网络设备根据相应的传输时延差确定的。
  5. 如权利要求2或3所述的方法,其中,
    所述方法还包括:
    从所述网络设备接收用于指示所述用户设备上报所述测量辅助信息的指示信息。
  6. 如权利要求2所述的方法,其中,
    从所述网络设备接收用于指示所述用户设备上报所述测量辅助信息的指示信息,包括:
    从所述网络设备接收包括指示信息的无线链路控制RRC信令、媒体接入控制MAC信令或下行控制信息;其中,所述指示信息用于指示所述用户设备上报所述测量辅助信息。
  7. 如权利要求1所述的方法,其中,
    所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的偏置值不同。
  8. 如权利要求7所述的方法,其中,
    所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的周期值相同或者不同。
  9. 如权利要求7所述的方法,其中,
    所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的时长值相同或者不同。
  10. 如权利要求1所述的方法,其中,
    所述同一测量对象对应的不同待测邻小区的测量间隙配置不同;
    所述测量间隙配置包括:
    间隙偏置值、间隙长度、间隙重复周期、间隙定时提前量。
  11. 一种发送测量配置信息的方法,此方法被网络设备执行,其中,
    向用户设备发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;所述测量配置信息用于由所述用户设备根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
  12. 如权利要求11所述的方法,其中,
    所述方法还包括:
    接收所述用户设备发送的测量辅助信息;所述测量辅助信息包括服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
  13. 如权利要求12所述的方法,其中,
    所述方法还包括:
    接收所述用户设备发送的测量辅助信息;所述测量辅助信息包括所述用户设备的位置信息;
    根据所述用户设备的位置信息计算服务小区对应的卫星与待测邻小区对应的卫星的传输时延差。
  14. 如权利要求12或13所述的方法,其中,
    所述方法还包括:
    根据所述传输时延差确定同一测量对象对应的相应的待测邻小区的SMTC。
  15. 如权利要求12或13所述的方法,其中,
    所述方法还包括:
    向所述用户设备发送用于指示所述用户设备上报所述测量辅助信息的指示信息。
  16. 如权利要求15所述的方法,其中,
    向所述用户设备发送用于指示所述用户设备上报所述测量辅助信息的指示信息,包括:
    向所述用户设备发送包括指示信息的无线链路控制RRC信令、媒体接入控制MAC信令或下行控制信息;其中,所述指示信息用于指示所述用户设备上报所述测量辅助信息。
  17. 如权利要求11所述的方法,其中,
    所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的偏置值不同。
  18. 如权利要求17所述的方法,其中,
    所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的周期值相同或者不同。
  19. 如权利要求17所述的方法,其中,
    所述测量配置信息中所述同一测量对象对应的不同的待测邻小区的SMTC中的时长值相同或者不同。
  20. 如权利要求11所述的方法,其中,
    所述同一测量对象对应的不同待测邻小区的测量间隙配置不同;
    所述测量间隙配置包括:
    间隙偏置值、间隙长度、间隙重复周期、间隙定时提前量。
  21. 一种通信装置,包括:
    收发模块,用于从网络设备接收测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;
    处理模块,用于根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
  22. 一种通信装置,包括:
    收发模块,用于向用户设备发送测量配置信息;其中,所述测量配置信息包括同一测量对象对应的一个以上的基于SSB的测量时间配置SMTC,所述同一测量对象对应的不同待测邻小区的SMTC不同;所述测量配置信息用于由所述用户设备根据所述测量配置信息对所述测量对象对应的待测邻小区进行测量。
  23. 一种通信装置,包括处理器以及存储器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-10中任一项所述的方法。
  24. 一种通信装置,包括处理器以及存储器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求11-20中任一项所述的方法。
  25. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-10中任一项所述的方法。
  26. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求11-20中任一项所述的方法
PCT/CN2021/122927 2021-10-09 2021-10-09 一种接收或发送测量配置信息的方法、装置、设备及存储介质 WO2023056651A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/122927 WO2023056651A1 (zh) 2021-10-09 2021-10-09 一种接收或发送测量配置信息的方法、装置、设备及存储介质
CN202180003233.5A CN116261878A (zh) 2021-10-09 2021-10-09 一种接收或发送测量配置信息的方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/122927 WO2023056651A1 (zh) 2021-10-09 2021-10-09 一种接收或发送测量配置信息的方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023056651A1 true WO2023056651A1 (zh) 2023-04-13

Family

ID=85803862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122927 WO2023056651A1 (zh) 2021-10-09 2021-10-09 一种接收或发送测量配置信息的方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116261878A (zh)
WO (1) WO2023056651A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831042A (zh) * 2018-08-09 2020-02-21 华为技术有限公司 测量配置方法与装置
CN112312451A (zh) * 2019-07-29 2021-02-02 大唐移动通信设备有限公司 一种测量同步的方法、网络设备及终端设备
US20210219251A1 (en) * 2018-09-30 2021-07-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Configuration method, communication device, and computer readable storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831042A (zh) * 2018-08-09 2020-02-21 华为技术有限公司 测量配置方法与装置
US20210219251A1 (en) * 2018-09-30 2021-07-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Configuration method, communication device, and computer readable storage medium
CN112312451A (zh) * 2019-07-29 2021-02-02 大唐移动通信设备有限公司 一种测量同步的方法、网络设备及终端设备

Also Published As

Publication number Publication date
CN116261878A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2023206424A1 (zh) 一种上行切换的方法、装置及可读存储介质
WO2023050352A1 (zh) 一种发送切换辅助信息的方法、切换方法、装置及介质
WO2023056651A1 (zh) 一种接收或发送测量配置信息的方法、装置、设备及存储介质
WO2023070279A1 (zh) 一种传输能力指示信息的方法、装置、及可读存储介质
WO2023115284A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2022246613A1 (zh) 一种传输测量间隙组合的方法、装置及介质
WO2023097523A1 (zh) 一种小区测量方法、装置及可读存储介质
WO2023184254A1 (zh) 一种传输测量配置信息的方法、装置及可读存储介质
WO2023115282A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2023050202A1 (zh) 一种接收和发送测量间隙配置信息的方法、装置及介质
WO2023060576A1 (zh) 一种发送或接收能力指示信息的方法、装置、设备及介质
WO2024026747A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2024031459A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质
WO2024059977A1 (zh) 一种执行或发送指示信息的方法、装置、设备及存储介质
WO2023065085A1 (zh) 一种确定非授权上行信道的检测波束的方法、装置及介质
WO2023102920A1 (zh) 一种确定寻呼预告指示pei对应的首寻呼帧的方法、装置及可读存储介质
WO2023082201A1 (zh) 一种发送或处理关闭通知的方法、装置及可读存储介质
WO2022246709A1 (zh) 一种传输用户设备能力的方法、装置及存储介质
WO2023221130A1 (zh) 一种测量方法、装置、设备及存储介质
WO2024026754A1 (zh) 一种传输测量配置信息的方法、装置、设备以及存储介质
WO2024045137A1 (zh) 一种传输配置信息的方法、装置以及可读存储介质
WO2024007228A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
CN115606225B (zh) 一种测量方法、确定辅小区的方法、装置、设备以及介质
WO2023082064A1 (zh) 一种传输信道状态信息参考信号csi-rs的方法、装置及介质
WO2023216161A1 (zh) 一种传输用户设备测量能力的方法、装置及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959741

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024006822

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2021959741

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021959741

Country of ref document: EP

Effective date: 20240510