WO2023216161A1 - 一种传输用户设备测量能力的方法、装置及可读存储介质 - Google Patents

一种传输用户设备测量能力的方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2023216161A1
WO2023216161A1 PCT/CN2022/092301 CN2022092301W WO2023216161A1 WO 2023216161 A1 WO2023216161 A1 WO 2023216161A1 CN 2022092301 W CN2022092301 W CN 2022092301W WO 2023216161 A1 WO2023216161 A1 WO 2023216161A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
capability
satellite positioning
information
positioning information
Prior art date
Application number
PCT/CN2022/092301
Other languages
English (en)
French (fr)
Inventor
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/092301 priority Critical patent/WO2023216161A1/zh
Priority to CN202280001658.7A priority patent/CN117397257A/zh
Publication of WO2023216161A1 publication Critical patent/WO2023216161A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present disclosure relates to wireless communication technology, and in particular, to a method, device and readable storage medium for transmitting user equipment measurement capabilities.
  • user equipment In some wireless communication systems, user equipment (UE) can only measure satellite positioning information when it is in the RRC idle state. In this case, it is necessary to further improve the control process of user equipment measuring satellite positioning information.
  • the present disclosure provides a method, device and readable storage medium for transmitting user equipment measurement capabilities.
  • the first aspect provides a method for transmitting user equipment measurement capabilities, which is performed by the user equipment. This method includes:
  • the method further includes:
  • a message for triggering entry into the RRC idle state is sent to the network device, and satellite positioning information is measured in the RRC idle state.
  • the message used to trigger entry into the RRC idle state is a wireless link failure message; the method further includes: after measuring satellite positioning information in the RRC idle state, sending an RRC to the network device Reconnection request.
  • the message used to trigger entry into the RRC idle state is an RRC connection release request; the method further includes: after measuring satellite positioning information in the RRC idle state, sending an RRC connection to the network device Create request.
  • the method further includes:
  • the configuration information required for measuring satellite positioning information is sent to the network device;
  • the configuration information required for measuring satellite positioning information includes the following items: at least one of:
  • the method further includes: receiving measurement interval configuration information sent by the network device, where the measurement interval indicated by the measurement interval configuration information meets the configuration information required for measuring satellite positioning information; Measure satellite positioning information within the measurement interval indicated by the measurement interval configuration information.
  • the discontinuous reception configuration information sent by the network device is received, and the shutdown period indicated by the discontinuous reception configuration information satisfies the configuration information required for measuring satellite positioning information; during the discontinuous reception Satellite positioning information is measured during the shutdown period indicated by the configuration information.
  • a method of measuring satellite positioning information is provided, which is performed by network equipment. This method includes:
  • Receive user equipment measurement capability information sent by the user equipment where the user equipment measurement capability information is used to indicate whether to support a first capability, where the first capability is to measure satellite positioning information in a radio resource control RRC connection state.
  • the method further includes: in response to the user equipment measurement capability information indicating that the first capability is not supported, receiving a message sent by the user equipment for triggering entry into the RRC idle state.
  • the message used to trigger entry into the RRC idle state is a radio link failure message; the method further includes: receiving an RRC reconnection request.
  • the message used to trigger entry into the RRC idle state is an RRC connection release request; the method further includes: receiving an RRC connection establishment request sent by the user equipment.
  • the method further includes: in response to the user equipment measurement capability information indicating that the first capability is supported, receiving configuration information required for measuring satellite positioning information sent by the user equipment;
  • the configuration information required to measure satellite positioning information includes at least one of the following:
  • the method further includes: receiving measurement interval configuration information sent by the user equipment, where the measurement interval indicated by the measurement interval configuration information meets the configuration information required for measuring satellite positioning information.
  • the method further includes: receiving discontinuous reception configuration information sent by the user equipment, and the shutdown period indicated by the measurement interval configuration information satisfies the configuration information required for measuring satellite positioning information.
  • a communication device may be used to perform the steps performed by the user equipment in the above-mentioned first aspect or any possible design of the first aspect.
  • the user equipment can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device shown in the first aspect is implemented through a software module
  • the communication device may include a transceiver module.
  • a transceiver module configured to send user equipment measurement capability information to the network device.
  • the user equipment measurement capability information is used to indicate whether to support a first capability.
  • the first capability is to measure satellite positioning information in a radio resource control RRC connection state. .
  • a fourth aspect provides a communication device.
  • the communication device may be used to perform the steps performed by the network device in the above-mentioned second aspect or any possible design of the second aspect.
  • the network device can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device shown in the second aspect may include a transceiver module.
  • a transceiver module configured to receive user equipment measurement capability information sent by the user equipment.
  • the user equipment measurement capability information is used to indicate whether to support a first capability.
  • the first capability is to measure satellite positioning in a radio resource control RRC connection state. information.
  • a communication device including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to realize the first aspect or any possibility of the first aspect. the design of.
  • a communication device including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to realize the second aspect or any possibility of the second aspect. the design of.
  • a computer-readable storage medium In a seventh aspect, a computer-readable storage medium is provided. Instructions (or computer programs, programs) are stored in the computer-readable storage medium. When called and executed on a computer, the computer is caused to execute the first aspect. or any possible design of the first aspect.
  • a computer-readable storage medium is provided. Instructions (or computer programs, programs) are stored in the computer-readable storage medium. When called and executed on a computer, the computer is caused to execute the second aspect. or any possible design of the second aspect.
  • the user equipment reports user equipment measurement capability information to the network device to indicate whether it supports the ability to measure satellite positioning information in the Radio Resource Control RRC connection state. After learning whether the user equipment has this capability, the network device determines whether the user equipment has this capability. Different situations allow user equipment to apply its capabilities to avoid connection interruptions caused by returning to the RRC idle state to measure satellite positioning information when supporting this capability, thereby improving resource utilization and network performance.
  • Figure 1 is a schematic diagram of a wireless communication system architecture provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a method for transmitting user equipment measurement capabilities according to an exemplary embodiment
  • Figure 3 is a schematic diagram of another method of transmitting user equipment measurement capabilities according to an exemplary embodiment
  • Figure 4 is a schematic diagram of another method of transmitting user equipment measurement capabilities according to an exemplary embodiment
  • Figure 5 is a schematic diagram of a method for transmitting user equipment measurement capabilities according to an exemplary embodiment
  • Figure 6 is a schematic diagram of a method for receiving user equipment measurement capabilities according to an exemplary embodiment
  • Figure 7 is a structural diagram of an apparatus for transmitting user equipment capabilities according to an exemplary embodiment
  • Figure 8 is a structural diagram of another device for transmitting user equipment capabilities according to an exemplary embodiment
  • Figure 9 is a structural diagram of another device for receiving user equipment capabilities according to an exemplary embodiment
  • Figure 10 is a structural diagram of another device for receiving user equipment capabilities according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • an embodiment of the present disclosure provides a method for transmitting user equipment measurement capabilities, which can be applied to a wireless communication system 100 , which may include but is not limited to a network device 101 and a user equipment 102 .
  • the user equipment 102 is configured to support carrier aggregation, and the user equipment 102 can be connected to multiple carrier units of the network device 101, including a primary carrier unit and one or more secondary carrier units.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • WiMAX global Internet microwave access
  • CRAN cloud radio access network
  • 5G fifth generation
  • 5G new wireless (new radio, NR) communication system
  • PLMN public land mobile network
  • the user equipment 102 shown above can be a user equipment (UE), a terminal, an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, a mobile terminal ( mobile terminal), wireless communication equipment, terminal agent or user equipment, etc.
  • the user equipment 102 may have a wireless transceiver function, which can communicate (such as wireless communication) with one or more network devices 101 of one or more communication systems, and accept network services provided by the network device 101.
  • the network device 101 Including but not limited to the base station shown in the figure.
  • the user equipment 102 may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, a device with Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, user equipment in future 5G networks or user equipment in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 101 may be an access network device (or access network site).
  • access network equipment refers to equipment that provides network access functions, such as wireless access network (radio access network, RAN) base stations and so on.
  • Network equipment may specifically include base station (BS) equipment, or include base station equipment and wireless resource management equipment used to control base station equipment, etc.
  • the network equipment may also include relay stations (relay equipment), access points, and base stations in future 5G networks, base stations in future evolved PLMN networks, or NR base stations, etc.
  • Network devices can be wearable devices or vehicle-mounted devices.
  • the network device may also be a communication chip with a communication module.
  • the network equipment 101 includes but is not limited to: the next generation base station (gnodeB, gNB) in 5G, the evolved node B (evolved node B, eNB) in the LTE system, the radio network controller (radio network controller, RNC), Node B (NB) in the WCDMA system, wireless controller under the CRAN system, base station controller (BSC), base transceiver station (BTS) in the GSM system or CDMA system, home Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP) or mobile switching center, etc.
  • gnodeB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • the UE can only measure satellite positioning information in the RRC idle state. If the UE needs to measure satellite positioning information when it is in the RRC connected state, it must transition from the RRC connected state to the RRC idle state to complete the measurement, and After the measurement is completed, the connection application is reinitiated to enter the RRC connection state. This will cause problems such as long interruption delay and affect network efficiency and performance.
  • IoT Internet of Things
  • NTN non-terrestrial networks
  • Embodiments of the present disclosure provide a method for transmitting user equipment capabilities.
  • Figure 2 is a flow chart of a method for transmitting user equipment capabilities according to an exemplary embodiment. As shown in Figure 2, the method includes steps S202- S205, specifically:
  • measuring satellite positioning information is measuring positioning information of a Global Navigation Satellite System (GNSS).
  • GNSS Global Navigation Satellite System
  • Step S202 The user equipment sends user equipment measurement capability information to the network device.
  • the user equipment measurement capability information sent by the user equipment to the network device is used to indicate whether to support the first capability, where the first capability is to measure satellite positioning information in a radio resource control RRC connection state.
  • the network device After receiving the user equipment measurement capability information, the network device can learn whether the user equipment can measure satellite positioning information in the RRC connection state.
  • Step S203 In response to the user equipment measurement capability information indicating that the first capability is supported (that is, in response to the user equipment supporting the first capability), the user equipment sends the configuration information required to measure satellite positioning information to the network device. .
  • the configuration information required for measuring satellite positioning information includes at least one of the following items:
  • Step S204 The network device sends measurement interval configuration information to the user equipment.
  • the measurement interval indicated by this measurement interval configuration information meets the configuration information required for measuring satellite positioning information.
  • the measurement interval gap is used for the UE to perform GNSS measurement within the gap to obtain GNSS positioning information.
  • the gap configuration information should include at least one of the following parameters: the starting point of the gap, the end point of the gap, and the length of the gap. In this way, for example, the user equipment can learn the relevant parameters of the measured gap based on the starting point of the gap and the length of the gap.
  • the starting point, end point, and length can be either an absolute time point or a relative time point; for example, the starting point can be an offset value relative to a certain reference time point,
  • the length of the gap can be an absolute time length gapduration or an offset value relative to a certain reference time point; similarly, the end point can also be an absolute time point or an offset value offset.
  • Step S205 The user equipment measures satellite positioning information within the measurement interval indicated by the measurement interval configuration information.
  • the user equipment proactively sends user equipment measurement capability information to the network device regularly or periodically. That is, the method includes: in response to the user equipment measurement capability information indicating that the first capability is supported (that is, in response to the user equipment supporting the first capability), the user equipment regularly or periodically sends a message to the network device. Satellite positioning information; wherein the satellite positioning information is measured by the user equipment.
  • the method may further include: receiving trigger information sent by a network device, and sending satellite positioning information to the network device regularly or periodically according to the trigger information. In an implementation manner, the satellite positioning information is measured regularly or periodically by the user equipment.
  • the star positioning information is measured for the user equipment and then sent to the network equipment regularly or periodically; this solution can be used for example for user equipment that does not move frequently.
  • the user equipment reports user equipment measurement capability information to the network device to indicate whether it supports the ability to measure satellite positioning information in the Radio Resource Control RRC connection state. After learning whether the user equipment has this capability, the network device determines whether the user equipment has this capability. Different situations allow user equipment to apply its capabilities to avoid connection interruptions caused by returning to the RRC idle state to measure satellite positioning information when supporting this capability, thereby improving resource utilization and network performance.
  • the method may include:
  • Step S201 the network device sends a reporting notification message to the user equipment; wherein the reporting notification message is used to instruct the user equipment to send user equipment measurement capability information to the network device; wherein the user equipment measurement capability information is used to indicate whether the first capability is supported, so The first capability is to measure satellite positioning information in a radio resource control (RRC) connection state.
  • RRC radio resource control
  • the method may also include:
  • the user equipment When the user equipment meets the preset conditions, the user equipment reports measurement capability information of the user equipment to the network equipment.
  • the preset conditions may be determined by the 3GPP communication protocol, configured by the network device for the user equipment, or pre-stored in the user equipment. For example, the preset condition can be scheduled or periodic active sending.
  • FIG. 3 is a flow chart of a method for transmitting user equipment capabilities according to an exemplary embodiment. As shown in Figure 3, the method includes steps S302- S305, specifically:
  • Step S302-S303 corresponds to S202-S203 the same.
  • Step S304 The network device sends discontinuous reception DRX configuration information to the user equipment.
  • the shutdown period indicated by this discontinuous reception DRX configuration information satisfies the configuration information required for measuring satellite positioning information.
  • the off period (DRX off period) configured in the discontinuous reception DRX configuration information configured by the network device is used to perform GNSS measurements to obtain GNSS positioning information.
  • the user equipment measures satellite positioning information during the shutdown period indicated by the discontinuous reception configuration information.
  • the user equipment reports user equipment measurement capability information to the network device to indicate whether it supports the ability to measure satellite positioning information in the Radio Resource Control RRC connection state. After learning whether the user equipment has this capability, the network device determines whether the user equipment has this capability. Different situations allow user equipment to apply its capabilities to avoid connection interruptions caused by returning to the RRC idle state to measure satellite positioning information when supporting this capability, thereby improving resource utilization and network performance.
  • the user equipment can be triggered to report the user equipment measurement capability information in various ways.
  • the method may include:
  • Step S301 the network device sends a reporting notification message to the user equipment; wherein the reporting notification message is used to instruct the user equipment to send user equipment measurement capability information to the network device; wherein the user equipment measurement capability information is used to indicate whether the first capability is supported, so The first capability is to measure satellite positioning information in a radio resource control (RRC) connection state.
  • RRC radio resource control
  • the method may further include: when the user equipment meets the preset conditions, reporting the user equipment measurement capability information to the network device.
  • the preset conditions may be determined by the 3GPP communication protocol, configured by the network device for the user equipment, or pre-stored in the user equipment. For example, the preset condition is scheduled or periodic active sending.
  • FIG. 4 is a flow chart of a method for transmitting user equipment capabilities according to an exemplary embodiment. As shown in Figure 4, the method includes steps S402- S404, specifically:
  • Step S402 The user equipment sends user equipment measurement capability information to the network device, where the user equipment measurement capability information is used to indicate whether the user equipment supports a first capability.
  • the first capability is in a radio resource control RRC connection state. Measure satellite positioning information.
  • the network device After receiving the user equipment measurement capability information, the network device can learn whether the user equipment can measure satellite positioning information in the RRC connection state.
  • Step S403 In response to the user equipment measurement capability information indicating that the first capability is not supported (that is, in response to the user equipment not supporting the first capability), the user equipment sends a message to the network device for triggering entry into the RRC idle state. message to measure satellite positioning information in RRC idle state.
  • step S402 can be omitted, and step S403 is directly performed.
  • the user equipment sends a message for triggering entry into the RRC idle state to the network device.
  • the RRC idle state Measure satellite positioning information.
  • the network device After the network device sends the reporting notification information, if it receives the information sent by the user equipment to trigger entry into the RRC idle state (the information can be a wireless link failure RLF message), it is considered that the user equipment does not support the first capability.
  • Step S404 The user equipment enters the RRC connection state.
  • the message used to trigger entering the RRC idle state in S403 is the radio link failure RLF message.
  • RLF message After the RRC idle state measurement satellite positioning information is completed, an RRC reconnection request is sent to enter the RRC connection state.
  • the message used to trigger entry into the RRC idle state in S403 is an RRC connection release request.
  • the RRC connection is directly disconnected, and the user equipment enters the RRC idle state.
  • an RRC connection establishment request is initiated to Re-establish the RRC connection.
  • After re-establishing the RRC connection enter the RRC connection state.
  • the user equipment reports user equipment measurement capability information to the network device to indicate whether it supports the ability to measure satellite positioning information in the radio resource control RRC connection state.
  • the user equipment only interrupts the RRC connection when it does not have this capability. This allows the user equipment to apply its capabilities according to different situations, avoids connection interruption caused by returning to the RRC idle state to measure satellite positioning information when supporting this capability, and improves resource utilization and network performance.
  • the method may include:
  • Step S401 the network device sends a reporting notification message to the user equipment; wherein the reporting notification message is used to instruct the user equipment to send user equipment measurement capability information to the network device; wherein the user equipment measurement capability information is used to indicate whether the first capability is supported, so The first capability is to measure satellite positioning information in a radio resource control (RRC) connection state.
  • RRC radio resource control
  • the method may further include: when the user equipment meets the preset conditions, reporting the user equipment measurement capability information to the network device.
  • the preset conditions may be determined by the 3GPP communication protocol, configured by the network device for the user equipment, or pre-stored in the user equipment. For example, the preset condition is scheduled or periodic active sending.
  • Embodiments of the present disclosure provide a method for sending user equipment capabilities. This method is executed by user equipment.
  • Figure 5 is a flow chart of a method for sending user equipment capabilities according to an exemplary embodiment. As shown in Figure 5 , the method includes:
  • Step S501 Send user equipment measurement capability information to the network device.
  • This user equipment measurement capability information is used to indicate whether to support the first capability, which is to measure satellite positioning information in a radio resource control RRC connection state.
  • measuring satellite positioning information is measuring GNSS positioning information.
  • Step S502 In response to the user equipment measurement capability information indicating that the first capability is not supported (that is, in response to the user equipment not supporting the first capability), send a message for triggering entry into the RRC idle state to the network device. .
  • Step S503 Measure satellite positioning information in the RRC idle state.
  • step S501 may be omitted in some possible implementations. That is, step S502 is directly executed.
  • the user equipment sends a message for triggering entry into the RRC idle state to the network device, and measures satellite positioning information in the RRC idle state. If the network device receives the information sent by the user equipment for triggering entry into the RRC idle state (the information may be a radio link failure RLF message), it is considered that the user equipment does not support the first capability.
  • the message used to trigger entering the RRC idle state in step S502 is a wireless link failure RLF message; after step S503, the process also includes: sending an RRC reconnection request to the network device to enter the RRC connected state, the process Finish.
  • the message used to trigger entering the RRC idle state in step S502 is an RRC connection release request.
  • step S503 it also includes: sending a request to the network device to enter the RRC connection state, and the process ends.
  • Step S502' in response to the user equipment measurement capability information indicating that the first capability is supported (that is, in response to the user equipment supporting the first capability), send the configuration information required for measuring satellite positioning information to the network device.
  • the configuration information required for measuring satellite positioning information includes at least one of the following items:
  • Step S503' Receive the measurement interval configuration information sent by the network device, where the measurement interval indicated by the measurement interval configuration information meets the configuration information required for measuring satellite positioning information.
  • Step S504' measure satellite positioning information within the measurement interval indicated by the measurement interval configuration information. The process ends.
  • the measurement interval gap is used for the UE to perform GNSS measurement within the gap to obtain GNSS positioning information.
  • the gap configuration information should include at least one of the following parameters: the starting point of the gap, the end point of the gap, and the length of the gap. In this way, for example, the user equipment can learn the relevant parameters of the measured gap based on the starting point of the gap and the length of the gap.
  • the starting point, end point, and length can be either an absolute time point or a relative time point; for example, the starting point can be an offset value relative to a certain reference time point,
  • the length of the gap can be an absolute time length gap duration or an offset value relative to a certain reference time point; similarly, the end point can also be an absolute time point or an offset value offset.
  • Step S503 receive the discontinuous reception configuration information sent by the network device, wherein the shutdown period indicated by the discontinuous reception configuration information satisfies the configuration information required for measuring satellite positioning information.
  • Step S504" measure satellite positioning information during the shutdown period indicated by the discontinuous reception configuration information.
  • Embodiments of the present disclosure provide a method for receiving user equipment capabilities. This method is executed by a network device.
  • Figure 6 is a flow chart of a method for receiving user equipment capabilities according to an exemplary embodiment. As shown in Figure 6 , the method includes steps S601-S604, specifically:
  • Step S601 Receive measurement capability information sent by the user equipment.
  • This user equipment measurement capability information is used to indicate whether to support the first capability, which is to measure satellite positioning information in a radio resource control RRC connection state.
  • Step S602 Receive a message used to trigger entry into the RRC idle state
  • Step S603 Receive an RRC reconnection request or an RRC connection establishment request, and the process ends.
  • the method includes
  • Step S601 Receive measurement capability information sent by the user equipment.
  • This user equipment measurement capability information is used to indicate whether to support the first capability, which is to measure satellite positioning information in a radio resource control RRC connection state.
  • Step S602' Receive configuration information required for measuring satellite positioning information.
  • the configuration information required for measuring satellite positioning information includes at least one of the following items:
  • Step S603' Send measurement interval configuration information to the user equipment.
  • the measurement interval indicated by the measurement interval configuration information meets the configuration information required for measuring satellite positioning information.
  • the measurement interval gap is used for the UE to perform GNSS measurements within the gap to obtain GNSS positioning information.
  • the method includes
  • Step S601 Receive measurement capability information sent by the user equipment.
  • This user equipment measurement capability information is used to indicate whether to support the first capability, which is to measure satellite positioning information in a radio resource control RRC connection state.
  • Step S602' Receive configuration information required for measuring satellite positioning information.
  • the configuration information required for measuring satellite positioning information includes at least one of the following items:
  • Step S603 of measuring the duration of the satellite positioning information, the measurement repetition period, and the offset value of the measurement starting time point, and sending discontinuous reception configuration information to the user equipment.
  • the shutdown period indicated by the discontinuous reception configuration information satisfies the configuration information required for measuring satellite positioning information.
  • the off period (DRX off period) configured in the discontinuous reception DRX configuration information configured by the network device is used to perform GNSS measurements to obtain GNSS positioning information.
  • embodiments of the present disclosure also provide an electronic device, which can have the functions of the user equipment 102 in the above method embodiments, and is used to perform the functions provided by the user equipment 102 in the above embodiments. steps to perform.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the electronic device 700 shown in FIG. 7 can serve as the user equipment 102 involved in the above method embodiment, and perform the steps performed by the user equipment 102 in one of the above method embodiments.
  • the communication device 700 includes a transceiver module 701 and a processing module 702.
  • the transceiver module 701 is configured to send user equipment measurement capability information to the network device.
  • the user equipment measurement capability information is used to indicate whether to support a first capability.
  • the first capability is to measure satellite positioning in a radio resource control RRC connection state. information.
  • the transceiver module 701 is further configured to send a message for triggering entry into the RRC idle state to the network device in response to the user equipment measurement capability information indicating that the first capability is not supported;
  • the processing module 702 is configured to measure satellite positioning information in the RRC idle state.
  • the message used to trigger entry into the RRC idle state is a radio link failure message.
  • the transceiver module 701 is also configured to send an RRC reconnection request to the network device after measuring satellite positioning information in the RRC idle state.
  • the message used to trigger entry into the RRC idle state is an RRC connection release request
  • the transceiver module 701 is also configured to send an RRC connection establishment request to the network device after measuring satellite positioning information in the RRC idle state.
  • the transceiver module 701 is further configured to send the configuration information required for measuring satellite positioning information to the network device in response to the user equipment measurement capability information indicating that the first capability is supported;
  • the configuration information required for measuring satellite positioning information includes at least one of the following items: the duration of measuring the satellite positioning information, the measurement repetition period, and the offset value of the measurement starting time point.
  • the transceiver module 701 is also configured to receive the measurement interval configuration information sent by the network device, and the measurement interval indicated by the measurement interval configuration information meets the configuration information required for measuring satellite positioning information;
  • the processing module 702 is also configured to measure satellite positioning information within the measurement interval indicated by the measurement interval configuration information.
  • the transceiver module 701 is also configured to receive discontinuous reception configuration information sent by the network device, and the shutdown period indicated by the discontinuous reception configuration information satisfies the configuration required for measuring satellite positioning information. information;
  • the processing module 702 is further configured to measure satellite positioning information during the shutdown period indicated by the discontinuous reception configuration information.
  • the communication device When the communication device is user equipment 102, its structure may also be as shown in Figure 8.
  • the device 800 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the device 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communications component 816.
  • Processing component 802 generally controls the overall operations of device 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operations at device 800 . Examples of such data include instructions for any application or method operating on device 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power component 806 provides power to various components of device 800.
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 800 .
  • Multimedia component 808 includes a screen that provides an output interface between the device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 808 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) configured to receive external audio signals when device 800 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signal may be further stored in memory 804 or sent via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 814 includes one or more sensors that provide various aspects of status assessment for device 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the device 800, and the sensor component 814 can also detect a change in position of the device 800 or a component of the device 800. , the presence or absence of user contact with the device 800 , device 800 orientation or acceleration/deceleration and temperature changes of the device 800 .
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between apparatus 800 and other devices.
  • Device 800 may access a wireless network based on a communication standard, such as WiFi, 4G or 5G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 816 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 800 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 804 including instructions, which are executable by the processor 820 of the apparatus 800 to complete the above method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • embodiments of the present disclosure also provide a communication device, which can have the functions of the network device 101 in the above method embodiments, and is used to perform the functions provided by the network device 101 in the above embodiments. steps to perform.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 900 shown in Figure 9 can serve as the network device 101 involved in the above method embodiment, and perform the steps performed by the network device 101 in the above method embodiment.
  • the communication device 900 shown in FIG. 9 includes a transceiver module 901 and a processing module 902.
  • the transceiver module 901 is configured to receive user equipment measurement capability information sent by the user equipment.
  • the user equipment measurement capability information is used to indicate whether to support a first capability.
  • the first capability is to measure satellite positioning in a radio resource control RRC connection state. information.
  • the transceiver module 901 is further configured to receive a message sent by the user equipment for triggering entry into the RRC idle state in response to the user equipment measurement capability information indicating that the first capability is not supported. .
  • the message used to trigger entry into the RRC idle state is a wireless link failure message; the transceiver module 901 is also configured to receive an RRC reconnection request.
  • the message used to trigger entry into the RRC idle state is an RRC connection release request; the transceiver module 901 is also configured to receive an RRC connection establishment request sent by the user equipment.
  • the transceiver module 901 is further configured to receive the configuration information required for the satellite positioning information sent by the user equipment in response to the user equipment measurement capability information indicating that the first capability is supported; Describe the configuration information required for measuring satellite positioning information, including at least one of the following:
  • the transceiver module 901 is further configured to receive measurement interval configuration information sent by the network device, where the measurement interval indicated by the measurement interval configuration information meets the configuration information required for measuring satellite positioning information.
  • the transceiver module 901 is further configured to receive discontinuous reception configuration information sent by the network device, and the shutdown period indicated by the measurement interval configuration information satisfies the configuration information required for measuring satellite positioning information.
  • device 1000 When the communication device is a network device 101, its structure can also be shown in Figure 10.
  • device 1000 includes a memory 1001, a processor 1002, a transceiver component 1003, and a power supply component 1006.
  • the memory 1001 is coupled to the processor 1002 and can be used to store programs and data necessary for the communication device 1000 to implement various functions.
  • the processor 1002 is configured to support the communication device 1000 to perform corresponding functions in the above method. This function can be implemented by calling a program stored in the memory 1001 .
  • the transceiver component 1003 may be a wireless transceiver, which may be used to support the communication device 1000 to receive signaling and/or data through a wireless air interface, and to send signaling and/or data.
  • the transceiver component 1003 may also be called a transceiver unit or a communication unit.
  • the transceiver component 1003 may include a radio frequency component 1004 and one or more antennas 1005.
  • the radio frequency component 1004 may be a remote radio unit (RRU). Specifically, It can be used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the one or more antennas 1005 can be specifically used for radiating and receiving radio frequency signals.
  • the processor 1002 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit.
  • the radio frequency unit performs radio frequency processing on the baseband signal and then sends the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1002.
  • the processor 1002 converts the baseband signal into data and processes the data. for processing.
  • the user equipment reports user equipment measurement capability information to the network device to indicate whether it supports the ability to measure satellite positioning information in the radio resource control RRC connection state. After the network device learns whether the user equipment has this capability, the user equipment can be used according to different situations. Apply its capabilities to avoid connection interruptions caused by returning to the RRC idle state to measure satellite positioning information when supporting this capability, and improve resource utilization and network performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种传输用户设备测量能力的方法、装置及可读存储介质,应用于无线通信技术领域,此方法包括:用户设备向网络设备发送用户设备测量能力信息,所述用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。本公开中,用户设备向网络设备上报用户设备测量能力信息,以指示是否支持在无线资源控制RRC连接状态下测量卫星定位信息的能力,网络设备在获知用户设备是否具有此能力后,根据不同的情况使用户设备应用其具有的能力,避免在支持此能力时还回到RRC空闲状态测量卫星定位信息导致的连接中断的情况,提高资源利用率和网络性能。

Description

一种传输用户设备测量能力的方法、装置及可读存储介质 技术领域
本公开涉及无线通信技术,尤其涉及一种传输用户设备测量能力的方法、装置及可读存储介质。
背景技术
在一些无线通信系统中,用户设备(user equipment,UE)只能在处于RRC空闲状态时才能测量卫星定位信息。在此情况下,需要进一步提升用户设备测量卫星定位信息的控制过程的。
发明内容
本公开提供一种传输用户设备测量能力的方法、装置及可读存储介质。
第一方面,提供了一种传输用户设备测量能力的方法,由用户设备执行,此方法包括:
向网络设备发送用户设备测量能力信息,所述用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
在一些可能的实施方式中,所述方法还包括:
响应于所述用户设备测量能力信息指示不支持所述第一能力,向所述网络设备发送用于触发进入RRC空闲状态的消息,在RRC空闲状态下测量卫星定位信息。
在一些可能的实施方式中,所述用于触发进入RRC空闲状态的消息为无线链路失败消息;所述方法还包括:在RRC空闲状态下测量卫星定位信息后,向所述网络设备发送RRC重连接请求。
在一些可能的实施方式中,所述用于触发进入RRC空闲状态的消息为RRC连接释放请求;所述方法还包括:在RRC空闲状态下测量卫星定位信息后,向所述网络设备发送RRC连接建立请求。
在一些可能的实施方式中,所述方法还包括:
响应于所述用户设备测量能力信息指示支持所述第一能力,向所述网络设备发送测量卫星定位信息所需的配置信息;所述测量卫星定位信息所需的配置信息,包括以下各项中的至少一项:
测量所述卫星定位信息的持续时长、测量重复周期、测量起始时间点的偏置值。
在一些可能的实施方式中,所述方法还包括:接收所述网络设备发送的测量间隔配置信息,所述测量间隔配置信息所指示的测量间隔满足测量卫星定位信息所需的配置信息;在所述测量间隔配置信息指示的测量间隔内测量卫星定位信息。
在一些可能的实施方式中,接收所述网络设备发送的非连续接收配置信息,所述非连续接收配置信息所指示的关闭期间满足测量卫星定位信息所需的配置信息;在所述非连续接收配置信息指示的关闭期间测量卫星定位信息。
第二方面,提供了一种测量卫星定位信息的方法,由网络设备执行,此方法包括:
接收用户设备发送的用户设备测量能力信息,所述用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
在一些可能的实施方式中,所述方法还包括:响应于所述用户设备测量能力信息指示不支持所述第一能力,接收所述用户设备发送的用于触发进入RRC空闲状态的消息。
在一些可能的实施方式中,所述用于触发进入RRC空闲状态的消息为无线链路失败消息;所述方法还包括:接收RRC重连接请求。
在一些可能的实施方式中,所述用于触发进入RRC空闲状态的消息为RRC连接释放请求;所述方法还包括:接收所述用户设备发送的RRC连接建立请求。
在一些可能的实施方式中,所述方法还包括:响应于所述用户设备测量能力信息指示支持所述第一能力,接收所述用户设备发送的测量卫星定位信息所需的配置信息;所述测量卫星定位信息所需的配置信息,包括以下各项中的至少一项:
测量所述卫星定位信息的持续时长、测量重复周期、测量起始时间点的偏置值。
在一些可能的实施方式中,所述方法还包括:接收所述用户设备发送的测量间隔配置信息,所述测量间隔配置信息指示的测量间隔满足测量卫星定位信息所需的配置信息。
在一些可能的实施方式中,所述方法还包括:接收所述用户设备发送的非连续接收配置信息,所述测量间隔配置信息指示的关闭期间满足测量卫星定位信息所需的配置信息。
第三方面,提供一种通信装置。该通信装置可用于执行上述第一方面或第一方面的任一可能的设计中由用户设备执行的步骤。该用户设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第一方面所示通信装置时,该通信装置可包括收发模块。
收发模块,被配置为向网络设备发送用户设备测量能力信息,所述用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
第四方面,提供一种通信装置。该通信装置可用于执行上述第二方面或第二方面的任一可能的设计中由网络设备执行的步骤。该网络设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第二方面所示通信装置时,该通信装置可包括收发模块。
收发模块,被配置为接收用户设备发送的用户设备测量能力信息,所述用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
第五方面,提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能 的设计。
第六方面,提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第二方面或第二方面的任意一种可能的设计。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计。
本公开实施例中,用户设备向网络设备上报用户设备测量能力信息,以指示是否支持在无线资源控制RRC连接状态下测量卫星定位信息的能力,网络设备在获知用户设备是否具有此能力后,根据不同的情况使用户设备应用其具有的能力,避免在支持此能力时还回到RRC空闲状态测量卫星定位信息导致的连接中断的情况,提高资源利用率和网络性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是根据一示例性实施例示出的一种传输用户设备测量能力的方法的示意图;
图3是根据一示例性实施例示出的另一种传输用户设备测量能力的方法的示意图;
图4是根据一示例性实施例示出的另一种传输用户设备测量能力的方法的示意图;
图5是根据一示例性实施例示出的一种发送用户设备测量能力的方法的示意图;
图6是根据一示例性实施例示出的一种接收用户设备测量能力的方法的示意图;
图7是根据一示例性实施例示出的一种发送用户设备能力的装置的结构图;
图8是根据一示例性实施例示出的另一种发送用户设备能力的装置的结构图;
图9是根据一示例性实施例示出的另一种接收用户设备能力的装置的结构图;
图10是根据一示例性实施例示出的另一种接收用户设备能力的装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例提供的一种传输用户设备测量能力的方法,可应用于无线通信系统100,该无线通信系统可以包括但不限于网络设备101和用户设备102。用户设备102被配置为支持载波聚合,用户设备102可连接至网络设备101的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备102可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或用户设备等。该用户设备102可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备101进行通信(如无线通信),并接受网络设备101提供的网络服务,这里的网络设备101包括但不限于图示基站。
其中,用户设备102可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal  digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的用户设备或者未来演进的PLMN网络中的用户设备等。
网络设备101可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备具体可包括基站(base station,BS)设备,或包括基站设备以及用于控制基站设备的无线资源管理设备等。该网络设备还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备可以是可穿戴设备或车载设备。网络设备也可以是具有通信模块的通信芯片。
比如,网络设备101包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
在一些无线通信系统中,UE只能在RRC空闲状态中测量卫星定位信息,如果UE在RRC连接状态时需要测量卫星定位信息,则必须从RRC连接状态转换为RRC空闲状态,才能完成测量,并在测量结束后,重新发起连接申请,以进入RRC连接状态,这样会造成中断时延过长等问题,影响网络效率和性能。
本公开实施例可应用于但不局限于物联网(Internet of Things,IoT)非地面网络(non-terrestrial networks,NTN)。
本公开实施例提供了一种传输用户设备能力的方法,图2是根据一示例性实施例示出的一种传输用户设备能力的方法的流程图,如图2所示,该方法包括步骤S202-S205,具体的:
在一示例中,测量卫星定位信息为测量全球导航卫星系统(Global Navigation Satellite System,GNSS)的定位信息。
步骤S202,用户设备向网络设备发送用户设备测量能力信息。
用户设备向网络设备发送的用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
网络设备在接收到所述用户设备测量能力信息,便可获知用户设备是否能够在RRC连接状态下测量卫星定位信息。
步骤S203,响应于所述用户设备测量能力信息指示支持所述第一能力(即响应于用户设备支持所述第一能力),用户设备向所述网络设备发送测量卫星定位信息所需的配置信息。
其中,所述测量卫星定位信息所需的配置信息,包括以下各项中的至少一项:
测量所述卫星定位信息的持续时长、测量重复周期、测量起始时间点的偏置值。
步骤S204,网络设备向用户设备发送测量间隔配置信息。此测量间隔配置信息所指示的测量间隔满足测量卫星定位信息所需的配置信息。其中,该测量间隔gap,用于所述UE在该gap内执行GNSS测量以获取GNSS定位信息。在一种可能的实现方式中,该gap配置信息应包括以下的至少一种参数:gap的起始点、gap的结束点、gap的长度。这样,示例性的,可以根据gap的起始点和gap的长度,用户设备可以得知进行测量的gap的相关参数。其中,对于起始点、结束点、长度,其既可以是一个绝对的时间点,也可以是一个相对的时间点;例如,该起始点可以是相对于某一个参考时间点的偏移值offset,该gap的长度可以是一个绝对时间长度gapduration或是相对于某一参考时间点的偏移值offset;同理,结束点也可以是一个绝对时间点或是偏移值offset。
步骤S205,用户设备在所述测量间隔配置信息指示的测量间隔内测量卫星定位信息。
在另一实施例中,由用户设备定时的或者周期性的主动向网络设备发送用户设备测量能力信息。即,所述方法包括:响应于所述用户设备测量能力信息指示支持所述第一能力(即响应于用户设备支持所述第一能力),用户设备定时或周期性的向所述网络设备发送卫星定位信息;其中所述卫星定位信息为所述用户设备测量得到的。在一种可能的实现方式中,该方法可以还包括:接收网络设备发送的触发信息,以根据所述触发信息定时或周期性的向所述网络设备发送卫星定位信息。在一种实现方式中,该卫星定位信息为所述用户设备定时或周期性测量得到的。在另一种实现方式中,该星定位信息为所述用户设备测量后,定时或周期性发送给网络设备;这种方案示例性的可以用于不经常移动的用户设备。本公开实施例中,用户设备向网络设备上报用户设备测量能力信息,以指示是否支持在无线资源控制RRC连接状态下测量卫星定位信息的能力,网络设备在获知用户设备是否具有此能力后,根据不同的情况使用户设备应用其具有的能力,避免在支持此能力时还回到RRC空闲状态测量卫星定位信息导致的连接中断的情况,提高资源利用率和网络性能。
在公开的上述实施例中,可以有多种方式触发用户设备上报用户设备测量能力信息。
例如,所述方法可以包括:
步骤S201,网络设备向用户设备发送上报通知消息;其中该上报通知消息用于指示用户设备向网络设备发送用户设备测量能力信息;其中,用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
又例如:所述方法还可以包括:
用户设备基于满足预设条件时,向网络设备上报用户设备测量能力信息。该预设条件可以为3GPP通信协议确定的,也可以为网络设备配置给用户设备的,或是预存在用户设备内的。例如,预设条件可以为定时的或者周期性的主动发送。
本公开实施例提供了一种传输用户设备能力的方法,图3是根据一示例性实施例示出的一种传输用户设备能力的方法的流程图,如图3所示,该方法包括步骤S302-S305,具体的:
S302-S303与S202-S203对应相同。步骤S304,网络设备向用户设备发送非连续接收DRX配置信息。此非连续接收DRX配置信息所指示的关闭期间满足测量卫星定位信息所需的配置信息。网络设备配置的非连续接收DRX配置信息中配置的关闭期间(DRX off期间),用于执行GNSS测量获取GNSS定位信息。步骤S305中,用户设备在所述非连续接收配置信息指示的关闭期间测量卫星定位信息。
本公开实施例中,用户设备向网络设备上报用户设备测量能力信息,以指示是否支持在无线资源控制RRC连接状态下测量卫星定位信息的能力,网络设备在获知用户设备是否具有此能力后,根据不同的情况使用户设备应用其具有的能力,避免在支持此能力时还回到RRC空闲状态测量卫星定位信息导致的连接中断的情况,提高资源利用率和网络性能。
与如图2所示的实施例相似的,在公开的上述实施例中,可以有多种方式触发用户设备上报用户设备测量能力信息。
例如,所述方法可以包括:
步骤S301,网络设备向用户设备发送上报通知消息;其中该上报通知消息用于指示用户设备向网络设备发送用户设备测量能力信息;其中,用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
又例如:所述方法还可以包括:用户设备基于满足预设条件时,向网络设备上报用户设备测量能力信息。该预设条件可以为3GPP通信协议确定的,也可以为网络设备配置给用户设备的,或是预存在用户设备内的。例如,预设条件为定时的或者周期性的主动发送。
本公开实施例提供了一种传输用户设备能力的方法,图4是根据一示例性实施例示出的一种传输用户设备能力的方法的流程图,如图4所示,该方法包括步骤S402-S404,具体的:
步骤S402,用户设备向网络设备发送用户设备测量能力信息,其中所述用户设备测量能力信息用于指示所述用户设备是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
网络设备在接收到所述用户设备测量能力信息,便可获知用户设备是否能够在RRC连接状态下测量卫星定位信息。
步骤S403,响应于所述用户设备测量能力信息指示不支持所述第一能力(即响应于用户设备不支持所述第一能力),用户设备向所述网络设备发送用于触发进入RRC空闲状态的消息,在RRC空闲状态下测量卫星定位信息。
在本公开实施例中,如果用户设备不支持第一能力,则步骤S402可以省略,直接执行步骤S403,用户设备向所述网络设备发送用于触发进入RRC空闲状态的消息,在RRC空闲状态下测量卫星定位信息。而网络设备在发送了上报通知信息后,如果收到了用户设备发送的用于触发进入RRC空闲状态的信息(该信息可以为无线链路失败RLF消息),则认为该用户设备不支持第一能力。步骤S404,用户设备进入RRC连接状态。
其中,S403中用于触发进入RRC空闲状态的消息为无线链路失败RLF消息,在RRC空闲状态测量卫星定位信息完成后,发送RRC重连接请求,以进入RRC连接状态。
其中,S403中用于触发进入RRC空闲状态的消息为RRC连接释放请求,直接断开RRC连接,用户设备进入RRC空闲状态,在RRC空闲状态测量卫星定位信息完成后,发起RRC连接建立请求,以重新建立RRC连接,在重新建立RRC连接后,进入RRC连接状态。
本公开实施例中,用户设备向网络设备上报用户设备测量能力信息,以指示是否支持在无线资源控制RRC连接状态下测量卫星定位信息的能力,用户设备在不具有此能力时才中断RRC连接,从而根据不同的情况使用户设备应用其具有的能力,避免在支持此能力时还回到RRC空闲状态测量卫星定位信息导致的连接中断的情况,提高资源利用率和网络性能。
在公开的上述实施例中,可以有多种方式触发用户设备上报用户设备测量能力信息。
例如,所述方法可以包括:
步骤S401,网络设备向用户设备发送上报通知消息;其中该上报通知消息用于指示用户设备向网络设备发送用户设备测量能力信息;其中,用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
又例如:所述方法还可以包括:用户设备基于满足预设条件时,向网络设备上报用户设备测量能力信息。该预设条件可以为3GPP通信协议确定的,也可以为网络设备配置给用户设备的,或是预存在用户设备内的。例如,预设条件为定时的或者周期性的主动发送。
本公开实施例提供了一种发送用户设备能力的方法,此方法由用户设备执行,图5是根据一示例性实施例示出的一种发送用户设备能力的方法的流程图,如图5所示,该方法包括:
步骤S501,向网络设备发送用户设备测量能力信息。
此用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
在一示例中,测量卫星定位信息为测量GNSS的定位信息。
步骤S502,响应于所述用户设备测量能力信息指示不支持所述第一能力(即响应于用户设备不支持所述第一能力),向所述网络设备发送用于触发进入RRC空闲状态的消息。
步骤S503,在RRC空闲状态下测量卫星定位信息。
在本公开实施例中,如果用户设备不支持第一能力,在一些可能的实现方式中可以省略步骤S501。即,直接执行步骤S502,用户设备向所述网络设备发送用于触发进入RRC空闲状态的消息,在RRC空闲状态下测量卫星定位信息。而网络设备如果收到了用户设备发送的用于触发进入RRC空闲状态的信息(该信息可以为无线链路失败RLF消息),则认为该用户设备不支持第一能力。
在一些可能的实施方式中,步骤S502中用于触发进入RRC空闲状态的消息为无线链路失败RLF消息;步骤S503后,还包括:向网络设备发送RRC重连接请求以进入RRC连接状态,流程结束。
在一些可能的实施方式中,步骤S502中用于触发进入RRC空闲状态的消息为RRC连接释放请求,步骤S503后,还包括:向网络设备发送请求,以进入RRC连接状态,流 程结束。
步骤S502’,响应于所述用户设备测量能力信息指示支持所述第一能力(即响应于用户设备支持所述第一能力),向所述网络设备发送测量卫星定位信息所需的配置信息。
其中,所述测量卫星定位信息所需的配置信息,包括以下各项中的至少一项:
测量所述卫星定位信息的持续时长、测量重复周期、测量起始时间点的偏置值。
步骤S503’,接收所述网络设备发送的测量间隔配置信息,其中,所述测量间隔配置信息所指示的测量间隔满足测量卫星定位信息所需的配置信息。
步骤S504’,在所述测量间隔配置信息指示的测量间隔内测量卫星定位信息。流程结束。
其中,该测量间隔gap,用于所述UE在该gap内执行GNSS测量以获取GNSS定位信息。在一种可能的实现方式中,该gap配置信息应包括以下的至少一种参数:gap的起始点、gap的结束点、gap的长度。这样,示例性的,可以根据gap的起始点和gap的长度,用户设备可以得知进行测量的gap的相关参数。其中,对于起始点、结束点、长度,其既可以是一个绝对的时间点,也可以是一个相对的时间点;例如,该起始点可以是相对于某一个参考时间点的偏移值offset,该gap的长度可以是一个绝对时间长度gap duration或是相对于某一参考时间点的偏移值offset;同理,结束点也可以是一个绝对时间点或是偏移值offset。
步骤S503”,接收所述网络设备发送的非连续接收配置信息,其中,所述非连续接收配置信息所指示的关闭期间满足测量卫星定位信息所需的配置信息。
步骤S504”,在所述非连续接收配置信息指示的关闭期间测量卫星定位信息。
本公开实施例提供了一种接收用户设备能力的方法,此方法由网络设备执行,图6是根据一示例性实施例示出的一种接收用户设备能力的方法的流程图,如图6所示,该方法包括步骤S601-S604,具体的:
步骤S601,接收用户设备发送的测量能力信息。
此用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
步骤S602,接收用于触发进入RRC空闲状态的消息;
步骤S603,接收RRC重连接请求或者RRC连接建立请求,流程结束。
或,
所述方法包括
步骤S601,接收用户设备发送的测量能力信息。
此用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
步骤S602’,接收测量卫星定位信息所需的配置信息。
其中,所述测量卫星定位信息所需的配置信息,包括以下各项中的至少一项:
测量所述卫星定位信息的持续时长、测量重复周期、测量起始时间点的偏置值。
步骤S603’,向用户设备发送测量间隔配置信息。
其中,所述测量间隔配置信息所指示的测量间隔满足测量卫星定位信息所需的配置信息。
该测量间隔gap,用于所述UE在该gap内执行GNSS测量以获取GNSS定位信息。具体可以参考本公开其他实施例中的表述。
或,
所述方法包括
步骤S601,接收用户设备发送的测量能力信息。
此用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
步骤S602’,接收测量卫星定位信息所需的配置信息。
其中,所述测量卫星定位信息所需的配置信息,包括以下各项中的至少一项:
测量所述卫星定位信息的持续时长、测量重复周期、测量起始时间点的偏置值步骤S603”,向用户设备发送非连续接收配置信息。
其中,所述非连续接收配置信息所指示的关闭期间满足测量卫星定位信息所需的配置信息。网络设备配置的非连续接收DRX配置信息中配置的关闭期间(DRX off期间),用于执行GNSS测量获取GNSS定位信息。具体可以参考本公开其他实施例中的表述。
基于与以上方法实施例相同的构思,本公开实施例还提供一种电子设备,该电子设备可具备上述方法实施例中的用户设备102的功能,并用于执行上述实施例提供的由用户设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图7所示的电子设备700可作为上述方法实施例所涉及的用户设备102,并执行上述一种方法实施例中由用户设备102执行的步骤。
所述通信装置700包括收发模块701和处理模块702。
收发模块701,被配置为向网络设备发送用户设备测量能力信息,所述用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
在一些可能的实施方式中,收发模块701,还被配置为响应于所述用户设备测量能力信息指示不支持所述第一能力,向所述网络设备发送用于触发进入RRC空闲状态的消息;
处理模块702,被配置为在RRC空闲状态下测量卫星定位信息。
在一些可能的实施方式中,所述用于触发进入RRC空闲状态的消息为无线链路失败消息。
收发模块701,还被配置为在RRC空闲状态下测量卫星定位信息后,向所述网络设备发送RRC重连接请求。
在一些可能的实施方式中,所述用于触发进入RRC空闲状态的消息为RRC连接释放请求;
收发模块701,还被配置为在RRC空闲状态下测量卫星定位信息后,向所述网络设备 发送RRC连接建立请求。
在一些可能的实施方式中,收发模块701,还被配置为响应于所述用户设备测量能力信息指示支持所述第一能力,向所述网络设备发送测量卫星定位信息所需的配置信息;所述测量卫星定位信息所需的配置信息,包括以下各项中的至少一项:测量所述卫星定位信息的持续时长、测量重复周期、测量起始时间点的偏置值。
在一些可能的实施方式中,收发模块701,还被配置为接收所述网络设备发送的测量间隔配置信息,所述测量间隔配置信息所指示的测量间隔满足测量卫星定位信息所需的配置信息;
处理模块702,还被配置为在所述测量间隔配置信息指示的测量间隔内测量卫星定位信息。
在一些可能的实施方式中,收发模块701,还被配置为接收所述网络设备发送的非连续接收配置信息,所述非连续接收配置信息所指示的关闭期间满足测量卫星定位信息所需的配置信息;
处理模块702,还被配置为在所述非连续接收配置信息指示的关闭期间测量卫星定位信息。
当该通信装置为用户设备102时,其结构还可如图8所示。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电力组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件806为装置800的各种组件提供电力。电力组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板, 屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,4G或5G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的网络设备101的功能,并用于执行上述实施例提供的由网络设 备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图9所示的通信装置900可作为上述方法实施例所涉及的网络设备101,并执行上述方法实施例中由网络设备101执行的步骤。
如图9所示的通信装置900包括收发模块901和处理模块902。
收发模块901被配置为接收用户设备发送的用户设备测量能力信息,所述用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
在一种可能的实现方式中,收发模块901还被配置为响应于所述用户设备测量能力信息指示不支持所述第一能力,接收所述用户设备发送的用于触发进入RRC空闲状态的消息。
在一种可能的实现方式中,所述用于触发进入RRC空闲状态的消息为无线链路失败消息;收发模块901还被配置为接收RRC重连接请求。
在一种可能的实现方式中,所述用于触发进入RRC空闲状态的消息为RRC连接释放请求;收发模块901还被配置为接收所述用户设备发送的RRC连接建立请求。
在一种可能的实现方式中,收发模块901还被配置为响应于所述用户设备测量能力信息指示支持所述第一能力,接收所述用户设备发送的卫星定位信息所需的配置信息;所述测量卫星定位信息所需的配置信息,包括以下各项中的至少一项:
测量所述卫星定位信息的持续时长、测量重复周期、测量起始时间点的偏置值。
在一种可能的实现方式中,收发模块901还被配置为接收所述网络设备发送的测量间隔配置信息,所述测量间隔配置信息指示的测量间隔满足测量卫星定位信息所需的配置信息。
在一种可能的实现方式中,收发模块901还被配置为接收所述网络设备发送的非连续接收配置信息,所述测量间隔配置信息指示的关闭期间满足测量卫星定位信息所需的配置信息。
当该通信装置为网络设备101时,其结构还可如图10所示。如图10所示,装置1000包括存储器1001、处理器1002、收发组件1003、电源组件1006。其中,存储器1001与处理器1002耦合,可用于保存通信装置1000实现各功能所必要的程序和数据。该处理器1002被配置为支持通信装置1000执行上述方法中相应的功能,此功能可通过调用存储器1001存储的程序实现。收发组件1003可以是无线收发器,可用于支持通信装置1000通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件1003也可被称为收发单元或通信单元,收发组件1003可包括射频组件1004以及一个或多个天线1005,其中,射频组件1004可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线1005具体可用于进行射频信号的辐射和接收。
当通信装置1000需要发送数据时,处理器1002可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电 磁波的形式进行发送。当有数据发送到通信装置1000时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1002,处理器1002将基带信号转换为数据并对该数据进行处理。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
用户设备向网络设备上报用户设备测量能力信息,以指示是否支持在无线资源控制RRC连接状态下测量卫星定位信息的能力,网络设备在获知用户设备是否具有此能力后,根据不同的情况使用户设备应用其具有的能力,避免在支持此能力时还回到RRC空闲状态测量卫星定位信息导致的连接中断的情况,提高资源利用率和网络性能。

Claims (20)

  1. 一种传输用户设备测量能力的方法,由用户设备执行,此方法包括:
    向网络设备发送用户设备测量能力信息,所述用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
  2. 如权利要求1所述的方法,其中,所述方法还包括:
    响应于所述用户设备测量能力信息指示不支持所述第一能力,向所述网络设备发送用于触发进入RRC空闲状态的消息,在RRC空闲状态下测量卫星定位信息。
  3. 如权利要求2所述的方法,其中,所述用于触发进入RRC空闲状态的消息为无线链路失败消息;
    所述方法还包括:在RRC空闲状态下测量卫星定位信息后,向所述网络设备发送RRC重连接请求。
  4. 如权利要求2所述的方法,其中,所述用于触发进入RRC空闲状态的消息为RRC连接释放请求;
    所述方法还包括:在RRC空闲状态下测量卫星定位信息后,向所述网络设备发送RRC连接建立请求。
  5. 如权利要求1所述的方法,其中,所述方法还包括:
    响应于所述用户设备测量能力信息指示支持所述第一能力,向所述网络设备发送测量卫星定位信息所需的配置信息;所述测量卫星定位信息所需的配置信息,包括以下各项中的至少一项:
    测量所述卫星定位信息的持续时长、测量重复周期、测量起始时间点的偏置值。
  6. 如权利要求5所述的方法,其中,所述方法还包括:
    接收所述网络设备发送的测量间隔配置信息,所述测量间隔配置信息所指示的测量间隔满足测量卫星定位信息所需的配置信息;在所述测量间隔配置信息指示的测量间隔内测量卫星定位信息。
  7. 如权利要求5所述的方法,其中,
    接收所述网络设备发送的非连续接收配置信息,所述非连续接收配置信息所指示的关闭期间满足测量卫星定位信息所需的配置信息;
    在所述非连续接收配置信息指示的关闭期间测量卫星定位信息。
  8. 一种测量卫星定位信息的方法,由网络设备执行,此方法包括:
    接收用户设备发送的用户设备测量能力信息,所述用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
  9. 如权利要求8所述的方法,其中,所述方法还包括:
    响应于所述用户设备测量能力信息指示不支持所述第一能力,接收所述用户设备发送的用于触发进入RRC空闲状态的消息。
  10. 如权利要求9所述的方法,其中,所述用于触发进入RRC空闲状态的消息为无线链路失败消息;
    所述方法还包括:接收RRC重连接请求。
  11. 如权利要求9所述的方法,其中,所述用于触发进入RRC空闲状态的消息为RRC连接释放请求;
    所述方法还包括:接收所述用户设备发送的RRC连接建立请求。
  12. 如权利要求8所述的方法,其中,所述方法还包括:
    响应于所述用户设备测量能力信息指示支持所述第一能力,接收所述用户设备发送的卫星定位信息所需的配置信息;所述测量卫星定位信息所需的配置信息,包括以下各项中的至少一项:
    测量所述卫星定位信息的持续时长、测量重复周期、测量起始时间点的偏置值。
  13. 如权利要求12所述的方法,其中,所述方法还包括:
    接收所述用户设备发送的测量间隔配置信息,所述测量间隔配置信息指示的测量间隔满足测量卫星定位信息所需的配置信息。
  14. 如权利要求12所述的方法,其中,所述方法还包括:
    接收所述用户设备发送的非连续接收配置信息,所述测量间隔配置信息指示的关闭期间满足测量卫星定位信息所需的配置信息。
  15. 一种测量卫星定位信息的装置,被配置于用户设备,此装置包括:
    收发模块,被配置为向网络设备发送用户设备测量能力信息,所述用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
  16. 一种测量卫星定位信息的装置,被配置于网络设备,此装置包括:
    收发模块,被配置为接收用户设备发送的用户设备测量能力信息,所述用户设备测量能力信息用于指示是否支持第一能力,所述第一能力为在无线资源控制RRC连接状态下测量卫星定位信息。
  17. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-7中任一权利要求所述的方法。
  18. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求8-14中任一权利要求所述的方法。
  19. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-7中任一权利要求所述的方法。
  20. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求8-14中任一权利要求所述的方法。
PCT/CN2022/092301 2022-05-11 2022-05-11 一种传输用户设备测量能力的方法、装置及可读存储介质 WO2023216161A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/092301 WO2023216161A1 (zh) 2022-05-11 2022-05-11 一种传输用户设备测量能力的方法、装置及可读存储介质
CN202280001658.7A CN117397257A (zh) 2022-05-11 2022-05-11 一种传输用户设备测量能力的方法、装置及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092301 WO2023216161A1 (zh) 2022-05-11 2022-05-11 一种传输用户设备测量能力的方法、装置及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023216161A1 true WO2023216161A1 (zh) 2023-11-16

Family

ID=88729420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092301 WO2023216161A1 (zh) 2022-05-11 2022-05-11 一种传输用户设备测量能力的方法、装置及可读存储介质

Country Status (2)

Country Link
CN (1) CN117397257A (zh)
WO (1) WO2023216161A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470477A (zh) * 2015-08-19 2017-03-01 中兴通讯股份有限公司 提升无线网络中终端定位速度的方法和装置
WO2019210507A1 (zh) * 2018-05-04 2019-11-07 华为技术有限公司 系统信息确定方法、装置及存储介质
US20200229130A1 (en) * 2019-01-11 2020-07-16 Nokia Technologies Oy METHOD FOR IDLE-MODE POSITIONING OF UEs USING OBSERVED TIME DIFFERENCE OF ARRIVAL
WO2022000144A1 (zh) * 2020-06-28 2022-01-06 北京小米移动软件有限公司 测量的方法、基站、多模终端、通信设备及存储介质
WO2022016990A1 (zh) * 2020-07-24 2022-01-27 大唐移动通信设备有限公司 一种卫星系统配置信息的指示方法及设备
WO2022022138A1 (zh) * 2020-07-28 2022-02-03 华为技术有限公司 通信方法以及相关联的通信装置、介质和芯片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106470477A (zh) * 2015-08-19 2017-03-01 中兴通讯股份有限公司 提升无线网络中终端定位速度的方法和装置
WO2019210507A1 (zh) * 2018-05-04 2019-11-07 华为技术有限公司 系统信息确定方法、装置及存储介质
US20200229130A1 (en) * 2019-01-11 2020-07-16 Nokia Technologies Oy METHOD FOR IDLE-MODE POSITIONING OF UEs USING OBSERVED TIME DIFFERENCE OF ARRIVAL
WO2022000144A1 (zh) * 2020-06-28 2022-01-06 北京小米移动软件有限公司 测量的方法、基站、多模终端、通信设备及存储介质
WO2022016990A1 (zh) * 2020-07-24 2022-01-27 大唐移动通信设备有限公司 一种卫星系统配置信息的指示方法及设备
WO2022022138A1 (zh) * 2020-07-28 2022-02-03 华为技术有限公司 通信方法以及相关联的通信装置、介质和芯片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (THALES): "FL Summary on enhancements on UL time and frequency synchronization for NR NTN", 3GPP DRAFT; R1-2009748, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 14 November 2020 (2020-11-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051954405 *

Also Published As

Publication number Publication date
CN117397257A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
WO2023201730A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2023216161A1 (zh) 一种传输用户设备测量能力的方法、装置及可读存储介质
WO2023184254A1 (zh) 一种传输测量配置信息的方法、装置及可读存储介质
WO2023201569A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2023178698A1 (zh) 一种传输寻呼下行控制信息的方法、装置及存储介质
WO2023193197A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2024045137A1 (zh) 一种传输配置信息的方法、装置以及可读存储介质
WO2024007228A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2023216162A1 (zh) 一种获取信息的方法、装置、设备及存储介质
WO2023201471A1 (zh) 一种传输信号质量阈值信息的方法、装置及可读存储介质
WO2024026754A1 (zh) 一种传输测量配置信息的方法、装置、设备以及存储介质
WO2023220932A1 (zh) 一种传输系统信息的方法、装置、设备及存储介质
WO2023115284A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2024007263A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2024031253A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2023245443A1 (zh) 一种切换监听状态的方法、装置以及可读存储介质
WO2024059977A1 (zh) 一种执行或发送指示信息的方法、装置、设备及存储介质
WO2023065227A1 (zh) 一种发送和接收辅助信息的方法、装置及存储介质
WO2022246613A1 (zh) 一种传输测量间隙组合的方法、装置及介质
WO2024040477A1 (zh) 一种测量方法、确定辅小区的方法、装置、设备以及介质
WO2024011459A1 (zh) 一种测量方法、装置、设备以及可读存储介质
WO2023221130A1 (zh) 一种测量方法、装置、设备及存储介质
WO2023151093A1 (zh) 一种传输终端能力的方法、装置及可读存储介质
WO2024031459A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质
WO2023115282A1 (zh) 一种测量方法、装置、设备及可读存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001658.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941119

Country of ref document: EP

Kind code of ref document: A1