WO2024040477A1 - 一种测量方法、确定辅小区的方法、装置、设备以及介质 - Google Patents

一种测量方法、确定辅小区的方法、装置、设备以及介质 Download PDF

Info

Publication number
WO2024040477A1
WO2024040477A1 PCT/CN2022/114572 CN2022114572W WO2024040477A1 WO 2024040477 A1 WO2024040477 A1 WO 2024040477A1 CN 2022114572 W CN2022114572 W CN 2022114572W WO 2024040477 A1 WO2024040477 A1 WO 2024040477A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
tested
carriers
threshold
carrier
Prior art date
Application number
PCT/CN2022/114572
Other languages
English (en)
French (fr)
Inventor
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/114572 priority Critical patent/WO2024040477A1/zh
Priority to CN202280003201.XA priority patent/CN115606225B/zh
Publication of WO2024040477A1 publication Critical patent/WO2024040477A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a measurement method, a method for determining a secondary cell, an apparatus, a device, and a readable storage medium.
  • the Early Measurement Report (EMR) is introduced. That is, the user equipment can measure and report according to the carrier measurement information configured by the network device in the idle state (idle) or the inactive state (inactive).
  • EMR Early Measurement Report
  • the delay in detecting and measuring an FR2 carrier in an FR2 (Frequency Range 2) scenario is very long. Taking into account the carrier number expansion factor, the delay will further increase.
  • the present disclosure provides a measurement method, a method, a device, a device and a readable storage medium for determining a secondary cell.
  • a measurement method is provided, which is executed by user equipment.
  • the method includes: receiving measurement configuration information sent by a network device, where the measurement configuration information is used to configure N carriers to be measured; when in a non-connected state; Perform a first measurement on the N carriers under test to obtain a first measurement result; perform a second measurement on M carriers under test among the N carriers under test in response to an access serving cell event, and obtain a second measurement result, Wherein, M and N are both positive integers, and M is less than or equal to N; the second measurement result is sent to the network device, and the second measurement result is used to determine the secondary cell in the multi-link.
  • the measurement configuration information is also used to configure selection parameters, and the selection parameters include at least one of the following: valid duration threshold, signal strength threshold, priority;
  • the method further includes: selecting the M carriers to be tested from the N carriers to be tested according to the selection parameters and the selection mode corresponding to the selection parameters.
  • the valid duration threshold is a first threshold, and the first threshold corresponds to the N carriers to be tested;
  • the selection method corresponding to the first threshold is: when the set duration is greater than the first threshold, determine that the M is equal to the N, and select the N carriers to be tested, where the set duration is the The duration between a first moment and a second moment, where the first moment is the moment when the first measurement is completed, and the second moment is the moment when the access to the serving cell event occurs.
  • the valid duration threshold is K second thresholds, each second threshold corresponds to at least one carrier to be tested among the N carriers to be tested, and K is a positive integer, K Less than or equal to N.
  • the selection method corresponding to the K second thresholds is: the selected second threshold of the carrier to be tested is less than the set time period, wherein the set time period is the time period between the first moment and the second moment, and the The first moment is the moment when the first measurement is completed, and the second moment is the moment when the access to the serving cell event occurs.
  • the access event to the serving cell is one of the following: sending a random access request to the serving cell, receiving a paging message from the serving cell, or sending a wireless link to the serving cell. Link connection request.
  • the signal strength threshold is a third threshold, and the third threshold corresponds to the N carriers to be tested;
  • the selection method corresponding to the third threshold is: selecting the carrier to be measured whose signal strength value in the first measurement result is greater than the third threshold.
  • the signal strength threshold is L fourth thresholds, each fourth threshold corresponds to at least one carrier to be tested among the N carriers to be tested, and L is a positive integer, L Less than or equal to N;
  • the selection method corresponding to the L fourth thresholds is: selecting the carrier to be tested whose signal strength value in the first measurement result is greater than or equal to the corresponding fourth threshold, or selecting the signal strength value in the first measurement result The carrier to be tested is smaller than the corresponding fourth threshold.
  • the priority is a plurality of group priorities, each group priority corresponds to a group, and each group includes at least one carrier to be tested among the N carriers to be tested;
  • the selection method corresponding to the plurality of group priorities is: the selected carrier to be tested is a carrier to be tested in a setting group, and the group priority of the setting group is greater than the first setting priority.
  • the priority is multiple carrier priorities, and each carrier priority corresponds to a carrier to be tested;
  • the selection method corresponding to the plurality of carrier priorities is: the carrier priority of the selected carrier to be tested is greater than the second set priority.
  • the method further includes:
  • the second measurement is a measurement based on the received power of the reference signal of layer 1, or a measurement based on the received power of the reference signal of layer 3.
  • a method for determining a secondary cell is provided, which is executed by a network device.
  • the method includes:
  • the second measurement result is used to determine the secondary cell in the multi-link.
  • the measurement configuration information is used to configure selection parameters, and the selection parameters include at least one of the following: valid duration threshold, signal strength threshold, and priority.
  • the method further includes:
  • Receive user equipment capabilities sent by the user equipment where the user equipment capabilities are used to indicate whether the user equipment supports enhanced delay requirements for the second measurement.
  • a measurement device configured in user equipment, and the device includes:
  • a transceiver module configured to receive measurement configuration information sent by the network device, where the measurement configuration information is used to configure N carriers to be tested;
  • the processing module is configured to perform a first measurement on the N carriers under test when in a non-connected state, and obtain a first measurement result; and is further configured to perform a first measurement on the N carriers under test in response to an access serving cell event.
  • M carriers under test perform a second measurement to obtain a second measurement result, where M and N are both positive integers, and M is less than or equal to N;
  • the transceiver module is further configured to send the second measurement result to the network device, where the second measurement result is used to determine the secondary cell in the multi-link.
  • a device for determining a secondary cell which is configured on a network device.
  • the device includes:
  • a transceiver module configured to send measurement configuration information to the user equipment, where the measurement configuration information is used to configure N carriers to be tested; and also configured to receive a second measurement result sent by the network device, where the second measurement result is a response The measurement results of performing the second measurement on the M carriers under test among the N carriers under test in the event of accessing the serving cell;
  • the processing module is configured to determine the secondary cell in the multi-link according to the second measurement result.
  • an electronic device including a processor and a memory, wherein,
  • the memory is used to store computer programs
  • the processor is used to execute the computer program to implement any possible design as in the first aspect.
  • a sixth aspect provides an electronic device including a processor and a memory, wherein,
  • the memory is used to store computer programs
  • the processor is configured to execute the computer program to implement any possible design as in the second aspect.
  • a computer-readable storage medium In a seventh aspect, a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium. When the instructions are called and executed on a computer, they cause the computer to execute to implement the first aspect. Any possible design.
  • An eighth aspect a computer-readable storage medium, in which instructions are stored. When the instructions are called and executed on a computer, they cause the computer to execute to implement any one of the aspects of the second aspect. possible designs.
  • a communication system includes user equipment for performing any of the above items and network equipment for performing any of the above items.
  • the user equipment accesses the serving cell after completing EMR in the idle state (idle) or inactive state (inactive), and measures some or all of the carriers measured in the EMR again during the process of accessing the serving cell.
  • this re-measurement can be considered as an enhanced measurement of EMR.
  • the measurement results of this enhanced measurement are more accurate than the measurement results of EMR, so that the multi-link is determined based on the measurement results of the enhanced measurement.
  • Secondary cells with better signal quality can be determined to ensure the link performance of links between secondary cells in multi-links and improve the overall link quality of multi-links.
  • Figure 1 is a schematic diagram of a wireless communication system architecture provided by an embodiment of the present disclosure
  • Figure 2 is an interactive schematic diagram of a method for establishing multiple links provided by an embodiment of the present disclosure
  • Figure 3 is an interactive schematic diagram of another method for establishing multiple links provided by an embodiment of the present disclosure
  • Figure 4 is a flow chart of a measurement method provided by an embodiment of the present disclosure.
  • Figure 5 is a flow chart of another measurement method provided by an embodiment of the present disclosure.
  • Figure 6 is a flow chart of a method for determining a secondary cell provided by an embodiment of the present disclosure
  • Figure 7 is a structural diagram of a measuring device provided by an embodiment of the present disclosure.
  • Figure 8 is a structural diagram of another measuring device provided by an embodiment of the present disclosure.
  • Figure 9 is a structural diagram of a device for determining a secondary cell provided by an embodiment of the present disclosure.
  • Figure 10 is a structural diagram of another device for determining a secondary cell provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • a method for determining a secondary cell can be applied to a wireless communication system 100 , which may include but is not limited to a network device 101 and a user equipment 102 .
  • the user equipment 102 is configured to support carrier aggregation, and the user equipment 102 can be connected to multiple carrier units of the network device 101, including a primary carrier unit and one or more secondary carrier units.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • WiMAX global Internet microwave access
  • CRAN cloud radio access network
  • 5G fifth generation
  • 5G new wireless (new radio, NR) communication system
  • PLMN public land mobile network
  • the user equipment 102 shown above can be a user equipment (UE), a terminal, an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, a mobile terminal ( mobile terminal), wireless communication equipment, terminal agent or user equipment, etc.
  • the user equipment 102 may have a wireless transceiver function, which can communicate (such as wireless communication) with one or more network devices 101 of one or more communication systems, and accept network services provided by the network device 101.
  • the network device 101 Including but not limited to the base station shown in the figure.
  • the user equipment 102 can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, a device with Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, user equipment in future 5G networks or user equipment in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 101 may be an access network device (or access network site).
  • access network equipment refers to equipment that provides network access functions, such as wireless access network (radio access network, RAN) base stations and so on.
  • Network equipment may specifically include base station (BS) equipment, or include base station equipment and wireless resource management equipment used to control base station equipment, etc.
  • the network equipment may also include relay stations (relay equipment), access points, and base stations in future 5G networks, base stations in future evolved PLMN networks, or NR base stations, etc.
  • Network devices can be wearable devices or vehicle-mounted devices.
  • the network device may also be a communication chip with a communication module.
  • the network equipment 101 includes but is not limited to: the next generation base station (gnodeB, gNB) in 5G, the evolved node B (evolved node B, eNB) in the LTE system, the radio network controller (radio network controller, RNC), Node B (NB) in the WCDMA system, wireless controller under the CRAN system, base station controller (BSC), base transceiver station (BTS) in the GSM system or CDMA system, home Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP) or mobile switching center, etc.
  • gnodeB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • the user equipment can measure and report based on the carrier measurement information configured by the network device in the idle or inactive state.
  • the communication protocol requires that the delay in detecting and measuring an FR2 carrier in an FR2 (Frequency Range 2) scenario is very long. Considering the carrier number expansion factor, the delay will further increase. The inventor found in the research that such a long delay requirement may cause the EMR measurement results reported by the user equipment to be unreliable.
  • the inventor also found in the research that when the user equipment completes EMR in the idle state (idle) or inactive state (inactive), the radio resource control (Radio Resource Control, RRC) establishment is initiated during the process of accessing the serving cell.
  • the length of the request is uncertain, and the long time it takes to complete the RRC connection establishment will also cause the EMR measurement results reported by the user equipment to expire and become unreliable. Determining the secondary cell in the multi-link based on the EMR measurement report may result in poor signal quality of the determined secondary cell, resulting in poor link performance of the link between the multi-link and the secondary cell, affecting the multi-link link. Road quality.
  • the inventor found in the research that after the user equipment completes the EMR in the idle state (idle) or the inactive state (inactive), it accesses the serving cell. During the process of accessing the serving cell, it is necessary to measure the measured part or All carriers are measured again to prevent the EMR measurement results from being expired. This repeated measurement can be considered an enhanced measurement of EMR.
  • the measurement results of this enhanced measurement are more accurate than the EMR measurement results. Therefore, according to the enhanced measurement
  • the measurement results determine the secondary cell in the multi-link, which can determine the secondary cell with better signal quality, ensure the link performance of the link between the multi-link and the secondary cell, and improve the overall link quality of the multi-link.
  • Embodiments of the present disclosure provide a method for determining a secondary cell.
  • Figure 2 is a flow chart of a method for determining a secondary cell according to an exemplary embodiment. As shown in Figure 2, the method includes steps S201 to S207. specific:
  • the network device sends measurement configuration information to the user equipment, where the measurement configuration information is used to configure N carriers to be tested.
  • the N carriers to be tested include N NR carriers, or N LTE carriers, or multiple NR carriers and multiple LTE carriers, and the number of multiple NR carriers and multiple The sum of the number of LTE carriers is N.
  • the non-connected state is an idle state (idle) or an inactive state (inactive).
  • S203 In the process of accessing the serving cell under the network device, the user equipment performs a second measurement on the M carriers under test among the N carriers to be tested in response to the access to the serving cell event, and obtains the second measurement. result.
  • M and N are both positive integers, and M is less than or equal to N.
  • the access to serving cell event is one of the following:
  • the user equipment in the process of accessing the serving cell under the network device, performs a second measurement on the N carriers to be tested in response to an access service cell event, and obtains a second measurement result.
  • the second measurement is a measurement based on the reference signal received power of layer 1 (L1_RSRP), or a measurement based on the reference signal received power of layer 3 (L3_RSRP).
  • S204 The user equipment sends the second measurement result to the network device.
  • the network device determines the secondary cell in the multi-link based on the second measurement result.
  • the network device sends indication information for indicating the secondary cell to the user equipment.
  • S207 The user equipment establishes multiple links according to the serving cell and the secondary cell.
  • the user equipment accesses the serving cell after completing EMR in the idle state (idle) or inactive state (inactive), and measures all the carriers measured in the EMR again during the process of accessing the serving cell.
  • this re-measurement can be considered as an enhanced measurement of EMR.
  • the measurement results of this enhanced measurement are more accurate than the measurement results of EMR, so that the multi-link is determined based on the measurement results of the enhanced measurement.
  • Secondary cells with better signal quality can be determined to ensure the link performance of links between secondary cells in multi-links and improve the overall link quality of multi-links.
  • the user equipment responds to the accessing serving cell event to the M to-be-tested carriers set among the N to-be-tested carriers.
  • the carrier performs a second measurement and obtains a second measurement result. For example: M is less than N, and the set M carriers to be tested are learned by the user equipment according to the agreement, or from the instruction information sent by the network equipment, or by default.
  • the user equipment before S202, the user equipment sends user equipment capabilities to the network device, where the user equipment capabilities are used to indicate whether the user equipment supports enhanced delay requirements for the second measurement.
  • the delay requirement enhancement for the second measurement includes: the delay requirement enhancement for layer 1 measurement and/or the delay requirement enhancement for layer 1 measurement.
  • supporting the enhancement of delay requirements for layer 1 measurements refers to supporting the reduction of delay for layer 1 measurements.
  • supporting the enhanced delay requirements for layer 1 measurement means supporting the delay for layer 1 measurement to be less than the agreed duration, which is shorter than the delay for layer 1 measurement defined in existing protocols.
  • the existing protocol can be R16 or R17 protocol.
  • Supporting the enhancement of delay requirements for layer 3 measurement means supporting the reduction of delay for layer 3 measurement.
  • supporting the enhanced delay requirements for layer 3 measurement means supporting the delay for layer 3 measurement to be less than the agreed duration, which is shorter than the delay for layer 3 measurement defined in existing protocols.
  • the UE performs EMR measurements on N carriers under test in the idle state or inactive state and obtains the first measurement result. After the UE initiates an RRC connection establishment request to the network, it needs to perform EMR measurements on M of the N carriers under test. Perform L1_RSRP measurement on the carrier to be tested. If the UE has already performed the confirmation process of the receiving beam during the previous L1_RSRP measurement, the UE does not need to perform receiving beam scanning (Rxbeamsweeping) when performing this L1_RSRP measurement, or it needs to perform receiving beam scanning. The number of scans can be reduced. For example, there is no need to scan 8 times. Only 4 or 2 scans are needed to determine the best receiving beam.
  • the delay for the UE to perform L1_RSRP measurement can be shortened.
  • the UE when the UE has performed the confirmation process of receiving the beam during the previous L1_RSRP measurement, the UE sends user equipment capabilities to the network device.
  • the user equipment capabilities are used to indicate that the UE supports the delay requirements for L1_RSRP measurement. Enhance.
  • the UE performs EMR measurements on N carriers under test in the idle state or inactive state and obtains the first measurement result. After the UE initiates an RRC connection establishment request to the network, it needs to perform EMR measurements on M of the N carriers under test. Perform L3_RSRP measurement on a carrier to be tested. If the UE has the ability to use multiple receiving beams to receive downlink signals at the same time (for example, the ability to use 2 receiving beams to receive downlink signals at the same time), the UE needs to perform reception when performing this L1_RSRP measurement. Beam scanning can be performed but the number of scans can be reduced. For example, there is no need to scan 8 times. Only 4 or 2 scans are needed to determine the best receiving beam.
  • the delay for the UE to perform L1_RSRP measurement can be shortened.
  • the UE when the UE has the ability to use multiple receive beams to receive downlink signals at the same time, the UE sends user equipment capabilities to the network device, and the user equipment capabilities are used to indicate that the UE supports the enhanced delay requirements for L3_RSRP measurement.
  • Embodiments of the present disclosure provide a method for establishing multiple links.
  • Figure 3 is a flow chart of a method for establishing multiple links according to an exemplary embodiment. As shown in Figure 3, the method includes steps S301 to S308. specific:
  • the network device sends measurement configuration information to the user equipment, where the measurement configuration information is used to configure N carriers to be tested.
  • the N carriers to be tested include N NR carriers, or N LTE carriers, or multiple NR carriers and multiple LTE carriers, and the number of multiple NR carriers and multiple The sum of the number of LTE carriers is N.
  • the non-connected state is an idle state (idle) or an inactive state (inactive).
  • S303 The user equipment determines M carriers to be tested among the N carriers to be tested. Among them, M and N are both positive integers, and M is less than or equal to N.
  • S304 In the process of accessing the serving cell under the network device, the user equipment performs a second measurement on the M carriers to be measured in response to the accessing serving cell event, and obtains a second measurement result.
  • the second measurement is a measurement based on the reference signal received power of layer 1 (L1_RSRP), or a measurement based on the reference signal received power of layer 3 (L3_RSRP).
  • the access to serving cell event is one of the following:
  • S305 The user equipment sends the second measurement result to the network device.
  • the network device determines the secondary cell in the multi-link based on the second measurement result.
  • the network device sends indication information for indicating the secondary cell to the user equipment.
  • S308 The user equipment establishes multiple links according to the serving cell and the secondary cell.
  • the user equipment accesses the serving cell after completing EMR in the idle state (idle) or inactive state (inactive).
  • the user equipment performs the EMR measurement again on some of the carriers measured in the serving cell. Measurement, in case the measurement result of EMR has expired, this measurement taken again can be considered as an enhanced measurement of EMR.
  • the measurement result of this enhanced measurement is more accurate than the measurement result of EMR, so that more information can be determined based on the measurement result of enhanced measurement.
  • Secondary cells in the link can determine the secondary cell with better signal quality, ensure the link performance of the link between the secondary cell in the multi-link, and improve the overall link quality of the multi-link.
  • by measuring the EMR Measuring some of the carriers again compared to measuring all the carriers measured in the EMR, can save the measurement capabilities of the user equipment and further shorten the time to establish multi-links.
  • the following describes in detail the manner in which the user equipment determines the M carriers to be tested among the N carriers to be tested in S303. This can be achieved in the following three ways.
  • the measurement configuration information in S301 is also used to configure selection parameters, and the selection parameters are valid duration thresholds.
  • the user equipment selects the M carriers to be tested from the N carriers to be tested according to the valid duration threshold and the selection mode corresponding to the valid duration threshold.
  • the valid duration threshold is a first threshold for all N test carriers. In the second case, the valid duration threshold is multiple. Second thresholds, each second threshold is used for different one or more carriers to be tested.
  • the valid duration threshold is a first threshold, and the first threshold corresponds to the N carriers to be tested.
  • the selection method corresponding to the first threshold is: when the set duration is greater than the first threshold, determine that the M is equal to the N, and select the N carriers to be tested, where the set duration is the The duration between the first moment and the second moment (that is, the duration from the first moment to the second moment), the first moment T1 is the moment when the first measurement is completed, and the second moment T2 is the time when the access to the serving cell event occurs moment of occurrence.
  • the time when the user equipment completes the EMR measurement in the idle state or inactive state is T1
  • the time when the user equipment sends the RRC connection request to the network device is T2. If the time between T2 and T1 (that is, the distance between T1 and T2 duration) is greater than or equal to the first threshold (for example, the first threshold is 5 milliseconds), then select the N carriers to be tested. If the duration between T2 and T1 (that is, the duration between T1 and T2) is less than the first threshold, then There is no need to select any carrier to be tested from the N carriers to be tested.
  • the time between T2 and T1 (that is, the time between T1 and T2) is greater than or equal to the first threshold (for example, the first threshold is 5 milliseconds)
  • the first threshold for example, the first threshold is 5 milliseconds
  • enhanced measurements need to be performed on all the N carriers to be tested.
  • the duration between T2 and T1 (that is, the duration between T1 and T2) is less than the first threshold, there is no need to perform enhanced measurement on any of the N to-be-tested carriers.
  • the timer is started.
  • the timer duration is a first threshold (for example, the first threshold is 5 milliseconds), and the user equipment sends an RRC to the network device.
  • the timer if the timer has expired, the N carriers to be tested are selected; if the timer has not expired, there is no need to select any carrier to be tested from the N carriers to be tested.
  • the user equipment when the user equipment sends an RRC connection request to the network device, if the timer has expired, enhanced measurements need to be performed on all the N carriers to be tested. If the timer has not expired, there is no need to perform enhanced measurements on the N carriers to be tested. Select any carrier to be tested among the carriers to be tested.
  • the valid duration threshold is K second thresholds, each second threshold corresponds to at least one carrier to be tested among the N carriers to be tested, the K is a positive integer, and K is less than or equal to N.
  • the selection method corresponding to the K second thresholds is: the selected second threshold of the carrier to be tested is less than the set time period, where the set time period is the time period between the first moment and the second moment (i.e., the second moment).
  • the first time T1 is the time when the first measurement is completed, and the second time T2 is the time when the access to the serving cell event occurs.
  • the measurement configuration information sent by the network device also indicates the corresponding relationship between each second threshold and at least one carrier to be measured.
  • the measurement configuration information may be indicated in the form of information pairs. Each information pair includes first information and second information. The first information is used to indicate the second threshold, and the second information is used to indicate the second threshold.
  • the corresponding carrier to be tested can be one or more).
  • the value of N is 10, and the value of K is 10, then the user equipment measured 10 carriers under test in the EMR measurement, and learned 10 second thresholds from the network device.
  • the first second threshold, Thre_1 corresponds to the first carrier to be tested
  • the second second threshold, Thre_2 corresponds to the second carrier to be tested
  • the 10th second threshold, Thre_10 corresponds to the 10th carrier to be tested.
  • the time when the user equipment completes the EMR measurement in the idle or inactive state is T1
  • the time when the user equipment sends the RRC connection request to the network device is T2. If the time between T2 and T1 (that is, the time between T1 and T2) is greater than or equal to Which second thresholds among the 10 second thresholds are selected, select the carrier to be tested that corresponds to these second thresholds one-to-one.
  • the duration between T2 and T1 (that is, the duration from T1 to T2) is greater than the first second threshold, which is Thre_1, and the second second threshold, that is, Thre_2.
  • the duration between T2 and T1 (that is, the duration from T1 to T2) is less than
  • the measurement configuration information in S301 is also used to configure selection parameters, where the selection parameters include signal strength thresholds.
  • the M carriers to be tested are selected from the N carriers to be tested according to the signal strength threshold and the selection mode corresponding to the signal strength threshold.
  • the signal strength threshold is a third threshold for all carriers to be tested among the N carriers to be tested.
  • the valid duration thresholds are multiple Fourth thresholds, each fourth threshold is used for different one or more carriers to be tested.
  • the signal strength threshold is a third threshold, and the third threshold corresponds to the N carriers to be tested.
  • the selection method corresponding to the third threshold is: selecting the carrier to be measured whose signal strength value in the first measurement result is greater than the third threshold.
  • the first measurement result includes the signal strength value measured for each of the N carriers to be tested, Select the carrier to be tested whose signal strength value in the first measurement result is greater than the third threshold.
  • the value of N is 10.
  • the user equipment When the user equipment performs EMR measurement in the idle state or inactive state, it needs to measure 10 carriers under test to obtain the first measurement result.
  • the first measurement result includes the measurement of the 10 carriers under test.
  • the signal strength value measured for each carrier under test if the signal strength value measured for the first carrier under test, the signal strength value measured for the second carrier under test, and the signal strength value measured for the third carrier under test. The values are all greater than the third threshold, and the signal strength values measured for the other eight carriers under test are all less than the third threshold, then the first carrier under test, the second carrier under test, and the third carrier under test are selected instead of The other 8 carriers to be tested.
  • the signal strength threshold is L fourth thresholds, each fourth threshold corresponds to at least one carrier to be tested among the N carriers to be tested, the L is a positive integer, and L is less than or equal to N;
  • the selection method corresponding to the L fourth thresholds is: selecting the carrier to be tested whose signal strength value in the first measurement result is greater than or equal to the corresponding fourth threshold, or selecting the signal strength value in the first measurement result The carrier to be tested is smaller than the corresponding fourth threshold.
  • the measurement configuration information sent by the network device also indicates the corresponding relationship between each fourth threshold and at least one carrier to be measured.
  • the measurement configuration information may be indicated in the form of information pairs. Each information pair includes first information and second information. The first information is used to indicate the fourth threshold, and the second information is used to indicate the fourth threshold.
  • the corresponding carrier to be tested can be one or more).
  • N 10 and the value of L is 10. Then when the user equipment performs EMR measurement in the idle state or inactive state, it needs to measure 10 carriers to be measured, and 10 fourth thresholds are learned from the network device. Each carrier to be tested corresponds to a fourth threshold.
  • the first measurement result includes the signal strength value measured for each of the 10 carriers to be tested. If the first measurement result is 1 The signal strength value measured for the carrier to be tested is greater than the fourth threshold corresponding to the first carrier to be measured, the signal strength value measured for the second carrier to be measured is greater than the fourth threshold corresponding to the second carrier to be measured, and for any other If the measured signal strength values of a carrier to be tested are all less than the corresponding fourth threshold, then the first carrier to be tested and the second carrier to be tested are selected instead of the other eight carriers to be tested.
  • the value of N is 10 and the value of L is 3.
  • the user equipment performs EMR measurement in the idle state or inactive state, it needs to measure 10 carriers under test, and learns 3 fourth thresholds from the network device.
  • the 1st to 4th carriers to be tested correspond to the 1st fourth threshold
  • the 5th to 8th carriers to be tested correspond to the 2nd fourth threshold
  • the 9th to 10th carriers to be tested correspond to the 3rd fourth threshold.
  • the first measurement result includes the signal strength value measured for each of the 10 carriers to be tested. If the first measurement result is If the signal strength value measured for the carrier to be tested is greater than the fourth threshold corresponding to the first carrier to be tested, and the signal strength value measured for any other carrier to be tested is less than the corresponding fourth threshold, then the first carrier to be tested is selected. carrier instead of selecting the other 9 carriers to be tested.
  • the measurement configuration information in S301 is also used to configure selection parameters, and the selection parameters include priorities.
  • the M carriers to be tested are selected from the N carriers to be tested according to the priority and the selection mode corresponding to the priority.
  • the priority is multiple group priorities. Each group includes at least one carrier to be tested among the N carriers to be tested. Each group corresponds to a group priority. class. In the second case, the priority is multiple carrier priorities, and each carrier priority corresponds to a carrier to be tested.
  • the priority is a plurality of group priorities, each group priority corresponds to a group, and each group includes at least one carrier to be tested among the N carriers to be tested;
  • the selection method corresponding to the plurality of group priorities is: the selected carrier to be tested is a carrier to be tested in a setting group, and the group priority of the setting group is greater than the first setting priority.
  • the measurement configuration information sent by the network device also indicates the corresponding relationship between each group priority and the group, and the corresponding relationship between the group and the carrier to be tested (that is, which ones are included in the group). carrier to be tested).
  • the measurement configuration information can be indicated in the form of information groups.
  • Each information group includes first information, second information and third information. The first information is used to indicate the group priority, and the second information is used to indicate the corresponding.
  • the third information is a group corresponding to the group priority, and the third information is used to indicate the carriers to be tested (which may be one or more) included in the group.
  • the user equipment learns the first setting priority according to the agreement, or learns the first setting priority from the instruction information sent by the network device, or the first setting priority is default.
  • N 10
  • 3 group priorities corresponding to 3 groups respectively.
  • the user equipment When the user equipment performs EMR measurement in the idle state or inactive state, it needs to measure 10 carriers under test, and learns 3 group priorities from the network device.
  • the group priority of the first group is H, and the first group includes the 1st to 3rd carriers to be tested.
  • the group priority of the second group is M, and the second group includes the 4th to 8th carriers to be tested.
  • the group priority of the third group is L, and the third group includes the 9th to 10th carriers to be tested.
  • the group priorities from high to low are: H, M, L.
  • the group with a group priority greater than M is selected as the first group based on the three group priorities, and the first group is selected.
  • the finally selected carriers to be tested are the 1st to 3rd carriers to be tested.
  • the priority is a plurality of carrier priorities, and each carrier priority corresponds to a carrier to be tested;
  • the selection method corresponding to the plurality of carrier priorities is: the carrier priority of the selected carrier to be tested is greater than the second set priority.
  • the user equipment learns the second setting priority according to the agreement, or learns the second setting priority from the instruction information sent by the network device, or the second setting priority is default.
  • the measurement configuration information sent by the network device also indicates the corresponding relationship between each carrier priority and the carrier to be measured.
  • the measurement configuration information may be indicated in the form of information pairs. Each information pair includes first information and second information. The first information is used to indicate the carrier to be tested, and the second information is used to indicate the carrier to be tested. Carrier priority.
  • N 10
  • the user equipment When the user equipment performs EMR measurement in the idle state or inactive state, it needs to measure 10 carriers under test, and learns the carrier priority of each carrier under test from the network device.
  • the user equipment After the user equipment completes the EMR measurement in the idle state or inactive state, when the first set priority is A3, it selects the carrier to be tested with the carrier priority of A1 or A2.
  • the measurement configuration information in S301 is also used to configure selection parameters.
  • the selection parameters include two types of valid duration threshold, signal strength threshold and priority.
  • the M carriers to be tested are selected from the N carriers to be tested according to the selection parameters and the selection mode corresponding to the selection parameters.
  • this method four two selection parameters are used to select a carrier to be tested that satisfies both selection methods. Compared with using one selection parameter, the measurement capability of the user equipment can be further saved.
  • the measurement configuration information in S301 is also used to configure selection parameters, where the selection parameters include a valid duration threshold and a signal strength threshold.
  • S303 select the M carriers from the N carriers to be tested according to the effective duration threshold, the signal strength threshold, the selection method corresponding to the effective duration threshold, and the selection method corresponding to the signal strength threshold.
  • the carrier to be tested Or it can be understood that according to the effective duration threshold and the signal strength threshold, a selection method corresponding to the effective duration threshold and a selection method corresponding to the signal strength threshold are selected from the N carriers to be tested M carriers to be tested.
  • the measurement configuration information in S301 is also used to configure selection parameters, which include valid duration thresholds, signal strength thresholds, and priorities.
  • the M carriers to be tested are selected from the N carriers to be tested according to the selection parameters and the selection mode corresponding to the selection parameters.
  • this method five three selection parameters are used to select the carrier to be tested that satisfies the three selection methods at the same time. Compared with using one or two selection parameters, the measurement capability of the user equipment can be further saved.
  • the user equipment before S202, the user equipment sends user equipment capabilities to the network device, where the user equipment capabilities are used to indicate whether the user equipment supports enhanced delay requirements for the second measurement.
  • the delay requirement enhancement for the second measurement includes: the delay requirement enhancement for layer 1 measurement and/or the delay requirement enhancement for layer 1 measurement.
  • supporting the enhancement of delay requirements for layer 1 measurements refers to supporting the reduction of delay for layer 1 measurements.
  • supporting the enhanced delay requirements for layer 1 measurement means supporting the delay for layer 1 measurement to be less than the agreed duration, which is shorter than the delay for layer 1 measurement defined in existing protocols.
  • the existing protocol can be R16 or R17 protocol.
  • Supporting the enhancement of delay requirements for layer 3 measurement means supporting the reduction of delay for layer 3 measurement.
  • supporting the enhanced delay requirements for layer 3 measurement means supporting the delay for layer 3 measurement to be less than the agreed duration, which is less than the delay for layer 3 measurement defined in existing protocols.
  • the existing protocol can be R16 or R17 protocol.
  • the UE performs EMR measurements on N carriers under test in the idle state or inactive state and obtains the first measurement result. After the UE initiates an RRC connection establishment request to the network, it needs to perform EMR measurements on M of the N carriers under test. Perform L1_RSRP measurement on the carrier to be tested. If the UE has already performed the confirmation process of the receiving beam during the previous L1_RSRP measurement, the UE does not need to perform receiving beam scanning (Rxbeamsweeping) when performing this L1_RSRP measurement, or it needs to perform receiving beam scanning. The number of scans can be reduced. For example, there is no need to scan 8 times. Only 4 or 2 scans are needed to determine the best receiving beam.
  • the delay for the UE to perform L1_RSRP measurement can be shortened.
  • the UE when the UE has performed the confirmation process of receiving the beam during the previous L1_RSRP measurement, the UE sends user equipment capabilities to the network device.
  • the user equipment capabilities are used to indicate that the UE supports the delay requirements for L1_RSRP measurement. Enhance.
  • the UE performs EMR measurements on N carriers under test in the idle state or inactive state and obtains the first measurement result. After the UE initiates an RRC connection establishment request to the network, it needs to perform EMR measurements on M of the N carriers under test. Perform L3_RSRP measurement on a carrier to be tested. If the UE has the ability to use multiple receiving beams to receive downlink signals at the same time (for example, the ability to use 2 receiving beams to receive downlink signals at the same time), the UE needs to perform reception when performing this L1_RSRP measurement. Beam scanning can be performed but the number of scans can be reduced. For example, there is no need to scan 8 times. Only 4 or 2 scans are needed to determine the best receiving beam.
  • the delay for the UE to perform L1_RSRP measurement can be shortened.
  • the UE when the UE has the ability to use multiple receive beams to receive downlink signals at the same time, the UE sends user equipment capabilities to the network device, and the user equipment capabilities are used to indicate that the UE supports the enhanced delay requirements for L3_RSRP measurement.
  • FIG. 4 is a flow chart of a measurement method according to an exemplary embodiment. As shown in Figure 4, the method includes steps S401 to S404. Specifically, of:
  • the measurement configuration information is used to configure N carriers to be measured
  • S402 Perform a first measurement on the N carriers under test when in the non-connected state, and obtain a first measurement result.
  • S403 In response to the access to the serving cell event, perform a second measurement on the M carriers under test among the N carriers under test, and obtain a second measurement result.
  • M and N are both positive integers, and M is less than or equal to N;
  • S404 Send the second measurement result to the network device, where the second measurement result is used to determine the secondary cell in the multi-link.
  • the measurement method in the embodiment of the present disclosure can be applied to the process of user equipment establishing multi-link. Through this measurement method, the link quality of the link between the multi-link and the secondary cell can be improved, thereby improving the overall link of the multi-link. quality.
  • FIG. 5 is a flow chart of a measurement method according to an exemplary embodiment. As shown in Figure 5, the method includes steps S501 to S505. Specifically, of:
  • S501 Receive measurement configuration information sent by the network device.
  • the measurement configuration information is used to configure N carriers to be measured; the measurement configuration information is also used to configure selection parameters, and the selection parameters include at least one of the following: valid duration threshold, signal strength threshold, priority .
  • S502 Perform a first measurement on the N carriers under test when in the non-connected state, and obtain a first measurement result.
  • S503 Select the M carriers to be tested from the N carriers to be tested according to the selection parameters and the selection mode corresponding to the selection parameters.
  • S504 In response to the access to the serving cell event, perform a second measurement on the M carriers under test among the N carriers under test, and obtain a second measurement result.
  • M and N are both positive integers, and M is less than or equal to N;
  • S505 Send the second measurement result to the network device, where the second measurement result is used to determine the secondary cell in the multi-link.
  • the measurement method in the embodiment of the present disclosure can be applied to the process of the user equipment establishing a multi-link. Through this measurement method, the measurement capability of the user equipment can be saved, and the link quality of the link between the multi-link and the secondary cell can be improved. , thereby improving the overall link quality of multi-links.
  • the valid duration threshold can be in two situations. In the first case, the valid duration threshold is the first value for all the carriers to be tested among the N carriers to be tested. A threshold. In the second case, the valid duration threshold is a plurality of second thresholds, and each second threshold is used for a different one or more carriers to be tested.
  • the valid duration threshold is a first threshold, and the first threshold corresponds to the N carriers to be tested;
  • the selection method corresponding to the first threshold is: when the set duration is greater than the first threshold, determine that the M is equal to the N, and select the N carriers to be tested, where the set duration is the The duration between a first moment and a second moment (that is, the duration from the first moment to the second moment), the first moment is the moment when the first measurement is completed, and the second moment is the access to the serving cell The moment of occurrence of the event.
  • the valid duration threshold is K second thresholds, each second threshold corresponds to at least one carrier to be tested among the N carriers to be tested, and K is a positive integer, and K is less than or equal to N.
  • the selection method corresponding to the K second thresholds is: the selected second threshold of the carrier to be tested is less than the set time period, where the set time period is the time period between the first moment and the second moment (i.e., the second moment). The length of time from one moment to the second moment), the first moment is the moment when the first measurement is completed, and the second moment is the moment when the access to the serving cell event occurs.
  • the accessing serving cell event is one of the following:
  • the signal strength threshold can have two situations.
  • the signal strength threshold is a third threshold
  • the third threshold corresponds to the N carriers to be measured
  • the selection method corresponding to the third threshold is: select one of the first measurement results
  • the carrier to be tested has a signal strength value greater than the third threshold.
  • the signal strength threshold is L fourth thresholds, each fourth threshold corresponds to at least one carrier to be tested among the N carriers to be tested, and L is a positive integer, and L is less than or Equal to N;
  • the selection method corresponding to the L fourth thresholds is: select the carrier to be tested whose signal strength value in the first measurement result is greater than or equal to the corresponding fourth threshold, or select the carrier in the first measurement result The carrier under test whose signal strength value is less than the corresponding fourth threshold.
  • the priority can have two situations.
  • the priorities are multiple group priorities, each group priority corresponds to a group, and each group includes at least one carrier to be tested among the N carriers to be tested;
  • the selection method corresponding to the plurality of group priorities is: the selected carrier to be tested is a carrier to be tested in a setting group, and the group priority of the setting group is greater than the first setting priority.
  • the priorities are multiple carrier priorities, and each carrier priority corresponds to a carrier to be tested;
  • the selection method corresponding to the plurality of carrier priorities is: the carrier priority of the selected carrier to be tested is greater than the second set priority.
  • the user equipment before S502, the user equipment sends user equipment capabilities to the network device, where the user equipment capabilities are used to indicate whether the user equipment supports enhanced delay requirements for the second measurement.
  • the delay requirement enhancement for the second measurement includes: the delay requirement enhancement for layer 1 measurement and/or the delay requirement enhancement for layer 1 measurement.
  • supporting the enhancement of delay requirements for layer 1 measurements refers to supporting the reduction of delay for layer 1 measurements.
  • supporting the enhanced delay requirements for layer 1 measurement means supporting the delay for layer 1 measurement to be less than the agreed duration, which is shorter than the delay for layer 1 measurement defined in existing protocols.
  • the existing protocol can be R16 or R17 protocol.
  • Supporting the enhancement of delay requirements for layer 3 measurement means supporting the reduction of delay for layer 3 measurement.
  • supporting the enhanced delay requirements for layer 3 measurement means supporting the delay for layer 3 measurement to be less than the agreed duration, which is less than the delay for layer 3 measurement defined in existing protocols.
  • Embodiments of the present disclosure provide a method for determining a secondary cell, which is executed by a network device.
  • Figure 6 is a flow chart of a method for determining a secondary cell according to an exemplary embodiment. As shown in Figure 6, the method includes Steps S601 ⁇ S603, specifically:
  • the measurement configuration information is used to configure N carriers to be measured.
  • the measurement configuration information is used to configure selection parameters, and the selection parameters include at least one of the following: valid duration threshold, signal strength threshold, and priority.
  • S602. Receive the second measurement result sent by the user equipment, where the second measurement result is the measurement result of the second measurement of the M carriers under test among the N carriers under test in response to the access to the serving cell event;
  • S603 Use the second measurement result to determine the secondary cell in the multi-link.
  • embodiments of the present disclosure also provide a communication device, which can have the functions of the user equipment 102 in the above method embodiments, and is used to perform the functions provided by the user equipment 102 in the above embodiments. steps to perform.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 700 shown in Figure 7 can serve as the user equipment 102 involved in the above method embodiment, and perform the steps performed by the user equipment 102 in the above method embodiment.
  • the communication device 700 includes a transceiver module 701 and a processing module 702.
  • the transceiver module 701 is configured to receive measurement configuration information sent by the network device, where the measurement configuration information is used to configure N carriers to be tested;
  • the processing module 702 is configured to perform a first measurement on the N carriers under test when in the non-connected state and obtain a first measurement result; and is also configured to perform a first measurement on the N carriers under test in response to an access serving cell event. Perform a second measurement on M carriers under test to obtain a second measurement result, where M and N are both positive integers, and M is less than or equal to N;
  • the transceiver module 701 is also configured to send the second measurement result to the network device, where the second measurement result is used to determine the secondary cell in the multi-link.
  • the measurement configuration information is also used to configure selection parameters, and the selection parameters include at least one of the following: valid duration threshold, signal strength threshold, priority;
  • the processing module 702 is further configured to select the M carriers to be tested from the N carriers to be tested according to the selection parameters and the selection mode corresponding to the selection parameters.
  • the valid duration threshold is a first threshold, and the first threshold corresponds to the N carriers to be tested;
  • the selection method corresponding to the first threshold is: when the set duration is greater than the first threshold, determine that the M is equal to the N, and select the N carriers to be tested, where the set duration is the The duration between a first moment and a second moment (that is, the duration from the first moment to the second moment), the first moment is the moment when the first measurement is completed, and the second moment is the access to the serving cell The moment of occurrence of the event.
  • the valid duration threshold is K second thresholds, each second threshold corresponds to at least one carrier to be tested among the N carriers to be tested, and K is a positive integer, K Less than or equal to N.
  • the selection method corresponding to the K second thresholds is: the selected second threshold of the carrier to be tested is less than the set time period, where the set time period is the time period between the first moment and the second moment (i.e., the second moment). The length of time from one moment to the second moment), the first moment is the moment when the first measurement is completed, and the second moment is the moment when the access to the serving cell event occurs.
  • the accessing serving cell event is one of the following:
  • the signal strength threshold is a third threshold, and the third threshold corresponds to the N carriers to be tested;
  • the selection method corresponding to the third threshold is: selecting the carrier to be measured whose signal strength value in the first measurement result is greater than the third threshold.
  • the signal strength threshold is L fourth thresholds, each fourth threshold corresponds to at least one carrier to be tested among the N carriers to be tested, and L is a positive integer, L Less than or equal to N;
  • the selection method corresponding to the L fourth thresholds is: selecting the carrier to be tested whose signal strength value in the first measurement result is greater than or equal to the corresponding fourth threshold, or selecting the signal strength value in the first measurement result The carrier to be tested is smaller than the corresponding fourth threshold.
  • the priority is a plurality of group priorities, each group priority corresponds to a group, and each group includes at least one carrier to be tested among the N carriers to be tested;
  • the selection method corresponding to the plurality of group priorities is: the selected carrier to be tested is a carrier to be tested in a setting group, and the group priority of the setting group is greater than the first setting priority.
  • the priority is multiple carrier priorities, and each carrier priority corresponds to a carrier to be tested;
  • the selection method corresponding to the plurality of carrier priorities is: the carrier priority of the selected carrier to be tested is greater than the second set priority.
  • the method further includes:
  • the second measurement is a measurement based on the reference signal received power of layer 1, or a measurement based on the reference signal received power of layer 3.
  • FIG. 8 is a block diagram of a measuring device 800 according to an exemplary embodiment.
  • the device 800 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the device 800 may include one or more of the following components: a processing component 802, a memory 804, a power component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communications component 816.
  • Processing component 802 generally controls the overall operations of device 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operations at device 800 . Examples of such data include instructions for any application or method operating on device 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power component 806 provides power to various components of device 800.
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 800 .
  • Multimedia component 808 includes a screen that provides an output interface between the device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 808 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) configured to receive external audio signals when device 800 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signal may be further stored in memory 804 or sent via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 814 includes one or more sensors that provide various aspects of status assessment for device 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the device 800, and the sensor component 814 can also detect a change in position of the device 800 or a component of the device 800. , the presence or absence of user contact with the device 800 , device 800 orientation or acceleration/deceleration and temperature changes of the device 800 .
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between apparatus 800 and other devices.
  • Device 800 may access a wireless network based on a communication standard, such as WiFi, 4G or 5G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 816 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 800 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 804 including instructions, which are executable by the processor 820 of the apparatus 800 to complete the above method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • embodiments of the present disclosure also provide a communication device, which can have the functions of the network device 101 in the above method embodiments, and is used to perform the functions provided by the network device 101 in the above embodiments. steps to perform.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 900 shown in Figure 9 can serve as the network device 101 involved in the above method embodiment, and perform the steps performed by the network device 101 in the above method embodiment.
  • the communication device 900 includes a transceiver module 901 and a processing module 902.
  • the transceiver module 901 is configured to send measurement configuration information to the user equipment, where the measurement configuration information is used to configure N carriers to be tested; and is also configured to receive a second measurement result sent by the user equipment, where the second measurement result is Measurement results of performing a second measurement on the M carriers under test among the N carriers under test in response to the access to the serving cell event;
  • the processing module 902 is configured to determine the secondary cell in the multi-link according to the second measurement result.
  • the measurement configuration information is used to configure selection parameters, and the selection parameters include at least one of the following: valid duration threshold, signal strength threshold, and priority.
  • user equipment capabilities sent by the user equipment are received, and the user equipment capabilities are used to indicate whether the user equipment supports enhanced delay requirements for the second measurement.
  • device 1000 When the communication device is a network device 101, its structure can also be shown in Figure 10.
  • device 1000 includes a memory 1001, a processor 1002, a transceiver component 1003, and a power supply component 1006.
  • the memory 1001 is coupled to the processor 1002 and can be used to store programs and data necessary for the communication device 1000 to implement various functions.
  • the processor 1002 is configured to support the communication device 1000 to perform corresponding functions in the above method. This function can be implemented by calling a program stored in the memory 1001 .
  • the transceiver component 1003 may be a wireless transceiver, which may be used to support the communication device 1000 to receive signaling and/or data through a wireless air interface, and to send signaling and/or data.
  • the transceiver component 1003 may also be called a transceiver unit or a communication unit.
  • the transceiver component 1003 may include a radio frequency component 1004 and one or more antennas 1005.
  • the radio frequency component 1004 may be a remote radio unit (RRU). Specifically, It can be used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the one or more antennas 1005 can be specifically used for radiating and receiving radio frequency signals.
  • the processor 1002 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit.
  • the radio frequency unit performs radio frequency processing on the baseband signal and then sends the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1002.
  • the processor 1002 converts the baseband signal into data and processes the data. for processing.
  • the user equipment After the user equipment completes EMR in the idle state (idle) or inactive state (inactive), it accesses the serving cell. During the process of accessing the serving cell, it measures some or all of the carriers measured in the EMR again to prevent EMR. The measurement result has expired. This re-measurement can be considered as an enhanced measurement of EMR. The measurement result of this enhanced measurement is more accurate than the measurement result of EMR, so that the secondary cell in the multi-link is determined based on the measurement result of the enhanced measurement. Secondary cells with better signal quality can be determined, ensuring the link performance of links between multi-links and secondary cells, and improving the overall link quality of multi-links.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种测量方法、确定辅小区的方法、装置、设备以及介质,应用于无线通信技术领域,此测量方法包括:接收网络设备发送的测量配置信息,所述测量配置信息用于配置N个待测载波;在处于非连接态时对N个待测载波进行第一测量,获得第一测量结果;响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量,获得第二测量结果,其中,M和N均为正整数,M小于或等于N;向所述网络设备发送所述第二测量结果,所述第二测量结果用于确定多链接中的辅小区。

Description

一种测量方法、确定辅小区的方法、装置、设备以及介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种测量方法、确定辅小区的方法、装置、设备以及可读存储介质。
背景技术
在无线空口技术(New Radio,NR)协议中,为了支持快速建立双连接(Dual-Connectivity,DC)或者载波聚合(Carrier Aggregation,CA)连接,引入了提前测量报告(Early Measurement Report,EMR),即用户设备可以在空闲态(idle)或非激活态(inactive)下根据网络设备配置的载波测量信息进行测量和上报。根据通信协议要求,在FR2(Frequency Range 2)场景下检测和测量一个FR2载波的时延非常长,再考虑到载波数扩展因子,时延将进一步增加。
发明内容
本公开提供一种测量方法、确定辅小区的方法、装置、设备以及可读存储介质。
第一方面,提供了一种测量方法,由用户设备执行,所述方法包括:接收网络设备发送的测量配置信息,所述测量配置信息用于配置N个待测载波;在处于非连接态时对N个待测载波进行第一测量,获得第一测量结果;响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量,获得第二测量结果,其中,M和N均为正整数,M小于或等于N;向所述网络设备发送所述第二测量结果,所述第二测量结果用于确定多链接中的辅小区。
在一些可能的实施方式中,所述测量配置信息还用于配置选择参数,所述选择参数包括以下中的至少一种:有效时长阈值、信号强度阈值、优先级;
所述方法还包括:根据所述选择参数和与所述选择参数对应的选择方式从所述N个待测载波中选择所述M个待测载波。
在一些可能的实施方式中,所述有效时长阈值为第一阈值,所述第一阈值对应于所述N个待测载波;
所述第一阈值对应的选择方式为:在设定时长大于所述第一阈值时,确定所述M等于所述N,选择所述N个待测载波,其中,所述设定时长为第一时刻和第二时刻之间的时长,所述第一时刻为完成所述第一测量的时刻,所述第二时刻为所述接入服务小区事件的发生 时刻。
在一些可能的实施方式中,所述有效时长阈值为K个第二阈值,每个第二阈值对应于所述N个待测载波中的至少一个待测载波,所述K为正整数,K小于或等于N。
所述K个第二阈值对应的选择方式为:选择出的待测载波的第二阈值小于设定时长,其中,所述设定时长为第一时刻和第二时刻之间的时长,所述第一时刻为完成所述第一测量的时刻,所述第二时刻为所述接入服务小区事件的发生时刻。
在一些可能的实施方式中,所述接入服务小区事件为以下中的一种:向所述服务小区发送随机接入请求、接收所述服务小区的寻呼消息、向所述服务小区发送无线链路连接请求。
在一些可能的实施方式中,所述信号强度阈值为第三阈值,所述第三阈值对应于所述N个待测载波;
所述第三阈值对应的选择方式为:选择所述第一测量结果中信号强度值大于所述第三阈值的待测载波。
在一些可能的实施方式中,所述信号强度阈值为L个第四阈值,每个第四阈值对应于所述N个待测载波中的至少一个待测载波,所述L为正整数,L小于或等于N;
所述L个第四阈值对应的选择方式为:选择所述第一测量结果中信号强度值大于或等于相应的第四阈值的待测载波,或者,选择所述第一测量结果中信号强度值小于相应的第四阈值的待测载波。
在一些可能的实施方式中,所述优先级为多个组优先级,每个组优先级对应于一个分组,每个分组包括所述N个待测载波中至少一待测载波;
所述多个组优先级对应的选择方式为:选择出的待测载波为设定组中的待测载波,所述设定组的组优先级大于第一设定优先级。
在一些可能的实施方式中,所述优先级为多个载波优先级,每个载波优先级对应于一个待测载波;
所述多个载波优先级对应的选择方式为:选择出的待测载波的载波优先级大于第二设定优先级。
在一些可能的实施方式中,所述方法还包括:
向网络设备发送用户设备能力,所述用户设备能力用于指示所述用户设备是否支持针对第二测量的时延要求增强。
在一些可能的实施方式中,所述第二测量为基于层1的参考信号接收功率的测量,或 者为基于层3的参考信号接收功率的测量。
第二方面,提供了一种确定辅小区的方法,由网络设备执行,所述方法包括:
向用户设备发送测量配置信息,所述测量配置信息用于配置N个待测载波;
接收用户设备发送的第二测量结果,所述第二测量结果为响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量的测量结果;
根据所述第二测量结果用于确定多链接中的辅小区。
在一些可能的实施方式中,所述测量配置信息用于配置选择参数,所述选择参数包括以下中的至少一种:有效时长阈值、信号强度阈值、优先级。
在一些可能的实施方式中,所述方法还包括:
接收用户设备发送的用户设备能力,所述用户设备能力用于指示所述用户设备是否支持针对第二测量的时延要求增强。
第三方面,提供了一种测量装置,被配置于用户设备,所述装置包括:
收发模块,被配置为接收网络设备发送的测量配置信息,所述测量配置信息用于配置N个待测载波;
处理模块,被配置为在处于非连接态时对N个待测载波进行第一测量,获得第一测量结果;还被配置为响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量,获得第二测量结果,其中,M和N均为正整数,M小于或等于N;
所述收发模块,还被配置为向所述网络设备发送所述第二测量结果,所述第二测量结果用于确定多链接中的辅小区。
第四方面,提供了一种确定辅小区的装置,被配置于网络设备,所述装置包括:
收发模块,被配置为向用户设备发送测量配置信息,所述测量配置信息用于配置N个待测载波;还被配置为接收网络设备发送的第二测量结果,所述第二测量结果为响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量的测量结果;
处理模块,被配置为根据所述第二测量结果用于确定多链接中的辅小区。
第五方面,提供了一种电子设备,包括处理器以及存储器,其中,
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序,以实现如第一方面的任意一种可能的设计。
第六方面,提供了一种电子设备,包括处理器以及存储器,其中,
所述存储器用于存储计算机程序;
所述处理器用于执行所述计算机程序,以实现如第二方面的任意一种可能的设计。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行以实现如第一方面的任意一种可能的设计。
第八方面,一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行以实现如第二方面的任意一种可能的设计。
第九方面,一种通信系统,包括用于执行上述任一项的用户设备和用于上述任一项的网络设备。
本公开中,用户设备在在空闲态(idle)或非激活态(inactive)完成EMR后接入服务小区,在接入服务小区的过程中对EMR中测量过的部分或全部载波再次进行测量,以防止EMR的测量结果已过期,此再次进行的测量可以认为是对EMR的一种增强测量,此增强测量的测量结果比EMR的测量结果更准确,从而根据增强测量的测量结果确定多链接中的辅小区,可以确定出信号质量较好的辅小区,保证多链接中与辅小区之间的链接的链路性能,提高多链接的整体链路质量。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是本公开实施例提供的一种建立多链接的方法的交互示意图;
图3是本公开实施例提供的另一种建立多链接的方法的交互示意图;
图4是本公开实施例提供的一种测量方法的流程图;
图5是本公开实施例提供的另一种测量方法的流程图;
图6是本公开实施例提供的一种确定辅小区的方法的流程图;
图7是本公开实施例提供的一种测量装置的结构图;
图8是本公开实施例提供的另一种测量装置的结构图;
图9是本公开实施例提供的一种确定辅小区的装置的结构图;
图10是本公开实施例提供的另一种确定辅小区的装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例提供的一种确定辅小区的方法可应用于无线通信系统100,该无线通信系统可以包括但不限于网络设备101和用户设备102。用户设备102被配置为支持载波聚合,用户设备102可连接至网络设备101的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频 分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备102可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或用户设备等。该用户设备102可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备101进行通信(如无线通信),并接受网络设备101提供的网络服务,这里的网络设备101包括但不限于图示基站。
其中,用户设备102可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的用户设备或者未来演进的PLMN网络中的用户设备等。
网络设备101可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备具体可包括基站(base station,BS)设备,或包括基站设备以及用于控制基站设备的无线资源管理设备等。该网络设备还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备可以是可穿戴设备或车载设备。网络设备也可以是具有通信模块的通信芯片。
比如,网络设备101包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
考虑到应用提前测量报告(Early Measurement Report,EMR)后用户设备可以在空闲 态(idle)或非激活态(inactive)下根据网络设备配置的载波测量信息进行测量和上报。通信协议要求,在FR2(Frequency Range 2)场景下检测和测量一个FR2载波的时延非常长,再考虑到载波数扩展因子,时延将进一步增加。发明人在研究中发现,如此长的时延要求可能会导致用户设备上报的EMR的测量结果不可信。
另外,发明人在研究中还发现,当用户设备在空闲态(idle)或非激活态(inactive)完成EMR后,在接入服务小区的过程中启动无线资源控制(Radio Resource Control,RRC)建立请求的时长不确定,并且,完成RRC连接建立的时间较长,还会导致用户设备上报的EMR的测量结果过期而变得不可信。根据EMR的测量报告确定多链接中的辅小区,可能会导致确定出的辅小区的信号质量较差,使多链接中与辅小区之间的链接的链路性能不佳,影响多链接的链路质量。
因此发明人在研究中发现,用户设备在在空闲态(idle)或非激活态(inactive)完成EMR后接入服务小区,在接入服务小区的过程中有必要对EMR中测量过的部分或全部载波再次进行测量,以防止EMR的测量结果已过期,此再次进行的测量可以认为是对EMR的一种增强测量,此增强测量的测量结果比EMR的测量结果更准确,从而根据增强测量的测量结果确定多链接中的辅小区,可以确定出信号质量较好的辅小区,保证多链接中与辅小区之间的链接的链路性能,提高多链接的整体链路质量。
本公开实施例提供了一种确定辅小区的方法,图2是根据一示例性实施例示出的一种确定辅小区的方法的流程图,如图2所示,该方法包括步骤S201~S207,具体的:
S201,网络设备向用户设备发送测量配置信息,所述测量配置信息用于配置N个待测载波。
在一些可能的实施方式中,所述N个待测载波包括N个NR载波,或者包括N个LTE载波,或者包括多个NR载波和多个LTE载波,此多个NR载波的数量和多个LTE载波的数量之和为N。
S202,用户设备在处于非连接态时对N个待测载波进行第一测量,获得第一测量结果。
在一些可能的实施方式中,非连接态为空闲态(idle)或非激活态(inactive)。
S203,用户设备在接入所述网络设备下的服务小区的过程中,响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量,获得第二测量结果。
其中,M和N均为正整数,M小于或等于N。
在一些可能的实施方式中,接入服务小区事件为以下中的一种:
向所述服务小区发送随机接入请求、
接收所述服务小区的寻呼消息、
向所述服务小区发送无线链路连接请求。
在一些可能的实施方式中,用户设备在接入所述网络设备下的服务小区的过程中,响应于接入服务小区事件对所述N个待测载波进行第二测量,获得第二测量结果。
在一些可能的实施方式中,所述第二测量为基于层1的参考信号接收功率(L1_RSRP)的测量,或者为基于层3的参考信号接收功率(L3_RSRP)的测量。
S204,用户设备向网络设备发送所述第二测量结果。
S205,网络设备根据所述第二测量结果确定多链接中的辅小区。
S206,网络设备向用户设备发送用于指示辅小区的指示信息。
S207,用户设备根据服务小区和辅小区建立多链接。
本公开实施例中,用户设备在在空闲态(idle)或非激活态(inactive)完成EMR后接入服务小区,在接入服务小区的过程中对EMR中测量过的全部载波再次进行测量,以防止EMR的测量结果已过期,此再次进行的测量可以认为是对EMR的一种增强测量,此增强测量的测量结果比EMR的测量结果更准确,从而根据增强测量的测量结果确定多链接中的辅小区,可以确定出信号质量较好的辅小区,保证多链接中与辅小区之间的链接的链路性能,提高多链接的整体链路质量。
在一些可能的实施方式中,S203中用户设备在接入所述网络设备下的服务小区的过程中,响应于接入服务小区事件对所述N个待测载波中设定的M个待测载波进行第二测量,获得第二测量结果。例如:M小于N,设定的M个待测载波是用户设备根据约议约定获知的,或者从网络设备发送的指示信息中获知的,或者是默认的。
在一些可能的实施方式中,在S202之前,用户设备向网络设备发送用户设备能力,所述用户设备能力用于指示所述用户设备是否支持针对第二测量的时延要求增强。
所述针对第二测量的时延要求增强包括:针对层1测量的时延要求增强和/或针对层1测量的时延要求增强。
在一些可能的实施方式中,支持针对层1测量的时延要求增强是指支持针对层1测量的时延缩短。在一示例中,支持针对层1测量的时延要求增强是指支持针对层1测量的时延小于约定时长,此约定时长小于已有协议中定义的针对层1测量的时延。已有协议可以是R16或R17协议。
支持针对层3测量的时延要求增强是指支持针对层3测量的时延缩短。在一示例中,支持针对层3测量的时延要求增强是指支持针对层3测量的时延小于约定时长,此约定时 长小于已有协议中定义的针对层3测量的时延。
在一示例中,UE在空闲态或非激活态对N个待测载波执行EMR测量并得到第一测量结果,当UE向网络发起RRC连接建立请求后,需要对N个待测载波中的M个待测载波执行L1_RSRP测量,如果UE在之前的L1_RSRP测量期间已经执行过接收波束的确认过程,则UE在执行此次的L1_RSRP测量时不需要执行接收波束扫描(Rxbeamsweeping),或者需要执行接收波束扫描但扫描的次数可以减小,例如不需要扫描8次,只需要扫描4次或2次就能确定最佳接收波束,从而UE执行L1_RSRP测量的时延可以缩短。在此情况下,UE在之前的L1_RSRP测量期间已经执行过接收波束的确认过程时,UE向网络设备发送用户设备能力,所述用户设备能力用于指示所述UE支持针对L1_RSRP测量的时延要求增强。
在一示例中,UE在空闲态或非激活态对N个待测载波执行EMR测量并得到第一测量结果,当UE向网络发起RRC连接建立请求后,需要对N个待测载波中的M个待测载波执行L3_RSRP测量,如果UE具备同时使用多个接收波束接收下行信号的能力(例如同时使用2个接收波束接收下行信号的能力),则UE在执行此次的L1_RSRP测量时需要执行接收波束扫描但扫描的次数可以减小,例如不需要扫描8次,只需要扫描4次或2次就能确定最佳接收波束,从而UE执行L1_RSRP测量的时延可以缩短。在此情况下,UE具备同时使用多个接收波束接收下行信号的能力时,UE向网络设备发送用户设备能力,所述用户设备能力用于指示所述UE支持针对L3_RSRP测量的时延要求增强。
本公开实施例提供了一种建立多链接的方法,图3是根据一示例性实施例示出的一种建立多链接的方法的流程图,如图3所示,该方法包括步骤S301~S308,具体的:
S301,网络设备向用户设备发送测量配置信息,所述测量配置信息用于配置N个待测载波。
在一些可能的实施方式中,所述N个待测载波包括N个NR载波,或者包括N个LTE载波,或者包括多个NR载波和多个LTE载波,此多个NR载波的数量和多个LTE载波的数量之和为N。
S302,用户设备在处于非连接态时对N个待测载波进行第一测量,获得第一测量结果。
在一些可能的实施方式中,非连接态为空闲态(idle)或非激活态(inactive)。
S303,用户设备确定所述N个待测载波中的M个待测载波。其中,M和N均为正整数,M小于或等于N。
S304,用户设备在接入所述网络设备下的服务小区的过程中,响应于接入服务小区事 件对所述M个待测载波进行第二测量,获得第二测量结果。
在一些可能的实施方式中,所述第二测量为基于层1的参考信号接收功率(L1_RSRP)的测量,或者为基于层3的参考信号接收功率(L3_RSRP)的测量。
在一些可能的实施方式中,接入服务小区事件为以下中的一种:
向所述服务小区发送随机接入请求、
接收所述服务小区的寻呼消息、
向所述服务小区发送无线链路连接请求。
S305,用户设备向网络设备发送所述第二测量结果。
S306,网络设备根据所述第二测量结果确定多链接中的辅小区。
S307,网络设备向用户设备发送用于指示辅小区的指示信息。
S308,用户设备根据服务小区和辅小区建立多链接。
本公开实施例中,用户设备在空闲态(idle)或非激活态(inactive)完成EMR后接入服务小区,在接入服务小区的过程中对EMR中测量过的载波中的部分载波再次进行测量,以防止EMR的测量结果已过期,此再次进行的测量可以认为是对EMR的一种增强测量,此增强测量的测量结果比EMR的测量结果更准确,从而根据增强测量的测量结果确定多链接中的辅小区,可以确定出信号质量较好的辅小区,保证多链接中与辅小区之间的链接的链路性能,提高多链接的整体链路质量,另外,通过对EMR中测量过的载波中的部分载波再次测量,相比于对EMR中测量过的所有载波进行测量,可以节省用户设备的测量能力,进一步缩短建立多链接的时长。
下面详细说明S303中用户设备确定所述N个待测载波中的M个待测载波的方式。可以通过以下三种方式实现。
方式一
S301中的测量配置信息还用于配置选择参数,所述选择参数为有效时长阈值。
S303中用户设备根据所述有效时长阈值和与所述有效时长阈值对应的选择方式从所述N个待测载波中选择所述M个待测载波。
关于有效时长阈值可以有两种情况,第一种情况中,有效时长阈值是一个用于N个待测载波中所有待测载波的第一阈值,第二种情况中,有效时长阈值是多个第二阈值,每个第二阈值用于不同的一个或多个待测载波。
下面详细说明此两种情况。
第一种情况:
所述有效时长阈值为第一阈值,所述第一阈值对应于所述N个待测载波。
所述第一阈值对应的选择方式为:在设定时长大于所述第一阈值时,确定所述M等于所述N,选择所述N个待测载波,其中,所述设定时长为第一时刻和第二时刻之间的时长(即第一时刻距离第二时刻的时长),第一时刻T1为完成所述第一测量的时刻,第二时刻T2为所述接入服务小区事件的发生时刻。
在一示例中,用户设备在空闲态或者非激活态完成EMR测量的时刻为T1,用户设备向网络设备发送RRC连接请求的时刻为T2,如果T2和T1之间的时长(即T1距离T2的时长)大于或等于第一阈值(例如第一阈值为5毫秒),则选择所述N个待测载波,如果T2和T1之间的时长(即T1距离T2的时长)小于第一阈值,则无需从所述N个待测载波中选择出任一待测载波。
即相应的,如果T2和T1之间的时长(即T1距离T2的时长)大于或等于第一阈值(例如第一阈值为5毫秒),则需要对所述N个待测载波均进行增强测量,如果T2和T1之间的时长(即T1距离T2的时长)小于第一阈值,则无需对所述N个待测载波中任一待测载波进行增强测量。
在另一示例中,用户设备在空闲态或者非激活态完成EMR测量后,启动定时器,定时器的定时时长为第一阈值(例如第一阈值为5毫秒),用户设备向网络设备发送RRC连接请求时,如果定时器已超时,则选择所述N个待测载波;如果定时器未超时,则无需从所述N个待测载波中选择出任一待测载波。
即相应的,用户设备向网络设备发送RRC连接请求时,如果定时器已超时,则需要对所述N个待测载波均进行增强测量,如果定时器未超时,则无需从所述N个待测载波中选择出任一待测载波。
第二种情况:
所述有效时长阈值为K个第二阈值,每个第二阈值对应于所述N个待测载波中的至少一个待测载波,所述K为正整数,K小于或等于N。
所述K个第二阈值对应的选择方式为:选择出的待测载波的第二阈值小于设定时长,其中,所述设定时长为第一时刻和第二时刻之间的时长(即第一时刻距离第二时刻的时长),所述第一时刻T1为完成所述第一测量的时刻,所述第二时刻T2为所述接入服务小区事件的发生时刻。
需要说明的是,网络设备发送的测量配置信息中除了指示K个第二阈值外,还指示每个第二阈值与至少一个待测载波的对应关系。例如:测量配置信息可以以信息对的方式进 行指示,每个信息对中包括第一信息和第二信息,第一信息用于指示第二阈值,第二信息用于指示与所述第二阈值对应的待测载波(可以是一个或多个)。
在一示例中:
N的值为10,K的值为10,则用户设备在EMR测量中测量了10个待测载波,并且从网络设备获知了10个第二阈值。第1个第二阈值即Thre_1对应于第1个待测载波,第2个第二阈值即Thre_2对应于第2个待测载波,以此类推,第10个第二阈值即Thre_10对应于第10个待测载波。
用户设备在空闲态或者非激活态完成EMR测量的时刻为T1,用户设备向网络设备发送RRC连接请求的时刻为T2,如果T2和T1之间的时长(即T1距离T2的时长)大于或等于10个第二阈值中哪些第二阈值,则选择这些第二阈值一一对应的待测载波。
T2和T1之间的时长(即T1距离T2的时长)大于第1个第二阈值即Thre_1和第2个第二阈值即Thre_2,T2和T1之间的时长(即T1距离T2的时长)小于其它的8个第二阈值中任一个,则选择出第1个第二阈值即Thre_1对应的第1待测载波和第2个第二阈值即Thre_2对应的第2待测载波,而不选择其它的8个待测载波。即需要对第1待测载波和第2待测载波进行增强测量,而无需对其它的8个待测载波进行增强测量。
方式二
S301中的所述测量配置信息还用于配置选择参数,所述选择参数包括信号强度阈值。
S303中根据所述信号强度阈值和与所述信号强度阈值对应的选择方式从所述N个待测载波中选择所述M个待测载波。
关于信号强度阈值可以有两种情况,第一种情况中,信号强度阈值是一个用于N个待测载波中所有待测载波的第三阈值,第二种情况中,有效时长阈值是多个第四阈值,每个第四阈值用于不同的一个或多个待测载波。
下面详细说明此两种情况。
第一种情况:
所述信号强度阈值为第三阈值,所述第三阈值对应于所述N个待测载波。
所述第三阈值对应的选择方式为:选择所述第一测量结果中信号强度值大于所述第三阈值的待测载波。
具体的:用户设备在空闲态或者非激活态完成EMR测量后,获得第一测量结果,第一测量结果中包括对所述N个待测载波中每个待测载波测量得到的信号强度值,选择所述第一测量结果中信号强度值大于所述第三阈值的待测载波。
在此第一种情况下,选择信号强度值较大的待测载波进行增强测量,在EMR测量结果的已过期的时长较短即可信度较高时,可以准确的选择到信号质量较好的辅小区。
在一示例中:
N的值为10,则用户设备在空闲态或者非激活态时执行EMR测量时需测量10个待测载波,获得第一测量结果,第一测量结果中包括对所述10个待测载波中每个待测载波测量得到的信号强度值,如果对第1待测载波测量得到的信号强度值、对第2待测载波测量得到的信号强度值和对第3待测载波测量得到的信号强度值均大于第三阈值,对其它的8个待测载波测量得到的信号强度值均小于第三阈值,则选择第1待测载波、第2待测载波和第3待测载波,而不选择其它的8个待测载波。
即需要对第1待测载波、第2待测载波和第3待测载波进行增强测量,而无需对其它的7个待测载波进行增强测量。
第二种情况:
所述信号强度阈值为L个第四阈值,每个第四阈值对应于所述N个待测载波中的至少一个待测载波,所述L为正整数,L小于或等于N;
所述L个第四阈值对应的选择方式为:选择所述第一测量结果中信号强度值大于或等于相应的第四阈值的待测载波,或者,选择所述第一测量结果中信号强度值小于相应的第四阈值的待测载波。
需要说明的是,网络设备发送的测量配置信息中除了指示L个第四阈值外,还指示每个第四阈值与至少一个待测载波的对应关系。例如:测量配置信息可以以信息对的方式进行指示,每个信息对中包括第一信息和第二信息,第一信息用于指示第四阈值,第二信息用于指示与所述第四阈值对应的待测载波(可以是一个或多个)。
在此第二种情况下,选择信号强度值较大的待测载波进行增强测量,在EMR测量结果的已过期的时长较短即可信度较高时,可以准确的选择到信号质量较好的辅小区。选择信号强度值较小的待测载波进行增强测量,在EMR测量结果的已过期的时长较长即可信度较低时,可以节省用户设备的测量能力。
在一示例中:
N的值为10,L的值为10,则用户设备在空闲态或者非激活态时执行EMR测量时需测量10个待测载波,并且从网络设备获知了10个第四阈值。每个待测载波对应于一个第四阈值。
用户设备在空闲态或者非激活态完成EMR测量后,获得第一测量结果,第一测量结 果中包括对所述10个待测载波中每个待测载波测量得到的信号强度值,如果对第1待测载波测量得到的信号强度值大于第1待测载波对应的第四阈值,对第2待测载波测量得到的信号强度值大于第2待测载波对应的第四阈值,对其它的任一待测载波测量得到的信号强度值均小于相应的第四阈值,则选择第1待测载波和第2待测载波,而不选择其它的8个待测载波。
在另一示例中:
N的值为10,L的值为3,则用户设备在空闲态或者非激活态时执行EMR测量时需测量10个待测载波,并且从网络设备获知了3个第四阈值。第1至4个待测载波对应于第1个第四阈值,第5至8个待测载波对应于第2个第四阈值,第9至10个待测载波对应于第3个第四阈值。
用户设备在空闲态或者非激活态完成EMR测量后,获得第一测量结果,第一测量结果中包括对所述10个待测载波中每个待测载波测量得到的信号强度值,如果对第1待测载波测量得到的信号强度值大于第1待测载波对应的第四阈值,对其它的任一待测载波测量得到的信号强度值均小于相应的第四阈值,则选择第1待测载波,而不选择其它的9个待测载波。
方式三
S301中的所述测量配置信息还用于配置选择参数,所述选择参数包括优先级。
S303中根据所述优先级和与所述优先级对应的选择方式从所述N个待测载波中选择所述M个待测载波。
关于优先级可以有两种情况,第一种情况中,优先级为多个组优先级,每个组包括所述N个待测载波中至少一待测载波,每个组对应于一个组优先级。第二种情况中,优先级为多个载波优先级,每个载波优先级对应于一个待测载波。
下面详细说明此两种情况。
第一种情况:
所述优先级为多个组优先级,每个组优先级对应于一个分组,每个分组包括所述N个待测载波中至少一待测载波;
所述多个组优先级对应的选择方式为:选择出的待测载波为设定组中的待测载波,所述设定组的组优先级大于第一设定优先级。
需要说明的是,网络设备发送的测量配置信息中除了指示多个组优先级外,还指示每个组优先级与分组的对应关系,以及分组与待测载波的对应关系(即分组中包括哪些待测 载波)。例如:测量配置信息可以以信息组的方式进行指示,每个信息组中包括第一信息、第二信息和第三信息,第一信息用于指示组优先级,第二信息用于指示与所述组优先级对应的分组,第三信息用于指示所述分组中包括的待测载波(可以是一个或多个)。
用户设备根据约议约定获知第一设定优先级,或者从网络设备发送的指示信息中获知第一设定优先级,或者第一设定优先级是默认的。
在一示例中:
N的值为10,组优先级共有3个,分别对应于3个分组。
用户设备在空闲态或者非激活态时执行EMR测量时需测量10个待测载波,并且从网络设备获知了3个组优先级。
第一个分组的组优先级为H,第一个分组包括第1至第3个待测载波。第二个分组的组优先级为M,第二个分组包括第4至第8个待测载波。第三个分组的组优先级为L,第三个分组包括第9至第10个待测载波。组优先级从高到低依次为:H,M,L。
用户设备在空闲态或者非激活态完成EMR测量后,在第一设定优先级为M时,根据3个组优先级选择组优先级大于M的组为第一个分组,选择第一个分组中所有的待测载波,最终选择到的待测载波为第1至第3个待测载波。
第二种情况:
所述优先级为多个载波优先级,每个载波优先级对应于一个待测载波;
所述多个载波优先级对应的选择方式为:选择出的待测载波的载波优先级大于第二设定优先级。
用户设备根据约议约定获知第二设定优先级,或者从网络设备发送的指示信息中获知第二设定优先级,或者第二设定优先级是默认的。
需要说明的是,网络设备发送的测量配置信息中除了指示载波优先级外,还指示每个载波优先级与待测载波的对应关系。例如:测量配置信息可以以信息对的方式进行指示,每个信息对中包括第一信息和第二信息,第一信息用于指示待测载波,第二信息用于指示所述待测载波的载波优先级。
在一示例中:
N的值为10,载波优先级共有4个,从高到低依次为:A1,A2,A3和A4。
用户设备在空闲态或者非激活态时执行EMR测量时需测量10个待测载波,并且从网络设备获知了每个待测载波的载波优先级。
用户设备在空闲态或者非激活态完成EMR测量后,在第一设定优先级为A3时,选择 载波优先级为A1或A2的待测载波。
方式四
S301中的所述测量配置信息还用于配置选择参数,所述选择参数包括有效时长阈值、信号强度阈值和优先级中的两种。
S303中根据所述选择参数和与所述选择参数对应的选择方式从所述N个待测载波中选择所述M个待测载波。
本方式四中使用两种选择参数,选择出同时满足两种选择方式的待测载波,相对于使用一种选择参数,可以进一步节省用户设备的测量能力。
在一示例中,
S301中的所述测量配置信息还用于配置选择参数,所述选择参数包括有效时长阈值和信号强度阈值。
S303中根据所述有效时长阈值、所述信号强度阈值、与所述有效时长阈值对应的选择方式和与所述信号强度阈值对应的选择方式从所述N个待测载波中选择所述M个待测载波。或者可以理解为,根据所述有效时长阈值和所述信号强度阈值,从所述N个待测载波中选择满足与所述有效时长阈值对应的选择方式和与所述信号强度阈值对应的选择方式的M个待测载波。
方式五
S301中的所述测量配置信息还用于配置选择参数,所述选择参数包括有效时长阈值、信号强度阈值和优先级。
S303中根据所述选择参数和与所述选择参数对应的选择方式从所述N个待测载波中选择所述M个待测载波。
本方式五中使用三种选择参数,选择出同时满足三种选择方式的待测载波,相对于使用一种或两种选择参数,可以进一步节省用户设备的测量能力。
在一些可能的实施方式中,在S202之前,用户设备向网络设备发送用户设备能力,所述用户设备能力用于指示所述用户设备是否支持针对第二测量的时延要求增强。
所述针对第二测量的时延要求增强包括:针对层1测量的时延要求增强和/或针对层1测量的时延要求增强。
在一些可能的实施方式中,支持针对层1测量的时延要求增强是指支持针对层1测量的时延缩短。在一示例中,支持针对层1测量的时延要求增强是指支持针对层1测量的时延小于约定时长,此约定时长小于已有协议中定义的针对层1测量的时延。已有协议可以 是R16或R17协议。
支持针对层3测量的时延要求增强是指支持针对层3测量的时延缩短。在一示例中,支持针对层3测量的时延要求增强是指支持针对层3测量的时延小于约定时长,此约定时长小于已有协议中定义的针对层3测量的时延。已有协议可以是R16或R17协议。
在一示例中,UE在空闲态或非激活态对N个待测载波执行EMR测量并得到第一测量结果,当UE向网络发起RRC连接建立请求后,需要对N个待测载波中的M个待测载波执行L1_RSRP测量,如果UE在之前的L1_RSRP测量期间已经执行过接收波束的确认过程,则UE在执行此次的L1_RSRP测量时不需要执行接收波束扫描(Rxbeamsweeping),或者需要执行接收波束扫描但扫描的次数可以减小,例如不需要扫描8次,只需要扫描4次或2次就能确定最佳接收波束,从而UE执行L1_RSRP测量的时延可以缩短。在此情况下,UE在之前的L1_RSRP测量期间已经执行过接收波束的确认过程时,UE向网络设备发送用户设备能力,所述用户设备能力用于指示所述UE支持针对L1_RSRP测量的时延要求增强。
在一示例中,UE在空闲态或非激活态对N个待测载波执行EMR测量并得到第一测量结果,当UE向网络发起RRC连接建立请求后,需要对N个待测载波中的M个待测载波执行L3_RSRP测量,如果UE具备同时使用多个接收波束接收下行信号的能力(例如同时使用2个接收波束接收下行信号的能力),则UE在执行此次的L1_RSRP测量时需要执行接收波束扫描但扫描的次数可以减小,例如不需要扫描8次,只需要扫描4次或2次就能确定最佳接收波束,从而UE执行L1_RSRP测量的时延可以缩短。在此情况下,UE具备同时使用多个接收波束接收下行信号的能力时,UE向网络设备发送用户设备能力,所述用户设备能力用于指示所述UE支持针对L3_RSRP测量的时延要求增强。
本公开实施例提供了一种测量方法,由用户设备执行,图4是根据一示例性实施例示出的一种测量方法的流程图,如图4所示,该方法包括步骤S401~S404,具体的:
S401,接收网络设备发送的测量配置信息。
其中,所述测量配置信息用于配置N个待测载波;
S402,在处于非连接态时对N个待测载波进行第一测量,获得第一测量结果。
S403,响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量,获得第二测量结果。
其中,M和N均为正整数,M小于或等于N;
S404,向所述网络设备发送所述第二测量结果,所述第二测量结果用于确定多链接中 的辅小区。
本公开实施例中的测量方法可以应用于用户设备建立多链接的过程中,通过此测量方法,可以提高建立多链接中与辅小区之间链接的链路质量,从而提高多链接的整体链路质量。
本公开实施例提供了一种测量方法,由用户设备执行,图5是根据一示例性实施例示出的一种测量方法的流程图,如图5所示,该方法包括步骤S501~S505,具体的:
S501,接收网络设备发送的测量配置信息。
其中,所述测量配置信息用于配置N个待测载波;所述测量配置信息还用于配置选择参数,所述选择参数包括以下中的至少一种:有效时长阈值、信号强度阈值、优先级。
S502,在处于非连接态时对N个待测载波进行第一测量,获得第一测量结果。
S503,根据所述选择参数和与所述选择参数对应的选择方式从所述N个待测载波中选择所述M个待测载波。
S504,响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量,获得第二测量结果。
其中,M和N均为正整数,M小于或等于N;
S505,向所述网络设备发送所述第二测量结果,所述第二测量结果用于确定多链接中的辅小区。
本公开实施例中的测量方法可以应用于用户设备建立多链接的过程中,通过此测量方法,可以节省用户设备的测量能力,并且可以提高建立多链接中与辅小区之间链接的链路质量,从而提高多链接的整体链路质量。
S501中测量配置信息所配置的选择参数包括有效时长阈值时,有效时长阈值可以有两种情况,第一种情况中,有效时长阈值是一个用于N个待测载波中所有待测载波的第一阈值,第二种情况中,有效时长阈值是多个第二阈值,每个第二阈值用于不同的一个或多个待测载波。
第一种情况中,所述有效时长阈值为第一阈值,所述第一阈值对应于所述N个待测载波;
所述第一阈值对应的选择方式为:在设定时长大于所述第一阈值时,确定所述M等于所述N,选择所述N个待测载波,其中,所述设定时长为第一时刻和第二时刻之间的时长(即第一时刻距离第二时刻的时长),所述第一时刻为完成所述第一测量的时刻,所述第二时刻为所述接入服务小区事件的发生时刻。
第二种情况中,所述有效时长阈值为K个第二阈值,每个第二阈值对应于所述N个待测载波中的至少一个待测载波,所述K为正整数,K小于或等于N。
所述K个第二阈值对应的选择方式为:选择出的待测载波的第二阈值小于设定时长,其中,所述设定时长为第一时刻和第二时刻之间的时长(即第一时刻距离第二时刻的时长),所述第一时刻为完成所述第一测量的时刻,所述第二时刻为所述接入服务小区事件的发生时刻。
在一些可能的实施方式中,所述接入服务小区事件为以下中的一种:
向所述服务小区发送随机接入请求、
接收所述服务小区的寻呼消息、
向所述服务小区发送无线链路连接请求。
S501中测量配置信息所配置的选择参数包括信号强度阈值时,信号强度阈值可以有两种情况。
第一种情况中,所述信号强度阈值为第三阈值,所述第三阈值对应于所述N个待测载波;所述第三阈值对应的选择方式为:选择所述第一测量结果中信号强度值大于所述第三阈值的待测载波。
第二种情况中,所述信号强度阈值为L个第四阈值,每个第四阈值对应于所述N个待测载波中的至少一个待测载波,所述L为正整数,L小于或等于N;所述L个第四阈值对应的选择方式为:选择所述第一测量结果中信号强度值大于或等于相应的第四阈值的待测载波,或者,选择所述第一测量结果中信号强度值小于相应的第四阈值的待测载波。
S501中测量配置信息所配置的选择参数包括优先级时,优先级可以有两种情况。
第一种情况中,所述优先级为多个组优先级,每个组优先级对应于一个分组,每个分组包括所述N个待测载波中至少一待测载波;
所述多个组优先级对应的选择方式为:选择出的待测载波为设定组中的待测载波,所述设定组的组优先级大于第一设定优先级。
第一种情况中,所述优先级为多个载波优先级,每个载波优先级对应于一个待测载波;
所述多个载波优先级对应的选择方式为:选择出的待测载波的载波优先级大于第二设定优先级。
在一些可能的实施方式中,在S502之前,用户设备向网络设备发送用户设备能力,所述用户设备能力用于指示所述用户设备是否支持针对第二测量的时延要求增强。
所述针对第二测量的时延要求增强包括:针对层1测量的时延要求增强和/或针对层1 测量的时延要求增强。
在一些可能的实施方式中,支持针对层1测量的时延要求增强是指支持针对层1测量的时延缩短。在一示例中,支持针对层1测量的时延要求增强是指支持针对层1测量的时延小于约定时长,此约定时长小于已有协议中定义的针对层1测量的时延。已有协议可以是R16或R17协议。
支持针对层3测量的时延要求增强是指支持针对层3测量的时延缩短。在一示例中,支持针对层3测量的时延要求增强是指支持针对层3测量的时延小于约定时长,此约定时长小于已有协议中定义的针对层3测量的时延。
本公开实施例提供了一种确定辅小区的方法,由网络设备执行,图6是根据一示例性实施例示出的一种确定辅小区的方法的流程图,如图6所示,该方法包括步骤S601~S603,具体的:
S601,向用户设备发送测量配置信息。
其中,所述测量配置信息用于配置N个待测载波。
在一些可能的实施方式中,所述测量配置信息用于配置选择参数,所述选择参数包括以下中的至少一种:有效时长阈值、信号强度阈值、优先级。
S602,接收用户设备发送的第二测量结果,所述第二测量结果为响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量的测量结果;
S603,根据所述第二测量结果用于确定多链接中的辅小区。
在一些可能的实施方式中,在S601之前还包括:接收用户设备发送的用户设备能力,所述用户设备能力用于指示所述用户设备是否支持针对第二测量的时延要求增强。从而网络设备可以获知不同用户设备的能力,并可以将不同用户设备的能力使用到可能需要的处理之中。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的用户设备102的功能,并用于执行上述实施例提供的由用户设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图7所示的通信装置700可作为上述方法实施例所涉及的用户设备102,并执行上述一种方法实施例中由用户设备102执行的步骤。
所述通信装置700包括收发模块701和处理模块702。
收发模块701,被配置为接收网络设备发送的测量配置信息,所述测量配置信息用于配置N个待测载波;
处理模块702,被配置为在处于非连接态时对N个待测载波进行第一测量,获得第一测量结果;还被配置为响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量,获得第二测量结果,其中,M和N均为正整数,M小于或等于N;
收发模块701,还被配置为向所述网络设备发送所述第二测量结果,所述第二测量结果用于确定多链接中的辅小区。
在一些可能的实施方式中,所述测量配置信息还用于配置选择参数,所述选择参数包括以下中的至少一种:有效时长阈值、信号强度阈值、优先级;
处理模块702,还被配置为根据所述选择参数和与所述选择参数对应的选择方式从所述N个待测载波中选择所述M个待测载波。
在一些可能的实施方式中,所述有效时长阈值为第一阈值,所述第一阈值对应于所述N个待测载波;
所述第一阈值对应的选择方式为:在设定时长大于所述第一阈值时,确定所述M等于所述N,选择所述N个待测载波,其中,所述设定时长为第一时刻和第二时刻之间的时长(即第一时刻距离第二时刻的时长),所述第一时刻为完成所述第一测量的时刻,所述第二时刻为所述接入服务小区事件的发生时刻。
在一些可能的实施方式中,所述有效时长阈值为K个第二阈值,每个第二阈值对应于所述N个待测载波中的至少一个待测载波,所述K为正整数,K小于或等于N。
所述K个第二阈值对应的选择方式为:选择出的待测载波的第二阈值小于设定时长,其中,所述设定时长为第一时刻和第二时刻之间的时长(即第一时刻距离第二时刻的时长),所述第一时刻为完成所述第一测量的时刻,所述第二时刻为所述接入服务小区事件的发生时刻。
在一些可能的实施方式中,所述接入服务小区事件为以下中的一种:
向所述服务小区发送随机接入请求、
接收所述服务小区的寻呼消息、
向所述服务小区发送无线链路连接请求。
在一些可能的实施方式中,所述信号强度阈值为第三阈值,所述第三阈值对应于所述 N个待测载波;
所述第三阈值对应的选择方式为:选择所述第一测量结果中信号强度值大于所述第三阈值的待测载波。
在一些可能的实施方式中,所述信号强度阈值为L个第四阈值,每个第四阈值对应于所述N个待测载波中的至少一个待测载波,所述L为正整数,L小于或等于N;
所述L个第四阈值对应的选择方式为:选择所述第一测量结果中信号强度值大于或等于相应的第四阈值的待测载波,或者,选择所述第一测量结果中信号强度值小于相应的第四阈值的待测载波。
在一些可能的实施方式中,所述优先级为多个组优先级,每个组优先级对应于一个分组,每个分组包括所述N个待测载波中至少一待测载波;
所述多个组优先级对应的选择方式为:选择出的待测载波为设定组中的待测载波,所述设定组的组优先级大于第一设定优先级。
在一些可能的实施方式中,所述优先级为多个载波优先级,每个载波优先级对应于一个待测载波;
所述多个载波优先级对应的选择方式为:选择出的待测载波的载波优先级大于第二设定优先级。
在一些可能的实施方式中,所述方法还包括:
向网络设备发送用户设备能力,所述用户设备能力用于指示所述用户设备是否支持针对第二测量的时延要求增强。
在一些可能的实施方式中,所述第二测量为基于层1的参考信号接收功率的测量,或者为基于层3的参考信号接收功率的测量。
当该通信装置为用户设备102时,其结构还可如图8所示。图8是根据一示例性实施例示出的一种测量装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电力组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相 机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件806为装置800的各种组件提供电力。电力组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述 组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,4G或5G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的网络设备101的功能,并用于执行上述实施例提供的由网络设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图9所示的通信装置900可作为上述方法实施例所涉及的网络设备101,并执行上述一种方法实施例中由网络设备101执行的步骤。
所述通信装置900包括收发模块901和处理模块902。
收发模块901,被配置为向用户设备发送测量配置信息,所述测量配置信息用于配置N个待测载波;还被配置为接收用户设备发送的第二测量结果,所述第二测量结果为响应 于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量的测量结果;
处理模块902,被配置为根据所述第二测量结果用于确定多链接中的辅小区。
在一些可能的实施方式中,所述测量配置信息用于配置选择参数,所述选择参数包括以下中的至少一种:有效时长阈值、信号强度阈值、优先级。
在一些可能的实施方式中,接收用户设备发送的用户设备能力,所述用户设备能力用于指示所述用户设备是否支持针对第二测量的时延要求增强。
当该通信装置为网络设备101时,其结构还可如图10所示。如图10所示,装置1000包括存储器1001、处理器1002、收发组件1003、电源组件1006。其中,存储器1001与处理器1002耦合,可用于保存通信装置1000实现各功能所必要的程序和数据。该处理器1002被配置为支持通信装置1000执行上述方法中相应的功能,此功能可通过调用存储器1001存储的程序实现。收发组件1003可以是无线收发器,可用于支持通信装置1000通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件1003也可被称为收发单元或通信单元,收发组件1003可包括射频组件1004以及一个或多个天线1005,其中,射频组件1004可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线1005具体可用于进行射频信号的辐射和接收。
当通信装置1000需要发送数据时,处理器1002可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1000时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1002,处理器1002将基带信号转换为数据并对该数据进行处理。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
用户设备在在空闲态(idle)或非激活态(inactive)完成EMR后接入服务小区,在接入服务小区的过程中对EMR中测量过的部分或全部载波再次进行测量,以防止EMR的测量结果已过期,此再次进行的测量可以认为是对EMR的一种增强测量,此增强测量的测量结果比EMR的测量结果更准确,从而根据增强测量的测量结果确定多链接中的辅小区,可以确定出信号质量较好的辅小区,保证多链接中与辅小区之间的链接的链路性能,提高多链接的整体链路质量。

Claims (20)

  1. 一种测量方法,由用户设备执行,所述方法包括:
    接收网络设备发送的测量配置信息,所述测量配置信息用于配置N个待测载波;
    在处于非连接态时对N个待测载波进行第一测量,获得第一测量结果;
    响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量,获得第二测量结果,其中,M和N均为正整数,M小于或等于N;
    向所述网络设备发送所述第二测量结果,所述第二测量结果用于确定多链接中的辅小区。
  2. 如权利要求1所述的方法,其中,所述测量配置信息还用于配置选择参数,所述选择参数包括以下中的至少一种:有效时长阈值、信号强度阈值、优先级;
    所述方法还包括:根据所述选择参数和与所述选择参数对应的选择方式从所述N个待测载波中选择所述M个待测载波。
  3. 如权利要求2所述的方法,其中,所述有效时长阈值为第一阈值,所述第一阈值对应于所述N个待测载波;
    所述第一阈值对应的选择方式为:在设定时长大于所述第一阈值时,确定所述M等于所述N,选择所述N个待测载波,其中,所述设定时长为第一时刻和第二时刻之间的时长,所述第一时刻为完成所述第一测量的时刻,所述第二时刻为所述接入服务小区事件的发生时刻。
  4. 如权利要求2所述的方法,其中,所述有效时长阈值为K个第二阈值,每个第二阈值对应于所述N个待测载波中的至少一个待测载波,所述K为正整数,K小于或等于N;
    所述K个第二阈值对应的选择方式为:选择出的待测载波的第二阈值小于设定时长,其中,所述设定时长为第一时刻和第二时刻之间的时长,所述第一时刻为完成所述第一测量的时刻,所述第二时刻为所述接入服务小区事件的发生时刻。
  5. 如权利要求1至4中任一权利要求所述的方法,其中,所述接入服务小区事件为以下中的一种:向所述服务小区发送随机接入请求、接收所述服务小区的寻呼消息、向所述服务小区发送无线链路连接请求。
  6. 如权利要求2所述的方法,其中,所述信号强度阈值为第三阈值,所述第三阈值 对应于所述N个待测载波;
    所述第三阈值对应的选择方式为:选择所述第一测量结果中信号强度值大于所述第三阈值的待测载波。
  7. 如权利要求2所述的方法,其中,所述信号强度阈值为L个第四阈值,每个第四阈值对应于所述N个待测载波中的至少一个待测载波,所述L为正整数,L小于或等于N;
    所述L个第四阈值对应的选择方式为:选择所述第一测量结果中信号强度值大于或等于相应的第四阈值的待测载波,或者,选择所述第一测量结果中信号强度值小于相应的第四阈值的待测载波。
  8. 如权利要求2所述的方法,其中,所述优先级为多个组优先级,每个组优先级对应于一个分组,每个分组包括所述N个待测载波中至少一待测载波;
    所述多个组优先级对应的选择方式为:选择出的待测载波为设定组中的待测载波,所述设定组的组优先级大于第一设定优先级。
  9. 如权利要求2所述的方法,其中,所述优先级为多个载波优先级,每个载波优先级对应于一个待测载波;
    所述多个载波优先级对应的选择方式为:选择出的待测载波的载波优先级大于第二设定优先级。
  10. 如权利要求1所述的方法,其中,所述方法还包括:
    向网络设备发送用户设备能力,所述用户设备能力用于指示所述用户设备是否支持针对第二测量的时延要求增强。
  11. 如权利要求1至10中任一权利要求所述的方法,其中,所述第二测量为基于层1的参考信号接收功率的测量,或者为基于层3的参考信号接收功率的测量。
  12. 一种确定辅小区的方法,由网络设备执行,所述方法包括:
    向用户设备发送测量配置信息,所述测量配置信息用于配置N个待测载波;
    接收用户设备发送的第二测量结果,所述第二测量结果为响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量的测量结果;
    根据所述第二测量结果用于确定多链接中的辅小区。
  13. 如权利要求12所述的方法,其中,
    所述测量配置信息用于配置选择参数,所述选择参数包括以下中的至少一种:有效时长阈值、信号强度阈值、优先级。
  14. 如权利要求12所述的方法,其中,所述方法还包括:
    接收用户设备发送的用户设备能力,所述用户设备能力用于指示所述用户设备是否支持针对第二测量的时延要求增强。
  15. 一种测量装置,被配置于用户设备,所述装置包括:
    收发模块,被配置为接收网络设备发送的测量配置信息,所述测量配置信息用于配置N个待测载波;
    处理模块,被配置为在处于非连接态时对N个待测载波进行第一测量,获得第一测量结果;还被配置为响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量,获得第二测量结果,其中,M和N均为正整数,M小于或等于N;
    所述收发模块,还被配置为向所述网络设备发送所述第二测量结果,所述第二测量结果用于确定多链接中的辅小区。
  16. 一种确定辅小区的装置,被配置于网络设备,所述装置包括:
    收发模块,被配置为向用户设备发送测量配置信息,所述测量配置信息用于配置N个待测载波;还被配置为接收网络设备发送的第二测量结果,所述第二测量结果为响应于接入服务小区事件对所述N个待测载波中的M个待测载波进行第二测量的测量结果;
    处理模块,被配置为根据所述第二测量结果用于确定多链接中的辅小区。
  17. 一种电子装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-11中任一项所述的方法。
  18. 一种电子装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求12-14中任一项所述的方法。
  19. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-11中任一项所述的方法。
  20. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令 在计算机上被调用执行时,使得所述计算机执行如权利要求12-14中任一项所述的方法。
PCT/CN2022/114572 2022-08-24 2022-08-24 一种测量方法、确定辅小区的方法、装置、设备以及介质 WO2024040477A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/114572 WO2024040477A1 (zh) 2022-08-24 2022-08-24 一种测量方法、确定辅小区的方法、装置、设备以及介质
CN202280003201.XA CN115606225B (zh) 2022-08-24 2022-08-24 一种测量方法、确定辅小区的方法、装置、设备以及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114572 WO2024040477A1 (zh) 2022-08-24 2022-08-24 一种测量方法、确定辅小区的方法、装置、设备以及介质

Publications (1)

Publication Number Publication Date
WO2024040477A1 true WO2024040477A1 (zh) 2024-02-29

Family

ID=84853957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114572 WO2024040477A1 (zh) 2022-08-24 2022-08-24 一种测量方法、确定辅小区的方法、装置、设备以及介质

Country Status (2)

Country Link
CN (1) CN115606225B (zh)
WO (1) WO2024040477A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011139053A2 (en) * 2010-05-01 2011-11-10 Pantech Co., Ltd. Apparatus and method for transmitting sounding reference signal in wireless communication system supporting multiple component carriers
CN105991255A (zh) * 2015-01-28 2016-10-05 中国移动通信集团广东有限公司 一种载波聚合的配置方法及装置
CN107333293A (zh) * 2017-07-28 2017-11-07 广东欧珀移动通信有限公司 测量信息上报方法及装置
CN110753359A (zh) * 2019-10-16 2020-02-04 中国联合网络通信集团有限公司 测量配置方法、终端及网络设备
CN113596906A (zh) * 2016-10-13 2021-11-02 华为技术有限公司 一种测量报告方法及相关设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011139053A2 (en) * 2010-05-01 2011-11-10 Pantech Co., Ltd. Apparatus and method for transmitting sounding reference signal in wireless communication system supporting multiple component carriers
CN105991255A (zh) * 2015-01-28 2016-10-05 中国移动通信集团广东有限公司 一种载波聚合的配置方法及装置
CN113596906A (zh) * 2016-10-13 2021-11-02 华为技术有限公司 一种测量报告方法及相关设备
CN107333293A (zh) * 2017-07-28 2017-11-07 广东欧珀移动通信有限公司 测量信息上报方法及装置
CN110753359A (zh) * 2019-10-16 2020-02-04 中国联合网络通信集团有限公司 测量配置方法、终端及网络设备

Also Published As

Publication number Publication date
CN115606225A (zh) 2023-01-13
CN115606225B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2024040477A1 (zh) 一种测量方法、确定辅小区的方法、装置、设备以及介质
WO2024031459A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质
WO2024007228A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2024026754A1 (zh) 一种传输测量配置信息的方法、装置、设备以及存储介质
WO2024026747A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2023115284A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2024031258A1 (zh) 一种接收测量配置信息的方法、装置、设备及可读存储介质
WO2023184254A1 (zh) 一种传输测量配置信息的方法、装置及可读存储介质
WO2024059977A1 (zh) 一种执行或发送指示信息的方法、装置、设备及存储介质
WO2024031393A1 (zh) 一种激活辅小区的方法、装置、设备以及可读存储介质
WO2023216161A1 (zh) 一种传输用户设备测量能力的方法、装置及可读存储介质
WO2024020811A1 (zh) 一种传输参考信号测量结果的方法、装置及存储介质
WO2024016356A1 (zh) 一种测量参考信号的方法、装置及可读存储介质
WO2024011421A1 (zh) 一种传输配置信息的方法、装置以及可读存储介质
WO2024026862A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2024036571A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2023201471A1 (zh) 一种传输信号质量阈值信息的方法、装置及可读存储介质
WO2023221130A1 (zh) 一种测量方法、装置、设备及存储介质
WO2023056651A1 (zh) 一种接收或发送测量配置信息的方法、装置、设备及存储介质
WO2024007263A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2024045137A1 (zh) 一种传输配置信息的方法、装置以及可读存储介质
WO2024011459A1 (zh) 一种测量方法、装置、设备以及可读存储介质
WO2022246613A1 (zh) 一种传输测量间隙组合的方法、装置及介质
WO2023236116A1 (zh) 一种传输唤醒信号的方法、装置、电子设备及存储介质
WO2023097523A1 (zh) 一种小区测量方法、装置及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956026

Country of ref document: EP

Kind code of ref document: A1