WO2024031393A1 - 一种激活辅小区的方法、装置、设备以及可读存储介质 - Google Patents

一种激活辅小区的方法、装置、设备以及可读存储介质 Download PDF

Info

Publication number
WO2024031393A1
WO2024031393A1 PCT/CN2022/111284 CN2022111284W WO2024031393A1 WO 2024031393 A1 WO2024031393 A1 WO 2024031393A1 CN 2022111284 W CN2022111284 W CN 2022111284W WO 2024031393 A1 WO2024031393 A1 WO 2024031393A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary cell
trs
activating
configuration information
user equipment
Prior art date
Application number
PCT/CN2022/111284
Other languages
English (en)
French (fr)
Inventor
胡子泉
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/111284 priority Critical patent/WO2024031393A1/zh
Priority to CN202280003061.6A priority patent/CN117859356A/zh
Publication of WO2024031393A1 publication Critical patent/WO2024031393A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present disclosure relates to wireless communication technology, and in particular, to a method, apparatus, equipment and readable storage medium for activating a secondary cell.
  • 3GPP The 3rd Generation Partner Project, the third The Secondary Cell (SCell) activation delay is defined in the (Partner Program) standard.
  • Secondary cell activation includes known secondary cell activation and unknown secondary cell activation.
  • the Transmission Configuration Indicator (TCI) activation in the secondary cell activation process is based on the synchronization block (Synchronization Signal/PBCH block, SSB) or channel reported by the user equipment.
  • the state information reference signal (Channel State Information-Reference Signal, CSI-RS) is determined. Otherwise, the secondary cell is considered to be an unknown secondary cell.
  • SMTC SSB Measurement Timing Configuration
  • the present disclosure provides a method, device, equipment and readable storage medium for activating a secondary cell.
  • the first aspect provides a method for activating a secondary cell, which is executed by user equipment.
  • the method includes:
  • the first configuration information is used to configure the tracking reference signal TRS, and the TRS is used for secondary cell activation;
  • An activation process corresponding to the command for activating the secondary cell is executed according to the TRS.
  • the first configuration information is also used to configure the TCI of the downlink physical channel to be the same as the TCI of the TRS.
  • the first configuration information is also used to configure the TCI of the TRS to form a QCL relationship with the synchronization signal block SSB.
  • the SSB is the SSB of a special cell or the SSB used by an activated secondary cell.
  • the special cell includes a primary cell and a primary and secondary cell, and the activated secondary cell is an activated secondary cell in the secondary cell group to which the secondary cell indicated by the command for activating the secondary cell belongs.
  • the special cell of the user equipment and the secondary cell indicated by the command for activating the secondary cell are quasi-cosited
  • the special cell of the user equipment and the secondary cell indicated by the command for activating the secondary cell have the same beam emission direction for the user equipment.
  • the execution of the activation process corresponding to the command for activating the secondary cell according to the TRS includes:
  • the secondary cell indicated by the order for activating the secondary cell is an unknown secondary cell, and a synchronization process of the secondary cell indicated by the order for activating the secondary cell is performed according to the TRS.
  • executing an activation process corresponding to the command for activating a secondary cell according to the TRS includes:
  • the first configuration information is also used to configure a QCL relationship between the TRS and a beam.
  • the one beam is the beam corresponding to the optimal beam-level measurement result.
  • the method further includes:
  • Receive second configuration information sent by the network device where the second configuration information is used to configure resources for channel state information CSI reporting, and the resources for CSI reporting form a QCL relationship with the TRS.
  • executing an activation process corresponding to the command for activating a secondary cell according to the TRS includes:
  • a method for activating a secondary cell which is executed by a network device.
  • the method includes:
  • the first configuration information is used to configure a tracking reference signal TRS, and the TRS is used for secondary cell activation;
  • a command for activating a secondary cell and information for activating a transmission configuration indication TCI of the TRS are sent to the user equipment.
  • the first configuration information is also used to configure the TCI of the downlink physical channel to be the same as the TCI of the TRS.
  • the first configuration information is also used to configure the TCI of the TRS to form a QCL relationship with the synchronization signal block SSB.
  • the SSB is the SSB of a special cell or the SSB used by an activated secondary cell.
  • the special cell includes a primary cell and a primary and secondary cell, and the activated secondary cell is an activated secondary cell in the secondary cell group to which the secondary cell indicated by the command for activating the secondary cell belongs.
  • the special cell of the user equipment and the secondary cell indicated by the command for activating the secondary cell are quasi-cosited
  • the special cell of the user equipment and the secondary cell indicated by the command for activating the secondary cell have the same beam emission direction for the user equipment.
  • the TRS is used to execute the synchronization process of the secondary cell indicated by the command for activating the secondary cell.
  • the method further includes:
  • the first configuration information is also used to configure a QCL relationship between the TRS and a beam.
  • the one beam is the beam corresponding to the optimal beam-level measurement result.
  • the method further includes:
  • the second configuration information is used to configure resources for channel state information CSI reporting, and the resources for CSI reporting form a QCL relationship with the TRS.
  • the method further includes:
  • a device for activating a secondary cell configured in user equipment, and the device includes:
  • the transceiver module is configured to receive the first configuration information sent by the network device, the first configuration information is used to configure the tracking reference signal TRS, the TRS is used for secondary cell activation; and is also configured to receive the first configuration information sent by the network device. A command to activate the secondary cell and information used to activate the transmission configuration indication TCI of the TRS.
  • a device for activating a secondary cell which is configured on network equipment.
  • the device includes:
  • the transceiver module is configured to send first configuration information to the user equipment, the first configuration information is used to configure a tracking reference signal TRS, the TRS is used for secondary cell activation; and is also configured to send to the user equipment for A command to activate the secondary cell and information used to activate the transmission configuration indication TCI of the TRS.
  • an electronic device including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to realize the first aspect or any possibility of the first aspect. the design of.
  • an electronic device including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to realize the second aspect or any possibility of the second aspect. the design of.
  • a computer-readable storage medium In a seventh aspect, a computer-readable storage medium is provided. Instructions (or computer programs, programs) are stored in the computer-readable storage medium. When called and executed on a computer, the computer is caused to execute the first aspect. or any possible design of the first aspect.
  • a computer-readable storage medium is provided. Instructions (or computer programs, programs) are stored in the computer-readable storage medium. When called and executed on a computer, the computer is caused to execute the second aspect. or any possible design of the second aspect.
  • Figure 1 is a schematic diagram of a wireless communication system architecture provided by an embodiment of the present disclosure
  • Figure 2 is an interaction diagram illustrating a method of activating a secondary cell according to an exemplary embodiment
  • Figure 3 is an interaction diagram illustrating a method of activating a secondary cell according to an exemplary embodiment
  • Figure 4 is an interaction diagram illustrating a method of activating a secondary cell according to an exemplary embodiment
  • Figure 5 is a schematic diagram of a method for activating a secondary cell according to an exemplary embodiment
  • Figure 6 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment
  • Figure 7 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment
  • Figure 8 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment
  • Figure 9 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment
  • Figure 10 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment
  • Figure 11 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment
  • Figure 12 is a structural diagram of a device for activating a secondary cell according to an exemplary embodiment
  • Figure 13 is a structural diagram of a device for activating a secondary cell according to an exemplary embodiment
  • Figure 14 is a structural diagram of a device for activating a secondary cell according to an exemplary embodiment
  • Figure 15 is a structural diagram of a device for activating a secondary cell according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • a method for activating a secondary cell can be applied to a wireless communication system 100, which may include but is not limited to a network device 101 and a user equipment 102.
  • the user equipment 102 is configured to support carrier aggregation, and the user equipment 102 can be connected to multiple carrier units of the network device 101, including a primary carrier unit and one or more secondary carrier units.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • WiMAX global Internet microwave access
  • CRAN cloud radio access network
  • 5G fifth generation
  • 5G new wireless (new radio, NR) communication system
  • PLMN public land mobile network
  • the user equipment 102 shown above can be a user equipment (UE), a terminal, an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, a mobile terminal ( mobile terminal), wireless communication equipment, terminal agent or user equipment, etc.
  • the user equipment 102 may have a wireless transceiver function, which can communicate (such as wireless communication) with one or more network devices 101 of one or more communication systems, and accept network services provided by the network device 101.
  • the network device 101 Including but not limited to the base station shown in the figure.
  • the user equipment 102 can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, a device with Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, user equipment in future 5G networks or user equipment in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 101 may be an access network device (or access network site).
  • access network equipment refers to equipment that provides network access functions, such as wireless access network (radio access network, RAN) base stations and so on.
  • Network equipment may specifically include base station (BS) equipment, or include base station equipment and wireless resource management equipment used to control base station equipment, etc.
  • the network equipment may also include relay stations (relay equipment), access points, and base stations in future 5G networks, base stations in future evolved PLMN networks, or NR base stations, etc.
  • Network devices can be wearable devices or vehicle-mounted devices.
  • the network device may also be a communication chip with a communication module.
  • the network equipment 101 includes but is not limited to: the next generation base station (gnodeB, gNB) in 5G, the evolved node B (evolved node B, eNB) in the LTE system, the radio network controller (radio network controller, RNC), Node B (NB) in the WCDMA system, wireless controller under the CRAN system, base station controller (BSC), base transceiver station (BTS) in the GSM system or CDMA system, home Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP) or mobile switching center, etc.
  • gnodeB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • the user equipment After receiving the command to activate the secondary cell, the user equipment needs to perform automatic gain control (AGC), cell search, L1-RSRP measurement, time-frequency synchronization and CSI reporting when activating an unknown secondary cell.
  • AGC automatic gain control
  • cell search cell search
  • L1-RSRP measurement L1-RSRP measurement
  • time-frequency synchronization time-frequency synchronization
  • CSI reporting time-frequency synchronization and CSI reporting
  • the user equipment After receiving the command for activating the secondary cell sent by the network device, the user equipment determines whether the secondary cell indicated by the command is a known secondary cell or an unknown secondary cell.
  • the method for determining that the secondary cell indicated by the command is a known secondary cell includes:
  • the user equipment When the user equipment has reported the measurement information of the secondary cell to the network within the set time period (agreed by the protocol) before receiving the command for activating the secondary cell, and the secondary cell within the cell identification time stipulated in the protocol If it is detectable, it is determined that the cell is a known secondary cell.
  • the TCI activation in the secondary cell activation process is determined based on the SSB or CSI-RS index reported by the user equipment.
  • Embodiments of the present disclosure provide a method for activating a secondary cell.
  • TRS is used to activate a known secondary cell.
  • Figure 2 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment. As shown in Figure 2, the method includes steps S201 to S207, specifically:
  • Step S201 The network device sends first configuration information to the user equipment.
  • the first configuration information is used to configure a tracking reference signal TRS, and the TRS is used for secondary cell activation. Sending the first configuration information to the user equipment by the network device is equivalent to sending a TRS.
  • the TRS is a periodic TRS, a semi-sustained TRS, or an aperiodic TRS.
  • the first configuration information is also used to configure the TCI of the downlink physical channel to be the same as the TCI of the TRS to ensure normal use of the secondary cell after activation. It is the same as the TCI of the downlink physical channel and the TCI of the SSB when activating the secondary cell using SSB.
  • the network device sends a Radio Resource Control (RRC) message, where the RRC message includes the first configuration information.
  • RRC Radio Resource Control
  • Step S202 The network device sends second configuration information to the user equipment.
  • the second configuration information is used to configure resources for channel state information CSI reporting, and the resources for CSI reporting form a QCL (Quasi Co-Location) relationship with the TRS.
  • QCL Quadrature Co-Location
  • the network device sends the second configuration information through an RRC message.
  • the network device may simultaneously send the first configuration information and the second configuration information through one RRC message.
  • Step S203 The network device sends a command for activating the secondary cell to the user equipment.
  • Step S204 The network device sends information for activating the TCI status of the TRS to the user equipment.
  • Step S205 The network device sends information for activating the TCI status of the physical downlink channel (such as PDCCH and PDSCH) to the user equipment.
  • the physical downlink channel such as PDCCH and PDSCH
  • the secondary cell indicated by the command can receive the physical downlink channel normally after the secondary cell indicated by the command is activated.
  • Step S206 The network device sends TCI information for activating CSI-RS to the user equipment.
  • the user equipment can report CSI based on this CSI-RS.
  • Step S207 The user equipment executes an activation process corresponding to the secondary cell activation command according to the TRS.
  • the activation process includes: time-frequency synchronization and reporting CSI.
  • the network device in order to save transmission time, sends the information in S203, S204, S205, and S206 to the user equipment through the same MAC CE (Medium Access Control-Control Element) message. .
  • MAC CE Medium Access Control-Control Element
  • the sending order of S204, S205, and S206 is not limited to the above order.
  • the user equipment After receiving the TCI status information for activating the TRS sent by the network device, the user equipment can activate the secondary cell according to the TRS. CSI can be reported only after receiving the TCI information used to activate CSI-RS. After receiving the information for activating the TCI status of the physical downlink channel, the physical downlink channel can be received after activating the secondary cell.
  • activation of a known secondary cell through TRS can enhance the activation effect of the secondary cell and shorten the activation delay of the secondary cell.
  • Embodiments of the present disclosure provide a method for activating a secondary cell.
  • TRS is used to activate an unknown secondary cell.
  • Figure 3 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment. As shown in Figure 3, the method includes steps S301 to S308, specifically:
  • Step S301 The network device sends first configuration information to the user equipment.
  • the first configuration information is used to configure a tracking reference signal TRS, and the TRS is used for secondary cell activation.
  • the TRS is a periodic TRS, a semi-sustained TRS, or an aperiodic TRS.
  • the first configuration information is also used to configure the TCI of the downlink physical channel to be the same as the TCI of the TRS to ensure normal use of the secondary cell after activation. It is the same as the TCI of the downlink physical channel and the TCI of the SSB when activating the secondary cell using SSB.
  • the network device sends the first configuration information through a Radio Resource Control (Radio Resource Control, RRC) message.
  • RRC Radio Resource Control
  • the first configuration information is also used to configure the transmission configuration indication TCI of the TRS to form a QCL relationship with the synchronization signal block SSB.
  • the SSB is the SSB of a special cell or is used by an activated secondary cell.
  • the special cell includes a primary cell and a primary and secondary cell
  • the activated secondary cell is an activated secondary cell in the secondary cell group to which the secondary cell indicated by the command belongs.
  • the special cell of the user equipment and the secondary cell indicated by the command are quasi-cosited; or, the special cell of the user equipment and the secondary cell indicated by the command are mutually exclusive to the user equipment.
  • the beam emission direction is the same.
  • Step S302 The network device sends the second configuration information to the user equipment.
  • the second configuration information is used to configure resources for channel state information CSI reporting, and the resources for CSI reporting form a QCL (Quasi Co-Location) relationship with the TRS.
  • QCL Quadrature Co-Location
  • the network device sends the second configuration information through an RRC message.
  • the network device may simultaneously send the first configuration information and the second configuration information through one RRC message.
  • Step S303 The network device sends a command for activating the secondary cell to the user equipment.
  • Step S304 The network device sends information for activating the TCI status of the TRS to the user equipment.
  • Step S305 The user equipment executes the synchronization process of the secondary cell indicated by the command according to the TRS.
  • the synchronization process of the unknown secondary cell includes automatic gain control (automatic gain control, AGC) adjustment, cell detection, and time-frequency synchronization.
  • AGC automatic gain control
  • Step S306 The network device sends information for activating the TCI state of the physical downlink channel to the user equipment.
  • Step S307 The network device sends information for activating the TCI state of the CSI-RS to the user equipment.
  • the network device can simultaneously send the information in S306 and S307 through one RRC message.
  • Step S308 The user equipment executes an activation process corresponding to the secondary cell activation command according to the TRS.
  • the activation process includes automatic gain control, cell search, L1-RSRP measurement, time-frequency synchronization and reporting of CSI.
  • the activation of the unknown secondary cell through TRS can enhance the activation effect of the secondary cell and shorten the activation delay of the secondary cell.
  • Embodiments of the present disclosure provide a method for activating a secondary cell.
  • SSB and TRS are used to activate an unknown secondary cell.
  • Figure 4 is a flow chart of a method of activating a secondary cell according to an exemplary embodiment.
  • Figure 5 is a schematic diagram of a method of activating a secondary cell according to an exemplary embodiment. With reference to Figures 4 and 5, the method includes steps S401 ⁇ S412, specifically:
  • Step S401 The network device sends a measurement configuration to the user equipment, where the measurement configuration is a configuration used to indicate reporting of beam measurement results.
  • Step S402 The network device sends a command for activating the secondary cell to the user equipment.
  • Step S403 The user equipment determines that the secondary cell indicated by the command is an unknown secondary cell.
  • Step S404 The user equipment detects the secondary cell indicated by the command based on the SSB and obtains the measurement result.
  • Step S405 The user equipment sends the measurement result to the network device.
  • Step S406 The network device determines a beam based on the measurement result.
  • a beam determined by the network device based on the measurement result is the beam corresponding to the optimal measurement result (for example, the measurement result is a beam-level measurement result).
  • Step S407 The network device sends the first configuration information to the user equipment.
  • the first configuration information configures a TRS for activating the secondary cell, and configures the TRS and the beam to form a QCL relationship.
  • the user equipment can determine the beam direction of the TRS according to the beam direction of the beam and the QCL relationship, without performing a time-consuming beam scanning process, thereby saving time on activating the secondary cell.
  • the TRS is a periodic TRS, a semi-sustained TRS, or an aperiodic TRS.
  • the first configuration information is also used to configure the TCI of the downlink physical channel to be the same as the TCI of the TRS to ensure normal use of the secondary cell after activation. It is the same as the TCI of the downlink physical channel and the TCI of the SSB when activating the secondary cell using SSB.
  • Step S408 The network device sends the second configuration information to the user equipment.
  • the second configuration information is used to configure resources used for channel state information CSI reporting, and the resources used for CSI reporting form a QCL relationship with the TRS.
  • the network device may simultaneously send the first configuration information and the second configuration information through one RRC message.
  • Step S409 The network device sends information for activating the TCI status of the TRS to the user equipment.
  • Step S410 The network device sends information for activating the TCI state of the physical downlink channel to the user equipment.
  • Step S411 The network device sends information for activating the TCI state of the CSI-RS to the user equipment.
  • the network device can simultaneously send the information in S409, S410 and S411 through one RRC message.
  • Step S412 The user equipment executes an activation process corresponding to the secondary cell activation command according to the TRS.
  • the activation process includes time-frequency synchronization and reporting of CSI.
  • the activation of the unknown secondary cell through SSB and TRS can enhance the activation effect of the secondary cell and shorten the activation delay of the secondary cell.
  • Embodiments of the present disclosure provide a method for activating a secondary cell, which is applied to user equipment.
  • TRS is used to activate a known secondary cell.
  • Figure 6 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment. As shown in Figure 6, the method includes steps S601 to S607, specifically:
  • Step S601 Receive first configuration information sent by the network device.
  • the first configuration information is used to configure a tracking reference signal TRS.
  • the TRS is used for secondary cell activation.
  • the first configuration information is used to configure a tracking reference signal TRS, and the TRS is used for secondary cell activation.
  • the TRS is a periodic TRS, a semi-sustained TRS, or an aperiodic TRS.
  • the first configuration information is also used to configure the TCI of the downlink physical channel to be the same as the TCI of the TRS.
  • an RRC message sent by a network device is received, where the RRC message includes first configuration information.
  • Step S602 Receive the second configuration information sent by the network device.
  • the second configuration information is used to configure resources for channel state information CSI reporting, and the resources for CSI reporting form a QCL (Quasi Co-Location) relationship with the TRS.
  • QCL Quadrature Co-Location
  • the network device sends the second configuration information through an RRC message.
  • the user equipment may simultaneously receive the first configuration information and the second configuration information by receiving an RRC message.
  • Step S603 Receive a command sent by the network device for activating the secondary cell.
  • Step S604 Receive information sent by the user equipment for activating the TCI status of the TRS.
  • Step S605 Receive information sent by the user equipment for activating the TCI status of the physical downlink channel (such as PDCCH and PDSCH).
  • the physical downlink channel such as PDCCH and PDSCH.
  • Step S606 Receive TCI information sent by the user equipment for activating CSI-RS.
  • the user equipment receives the information in S603, S604, S606, and S606 by receiving the same MAC CE (Medium Access Control-Control Element, Media Access Control-Control Element) message.
  • MAC CE Medium Access Control-Control Element, Media Access Control-Control Element
  • Step S607 The user equipment executes an activation process corresponding to the secondary cell activation command according to the TRS.
  • the activation process includes: time-frequency synchronization and reporting of CSI.
  • activation of a known secondary cell through TRS can enhance the activation effect of the secondary cell and shorten the activation delay of the secondary cell.
  • Embodiments of the present disclosure provide a method for activating a secondary cell, which is applied to user equipment.
  • TRS is used to activate an unknown secondary cell.
  • Figure 7 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment. As shown in Figure 7, the method includes steps S701 to S708, specifically:
  • Step S701 Receive the first configuration information sent by the network device.
  • the first configuration information is used to configure a tracking reference signal TRS, and the TRS is used for secondary cell activation.
  • the TRS is a periodic TRS, a semi-sustained TRS, or an aperiodic TRS.
  • the first configuration information is received through a Radio Resource Control (Radio Resource Control, RRC) message.
  • RRC Radio Resource Control
  • the first configuration information is also used to configure the TCI of the downlink physical channel to be the same as the TCI of the TRS.
  • the first configuration information is also used to configure the transmission configuration indication TCI of the TRS to form a QCL relationship with the synchronization signal block SSB, where the SSB is the SSB of the special cell or is An SSB used by an activated secondary cell.
  • the special cell includes a primary cell and a primary and secondary cell.
  • the activated secondary cell is an activated secondary cell in the secondary cell group to which the secondary cell indicated by the command belongs.
  • the special cell of the user equipment and the secondary cell indicated by the command are quasi-cosited; or, the special cell of the user equipment and the secondary cell indicated by the command are mutually exclusive to the user equipment.
  • the beam emission direction is the same.
  • Step S702 Receive second configuration information sent by the network device.
  • the second configuration information is used to configure resources for channel state information CSI reporting, and the resources for CSI reporting form a QCL (Quasi Co-Location) relationship with the TRS.
  • QCL Quadrature Co-Location
  • the second configuration information is received through an RRC message.
  • the user equipment may simultaneously receive the first configuration information and the second configuration information through one RRC message.
  • Step S703 Receive a command sent by the network device for activating the secondary cell.
  • Step S704 Receive the TCI status information sent by the network device for activating the TRS.
  • Step S705 Execute the synchronization process of the secondary cell indicated by the command for activating the secondary cell according to the TRS.
  • the synchronization process of the unknown secondary cell includes automatic gain control (automatic gain control, AGC) adjustment, cell detection, and time-frequency synchronization.
  • AGC automatic gain control
  • Step S706 Receive information sent by the network device for activating the TCI status of the physical downlink channel.
  • Step S707 Receive information sent by the network device for activating the TCI status of the CSI-RS.
  • the user equipment can simultaneously receive the information in S706 and S707 through one RRC message.
  • Step S708 Execute an activation process corresponding to the secondary cell activation command according to the TRS.
  • the activation process includes automatic gain control, cell search, L1-RSRP measurement, time-frequency synchronization and reporting of CSI.
  • the activation of the unknown secondary cell through TRS can enhance the activation effect of the secondary cell and shorten the activation delay of the secondary cell.
  • Embodiments of the present disclosure provide a method for activating a secondary cell, which is applied to user equipment.
  • SSB and TRS are used to activate the secondary cell.
  • Figure 8 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment. As shown in Figure 8, the method includes steps S801 to S811, specifically:
  • Step S801 Receive a measurement configuration sent by the network device, where the measurement configuration is a configuration used to indicate reporting of beam measurement results.
  • Step S802 Receive a command sent by the network device for activating the secondary cell.
  • Step S803 Determine that the secondary cell indicated by the command is an unknown secondary cell.
  • Step S804 Perform detection on the secondary cell indicated by the command based on SSB, and obtain measurement results.
  • Step S805 Send the measurement result to the network device.
  • Step S806 Receive the first configuration information sent by the network device.
  • the first configuration information configures a TRS for activating the secondary cell, and configures the TRS to form a QCL relationship with one beam.
  • the one beam is a beam determined by the network device based on the measurement result.
  • this beam is the beam corresponding to the optimal measurement result (for example, the measurement result is a beam-level measurement result).
  • the TRS is a periodic TRS, a semi-sustained TRS, or an aperiodic TRS.
  • Step S807 Receive the second configuration information sent by the network device.
  • the second configuration information is used to configure resources used for channel state information CSI reporting, and the resources used for CSI reporting form a QCL relationship with the TRS.
  • the user equipment may simultaneously receive the first configuration information and the second configuration information through one RRC message.
  • Step S808 Receive the TCI status information sent by the network device for activating the TRS.
  • Step S809 Receive information sent by the network device for activating the TCI status of the physical downlink channel.
  • Step S810 Receive information sent by the network device for activating the TCI status of the CSI-RS.
  • the network device can simultaneously receive the information in S409, S410 and S411 through one RRC message.
  • Step S811 Execute an activation process corresponding to the secondary cell activation command according to the TRS.
  • the activation process includes time-frequency synchronization and reporting of CSI.
  • the activation of unknown secondary cells through SSB and TRS can enhance the activation effect of the secondary cell and shorten the activation delay of the secondary cell.
  • Embodiments of the present disclosure provide a method for activating a secondary cell, which is applied to network equipment.
  • TRS is used to activate a known secondary cell.
  • Figure 9 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment. As shown in Figure 9, the method includes steps S901 to S907, specifically:
  • Step S901 Send the first configuration information to the user equipment.
  • the first configuration information is used to configure a tracking reference signal TRS, and the TRS is used for secondary cell activation.
  • the TRS is a periodic TRS, a semi-sustained TRS, or an aperiodic TRS.
  • the first configuration information is also used to configure the TCI of the downlink physical channel to be the same as the TCI of the TRS.
  • the network device sends a Radio Resource Control (RRC) message, where the RRC message includes the first configuration information.
  • RRC Radio Resource Control
  • Step S902 Send second configuration information to the user equipment.
  • the second configuration information is used to configure resources for channel state information CSI reporting, and the resources for CSI reporting form a QCL (Quasi Co-Location) relationship with the TRS.
  • QCL Quadrature Co-Location
  • the network device sends the second configuration information through an RRC message.
  • the network device may simultaneously send the first configuration information and the second configuration information through one RRC message.
  • Step S903 Send a command for activating the secondary cell to the user equipment.
  • Step S904 Send TCI status information for activating TRS to the user equipment.
  • Step S905 Send information for activating the TCI status of the physical downlink channel (such as PDCCH and PDSCH) to the user equipment.
  • the physical downlink channel such as PDCCH and PDSCH
  • Step S906 Send TCI information for activating CSI-RS to the user equipment.
  • the network device sends the information in S903, S904, S905, and S906 to the user equipment through the same MAC CE (Medium Access Control-Control Element) message.
  • MAC CE Medium Access Control-Control Element
  • Step S907 Receive the CSI reported by the user equipment.
  • Embodiments of the present disclosure provide a method for activating a secondary cell, which is applied to network equipment.
  • TRS is used to activate an unknown secondary cell.
  • Figure 10 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment. As shown in Figure 10, the method includes steps S1001 to S1007, specifically:
  • Step S1001 Send first configuration information to user equipment.
  • the first configuration information is used to configure a tracking reference signal TRS, and the TRS is used for secondary cell activation.
  • the TRS is a periodic TRS, a semi-sustained TRS, or an aperiodic TRS.
  • the network device sends the first configuration information through a Radio Resource Control (Radio Resource Control, RRC) message.
  • RRC Radio Resource Control
  • the first configuration information is also used to configure the transmission configuration indication TCI of the TRS to form a QCL relationship with the synchronization signal block SSB, where the SSB is the SSB of the special cell or is The SSB used by other activated cells supported by the user equipment, and the special cells include primary cells and primary and secondary cells.
  • the special cell of the user equipment and the secondary cell indicated by the command are quasi-cosited; or, the special cell of the user equipment and the secondary cell indicated by the command are mutually exclusive to the user equipment.
  • the beam emission direction is the same.
  • Step S1002 Send second configuration information to the user equipment.
  • the second configuration information is used to configure resources for channel state information CSI reporting, and the resources for CSI reporting form a QCL (Quasi Co-Location) relationship with the TRS.
  • QCL Quadrature Co-Location
  • the network device sends the second configuration information through an RRC message.
  • the network device may simultaneously send the first configuration information and the second configuration information through one RRC message.
  • Step S1003 Send a command for activating the secondary cell to the user equipment.
  • Step S1004 Send TCI status information for activating TRS to the user equipment.
  • Step S1005 Send information for activating the TCI status of the physical downlink channel to the user equipment.
  • Step S1006 Send information for activating the TCI status of the CSI-RS to the user equipment.
  • the network device can simultaneously send the information in S1003 to S1007 through one RRC message.
  • Step S1007 Receive the CSI reported by the user equipment.
  • Embodiments of the present disclosure provide a method for activating a secondary cell, which is applied to network equipment.
  • SSB and TRS are used to activate an unknown secondary cell.
  • Figure 11 is a flow chart of a method for activating a secondary cell according to an exemplary embodiment. As shown in Figure 11, the method includes steps S1101 to S1110. Specifically:
  • Step S1101 Send a measurement configuration to the user equipment, where the measurement configuration is a configuration used to indicate reporting of beam measurement results.
  • Step S1102 Send a command for activating the secondary cell to the user equipment.
  • Step S1103 Receive the measurement result of detecting the indicated secondary cell based on the SSB sent by the user equipment.
  • Step S1104 Determine a beam according to the measurement result.
  • a beam determined by the network device based on the measurement result is the beam corresponding to the optimal measurement result (for example, the measurement result is a beam-level measurement result).
  • Step S1105 Send the first configuration information to the user equipment.
  • the first configuration information configures a TRS for activating the secondary cell, and configures the TRS and the beam to form a QCL relationship.
  • the TRS is a periodic TRS, a semi-sustained TRS, or an aperiodic TRS.
  • Step S1106 Send the second configuration information to the user equipment.
  • the second configuration information is used to configure resources used for channel state information CSI reporting, and the resources used for CSI reporting form a QCL relationship with the TRS.
  • the network device may simultaneously send the first configuration information and the second configuration information through one RRC message.
  • Step S1107 Send the TCI status information for activating the TRS to the user equipment.
  • Step S1108 Send information for activating the TCI status of the physical downlink channel to the user equipment.
  • Step S1109 Send information for activating the TCI status of the CSI-RS to the user equipment.
  • the network device can simultaneously send the information in S1107 to S1109 through one RRC message.
  • Step S1110 Receive the CSI reported by the user equipment.
  • the activation of the unknown secondary cell through SSB and TRS can enhance the activation effect of the secondary cell and shorten the activation delay of the secondary cell.
  • embodiments of the present disclosure also provide a communication device, which can have the functions of the user equipment 102 in the above method embodiments, and is used to perform the functions provided by the user equipment 102 in the above embodiments. steps to perform.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 1200 shown in Figure 12 can serve as the user equipment 102 involved in the above method embodiment, and perform the steps performed by the user equipment 102 in the above method embodiment.
  • the communication device 1200 includes a transceiver module 1201 and a processing module 1202.
  • the transceiver module 1201 is configured to receive the first configuration information sent by the network device.
  • the first configuration information is used to configure the tracking reference signal TRS, and the TRS is used for secondary cell activation; and is also configured to receive the username sent by the network device.
  • the processing module 1202 is configured to execute an activation process corresponding to the command for activating the secondary cell according to the TRS.
  • the first configuration information is also used to configure the TCI of the downlink physical channel to be the same as the TCI of the TRS.
  • the first configuration information is also used to configure the TCI of the TRS to form a QCL relationship with the synchronization signal block SSB.
  • the SSB is the SSB of a special cell or the SSB used by an activated secondary cell.
  • the special cell includes a primary cell and a primary and secondary cell, and the activated secondary cell is an activated secondary cell in the secondary cell group to which the secondary cell indicated by the command for activating the secondary cell belongs.
  • the special cell of the user equipment and the secondary cell indicated by the command for activating the secondary cell are quasi-cosited; or, the special cell of the user equipment and the secondary cell for activating the secondary cell are quasi-cosited;
  • the secondary cells indicated by the command to activate the secondary cell have the same beam emission direction for the user equipment.
  • the processing module 1202 is further configured to determine that the secondary cell indicated by the command for activating the secondary cell is an unknown secondary cell, and execute the command indication for activating the secondary cell according to the TRS. The synchronization process of the secondary cell.
  • the processing module 1202 is further configured to determine that the secondary cell indicated by the command for activating the secondary cell is an unknown secondary cell, and perform detection of the unknown secondary cell based on SSB, and based on the detection result Report beam-level measurement results.
  • the first configuration information is also used to configure a QCL relationship between the TRS and a beam.
  • the one beam is the beam corresponding to the optimal beam-level measurement result.
  • the transceiver module 1201 is also configured to receive second configuration information sent by the network device.
  • the second configuration information is used to configure resources for channel state information CSI reporting.
  • the second configuration information is used for CSI reporting.
  • the reported resources and the TRS form a QCL relationship.
  • the transceiver module 1201 is also configured to report CSI to the network device.
  • the communication device When the communication device is user equipment 102, its structure may also be as shown in Figure 13.
  • the device 1300 may include one or more of the following components: a processing component 1302, a memory 1304, a power component 1306, a multimedia component 1308, an audio component 1310, an input/output (I/O) interface 1312, a sensor component 1314, and communications component 1316.
  • a processing component 1302 a memory 1304, a power component 1306, a multimedia component 1308, an audio component 1310, an input/output (I/O) interface 1312, a sensor component 1314, and communications component 1316.
  • Processing component 1302 generally controls the overall operations of device 1300, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1302 may include one or more processors 1320 to execute instructions to complete all or part of the steps of the above method.
  • processing component 1302 may include one or more modules that facilitate interaction between processing component 1302 and other components.
  • processing component 1302 may include a multimedia module to facilitate interaction between multimedia component 1308 and processing component 1302.
  • Memory 1304 is configured to store various types of data to support operations at device 1300 . Examples of such data include instructions for any application or method operating on device 1300, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 1304 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power component 1306 provides power to various components of device 1300.
  • Power components 1306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 1300 .
  • Multimedia component 1308 includes a screen that provides an output interface between the device 1300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 1308 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 1310 is configured to output and/or input audio signals.
  • audio component 1310 includes a microphone (MIC) configured to receive external audio signals when device 1300 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 1304 or sent via communication component 1316 .
  • audio component 1310 also includes a speaker for outputting audio signals.
  • the I/O interface 1312 provides an interface between the processing component 1302 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 1314 includes one or more sensors that provide various aspects of status assessment for device 1300 .
  • the sensor component 1314 can detect the open/closed state of the device 1300, the relative positioning of components, such as the display and keypad of the device 1300, and the sensor component 1314 can also detect a change in position of the device 1300 or a component of the device 1300. , the presence or absence of user contact with device 1300 , device 1300 orientation or acceleration/deceleration and temperature changes of device 1300 .
  • Sensor assembly 1314 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1314 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1316 is configured to facilitate wired or wireless communication between apparatus 1300 and other devices.
  • Device 1300 may access a wireless network based on a communication standard, such as WiFi, 4G or 5G, or a combination thereof.
  • the communication component 1316 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 1316 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1300 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1304 including instructions, which are executable by the processor 1320 of the device 1300 to complete the above method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • embodiments of the present disclosure also provide a communication device, which can have the functions of the network device 101 in the above method embodiments, and is used to perform the functions provided by the network device 101 in the above embodiments. steps to perform.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 1400 shown in Figure 14 can serve as the network device 101 involved in the above method embodiment, and perform the steps performed by the network device 101 in the above method embodiment.
  • the communication device 1400 includes a transceiver module 1401.
  • the transceiver module 1401 is configured to send first configuration information to the user equipment, the first configuration information is used to configure the tracking reference signal TRS, the TRS is used for secondary cell activation; and is also configured to send to the user equipment for activation.
  • the first configuration information is also used to configure the TCI of the downlink physical channel to be the same as the TCI of the TRS.
  • the first configuration information is also used to configure the TCI of the TRS to form a QCL relationship with the synchronization signal block SSB.
  • the SSB is the SSB of a special cell or the SSB used by an activated secondary cell.
  • the special cell includes a primary cell and a primary and secondary cell, and the activated secondary cell is an activated secondary cell in the secondary cell group to which the secondary cell indicated by the command for activating the secondary cell belongs.
  • the special cell of the user equipment and the secondary cell indicated by the command are quasi-co-sited; or, the special cell of the user equipment and the secondary cell indicated by the command are located on the same site as the secondary cell indicated by the command.
  • the user equipment's beam emission direction is the same.
  • the TRS is used to execute the synchronization process of the secondary cell indicated by the command for activating the secondary cell.
  • the transceiver module 1401 is further configured to send a secondary cell activation command to the user equipment and receive beam-level measurement results.
  • the first configuration information is also used to configure the QCL relationship between the TRS and a beam.
  • the one beam is the beam corresponding to the optimal beam-level measurement result.
  • the transceiver module 1401 is further configured to send second configuration information to the user equipment.
  • the second configuration information is used to configure resources for channel state information CSI reporting.
  • the second configuration information is used for CSI reporting.
  • the reported resources and the TRS form a QCL relationship.
  • the transceiver module 1401 is also configured to receive CSI reported by the user equipment.
  • the communication device When the communication device is a network device, its structure may also be as shown in Figure 15. Taking the network device 101 as a base station as an example, the structure of the communication device is described. As shown in Figure 15, the device 1500 includes a memory 1501, a processor 1502, a transceiver component 1503, and a power supply component 1506. Among them, the memory 1501 is coupled with the processor 1502 and can be used to save programs and data necessary for the communication device 1500 to implement various functions. The processor 1502 is configured to support the communication device 1500 to perform corresponding functions in the above method. This function can be implemented by calling a program stored in the memory 1501 .
  • the transceiver component 1503 may be a wireless transceiver, which may be used to support the communication device 1500 to receive signaling and/or data through a wireless air interface, and to send signaling and/or data.
  • the transceiver component 1503 may also be called a transceiver unit or a communication unit.
  • the transceiver component 1503 may include a radio frequency component 1504 and one or more antennas 1505.
  • the radio frequency component 1504 may be a remote radio unit (RRU). Specifically, It can be used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the one or more antennas 1505 can be specifically used for radiating and receiving radio frequency signals.
  • the processor 1502 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit.
  • the radio frequency unit performs radio frequency processing on the baseband signal and then sends the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1502.
  • the processor 1502 converts the baseband signal into data and processes the data. for processing.
  • Activating the secondary cell through TRS can enhance the activation effect of the secondary cell and shorten the activation delay of the secondary cell.

Abstract

本公开提供一种激活辅小区的方法、装置、设备及可读存储介质。激活辅小区的方法由用户设备执行,包括:接收网络设备发送的第一配置信息,所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活;接收网络设备发送的用于激活辅小区的命令和用于激活所述TRS的传输配置指示TCI的信息。

Description

一种激活辅小区的方法、装置、设备以及可读存储介质 技术领域
本公开涉及无线通信技术,尤其涉及一种激活辅小区的方法、装置、设备以及可读存储介质。
背景技术
相关技术中,基于载波聚合(Carrier Aggregation,CA)等技术的通信系统中,用户设备能够支持同时接入多个小区,对于用户设备接入的辅小区,3GPP(The 3rd Generation Partner Project,第三代合作伙伴计划)标准中定义了辅小区(Secondary Cell,SCell)激活时延。辅小区激活包括已知辅小区激活和未知辅小区激活。在辅小区激活前,当用户设备在协议约定的一段时间内向网络设备上报过该辅小区的测量信息,且在协议约定的小区识别时间内该辅小区是可检测到的,则认为该辅小区是已知辅小区。另外对于FR2(Frequency Range,频率范围)辅小区,在辅小区激活流程中的传输配置指示(Transmission Configuration Indicator,TCI)激活是基于用户设备上报的同步块(Synchronization Signal/PBCH block,SSB)或信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)确定的。否则认为该辅小区是未知辅小区。
基于SSB执行辅小区激活时,由于SSB测量受限于SSB测量定时配置(SSB Measurement Timing Configuration,SMTC),并且SMTC的周期时间比较长,一般为20ms、40ms或80ms,特别是对于FR2来说,用户设备还需要进行波束扫描来确定最佳波束,因此导致辅小区激活时延很长。
发明内容
本公开提供一种激活辅小区的方法、装置、设备以及可读存储介质。
第一方面,提供一种激活辅小区的方法,由用户设备执行,所述方法包括:
接收网络设备发送的第一配置信息,所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活;
接收网络设备发送的用于激活辅小区的命令和用于激活所述TRS的传输配置指示TCI的信息;
根据所述TRS执行与所述用于激活辅小区的命令对应的激活流程。
在一些可能的实施方式中,所述第一配置信息还用于配置下行物理信道的TCI与所述TRS的TCI相同。
在一些可能的实施方式中,所述第一配置信息还用于配置所述TRS的TCI与同步信号块SSB构成QCL关系,所述SSB为特殊小区的SSB或者为已激活辅小区使用的SSB,所述特殊小区包括主小区和主辅小区,所述已激活辅小区为所述用于激活辅小区的命令指示的辅小区所属的辅小区组中的已激活辅小区。
在一些可能的实施方式中,所述用户设备的特殊小区和所述用于激活辅小区的命令指示的辅小区是准共站址的;
或者,所述用户设备的特殊小区和所述用于激活辅小区的命令指示的辅小区对于所述用户设备的波束发射方向相同。
在一些可能的实施方式中,所述根据所述TRS执行与所述用于激活辅小区的命令对应 的激活流程,包括:
确定所述用于激活辅小区的命令指示的辅小区是未知辅小区,根据所述TRS执行所述用于激活辅小区的命令指示的辅小区的同步处理过程。
在一些可能的实施方式中,所述根据所述TRS执行与所述用于激活辅小区的命令对应的激活流程,包括:
确定所述用于激活辅小区的命令指示的辅小区是未知辅小区,基于SSB执行对所述未知辅小区的检测,根据检测结果上报波束级测量结果。
在一些可能的实施方式中,所述第一配置信息还用于配置所述TRS与一个波束构成QCL关系。
在一些可能的实施方式中,所述一个波束为最优的波束级测量结果对应的波束。
在一些可能的实施方式中,所述方法还包括:
接收网络设备发送的第二配置信息,所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL关系。
在一些可能的实施方式中,所述根据所述TRS执行与所述用于激活辅小区的命令对应的激活流程,包括:
向所述网络设备上报CSI。
第二方面,提供一种激活辅小区的方法,由网络设备执行,所述方法包括:
向用户设备发送第一配置信息,所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活;
向所述用户设备发送用于激活辅小区的命令和用于激活所述TRS的传输配置指示TCI的信息。
在一些可能的实施方式中,所述第一配置信息还用于配置下行物理信道的TCI与所述TRS的TCI相同。
在一些可能的实施方式中,所述第一配置信息还用于配置所述TRS的TCI与同步信号块SSB构成QCL关系,所述SSB为特殊小区的SSB或者为已激活辅小区使用的SSB,所述特殊小区包括主小区和主辅小区,所述已激活辅小区为所述用于激活辅小区的命令指示的辅小区所属的辅小区组中的已激活辅小区。
在一些可能的实施方式中,所述用户设备的特殊小区和所述用于激活辅小区的命令指示的辅小区是准共站址的;
或者,所述用户设备的特殊小区和所述用于激活辅小区的命令指示的辅小区对于所述用户设备的波束发射方向相同。
在一些可能的实施方式中,所述TRS用于执行所述用于激活辅小区的命令指示的辅小区的同步处理过程。
在一些可能的实施方式中,所述方法还包括:
接收波束级测量结果。
在一些可能的实施方式中,所述第一配置信息还用于配置所述TRS与一个波束构成QCL关系。
在一些可能的实施方式中,所述一个波束为最优的波束级测量结果对应的波束。
在一些可能的实施方式中,所述方法还包括:
向所述用户设备发送第二配置信息,所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL关系。
在一些可能的实施方式中,所述方法还包括:
接收用户设备上报的CSI。
第三方面,提供一种激活辅小区的装置,被配置于用户设备,所述装置包括:
收发模块,被配置为接收网络设备发送的第一配置信息,所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活;还被配置为接收网络设备发送的用于激活辅小区的命令和用于激活所述TRS的传输配置指示TCI的信息。
第四方面,提供一种激活辅小区的装置,被配置于网络设备,所述装置包括:
收发模块,被配置为向用户设备发送第一配置信息,所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活;还被配置为向所述用户设备发送用于激活辅小区的命令和用于激活所述TRS的传输配置指示TCI的信息。
第五方面,提供一种电子设备,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能的设计。
第六方面,提供一种电子设备,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第二方面或第二方面的任意一种可能的设计。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是根据一示例性实施例示出的一种激活辅小区的方法的交互图;
图3是根据一示例性实施例示出的一种激活辅小区的方法的交互图;
图4是根据一示例性实施例示出的一种激活辅小区的方法的交互图;
图5是根据一示例性实施例示出的一种激活辅小区的方法的示意图;
图6是根据一示例性实施例示出的一种激活辅小区的方法的流程图;
图7是根据一示例性实施例示出的一种激活辅小区的方法的流程图;
图8是根据一示例性实施例示出的一种激活辅小区的方法的流程图;
图9是根据一示例性实施例示出的一种激活辅小区的方法的流程图;
图10是根据一示例性实施例示出的一种激活辅小区的方法的流程图;
图11是根据一示例性实施例示出的一种激活辅小区的方法的流程图;
图12是根据一示例性实施例示出的一种激活辅小区的装置的结构图;
图13是根据一示例性实施例示出的一种激活辅小区的装置的结构图;
图14是根据一示例性实施例示出的一种激活辅小区的装置的结构图;
图15是根据一示例性实施例示出的一种激活辅小区的装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例提供的一种激活辅小区的方法可应用于无线通信系统100,该无线通信系统可以包括但不限于网络设备101和用户设备102。用户设备102被配置为支持载波聚合,用户设备102可连接至网络设备101的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备102可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或用户设备等。该用户设备102可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备101进行通信(如无线通信),并接受网络设备101提供的网络服务,这里的网络设备101包括但不限于图示基站。
其中,用户设备102可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的用户设备或者未来演进的PLMN网络中的用户设备等。
网络设备101可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备具体可包括基站(base station,BS)设备,或包括基站设备以及用于控制基站设备的无线资源管理设备等。该网络设备还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备可以是可穿戴设备或车载设备。网络设备也可以是具有通信模块的通信芯片。
比如,网络设备101包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
用户设备接收到用于激活辅小区的命令后,在激活未知辅小区时,需执行自动增益控制(AGC)、小区搜索、L1-RSRP测量和时频同步和CSI上报。在激活已知辅小区时,只需执行时频同步和CSI上报。所以针对未知辅小区的激活和已知辅小区的激活的处理过程不同。
用户设备接收到网络设备发送的用于激活辅小区的命令后,确定所述命令指示的辅小区是已知辅小区还是未知辅小区。
确定所述命令指示的辅小区是已知辅小区的方法包括:
当用户设备在接收到用于激活辅小区的命令之前的设定时长内(由协议约定)向网络上报过所述辅小区的测量信息,并且,在协议约定的小区识别时间内所述辅小区是可检测到的,则确定该小区是已知辅小区。
另外,对于FR2中的辅小区,额外要求在辅小区激活流程中的TCI激活是基于用户设备上报的SSB或CSI-RS index确定的。
在不满足上述任一条件时确定所述命令指示的辅小区是未知辅小区。
本公开实施例提供了一种激活辅小区的方法,此方法中使用TRS激活已知辅小区。
图2是根据一示例性实施例示出的一种激活辅小区的方法的流程图,如图2所示,该方法包括步骤S201~S207,具体的:
步骤S201,网络设备向用户设备发送第一配置信息。
所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活。网络设备向用户设备发送第一配置信息即相当于发送TRS。
在一些可能的实施方式中,TRS为周期的TRS、半持续的TRS或非周期的TRS。
在一些可能的实施方式中,所述第一配置信息还用于配置下行物理信道的TCI与所述TRS的TCI相同,以保证辅小区激活后的正常使用。与使用SSB激活辅助小区方式中需配置下行物理信道的TCI与SSB的TCI相同同理。
在一些可能的实施方式中,网络设备发送无线资源控制(Radio Resource Control,RRC)消息,所述RRC消息中包括第一配置信息。
步骤S202,网络设备向用户设备发送第二配置信息。
所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL(Quasi Co-Location,准共站址)关系。
在一些可能的实施方式中,网络设备通过RRC消息发送第二配置信息。
需要说明的是,在另一种实施方式中,网络设备可以通过一个RRC消息同时发送第一配置信息和第二配置信息。
步骤S203,网络设备向用户设备发送用于激活辅小区的命令。
步骤S204,网络设备向用户设备发送用于激活TRS的TCI状态的信息。
步骤S205,网络设备向用户设备发送用于激活物理下行信道(例如PDCCH和PDSCH)的TCI状态的信息。
通过发送激活物理下行信道的TCI状态,使所述命令指示的辅小区被激活后,可以正常的接收物理下行信道。
步骤S206,网络设备向用户设备发送用于激活CSI-RS的TCI的信息。
通过发送激活CSI-RS的TCI状态,使用户设备可以根据此CSI-RS上报CSI。
步骤S207,用户设备根据所述TRS根据所述TRS执行与所述辅小区激活命令对应的激活流程,激活流程包括:时频同步和上报CSI。
在一些可能的实施方式中,为了节省传输时间,网络设备通过同一MAC CE(Medium Access Control-Control Element,媒体接入控制-控制单元)消息向用户设备发送S203、S204、S205、S206中的信息。
在一些可能的实施方式中,S204、S205、S206的发送顺序不局限于上述顺序。用户设备在接收到网络设备发送的用于激活TRS的TCI状态的信息后,便可以根据所述TRS激活辅小区。在接收到用于激活CSI-RS的TCI的信息后,才可以上报CSI。在接收到用于激活物理下行信道的TCI状态的信息后,才可以在激活辅小区后,接收物理下行信道。本公开实施例中,通过TRS进行已知辅小区的激活,能够增强辅小区的激活效果,缩短辅小区的激活时延。
本公开实施例提供了一种激活辅小区的方法,此方法中使用TRS激活未知辅小区。
图3是根据一示例性实施例示出的一种激活辅小区的方法的流程图,如图3所示,该方法包括步骤S301~S308,具体的:
步骤S301,网络设备向用户设备发送第一配置信息。
所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活。
在一些可能的实施方式中,TRS为周期的TRS、半持续的TRS或非周期的TRS。
在一些可能的实施方式中,所述第一配置信息还用于配置下行物理信道的TCI与所述TRS的TCI相同,以保证辅小区激活后的正常使用。与使用SSB激活辅助小区方式中需配置下行物理信道的TCI与SSB的TCI相同同理。
在一些可能的实施方式中,网络设备通过无线资源控制(Radio Resource Control,RRC)消息发送第一配置信息。
在一些可能的实施方式中,所述第一配置信息还用于配置所述TRS的传输配置指示 TCI与同步信号块SSB构成QCL关系,所述SSB为特殊小区的SSB或者为已激活辅小区使用的SSB,所述特殊小区包括主小区和主辅小区,所述已激活辅小区为所述命令指示的辅小区所属的辅小区组中的已激活辅小区。通过此配置,用户设备可以根据已知的SSB的波束方向和所述QCL关系确定出TRS的波束方向,不需要执行耗费时间的波束扫描过程,从而节省激活辅小区的耗时。
在一示例中,所述用户设备的特殊小区和所述命令指示的辅小区是准共站址的;或者,所述用户设备的特殊小区和所述命令指示的辅小区对于所述用户设备的波束发射方向相同。
步骤S302,网络设备向用户设备发送第二配置信息。
所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL(Quasi Co-Location,准共站址)关系。
在一些可能的实施方式中,网络设备通过RRC消息发送第二配置信息。
需要说明的是,在另一种实施方式中,网络设备可以通过一个RRC消息同时发送第一配置信息和第二配置信息。
步骤S303,网络设备向用户设备发送用于激活辅小区的命令。
步骤S304,网络设备向用户设备发送用于激活TRS的TCI状态的信息。
步骤S305,用户设备根据所述TRS执行所述命令指示的辅小区的同步处理过程。
在一些可能的实施方式中,未知辅小区的同步处理过程包括自动增益控制(automatic gain control,AGC)调整,小区检测,时频同步。
步骤S306,网络设备向用户设备发送用于激活物理下行信道的TCI状态的信息。
步骤S307,网络设备向用户设备发送用于激活CSI-RS的TCI状态的信息。
需要说明的是,网络设备可以通过一个RRC消息同时发送S306和S307中的信息。
步骤S308,用户设备根据所述TRS执行与所述辅小区激活命令对应的激活流程,激活流程包括自动增益控制、小区搜索、L1-RSRP测量、时频同步和上报CSI。
本公开实施例中,通过TRS进行未知辅小区的激活,能够增强辅小区的激活效果,缩短辅小区的激活时延。
本公开实施例提供了一种激活辅小区的方法,此方法中使用SSB和TRS激活未知辅小区。
图4是根据一示例性实施例示出的一种激活辅小区的方法的流程图,图5是根据一示例性实施例示出的辅小区激活的示意图,结合图4和图5,该方法包括步骤S401~S412,具体的:
步骤S401,网络设备向用户设备发送测量配置,所述测量配置为用于指示上报波束测量结果的配置。
步骤S402,网络设备向用户设备发送用于激活辅小区的命令。
步骤S403,用户设备确定所述命令指示的辅小区为未知辅小区。
步骤S404,用户设备基于SSB执行对所述命令指示的辅小区进行检测,获得测量结果。
步骤S405,用户设备向网络设备发送所述测量结果。
步骤S406,网络设备根据所述测量结果确定出一个波束。
在一些可能的实施方式中,网络设备根据所述测量结果确定出的一个波束为最优的测 量结果(例如测量结果为波束级测量结果)对应的波束。
步骤S407,网络设备向用户设备发送第一配置信息。
其中,第一配置信息配置用于激活辅小区的TRS,并且配置所述TRS与所述波束构成QCL关系。通过此配置,用户设备可以根据所述波束的波束方向和所述QCL关系确定出TRS的波束方向,不需要执行耗费时间的波束扫描过程,从而节省激活辅小区的耗时。
在一些可能的实施方式中,TRS为周期的TRS、半持续的TRS或非周期的TRS。
在一些可能的实施方式中,所述第一配置信息还用于配置下行物理信道的TCI与所述TRS的TCI相同,以保证辅小区激活后的正常使用。与使用SSB激活辅助小区方式中需配置下行物理信道的TCI与SSB的TCI相同同理。
步骤S408,网络设备向用户设备发送第二配置信息。
所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL关系。
需要说明的是,在另一种实施方式中,网络设备可以通过一个RRC消息同时发送第一配置信息和第二配置信息。
步骤S409,网络设备向用户设备发送用于激活TRS的TCI状态的信息。
步骤S410,网络设备向用户设备发送用于激活物理下行信道的TCI状态的信息。
步骤S411,网络设备向用户设备发送用于激活CSI-RS的TCI状态的信息。
需要说明的是,网络设备可以通过一个RRC消息同时发送S409、S410和S411中的信息。
步骤S412,用户设备根据所述TRS执行与所述辅小区激活命令对应的激活流程,激活流程包括时频同步和上报CSI。
本公开实施例中,通过SSB和TRS进行未知辅小区的激活,能够增强辅小区的激活效果,缩短辅小区的激活时延。
本公开实施例提供了一种激活辅小区的方法,应用于用户设备,此方法中使用TRS激活已知辅小区。
图6是根据一示例性实施例示出的一种激活辅小区的方法的流程图,如图6所示,该方法包括步骤S601~S607,具体的:
步骤S601,接收网络设备发送的第一配置信息,所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活。
所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活。
在一些可能的实施方式中,TRS为周期的TRS、半持续的TRS或非周期的TRS。
在一些可能的实施方式中,所述第一配置信息还用于配置下行物理信道的TCI与所述TRS的TCI相同。
在一些可能的实施方式中,接收网络设备发送的RRC消息,所述RRC消息中包括第一配置信息。
步骤S602,接收网络设备发送的第二配置信息。
所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL(Quasi Co-Location,准共站址)关系。
在一些可能的实施方式中,网络设备通过RRC消息发送第二配置信息。
需要说明的是,在另一种实施方式中,用户设备可以通过接收一个RRC消息同时接收到第一配置信息和第二配置信息。
步骤S603,接收网络设备发送的用于激活辅小区的命令。
步骤S604,接收用户设备发送的用于激活TRS的TCI状态的信息。
步骤S605,接收用户设备发送的用于激活物理下行信道(例如PDCCH和PDSCH)的TCI状态的信息。
步骤S606,接收用户设备发送的用于激活CSI-RS的TCI的信息。
在一些可能的实施方式中,用户设备通过接收同一MAC CE(Medium Access Control-Control Element,媒体接入控制-控制单元)消息接收到S603、S604、S606、S606中的信息。
步骤S607,用户设备根据所述TRS执行与所述辅小区激活命令对应的激活流程,激活流程包括:时频同步和上报CSI。
本公开实施例中,通过TRS进行已知辅小区的激活,能够增强辅小区的激活效果,缩短辅小区的激活时延。
本公开实施例提供了一种激活辅小区的方法,应用于用户设备,此方法中使用TRS激活未知辅小区。
图7是根据一示例性实施例示出的一种激活辅小区的方法的流程图,如图7所示,该方法包括步骤S701~S708,具体的:
步骤S701,接收网络设备发送的第一配置信息。
所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活。
在一些可能的实施方式中,TRS为周期的TRS、半持续的TRS或非周期的TRS。
在一些可能的实施方式中,通过无线资源控制(Radio Resource Control,RRC)消息接收第一配置信息。
在一些可能的实施方式中,所述第一配置信息还用于配置下行物理信道的TCI与所述TRS的TCI相同。
在一些可能的实施方式中,对于未知辅小区,所述第一配置信息还用于配置所述TRS的传输配置指示TCI与同步信号块SSB构成QCL关系,所述SSB为特殊小区的SSB或者为已激活辅小区使用的SSB,所述特殊小区包括主小区和主辅小区,所述已激活辅小区为所述命令指示的辅小区所属的辅小区组中的已激活辅小区。
在一示例中,所述用户设备的特殊小区和所述命令指示的辅小区是准共站址的;或者,所述用户设备的特殊小区和所述命令指示的辅小区对于所述用户设备的波束发射方向相同。
步骤S702,接收网络设备发送的第二配置信息。
所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL(Quasi Co-Location,准共站址)关系。
在一些可能的实施方式中,通过RRC消息接收第二配置信息。
需要说明的是,在另一种实施方式中,用户设备可以通过一个RRC消息同时接收第一配置信息和第二配置信息。
步骤S703,接收网络设备发送的用于激活辅小区的命令。
步骤S704,接收网络设备发送的用于激活TRS的TCI状态的信息。
步骤S705,根据所述TRS执行所述用于激活辅小区的命令指示的辅小区的同步处理过程。
在一些可能的实施方式中,未知辅小区的同步处理过程包括自动增益控制(automatic gain control,AGC)调整,小区检测,时频同步。
步骤S706,接收网络设备发送的用于激活物理下行信道的TCI状态的信息。
步骤S707,接收网络设备发送的用于激活CSI-RS的TCI状态的信息。
需要说明的是,用户设备可以通过一个RRC消息同时接收S706和S707中的信息。
步骤S708,根据所述TRS执行与所述辅小区激活命令对应的激活流程,激活流程包括自动增益控制、小区搜索、L1-RSRP测量、时频同步和上报CSI。
本公开实施例中,通过TRS进行未知辅小区的激活,能够增强辅小区的激活效果,缩短辅小区的激活时延。
本公开实施例提供了一种激活辅小区的方法,应用于用户设备,此方法中使用SSB和TRS激活辅小区。
图8是根据一示例性实施例示出的一种激活辅小区的方法的流程图,如图8所示,该方法包括步骤S801~S811,具体的:
步骤S801,接收网络设备发送的测量配置,所述测量配置为用于指示上报波束测量结果的配置。
步骤S802,接收网络设备发送的用于激活辅小区的命令。
步骤S803,确定所述命令指示的辅小区为未知辅小区。
步骤S804,基于SSB执行对所述命令指示的辅小区进行检测,获得测量结果。
步骤S805,向网络设备发送所述测量结果。
步骤S806,接收网络设备发送的第一配置信息。
其中,第一配置信息配置用于激活辅小区的TRS,并且配置所述TRS与一个波束构成QCL关系。其中,所述一个波束为网络设备根据所述测量结果确定出的波束。在一示例中,此波束为最优的测量结果(例如测量结果为波束级测量结果)对应的波束。
在一些可能的实施方式中,TRS为周期的TRS、半持续的TRS或非周期的TRS。
步骤S807,接收网络设备发送的第二配置信息。
所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL关系。
需要说明的是,在另一种实施方式中,用户设备可以通过一个RRC消息同时接收第一配置信息和第二配置信息。
步骤S808,接收网络设备发送的用于激活TRS的TCI状态的信息。
步骤S809,接收网络设备发送的用于激活物理下行信道的TCI状态的信息。
步骤S810,接收网络设备发送的用于激活CSI-RS的TCI状态的信息。
需要说明的是,网络设备可以通过一个RRC消息同时接收S409、S410和S411中的信息。
步骤S811,根据所述TRS执行与所述辅小区激活命令对应的激活流程,激活流程包括时频同步和上报CSI。
本公开实施例中,通过SSB和TRS进行未知辅小区的激活,能够增强辅小区的激活 效果,缩短辅小区的激活时延。
本公开实施例提供了一种激活辅小区的方法,应用于网络设备,此方法中使用TRS激活已知辅小区。
图9是根据一示例性实施例示出的一种激活辅小区的方法的流程图,如图9所示,该方法包括步骤S901~S907,具体的:
步骤S901,向用户设备发送第一配置信息。
所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活。
在一些可能的实施方式中,TRS为周期的TRS、半持续的TRS或非周期的TRS。
在一些可能的实施方式中,对于已知辅小区,所述第一配置信息还用于配置下行物理信道的TCI与所述TRS的TCI相同。
在一些可能的实施方式中,网络设备发送无线资源控制(Radio Resource Control,RRC)消息,所述RRC消息中包括第一配置信息。
步骤S902,向用户设备发送第二配置信息。
所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL(Quasi Co-Location,准共站址)关系。
在一些可能的实施方式中,网络设备通过RRC消息发送第二配置信息。
需要说明的是,在另一种实施方式中,网络设备可以通过一个RRC消息同时发送第一配置信息和第二配置信息。
步骤S903,向用户设备发送用于激活辅小区的命令。
步骤S904,向用户设备发送用于激活TRS的TCI状态的信息。
步骤S905,向用户设备发送用于激活物理下行信道(例如PDCCH和PDSCH)的TCI状态的信息。
步骤S906,向用户设备发送用于激活CSI-RS的TCI的信息。
在一些可能的实施方式中,网络设备通过同一MAC CE(Medium Access Control-Control Element,媒体接入控制-控制单元)消息向用户设备发送S903、S904、S905、S906中的信息。
步骤S907,接收用户设备上报的CSI。
本公开实施例提供了一种激活辅小区的方法,应用于网络设备,此方法中使用TRS激活未知辅小区。
图10是根据一示例性实施例示出的一种激活辅小区的方法的流程图,如图10所示,该方法包括步骤S1001~S1007,具体的:
步骤S1001,向用户设备发送第一配置信息。
所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活。
在一些可能的实施方式中,TRS为周期的TRS、半持续的TRS或非周期的TRS。
在一些可能的实施方式中,网络设备通过无线资源控制(Radio Resource Control,RRC)消息发送第一配置信息。
在一些可能的实施方式中,对于未知辅小区,所述第一配置信息还用于配置所述TRS 的传输配置指示TCI与同步信号块SSB构成QCL关系,所述SSB为特殊小区的SSB或者为所述用户设备支持的其它激活小区使用的SSB,所述特殊小区包括主小区和主辅小区。
在一示例中,所述用户设备的特殊小区和所述命令指示的辅小区是准共站址的;或者,所述用户设备的特殊小区和所述命令指示的辅小区对于所述用户设备的波束发射方向相同。
步骤S1002,向用户设备发送第二配置信息。
所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL(Quasi Co-Location,准共站址)关系。
在一些可能的实施方式中,网络设备通过RRC消息发送第二配置信息。
需要说明的是,在另一种实施方式中,网络设备可以通过一个RRC消息同时发送第一配置信息和第二配置信息。
步骤S1003,向用户设备发送用于激活辅小区的命令。
步骤S1004,向用户设备发送用于激活TRS的TCI状态的信息。
步骤S1005,向用户设备发送用于激活物理下行信道的TCI状态的信息。
步骤S1006,向用户设备发送用于激活CSI-RS的TCI状态的信息。
需要说明的是,网络设备可以通过一个RRC消息同时发送S1003至S1007中的信息。
步骤S1007,接收用户设备上报的CSI。
本公开实施例提供了一种激活辅小区的方法,应用于网络设备,此方法中使用SSB和TRS激活未知辅小区。
图11是根据一示例性实施例示出的一种激活辅小区的方法的流程图,如图11所示,该方法包括步骤S1101~S1110,具体的:
步骤S1101,向用户设备发送测量配置,所述测量配置为用于指示上报波束测量结果的配置。
步骤S1102,向用户设备发送用于激活辅小区的命令。
步骤S1103,接收用户设备发送的基于SSB对所述指示的辅小区进行检测的测量结果。
步骤S1104,根据所述测量结果确定出一个波束。
在一些可能的实施方式中,网络设备根据所述测量结果确定出的一个波束为最优的测量结果(例如测量结果为波束级测量结果)对应的波束。
步骤S1105,向用户设备发送第一配置信息。
其中,第一配置信息配置用于激活辅小区的TRS,并且配置所述TRS与所述波束构成QCL关系。
在一些可能的实施方式中,TRS为周期的TRS、半持续的TRS或非周期的TRS。
步骤S1106,向用户设备发送第二配置信息。
所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL关系。
需要说明的是,在另一种实施方式中,网络设备可以通过一个RRC消息同时发送第一配置信息和第二配置信息。
步骤S1107,向用户设备发送用于激活TRS的TCI状态的信息。
步骤S1108,向用户设备发送用于激活物理下行信道的TCI状态的信息。
步骤S1109,向用户设备发送用于激活CSI-RS的TCI状态的信息。
需要说明的是,网络设备可以通过一个RRC消息同时发送S1107至S1109中的信息。
步骤S1110,接收用户设备上报的CSI。
本公开实施例中,通过SSB和TRS进行未知辅小区的激活,能够增强辅小区的激活效果,缩短辅小区的激活时延。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的用户设备102的功能,并用于执行上述实施例提供的由用户设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图12所示的通信装置1200可作为上述方法实施例所涉及的用户设备102,并执行上述一种方法实施例中由用户设备102执行的步骤。
所述通信装置1200包括收发模块1201和处理模块1202。
收发模块1201,被配置为接收网络设备发送的第一配置信息,所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活;还被配置为接收网络设备发送的用于激活辅小区的命令和用于激活所述TRS的传输配置指示TCI。
处理模块1202被配置为根据所述TRS执行与所述用于激活辅小区的命令对应的激活流程。
在一些可能的实施方式中,所述第一配置信息还用于配置下行物理信道的TCI与所述TRS的TCI相同。
在一些可能的实施方式中,所述第一配置信息还用于配置所述TRS的TCI与同步信号块SSB构成QCL关系,所述SSB为特殊小区的SSB或者为已激活辅小区使用的SSB,所述特殊小区包括主小区和主辅小区,所述已激活辅小区为所述用于激活辅小区的命令指示的辅小区所属的辅小区组中的已激活辅小区。
在一些可能的实施方式中,所述用户设备的特殊小区和所述用于激活辅小区的命令指示的辅小区是准共站址的;或者,所述用户设备的特殊小区和所述用于激活辅小区的命令指示的辅小区对于所述用户设备的波束发射方向相同。
在一些可能的实施方式中,处理模块1202,还被配置为确定所述用于激活辅小区的命令指示的辅小区是未知辅小区,根据所述TRS执行所述用于激活辅小区的命令指示的辅小区的同步处理过程。
在一些可能的实施方式中,处理模块1202,还被配置为确定所述用于激活辅小区的命令指示的辅小区是未知辅小区,基于SSB执行对所述未知辅小区的检测,根据检测结果上报波束级测量结果。
在一些可能的实施方式中,所述第一配置信息还用于配置所述TRS与一个波束构成QCL关系。
在一些可能的实施方式中,所述一个波束为最优的波束级测量结果对应的波束。
在一些可能的实施方式中,收发模块1201,还被配置为接收网络设备发送的第二配置信息,所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL关系。
在一些可能的实施方式中,收发模块1201,还被配置为向所述网络设备上报CSI。
当该通信装置为用户设备102时,其结构还可如图13所示。
参照图13,装置1300可以包括以下一个或多个组件:处理组件1302,存储器1304, 电力组件1306,多媒体组件1308,音频组件1310,输入/输出(I/O)的接口1312,传感器组件1314,以及通信组件1316。
处理组件1302通常控制装置1300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1302可以包括一个或多个处理器1320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1302可以包括一个或多个模块,便于处理组件1302和其他组件之间的交互。例如,处理组件1302可以包括多媒体模块,以方便多媒体组件1308和处理组件1302之间的交互。
存储器1304被配置为存储各种类型的数据以支持在设备1300的操作。这些数据的示例包括用于在装置1300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件1306为装置1300的各种组件提供电力。电力组件1306可以包括电源管理系统,一个或多个电源,及其他与为装置1300生成、管理和分配电力相关联的组件。
多媒体组件1308包括在所述装置1300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1308包括一个前置摄像头和/或后置摄像头。当设备1300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1310被配置为输出和/或输入音频信号。例如,音频组件1310包括一个麦克风(MIC),当装置1300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1304或经由通信组件1316发送。在一些实施例中,音频组件1310还包括一个扬声器,用于输出音频信号。
I/O接口1312为处理组件1302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1314包括一个或多个传感器,用于为装置1300提供各个方面的状态评估。例如,传感器组件1314可以检测到设备1300的打开/关闭状态,组件的相对定位,例如所述组件为装置1300的显示器和小键盘,传感器组件1314还可以检测装置1300或装置1300一个组件的位置改变,用户与装置1300接触的存在或不存在,装置1300方位或加速/减速和装置1300的温度变化。传感器组件1314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1316被配置为便于装置1300和其他设备之间有线或无线方式的通信。装置1300可以接入基于通信标准的无线网络,如WiFi,4G或5G,或它们的组合。在一个示例性实施例中,通信组件1316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1304,上述指令可由装置1300的处理器1320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该通信装置可具备上述方法实施例中的网络设备101的功能,并用于执行上述实施例提供的由网络设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图14所示的通信装置1400可作为上述方法实施例所涉及的网络设备101,并执行上述一种方法实施例中由网络设备101执行的步骤。
所述通信装置1400包括收发模块1401。
收发模块1401被配置为向用户设备发送第一配置信息,所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活;还被配置向所述用户设备发送用于激活辅小区的命令和用于激活所述TRS的传输配置指示TCI的信息。
在一些可能的实施方式中,所述第一配置信息还用于配置下行物理信道的TCI与所述TRS的TCI相同。
在一些可能的实施方式中,所述第一配置信息还用于配置所述TRS的TCI与同步信号块SSB构成QCL关系,所述SSB为特殊小区的SSB或者为已激活辅小区使用的SSB,所述特殊小区包括主小区和主辅小区,所述已激活辅小区为所述用于激活辅小区的命令指示的辅小区所属的辅小区组中的已激活辅小区。
在一些可能的实施方式中,所述用户设备的特殊小区和所述命令指示的辅小区是准共站址的;或者,所述用户设备的特殊小区和所述命令指示的辅小区对于所述用户设备的波束发射方向相同。
在一些可能的实施方式中,所述TRS用于执行所述用于激活辅小区的命令指示的辅小区的同步处理过程。
在一些可能的实施方式中,收发模块1401还被配置为向所述用户设备发送激活辅小区命令,接收波束级测量结果。
在一些可能的实施方式中,第一配置信息还用于配置所述TRS与一个波束构成QCL关系。
在一些可能的实施方式中,所述一个波束为最优的波束级测量结果对应的波束。
在一些可能的实施方式中,收发模块1401还被配置为向所述用户设备发送第二配置信息,所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL关系。
在一些可能的实施方式中,收发模块1401还被配置为接收用户设备上报的CSI。
当该通信装置为网络设备时,其结构还可如图15所示。以网络设备101为基站为例说明通信装置的结构。如图15所示,装置1500包括存储器1501、处理器1502、收发组件1503、电源组件1506。其中,存储器1501与处理器1502耦合,可用于保存通信装置1500实现各功 能所必要的程序和数据。该处理器1502被配置为支持通信装置1500执行上述方法中相应的功能,此功能可通过调用存储器1501存储的程序实现。收发组件1503可以是无线收发器,可用于支持通信装置1500通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件1503也可被称为收发单元或通信单元,收发组件1503可包括射频组件1504以及一个或多个天线1505,其中,射频组件1504可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线1505具体可用于进行射频信号的辐射和接收。
当通信装置1500需要发送数据时,处理器1502可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1500时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1502,处理器1502将基带信号转换为数据并对该数据进行处理。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
通过TRS进行辅小区的激活,能够增强辅小区的激活效果,缩短辅小区的激活时延。

Claims (26)

  1. 一种激活辅小区的方法,由用户设备执行,所述方法包括:
    接收网络设备发送的第一配置信息,所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活;
    接收网络设备发送的用于激活辅小区的命令和用于激活所述TRS的传输配置指示TCI的信息;
    根据所述TRS执行与所述用于激活辅小区的命令对应的激活流程。
  2. 如权利要求1所述的方法,其中,所述第一配置信息还用于配置下行物理信道的TCI与所述TRS的TCI相同。
  3. 如权利要求1或2所述的方法,其中,所述第一配置信息还用于配置所述TRS的TCI与同步信号块SSB构成QCL关系,所述SSB为特殊小区的SSB或者为已激活辅小区使用的SSB,所述特殊小区包括主小区和主辅小区,所述已激活辅小区为所述用于激活辅小区的命令指示的辅小区所属的辅小区组中的已激活辅小区。
  4. 如权利要求3所述的方法,其中,
    所述用户设备的特殊小区和所述用于激活辅小区的命令指示的辅小区是准共站址的;
    或者,所述用户设备的特殊小区和所述用于激活辅小区的命令指示的辅小区对于所述用户设备的波束发射方向相同。
  5. 如权利要求3所述的方法,其中,所述根据所述TRS执行与所述用于激活辅小区的命令对应的激活流程,包括:
    确定所述用于激活辅小区的命令指示的辅小区是未知辅小区,根据所述TRS执行所述用于激活辅小区的命令指示的辅小区的同步处理过程。
  6. 如权利要求1或2所述的方法,其中,所述根据所述TRS执行与所述用于激活辅小区的命令对应的激活流程,包括:
    确定所述用于激活辅小区的命令指示的辅小区是未知辅小区,基于SSB执行对所述未知辅小区的检测,根据检测结果上报波束级测量结果。
  7. 如权利要求6所述的方法,其中,所述第一配置信息还用于配置所述TRS与一个波束构成QCL关系。
  8. 如权利要求7所述的方法,其中,所述一个波束为最优的波束级测量结果对应的波束。
  9. 如权利要求1至8中任一权利要求所述的方法,其中,所述方法还包括:
    接收网络设备发送的第二配置信息,所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL关系。
  10. 如权利要求9所述的方法,其中,所述根据所述TRS执行与所述辅小区激活命令对应的激活流程,包括:
    向所述网络设备上报CSI。
  11. 一种激活辅小区的方法,由网络设备执行,所述方法包括:
    向用户设备发送第一配置信息,所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活;
    向所述用户设备发送用于激活辅小区的命令和用于激活所述TRS的传输配置指示TCI的信息。
  12. 如权利要求11所述的方法,其中,所述第一配置信息还用于配置下行物理信道的TCI与所述TRS的TCI相同。
  13. 如权利要求11或12所述的方法,其中,所述第一配置信息还用于配置所述TRS的TCI与同步信号块SSB构成QCL关系,所述SSB为特殊小区的SSB或者为已激活辅小区使用的SSB,所述特殊小区包括主小区和主辅小区,所述已激活辅小区为所述用于激活辅小区的命令指示的辅小区所属的辅小区组中的已激活辅小区。
  14. 如权利要求13所述的方法,其中,
    所述用户设备的特殊小区和所述用于激活辅小区的命令指示的辅小区是准共站址的;
    或者,所述用户设备的特殊小区和所述用于激活辅小区的命令指示的辅小区对于所述用户设备的波束发射方向相同。
  15. 如权利要求13所述的方法,其中,所述TRS用于执行所述用于激活辅小区的命令指示的辅小区的同步处理过程。
  16. 如权利要求11或12所述的方法,其中,所述方法还包括:
    向所述用户设备发送激活辅小区命令,接收波束级测量结果。
  17. 如权利要求16所述的方法,其中,所述第一配置信息还用于配置所述TRS与一个波束构成QCL关系。
  18. 如权利要求17所述的方法,其中,所述一个波束为最优的波束级测量结果对应的波束。
  19. 如权利要求11至18中任一权利要求所述的方法,其中,所述方法还包括:
    向所述用户设备发送第二配置信息,所述第二配置信息用于配置用于信道状态信息CSI上报的资源,所述用于CSI上报的资源与所述TRS构成QCL关系。
  20. 如权利要求19所述的方法,其中,所述方法还包括:
    接收用户设备上报的CSI。
  21. 一种激活辅小区的装置,被配置于用户设备,所述装置包括:
    收发模块,被配置为接收网络设备发送的第一配置信息,所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活;还被配置为接收网络设备发送的用于激活辅小区的命令和用于激活所述TRS的传输配置指示TCI的信息。
  22. 一种激活辅小区的装置,被配置于网络设备,所述装置包括:
    收发模块,被配置为向用户设备发送第一配置信息,所述第一配置信息用于配置跟踪参考信号TRS,所述TRS用于辅小区激活;还被配置为向所述用户设备发送用于激活辅小区的命令和用于激活所述TRS的传输配置指示TCI的信息。
  23. 一种电子设备,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-10中任一项所述的方法。
  24. 一种电子设备,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求11-20中任一项所述的方法。
  25. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-10中任一项所述的方法。
  26. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求11-20中任一项所述的方法。
PCT/CN2022/111284 2022-08-09 2022-08-09 一种激活辅小区的方法、装置、设备以及可读存储介质 WO2024031393A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/111284 WO2024031393A1 (zh) 2022-08-09 2022-08-09 一种激活辅小区的方法、装置、设备以及可读存储介质
CN202280003061.6A CN117859356A (zh) 2022-08-09 2022-08-09 一种激活辅小区的方法、装置、设备以及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111284 WO2024031393A1 (zh) 2022-08-09 2022-08-09 一种激活辅小区的方法、装置、设备以及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024031393A1 true WO2024031393A1 (zh) 2024-02-15

Family

ID=89850061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111284 WO2024031393A1 (zh) 2022-08-09 2022-08-09 一种激活辅小区的方法、装置、设备以及可读存储介质

Country Status (2)

Country Link
CN (1) CN117859356A (zh)
WO (1) WO2024031393A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385078A (zh) * 2018-12-29 2020-07-07 成都华为技术有限公司 一种辅助小区激活的方法和通信装置
CN111866936A (zh) * 2019-04-25 2020-10-30 华为技术有限公司 辅小区激活方法和装置
CN112189354A (zh) * 2019-05-03 2021-01-05 联发科技股份有限公司 新无线电移动通信中具有波束管理的辅小区激活

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385078A (zh) * 2018-12-29 2020-07-07 成都华为技术有限公司 一种辅助小区激活的方法和通信装置
CN111866936A (zh) * 2019-04-25 2020-10-30 华为技术有限公司 辅小区激活方法和装置
CN112189354A (zh) * 2019-05-03 2021-01-05 联发科技股份有限公司 新无线电移动通信中具有波束管理的辅小区激活

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "On low latency Scell activation", 3GPP DRAFT; R1-2009048, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 1 November 2020 (2020-11-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052350976 *
QUALCOMM INCORPORATED: "Efficient activation and deactivation mechanism for SCells", 3GPP DRAFT; R4-2119579, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052061924 *

Also Published As

Publication number Publication date
CN117859356A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2023206424A1 (zh) 一种上行切换的方法、装置及可读存储介质
WO2024031393A1 (zh) 一种激活辅小区的方法、装置、设备以及可读存储介质
WO2024055216A1 (zh) 一种传输配置信息的方法、装置以及可读存储介质
WO2024007228A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2023221130A1 (zh) 一种测量方法、装置、设备及存储介质
WO2024026754A1 (zh) 一种传输测量配置信息的方法、装置、设备以及存储介质
WO2024011459A1 (zh) 一种测量方法、装置、设备以及可读存储介质
WO2024045137A1 (zh) 一种传输配置信息的方法、装置以及可读存储介质
WO2024059977A1 (zh) 一种执行或发送指示信息的方法、装置、设备及存储介质
WO2024016356A1 (zh) 一种测量参考信号的方法、装置及可读存储介质
WO2024020811A1 (zh) 一种传输参考信号测量结果的方法、装置及存储介质
WO2023184254A1 (zh) 一种传输测量配置信息的方法、装置及可读存储介质
WO2024040477A1 (zh) 一种测量方法、确定辅小区的方法、装置、设备以及介质
WO2023115284A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2023201471A1 (zh) 一种传输信号质量阈值信息的方法、装置及可读存储介质
WO2023178698A1 (zh) 一种传输寻呼下行控制信息的方法、装置及存储介质
WO2024026747A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2023216162A1 (zh) 一种获取信息的方法、装置、设备及存储介质
WO2023178696A1 (zh) 一种传输寻呼搜索空间配置信息的方法、装置及存储介质
WO2024016174A1 (zh) 一种传输配置信息的方法、装置、设备以及可读存储介质
WO2023236195A1 (zh) 一种传输时域资源配置信息的方法、装置及可读存储介质
WO2022246613A1 (zh) 一种传输测量间隙组合的方法、装置及介质
WO2023245627A1 (zh) 一种传输配置信息的方法、装置、设备及可读存储介质
WO2023178623A1 (zh) 一种监听唤醒信号的方法、装置及可读存储介质
WO2024031258A1 (zh) 一种接收测量配置信息的方法、装置、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954369

Country of ref document: EP

Kind code of ref document: A1