WO2024031459A1 - 一种传输能力信息的方法、装置以及可读存储介质 - Google Patents

一种传输能力信息的方法、装置以及可读存储介质 Download PDF

Info

Publication number
WO2024031459A1
WO2024031459A1 PCT/CN2022/111540 CN2022111540W WO2024031459A1 WO 2024031459 A1 WO2024031459 A1 WO 2024031459A1 CN 2022111540 W CN2022111540 W CN 2022111540W WO 2024031459 A1 WO2024031459 A1 WO 2024031459A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
capability information
measurement
same time
measurement configuration
Prior art date
Application number
PCT/CN2022/111540
Other languages
English (en)
French (fr)
Inventor
周锐
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/111540 priority Critical patent/WO2024031459A1/zh
Priority to CN202280003036.8A priority patent/CN117882326A/zh
Publication of WO2024031459A1 publication Critical patent/WO2024031459A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a method, device and readable storage medium for transmitting capability information.
  • the FR2 millimeter wave band uses beam forming technology.
  • UE User Equipment
  • the FR2 frequency band uses beam forming technology.
  • An additional receiving beam shaping management technology is introduced to use the best receiving beam for signal processing. reception, which is conducive to achieving greater uplink coverage and better transmission rates.
  • user equipment can implement resource reuse through different beams for physical resources at the same time and frequency. For example, when receiving a signal, the user equipment can adopt the receiving beam scanning method and use multiple beams to achieve better reception angle coverage.
  • user equipment has limited ability to utilize beams at the same time, and the processing capabilities of different user equipment also vary. Therefore, it is necessary to solve the problem of scheduling restrictions caused by different user equipment capabilities.
  • the present disclosure provides a method, device and readable storage medium for transmitting capability information.
  • the present disclosure provides a method for receiving capability information, which is executed by a network device.
  • the method includes:
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment can process at the same time.
  • the second capability information is used to indicate Indicate the second number of receiving links that the user equipment can support at most at the same time;
  • the first measurement configuration information is used to indicate the third independent beam used by the user equipment to perform mobility measurements at the same time. quantity.
  • the network device learns the user equipment's ability to process signals and support the receiving link at the same time based on the capability information reported by the user equipment.
  • Network equipment adaptively performs measurement configuration according to the capabilities of user equipment, determines measurement configuration information that is adapted to the capabilities of user equipment, and improves the rationality of the configuration.
  • determining the first measurement configuration information based on the first capability information and the second capability information includes:
  • the smaller value of the first quantity and the second quantity is determined to be the third quantity.
  • the method further includes:
  • the second measurement configuration information is used to indicate a first measurement duration.
  • the first measurement duration is when the user equipment adopts the third quantity at the same time.
  • determining the second measurement configuration information according to the third quantity includes:
  • the first measurement duration is determined according to the third number and the second measurement duration, and the second measurement duration is the total measurement duration when the user equipment uses a single independent beam to perform mobility measurement at the same time.
  • determining the first measurement duration based on the third number and the second measurement duration includes:
  • the first measurement duration is determined according to the expansion coefficient and the second measurement duration.
  • the method further includes:
  • the method further includes:
  • the present disclosure provides a method for sending capability information, which is executed by user equipment.
  • the method includes:
  • the first capability information is used to indicate the first number of received signals that the user equipment can process at the same time
  • the second capability information is used to indicate The user equipment can support a maximum second number of receiving links at the same time.
  • the user equipment can report to the network equipment its ability to process signals at the same time and its ability to support the receiving link, so that the network equipment can learn the relevant capabilities of the user equipment and facilitate the adaptability of the network equipment according to the capabilities of the user equipment. to perform measurement configuration.
  • the method further includes:
  • the method further includes:
  • the method further includes:
  • Mobility measurement is performed according to the first measurement configuration information and/or the second measurement configuration information.
  • the present disclosure provides an apparatus for receiving capability information, which may be used to perform the steps performed by a network device in the above-mentioned first aspect or any possible design of the first aspect.
  • the network device can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • the device may include a transceiver module and a processing module coupled to each other, wherein the transceiver module may be used to support the communication device to communicate, and the processing module may be used by the communication device to perform processing operations, such as generating The information/message needs to be sent, or the received signal is processed to obtain the information/message.
  • the transceiver module is configured to receive the first capability information and the second capability information sent by the user equipment, where the first capability information is used to indicate that the user equipment can at most The first number of received signals processed, the second capability information is used to indicate the second number of receive links that the user equipment can support at most at the same time;
  • a processing module configured to determine first measurement configuration information according to the first capability information and the second capability information, where the first measurement configuration information is used to instruct the user equipment to perform mobility measurement at the same time.
  • a third number of independent beams A third number of independent beams.
  • the present disclosure provides a device for sending capability information, which may be used to perform the steps performed by user equipment in the above-mentioned second aspect or any possible design of the second aspect.
  • the user equipment can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • the device may include a transceiver module, where the transceiver module may be used to support the communication device to communicate.
  • the transceiver module is configured to send first capability information and second capability information to the network device, where the first capability information is used to indicate that the user equipment can process up to the first number of received signals, and the second capability information is used to indicate the second number of receiving links that the user equipment can support at most at the same time.
  • the present disclosure provides a communication device, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the first aspect or any one of the first aspects. possible designs.
  • the present disclosure provides a communication device, including a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program to implement the second aspect or any one of the second aspects. possible designs.
  • the present disclosure provides a computer-readable storage medium, in which instructions (or computer programs, programs) are stored. When called and executed on a computer, the computer is caused to execute the above-mentioned third step. Any possible design of the aspect or first aspect.
  • the present disclosure provides a computer-readable storage medium in which instructions (or computer programs, programs) are stored, which when called and executed on a computer, cause the computer to execute the above-mentioned Two aspects or any possible design of the second aspect.
  • Figure 1 is a schematic diagram of a wireless communication system architecture provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of receiving beams of user equipment according to an exemplary embodiment
  • Figure 3 is a flow chart of a method for transmitting capability information according to an exemplary embodiment
  • Figure 4 is a flow chart of another method of transmitting capability information according to an exemplary embodiment
  • Figure 5 is a flow chart of a method of receiving capability information according to an exemplary embodiment
  • Figure 6 is a flow chart of another method of receiving capability information according to an exemplary embodiment
  • Figure 7 is a flow chart of another method of receiving capability information according to an exemplary embodiment
  • Figure 8 is a flow chart of a method of sending capability information according to an exemplary embodiment
  • Figure 9 is a block diagram of a device for receiving capability information according to an exemplary embodiment
  • Figure 10 is a block diagram of a communication device according to an exemplary embodiment
  • Figure 11 is a block diagram of a device for sending capability information according to an exemplary embodiment
  • Figure 12 is a block diagram of user equipment according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • a method for transmitting capability information can be applied to a wireless communication system 100 , which may include a user equipment 101 and a network device 102 .
  • the user equipment 101 is configured to support carrier aggregation and can be connected to multiple carrier units of the network device 102, including a primary carrier unit and one or more secondary carrier units.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • WiMAX global Internet microwave access
  • CRAN cloud radio access network
  • 5G fifth generation
  • 5G new wireless (new radio, NR) communication system
  • PLMN public land mobile network
  • the user equipment 101 shown above can be a terminal, an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, a mobile terminal, a wireless communication device, a terminal Agent or terminal device, etc.
  • the user equipment 101 may be equipped with a wireless transceiver function, which can communicate (such as wireless communication) with one or more network devices of one or more communication systems, and accept network services provided by the network devices.
  • the network devices here include but are not Limited to network device 102 shown.
  • the user equipment (UE) 101 can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, or a personal digital assistant.
  • PDA personal digital assistant
  • handheld devices with wireless communication functions computing devices or other processing equipment connected to wireless modems, vehicle-mounted equipment, wearable devices, terminal equipment in future 5G networks or terminal equipment in future evolved PLMN networks, etc. .
  • the network device 102 may be an access network device (or access network site).
  • access network equipment refers to equipment that provides network access functions, such as wireless access network (radio access network, RAN) base stations and so on.
  • the network device 102 may specifically include a base station (BS), or a base station and a wireless resource management device for controlling the base station, etc.
  • the network device 102 may also include relay stations (relay devices), access points, and base stations in future 5G networks, base stations in future evolved PLMN networks, or NR base stations, etc.
  • Network device 102 may be a wearable device or a vehicle-mounted device.
  • the network device 102 may also be a communication chip having a communication module.
  • the network device 102 includes but is not limited to: the next generation base station (gnodeB, gNB) in 5G, the evolved node B (evolved node B, eNB) in the LTE system, the radio network controller (radio network controller, RNC), Node B (NB) in the WCDMA system, wireless controller under the CRAN system, base station controller (BSC), base transceiver station (BTS) in the GSM system or CDMA system, home Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP) or mobile switching center, etc.
  • the next generation base station gNB
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • FIG. 2 is a schematic diagram of a receiving beam of user equipment 101 according to an exemplary embodiment.
  • the user equipment 101 adopts 8 receiving beam scanning methods in the FR2 frequency band to achieve better reception angle coverage.
  • the eight receiving beams are represented by R1, R2,..., R7, and R8 respectively.
  • Each receiving beam covers a range of 15°.
  • the eight receiving beams can cover a range of 120°.
  • the network device 102 does not know the user equipment 101's ability to utilize beams and process signals at the same time, so there may be problems with scheduling restrictions or improper utilization of UE capabilities.
  • FIG. 3 illustrates a method of transmitting capability information according to an exemplary embodiment. As shown in Figure 3, the method includes steps S301 to S302, specifically:
  • Step S301 the user equipment 101 sends first capability information and second capability information to the network device 102.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information is used to indicate the maximum number of received signals that the user equipment 101 can process at the same time. Indicates the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S302 The network device 102 determines first measurement configuration information based on the received first capability information and second capability information.
  • the first measurement configuration information is used to indicate the third independent beam used by the user equipment 101 to perform mobility measurements at the same time. Three quantities.
  • the maximum number of receiving links that the user equipment 101 can support at the same time is related to the performance of the antenna array of the user equipment 101 in forming independent beams at the same time. The more independent beams the user equipment 101 can form at the same time, the more reception links the user equipment 101 can form at the same time, thereby simultaneously receiving signals through the reception links formed at this time.
  • the second capability information is the receiving link capability that the user equipment 101 can support at most at the same time in the radio frequency link. For example, the user equipment 101 can support at most n receiving links at the same time. The user equipment 101 can receive n signals simultaneously using the n receiving links supported at this moment.
  • the number of independent beams that the user equipment 101 can form at the same time corresponds to the number of receiving links, that is, each receiving link at the same time corresponds to an independent beam at that time.
  • the user equipment 101 uses the signal received by the receiving link to process it through the baseband processor.
  • the maximum number of received signals that the user equipment 101 can process at the same time is related to the processing performance of the baseband processor of the user equipment 101 .
  • the first capability information is the received signal capability that the baseband processor of the user equipment 101 can process at most at the same time. For example, the baseband processor of the user equipment 101 can process at most m signals at the same time.
  • m may be greater than, less than, or equal to n due to different performance of the user equipment 101 in beamforming and baseband processing.
  • the first measurement configuration information may be used for mobility measurement of the user equipment 101 to indicate the number of independent beams that the user equipment 101 simultaneously adopts during the mobility measurement process.
  • R1 to R8 are used to represent eight independent beams of the user equipment 101 respectively.
  • the third number corresponds to at least one independent beam among R1 to R8.
  • the user equipment 101 reports its own capability information to the network device 102.
  • the network device 102 learns the user equipment 101's ability to process signals and support the receiving link at the same time based on the capability information reported by the user equipment 101.
  • the network device 102 adaptively performs measurement configuration according to the capabilities of the user equipment 101.
  • FIG. 4 illustrates a method of transmitting capability information according to an exemplary embodiment. As shown in Figure 4, the method includes steps S401 to S403, specifically:
  • Step S401 the user equipment 101 sends first capability information and second capability information to the network device 102.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information is used to indicate the maximum number of received signals that the user equipment 101 can process at the same time. Indicates the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S402 The network device 102 determines first measurement configuration information based on the received first capability information and second capability information.
  • the first measurement configuration information is used to indicate the third independent beam used by the user equipment 101 to perform mobility measurements at the same time. Three quantities.
  • Step S403 The network device 102 sends the first measurement configuration information to the user equipment 101.
  • the first measurement configuration information may be used for mobility measurement of the user equipment 101 to indicate the number of independent beams that the user equipment 101 simultaneously adopts during the mobility measurement process.
  • R1 to R8 are used to represent eight independent beams of the user equipment 101 respectively.
  • the third number corresponds to at least one independent beam among R1 to R8.
  • the user equipment 101 reports its own capability information to the network device 102.
  • the network device 102 learns the user equipment 101's ability to process signals and support receiving links at the same time based on the capability information reported by the user equipment 101.
  • the network device 102 adaptively performs measurement configuration according to the capabilities of the user equipment 101, and delivers the measurement configuration adapted to its capabilities to the user equipment 101.
  • FIG. 5 illustrates a method of transmitting capability information according to an exemplary embodiment. As shown in Figure 5, the method includes steps S501 to S504, specifically:
  • Step S501 the user equipment 101 sends first capability information and second capability information to the network device 102.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information is used to indicate the maximum number of received signals that the user equipment 101 can process at the same time. Indicates the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S502 The network device 102 determines first measurement configuration information based on the received first capability information and second capability information.
  • the first measurement configuration information is used to indicate the third independent beam used by the user equipment 101 to perform mobility measurements at the same time. Three quantities.
  • Step S503 The network device 102 sends the first measurement configuration information to the user equipment 101.
  • Step S504 The user equipment 101 performs mobility measurement according to the received first measurement configuration information.
  • the first measurement configuration information may be used for mobility measurement of the user equipment 101 to indicate the number of independent beams that the user equipment 101 simultaneously adopts during the mobility measurement process.
  • the user equipment 101 can measure the reference signal based on the reference signal (Reference Signal, RS) in combination with the first measurement configuration information.
  • Received power Reference Signal Received Power, RSRP
  • reference signal received quality Reference Signal Received Quality, RSRQ
  • received signal strength indication Receiveived Signal Strength Indication
  • the user equipment 101 measures based on the received neighbor cell reference signal according to the first measurement configuration information, and reports the measurement result to the network device 102.
  • the network device 102 determines whether to switch cells according to the measurement results.
  • the reference signal may be a Synchronization Signal Block (SSB), or the reference signal to be measured may be a downlink channel state information reference signal (Channel-State-Information Reference Signal, CSI-RS). ).
  • SSB Synchronization Signal Block
  • CSI-RS Downlink channel state information reference signal
  • R1 to R8 are used to represent eight independent beams of the user equipment 101 respectively.
  • the third number corresponds to at least one independent beam among R1 to R8.
  • the third number corresponds to the number of independent beams that the user equipment 101 simultaneously adopts during measurement
  • the user equipment 101 receives the reference signal through a third number of independent beams at the same time.
  • the baseband processor of the user equipment 101 simultaneously processes the reference signals received by the third number of independent beams, obtains measurement values such as RSRP values, and reports the measurement results to the network device 102.
  • the user equipment 101 reports its own capability information to the network device 102.
  • the network device 102 learns the user equipment 101's ability to process signals and support receiving links at the same time based on the capability information reported by the user equipment 101.
  • the network device 102 adaptively performs measurement configuration according to the capabilities of the user equipment 101, determines measurement configuration information adapted to the capabilities of the user equipment 101, improves the rationality of the configuration, and helps the user equipment 101 to better complete measurements.
  • FIG. 6 illustrates a method for receiving capability information according to an exemplary embodiment. As shown in Figure 6, the method includes steps S601 to S602. Specifically:
  • Step S601 the network device 102 receives the first capability information and the second capability information sent by the user equipment 101.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information It is used to indicate the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S602 The network device 102 determines first measurement configuration information based on the first capability information and the second capability information.
  • the first measurement configuration information is used to indicate the third number of independent beams used by the user equipment 101 to perform mobility measurements at the same time. .
  • the network device 102 receives the first capability information and the second capability information respectively sent by the user device 101.
  • the network device 102 receives the capability information sent by the user equipment 101, and different bits in the same capability information respectively indicate the first capability information and the second capability information.
  • the capability information includes a first bit indicating the first capability information.
  • the first capability information of the user equipment 101 is reported as 1 bit of information in the capability information.
  • the capability information includes a second bit indicating the second capability information.
  • the second capability information of the user equipment 101 is reported as 1 bit of information in the capability information.
  • the second capability information is related to the performance of the antenna array of the user equipment 101 in forming independent beams at the same time.
  • the second number is n, that is, the user equipment 101 can support n receiving links at the same time.
  • the user equipment 101 may receive signals from the n receive links at the same time.
  • the first capability information is related to the processing performance of the baseband processor of the user equipment 101. For example, if the first number is m, that is, the baseband processor of the user equipment 101 can process at most m received signals at the same time.
  • reception links supported by the user equipment 101 at the same time there is a corresponding relationship between the reception links supported by the user equipment 101 at the same time and the independent beams supported at the same time.
  • each independent beam corresponds to one receiving link, that is, the number of independent beams supported by the user equipment 101 at the same time is equal to the number of receiving links.
  • the second capability information may also indicate the maximum number of independent beams that the user equipment 101 can support at the same time.
  • multiple independent beams correspond to one receiving link, that is, the number of independent beams supported by the user equipment 101 at the same time is greater than the number of receiving links.
  • the third number should conform to the capabilities of the user equipment 101, that is, the user equipment 101 can use the third number of independent beams to form a third number of receiving links to receive signals at the same time; the user equipment 101
  • the baseband processor of 101 is also capable of simultaneously processing signals received by the third number of receive links.
  • the network device 102 learns the capability of the user device 101 to process signals and support the receiving link at the same time based on the capability information reported by the user device 101.
  • the network device 102 adaptively performs measurement configuration according to the capabilities of the user device 101, determines measurement configuration information adapted to the capabilities of the user device 101, and improves the rationality of the configuration.
  • a method of receiving capability information is provided in an embodiment of the present disclosure, and the method is executed by the network device 102.
  • the method includes steps S601 to S602', specifically:
  • Step S601 the network device 102 receives the first capability information and the second capability information sent by the user equipment 101.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information It is used to indicate the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S602' the network device 102 determines the smaller value of the first quantity and the second quantity as the third quantity according to the first quantity indicated by the first capability information and the second quantity indicated by the second capability information, to determine the first measurement.
  • Configuration information the first measurement configuration information is used to indicate the third number of independent beams used by the user equipment 101 to perform mobility measurements at the same time.
  • the second number is n, that is, the user equipment 101 can support n receiving links at the same time. For example, signals are received from the n receive links simultaneously.
  • each receive link corresponds to an independent beam, that is, a single independent beam of the user equipment 101 can form one receive link.
  • the first number is m, that is, the baseband processor of the user equipment 101 can process at most m received signals at the same time.
  • the third number should conform to the capabilities of the user equipment 101, that is, the user equipment 101 can use the third number of independent beams to form a third number of receiving links to receive signals at the same time; the user equipment 101
  • the baseband processor of 101 is also capable of simultaneously processing signals received by the third number of receive links.
  • the third quantity is the capability of the received signals that the user equipment 101 can receive at the same time and that the baseband processor can process at the same time.
  • the user equipment 101 can combine the first measurement configuration information, simultaneously receive reference signals on a third number of independent beams, and measure RSRP, RSRQ or RSSI based on the reference signals. .
  • the reference signal may be SSB, or CSI-RS.
  • R1 to R8 are used to represent eight independent beams of the user equipment 101 respectively.
  • the third number corresponds to at least one independent beam among R1 to R8.
  • the first capability information of the user equipment 101 indicates that the baseband processor of the UE can process up to 3 received signals at the same time; the second capability information indicates that the UE can support up to 2 receiving links at the same time.
  • the network device 102 combines the capabilities of the user equipment 101 to perform measurement configuration for the user equipment 101.
  • the first measurement configuration information may indicate that the user equipment 101 uses two independent beams to perform mobility measurement at the same time.
  • the first capability information of the user equipment 101 indicates that the baseband processor of the UE can process up to 2 received signals at the same time; the second capability information indicates that the UE can support up to 3 receiving links at the same time.
  • the network device 102 combines the capabilities of the user equipment 101 to perform measurement configuration for the user equipment 101.
  • the first measurement configuration information may indicate that the user equipment 101 uses two independent beams to perform mobility measurement at the same time. For example, the user equipment 101 performs measurements on two independent beams in different directions, thereby receiving reference signals in different directions and reducing measurement delay.
  • the first capability information of the user equipment 101 indicates that the baseband processor of the UE can process up to two received signals at the same time; the second capability information indicates that the baseband processor of the UE can support up to one receiving link at the same time.
  • the network device 102 combines the capabilities of the user equipment 101 to perform measurement configuration for the user equipment 101.
  • the first measurement configuration information may indicate that the user equipment 101 uses an independent beam to perform mobility measurement at the same time.
  • the user equipment 101 can determine the best beam by scanning among the eight independent beams R1 to R8, and perform measurements on the best beam.
  • the network device 102 configures the user equipment 101 with a measurement configuration adapted to its capabilities according to the capabilities of the user device 101, so that the user device 101 can effectively utilize its multi-beam capabilities and signal processing capabilities, and improve measurement efficiency.
  • FIG. 7 illustrates a method for receiving capability information according to an exemplary embodiment. As shown in Figure 7, the method includes steps S701 to S703, specifically:
  • Step S701 the network device 102 receives the first capability information and the second capability information sent by the user equipment 101.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information It is used to indicate the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S702 The network device 102 determines first measurement configuration information based on the first capability information and the second capability information.
  • the first measurement configuration information is used to indicate the third number of independent beams used by the user equipment 101 to perform mobility measurements at the same time. .
  • Step S703 The network device 102 determines the second measurement configuration information according to the third number.
  • the second measurement configuration information is used to indicate the first measurement duration.
  • the first measurement duration is when the user equipment 101 uses the third number of independent beams to perform at the same time. The total measurement duration during mobility measurements.
  • the user equipment 101 can combine the first measurement configuration information, simultaneously receive reference signals on a third number of independent beams, and measure RSRP, RSRQ or RSSI based on the reference signals. .
  • the reference signal may be SSB, or CSI-RS.
  • R1 to R8 are used to represent eight independent beams of the user equipment 101 respectively.
  • the third number corresponds to at least one independent beam among R1 to R8.
  • the user equipment 101 performs measurements through a third number of independent beams at the same time, and the duration of the measurement is the first measurement duration.
  • the first capability information of the user equipment 101 indicates that the baseband processor of the UE can process up to 3 received signals at the same time; the second capability information indicates that the UE can support up to 2 receiving links at the same time.
  • the network device 102 combines the capabilities of the user equipment 101 to perform measurement configuration for the user equipment 101.
  • the first measurement configuration information may indicate that the user equipment 101 uses two independent beams to perform mobility measurements at the same time, and the total measurement duration is the first measurement duration.
  • the network device 102 adaptively configures the measurement duration based on the number of independent beams required by the user equipment to perform measurements, which not only ensures effective completion of the measurement, but also minimizes the measurement delay.
  • a method of receiving capability information is provided in an embodiment of the present disclosure, and the method is executed by the network device 102.
  • the method includes steps S701 to S703', specifically:
  • Step S701 the network device 102 receives the first capability information and the second capability information sent by the user equipment 101.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information It is used to indicate the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S702 The network device 102 determines first measurement configuration information based on the first capability information and the second capability information.
  • the first measurement configuration information is used to indicate the third number of independent beams used by the user equipment 101 to perform mobility measurements at the same time. .
  • Step S703' the network device 102 determines the first measurement duration according to the third number and the second measurement duration to determine the second configuration information; wherein the second measurement configuration information is used to indicate the first measurement duration, and the first measurement duration is The total measurement duration when the user equipment 101 uses a third number of independent beams to perform mobility measurements at the same time, and the second measurement duration is the total measurement time when the user equipment 101 uses a single independent beam to perform mobility measurements at the same time.
  • the second measurement duration is configured by the network device 102 for the user equipment 101.
  • the second measurement duration is indicated by the capability information reported by the user equipment 101.
  • the first measurement duration is shorter than the second measurement duration.
  • the user equipment 101 can combine the first measurement configuration information, simultaneously receive reference signals on a third number of independent beams, and measure RSRP, RSRQ or RSSI based on the reference signals. , the measured duration is the first measurement duration.
  • the reference signal may be SSB, or CSI-RS.
  • no uplink and downlink data transmission is performed between the network device 102 and the user equipment 101.
  • the network device 102 combines the capability information of the user equipment 101 to more reasonably configure the number of independent beams used in the measurement process and the measurement duration of the multi-beam measurement for the user equipment 101.
  • a method of receiving capability information is provided in an embodiment of the present disclosure, and the method is executed by the network device 102.
  • the method includes steps S701, S702, S703-1 and S703-2, specifically:
  • Step S701 the network device 102 receives the first capability information and the second capability information sent by the user equipment 101.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information It is used to indicate the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S702 The network device 102 determines first measurement configuration information based on the first capability information and the second capability information.
  • the first measurement configuration information is used to indicate the third number of independent beams used by the user equipment 101 to perform mobility measurements at the same time. .
  • Step S703-1 The network device 102 determines the expansion coefficient according to the third quantity.
  • Step S703-2 Determine the first measurement duration according to the expansion coefficient and the second measurement duration to determine the second configuration information; wherein the second measurement configuration information is used to indicate the first measurement duration, and the first measurement duration is the user equipment 101 The total measurement duration when a third number of independent beams are used to perform mobility measurement at the same time, and the second measurement time is the total measurement time when the user equipment 101 uses a single independent beam to perform mobility measurement at the same time.
  • the second measurement duration is configured by the network device 102 for the user equipment 101.
  • the first measurement duration is shorter than the second measurement duration.
  • the third number is greater than 1.
  • the user equipment 101 can combine the first measurement configuration information, simultaneously receive reference signals on a third number of independent beams, and measure RSRP, RSRQ or RSSI based on the reference signals. .
  • the RS may be SSB, or CSI-RS.
  • the first measurement duration SF*the second measurement duration.
  • R1 to R8 are used to represent eight independent beams of the user equipment 101 respectively.
  • the third number corresponds to p independent beams in R1 to R8.
  • Tm 8*Ts
  • the network device 102 can configure a more reasonable measurement duration based on the capability information of the user device 101, so as to improve the measurement efficiency and effectively reduce the measurement delay based on the capabilities of the user device 101.
  • a method of receiving capability information is provided in an embodiment of the present disclosure, and the method is executed by the network device 102.
  • the method includes steps S701 to S704, specifically:
  • Step S701 the network device 102 receives the first capability information and the second capability information sent by the user equipment 101.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information It is used to indicate the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S702 The network device 102 determines first measurement configuration information based on the first capability information and the second capability information.
  • the first measurement configuration information is used to indicate the third number of independent beams used by the user equipment 101 to perform mobility measurements at the same time. .
  • Step S703 The network device 102 determines the second measurement configuration information according to the third quantity.
  • the second measurement configuration information is used to indicate the first measurement duration.
  • the first measurement duration is when the user equipment 101 uses the third number of independent beams at the same time. Total measurement duration when performing mobility measurements.
  • Step S704 The network device 102 sends the second measurement configuration information to the user equipment.
  • the network device 102 may carry the second measurement configuration information through Radio Resource Control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the network device 102 may carry the second measurement configuration information through downlink control information (DCI).
  • DCI downlink control information
  • the network device 102 may also send the first measurement configuration information to the user equipment 101.
  • the network device 102 sends the first measurement configuration information and the second measurement configuration information respectively.
  • the network device 102 indicates the first measurement configuration information and the second measurement configuration information in the same message.
  • the network device 102 delivers measurement configuration information adapted to its capabilities to the user equipment 101.
  • a method of receiving capability information is provided in an embodiment of the present disclosure, and the method is executed by the network device 102.
  • the method includes steps S601 to S603, specifically:
  • Step S601 the network device 102 receives the first capability information and the second capability information sent by the user equipment 101.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information It is used to indicate the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S602 The network device 102 determines first measurement configuration information based on the first capability information and the second capability information.
  • the first measurement configuration information is used to indicate the third number of independent beams used by the user equipment 101 to perform mobility measurements at the same time. .
  • Step S603 The network device 102 sends the first measurement configuration information to the user equipment 101.
  • the network device 102 may carry the second measurement configuration information through RRC signaling.
  • the network device 102 may carry the second measurement configuration information through DCI.
  • the network device 102 delivers the first measurement configuration information adapted to its capabilities to the user equipment 101, so that the user equipment 101 can make full use of the number of independent beams adapted to its own capabilities for measurement, which is conducive to improving Reduce measurement latency.
  • FIG. 8 illustrates a method of sending capability information according to an exemplary embodiment. As shown in Figure 8, the method includes step S801, specifically:
  • Step S801 the user equipment 101 sends first capability information and second capability information to the network device 102.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information is used to indicate the maximum number of received signals that the user equipment 101 can process at the same time. Indicates the second number of receiving links that the user equipment 101 can support at most at the same time.
  • the second capability information is the maximum receiving link capability that the user equipment 101 can support in the radio frequency link at the same time, and is related to the performance of the antenna array of the user equipment 101 in forming independent beams at the same time.
  • User equipment 101 may simultaneously receive signals on multiple independent beams utilizing multiple supported receive links.
  • the first capability information is the maximum received signal capability that the baseband processor of the user equipment 101 can process at the same time, and is related to the processing performance of the baseband processor of the user equipment 101 .
  • the baseband processor of the user equipment 101 can process multiple received signals obtained at the same time.
  • the first measurement configuration information may be used for mobility measurement of the user equipment 101 to indicate the number of independent beams that the user equipment 101 simultaneously adopts during the mobility measurement process.
  • R1 to R8 are used to represent eight independent beams of the user equipment 101 respectively.
  • the third number corresponds to at least one independent beam among R1 to R8.
  • the user equipment 101 sends the first capability information and the second capability information respectively.
  • the user equipment 101 sends capability information, and different bits in the same capability information respectively indicate the first capability information and the second capability information.
  • the capability information includes a first bit indicating the first capability information.
  • the first capability information of the user equipment 101 is reported as 1 bit of information in the capability information.
  • the capability information includes a second bit indicating the second capability information.
  • the second capability information of the user equipment 101 is reported as 1 bit of information in the capability information.
  • the user equipment 101 can report its ability to process signals at the same time and its ability to support receiving links to the network device 102, so that the network device 102 can learn the relevant capabilities of the user equipment 101, and facilitate the network device 102 to respond to the user's request.
  • the capabilities of the device 101 are adaptively configured for measurement.
  • the embodiment of the present disclosure provides a method for sending capability information, and the method is executed by the user equipment 101.
  • the method includes steps S801 to S802, specifically:
  • Step S801 the user equipment 101 sends first capability information and second capability information to the network device 102.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information is used to indicate the maximum number of received signals that the user equipment 101 can process at the same time. Indicates the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S802 The user equipment 101 receives the first measurement configuration information sent by the network device 102.
  • the first measurement configuration information is used to indicate the third number of independent beams used by the user equipment 101 to perform mobility measurements at the same time.
  • each independent beam corresponds to a receive link, that is, the maximum number of independent beams that the user equipment 101 can support at the same time is equal to the maximum number of receive links that can be supported. Therefore, in this example, the second capability information may also represent the maximum number of independent beams that the user equipment 101 can support at the same time.
  • the user equipment 101 can combine the first measurement configuration information, simultaneously receive reference signals on a third number of independent beams, and measure RSRP, RSRQ or RSSI based on the reference signals. .
  • the reference signal may be SSB, or CSI-RS.
  • R1 to R8 are used to represent eight independent beams of the user equipment 101 respectively.
  • the third number corresponds to at least one independent beam among R1 to R8.
  • the user equipment 101 simultaneously uses a third number of independent beams to perform measurements according to the configuration information issued by the network device 102, making full use of its multi-beam capability and signal processing capability to improve measurement efficiency.
  • the embodiment of the present disclosure provides a method for sending capability information, and the method is executed by the user equipment 101.
  • the method includes steps S801 and S803, specifically:
  • Step S801 the user equipment 101 sends first capability information and second capability information to the network device 102.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information is used to indicate the maximum number of received signals that the user equipment 101 can process at the same time. Indicates the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S803 Receive the second measurement configuration information sent by the network device.
  • the second measurement configuration information is used to indicate the first measurement duration.
  • the first measurement duration is when the user equipment uses a third number of independent beams to perform mobility measurements at the same time. Total measurement time.
  • the user equipment 101 performs measurements through a third number of independent beams at the same time, and the duration of the measurement is the first measurement duration.
  • the first measurement duration is shorter than the second measurement duration.
  • the second measurement duration is the total measurement duration when the user equipment 101 uses a single independent beam to perform mobility measurement at the same time.
  • no uplink and downlink data transmission is performed between the network device 102 and the user equipment 101.
  • the user equipment 101 performs measurements according to the configuration information of the network device 102, so that in a scenario that supports multiple beams, it can reasonably utilize its own capabilities to perform measurements.
  • the embodiment of the present disclosure provides a method for sending capability information, and the method is executed by the user equipment 101.
  • the method includes steps S801 to S804, specifically:
  • Step S801 the user equipment 101 sends first capability information and second capability information to the network device 102.
  • the first capability information is used to indicate the maximum first number of received signals that the user equipment 101 can process at the same time.
  • the second capability information is used to indicate the maximum number of received signals that the user equipment 101 can process at the same time. Indicates the second number of receiving links that the user equipment 101 can support at most at the same time.
  • Step S802 The user equipment 101 receives the first measurement configuration information sent by the network device 102.
  • the first measurement configuration information is used to indicate the third number of independent beams used by the user equipment 101 to perform mobility measurements at the same time.
  • Step S803 Receive the second measurement configuration information sent by the network device.
  • the second measurement configuration information is used to indicate the first measurement duration.
  • the first measurement duration is when the user equipment uses a third number of independent beams to perform mobility measurements at the same time. Total measurement time.
  • Step S804 Perform mobility measurement according to the first measurement configuration information and/or the second measurement configuration information.
  • the user equipment 101 can combine the first measurement configuration information, simultaneously receive reference signals on a third number of independent beams, and measure RSRP, RSRQ or RSSI based on the reference signals. .
  • the reference signal may be SSB, or CSI-RS.
  • the user equipment 101 uses a third number of independent beams to perform measurements at the same time; combined with the second measurement configuration information, the user equipment 101 uses a third number of independent beams at the same time.
  • the measurement duration of the beam measurement is the first measurement duration.
  • the user equipment 101 can effectively utilize its multi-beam capability and signal processing capability according to the measurement configuration information adapted to its own capabilities, improve measurement efficiency, and reduce measurement delay.
  • embodiments of the present disclosure also provide a device for receiving capability information.
  • the device can have the functions of the network device 102 in the above method embodiments, and can be used to perform the functions provided by the above method embodiments. Steps performed by network device 102.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device 900 shown in Figure 9 can serve as the network device 102 involved in the above method embodiment, and perform the steps performed by the network device 102 in the above method embodiment.
  • the communication device 900 may include a transceiver module 901 and a processing module 902 coupled to each other.
  • the transceiver module 901 may be used to support the communication device to communicate.
  • the transceiver module 901 may have a wireless communication function, for example, through a wireless air interface. Communicate wirelessly with other communication devices.
  • the processing module 902 can be used by the communication device to perform processing operations, such as generating information/messages that need to be sent, or processing received signals to obtain information/messages.
  • the transceiver module 901 is configured to receive the first capability information and the second capability information sent by the user equipment.
  • the first capability information is used to indicate the maximum number of receptions that the user equipment can handle at the same time.
  • the first number of signals, the second capability information is used to indicate the second number of receiving links that the user equipment can support at most at the same time;
  • the processing module 902 is configured to determine first measurement configuration information based on the first capability information and the second capability information.
  • the first measurement configuration information is used to indicate the third number of independent beams used by the user equipment to perform mobility measurements at the same time. .
  • the processing module 902 is further configured to determine, based on the first quantity indicated by the first capability information and the second quantity indicated by the second capability information, that the smaller of the first quantity and the second quantity is Third quantity.
  • the processing module 902 is further configured to determine second measurement configuration information according to the third quantity, the second measurement configuration information is used to indicate the first measurement duration, and the first measurement duration is when the user equipment is in The total measurement duration when mobility measurements are performed using the third number of independent beams at the same time.
  • the processing module 902 is further configured to determine the first measurement duration based on the third number and the second measurement duration.
  • the second measurement duration is when the user equipment uses a single independent beam to perform mobility measurements at the same time. The total measured duration.
  • the processing module 902 is further configured to determine the expansion coefficient according to the third quantity; and determine the first measurement duration according to the expansion coefficient and the second measurement duration.
  • the transceiver module 901 is further configured to send the second measurement configuration information to the user equipment.
  • the transceiver module 901 is further configured to send the first measurement configuration information to the user equipment.
  • device 1000 When the communication device is a network device 102, its structure may also be as shown in Figure 10. Taking a base station as an example to illustrate the structure of a communication device.
  • device 1000 includes a memory 1001, a processor 1002, a transceiver component 1003, and a power supply component 1006.
  • the memory 1001 is coupled to the processor 1002 and can be used to store programs and data necessary for the communication device 1000 to implement various functions.
  • the processor 1002 is configured to support the communication device 1000 to perform corresponding functions in the above method, and the functions can be implemented by calling a program stored in the memory 1001 .
  • the transceiver component 1003 may be a wireless transceiver, which may be used to support the communication device 1000 to receive signaling and/or data through a wireless air interface, and to send signaling and/or data.
  • the transceiver component 1003 may also be called a transceiver unit or a communication unit.
  • the transceiver component 1003 may include a radio frequency component 1004 and one or more antennas 1005.
  • the radio frequency component 1004 may be a remote radio unit (RRU). Specifically, It can be used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the one or more antennas 1005 can be specifically used for radiating and receiving radio frequency signals.
  • the processor 1002 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit.
  • the radio frequency unit performs radio frequency processing on the baseband signal and then sends the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1002.
  • the processor 1002 converts the baseband signal into data and processes the data. for processing.
  • embodiments of the present disclosure also provide a device for sending capability information.
  • the device can have the functions of the user equipment 101 in the above method embodiments, and can be used to perform the functions provided by the above method embodiments. Steps performed by user device 101.
  • This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device 1100 shown in Figure 11 can serve as the user equipment 101 involved in the above method embodiment, and perform the steps performed by the user equipment 101 in the above method embodiment.
  • the device 1100 may include a transceiver module 1101, where the transceiver module 1101 may be used to support the communication device to communicate.
  • the transceiver module 1101 When performing the steps implemented by the user equipment 101, the transceiver module 1101 is configured to send first capability information and second capability information to the network device.
  • the first capability information is used to indicate the maximum number of received signals that the user equipment can process at the same time.
  • the first number is used to indicate the second number of receiving links that the user equipment can support at most at the same time.
  • the transceiver module 1101 is further configured to receive first measurement configuration information sent by the network device.
  • the first measurement configuration information is used to indicate the third independent beam used by the user equipment to perform mobility measurements at the same time. Three quantities.
  • the transceiver module 1101 is also configured to receive second measurement configuration information sent by the network device.
  • the second measurement configuration information is used to indicate the first measurement duration.
  • the first measurement duration is the user equipment at the same time.
  • the apparatus further includes a processing module coupled to the transceiver module, and the processing module is configured to perform mobility measurement according to the first measurement configuration information and/or the second measurement configuration information.
  • the device 1200 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the device 1200 may include one or more of the following components: a processing component 1202, a memory 1204, a power supply component 1206, a multimedia component 1208, an audio component 1210, an input/output (I/O) interface 1212, a sensor component 1214, and communications component 1216.
  • Processing component 1202 generally controls the overall operations of device 1200, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1202 may include one or more processors 1220 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 1202 may include one or more modules that facilitate interaction between processing component 1202 and other components. For example, processing component 1202 may include a multimedia module to facilitate interaction between multimedia component 1208 and processing component 1202.
  • Memory 1204 is configured to store various types of data to support operations at device 1200 . Examples of such data include instructions for any application or method operating on device 1200, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 1204 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 1206 provides power to various components of device 1200.
  • Power supply components 1206 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 1200 .
  • Multimedia component 1208 includes a screen that provides an output interface between device 1200 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. A touch sensor can not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • multimedia component 1208 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 1210 is configured to output and/or input audio signals.
  • audio component 1210 includes a microphone (MIC) configured to receive external audio signals when device 1000 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 1204 or sent via communications component 1216 .
  • audio component 1210 also includes a speaker for outputting audio signals.
  • the I/O interface 1212 provides an interface between the processing component 1202 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 1214 includes one or more sensors that provide various aspects of status assessment for device 1200 .
  • the sensor component 1214 can detect the open/closed state of the device 1200, the relative positioning of components, such as the display and keypad of the device 1200, the sensor component 1214 can also detect the position change of the device 1200 or a component of the device 1200, the user The presence or absence of contact with device 1200, device 1200 orientation or acceleration/deceleration and temperature changes of device 1200.
  • Sensor assembly 1214 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1214 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1216 is configured to facilitate wired or wireless communication between device 1200 and other devices.
  • Device 1200 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 1216 receives broadcast signals or broadcast-related information from an external broadcast management system via a broadcast channel.
  • communications component 1216 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1200 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 1204 including instructions, which are executable by the processor 1220 of the device 1200 to complete the above method is also provided.
  • non-transitory computer-readable storage media may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the user equipment reports its own capability information to the network device, and the network device learns the user equipment's ability to process signals and support the receiving link at the same time based on the capability information reported by the user equipment.
  • Network equipment adaptively performs measurement configuration according to the capabilities of user equipment, determines measurement configuration information that is adapted to the capabilities of user equipment, and improves the rationality of the configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种传输能力信息的方法、装置及可读存储介质,所述方法包括:接收用户设备发送的第一能力信息和第二能力信息,所述第一能力信息用于指示所述用户设备在同一时刻最多可处理的接收信号的第一数量,所述第二能力信息用于指示所述用户设备在同一时刻最多可支持的接收链路的第二数量;根据所述第一能力信息和所述第二能力信息,确定第一测量配置信息,所述第一测量配置信息用于指示所述用户设备在同一时刻进行移动性测量采用的独立波束的第三数量。本公开的方法中,网络设备根据用户设备的能力,适应性的进行测量配置,确定与用户设备的能力适配的测量配置信息,提升配置的合理性。

Description

一种传输能力信息的方法、装置以及可读存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种传输能力信息的方法、装置及可读存储介质。
背景技术
在第五代(5G,5Generation)无线通信系统中,FR2毫米波频段采用了波束赋形技术。用户设备(User Equipment,UE)在FR2频段中接收信号时,与在FR1低频段采用全向天线接收的方式不同,额外引入了接收波束的赋形管理技术,以采用最好的接收波束进行信号接收,有利于达到更大的上行覆盖范围和更好的传输速率。
由于波束概念的引入,对于相同时间和频率下的物理资源,用户设备可以通过不同的波束实现资源复用。如在接收信号时,用户设备可采用接收波束扫描的方式,利用多个波束实现更好的接收角度的覆盖。但用户设备在同一时刻利用波束的能力有限,不同用户设备的处理能力也存在差异。因此,需解决用户设备能力不同而产生的调度限制问题。
发明内容
本公开提供了一种传输能力信息的方法、装置及可读存储介质。
第一方面,本公开提供一种接收能力信息的方法,被网络设备执行,所述方法包括:
接收用户设备发送的第一能力信息和第二能力信息,所述第一能力信息用于指示所述用户设备在同一时刻最多可处理的接收信号的第一数量,所述第二能力信息用于指示所述用户设备在同一时刻最多可支持的接收链路的第二数量;
根据所述第一能力信息和所述第二能力信息,确定第一测量配置信息,所述第一测量配置信息用于指示所述用户设备在同一时刻进行移动性测量采用的独立波束的第三数量。
本公开的方法中,网络设备根据用户设备上报的能力信息,获知用户设备在同一时刻处理信号的能力以及支持接收链路的能力。网络设备根据用户设备的能力,适应性的进行测量配置,确定与用户设备的能力适配的测量配置信息,提升配置的合理性。
在一些可能的实施方式中,所述根据所述第一能力信息和所述第二能力信息,确定第一测量配置信息,包括:
根据所述第一能力信息指示的第一数量和所述第二能力信息指示的第二数量,确定所述第一数量和所述第二数量中较小值为所述第三数量。
在一些可能的实施方式中,所述方法还包括:
根据所述第三数量,确定第二测量配置信息,所述第二测量配置信息用于指示第一测量时长,所述第一测量时长为所述用户设备在在同一时刻采用所述第三数量的独立波束执行移动性测量时的总测量时长。
在一些可能的实施方式中,所述根据所述第三数量,确定第二测量配置信息,包括:
根据所述第三数量以及第二测量时长,确定所述第一测量时长,所述第二测量时长为所述用户设备在同一时刻采用单个独立波束执行移动性测量时的总测量时长。
在一些可能的实施方式中,所述根据所述第三数量以及第二测量时长,确定所述第一测量时长,包括:
根据所述第三数量,确定扩展系数;
根据所述扩展系数与所述第二测量时长,确定所述第一测量时长。
在一些可能的实施方式中,所述方法还包括:
向所述用户设备发送所述第二测量配置信息。
在一些可能的实施方式中,所述方法还包括:
向所述用户设备发送所述第一测量配置信息。
第二方面,本公开提供一种发送能力信息的方法,被用户设备执行,所述方法包括:
向网络设备发送第一能力信息和第二能力信息,所述第一能力信息用于指示所述用户设备在同一时刻最多可处理的接收信号的第一数量,所述第二能力信息用于指示所述用户设备在同一时刻最多可支持的接收链路的第二数量。
本公开的方法中,用户设备可向网络设备上报自身在同一时刻处理信号的能力以及支持接收链路的能力,以便于网络设备获知用户设备的相关能力,利于网络设备根据用户设备的能力适应性的进行测量配置。
在一些可能的实施方式中,所述方法还包括:
接收所述网络设备发送的第一测量配置信息,所述第一测量配置信息用于指示所述用户设备在同一时刻进行移动性测量采用的独立波束的第三数量。
在一些可能的实施方式中,所述方法还包括:
接收所述网络设备发送的第二测量配置信息,所述第二测量配置信息用于指示第一测量时长,所述第一测量时长为所述用户设备在同一时刻采用第三数量的独立波束执行移动性测量时的总测量时长。
在一些可能的实施方式中,所述方法还包括:
根据所述第一测量配置信息和/或第二测量配置信息,执行移动性测量。
第三方面,本公开提供一种接收能力信息的装置,该装置可用于执行上述第一方面或第一方面的任一可能的设计中由网络设备执行的步骤。该网络设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第三方面所示装置时,该装置可包括相互耦合的收发模块以及处理模块,其中,收发模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行上述第一方面所述步骤时,收发模块,被配置为接收用户设备发送的第一能力信息和第二能力信息,所述第一能力信息用于指示所述用户设备在同一时刻最多可处理的接收信号的第一数量,所述第二能力信息用于指示所述用户设备在同一时刻最多可支持的接收链路的第二数量;
处理模块,被配置为根据所述第一能力信息和所述第二能力信息,确定第一测量配置信息,所述第一测量配置信息用于指示所述用户设备在同一时刻进行移动性测量采用的独立波束的第三数量。
第四方面,本公开提供一种发送能力信息的装置,该装置可用于执行上述第二方面或第二方面的任一可能的设计中由用户设备执行的步骤。该用户设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
在通过软件模块实现第四方面所示装置时,该装置可包括收发模块,其中,收发模块可用于支持通信装置进行通信。
在执行上述第二方面所述步骤时,收发模块,被配置为向网络设备发送第一能力信息和第二能力信息,所述第一能力信息用于指示所述用户设备在同一时刻最多可处理的接收信号的第一数量,所述第二能力信息用于指示所述用户设备在同一时刻最多可支持的接收链路的第二数量。
第五方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能的设计。
第六方面,本公开提供一种通信装置,包括处理器以及存储器;所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第二方面或第二方面的任意一种可能的设计。
第七方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
第八方面,本公开提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是根据一示例性实施例示出的用户设备的接收波束示意图;
图3是根据一示例性实施例示出的一种传输能力信息的方法的流程图;
图4是根据一示例性实施例示出的另一种传输能力信息的方法的流程图;
图5是根据一示例性实施例示出的一种接收能力信息的方法的流程图;
图6是根据一示例性实施例示出的另一种接收能力信息的方法的流程图;
图7是根据一示例性实施例示出的另一种接收能力信息的方法的流程图;
图8是根据一示例性实施例示出的一种发送能力信息的方法的流程图;
图9是根据一示例性实施例示出的一种接收能力信息的装置的框图;
图10是根据一示例性实施例示出的通信装置的框图;
图11是根据一示例性实施例示出的一种发送能力信息的装置的框图;
图12是根据一示例性实施例示出的用户设备的框图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例提供的一种传输能力信息的方法可应用于无线通信系统100,该无线通信系统可以包括用户设备101和网络设备102。其中,用户设备101被配置为支 持载波聚合,并可连接至网络设备102的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备101可以是终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或终端设备等。该用户设备101可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备进行通信(如无线通信),并接受网络设备提供的网络服务,这里的网络设备包括但不限于图示网络设备102。
其中,用户设备(user equipment,UE)101可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
网络设备102可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备102具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备102还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备102可以是可穿戴设备或车载设备。网络设备102也可以是具有通信模块的通信芯片。
比如,网络设备102包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
图2是根据一示例性实施例示出的用户设备101的接收波束示意图。如图2所示,用户设备101在FR2频段下采用8个接收波束扫描的方式可实现更好的接收角度覆盖。例 如,8个接收波束分别以R1、R2、……、R7、R8表示,每个接收波束覆盖的范围为15°,通过调整不同接收波束接收,8个接收波束可覆盖120°范围。目前,网络设备102未获知用户设备101在同一时刻利用波束的能力以及处理信号的能力,因此可能存在调度限制或者未合理利用UE能力的问题。
本公开实施例中提供了一种传输能力信息的方法。参照图3,图3是根据一示例性实施例示出的一种传输能力信息的方法,如图3所示,该方法包括步骤S301~S302,具体的:
步骤S301,用户设备101向网络设备102发送第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S302,网络设备102根据接收的第一能力信息和第二能力信息,确定第一测量配置信息,第一测量配置信息用于指示用户设备101在同一时刻进行移动性测量采用的独立波束的第三数量。
在一些可能的实施方式中,用户设备101在同一时刻最多可支持的接收链路,与用户设备101的天线阵列在同一时刻形成独立波束的性能相关。用户设备101在同一时刻能够形成的独立波束越多,用户设备101可在同一时刻形成越多的接收链路,从而通过该时刻所形成的接收链路同时接收信号。第二能力信息为用户设备101在射频链路中同一时刻最多可支持的接收链路能力,例如,用户设备101在同一时刻最多可支持n个接收链路。用户设备101可利用该时刻支持的n个接收链路同时接收n个信号。
在一示例中,用户设备101在同一时刻能形成的独立波束数量与接收链路数量一一对应,即在同一时刻的每个接收链路对应于该时刻的一个独立波束。
在一些可能的实施方式中,用户设备101采用接收链路所接收的信号,通过基带处理器处理。
在一些可能的实施方式中,用户设备101在同一时刻最多可处理的接收信号,与用户设备101的基带处理器的处理性能相关。基带处理器的处理性能越强,基带处理器可在同一时刻处理越多的接收信号。第一能力信息为用户设备101的基带处理器在同一时刻最多能处理的接收信号能力,例如,用户设备101的基带处理器在同一时刻最多可处理m个信号。
在一些可能的实施方式中,由于用户设备101在波束形成和基带处理上的不同性能,m可能大于、小于或者等于n。
在一些可能的实施方式中,第一测量配置信息可用于用户设备101的移动性测量,用以指示用户设备101在移动性测量过程中同时采用的独立波束数量。
在一些可能的实施方式中,结合图2所示,采用R1~R8分别表示用户设备101的8个独立波束。第三数量对应于R1~R8中的至少一个独立波束。
本公开实施例中,用户设备101向网络设备102上报自身能力信息,网络设备102根 据用户设备101上报的能力信息,获知用户设备101在同一时刻处理信号的能力以及支持接收链路的能力。网络设备102根据用户设备101的能力,适应性的进行测量配置。
本公开实施例中提供了一种传输能力信息的方法。参照图4,图4是根据一示例性实施例示出的一种传输能力信息的方法,如图4所示,该方法包括步骤S401~S403,具体的:
步骤S401,用户设备101向网络设备102发送第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S402,网络设备102根据接收的第一能力信息和第二能力信息,确定第一测量配置信息,第一测量配置信息用于指示用户设备101在同一时刻进行移动性测量采用的独立波束的第三数量。
步骤S403,网络设备102向用户设备101发送第一测量配置信息。
在一些可能的实施方式中,第一测量配置信息可用于用户设备101的移动性测量,用以指示用户设备101在移动性测量过程中同时采用的独立波束数量。
在一些可能的实施方式中,结合图2所示,采用R1~R8分别表示用户设备101的8个独立波束。第三数量对应于R1~R8中的至少一个独立波束。
本公开实施例中,用户设备101向网络设备102上报自身能力信息,网络设备102根据用户设备101上报的能力信息,获知用户设备101在同一时刻处理信号的能力以及支持接收链路的能力。网络设备102根据用户设备101的能力,适应性的进行测量配置,并向用户设备101下发与其能力适配的测量配置。
本公开实施例中提供了一种传输能力信息的方法。参照图5,图5是根据一示例性实施例示出的一种传输能力信息的方法,如图5所示,该方法包括步骤S501~S504,具体的:
步骤S501,用户设备101向网络设备102发送第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S502,网络设备102根据接收的第一能力信息和第二能力信息,确定第一测量配置信息,第一测量配置信息用于指示用户设备101在同一时刻进行移动性测量采用的独立波束的第三数量。
步骤S503,网络设备102向用户设备101发送第一测量配置信息。
步骤S504,用户设备101根据接收的第一测量配置信息,执行移动性测量。
在一些可能的实施方式中,第一测量配置信息可用于用户设备101的移动性测量,用以指示用户设备101在移动性测量过程中同时采用的独立波束数量。
在一些可能的实施方式中,在移动性测量,例如无线资源管理(Radio Resource Management,RRM)测量中,用户设备101可结合第一测量配置信息,基于参考信号 (Reference Signal,RS)测量参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)或者接收信号强度指示(Received Signal Strength Indication,RSSI)。
在一示例中,用户设备101根据第一测量配置信息基于接收的邻区参考信号测量,并向网络设备102上报测量结果。网络设备102根据测量结果确定是否需切换小区。
在一些可能的实施方式中,参考信号可以是同步信号块(Synchronization Signal Block,SSB),或者,待测量的参考信号可以是下行信道状态信息参考信号(Channel-State-Information Reference Signal,CSI-RS)。
在一些可能的实施方式中,结合图2所示,采用R1~R8分别表示用户设备101的8个独立波束。第三数量对应于R1~R8中的至少一个独立波束。
在一示例中,第三数量对应于用户设备101在测量时同时采用的独立波束数量,
例如,在该时刻用户设备101同时通过第三数量个独立波束接收参考信号。用户设备101的基带处理器同时对该第三个数量个独立波束所接收的参考信号进行处理,获得测量值如RSRP值,并向网络设备102上报测量结果。
本公开实施例中,用户设备101向网络设备102上报自身能力信息,网络设备102根据用户设备101上报的能力信息,获知用户设备101在同一时刻处理信号的能力以及支持接收链路的能力。网络设备102根据用户设备101的能力,适应性的进行测量配置,确定与用户设备101的能力适配的测量配置信息,提升配置的合理性,有利于用户设备101可以更好的完成测量。
本公开实施例中提供了一种接收能力信息的方法,该方法被网络设备102执行。参照图6,图6是根据一示例性实施例示出的一种接收能力信息的方法,如图6示,该方法包括步骤S601~S602,具体的:
步骤S601,网络设备102接收用户设备101发送的第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S602,网络设备102根据第一能力信息和第二能力信息,确定第一测量配置信息,第一测量配置信息用于指示用户设备101在同一时刻进行移动性测量采用的独立波束的第三数量。
在一些可能的实施方式中,网络设备102接收用户设备101分别发送的第一能力信息和第二能力信息。
在一些可能的实施方式中,网络设备102接收用户设备101发送的能力信息,在该同一个能力信息中的不同比特位分别指示第一能力信息和第二能力信息。
在一示例中,能力信息中包含指示第一能力信息的第一比特位。例如,在能力信息中以1比特(bit)信息上报用户设备101的第一能力信息。
在一示例中,能力信息中包含指示第二能力信息的第二比特位。例如,在能力信息中以1比特信息上报用户设备101的第二能力信息。
在一些可能的实施方式中,第二能力信息与用户设备101的天线阵列在同一时刻形成独立波束的性能相关。如第二数量为n,即用户设备101在同一时刻可支持n个接收链路。例如,用户设备101同时可从该n个接收链路接收信号。
在一些可能的实施方式中,第一能力信息与用户设备101的基带处理器的处理性能相关。如第一数量为m,即用户设备101的基带处理器最多可在同一时刻处理m个所接收的信号。
在一些可能的实施方式中,用户设备101在同一时刻支持的接收链路与在同一时刻支持的独立波束存在对应关系。
在一示例中,每个独立波束对应于一个接收链路,即用户设备101在同一时刻支持的独立波束的数量,等于接收链路的数量。本示例中,第二能力信息还可以表示用户设备101在同一时刻最多可支持的独立波束的数量。
在其他方式中,多个独立波束对应于一个接收链路,即用户设备101在同一时刻支持的独立波束的数量,大于接收链路的数量。
在一些可能的实施方式中,第三数量应符合用户设备101的能力,即用户设备101既可以采用该第三数量的独立波束形成第三数量个接收链路,以同时进行信号接收;用户设备101的基带处理器还能够同时处理该第三数量的接收链路所接收的信号。
本公开实施例中,网络设备102根据用户设备101上报的能力信息,获知用户设备101在同一时刻处理信号的能力以及支持接收链路的能力。网络设备102根据用户设备101的能力,适应性的进行测量配置,确定与用户设备101的能力适配的测量配置信息,提升配置的合理性。
本公开实施例中提供了一种接收能力信息的方法,该方法被网络设备102执行。该方法包括步骤S601~S602’,具体的:
步骤S601,网络设备102接收用户设备101发送的第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S602’,网络设备102根据第一能力信息指示的第一数量和第二能力信息指示的第二数量,确定第一数量和第二数量中较小值为第三数量,以确定第一测量配置信息;第一测量配置信息用于指示用户设备101在同一时刻进行移动性测量采用的独立波束的第三数量。
在一些可能的实施方式中,第二数量为n,即用户设备101在同一时刻可支持n个接收链路。例如,同时从该n个接收链路接收信号。
在一示例中,每个接收链路对应于一个独立波束,即用户设备101的单个独立波束可 以形成一个接收链路。
在一些可能的实施方式中,第一数量为m,即用户设备101的基带处理器最多可在同一时刻处理m个所接收的信号。
在一些可能的实施方式中,第三数量应符合用户设备101的能力,即用户设备101既可以采用该第三数量的独立波束形成第三数量个接收链路,以同时进行信号接收;用户设备101的基带处理器还能够同时处理该第三数量的接收链路所接收的信号。
在一些可能的实施方式中,第三数量p满足:p=min{m,n},即p为m和n两者中较小的值。第三数量为用户设备101在同一时刻能够接收的接收信号并且基带处理器能够同时处理的接收信号的能力。
在一些可能的实施方式中,在移动性测量如RRM测量中,用户设备101可结合第一测量配置信息,在第三数量个独立波束上同时接收参考信号,基于参考信号测量RSRP、RSRQ或者RSSI。
在一些可能的实施方式中,参考信号可以是SSB,或者,CSI-RS。
在一些可能的实施方式中,结合图2所示,采用R1~R8分别表示用户设备101的8个独立波束。第三数量对应于R1~R8中的至少一个独立波束。
在一示例中:
用户设备101的第一能力信息指示:在同一时刻UE的基带处理器最多可处理3个接收信号;第二能力信息指示UE在同一时刻最多可支持2个接收链路。
网络设备102结合用户设备101的能力,为用户设备101进行测量配置。其中,第一测量配置信息可指示:用户设备101在同一时刻采用2个独立波束进行移动性测量。
在一示例中:
用户设备101的第一能力信息指示:在同一时刻UE的基带处理器最多可处理2个接收信号;第二能力信息指示UE在同一时刻最多可支持3个接收链路。
网络设备102结合用户设备101的能力,为用户设备101进行测量配置。其中,第一测量配置信息可指示:用户设备101在同一时刻采用2个独立波束进行移动性测量。例如,用户设备101在2个不同方向的独立波束上进行测量,从而在不同方向进行接收参考信号,减少测量时延。
在一示例中:
用户设备101的第一能力信息指示:在同一时刻UE的基带处理器最多可处理2个接收信号;第二能力信息指示在同一时刻最多可支持1个接收链路。
网络设备102结合用户设备101的能力,为用户设备101进行测量配置。其中,第一测量配置信息可指示:用户设备101在同一时刻采用1个独立波束进行移动性测量。
本示例中,结合图2所示,用户设备101可通过在R1~R8的8个独立波束中扫描确定其中最佳波束,并在最佳波束上进行测量。
本公开实施例中,网络设备102根据用户设备101的能力,为用户设备101配置与其 能力适配的测量配置,以便于用户设备101能够有效利用其多波束能力和处理信号的能力,提升测量效率。
本公开实施例中提供了一种接收能力信息的方法,该方法被网络设备102执行。参照图7,图7是根据一示例性实施例示出的一种接收能力信息的方法,如图7所示,该方法包括步骤S701~S703,具体的:
步骤S701,网络设备102接收用户设备101发送的第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S702,网络设备102根据第一能力信息和第二能力信息,确定第一测量配置信息,第一测量配置信息用于指示用户设备101在同一时刻进行移动性测量采用的独立波束的第三数量。
步骤S703,网络设备102根据第三数量,确定第二测量配置信息,第二测量配置信息用于指示第一测量时长,第一测量时长为用户设备101在同一时刻采用第三数量的独立波束执行移动性测量时的总测量时长。
在一些可能的实施方式中,在移动性测量如RRM测量中,用户设备101可结合第一测量配置信息,在第三数量个独立波束上同时接收参考信号,基于参考信号测量RSRP、RSRQ或者RSSI。
在一些可能的实施方式中,参考信号可以是SSB,或者,CSI-RS。
在一些可能的实施方式中,结合图2所示,采用R1~R8分别表示用户设备101的8个独立波束。第三数量对应于R1~R8中的至少一个独立波束。
在一些可能的实施方式中,根据第一测量配置信息和第二测量配置信息,用户设备101在同一时刻通过第三数量的独立波束进行测量,测量持续的时长为第一测量时长。
在一示例中:
用户设备101的第一能力信息指示:在同一时刻UE的基带处理器最多可处理3个接收信号;第二能力信息指示UE在同一时刻最多可支持2个接收链路。
网络设备102结合用户设备101的能力,为用户设备101进行测量配置。其中,第一测量配置信息可指示:用户设备101在同一时刻采用2个独立波束进行移动性测量,测量总时长为第一测量时长。
本公开实施例中,网络设备102结合用户设备执行测量所需采用的独立波束数量,适应性的配置测量时长,既保证有效完成测量,又尽量减少测量时延。
本公开实施例中提供了一种接收能力信息的方法,该方法被网络设备102执行。该方法包括步骤S701~S703’,具体的:
步骤S701,网络设备102接收用户设备101发送的第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S702,网络设备102根据第一能力信息和第二能力信息,确定第一测量配置信息,第一测量配置信息用于指示用户设备101在同一时刻进行移动性测量采用的独立波束的第三数量。
步骤S703’,网络设备102根据第三数量以及第二测量时长,确定第一测量时长,以确定第二配置信息;其中,第二测量配置信息用于指示第一测量时长,第一测量时长为用户设备101在同一时刻采用第三数量的独立波束执行移动性测量时的总测量时长,第二测量时长为用户设备101在同一时刻采用单个独立波束执行移动性测量时的总测量时长。
在一些可能的实施方式中,第二测量时长为网络设备102为用户设备101配置的。
在一些可能的实施方式中,第二测量时长为用户设备101上报的能力信息所指示的。
在一些可能的实施方式中,第一测量时长小于第二测量时长。
在一些可能的实施方式中,在移动性测量如RRM测量中,用户设备101可结合第一测量配置信息,在第三数量个独立波束上同时接收参考信号,基于参考信号测量RSRP、RSRQ或者RSSI,测量的时长为第一测量时长。
在一些可能的实施方式中,参考信号可以是SSB,或者,CSI-RS。
在一些可能的实施方式中,在第一测量时长内,网络设备102与用户设备101之间不会进行上下行数据传输。
本公开实施例中,网络设备102结合用户设备101的能力信息,为用户设备101更合理的配置测量过程中采用的独立波束的数量,以及多波束测量的测量时长。
本公开实施例中提供了一种接收能力信息的方法,该方法被网络设备102执行。该方法包括步骤S701、S702、S703-1及S703-2,具体的:
步骤S701,网络设备102接收用户设备101发送的第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S702,网络设备102根据第一能力信息和第二能力信息,确定第一测量配置信息,第一测量配置信息用于指示用户设备101在同一时刻进行移动性测量采用的独立波束的第三数量。
步骤S703-1,网络设备102根据第三数量,确定扩展系数。
步骤S703-2,根据扩展系数与第二测量时长,确定第一测量时长,以确定第二配置信息;其中,第二测量配置信息用于指示第一测量时长,第一测量时长为用户设备101在同一时刻采用第三数量的独立波束执行移动性测量时的总测量时长,第二测量时长为用户设备101在同一时刻采用单个独立波束执行移动性测量时的总测量时长。
在一些可能的实施方式中,第二测量时长为网络设备102为用户设备101配置的。
在一些可能的实施方式中,第一测量时长小于第二测量时长。
在一些可能的实施方式中,第三数量大于1,当用户设备101可同时在多个独立波束上执行移动测量,相较于在同一时刻仅支持单个独立波束的方式,可有效降低测量时延。
在一些可能的实施方式中,在移动性测量如RRM测量中,用户设备101可结合第一测量配置信息,在第三数量个独立波束上同时接收参考信号,基于参考信号测量RSRP、RSRQ或者RSSI。
在一些可能的实施方式中,RS可以是SSB,或者,CSI-RS。
在一些可能的实施方式中,扩展系数(Scaling Factor,SF)满足:SF=1/p,其中,p为第三数量。第三数量越多,扩展系数越小,所需的第一测量时长越短。
在一些可能的实施方式中,第一测量时长=SF*第二测量时长。
在一示例中:
结合图2所示,采用R1~R8分别表示用户设备101的8个独立波束。第三数量对应于R1~R8中的p个独立波束。
以基于SSB测量为例,在用户设备101在同一时刻仅支持单一的独立波束时,其需要在不同时刻依次扫描8个波束完成测量。8个波束完成SSB测量的时间即第二测量时长Tm为:Tm=8*Ts,其中,Ts为单个独立波束测量SSB的时间。
在网络设备102根据用户设备101的能力配置第三数量(p>1)后,用户设备101在同一时刻可支持p个独立波束进行测量,由此第一测量时长Tm’为:Tm’=Tm/p=8*Ts/p,有效减少总的测量时长。
本公开实施例中,网络设备102结合用户设备101的能力信息可以配置更为合理的测量时长,以结合用户设备101的能力提升测量效率,有效减小测量时延。
本公开实施例中提供了一种接收能力信息的方法,该方法被网络设备102执行。该方法包括步骤S701~S704,具体的:
步骤S701,网络设备102接收用户设备101发送的第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S702,网络设备102根据第一能力信息和第二能力信息,确定第一测量配置信息,第一测量配置信息用于指示用户设备101在同一时刻进行移动性测量采用的独立波束的第三数量。
步骤S703,网络设备102根据第三数量,确定第二测量配置信息,第二测量配置信息用于指示第一测量时长,第一测量时长为用户设备101在在同一时刻采用第三数量的独立波束执行移动性测量时的总测量时长。
步骤S704,网络设备102向用户设备发送第二测量配置信息。
在一些可能的实施方式中,网络设备102可通过无线资源控制(Radio Resource Control,RRC)信令携带第二测量配置信息。
在一些可能的实施方式中,网络设备102可通过下行控制信息(Downlink Control Information,DCI)携带第二测量配置信息。
在一些可能的实施方式中,网络设备102还可向用户设备101发送第一测量配置信息。
在一示例中,网络设备102分别发送第一测量配置信息和第二测量配置信息。
在一示例中,网络设备102在同一消息中指示第一测量配置信息和第二测量配置信息。
本公开实施例中,网络设备102向用户设备101下发与其能力适配的测量配置信息。
本公开实施例中提供了一种接收能力信息的方法,该方法被网络设备102执行。该方法包括步骤S601~S603,具体的:
步骤S601,网络设备102接收用户设备101发送的第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S602,网络设备102根据第一能力信息和第二能力信息,确定第一测量配置信息,第一测量配置信息用于指示用户设备101在同一时刻进行移动性测量采用的独立波束的第三数量。
步骤S603,网络设备102向用户设备101发送第一测量配置信息。
在一些可能的实施方式中,网络设备102可通过RRC信令携带第二测量配置信息。
在一些可能的实施方式中,网络设备102可通过DCI携带第二测量配置信息。
本公开实施例中,网络设备102向用户设备101下发与其能力适配的第一测量配置信息,以便于用户设备101可以充分利用与自身能力适配的独立波束的数量进行测量,有利于提升降低测量时延。
本公开实施例中提供了一种发送能力信息的方法,该方法被用户设备101执行。参照图8,图8是根据一示例性实施例示出的一种发送能力信息的方法,如图8所示,该方法包括步骤S801,具体的:
步骤S801,用户设备101向网络设备102发送第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
在一些可能的实施方式中,第二能力信息为用户设备101在射频链路中同一时刻最多可支持的接收链路能力,与用户设备101的天线阵列在同一时刻形成独立波束的性能相关。用户设备101可利用支持的多个接收链路同时接收多个独立波束上的信号。
在一些可能的实施方式中,第一能力信息为用户设备101的基带处理器在同一时刻最多能处理的接收信号能力,与用户设备101的基带处理器的处理性能相关。用户设备101的基带处理器可对同一时刻获得的多个接收信号进行处理。
在一些可能的实施方式中,第一测量配置信息可用于用户设备101的移动性测量,用以指示用户设备101在移动性测量过程中同时采用的独立波束数量。
在一些可能的实施方式中,结合图2所示,采用R1~R8分别表示用户设备101的8个独立波束。第三数量对应于R1~R8中的至少一个独立波束。
在一些可能的实施方式中,用户设备101分别发送第一能力信息和第二能力信息。
在一些可能的实施方式中,用户设备101发送能力信息,在该同一个能力信息中的不同比特位分别指示第一能力信息和第二能力信息。
在一示例中,能力信息中包含指示第一能力信息的第一比特位。例如,在能力信息中以1比特信息上报用户设备101的第一能力信息。
在一示例中,能力信息中包含指示第二能力信息的第二比特位。例如,在能力信息中以1比特信息上报用户设备101的第二能力信息。
本公开实施例中,用户设备101可向网络设备102上报自身在同一时刻处理信号的能力以及支持接收链路的能力,以便于网络设备102获知用户设备101的相关能力,利于网络设备102根据用户设备101的能力适应性的进行测量配置。
本公开实施例中提供了一种发送能力信息的方法,该方法被用户设备101执行。该方法包括步骤S801~S802,具体的:
步骤S801,用户设备101向网络设备102发送第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S802,用户设备101接收网络设备102发送的第一测量配置信息,第一测量配置信息用于指示用户设备101在同一时刻进行移动性测量采用的独立波束的第三数量。
在一些可能的实施方式中,每个独立波束对应于一个接收链路,即用户设备101在同一时刻最多可支持的独立波束的数量,等于最多可支持的接收链路的数量。因此本示例中,第二能力信息还可以表示用户设备101在同一时刻最多可支持的独立波束的数量。
在一些可能的实施方式中,在移动性测量如RRM测量中,用户设备101可结合第一测量配置信息,在第三数量个独立波束上同时接收参考信号,基于参考信号测量RSRP、RSRQ或者RSSI。
在一些可能的实施方式中,参考信号可以是SSB,或者,CSI-RS。
在一些可能的实施方式中,结合图2所示,采用R1~R8分别表示用户设备101的8个独立波束。第三数量对应于R1~R8中的至少一个独立波束。
本公开实施例中,用户设备101根据网络设备102下发的配置信息,同时利用第三数量个独立波束进行测量,充分利用其多波束能力和处理信号的能力,提升测量效率。
本公开实施例中提供了一种发送能力信息的方法,该方法被用户设备101执行。该方法包括步骤S801和S803,具体的:
步骤S801,用户设备101向网络设备102发送第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S803,接收网络设备发送的第二测量配置信息,第二测量配置信息用于指示第一测量时长,第一测量时长为用户设备在同一时刻采用第三数量的独立波束执行移动性测量时的总测量时长。
在一些可能的实施方式中,根据第一测量配置信息和第二测量配置信息,用户设备101在同一时刻通过第三数量的独立波束进行测量,测量持续的时长为第一测量时长。
在一些可能的实施方式中,第一测量时长小于第二测量时长。第二测量时长为用户设备101在同一时刻采用单个独立波束执行移动性测量时的总测量时长。
在一些可能的实施方式中,在第一测量时长内,网络设备102与用户设备101之间不会进行上下行数据传输。
本公开实施例中,用户设备101根据网络设备102的配置信息执行测量,从而在支持多波束的场景中,能够合理利用自身能力进行测量。
本公开实施例中提供了一种发送能力信息的方法,该方法被用户设备101执行。该方法包括步骤S801~S804,具体的:
步骤S801,用户设备101向网络设备102发送第一能力信息和第二能力信息,第一能力信息用于指示用户设备101在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备101在同一时刻最多可支持的接收链路的第二数量。
步骤S802,用户设备101接收网络设备102发送的第一测量配置信息,第一测量配置信息用于指示用户设备101在同一时刻进行移动性测量采用的独立波束的第三数量。
步骤S803,接收网络设备发送的第二测量配置信息,第二测量配置信息用于指示第一测量时长,第一测量时长为用户设备在同一时刻采用第三数量的独立波束执行移动性测量时的总测量时长。
步骤S804,根据第一测量配置信息和/或第二测量配置信息,执行移动性测量。
在一些可能的实施方式中,在移动性测量如RRM测量中,用户设备101可结合第一测量配置信息,在第三数量个独立波束上同时接收参考信号,基于参考信号测量RSRP、RSRQ或者RSSI。
在一些可能的实施方式中,参考信号可以是SSB,或者,CSI-RS。
在一些可能的实施方式中,结合第一测量配置信息,用户设备101在同一时刻采用第三数量的独立波束进行测量;结合第二测量配置信息,用户设备101在同一时刻采用第三数量的独立波束进行测量的测量时长为第一测量时长。
本公开实施例中,用户设备101根据与自身能力适配的测量配置信息,能够有效利用其多波束能力和处理信号的能力,提升测量效率,减少测量时延。
基于与以上方法实施例相同的构思,本公开实施例还提供一种接收能力信息的装置,该装置可具备上述方法实施例中的网络设备102的功能,并可用于执行上述方法实施例提供的由网络设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图9所示的通信装置900可作为上述方法实施例所涉及的网络设备102,并执行上述方法实施例中由网络设备102执行的步骤。如图9所示,该 通信装置900可包括相互耦合的收发模块901以及处理模块902,其中,收发模块901可用于支持通信装置进行通信,收发模块901可具备无线通信功能,例如能够通过无线空口与其他通信装置进行无线通信。处理模块902可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
在执行由网络设备102实施的步骤时,收发模块901,被配置为接收用户设备发送的第一能力信息和第二能力信息,第一能力信息用于指示用户设备在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备在同一时刻最多可支持的接收链路的第二数量;
处理模块902,被配置为根据第一能力信息和第二能力信息,确定第一测量配置信息,第一测量配置信息用于指示用户设备在同一时刻进行移动性测量采用的独立波束的第三数量。
在一些可能的实施方式中,处理模块902还被配置为,根据第一能力信息指示的第一数量和第二能力信息指示的第二数量,确定第一数量和第二数量中较小值为第三数量。
在一些可能的实施方式中,处理模块902还被配置为,根据第三数量,确定第二测量配置信息,第二测量配置信息用于指示第一测量时长,第一测量时长为用户设备在在同一时刻采用第三数量的独立波束执行移动性测量时的总测量时长。
在一些可能的实施方式中,处理模块902还被配置为,根据第三数量以及第二测量时长,确定第一测量时长,第二测量时长为用户设备在同一时刻采用单个独立波束执行移动性测量时的总测量时长。
在一些可能的实施方式中,处理模块902还被配置为,根据第三数量,确定扩展系数;根据扩展系数与第二测量时长,确定第一测量时长。
在一些可能的实施方式中,收发模块901还被配置为,向用户设备发送第二测量配置信息。
在一些可能的实施方式中,收发模块901还被配置为,向用户设备发送第一测量配置信息。
当该通信装置为网络设备102时,其结构还可如图10所示。以基站为例说明通信装置的结构。如图10所示,装置1000包括存储器1001、处理器1002、收发组件1003、电源组件1006。其中,存储器1001与处理器1002耦合,可用于保存通信装置1000实现各功能所必要的程序和数据。该处理器1002被配置为支持通信装置1000执行上述方法中相应的功能,所述功能可通过调用存储器1001存储的程序实现。收发组件1003可以是无线收发器,可用于支持通信装置1000通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件1003也可被称为收发单元或通信单元,收发组件1003可包括射频组件1004以及一个或多个天线1005,其中,射频组件1004可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线1005具体可用于进行射频信号的辐射和接收。
当通信装置1000需要发送数据时,处理器1002可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1000时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1002,处理器1002将基带信号转换为数据并对该数据进行处理。
基于与以上方法实施例相同的构思,本公开实施例还提供一种发送能力信息的装置,该装置可具备上述方法实施例中的用户设备101的功能,并可用于执行上述方法实施例提供的由用户设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图11所示的装置1100可作为上述方法实施例所涉及的用户设备101,并执行上述方法实施例中由用户设备101执行的步骤。如图11所示,该装置1100可包括收发模块1101,其中,收发模块1101可用于支持通信装置进行通信。
在执行由用户设备101实施的步骤时,收发模块1101被配置为,向网络设备发送第一能力信息和第二能力信息,第一能力信息用于指示用户设备在同一时刻最多可处理的接收信号的第一数量,第二能力信息用于指示用户设备在同一时刻最多可支持的接收链路的第二数量。
在一些可能的实施方式中,收发模块1101还被配置为,接收网络设备发送的第一测量配置信息,第一测量配置信息用于指示用户设备在同一时刻进行移动性测量采用的独立波束的第三数量。
在一些可能的实施方式中,收发模块1101还被配置为,接收网络设备发送的第二测量配置信息,第二测量配置信息用于指示第一测量时长,第一测量时长为用户设备在同一时刻采用第三数量的独立波束执行移动性测量时的总测量时长。
在一些可能的实施方式中,装置还包括与收发模块耦合的处理模块,处理模块被配置为,根据第一测量配置信息和/或第二测量配置信息,执行移动性测量。
当该发送能力信息的装置为用户设备101时,其结构还可如图12所示。装置1200可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,装置1200可以包括以下一个或多个组件:处理组件1202,存储器1204,电源组件1206,多媒体组件1208,音频组件1210,输入/输出(I/O)的接口1212,传感器组件1214,以及通信组件1216。
处理组件1202通常控制装置1200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1202可以包括一个或多个处理器1220来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1202可以包括一个或多个模块,便于处理组件1202和其他组件之间的交互。例如,处理组件1202可以包括多媒体 模块,以方便多媒体组件1208和处理组件1202之间的交互。
存储器1204被配置为存储各种类型的数据以支持在设备1200的操作。这些数据的示例包括用于在装置1200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1206为装置1200的各种组件提供电力。电源组件1206可以包括电源管理系统,一个或多个电源,及其他与为装置1200生成、管理和分配电力相关联的组件。
多媒体组件1208包括在装置1200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1208包括一个前置摄像头和/或后置摄像头。当设备1200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1210被配置为输出和/或输入音频信号。例如,音频组件1210包括一个麦克风(MIC),当装置1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1204或经由通信组件1216发送。在一些实施例中,音频组件1210还包括一个扬声器,用于输出音频信号。
I/O接口1212为处理组件1202和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1214包括一个或多个传感器,用于为装置1200提供各个方面的状态评估。例如,传感器组件1214可以检测到设备1200的打开/关闭状态,组件的相对定位,例如组件为装置1200的显示器和小键盘,传感器组件1214还可以检测装置1200或装置1200一个组件的位置改变,用户与装置1200接触的存在或不存在,装置1200方位或加速/减速和装置1200的温度变化。传感器组件1214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1216被配置为便于装置1200和其他设备之间有线或无线方式的通信。装置1200可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例 性实施例中,通信组件1216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件1216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1204,上述指令可由装置1200的处理器1220执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本公开旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
本公开的方法中,用户设备向网络设备上报自身能力信息,网络设备根据用户设备上报的能力信息,获知用户设备在同一时刻处理信号的能力以及支持接收链路的能力。网络设备根据用户设备的能力,适应性的进行测量配置,确定与用户设备的能力适配的测量配置信息,提升配置的合理性。

Claims (17)

  1. 一种接收能力信息的方法,被网络设备执行,所述方法包括:
    接收用户设备发送的第一能力信息和第二能力信息,所述第一能力信息用于指示所述用户设备在同一时刻最多可处理的接收信号的第一数量,所述第二能力信息用于指示所述用户设备在同一时刻最多可支持的接收链路的第二数量;
    根据所述第一能力信息和所述第二能力信息,确定第一测量配置信息,所述第一测量配置信息用于指示所述用户设备在同一时刻进行移动性测量采用的独立波束的第三数量。
  2. 如权利要求1所述的方法,其中,
    所述根据所述第一能力信息和所述第二能力信息,确定第一测量配置信息,包括:
    根据所述第一能力信息指示的第一数量和所述第二能力信息指示的第二数量,确定所述第一数量和所述第二数量中较小值为所述第三数量。
  3. 如权利要求1所述的方法,其中,所述方法还包括:
    根据所述第三数量,确定第二测量配置信息,所述第二测量配置信息用于指示第一测量时长,所述第一测量时长为所述用户设备在在同一时刻采用所述第三数量的独立波束执行移动性测量时的总测量时长。
  4. 如权利要求3所述的方法,其中,
    所述根据所述第三数量,确定第二测量配置信息,包括:
    根据所述第三数量以及第二测量时长,确定所述第一测量时长,所述第二测量时长为所述用户设备在同一时刻采用单个独立波束执行移动性测量时的总测量时长。
  5. 如权利要求4所述的方法,其中,
    所述根据所述第三数量以及第二测量时长,确定所述第一测量时长,包括:
    根据所述第三数量,确定扩展系数;
    根据所述扩展系数与所述第二测量时长,确定所述第一测量时长。
  6. 如权利要求3所述的方法,其中,所述方法还包括:
    向所述用户设备发送所述第二测量配置信息。
  7. 如权利要求1至6任一项所述的方法,其中,所述方法还包括:
    向所述用户设备发送所述第一测量配置信息。
  8. 一种发送能力信息的方法,被用户设备执行,所述方法包括:
    向网络设备发送第一能力信息和第二能力信息,所述第一能力信息用于指示所述用户设备在同一时刻最多可处理的接收信号的第一数量,所述第二能力信息用于指示所述用户设备在同一时刻最多可支持的接收链路的第二数量。
  9. 如权利要求8所述的方法,其中,所述方法还包括:
    接收所述网络设备发送的第一测量配置信息,所述第一测量配置信息用于指示所述用户设备在同一时刻进行移动性测量采用的独立波束的第三数量。
  10. 如权利要求8或9所述的方法,其中,所述方法还包括:
    接收所述网络设备发送的第二测量配置信息,所述第二测量配置信息用于指示第一测量时长,所述第一测量时长为所述用户设备在同一时刻采用第三数量的独立波束执行移动性测量时的总测量时长。
  11. 如权利要求10所述的方法,其中,所述方法还包括:
    根据所述第一测量配置信息和/或第二测量配置信息,执行移动性测量。
  12. 一种接收能力信息的装置,被配置于网络设备,所述装置包括:
    收发模块,用于接收用户设备发送的第一能力信息和第二能力信息,所述第一能力信息用于指示所述用户设备在同一时刻最多可处理的接收信号的第一数量,所述第二能力信息用于指示所述用户设备在同一时刻最多可支持的接收链路的第二数量;
    处理模块,用于根据所述第一能力信息和所述第二能力信息,确定第一测量配置信息,所述第一测量配置信息用于指示所述用户设备在同一时刻进行移动性测量采用的独立波束的第三数量。
  13. 一种发送能力信息的装置,被配置于用户设备,所述装置包括:
    收发模块,用于向网络设备发送第一能力信息和第二能力信息,所述第一能力信息用于指示所述用户设备在同一时刻最多可处理的接收信号的第一数量,所述第二能力信息用于指示所述用户设备在同一时刻最多可支持的接收链路的第二数量。
  14. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-7中任一项所述的方法。
  15. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求8-11中任一项所述的方法。
  16. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-7中任一项所述的方法。
  17. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求8-11中任一项所述的方法。
PCT/CN2022/111540 2022-08-10 2022-08-10 一种传输能力信息的方法、装置以及可读存储介质 WO2024031459A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/111540 WO2024031459A1 (zh) 2022-08-10 2022-08-10 一种传输能力信息的方法、装置以及可读存储介质
CN202280003036.8A CN117882326A (zh) 2022-08-10 2022-08-10 一种传输能力信息的方法、装置以及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111540 WO2024031459A1 (zh) 2022-08-10 2022-08-10 一种传输能力信息的方法、装置以及可读存储介质

Publications (1)

Publication Number Publication Date
WO2024031459A1 true WO2024031459A1 (zh) 2024-02-15

Family

ID=89850288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111540 WO2024031459A1 (zh) 2022-08-10 2022-08-10 一种传输能力信息的方法、装置以及可读存储介质

Country Status (2)

Country Link
CN (1) CN117882326A (zh)
WO (1) WO2024031459A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108633068A (zh) * 2017-03-23 2018-10-09 华为技术有限公司 一种资源配置方法及其装置
US20200128412A1 (en) * 2017-11-17 2020-04-23 Telefonaktiebolaget Lm Ericsson (Publ) User equipment and network node for configuring measurements of cells and beams in a wireless communication system
WO2020215883A1 (zh) * 2019-04-25 2020-10-29 华为技术有限公司 测量上报的方法与装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108633068A (zh) * 2017-03-23 2018-10-09 华为技术有限公司 一种资源配置方法及其装置
US20200128412A1 (en) * 2017-11-17 2020-04-23 Telefonaktiebolaget Lm Ericsson (Publ) User equipment and network node for configuring measurements of cells and beams in a wireless communication system
WO2020215883A1 (zh) * 2019-04-25 2020-10-29 华为技术有限公司 测量上报的方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Initial consideration on UE measurement capabilities", 3GPP DRAFT; R4-1704988 INITIAL CONSIDERATION ON UE MEASUREMENT CAPABILITIES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), 6 May 2017 (2017-05-06), XP051266883 *

Also Published As

Publication number Publication date
CN117882326A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
WO2023201730A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2023151093A1 (zh) 一种传输终端能力的方法、装置及可读存储介质
WO2023050352A1 (zh) 一种发送切换辅助信息的方法、切换方法、装置及介质
WO2024031459A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质
WO2024036571A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2024026633A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质
CN115606225B (zh) 一种测量方法、确定辅小区的方法、装置、设备以及介质
WO2024059977A1 (zh) 一种执行或发送指示信息的方法、装置、设备及存储介质
WO2024007228A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2023225922A1 (zh) 一种传输频段信息的方法、装置及可读存储介质
WO2024026754A1 (zh) 一种传输测量配置信息的方法、装置、设备以及存储介质
WO2024026747A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2023065085A1 (zh) 一种确定非授权上行信道的检测波束的方法、装置及介质
WO2023115284A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2023070279A1 (zh) 一种传输能力指示信息的方法、装置、及可读存储介质
WO2023193197A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2023236116A1 (zh) 一种传输唤醒信号的方法、装置、电子设备及存储介质
WO2024020811A1 (zh) 一种传输参考信号测量结果的方法、装置及存储介质
WO2024011421A1 (zh) 一种传输配置信息的方法、装置以及可读存储介质
WO2023056651A1 (zh) 一种接收或发送测量配置信息的方法、装置、设备及存储介质
WO2023184254A1 (zh) 一种传输测量配置信息的方法、装置及可读存储介质
WO2023097523A1 (zh) 一种小区测量方法、装置及可读存储介质
WO2022246709A1 (zh) 一种传输用户设备能力的方法、装置及存储介质
WO2023178489A1 (zh) 一种传输能力信息的方法、装置及存储介质
WO2023065227A1 (zh) 一种发送和接收辅助信息的方法、装置及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280003036.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954434

Country of ref document: EP

Kind code of ref document: A1