WO2023221044A1 - 一种测量间隙的配置方法、装置及可读存储介质 - Google Patents

一种测量间隙的配置方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2023221044A1
WO2023221044A1 PCT/CN2022/093900 CN2022093900W WO2023221044A1 WO 2023221044 A1 WO2023221044 A1 WO 2023221044A1 CN 2022093900 W CN2022093900 W CN 2022093900W WO 2023221044 A1 WO2023221044 A1 WO 2023221044A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
configuration information
gap
measurement gap
threshold
Prior art date
Application number
PCT/CN2022/093900
Other languages
English (en)
French (fr)
Inventor
陶旭华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/093900 priority Critical patent/WO2023221044A1/zh
Priority to CN202280001769.8A priority patent/CN117426129A/zh
Publication of WO2023221044A1 publication Critical patent/WO2023221044A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a configuration method, device and readable storage medium for measuring gaps.
  • the User Equipment can measure neighboring cells within the measurement gap (Meas Gap). Within the measurement gap, no data transmission of the serving cell is performed. According to different measurement purposes, the network device can configure multiple sets of measurement gaps for the UE.
  • the present disclosure provides a configuration method, device and readable storage medium for measuring gaps.
  • embodiments of the present disclosure provide a measurement gap configuration method, which is executed by user equipment.
  • the method includes:
  • embodiments of the present disclosure provide a measurement gap configuration method, which is executed by a network device.
  • the method includes:
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects.
  • embodiments of the present disclosure provide a communication device that can be used to perform the steps performed by user equipment in the above-mentioned first aspect or any possible design of the first aspect.
  • the user equipment can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • embodiments of the present disclosure provide a communication device that can be used to perform the steps performed by a network device in the above-mentioned second aspect or any possible design of the second aspect.
  • the network device can implement each function in the above methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • an embodiment of the present disclosure provides a communication device, including a processor and a memory, wherein the memory is used to store a computer program; the processor is used to execute the computer program to implement the first aspect or the second aspect. Any of the possible designs on the one hand.
  • an embodiment of the present disclosure provides a communication device, including a processor and a memory, wherein the memory is used to store a computer program; the processor is used to execute the computer program to implement the second aspect or the third aspect. Any of the two possible designs.
  • inventions of the present disclosure provide a computer-readable storage medium.
  • the computer-readable storage medium stores instructions (or computer programs, programs) that, when called and executed on a computer, cause the computer to execute The above first aspect or any possible design of the first aspect.
  • embodiments of the present disclosure provide a computer-readable storage medium in which instructions (or computer programs, programs) are stored. When called and executed on a computer, the computer causes the computer to Implement the above second aspect or any possible design of the second aspect.
  • Figure 1 is a schematic diagram of a wireless communication system architecture provided by an embodiment of the present disclosure
  • Figure 2 is a flowchart illustrating a method for configuring a measurement gap according to an exemplary embodiment
  • Figure 3 is a flowchart illustrating a method for configuring a measurement gap according to an exemplary embodiment
  • Figure 4 is a flowchart illustrating a method for configuring a measurement gap according to an exemplary embodiment
  • Figure 5 is a flowchart illustrating a method for configuring a measurement gap according to an exemplary embodiment
  • Figure 6 is a flowchart illustrating a method for configuring a measurement gap according to an exemplary embodiment
  • Figure 7 is a schematic diagram of a measurement gap configuration according to an exemplary embodiment
  • Figure 8 is a flow chart illustrating a method for configuring a measurement gap according to an exemplary embodiment
  • Figure 9 is a schematic diagram of another measurement gap configuration according to an exemplary embodiment.
  • Figure 10 is a flow chart of another configuration method of measurement gaps according to an exemplary embodiment
  • Figure 11 is a structural diagram of a configuration device for measuring gaps according to an exemplary embodiment
  • Figure 12 is a block diagram of a configuration device for measuring gaps according to an exemplary embodiment
  • Figure 13 is a structural diagram of another configuration device for measuring gaps according to an exemplary embodiment
  • FIG. 14 is a block diagram of another configuration device for measuring a gap according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “in response to” as used herein may be interpreted as "when” or "when” or “in response to determining.”
  • a measurement gap configuration method provided by an embodiment of the present disclosure can be applied to a wireless communication system 100 , which may include a user equipment 101 and a network device 102 .
  • the user equipment 101 is configured to support carrier aggregation, and the user equipment 101 can be connected to multiple carrier units of the network device 102, including a primary carrier unit and one or more secondary carrier units.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • WiMAX global Internet microwave access
  • CRAN cloud radio access network
  • 5G fifth generation
  • 5G new wireless (new radio, NR) communication system
  • PLMN public land mobile network
  • the user equipment 101 shown above can be a user equipment (UE), a terminal, an access terminal, a terminal unit, a terminal station, a mobile station (MS), a remote station, a remote terminal, a mobile terminal ( mobile terminal), wireless communication equipment, terminal agent or user equipment, etc.
  • the user equipment 101 may be equipped with a wireless transceiver function, which can communicate (such as wireless communication) with one or more network devices of one or more communication systems, and accept network services provided by the network devices.
  • the network devices here include but are not Limited to network device 102 shown.
  • the user equipment 101 may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA) device, or a device with Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, user equipment in future 5G networks or user equipment in future evolved PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 102 may be an access network device (or access network site).
  • access network equipment refers to equipment that provides network access functions, such as wireless access network (radio access network, RAN) base stations and so on.
  • the network device 102 may specifically include a base station (BS), or a base station and a wireless resource management device for controlling the base station, etc.
  • the network device 102 may also include relay stations (relay devices), access points, and base stations in future 5G networks, base stations in future evolved PLMN networks, or NR base stations, etc.
  • Network device 102 may be a wearable device or a vehicle-mounted device.
  • the network device 102 may also be a communication chip having a communication module.
  • the network device 102 includes but is not limited to: the next generation base station (gnodeB, gNB) in 5G, the evolved node B (evolved node B, eNB) in the LTE system, the radio network controller (radio network controller, RNC), Node B (NB) in the WCDMA system, wireless controller under the CRAN system, base station controller (BSC), base transceiver station (BTS) in the GSM system or CDMA system, home Base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseband unit, BBU), transmission point (transmitting and receiving point, TRP), transmitting point (transmitting point, TP) or mobile switching center, etc.
  • the next generation base station gNB
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • gNB next generation base station
  • FIG. 2 is a flow chart of a measurement gap configuration method according to an exemplary embodiment. As shown in Figure 2, the method includes steps S201 to S203, specifically:
  • Step S201 the network device 102 sends measurement configuration information to the user equipment 101.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects.
  • Step S202 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects.
  • Step S203 The user equipment 101 measures the measurement object according to the measurement configuration information and the threshold; the threshold is used for measurement gap overhead control.
  • the threshold is used to control the maximum value of the measurement gap overhead, and the user equipment 101 can control the measurement gap overhead to be less than or equal to the threshold to avoid excessive measurement gap overhead.
  • the threshold may be agreed upon by the agreement.
  • the threshold may be determined by the network device 102 .
  • the threshold can be set as a duration, or as a percentage.
  • the network device 102 can configure multiple measurement gap configuration information for different measurement objects for the user equipment 101, and the user equipment 101 can configure the relationship between the multiple measurement gap configuration information and the threshold for measurement gap overhead control. relationship, adaptive measurement, which is beneficial to reducing the overhead of measurement gaps, so as to ensure the continuity of scheduling data of the serving cell and maintain network throughput performance.
  • FIG. 3 is a flow chart of a measurement gap configuration method according to an exemplary embodiment. As shown in Figure 3, the method includes steps S301 to S302, specifically:
  • Step S301 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects.
  • Step S302 The user equipment 101 measures the measurement object according to the measurement configuration information and the threshold; the threshold is used for measurement gap overhead control.
  • the measurement configuration information may be one piece, and the measurement configuration information may contain multiple pieces of measurement gap configuration information.
  • this piece of measurement configuration information may also include: multiple pieces of measurement gap configuration information and thresholds.
  • the measurement object when the user equipment 101 measures a measurement object, the measurement object may correspond to the relevant parameters of a neighboring cell in the same system as the serving cell, or the measurement object may correspond to the parameters of a neighboring cell in a different system from the serving cell. Related parameters.
  • the measurement configuration information may indicate the measurement object (Measurement Object, MO), measurement gap length (Measurement Gap Length, MGL), and measurement gap repetition period (Measurement Gap) corresponding to each measurement gap configuration information.
  • Repetition Period, MGRP Repetition Period
  • each measurement gap configuration information indicates the MO, MGL and MGRP corresponding to this measurement gap. Therefore, each measurement configuration information corresponds to an MO, an MGL, and an MGRP respectively, and thus different measurement configuration information corresponds to different measurement purposes.
  • the measurement configuration information includes measurement configuration information of the first mode (Gap Pattern#1), measurement configuration information of the second mode (Gap Pattern#2), and measurement configuration information of the third mode (Gap Pattern#3) , and the measurement configuration information also indicates:
  • Gap Pattern#1 is used for mobility measurement (MO measurement), with an MGL of 6ms and an MGRP of 20ms.
  • Gap Pattern#2 is used for positioning measurement (Positioning measurement), its MGL is 10ms and MGRP is 80ms.
  • Gap Pattern#3 is used for Multiple SIM measurement (MUSIM measurement), its MGL is 10ms and MGRP is 80ms.
  • the user equipment 101 can perform adaptive measurements based on the relationship between the measurement gap overhead and the threshold based on multiple measurement configuration information.
  • the measurement gap overhead is used to characterize the total overhead of measurement gaps corresponding to the number of measurements to be performed.
  • the user equipment 101 may normally perform measurements according to the plurality of measurement configuration information.
  • the measurement gap overhead corresponds to the total overhead of the multiple measurement gaps.
  • the user equipment 101 may selectively perform measurements in multiple measurement gaps included in the measurement configuration information.
  • the measurement gap corresponds to the total cost of the part of the measurement gap selected to perform measurements.
  • the threshold may be defined by the protocol.
  • the threshold may be determined by the network device 102 .
  • the user equipment 101 after receiving multiple measurement gap configuration information configured by the network device 102, the user equipment 101 can adaptively adjust the measurement gap configuration information according to the relationship between the multiple measurement gap configuration information and the threshold used for measurement gap overhead control. Measurement is performed, which is beneficial to reducing the overhead of measurement gaps, so as to ensure the continuity of scheduling data of the serving cell.
  • FIG. 4 is a flow chart of a measurement gap configuration method according to an exemplary embodiment. As shown in Figure 4, the method includes steps S401 to S403, specifically:
  • Step S401 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects.
  • Step S402 In response to the measurement gap overhead determined according to the measurement configuration information being greater than the threshold, at least one measurement gap in which measurement is not performed is repeatedly determined in the order of setting the measurement gaps among multiple measurement gaps.
  • Step S403 until the measurement gap overhead of the remaining measurement gaps among the multiple measurement gaps is less than or equal to the threshold, perform measurements of the corresponding measurement objects of the remaining measurement gaps.
  • the measurement gap overhead is used to characterize the corresponding number of measurement gaps to be measured. of total expenses.
  • the order in which the measurement gaps are set is, for example, in descending order of the measurement gap length MGL.
  • the multiple measurement gaps are used as measurement gaps for which measurements are to be performed. Therefore, the measurement gap overhead represents the total overhead of the multiple measurement gaps.
  • the measurement gaps for which measurements are to be performed become the remaining measurement gaps. Therefore, the measurement gap overhead represents the total overhead of this remaining partial measurement gap.
  • the corresponding measurement gap overhead is still greater than the threshold until the last measurement gap is left, then the corresponding measurement gap for any measurement gap will not be completed at this time. measurement tasks.
  • the threshold is configured as a percentage.
  • the threshold is configured as 30%, or 40%, or between 30% and 40%.
  • the user equipment 101 can determine the corresponding number of measurement gaps according to the measurement to be performed in the first duration (these measurement gaps are included in the plurality of measurement configuration information).
  • the measurement gap overhead is determined by the ratio of the corresponding measurement gap length MGL sum value in each measurement gap configuration) to the first duration.
  • the first duration is the duration of the maximum MGRP among the measurement gap repetition periods MGRP corresponding to multiple measurement gap configuration information.
  • the ratio can be a percentage value.
  • the corresponding number of measurement gaps to be performed is: after all the measurement gaps involved in the measurement configuration information are compared according to the measurement gap overhead and the threshold in turn, if the result is greater than the threshold, the remaining measurement gaps that need to be measured .
  • the threshold is configured as a duration.
  • the threshold is configured as 30ms.
  • the measurement gap overhead may be determined as: a corresponding number of measurement gaps to be performed in the first duration (these measurement gaps are included in the multiple measurement gap configurations of the multiple measurement configuration information). ) corresponds to the measured gap length MGL and value.
  • the corresponding number of measurement gaps to be performed is: after all the measurement gaps involved in the measurement configuration information are compared according to the measurement gap overhead and the threshold in turn, if the result is greater than the threshold, the remaining measurement gaps that need to be measured .
  • the measurement configuration information includes measurement configuration information in the first mode (Gap Pattern#1), measurement configuration information in the second mode (Gap Pattern#2), and measurement configuration information in the third mode (Gap Pattern#3).
  • the first duration is the duration of the MGRP of Gap Pattern#2 or the MGRP of Gap Pattern#3, which is 80ms.
  • the first duration contains 4 Gap Pattern#1 (Gap#1), 1 Gap Pattern#2 (Gap#2) and 1 Gap Pattern #3 (Gap#3)
  • the measurement configuration information includes Gap Pattern#1, Gap Pattern#2, and Gap Pattern#3.
  • the first duration is the MGRP duration of Gap Pattern#2 or the MGRP duration of Gap Pattern#3, which is 80ms.
  • the threshold is configurable to 30ms.
  • the first duration contains 4 Gap#1, 1 Gap#2 and 1 Gap#3. These three measurements in the first duration
  • the MGL sum value of the gap is: 44ms.
  • the user equipment 101 in a scenario where the measurement gap overhead is greater than a threshold, selectively performs measurements in multiple measurement gaps so as to save measurement gap overhead.
  • FIG. 5 is a flow chart of a measurement gap configuration method according to an exemplary embodiment. As shown in Figure 5, the method includes steps S501 to S502, specifically:
  • Step S501 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects.
  • Step S502 In response to the measurement gap overhead determined according to the measurement configuration information being less than or equal to the threshold, perform measurement of the corresponding measurement object according to the plurality of measurement gap configuration information.
  • the threshold is configured as a percentage.
  • the threshold is configured as 30% or 40%.
  • the threshold is configured as a duration.
  • the user equipment 101 may perform the measurement according to the corresponding number of measurement gaps to be performed in the first duration (these measurement gaps are included in the multiple measurement gap configurations of the multiple measurement configuration information).
  • the ratio of the sum of the measurement gap lengths MGL and the first duration determines the measurement gap overhead, that is, the measurement gap overhead is determined based on the MGL of the measurement gaps that occur in the first duration.
  • the first duration is the duration of the maximum MGRP among the measurement gap repetition periods MGRP corresponding to the multiple measurement gap configuration information.
  • the corresponding number of measurement gaps to be performed is: after all the measurement gaps involved in the measurement configuration information are compared according to the measurement gap overhead and the threshold in turn, if the result is greater than the threshold, the remaining measurement gaps that need to be measured .
  • the measurement of the measurement object corresponding to each measurement gap can be performed separately according to the measurement configuration information.
  • the measurement configuration information includes Gap Pattern#1, Gap Pattern#2 and Gap Pattern#3, then the mobility measurement corresponding to Gap Pattern#1, the positioning measurement corresponding to Gap Pattern#2, and the corresponding positioning measurement corresponding to Gap Pattern#3 can be performed respectively. Doka measurement.
  • the user equipment 101 in a scenario where the measurement gap overhead is less than or equal to the threshold, can normally perform measurements in each measurement gap according to the measurement configuration information.
  • the embodiment of the present disclosure provides a measurement gap configuration method, which is applied to the user equipment 101.
  • the method includes steps S301 to S303:
  • Step S301 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects.
  • Step S302 The user equipment 101 determines, based on multiple measurement gap configuration information, that there are at least two measurement gaps with overlapping time domains;
  • Step S303 Only perform the measurement of the measurement object in one of the at least two measurement gaps, and do not perform the measurement of the measurement object corresponding to the remaining measurement gaps in the at least two measurement gaps.
  • the method includes steps S401 to S404:
  • Step S401 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects.
  • Step S402 In response to the measurement gap overhead determined according to the measurement configuration information being greater than the threshold, it is determined that there are at least two measurement gaps with overlapping time domains based on the plurality of measurement gap configuration information.
  • Step S403 Among at least two measurement gaps, determine at least one measurement gap in which measurement is not performed in the order in which the measurement gaps are set.
  • Step S404 In response to the measurement gap cost of the remaining one of the at least two measurement gaps being less than or equal to the threshold, only perform measurement of the measurement object of the remaining one of the at least two measurement gaps.
  • the method includes steps S501-502:
  • Step S501 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects.
  • Step S502 In response to the measurement gap overhead determined according to the measurement configuration information being less than or equal to the threshold, determine that there are at least two measurement gaps with overlapping time domains based on the plurality of measurement gap configuration information.
  • Step S503 Only perform the measurement of the measurement object in one of the at least two measurement gaps, and do not perform the measurement of the measurement object corresponding to the remaining measurement gaps in the at least two measurement gaps.
  • only one of the measurement gaps may be selected for measurement.
  • the user equipment 101 in response to retaining only one measurement gap with temporal overlap and the one measurement gap overhead is still greater than the threshold, the user equipment 101 may continue to determine not to perform The measured measurement gap. In response to the fact that the measurement gap overhead cannot always be less than or equal to the threshold, the user equipment 101 may choose not to perform neighbor cell measurement this time.
  • At least two measurement gaps with overlapping time domains can be selectively measured, which can not only reduce measurement gap overhead, but also improve collisions between overlapping measurement gaps.
  • the embodiment of the present disclosure provides a measurement gap configuration method, which is applied to the user equipment 101.
  • the method includes steps S301 to S302, wherein the measurement gap configuration information also includes the priority of the measurement gap.
  • a set number of bits in the measurement gap configuration information may indicate the priority of the corresponding measurement gap.
  • the measurement configuration information includes Gap Pattern#1, Gap Pattern#2, and Gap Pattern#3. in:
  • Gap Pattern#1 The priority of Gap Pattern#1 is 000;
  • Gap Pattern#2 The priority of Gap Pattern#2 is 001;
  • Gap Pattern#3 The priority of Gap Pattern#3 is 010;
  • the network device 102 can define the priority of three bits in the priority. For example, when only the last bit is occupied, the priority is higher than when two bits are occupied, and when the last bit is 0, the priority is greater than 1 time priority. At this time, the priorities from high to low are: Gap Pattern#1, Gap Pattern#2 and Gap Pattern#3.
  • the network device 102 can define the priority of three bits in the priority. For example, when two bits are occupied, the priority is the highest, and the priority when the last bit is 1 is greater than the priority when it is 0. At this time, the priorities from high to low are: Gap Pattern#3, Gap Pattern#2 and Gap Pattern#1.
  • the measurement configuration information includes Gap Pattern#1, Gap Pattern#2, Gap Pattern#3, and Gap Pattern#4.
  • Gap Pattern#4 is used for non-terrestrial network measurement (NTN measurement). ). in:
  • Gap Pattern#1 The priority of Gap Pattern#1 is 000;
  • Gap Pattern#2 The priority of Gap Pattern#2 is 001;
  • Gap Pattern#3 The priority of Gap Pattern#3 is 010;
  • Gap Pattern#4 The priority of Gap Pattern#4 is 011;
  • the priority at this time from high to low is: Gap Pattern#1, Gap Pattern #2, Gap Pattern #3 and Gap Pattern #4.
  • the network device 102 when configuring the measurement configuration information, adds the priority of the corresponding measurement gap to each measurement gap configuration information, so that the user equipment 101 can selectively perform measurements according to the priority.
  • FIG. 6 is a flow chart of a measurement gap configuration method according to an exemplary embodiment. As shown in Figure 6, the method includes steps S601 to S603, specifically:
  • Step S601 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects.
  • Step S602 In response to the measurement gap overhead determined according to the measurement configuration information being greater than the threshold, the user equipment 101 repeatedly determines measurement gaps in which measurement is not performed in order of priority from low to high until the measurement gap overhead of the remaining measurement gaps is less than or equal to the threshold.
  • Step S603 Measure the measurement objects of the remaining measurement gaps.
  • the measurement gap configuration information also includes the priority of the measurement gap.
  • the user equipment 101 may successively determine the measurement gaps in which no measurement is performed, such as first determining the measurement gap with the lowest priority in not performing measurements. After each measurement gap in which no measurement is determined, the user equipment 101 determines whether the overhead of the remaining measurement gaps is less than or equal to the threshold, and in response to no, continues to determine the next lowest priority measurement gap in which no measurement is performed. Until the measurement gap overhead of the remaining measurement gaps is less than or equal to the threshold.
  • the user equipment 101 may measure the measurement gap length MGL according to the corresponding number of measurement gaps to be performed in the first duration (these measurement gaps are included in the measurement gap configuration of the plurality of measurement configuration information).
  • the ratio of the sum value to the first duration determines the measurement gap overhead.
  • the first duration is the duration of the maximum MGRP among the measurement gap repetition periods MGRP corresponding to the multiple measurement gap configuration information.
  • the measurement gap overhead is used to characterize the total overhead of the corresponding number of measurement gaps for which measurements are to be performed.
  • the measurement gap overhead corresponds to the total overhead of all measurement gaps.
  • the measurement gap overhead corresponds to the total overhead of the remaining portion of the measurement gaps.
  • Measurement configuration information includes Gap Pattern#1, Gap Pattern#2 and Gap Pattern#3.
  • the first duration is the duration of the MGRP of Gap Pattern#2 or the MGRP of Gap Pattern#3, which is 80ms.
  • the priorities from high to low are: Gap Pattern#1, Gap Pattern#2 and Gap Pattern#3.
  • the measurement configuration information includes Gap Pattern#1, Gap Pattern#2 and Gap Pattern#3.
  • the first duration is the MGRP duration of Gap Pattern#2 or the MGRP duration of Gap Pattern#3, which is 80ms.
  • the priorities from high to low are: Gap Pattern#1, Gap Pattern#2 and Gap Pattern#3.
  • the threshold is configurable to 30ms.
  • the first duration contains 4 Gap#1, 1 Gap#2 and 1 Gap#3. These three measurements in the first duration
  • the MGL sum value of the gap is: 44ms.
  • the measurement gap overhead is greater than the threshold.
  • the user equipment 101 can selectively determine the measurement gaps to be measured in order of priority, so that on the basis of minimizing the measurement gap overhead, the user equipment 101 can complete the measurement in the measurement gap with the highest priority.
  • the measurement is helpful for the network device 102 to achieve accurate scheduling.
  • the embodiment of the present disclosure provides a measurement gap configuration method, which is applied to the user equipment 101.
  • the method includes steps S601 to S603, wherein in step S602, repeatedly determining the measurement gap in which measurement is not performed may include:
  • Step S602-1 determine at least one unit duration; different unit durations included in at least one unit duration have the same duration, each unit duration corresponds to at least two measurement gaps, and each unit duration corresponds to at least two measurement gaps.
  • Step S602-2 According to the sorting of each unit duration, in order of priority from low to high, within each unit duration, from at least two measurement time slots corresponding to each unit duration, determine one individual time slot one after another. The measurement gap in which the measurement is performed is determined, and after each measurement gap in which the measurement is not performed is determined, the measurement gap overhead corresponding to the remaining measurement gap is determined.
  • the user equipment 101 may filter the measurement gaps for which measurements are to be performed in order of priority within the unit duration min (MGRPi). In response to filtering within one unit duration still failing to satisfy that the measurement gap cost is less than or equal to the threshold, filtering may continue within the next unit duration.
  • each unit duration can be regarded as a group, and each group may include a different number of measurement gaps, such as one measurement gap or at least two measurement gaps.
  • unit durations or groups including at least two measurement gaps are sorted in timeline order.
  • a measurement gap in which no measurement is performed is determined each time, and after each measurement gap in which no measurement is performed is determined, the measurement gap overhead corresponding to the remaining measurement gaps is calculated.
  • corresponding measurements for the remaining measurement gaps may be performed.
  • the measurement gap overhead still being greater than the threshold
  • the remaining measurement gaps are calculated. measurement gap overhead, until the measurement gap overhead is less than or equal to the threshold, the measurements corresponding to the remaining measurement gaps at this time are performed.
  • the remaining measurement gaps are specifically the remaining measurement gaps after excluding the measurement gaps in which measurement is not performed among multiple measurement gaps.
  • filtering is performed first in any unit duration or in any group, and then in the next unit duration or next group, until the measurement gap overhead that meets the threshold requirements can be obtained. In response to the fact that the measurement gap overhead requirement cannot be met, this gap measurement may not be performed.
  • the user equipment 101 may determine the measurement gap length corresponding to the corresponding number of measurement gaps to be measured in the first duration (these measurement gaps are included in the measurement gap configuration of multiple measurement configuration information).
  • the ratio of the MGL sum value to the first duration determines the measurement gap overhead.
  • the first duration is the duration of the maximum MGRP among the measurement gap repetition periods MGRP corresponding to multiple measurement gap configuration information.
  • the corresponding number of measurement gaps to be performed is: after all the measurement gaps involved in the measurement configuration information are compared according to the measurement gap overhead and the threshold in turn, if the result is greater than the threshold, the remaining measurement gaps that need to be measured .
  • At least one unit duration is not limited to adjacent unit durations, nor is the order of filtering in at least one unit duration limited.
  • at least one unit time period may include at least two measurement gaps.
  • Measurement configuration information includes Gap Pattern#1, Gap Pattern#2 and Gap Pattern#3.
  • the first duration is the duration of the MGRP of Gap Pattern#2 or the MGRP of Gap Pattern#3, which is 80ms.
  • the priorities from high to low are: Gap Pattern#1, Gap Pattern#2 and Gap Pattern#3.
  • the first duration includes 4 unit durations, namely the first unit duration T1, the second unit duration T2, the third unit duration T3 and the fourth unit duration T4.
  • Each unit duration is the MGRP duration of Gap Pattern#1, which is 20ms.
  • T1 and T4 contain at least two measurement gaps.
  • T1 also containing low-priority measurement gaps, such as Gap Pattern#4, it is determined not to execute Gap Pattern#4 for the second time, and the measurement gap overhead is determined again.
  • Gap Pattern #1 with the highest priority remains in T1, which can be reserved first.
  • T4 perform screening for the next unit duration T4.
  • the measurement gaps in which measurements are not performed can be determined one after another in at least one unit of time according to a certain priority order, so that the measurement gaps to be measured can be retained to the maximum extent while reducing the measurement gap overhead.
  • FIG. 8 is a flow chart of a measurement gap configuration method according to an exemplary embodiment. As shown in Figure 8, the method includes steps S801 to S804, specifically:
  • Step S801 The user equipment 101 receives the measurement configuration information sent by the network device 102.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects.
  • Step S802 In response to the measurement gap overhead determined according to the measurement configuration information being less than or equal to the threshold, determine that there are at least two measurement gaps with overlapping time domains based on the plurality of measurement gap configuration information.
  • Step S803 Determine the measurement gap with the highest priority among at least two measurement gaps.
  • Step S804 Perform measurements corresponding to the measurement gap with the highest priority.
  • the measurement gap configuration information also includes the priority of the measurement gap.
  • the user equipment 101 may determine not to perform measurements in the measurement gaps with low priority in order of priority.
  • the measurement configuration information includes Gap Pattern#1 (Gap#1) and Gap Pattern#4 (Gap#4), and the measurement time domain intervals of Gap Pattern#1 and Gap Pattern#4 overlap.
  • Gap Pattern#1 has a higher priority than Gap Pattern#4.
  • the user equipment 101 can learn that Gap Pattern #1 has a higher priority than Gap Pattern #4 according to the measurement configuration information, so it can perform the measurement of Gap Pattern #1 but not the measurement corresponding to Gap Pattern #4.
  • the user equipment 101 can reasonably determine the measurement behavior to ensure the measurement effect in a scenario where measurement gaps overlap.
  • the embodiment of the present disclosure provides a measurement gap configuration method, which is applied to the user equipment 101.
  • the method includes steps S301 to S302, and also includes:
  • Step S301' the user equipment 101 receives the information indicating the threshold sent by the network device 102.
  • the network device may carry the threshold value in the measurement configuration information.
  • step S301 may be: receiving radio resource control RRC signaling sent by the network device 102, where the RRC signaling includes measurement configuration information.
  • the user equipment 101 can receive the measurement configuration information and the threshold sent by the network device 102 in a setting manner.
  • FIG. 10 is a flow chart of a measurement gap configuration method according to an exemplary embodiment. As shown in Figure 10, the method includes step S1001, specifically:
  • Step S1001 The network device 102 sends measurement configuration information to the user equipment 101.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects.
  • the network device 102 can configure multiple measurement gap configuration information for different measurement objects for the user equipment 101, and the user equipment 101 can configure the relationship between the multiple measurement gap configuration information and the threshold for measurement gap overhead control. relationship, adaptive measurement, which helps reduce the cost of measurement gaps.
  • the embodiment of the present disclosure provides a measurement gap configuration method, which is executed by the network device 102 .
  • the method includes step S1001’:
  • Step S1001' the network device 102 sends radio resource control RRC signaling to the user equipment 101, where the RRC signaling includes measurement configuration information.
  • the measurement configuration information also includes the priority of the measurement gap.
  • the network device 102 may use RRC signaling to send the measurement gap configuration information and priority, so that the user equipment 101 can selectively perform measurements according to the priority of the measurement gap and reduce measurement gap overhead.
  • the embodiment of the present disclosure provides a measurement gap configuration method, which is executed by the network device 102 .
  • the method includes:
  • Step S1000 Determine a threshold, which is used to measure gap overhead control.
  • Step S1001 sending information indicating the threshold and measurement configuration information to the user equipment.
  • the measurement configuration information includes multiple measurement gap configuration information. Different measurement gap configuration information corresponds to different measurement objects.
  • the network device 102 can configure both the determined threshold and the measurement gap configuration information to the user equipment 101, so that the user equipment 101 can make a judgment on the measurement gap overhead based on the measurement gap configuration information and the threshold, which is beneficial to the user equipment 101 Adaptively perform measurements to reduce measurement gap overhead.
  • embodiments of the present disclosure also provide a communication device, which can have the functions of the user equipment 101 in the above method embodiments, and is used to perform the tasks performed by the user equipment 101 provided in the above embodiments.
  • a step of. This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device 1100 shown in Figure 11 can serve as the user equipment 101 involved in the above method embodiment, and perform the steps performed by the user equipment 101 in the above method embodiment.
  • the device 1100 includes a transceiver module 1101 and a processing module 1102 coupled to each other, where the processing module 1102 can be used by the communication device to perform processing operations, such as generating information/messages that need to be sent, or processing received signals to obtain information/messages, transceiver Module 1101 may be used to support a communication device to communicate.
  • the transceiver module 1101 When performing the above steps performed by the user equipment 101, the transceiver module 1101 is used to receive the measurement configuration information sent by the network device 102.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects. ;
  • the processing module 1102 is used to measure the measurement object according to the measurement configuration information and the threshold; where the threshold is used for measurement gap overhead control.
  • Figure 12 is a block diagram of an apparatus 1200 for transmitting user equipment capabilities according to an exemplary embodiment.
  • the device 1200 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the device 1200 may include one or more of the following components: a processing component 1202, a memory 1204, a power component 1206, a multimedia component 1208, an audio component 1210, an input/output (I/O) interface 1212, a sensor component 1214, and communications component 1216.
  • a processing component 1202 a memory 1204, a power component 1206, a multimedia component 1208, an audio component 1210, an input/output (I/O) interface 1212, a sensor component 1214, and communications component 1216.
  • Processing component 1202 generally controls the overall operations of device 1200, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1202 may include one or more processors 1220 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 1202 may include one or more modules that facilitate interaction between processing component 1202 and other components. For example, processing component 1202 may include a multimedia module to facilitate interaction between multimedia component 1208 and processing component 1202.
  • Memory 1204 is configured to store various types of data to support operations at device 1200 . Examples of such data include instructions for any application or method operating on device 1200, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 1204 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power component 1206 provides power to various components of device 1200.
  • Power components 1206 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 1200 .
  • Multimedia component 1208 includes a screen that provides an output interface between the device 1200 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 1208 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 1210 is configured to output and/or input audio signals.
  • audio component 1210 includes a microphone (MIC) configured to receive external audio signals when device 1200 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signals may be further stored in memory 1204 or sent via communications component 1216 .
  • audio component 1210 also includes a speaker for outputting audio signals.
  • the I/O interface 1212 provides an interface between the processing component 1202 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 1214 includes one or more sensors that provide various aspects of status assessment for device 1200 .
  • the sensor component 1214 can detect the open/closed state of the device 1200, the relative positioning of components, such as the display and keypad of the device 1200, and the sensor component 1214 can also detect a change in position of the device 1200 or a component of the device 1200. , the presence or absence of user contact with device 1200 , device 1200 orientation or acceleration/deceleration and temperature changes of device 1200 .
  • Sensor assembly 1214 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 1214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1214 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1216 is configured to facilitate wired or wireless communication between device 1200 and other devices.
  • Device 1200 may access a wireless network based on a communication standard, such as WiFi, 4G or 5G, or a combination thereof.
  • the communication component 1216 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 1216 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 1200 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1204 including instructions, which are executable by the processor 1220 of the device 1200 to complete the above method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • embodiments of the present disclosure also provide a communication device, which can have the functions of the network device 102 in the above method embodiments, and is used to perform the tasks performed by the network device 102 provided in the above embodiments.
  • a step of. This function can be implemented by hardware, or it can be implemented by software or hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device 1300 shown in Figure 13 can serve as the network device 102 involved in the above method embodiment, and perform the steps performed by the network device 102 in the above method embodiment.
  • the device 1300 includes a transceiver module 1301, where the transceiver module 1301 can be used to support the communication device to communicate.
  • the transceiver module 1301 When performing the above steps performed by the network device 102, the transceiver module 1301 is used to send measurement configuration information to the user equipment 101.
  • the measurement configuration information includes multiple measurement gap configuration information, and different measurement gap configuration information corresponds to different measurement objects. .
  • the device 1400 When the communication device is the network device 102, its structure may also be as shown in Figure 14.
  • the device 1400 includes a memory 1401, a processor 1402, a transceiver component 1403, and a power supply component 1406.
  • the memory 1401 is coupled to the processor 1402 and can be used to store programs and data necessary for the communication device 1400 to implement various functions.
  • the processor 1402 is configured to support the communication device 1400 to perform corresponding functions in the above method. This function can be implemented by calling a program stored in the memory 1401 .
  • the transceiver component 1403 may be a wireless transceiver, which may be used to support the communication device 1400 to receive signaling and/or data through a wireless air interface, and to send signaling and/or data.
  • the transceiver component 1403 may also be called a transceiver unit or a communication unit.
  • the transceiver component 1403 may include a radio frequency component 1404 and one or more antennas 1405.
  • the radio frequency component 1404 may be a remote radio unit (RRU). Specifically, It can be used for the transmission of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the one or more antennas 1405 can be specifically used for radiating and receiving radio frequency signals.
  • the processor 1402 can perform baseband processing on the data to be sent, and then output the baseband signal to the radio frequency unit.
  • the radio frequency unit performs radio frequency processing on the baseband signal and then sends the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the radio frequency unit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1402.
  • the processor 1402 converts the baseband signal into data and processes the data. for processing.
  • the user equipment after the user equipment receives multiple measurement gap configuration information configured by the network device, it can adaptively perform measurements based on the relationship between the multiple measurement gap configuration information and the threshold used for measurement gap overhead control. , which is beneficial to reducing the overhead of measurement gaps, so as to ensure the continuity of scheduling data of the serving cell.

Abstract

本公开关于一种测量间隙的配置方法、装置及可读存储介质,所述方法包括:接收网络设备发送的测量配置信息,所述测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象;根据所述测量配置信息和阈值,进行测量对象的测量;其中,所述阈值用于测量间隙开销控制。本公开的方法中,用户设备接收到网络设备所配置的多个测量间隙配置信息后,能够根据多个测量间隙配置信息与用于测量间隙开销控制的阈值之间的关系,适应性的进行测量,从而有利于降低测量间隙的开销,以便于能够保证服务小区调度数据的连续性。

Description

一种测量间隙的配置方法、装置及可读存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种测量间隙的配置方法、装置及可读存储介质。
背景技术
在新空口(New Radio,NR)系统中,用户设备(User Equipment,UE)可在测量间隙(Meas Gap)内对邻区进行测量。在测量间隙内,不进行服务小区的数据传输。根据不同的测量目的,网络设备可为UE配置多套测量间隙。
需解决多套测量间隙的场景中测量间隙占据调度开销过大的问题。
发明内容
本公开提供了一种测量间隙的配置方法、装置及可读存储介质。
第一方面,本公开实施例提供了一种测量间隙的配置方法,由用户设备执行,所述方法包括:
接收网络设备发送的测量配置信息,所述测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象;
根据所述测量配置信息和阈值,进行测量对象的测量;其中,所述阈值用于测量间隙开销控制。
第二方面,本公开实施例提供了一种测量间隙的配置方法,由网络设备执行,所述方法包括:
向用户设备发送测量配置信息,所述测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
第三方面,本公开实施例提供了一种通信装置,该通信装置可用于执行上述第一方面或第一方面的任一可能的设计中由用户设备执行的步骤。该用户设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
第四方面,本公开实施例提供了一种通信装置,该通信装置可用于执行上述第二方面或第二方面的任一可能的设计中由网络设备执行的步骤。该网络设备可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能。
第五方面,本公开实施例提供了一种通信装置,包括处理器以及存储器,其中,所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第一方面或第一方面的任意一种可能的设计。
第六方面,本公开实施例提供了一种通信装置,包括处理器以及存储器,其中,所述存储器用于存储计算机程序;所述处理器用于执行所述计算机程序,以实现第二方面或第 二方面的任意一种可能的设计。
第七方面,本公开实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计。
第八方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令(或称计算机程序、程序),当其在计算机上被调用执行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是本公开实施例提供的一种无线通信系统架构示意图;
图2是根据一示例性实施例示出的一种测量间隙的配置方法的流程图;
图3是根据一示例性实施例示出的一种测量间隙的配置方法的流程图;
图4是根据一示例性实施例示出的一种测量间隙的配置方法的流程图;
图5是根据一示例性实施例示出的一种测量间隙的配置方法的流程图;
图6是根据一示例性实施例示出的一种测量间隙的配置方法的流程图;
图7是根据一示例性实施例示出的一种测量间隙配置的示意图;
图8是根据一示例性实施例示出的一种测量间隙的配置方法的流程图;
图9是根据一示例性实施例示出的另一种测量间隙配置的示意图;
图10是根据一示例性实施例示出的另一种测量间隙的配置方法的流程图;
图11是根据一示例性实施例示出的一种测量间隙的配置装置的结构图;
图12是根据一示例性实施例示出的一种测量间隙的配置装置的框图;
图13是根据一示例性实施例示出的另一种测量间隙的配置装置的结构图;
图14是根据一示例性实施例示出的另一种测量间隙的配置装置的框图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图 时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“响应于”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1所示,本公开实施例提供的一种测量间隙的配置方法可应用于无线通信系统100,该无线通信系统100可以包括用户设备101以及网络设备102。其中,用户设备101被配置为支持载波聚合,用户设备101可连接至网络设备102的多个载波单元,包括一个主载波单元以及一个或多个辅载波单元。
应理解,以上无线通信系统100既可适用于低频场景,也可适用于高频场景。无线通信系统100的应用场景包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for micro wave access,WiMAX)通信系统、云无线接入网络(cloud radio access network,CRAN)系统、未来的第五代(5th-Generation,5G)系统、新无线(new radio,NR)通信系统或未来的演进的公共陆地移动网络(public land mobile network,PLMN)系统等。
以上所示用户设备101可以是用户设备(user equipment,UE)、终端(terminal)、接入终端、终端单元、终端站、移动台(mobile station,MS)、远方站、远程终端、移动终端(mobile terminal)、无线通信设备、终端代理或用户设备等。该用户设备101可具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络设备进行通信(如无线通信),并接受网络设备提供的网络服务,这里的网络设备包括但不限于图示网络设备102。
其中,用户设备101可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的用户设备或者未来演 进的PLMN网络中的用户设备等。
网络设备102可以是接入网设备(或称接入网站点)。其中,接入网设备是指有提供网络接入功能的设备,如无线接入网(radio access network,RAN)基站等等。网络设备102具体可包括基站(base station,BS),或包括基站以及用于控制基站的无线资源管理设备等。该网络设备102还可包括中继站(中继设备)、接入点以及未来5G网络中的基站、未来演进的PLMN网络中的基站或者NR基站等。网络设备102可以是可穿戴设备或车载设备。网络设备102也可以是具有通信模块的通信芯片。
比如,网络设备102包括但不限于:5G中的下一代基站(gnodeB,gNB)、LTE系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、WCDMA系统中的节点B(node B,NB)、CRAN系统下的无线控制器、基站控制器(basestation controller,BSC)、GSM系统或CDMA系统中的基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)或移动交换中心等。
本公开实施例提供了一种测量间隙的配置方法。参照图2,图2是根据一示例性实施例示出的测量间隙的配置方法的流程图,如图2所示,该方法包括步骤S201~S203,具体的:
步骤S201,网络设备102向用户设备101发送测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
步骤S202,用户设备101接收网络设备102发送的测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
步骤S203,用户设备101根据测量配置信息和阈值,进行测量对象的测量;其中,阈值用于测量间隙开销控制。
在一些可能的实施方式中,阈值用以控制测量间隙开销的最大值,用户设备101可控制测量间隙开销小于或等于阈值,以免测量间隙开销过大。
在一些可能的实施方式中,阈值可以是协议约定的。
在一些可能的实施方式中,阈值或者是由网络设备102确定的。
在一些可能的实施方式中,阈值可设置为时长,或者设置为百分比。
本公开实施例中,网络设备102可为用户设备101配置用于不同测量对象的多个测量间隙配置信息,用户设备101能够根据多个测量间隙配置信息与用于测量间隙开销控制的阈值之间的关系,适应性的进行测量,从而有利于降低测量间隙的开销,以便于能够保证服务小区调度数据的连续性,并保持网络吞吐量的性能。
本公开实施例提供了一种测量间隙的配置方法,应用于用户设备101。参照图3,图3是根据一示例性实施例示出的测量间隙的配置方法的流程图,如图3所示,该方法包括步骤S301~S302,具体的:
步骤S301,用户设备101接收网络设备102发送的测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
步骤S302,用户设备101根据测量配置信息和阈值,进行测量对象的测量;其中,阈值用于测量间隙开销控制。
本公开全部实施例中的测量配置信息为多条,其数量与测量间隙配置信息的数量一致。
或者,在一些可能的实施方式中,测量配置信息可以为一条,并且在此条测量配置信息中包含多条测量间隙配置信息。在一些示例中,此条测量配置信息中还可以是包含:多条测量间隙配置信息和阈值。
在一些可能的实施方式中,用户设备101在进行测量对象的测量时,测量对象可能对应于与服务小区同系统的邻区的相关参数,或者测量对象对应于与服务小区异系统的邻区的相关参数。
在一些可能的实施方式中,在测量配置信息中可指示每个测量间隙配置信息对应的测量对象(Measurement Object,MO)、测量间隙长度(Measurement Gap Length,MGL)和测量间隙重复周期(Measurement Gap Repetition Period,MGRP);或者,每个测量间隙配置信息中指示本测量间隙对应的MO、MGL和MGRP。从而每个测量配置信息分别对应于一种MO、一个MGL和一个MGRP,由此不同的测量配置信息对应于不同的测量目的。
在一个示例中,测量配置信息包括第一模式的测量配置信息(Gap Pattern#1)、第二模式的测量配置信息(Gap Pattern#2)和第三模式的测量配置信息(Gap Pattern#3),并且测量配置信息中还指示了:
Gap Pattern#1用于移动性测量(Mobility measurement,MO测量),其MGL为6ms,MGRP为20ms。
Gap Pattern#2用于定位测量(Positioning measurement),其MGL为10ms,MGRP为80ms。
Gap Pattern#3用于多卡测量(Multiple SIM measurement,MUSIM测量),其MGL为10ms,MGRP为80ms。
在一些可能的实施方式中,用户设备101根据多个测量配置信息,可结合测量间隙开销与阈值的关系进行适应的测量。测量间隙开销用于表征对应数量个待执行测量的测量间隙的总开销。
在一示例中,响应于测量间隙开销小于或等于阈值,用户设备101可正常根据多个测量配置信息进行测量。此时,测量间隙开销对应于此多个测量间隙的总开销。
在一示例中,响应于测量间隙开销大于阈值,用户设备101可在测量配置信息中包含的多个测量间隙中有选择性的进行测量。此时,测量间隙对应于经过选择待执行测量的这部分测量间隙的总开销。
在一些可能的实施方式中,阈值可以是由协议定义的。
在一些可能的实施方式中,阈值或者是由网络设备102确定的。
本公开实施例中,用户设备101接收到网络设备102所配置的多个测量间隙配置信息 后,能够根据多个测量间隙配置信息与用于测量间隙开销控制的阈值之间的关系,适应性的进行测量,从而有利于降低测量间隙的开销,以便于能够保证服务小区调度数据的连续性。
本公开实施例提供了一种测量间隙的配置方法,应用于用户设备101。参照图4,图4是根据一示例性实施例示出的测量间隙的配置方法的流程图,如图4所示,该方法包括步骤S401~S403,具体的:
步骤S401,用户设备101接收网络设备102发送的测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
步骤S402,响应于根据测量配置信息确定的测量间隙开销大于阈值,在多个测量间隙中按设定测量间隙的顺序重复确定至少一个不执行测量的测量间隙。
步骤S403,直至多个测量间隙中剩余的测量间隙的测量间隙开销小于或等于阈值,执行剩余的测量间隙的对应的测量对象的测量,测量间隙开销用于表征对应数量个待执行测量的测量间隙的总开销。
在一些可能的实施方式中,设定测量间隙的顺序比如是按测量间隙长度MGL由大到小的顺序。
在一些可能的实施方式中,对于多个测量间隙,即在确定不执行测量的测量间隙之前,此多个测量间隙均作为待执行测量的测量间隙。因此,测量间隙开销表征此多个测量间隙的总开销。
在一些可能的实施方式中,对于剩余的测量间隙,即在确定不执行测量的测量间隙之后,待执行测量的测量间隙变为剩余的这部分测量间隙。因此,测量间隙开销表征此剩余的部分测量间隙的总开销。
在一些可能的实施方式中,响应于在确定不执行测量的测量间隙的过程中,直至剩余最后一个测量间隙时对应的测量间隙开销仍大于阈值,则此时将不能完成任一测量间隙对应的测量任务。
在一些可能的实施方式中,阈值配置为百分比。比如,阈值配置为30%,或者40%,或者30%~40%之间。
在一些可能的实施方式中,在多个测量配置信息中,用户设备101可根据在第一时长中,待执行测量的对应数量个测量间隙(这些测量间隙包含在上述多个测量配置信息的多个测量间隙配置中)对应的测量间隙长度MGL和值与第一时长的比值确定测量间隙开销,第一时长为多个测量间隙配置信息对应的测量间隙重复周期MGRP中的最大MGRP的时长。其中,比值可以是百分比值。此处,待执行测量的对应数量个测量间隙为:测量配置信息中涉及的所有测量间隙在依次根据测量间隙开销和与阈值的比对后,如果结果大于阈值,剩余的需要进行测量的测量间隙。
在一些可能的实施方式中,阈值配置为时长。比如,阈值配置为30ms。
在一些可能的实施方式中,测量间隙开销可对应确定为:在第一时长中,待执行测量 的对应数量个测量间隙(这些测量间隙包含在上述多个测量配置信息的多个测量间隙配置中)对应的测量间隙长度MGL和值。此处,待执行测量的对应数量个测量间隙为:测量配置信息中涉及的所有测量间隙在依次根据测量间隙开销和与阈值的比对后,如果结果大于阈值,剩余的需要进行测量的测量间隙。
在第一个示例中:
测量配置信息包括第一模式的测量配置信息(Gap Pattern#1)、第二模式的测量配置信息(Gap Pattern#2)和第三模式的测量配置信息(Gap Pattern#3)。本示例中,第一时长为Gap Pattern#2的MGRP或Gap Pattern#3的MGRP的时长,即80ms。
如图7所示,结合不同测量配置信息的MGRP,可确定在第一时长中包含4次Gap Pattern#1(Gap#1)、1次Gap Pattern#2(Gap#2)和1次Gap Pattern#3(Gap#3),在第一时长中多个测量间隙的MGL和值为:6×4+10×1+10×1=44(ms)。本示例的测量间隙开销为:(44/80)%=55%。
本示例中,测量间隙开销大于阈值,用户设备101可结合需求或结合优先级确定至少一个不执行测量的测量间隙。如确定不执行Gap Pattern#2和Gap Pattern#3,再次确定测量间隙开销为:(6×4)/80=30%,小于或等于阈值。本示例中,可仅执行Gap Pattern#1的测量。
在第二个示例中:
测量配置信息包括Gap Pattern#1、Gap Pattern#2和Gap Pattern#3,第一时长为Gap Pattern#2的MGRP或Gap Pattern#3的MGRP的时长,即80ms。阈值可配置为30ms。
参考图7或图9,结合不同测量配置信息的MGRP,可确定在第一时长中包含4,Gap#1、1次Gap#2和1次Gap#3,在第一时长中此三个测量间隙的MGL和值(即测量间隙开销)为:44ms。
本示例中,测量间隙开销大于阈值,用户设备101可结合各测量间隙的MGL由大到小的顺序确定至少一个不执行测量的测量间隙。如确定不执行MGL最大的Gap Pattern#2和Gap Pattern#3,再次确定测量间隙开销为6×4=24(ms),小于阈值。本示例中,可仅执行Gap Pattern#1的测量。
本公开实施例中,在测量间隙开销大于阈值的场景中,用户设备101在多个测量间隙中有选择性的进行测量,以便于能够节约测量间隙开销。
本公开实施例提供了一种测量间隙的配置方法,应用于用户设备101。参照图5,图5是根据一示例性实施例示出的测量间隙的配置方法的流程图,如图5所示,该方法包括步骤S501~S502,具体的:
步骤S501,用户设备101接收网络设备102发送的测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
步骤S502,响应于根据测量配置信息确定的测量间隙开销小于或等于阈值,根据多个 测量间隙配置信息执行对应的测量对象的测量。
在一些可能的实施方式中,阈值配置为百分比。比如,阈值配置为30%,或者40%。或者,阈值配置为时长。
在一些可能的实施方式中,用户设备101可根据在第一时长中,待执行测量的对应数量个测量间隙(这些测量间隙包含在上述多个测量配置信息的多个测量间隙配置中)对应的测量间隙长度MGL和值与第一时长的比值确定测量间隙开销,也即根据在第一时长中出现的测量间隙的MGL,确定测量间隙开销。第一时长为多个测量间隙配置信息对应的测量间隙重复周期MGRP中的最大MGRP的时长。此处,待执行测量的对应数量个测量间隙为:测量配置信息中涉及的所有测量间隙在依次根据测量间隙开销和与阈值的比对后,如果结果大于阈值,剩余的需要进行测量的测量间隙。
在一些可能的实施方式中,测量间隙开销小于或等于阈值的场景中,可按照测量配置信息,分别执行每个测量间隙对应的测量对象的测量。比如,测量配置信息包括Gap Pattern#1、Gap Pattern#2和Gap Pattern#3,则可分别执行Gap Pattern#1对应的移动性测量,Gap Pattern#2对应的定位测量,以及Gap Pattern#3对应的多卡测量。
本公开实施例中,在测量间隙开销小于或等于阈值的场景下,用户设备101可按照测量配置信息正常执行各测量间隙的测量。
本公开实施例提供了一种测量间隙的配置方法,应用于用户设备101。
该方法包括步骤S301~S303:
步骤S301,用户设备101接收网络设备102发送的测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
步骤S302,用户设备101根据多个测量间隙配置信息,确定存在时域重叠的至少两个测量间隙;
步骤S303,仅执行至少两个测量间隙中一个测量间隙的测量对象测量,而不执行至少两个测量间隙中剩余测量间隙对应的测量对象的测量。
或者,该方法包括步骤S401~S404:
步骤S401,用户设备101接收网络设备102发送的测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
步骤S402,响应于根据测量配置信息确定的测量间隙开销大于阈值,根据多个测量间隙配置信息,确定存在时域重叠的至少两个测量间隙。
步骤S403、在至少两个测量间隙中,按设定测量间隙的顺序确定至少一个不执行测量的测量间隙。
步骤S404、响应于至少两个测量间隙中剩余的一个所述测量间隙的测量间隙开销小于或等于阈值,仅执行至少两个测量间隙中剩余的一个测量间隙的测量对象的测量。
或者,该方法包括步骤S501~502:
步骤S501,用户设备101接收网络设备102发送的测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
步骤S502,响应于根据测量配置信息确定的测量间隙开销小于或等于阈值,根据多个测量间隙配置信息,确定存在时域重叠的至少两个测量间隙。
步骤S503,仅执行至少两个测量间隙中一个测量间隙的测量对象测量,而不执行至少两个测量间隙中剩余测量间隙对应的测量对象的测量。
在一些可能的实施方式中,当至少两个测量间隙在时域上存在重叠,可仅选择其中的一个测量间隙进行测量。
在一些可能的实施方式中,对于测量间隙开销大于阈值的场景中,响应于在仅保留存在时域重叠的一个测量间隙时,该一个测量间隙开销仍大于阈值,用户设备101可继续确定不执行测量的测量间隙。响应于始终不能达到测量间隙开销小于或等于阈值,则用户设备101可选择不进行此次邻区测量。
本公开实施例中,可对存在时域重叠的至少两个测量间隙进行选择性测量,既可以减少测量间隙开销,还可以改善重叠的测量间隙之间发生碰撞。
本公开实施例提供了一种测量间隙的配置方法,应用于用户设备101。该方法包括步骤S301~S302,其中,测量间隙配置信息中还包括测量间隙的优先级。
在一些可能的实施方式中,可在测量间隙配置信息中的设定数量个比特指示对应测量间隙的优先级。
在一示例中,测量配置信息包括Gap Pattern#1、Gap Pattern#2和Gap Pattern#3。其中:
Gap Pattern#1的优先级为000;
Gap Pattern#2的优先级为001;
Gap Pattern#3的优先级为010;
其中,网络设备102可定义优先级中三个比特位的优先级,如仅占用末位比特时优先级高于占用双比特位时的优先级,且末位比特为0时的优先级大于为1时的优先级。此时,优先级由高到低依次为:Gap Pattern#1、Gap Pattern#2和Gap Pattern#3。
或者,网络设备102可定义优先级中三个比特位的优先级,如占用双比特位时优先级最高,且末位比特为1时的优先级大于为0时的优先级。此时,优先级由高到低依次为:Gap Pattern#3、Gap Pattern#2和Gap Pattern#1。
在一示例中,测量配置信息包括Gap Pattern#1、Gap Pattern#2、Gap Pattern#3以及Gap Pattern#4,Gap Pattern#4用于非陆地/地面网络测量(Non-Terrestrial Network measurement,NTN测量)。其中:
Gap Pattern#1的优先级为000;
Gap Pattern#2的优先级为001;
Gap Pattern#3的优先级为010;
Gap Pattern#4的优先级为011;
其中,优先级占用双比特位时,仍可满足末位比特为0时的优先级大于为1时的优先级,比如,此时优先级由高到低依次为:Gap Pattern#1、Gap Pattern#2、Gap Pattern#3和Gap Pattern#4。
本公开实施例中,网络设备102在配置测量配置信息时,在每个测量间隙配置信息中增加了对应测量间隙的优先级,以便于用户设备101能够根据优先级选择性的执行测量。
本公开实施例提供了一种测量间隙的配置方法,应用于用户设备101。参照图6,图6是根据一示例性实施例示出的测量间隙的配置方法的流程图,如图6所示,该方法包括步骤S601~S603,具体的:
步骤S601,用户设备101接收网络设备102发送的测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
步骤S602,响应于根据测量配置信息确定的测量间隙开销大于阈值,用户设备101按优先级由低到高的顺序,重复确定不执行测量的测量间隙,直至剩余的测量间隙的测量间隙开销小于或等于阈值。
步骤S603,执行剩余的测量间隙的测量对象的测量。
其中,测量间隙配置信息中还包括测量间隙的优先级。
在一些可能的实施方式中,按照配置的优先级,用户设备101可以逐次的确定不执行测量的测量间隙,如首先确定不进行测量优先级最低的测量间隙。在每次确定不执行测量的测量间隙之后,用户设备101确定剩余的测量间隙的开销是否小于或等于阈值,响应于否,则继续确定不进行测量的优先级次低的测量间隙。直至剩余的测量间隙的测量间隙开销小于或等于阈值。
在一些可能的实施方式中,用户设备101可根据在第一时长中待执行测量的对应数量个测量间隙(这些测量间隙包含在多个测量配置信息的测量间隙配置中)对应的测量间隙长度MGL和值与第一时长的比值,确定测量间隙开销,第一时长为多个测量间隙配置信息对应的测量间隙重复周期MGRP中的最大MGRP的时长。
在一些可能的实施方式中,测量间隙开销用于表征对应数量个待执行测量的测量间隙的总开销。
在一示例中,在未确定不执行测量的测量间隙时,测量间隙开销对应于全部测量间隙的总开销。
在一示例中,在每次确定不执行测量的测量间隙时,测量间隙开销对应于剩余部分测量间隙的总开销。
在第一个示例中:
测量配置信息包括Gap Pattern#1、Gap Pattern#2和Gap Pattern#3。本示例中,第一时长为Gap Pattern#2的MGRP或Gap Pattern#3的MGRP的时长,即80ms。优先级由高到低依次为:Gap Pattern#1、Gap Pattern#2和Gap Pattern#3。
如图7所示,接收网络设备102测量配置信息后,用户设备101可根据测量配置信息 确定测量间隙开销为(44/80)%=55%。此时,测量间隙开销大于阈值,阈值可设置为30%~40%之间。
本示例中,为降低测量间隙开销,第一次可按照优先级顺序先确定不执行优先级最低的Gap Pattern#3,此时剩余间隙的测量间隙开销为:(6×4+10)/80=42%,仍大于阈值。继续重复确定不执行测量的测量间隙,第二次确定不执行优先级次低的Gap Pattern#2,此时剩余间隙的测量间隙开销为:(6×4)/80=30%,小于或等于阈值。
因此本示例中,可仅执行Gap Pattern#1的测量。
在第二个示例中:
测量配置信息包括Gap Pattern#1、Gap Pattern#2和Gap Pattern#3,第一时长为Gap Pattern#2的MGRP或Gap Pattern#3的MGRP的时长,即80ms。优先级由高到低依次为:Gap Pattern#1、Gap Pattern#2和Gap Pattern#3。阈值可配置为30ms。
参考图7或图9,结合不同测量配置信息的MGRP,可确定在第一时长中包含4,Gap#1、1次Gap#2和1次Gap#3,在第一时长中此三个测量间隙的MGL和值(即测量间隙开销)为:44ms。
本示例中,测量间隙开销大于阈值,用户设备101可结合优先级由低到高的顺序,第一次先确定不执行优先级最低的Gap Pattern#3,此时测量间隙开销是6×4+10=34(ms),仍大于阈值。继续重复确定不执行测量的测量间隙,第二次确定不执行优先级次低的Gap Pattern#2,此时确定测量间隙开销为6×4=24(ms),小于阈值。
本示例中,可仅执行Gap Pattern#1的测量。
本公开实施例中,用户设备101可按照优先级的顺序进行选择性的确定要进行测量的测量间隙,从而在最大程度减小测量间隙开销的基础上,能够完成在优先级最高的测量间隙中的测量,利于网络设备102实现准确调度。
本公开实施例提供了一种测量间隙的配置方法,应用于用户设备101。该方法包括步骤S601~S603,其中,步骤S602中重复确定不执行测量的测量间隙可以包括:
步骤S602-1,确定至少一个单位时长;至少一个单位时长中包含的不同单位时长的时长相同,所述每个单位时长对应至少两个测量间隙,所述每个单位时长为其对应的至少两个测量间隙的测量间隙重复周期MGRP中的最小MGRP的时长。
步骤S602-2,按各单位时长的排序,依次在每个单位时长内,按优先级由低到高的顺序,从每个单位时长所对应的至少两个测量时隙中,逐次确定单个不执行测量的测量间隙,并在每次确定不执行测量的测量间隙之后,确定一次剩余的测量间隙对应的测量间隙开销。
在一些可能的实施方式中,用户设备101可在单位时长min(MGRPi)内,按照优先级的顺序筛选要执行测量的测量间隙。响应于在一个单位时长内筛选仍不能满足测量间隙开销小于或等于阈值,可继续在下一个单位时长内筛选。
在一些可能的实施方式中,每个单位时长可视为一组,每组中可能包括不同数量的测量间隙,如包括一个测量间隙或至少两个测量间隙。
在一些可能的实施方式中,将包括至少两个测量间隙的单位时长或组,按时间轴顺序排序。在时间轴靠前的第一组中,每次确定一个不执行测量的测量间隙,并在每次确定不执行测量的测量间隙之后,计算一下剩余测量间隙对应的测量间隙开销。
响应于测量间隙开销小于或等于阈值,则可以执行剩余测量间隙的对应测量。响应于测量间隙开销仍大于阈值,在第一组之后的第二组中,每次确定一个不执行测量的测量间隙,并在每次确定不执行测量的测量间隙之后,计算一下剩余测量间隙对应的测量间隙开销,直至满足测量间隙开销小于或等于阈值时,执行此时剩余的测量间隙对应的测量。本公开实施例中,剩余测量间隙具体为多个测量间隙中排除掉不执行测量的测量间隙后剩余的测量间隙。
依此方法,在任一单位时长或任一组中先进行筛选,然后再在下一单位时长或下一组中进行筛选,直至能够得到满足阈值要求的测量间隙开销。响应于始终无法满足测量间隙开销要求,可不执行本次gap测量。
在一些可能的实施方式中,用户设备101可根据在第一时长中,待执行测量的对应数量个测量间隙(这些测量间隙包含在多个测量配置信息的测量间隙配置中)对应的测量间隙长度MGL和值与第一时长的比值确定测量间隙开销,第一时长为多个测量间隙配置信息对应的测量间隙重复周期MGRP中的最大MGRP的时长。此处,待执行测量的对应数量个测量间隙为:测量配置信息中涉及的所有测量间隙在依次根据测量间隙开销和与阈值的比对后,如果结果大于阈值,剩余的需要进行测量的测量间隙。
在一些可能的实施方式中,至少一个单位时长不限制为相邻的单位时长,也不限制在至少一个单位时长中筛选的先后顺序。其中,至少一个单位时长内可以是包含至少两个测量间隙。
在一个示例中:
测量配置信息包括Gap Pattern#1、Gap Pattern#2和Gap Pattern#3。本示例中,第一时长为Gap Pattern#2的MGRP或Gap Pattern#3的MGRP的时长,即80ms。优先级由高到低依次为:Gap Pattern#1、Gap Pattern#2和Gap Pattern#3。第一时长内包括4个单位时长,依次为第一单位时长T1、第二单位时长T2、第三单位时长T3以及第四单位时长T4。每个单位时长为Gap Pattern#1的MGRP时长,即20ms。其中,T1和T4中包含至少两个测量间隙。
如图7所示,接收网络设备102测量配置信息后,用户设备101可根据测量配置信息确定测量间隙开销为(44/80)%=55%。此时,测量间隙开销大于阈值,阈值可设置为30%~40%之间。
本示例中,可按照T1到T4的顺序,先在T1中按优先级由低到高的顺序,逐次确定单个不执行测量的测量间隙,直至测量间隙开销小于或等于阈值。
比如,在T1中第一次先确定不执行优先级低的Gap Pattern#2,然后确定此时的测量 间隙开销为:(6×4+10×1)/80=42%,仍大于阈值。响应于T1中还包含优先级低的测量间隙,如Gap Pattern#4,则在第二次确定不执行Gap Pattern#4,并再次确定测量间隙开销。对应于本示例,此时T1中剩余了优先级最高的Gap Pattern#1,可先保留。
然后,执行下一个单位时长T4的筛选。在T4中采取同样的方法逐次确定单个不执行测量的测量间隙,比如,在T4中第一次确定不执行优先级低的Gap Pattern#3,然后确定此时的测量间隙开销为:(6×4)/80=30%,小于或等于阈值。因此本示例中,可仅执行Gap Pattern#1的测量。
本公开实施例中,可按照一定的优先级顺序在至少一个单位时长内进行逐次确定不执行测量的测量间隙,从而在降低测量间隙开销的前提下,最大限度的保留所要进行测量的测量间隙。
本公开实施例提供了一种测量间隙的配置方法,应用于用户设备101。参照图8,图8是根据一示例性实施例示出的测量间隙的配置方法的流程图,如图8所示,该方法包括步骤S801~S804,具体的:
步骤S801,用户设备101接收网络设备102发送的测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
步骤S802,响应于根据测量配置信息确定的测量间隙开销小于或等于阈值,根据多个测量间隙配置信息,确定存在时域重叠的至少两个测量间隙。
步骤S803,确定至少两个测量间隙中优先级最高的测量间隙。
步骤S804,执行优先级最高的测量间隙对应的测量。
其中,测量间隙配置信息中还包括测量间隙的优先级。
在一些可能的实施方式中,对于测量时域区间存在重叠的测量间隙,用户设备101可按照优先级顺序确定不执行优先级低的测量间隙内的测量。
在一个示例中:
如图9所示,测量配置信息包括Gap Pattern#1(Gap#1)和Gap Pattern#4(Gap#4),Gap Pattern#1和Gap Pattern#4的测量时域区间重叠。且Gap Pattern#1的优先级高于Gap Pattern#4。
本示例中,用户设备101按照测量配置信息,可获知Gap Pattern#1的优先级高于Gap Pattern#4,因此可执行Gap Pattern#1的测量,而不执行Gap Pattern#4对应的测量。
本公开实施例中,用户设备101可在测量间隙存在重叠的场景中,合理的确定测量行为,保证测量效果。
本公开实施例提供了一种测量间隙的配置方法,应用于用户设备101。该方法包括步骤S301~S302,还包括:
步骤S301’,用户设备101接收网络设备102发送的用于指示阈值的信息。
在一些可能的实施方式中,网络设备可在测量配置信息中携带阈值。
在一些可能的实施方式中,步骤S301可以是:接收网络设备102发送的无线资源控 制RRC信令,RRC信令包括测量配置信息。
本公开实施例中,对应于阈值是网络设备102确定并配置的场景,用户设备101可接收网络设备102通过设定方式所发送的测量配置信息以及阈值。
本公开实施例提供了一种测量间隙的配置方法,该方法由网络设备102执行。参照图10,图10是根据一示例性实施例示出的测量间隙的配置方法的流程图,如图10所示,该方法包括步骤S1001,具体的:
步骤S1001、网络设备102向用户设备101发送测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
本公开实施例中,网络设备102可为用户设备101配置用于不同测量对象的多个测量间隙配置信息,用户设备101能够根据多个测量间隙配置信息与用于测量间隙开销控制的阈值之间的关系,适应性的进行测量,从而有利于降低测量间隙的开销。
本公开实施例提供了一种测量间隙的配置方法,该方法由网络设备102执行。该方法包括步骤S1001’:
步骤S1001’,网络设备102向用户设备101发送无线资源控制RRC信令,RRC信令包括测量配置信息。
在一些可能的实施方式中,测量配置信息中还包括测量间隙的优先级。
本公开实施例中,网络设备102可采用RRC信令的方式发送测量间隙配置信息和优先级,以便于用户设备101能够根据测量间隙的优先级有选择性的执行测量,降低测量间隙开销。
本公开实施例提供了一种测量间隙的配置方法,该方法由网络设备102执行。该方法包括:
步骤S1000,确定阈值,阈值用于测量间隙开销控制。
步骤S1001”,向用户设备发送用于指示阈值的信息,以及测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象
本公开实施例中,网络设备102可将确定的阈值与测量间隙配置信息均配置给用户设备101,以便于用户设备101根据测量间隙配置信息和阈值进行测量间隙开销的判决,有利于用户设备101适应性的进行测量,以降低测量间隙开销。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该装置可具备上述方法实施例中的用户设备101的功能,并用于执行上述实施例提供的由用户设备101执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图11所示的装置1100可作为上述方法实施例所涉及的用户设备101,并执行上述一种方法实施例中由用户设备101执行的步骤。装置1100包括相互耦合的收发模块1101和处理模块1102,其中,处理模块1102可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息,收发 模块1101可用于支持通信装置进行通信。
在执行上述用户设备101所执行的步骤时,收发模块1101用于接收网络设备102发送的测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象;处理模块1102用于根据测量配置信息和阈值,进行测量对象的测量;其中,阈值用于测量间隙开销控制。
当通信装置为用户设备101时,还可以包括如图12所示的装置。图12是根据一示例性实施例示出的一种用于传输用户设备能力的装置1200的框图。例如,装置1200可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,装置1200可以包括以下一个或多个组件:处理组件1202,存储器1204,电力组件1206,多媒体组件1208,音频组件1210,输入/输出(I/O)的接口1212,传感器组件1214,以及通信组件1216。
处理组件1202通常控制装置1200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1202可以包括一个或多个处理器1220来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1202可以包括一个或多个模块,便于处理组件1202和其他组件之间的交互。例如,处理组件1202可以包括多媒体模块,以方便多媒体组件1208和处理组件1202之间的交互。
存储器1204被配置为存储各种类型的数据以支持在设备1200的操作。这些数据的示例包括用于在装置1200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件1206为装置1200的各种组件提供电力。电力组件1206可以包括电源管理系统,一个或多个电源,及其他与为装置1200生成、管理和分配电力相关联的组件。
多媒体组件1208包括在所述装置1200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1208包括一个前置摄像头和/或后置摄像头。当设备1200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1210被配置为输出和/或输入音频信号。例如,音频组件1210包括一个麦克风(MIC),当装置1200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克 风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1204或经由通信组件1216发送。在一些实施例中,音频组件1210还包括一个扬声器,用于输出音频信号。
I/O接口1212为处理组件1202和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1214包括一个或多个传感器,用于为装置1200提供各个方面的状态评估。例如,传感器组件1214可以检测到设备1200的打开/关闭状态,组件的相对定位,例如所述组件为装置1200的显示器和小键盘,传感器组件1214还可以检测装置1200或装置1200一个组件的位置改变,用户与装置1200接触的存在或不存在,装置1200方位或加速/减速和装置1200的温度变化。传感器组件1214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1216被配置为便于装置1200和其他设备之间有线或无线方式的通信。装置1200可以接入基于通信标准的无线网络,如WiFi,4G或5G,或它们的组合。在一个示例性实施例中,通信组件1216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1204,上述指令可由装置1200的处理器1220执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
基于与以上方法实施例相同的构思,本公开实施例还提供一种通信装置,该装置可具备上述方法实施例中的网络设备102的功能,并用于执行上述实施例提供的由网络设备102执行的步骤。该功能可以通过硬件实现,也可以通过软件或者硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,如图13所示的装置1300可作为上述方法实施例所涉及的网络设备102,并执行上述一种方法实施例中由网络设备102执行的步骤。装置1300包括收发模块1301,其中,收发模块1301,可用于支持通信装置进行通信。
在执行上述网络设备102所执行的步骤时,收发模块1301,用于向用户设备101发送测量配置信息,测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
当通信装置为网络设备102时,其结构还可如图14所示。如图14所示,装置1400包括存储器1401、处理器1402、收发组件1403、电源组件1406。其中,存储器1401与处理器1402耦合,可用于保存通信装置1400实现各功能所必要的程序和数据。该处理器1402被配置为支持通信装置1400执行上述方法中相应的功能,此功能可通过调用存储器1401存储的程序实现。收发组件1403可以是无线收发器,可用于支持通信装置1400通过无线空口进行接收信令和/或数据,以及发送信令和/或数据。收发组件1403也可被称为收发单元或通信单元,收发组件1403可包括射频组件1404以及一个或多个天线1405,其中,射频组件1404可以是远端射频单元(remote radio unit,RRU),具体可用于射频信号的传输以及射频信号与基带信号的转换,该一个或多个天线1405具体可用于进行射频信号的辐射和接收。
当通信装置1400需要发送数据时,处理器1402可对待发送的数据进行基带处理后,输出基带信号至射频单元,射频单元将基带信号进行射频处理后将射频信号通过天线以电磁波的形式进行发送。当有数据发送到通信装置1400时,射频单元通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1402,处理器1402将基带信号转换为数据并对该数据进行处理。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
本公开的方法中,用户设备接收到网络设备所配置的多个测量间隙配置信息后,能够根据多个测量间隙配置信息与用于测量间隙开销控制的阈值之间的关系,适应性的进行测量,从而有利于降低测量间隙的开销,以便于能够保证服务小区调度数据的连续性。

Claims (22)

  1. 一种测量间隙的配置方法,由用户设备执行,所述方法包括:
    接收网络设备发送的测量配置信息,所述测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象;
    根据所述测量配置信息和阈值,进行测量对象的测量;其中,所述阈值用于测量间隙开销控制。
  2. 如权利要求1所述的方法,其中,
    所述根据所述测量配置信息和阈值,进行测量对象的测量,包括:
    响应于根据所述测量配置信息确定的测量间隙开销大于所述阈值,在多个测量间隙中按设定测量间隙的顺序重复确定不执行测量的所述测量间隙,直至多个测量间隙中剩余的所述测量间隙的测量间隙开销小于或等于所述阈值,执行剩余的所述测量间隙对应的测量对象的测量;
    所述测量间隙开销用于表征对应数量个待执行测量的测量间隙的总开销。
  3. 如权利要求1所述的方法,其中,
    所述根据所述测量配置信息和阈值,进行测量对象的测量,包括:
    响应于根据所述测量配置信息确定的测量间隙开销小于或等于所述阈值,根据所述多个测量间隙配置信息执行对应的测量对象的测量。
  4. 如权利要求1至3中任一权利要求所述的方法,其中,所述根据所述测量配置信息和阈值,进行测量对象的测量,包括:
    根据所述多个测量间隙配置信息,确定存在时域重叠的至少两个测量间隙;
    仅执行所述至少两个测量间隙中一个测量间隙的测量对象测量,而不执行至少两个测量间隙中剩余测量间隙对应的测量对象的测量。
  5. 如权利要求1所述的方法,其中,
    所述测量间隙配置信息中还包括测量间隙的优先级。
  6. 如权利要求5所述的方法,其中,
    所述根据所述测量配置信息和阈值,进行测量对象的测量,包括:
    响应于根据所述测量配置信息确定的测量间隙开销大于所述阈值,按优先级由低到高的顺序,重复确定不执行测量的测量间隙,直至剩余的测量间隙的测量间隙开销小于或等于所述阈值;
    执行所述剩余的测量间隙的测量对象的测量。
  7. 如权利要求6所述的方法,其中,所述重复确定不执行测量的测量间隙,包括:
    确定至少一个单位时长;所述至少一个单位时长的时长相同,所述每个单位时长对应至少两个测量间隙,所述每个单位时长为其对应的至少两个测量间隙的测量间隙重复周期MGRP中的最小MGRP的时长;
    按各单位时长的排序,依次在每个单位时长内,按优先级由低到高的顺序,从每个单位时长所对应的至少两个测量时隙中,逐次确定单个不执行测量的测量间隙,并在每次确定不执行测量的测量间隙之后,确定一次剩余的测量间隙对应的测量间隙开销。
  8. 如权利要求5所述的方法,其中,所述根据所述测量配置信息和阈值,进行测量对象的测量,包括:
    响应于根据所述测量配置信息确定的测量间隙开销小于或等于所述阈值,根据所述多个测量间隙配置信息,确定存在时域重叠的至少两个测量间隙;
    确定所述至少两个测量间隙中优先级最高的测量间隙;
    执行所述优先级最高的测量间隙对应的测量。
  9. 如权利要求2、3、6或7所述的方法,其中,
    所述测量间隙开销为:在第一时长中,待执行测量的对应数量个测量间隙长度MGL的和值与所述第一时长的比值,所述第一时长为所述多个测量间隙配置信息对应的测量间隙重复周期MGRP中的最大MGRP的时长。
  10. 如权利要求1所述的方法,其中,
    所述阈值由协议定义。
  11. 如权利要求1所述的方法,其中,
    接收所述网络设备发送的用于指示所述阈值的信息。
  12. 如权利要求1所述的方法,其中,所述接收网络设备发送的测量配置信息,包括:
    接收网络设备发送的无线资源控制RRC信令,所述RRC信令包括所述测量配置信息。
  13. 一种测量间隙的配置方法,由网络设备执行,所述方法包括:
    向用户设备发送测量配置信息,所述测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
  14. 如权利要求13所述的方法,其中,所述向用户设备发送测量配置信息包括:
    向用户设备发送无线资源控制RRC信令,所述RRC信令包括所述测量配置信息。
  15. 如权利要求13所述的方法,其中,所述方法还包括:
    确定阈值,所述阈值用于测量间隙开销控制;
    向所述用户设备发送用于指示所述阈值的信息。
  16. 如权利要求13所述的方法,其中,
    所述测量配置信息中还包括测量间隙的优先级。
  17. 一种通信装置,被配置于用户设备,所述装置包括:
    收发模块,用于接收网络设备发送的测量配置信息,所述测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象;
    处理模块,用于根据所述测量配置信息和阈值,进行测量对象的测量;其中,所述阈 值用于测量间隙开销控制。
  18. 一种通信装置,被配置于网络设备,所述装置包括:
    收发模块,用于向用户设备发送测量配置信息,所述测量配置信息包括多个测量间隙配置信息,不同的测量间隙配置信息对应于不同的测量对象。
  19. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求1-12中任一项所述的方法。
  20. 一种通信装置,包括处理器以及存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述计算机程序,以实现如权利要求13-16中任一项所述的方法。
  21. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求1-12中任一项所述的方法。
  22. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上被调用执行时,使得所述计算机执行如权利要求13-16中任一项所述的方法。
PCT/CN2022/093900 2022-05-19 2022-05-19 一种测量间隙的配置方法、装置及可读存储介质 WO2023221044A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/093900 WO2023221044A1 (zh) 2022-05-19 2022-05-19 一种测量间隙的配置方法、装置及可读存储介质
CN202280001769.8A CN117426129A (zh) 2022-05-19 2022-05-19 一种测量间隙的配置方法、装置及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/093900 WO2023221044A1 (zh) 2022-05-19 2022-05-19 一种测量间隙的配置方法、装置及可读存储介质

Publications (1)

Publication Number Publication Date
WO2023221044A1 true WO2023221044A1 (zh) 2023-11-23

Family

ID=88834307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093900 WO2023221044A1 (zh) 2022-05-19 2022-05-19 一种测量间隙的配置方法、装置及可读存储介质

Country Status (2)

Country Link
CN (1) CN117426129A (zh)
WO (1) WO2023221044A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018209247A1 (en) * 2017-05-12 2018-11-15 Intel IP Corporation Measurement design for next radio (nr) and long term evolution (lte)
WO2019068926A1 (en) * 2017-10-06 2019-04-11 Telefonaktiebolaget Lm Ericsson (Publ) DYNAMIC CHANGE OF MEASUREMENT INTERVALS
CN111800797A (zh) * 2019-04-08 2020-10-20 华为技术有限公司 一种测量、发送测量配置信息的方法及设备
CN112040523A (zh) * 2020-09-08 2020-12-04 Oppo广东移动通信有限公司 信道测量方法、装置、终端及存储介质
CN113498092A (zh) * 2020-04-03 2021-10-12 维沃移动通信有限公司 信号测量、测量间隔配置、测量上报方法及相关设备
WO2022006185A2 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Dynamic configuration of measurement gaps
CN114501625A (zh) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 信号测量方法、装置及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018209247A1 (en) * 2017-05-12 2018-11-15 Intel IP Corporation Measurement design for next radio (nr) and long term evolution (lte)
WO2019068926A1 (en) * 2017-10-06 2019-04-11 Telefonaktiebolaget Lm Ericsson (Publ) DYNAMIC CHANGE OF MEASUREMENT INTERVALS
CN111800797A (zh) * 2019-04-08 2020-10-20 华为技术有限公司 一种测量、发送测量配置信息的方法及设备
CN113498092A (zh) * 2020-04-03 2021-10-12 维沃移动通信有限公司 信号测量、测量间隔配置、测量上报方法及相关设备
WO2022006185A2 (en) * 2020-06-30 2022-01-06 Qualcomm Incorporated Dynamic configuration of measurement gaps
CN112040523A (zh) * 2020-09-08 2020-12-04 Oppo广东移动通信有限公司 信道测量方法、装置、终端及存储介质
CN114501625A (zh) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 信号测量方法、装置及存储介质

Also Published As

Publication number Publication date
CN117426129A (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
WO2023206424A1 (zh) 一种上行切换的方法、装置及可读存储介质
WO2023201730A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2023019553A1 (zh) 一种传输时频资源配置信息的方法、装置及可读存储介质
WO2023221044A1 (zh) 一种测量间隙的配置方法、装置及可读存储介质
WO2024026754A1 (zh) 一种传输测量配置信息的方法、装置、设备以及存储介质
WO2024007228A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2023201738A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2024059977A1 (zh) 一种执行或发送指示信息的方法、装置、设备及存储介质
WO2024007263A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2024000129A1 (zh) 一种传输资源配置信息的方法、装置以及可读存储介质
WO2023245627A1 (zh) 一种传输配置信息的方法、装置、设备及可读存储介质
WO2024026862A1 (zh) 一种传输测量配置信息的方法、装置以及可读存储介质
WO2023130469A1 (zh) 一个确定信道接入方式的方法、装置及存储介质
WO2024060034A1 (zh) 一种传输系统消息的方法、装置以及可读存储介质
WO2023178698A1 (zh) 一种传输寻呼下行控制信息的方法、装置及存储介质
WO2024000196A1 (zh) 一种传输辅助信息的方法、装置以及可读存储介质
WO2023206239A1 (zh) 一种传输保护时间间隔信息的方法、装置及可读存储介质
WO2023201471A1 (zh) 一种传输信号质量阈值信息的方法、装置及可读存储介质
WO2023184254A1 (zh) 一种传输测量配置信息的方法、装置及可读存储介质
WO2024060119A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质
WO2023178623A1 (zh) 一种监听唤醒信号的方法、装置及可读存储介质
WO2024020811A1 (zh) 一种传输参考信号测量结果的方法、装置及存储介质
WO2023115284A1 (zh) 一种测量方法、装置、设备及可读存储介质
WO2024060153A1 (zh) 一种发送或监听下行控制信息的方法、装置、设备或介质
WO2024036571A1 (zh) 一种传输指示信息的方法、装置以及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942084

Country of ref document: EP

Kind code of ref document: A1