WO2021244580A1 - 一种测量配置方法及通信装置 - Google Patents

一种测量配置方法及通信装置 Download PDF

Info

Publication number
WO2021244580A1
WO2021244580A1 PCT/CN2021/097975 CN2021097975W WO2021244580A1 WO 2021244580 A1 WO2021244580 A1 WO 2021244580A1 CN 2021097975 W CN2021097975 W CN 2021097975W WO 2021244580 A1 WO2021244580 A1 WO 2021244580A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
measurement interval
scs
value
terminal
Prior art date
Application number
PCT/CN2021/097975
Other languages
English (en)
French (fr)
Inventor
高宽栋
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021244580A1 publication Critical patent/WO2021244580A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements

Definitions

  • This application relates to the field of communication technology, and in particular to a measurement configuration method and a communication device.
  • the terminal may move from the coverage of one cell to the coverage of another cell.
  • the terminal will perform cell reselection or cell handover. Both cell reselection and cell handover require the terminal to perform cell measurement, that is, the terminal performs radio resource management (RRM) measurement.
  • RRM radio resource management
  • the network equipment may use a synchronization signal block (synchronization signal block, SSB) or a channel state information reference signal (channel state information reference signal, CSI-RS) to measure adjacent cells.
  • a synchronization signal block synchronization signal block
  • CSI-RS channel state information reference signal
  • the terminal in the process of measuring neighboring cells, the terminal needs to switch from the current cell to the frequency point where the cell adjacent to the current cell (also called neighboring cell or neighboring cell) is located for measurement.
  • the terminal works in cell 1 with frequency f1 to receive data.
  • the terminal needs to switch to the frequency point to perform measurement on cell 2 at f2.
  • the terminal needs From this frequency point f2 back to f1, that is, handover from cell 2 to cell 1.
  • the time required for the terminal to complete the entire cell measurement process is called the measurement interval (gap), that is, the time for the terminal to switch from cell 1 to cell 2, the time for the terminal to perform cell measurement, and the time for the terminal to switch from cell 2 to cell 1. and.
  • the cell measurement time is generally the duration of the RRM measurement timing configuration (SS block based RRM measurement timing configuration, SMTC) based on the synchronization signal (synchronisation signal, SS) block.
  • the duration of SSB decreases.
  • the subcarrier width of data is 240KHz
  • the duration of SSB is 2.25ms
  • the subcarrier width of data is 480KHz
  • the duration of SSB is 1.125 ms.
  • the fifth generation of mobile communication technology (the 5th generation, 5G) new radio (NR) system can be applied to the carrier frequency band greater than or equal to 52.6GHz.
  • the carrier frequency Since the carrier frequency is higher, it supports a larger subcarrier spacing, for example Supportable sub-carrier widths include 240KHz, 480KHz, 960KHz, 1920KHz, and 3840KHz. In this case, if the gap configured below 120KHz is used, the measurement time is obviously longer, which leads to a waste of resources.
  • the embodiments of the present application provide a measurement configuration method and a communication device, which provide a smaller gap configuration in an application scenario with a large subcarrier interval to save resources as much as possible.
  • a measurement configuration method is provided.
  • the method in the first aspect can be executed by a first device.
  • the first device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device may be a network device.
  • the method includes: the network device generates measurement configuration information according to the subcarrier interval SCS, and sends the measurement configuration information to the terminal; wherein the measurement configuration information is used to configure the measurement interval parameter and the time length of the synchronization signal measurement window, and the measurement interval parameter is used
  • the terminal measures the reference signal to be measured, and the time length of the synchronization signal measurement window is used to determine the cell measurement time.
  • a measurement configuration method is provided.
  • the method in the first aspect can be executed by a second device, which may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the communication device may be a terminal.
  • the method includes: the terminal receives measurement configuration information from the network device, the measurement configuration information is used to configure the measurement interval parameter and the time length of the synchronization signal measurement window, wherein the measurement interval parameter is used for the terminal to measure the reference signal to be measured, the synchronization signal The time length of the measurement window is used to determine the cell measurement time.
  • the measurement interval parameter and the time length of the synchronization signal measurement window are configured according to the subcarrier interval SCS; the terminal is configured according to the measurement interval parameter and the synchronization signal measurement window time The length determines the measurement interval, and the reference signal to be measured is measured according to the measurement interval.
  • the network device may configure the measurement interval parameter and the time length of the synchronization signal measurement window according to the SCS.
  • the measurement interval parameter and the time length of the synchronization signal measurement window are related to the SCS, which can ensure that when the SCS is greater than or equal to 240KHz, the configured measurement interval is smaller. This can ensure that the measurement interval configured when the SCS is greater than or equal to 240KHz, and can also ensure that the SCS is less than the measurement interval configured by the SCS below 120KHz, thereby saving resources for cell measurement.
  • the network equipment Since the system is applied to the situation greater than or equal to 52.6GHz, SCS is greater than or equal to 240KHz, so the network equipment generates measurement configuration information according to the SCS. It can also be considered that the network equipment generates measurement configuration information according to the frequency band, that is, measurement interval parameters and synchronization signals
  • the length of the measurement window is configured according to the frequency band.
  • the frequency band may be FR1 located at 0 ⁇ 7.125GHz, FR2 located at 7.125GHz ⁇ 52.6GHz, FR3 located at 52.6GHz-100GHz, and so on.
  • the measurement interval parameter when the SCS is greater than or equal to 240kHz, the measurement interval parameter may include a measurement interval, the value of the measurement interval is a first value, the first value is located in the first set, and the first set may include At least two values among 1ms, 1.25ms, 1.5ms, 2ms, 2.25ms, 2.5ms, 3ms, 3.25ms, and 3.5ms.
  • measurement resource overhead can be reduced.
  • the first set may be any one of the following sets:
  • the value of the first set may further include one or more of the following values: 4ms, 5.5ms, or 6ms. That is, the value of the first set may include: 1ms, 1.25ms, 1.5ms, 2ms, 2.25ms, 2.5ms, 3ms, 3.25ms, and 3.5ms, and one or more of 4ms, 5.5ms, and 6ms .
  • This solution can be considered as a measurement interval less than or equal to 120kHz, that is, some possible smaller values of the measurement interval are added to the set of existing measurement intervals, which can ensure that it is greater than or equal to 240kHz , To reduce the waste of measurement resources, and to be compatible with the configuration of the measurement interval under the condition of less than or equal to 120kHz.
  • the at least two SCSs include a first SCS and a second SCS
  • the value in the first set corresponding to the first SCS is the same as the value in the second SCS.
  • the values in the first set corresponding to the SCS may all be different.
  • the first set corresponding to the first SCS and the first set corresponding to the second SCS respectively include different values, which can reduce the difficulty of protocol design and save the overhead and resources for configuring measurement interval parameters.
  • the measurement interval parameter further includes a measurement interval period, and the value of the measurement interval period may be in the range of [20ms, 40ms, 80ms, 160ms] to facilitate the design of compatibility with existing protocols.
  • an embodiment of the present application also provides a communication device, which has a function of implementing the behavior in the method embodiment of the first aspect described above.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device may specifically include a transceiver unit and a processing unit.
  • the processing unit is configured to generate measurement configuration information according to the subcarrier interval SCS, and the measurement configuration information is used to configure measurement interval parameters and synchronize.
  • the time length of the signal measurement window, the measurement interval parameter is used for the terminal to measure the reference signal to be measured, the time length of the synchronization signal measurement window is used to determine the cell measurement time; the transceiver unit is used for sending to the terminal The measurement configuration information.
  • the measurement interval parameter may include a measurement interval, the value of the measurement interval is a first value, and the first value is located in the first value.
  • the first set may include at least two values of 1ms, 1.25ms, 1.5ms, 2ms, 2.25ms, 2.5ms, 3ms, 3.25ms, and 3.5ms.
  • the first set may be any one of the following sets:
  • the value of the first set may further include one or more of the following values:
  • the values in the first set corresponding to the SCS may all be different.
  • the measurement interval parameter further includes a measurement interval period, and the value of the measurement interval period may be in the range of [20ms, 40ms, 80ms, 160ms].
  • an embodiment of the present application also provides a communication device that has a function of implementing the behavior in the method embodiment of the second aspect described above.
  • the functions can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device may specifically include a transceiving unit and a processing unit, wherein the transceiving unit is used to receive measurement configuration information from a network device, and the measurement configuration information is used to configure measurement interval parameters and synchronize.
  • the time length of the signal measurement window, the measurement interval parameter is used for the terminal to measure the reference signal to be measured, the time length of the synchronization signal measurement window is used to determine the cell measurement time, the measurement interval parameter and the synchronization signal measurement window
  • the time length of is configured according to the subcarrier interval SCS; the processing unit is configured to determine the measurement interval according to the measurement configuration information, and measure the reference signal to be measured according to the measurement interval.
  • the measurement interval has a first value, and the first value is located in a first set, and the first set may include 1 ms , 1.25ms, 1.5ms, 2ms, 2.25ms, 2.5ms, 3ms, 3.25ms and 3.5ms at least two values.
  • the first set may be any one of the following sets:
  • the value of the first set may further include one or more of the following values:
  • the values in the first set corresponding to the SCS may all be different.
  • the measurement interval parameter further includes a measurement interval period, and the value of the measurement interval period may be in the range of [20ms, 40ms, 80ms, 160ms].
  • the embodiments of the present application also provide a communication device.
  • the communication device may be the communication device in the third aspect or the fourth aspect of the foregoing embodiment, or the communication device provided in the third aspect or the fourth aspect.
  • the communication device may include a communication interface, a processor, and optionally, a memory. Wherein, the memory is used to store computer programs or instructions or data, and the processor is coupled with the memory and a communication interface. When the processor reads the computer programs or instructions or data, the communication device can execute the method described above by the terminal Or the method performed by the network device.
  • the communication interface may be a transceiver in the communication device, for example, implemented by the antenna, feeder, and codec in the communication device, or if the communication device is a chip set in a network device, the communication interface It can be the input/output interface of the chip, such as input/output pins.
  • the transceiver is used for the communication device to communicate with other devices. Exemplarily, when the communication device is a terminal, the other device is a network device; or, when the communication device is a network device, the other device is a terminal.
  • the embodiments of the present application further provide a chip system, which includes a processor and may also include a memory, configured to implement the method executed by the communication device in the third aspect or the fourth aspect.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • an embodiment of the present application further provides a communication system, which includes the communication device described in the third aspect and the communication device described in the fourth aspect.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is run, the method executed by the terminal in the above aspects can be implemented; or Implement the methods executed by the network device in the above aspects.
  • a computer program product comprising: computer program code, when the computer program code is executed, causes the method executed by the terminal in the above aspects to be executed, or causes the above The method performed by the network device in the aspect is executed.
  • Figure 1 is a schematic diagram of a cell measurement process provided by an embodiment of the application.
  • Figure 2 is a schematic diagram of an application scenario of an embodiment of the application
  • FIG. 3 is a flowchart of a measurement configuration method provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of another structure of a communication device provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of another structure of an example communication device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 8 is another schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of still another structure of another communication device provided by an embodiment of this application.
  • the communication system may include a network-side device and a user equipment (UE) that communicates with the network-side device.
  • Figure 2 is an example of the communication system.
  • the communication system shown in Figure 2 includes a network-side device and a user equipment communicating with it. In fact, the communication system may include multiple user equipment. limit.
  • the network side device may be a device that can communicate with user equipment, and is also referred to as a network device.
  • the network device may be an access network device, and the access network device may also be called a radio access network (radio access network, RAN) device, which is a device that provides wireless communication functions for terminal devices.
  • the access network equipment includes, but is not limited to: next-generation base stations (generation nodeB, gNB) in 5G, evolved node B (evolved node B, eNB), baseband unit (BBU), transmitting and receiving points (transmitting and receiving). point, TRP), transmitting point (transmitting point, TP), the base station in the future mobile communication system or the access point in the WiFi system, etc.
  • the access network equipment can also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or a network
  • the device may be a relay station, a vehicle-mounted device, a network device in a public land mobile network (PLMN) network that will evolve in the future, and so on.
  • PLMN public land mobile network
  • User equipment also called terminal device or terminal, or terminal device, includes equipment that provides users with voice and/or data connectivity, for example, it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem .
  • the terminal device can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal device may include user equipment (UE), wireless terminal devices, mobile terminal devices, device-to-device (D2D) terminal devices, V2X terminal devices, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal devices, Internet of things (IoT) terminal devices, subscriber units, subscriber stations, mobile stations , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), aircraft (such as UAV, hot air balloon, civil aviation airliner, etc.) or user device (user device), etc.
  • UE user equipment
  • D2D device-to-device
  • V2X terminal devices machine-to-machine/machine-type communication
  • M2M/MTC machine-to-machine/machine-type communications
  • M2M/MTC Internet of things
  • IoT Internet of things
  • subscriber units subscriber stations, mobile stations
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal devices, portable, pocket-sized, handheld, and computer-built mobile devices.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the in-vehicle device placed or installed on the vehicle may also include a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the embodiments of the present application may also be applicable to other future-oriented communication technologies.
  • the network architecture and business scenarios described in this application are intended to explain the technical solutions of this application more clearly, and do not constitute a limitation on the technical solutions provided by this application. Those of ordinary skill in the art will know that with the evolution of the network architecture and new business scenarios The technical solutions provided in this application are equally applicable to similar technical problems.
  • the terminal may move from the coverage of one cell to the coverage of another cell.
  • the terminal will perform cell reselection or cell handover. Both cell reselection and cell handover require the terminal to perform cell measurement, that is, the terminal performs RRM measurement.
  • the network equipment can use SSB or CSI-RS as beam signals to measure neighboring cells.
  • the network device can be configured with a measurement gap, for example, RRM measurement is performed according to the configured measurement gap.
  • the network device can configure the period of SMTC, the duration of SMTC, and the offset value of SMTC, and the terminal can determine the cell measurement time according to the period of SMTC, the duration of SMTC, and the offset value of SMTC. Furthermore, the terminal determines the measurement gap according to the cell measurement time and the measurement handover time.
  • the single measurement switching time is defined as 0.25 ms, and the switching time of the low frequency band is 0.25 ms. In this case, the switching time of a single measurement is 0.5ms.
  • SCS subcarrier spacing
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] 0 15 1 30 2 60 3 120 4 240
  • the carrier frequency band greater than or equal to 52.6GHz can be supported. Because the carrier frequency is higher, it supports a larger sub-carrier spacing.
  • the width of the sub-carriers that can be supported can include 240KHz, 480KHz, 960KHz, 1920KHz, 3840KHz Wait.
  • can be considered as a parameter that determines the frequency domain width and time domain length of an OFDM subcarrier signal.
  • "Numerology" is introduced to determine the frequency domain width and time domain width of the OFDM subcarrier signal.
  • can be considered as the configuration index of Numerology, so the NR system can also be considered to support a variety of Numerology.
  • Numerology is referred to as a parameter set in the following, which means parameters used to determine the frequency domain width and time domain width of an OFDM subcarrier signal.
  • one SMTC can be configured. Since SSB is sent by network equipment based on beams, different beams correspond to different cell coverage areas and also correspond to different SSBs, so different SSBs can correspond to different SMTCs.
  • the period of the SMTC can be 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, and the specific value can be configured by system messages.
  • the duration of SMTC can be 1ms, 2ms, 3ms, 4ms or 5ms.
  • the offset value of the SMTC can be ⁇ 0, 1, ..., the period of the SMTC-1 ⁇ ms.
  • the duration of SSB decreases. For example, the subcarrier width of data is 240KHz, the duration of SSB is 2.25ms, the subcarrier width of data is 480KHz, and the duration of SSB is 1.125 ms.
  • the measurement gap for low frequency measurement, includes 3 ms, 4 ms, or 6 ms; for high frequency measurement, the measurement gap may be 1.5 ms, 3.5 ms, or 5.5 ms.
  • the specific measurement gap can be configured through the measurement pattern described in Table 2.
  • the serving cell of the terminal is an LTE cell
  • the terminal needs to measure the corresponding NR cell if the LTE base station recognizes that the terminal only performs inter-system measurements (that is, only measurement If the NR cell does not measure other LTE cells, and the frequency to be measured and the frequency of the current serving cell belong to the EN-DC frequency combination supported by the terminal, the LTE base station may not configure the measurement gap for the terminal.
  • the specific measurement gap configuration of the terminal refer to Table 3 and Table 4, and configure different values for different frequency bands.
  • the low frequency band is located at FR1 (frequency range1, which can be recorded as FR1) at 0 ⁇ 7.125GHz, and the higher frequency band is located at 7.125GHz ⁇ 52.6GHz (frequency range2, which can be recorded as FR2).
  • the frequency range is greater than 52.6GHz-100GHz.
  • the frequency band is denoted as FR3.
  • E-UTRA stands for LTE network.
  • Non-NR RAT means that it is not a 5G network, including 4G, 3G and 2G networks. It can be seen from Table 3 and Table 4 that when FR1 is measuring FR1, Gap needs to be measured; or when FR2 is measuring FR2, Gap needs to be measured, and there is no need to measure Gap in other cases.
  • the subcarrier widths that can be supported include 240KHz, 480KHz, 960KHz, 1920KHz, and 3840KHz. In this case, if the gap configured below 120KHz is used, the measurement time is obviously longer, which leads to a waste of resources.
  • the embodiments of the present application provide a measurement configuration method and communication device.
  • a smaller measurement gap is configured to save system resources as much as possible.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • 6G next-generation communication systems
  • LTE long term evolution
  • 5G fifth generation
  • 6G next-generation communication systems
  • the technical solutions of the embodiments of the present application can also be applied to other communication systems, as long as the communication system has a requirement for beam switching.
  • At least one means one or more
  • plural means two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c or a, b and c, where a, b, and c can be It can be single or multiple.
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first message and the second message are only for distinguishing different messages, but do not indicate the difference in priority, sending order, or importance of the two messages.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship that describes the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • FIG. 3 is a schematic flowchart of a measurement configuration method provided by an embodiment of this application.
  • the method is applied to the communication system shown in FIG. 2 as an example.
  • the method can be executed by two communication devices, for example, the first communication device and the second communication device.
  • the method is executed by a network device and a terminal as an example, and the network device is a base station as an example, that is, the first communication device is a terminal and the second communication device is a base station as an example.
  • the base station generates measurement configuration information, where the measurement configuration information is used to configure the measurement interval parameter and the time length of the synchronization signal measurement window, the measurement interval parameter is used for the terminal to measure the reference signal to be measured, and the time length of the synchronization signal measurement window Used to determine the cell measurement time.
  • the reference signal to be measured may include SS and/or CSI-RS, and of course, may also include other reference signals.
  • the terminal can complete work such as synchronization with the cell by measuring the SS.
  • the CSI-RS is a cell-based reference signal, which can be used to measure information such as channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (rank indication, RI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • rank indicator rank indication
  • the terminal in the idle state and the terminal in the connected state can both perform measurement based on SS.
  • the terminal in the connected state can perform measurement based on SS and CSI-RS. Measurement.
  • the terminal before measuring the CSI-RS, the terminal needs to obtain the synchronization of the cell by measuring the SS, that is, to obtain the time information of the cell, otherwise the terminal cannot know the location of the CSI-RS and cannot perform the measurement.
  • the terminal obtains the time information of the cell through the measurement of the SS, thereby completing the measurement of the CSI-RS appearing later.
  • the reference signal to be measured may be a reference signal sent by the base station, and may also include a reference signal sent by other network devices except the base station.
  • the measurement interval parameters may include the length of the measurement gap (MGL) and the period of the measurement gap (MGRP), and the timing advance of the measurement gap.
  • the base station can determine the value of the measurement interval parameter configured for the terminal according to an agreement. For example, the base station can configure the measurement interval, the measurement interval period, and the offset value of the measurement interval. It should be noted that the agreement here can be stipulated in an agreement, or an agreement between the base station and the terminal.
  • the agreement may be the corresponding relationship between the frequency band configured by the serving cell and the value of the measurement interval parameter.
  • Table 5 shows a possible measurement interval configuration pattern, that is, the possible values of MGL and MGRP.
  • Table 5 has more possible values for MGL and MGRP when the interval pattern index is 24-27, that is, the value of MGL can be 2.5 ms.
  • the value of MGL can also be 2ms, etc., and no examples are given here.
  • the SCS here may be the width of the sub-carrier for sending the reference signal. If the SCS is greater than 120kHz, for example, the SCS is equal to 240kHz, it can also be understood as the case where the frequency band configured by the serving cell is greater than 56.2GHz, and the interval pattern index [0 -23] Configure MGL and MGRP. Obviously, the final configured measurement gap has a larger value, which will waste measurement resource overhead. For this reason, in the embodiment of the present application, the interval pattern index [24-27] can be used to configure the MGL and MGRP to reduce the value of the measurement gap and reduce the resource overhead of the measurement.
  • the base station can configure the measurement gap according to the SCS, that is, the measurement interval is related to the SCS.
  • the minimum value of the measurement gap configured by the base station according to the SCS is the first value
  • the minimum value of the measurement gap configured by the base station according to the SCS is the second value
  • the first value is smaller than the second value. That is, if the SCS is greater than or equal to 240kHz compared to less than or equal to 120kHz, the configured gap is smaller, thereby reducing the resource overhead of measurement.
  • the frequency band configured by the serving cell is FR3, and the maximum value of MGL can be 3.5ms, that is, the interval pattern index [16-27] in Table 5 can be used to configure Measurement interval parameters.
  • the base station configures the secondary measurement interval parameters according to the interval pattern index [16-27] in Table 5, which can be used to measure any of the following cells: the cell with the frequency band of FR3, the cell with the frequency band of FR3 and FR2, and the cell with the frequency band of FR3 and FR2.
  • the frequency band is a cell of FR3, FR1, FR2, and E-UTRA.
  • the base station can configure the measurement interval according to the frequency band where the cell is located, so as to minimize the resource overhead of the measurement.
  • the base station may configure the measurement interval to any value in the first set.
  • the first set may include at least two values of 1ms, 1.25ms, 1.5ms, 2ms, 2.25ms, 2.5ms, 3ms, 3.25ms, and 3.5ms.
  • the first set may be a set consisting of at least two values of 1ms, 1.25ms, 1.5ms, 2ms, 2.25ms, 2.5ms, 3ms, 3.25ms, and 3.5ms.
  • the base station can configure the measurement interval to any value in set 1.
  • Set 1 can be [1ms, 2.5ms, 3.5ms], [1ms, 1.5ms, 3.5ms], [1ms, 2.5ms, 3.5ms], [2.5ms, 3.5ms], [1.5ms, 2ms, 3.5ms ], [2.5ms, 2ms, 3.5ms], [1ms, 2ms, 3ms], etc., that is, the measurement interval is less than or equal to 3.5ms, which can be applied to the scenario where the SCS is greater than or equal to 240kHz, and can reduce the resource overhead of measurement.
  • the base station may configure the measurement interval to any value in set 2.
  • Set 2 can be [1ms, 1.5ms, 2ms, 3ms, 3.5ms, 4ms, 5.5ms, 6ms], [1ms, 1.5ms, 2ms, 2.5ms, 3ms, 3.5ms, 4ms, 5.5ms, 6ms], [ 1.5ms, 2ms, 2.5ms, 3ms, 3.5ms, 4ms, 5.5ms, 6ms], [1ms, 1.5ms, 2ms, 2.5ms, 3ms, 3.5ms, 4ms, 5.5ms, 6ms], [1.5ms, 2ms , 3ms, 3.5ms, 4ms, 5.5ms, 6ms], [1.5ms, 2ms , 3ms, 3.5ms, 4ms, 5.5ms, 6ms], [1.5ms, 2ms , 3ms, 3.5ms, 4ms
  • some possible smaller values of the measurement interval are added to the set of existing measurement intervals, which can not only ensure that the measurement is greater than or equal to 240kHz, reduce the waste of measurement resources, but also be compatible with those less than or equal to 120kHz.
  • the configuration of the measurement interval in the case.
  • the base station can also configure the time length of the synchronization signal measurement window according to the value of the SCS, that is, the length of the SMTC.
  • Different values of SCS correspond to different values of SMTC.
  • the length of the SMTC can be reduced. For example, in some embodiments, when SCS is equal to 240kHz, the value of SMTC is located in set 1; when SCS is equal to 480kHz, the value of SMTC is located in set 2; when SCS is equal to 960kHz, the value of SMTC is located in set 3. When SCS is equal to 1920kHz, the value of SMTC is in set 4.
  • the values in set 1, set 2, set 3, and set 4 can be values in any one or more of the following multiple sets: [1ms, 2ms, 3ms], [0.5ms, 1ms, 2ms, 3ms], [0.5ms, 1ms, 2ms], [0.25ms, 0.5ms, 1ms, 2ms, 3ms], [0.25ms, 0.5ms, 1ms, 2ms], [0.25ms, 0.5ms, 1ms, 1ms], and [ 0.5ms, 1ms, 1.5ms].
  • Set 1, set 2, set 3, and set 4 may include the same value.
  • set 1 can be [1ms, 2ms, 3ms]
  • set 2 can be [0.5ms, 1ms, 2ms]
  • set 3 can be [0.25ms, 0.5ms, 1ms].
  • Set 1, set 2, set 3, and set 4 respectively include different values, which can reduce the difficulty of protocol design and save the overhead and resources for configuring measurement interval parameters.
  • the base station can also configure the length of the SMTC according to the frequency band or SCS, and the values of different carriers or frequency bands correspond to different values of the SMTC.
  • the length of the SMTC can be reduced. For example, in some embodiments, when the carrier or frequency band is FR3, the value of SMTC is located in set 1; when the carrier or frequency band is FR2, the value of SMTC is located in set 3.
  • the value in set 1 can be any one or more of the following multiple sets: [1ms, 2ms, 3ms], [0.5ms, 1ms, 2ms, 3ms], [0.5ms, 1ms , 2ms], [0.25ms, 0.5ms, 1ms, 2ms, 3ms], [0.25ms, 0.5ms, 1ms, 2ms], [0.25ms, 0.5ms, 1ms, 1.5ms] .
  • the value of set 2 can be [1ms, 2ms, 3ms, 4ms, 5ms].
  • Set 1 and set 2 respectively include different values, which can reduce the difficulty of protocol design and save the overhead and resources of configuring measurement interval parameters.
  • Table 6 below shows another possible measurement interval configuration pattern, that is, shows possible values of MGL and MGRP.
  • Table 6 has more possible values for MGL and MGRP when the interval pattern index is 24-35, that is, the value of MGL can be 1.25 ms.
  • the value of MGL can also be 1ms, etc., and no examples are given here.
  • the interval pattern index [24-35] can be used to configure the MGL and MGRP to reduce the value of the measurement gap and reduce the resource overhead of the measurement.
  • the frequency band configured by the serving cell is FR3
  • the maximum value of MGL can be 1.25ms, that is, the interval pattern index [24-35] in Table 6 can be used to configure the measurement interval parameters.
  • the base station configures the secondary measurement interval parameters according to the interval pattern index [24-35] in Table 6, which can be used to measure any of the following cells: the cell with the frequency band is FR3, the cell with the frequency band is FR3 and FR2, and the frequency band is FR3 and FR1 cell, frequency band FR3 and E-UTRA cell, or frequency band FR3 and FR1 and FR2 cell, frequency band FR3 and FR2 and E-UTRA cell, frequency band FR3 and FR1 and E-UTRA cell, Or, the frequency band is a cell of FR3, FR1, FR2, and E-UTRA.
  • the set of possible values of the measurement interval configurable by the base station may be [1.25ms, 2.25ms, 3.25ms, 1.5ms, 4ms, 3ms, 3.5ms, 4.5ms, 5.5ms, 6ms].
  • the base station can configure the measurement interval to any value in set 1.
  • Set 1 can be [1.25ms, 2.25ms, 3.25ms], [1ms, 2.25ms, 3.25ms]], [1ms, 2ms, 3.25ms], [1ms, 1.5ms, 3.25ms], [1.25ms, 1.5 ms, 3.25ms], [1.25ms, 2.5ms, 3.25ms], [1.25ms, 2.5ms, 3.25ms], etc., that is, the measurement interval is less than or equal to 3.25ms, which can be used in scenarios where the SCS is greater than or equal to 240kHz, And can reduce the resource overhead of measurement.
  • the base station may configure the measurement interval to any value in set 2.
  • Set 2 can be [1.25ms, 2.25ms, 3.25ms, 1.5ms, 3ms, 3.5ms, 4ms, 5.5ms, 6ms], [1ms, 2.25ms, 3.25ms, 1.5ms, 3ms, 3.5ms, 4ms, 5.5 ms, 6ms], [1ms, 2ms, 3.25ms, 1.5ms, 3ms, 3.5ms, 4ms, 5.5ms, 6ms], [1.5ms, 2.25ms, 3.25ms, 1.5ms, 3ms, 3.5ms, 4ms, 5.5 ms, 6ms], [1ms, 2ms, 1.5ms, 3ms, 3.5ms, 4ms, 5.5ms, 6ms], [1ms, 2ms, 1.5ms, 3ms, 3.5ms, 4ms, 5.5ms, 6m
  • some possible smaller values of the measurement interval are added to the set of existing measurement intervals, which can not only ensure that the measurement is greater than or equal to 240kHz, reduce the waste of measurement resources, but also be compatible with those less than or equal to 120kHz.
  • the configuration of the measurement interval in the case.
  • the base station can also configure the length of SMTC according to the value of SCS, and different values of SCS correspond to different values of SMTC.
  • the length of the SMTC can be reduced. For example, in some embodiments, when SCS is equal to 240kHz, the value of SMTC is located in set 1; when SCS is equal to 480kHz, the value of SMTC is located in set 2; when SCS is equal to 960kHz, the value of SMTC is located in set 3. When SCS is equal to 1920kHz, the value of SMTC is in set 4.
  • the values in set 1, set 2, set 3, and set 4 can be values in any one or more of the following multiple sets: [1ms, 2ms, 3ms], [0.5ms, 1ms, 2ms, 3ms], [0.5ms, 1ms, 2ms], [0.25ms, 0.5ms, 1ms, 2ms, 3ms], [0.25ms, 0.5ms, 1ms, 2ms], [0.25ms, 0.5ms, 1ms, 1ms], and [ 0.5ms, 1ms, 1.5ms].
  • Set 1, set 2, set 3, and set 4 may include the same value.
  • set 1 may be [1ms, 2ms, 3ms]
  • set 2 may be [0.5ms, 1ms, 2ms]
  • set 3 may be [0.25ms, 0.5ms, 1ms].
  • Set 1, set 2, set 3, and set 4 respectively include different values, which can reduce the difficulty of protocol design and save the overhead and resources for configuring measurement interval parameters.
  • S302 The base station sends measurement configuration information to the terminal, and the terminal receives the measurement configuration information.
  • the base station may send measurement configuration information to the terminal, and the measurement configuration information may include the measurement interval parameters configured by the base station for the terminal. For example, if the base station configures the measurement interval and measurement interval period for the terminal, the measurement configuration information includes the measurement interval and the measurement interval period. If the base station also configures the offset value of the measurement interval for the terminal, the measurement configuration information also includes the offset of the measurement interval. Shift value.
  • the base station can send the measurement interval and the measurement interval period to the terminal through a message, which can save transmission resources. Or the base station can also send the measurement interval and the measurement interval period to the terminal respectively through different messages. If the base station separately sends the measurement interval and the measurement interval period to the terminal through different messages, the base station can send the measurement interval and the measurement interval period at the same time, or send the measurement interval first, and then the measurement interval period.
  • the measurement configuration information may be carried in a physical broadcast channel (physical broadcast channel, PBCH), remaining minimum system information (RMSI), system information block (system information block, SIB) 1, SIB2, SIB3, any of the media access control element (MAC-CE), downlink control information (DCI), radio resource control (RRC), and system messages .
  • PBCH physical broadcast channel
  • RMSI remaining minimum system information
  • SIB system information block
  • SIB2 SIB3
  • MAC-CE media access control element
  • DCI downlink control information
  • RRC radio resource control
  • the terminal device After the terminal device receives the measurement configuration information, it can start the corresponding measurement interval according to the measurement configuration information, which is described below.
  • the terminal determines the time information of the measurement interval according to the measurement interval parameter included in the measurement configuration information and the time length of the synchronization signal measurement window, and measures the reference signal to be measured.
  • the measurement interval parameters may include the measurement interval, the measurement interval period, and the offset of the measurement interval, among which the measurement interval, the measurement interval period, and the offset of the measurement interval can be used to determine the time information of the measurement interval. It should be noted that both the base station and the terminal need to determine the time information of the measurement interval. After determining the time information of the measurement interval, the base station can know when the terminal starts the measurement interval, and the terminal can also start the measurement interval at a certain location.
  • the start of the measurement interval of the terminal in the embodiments of this application may mean that the terminal stops sending and receiving data in the working frequency of the serving cell of the terminal, that is, the terminal stops working in the working frequency of the serving cell of the terminal and starts to Measure the reference signal at other frequency points.
  • the terminal can choose by itself.
  • the base station indicates to the terminal in advance multiple frequency points other than the working frequency band (or center frequency point) of the serving cell of the terminal, and after the terminal starts a measurement interval, it can select at least one of the frequency points indicated by the base station in the measurement interval. Measure the reference signal to be measured in the frequency point.
  • the terminal can determine the time information of the measurement interval according to the length of the measurement interval, the period of the measurement interval, the offset of the measurement interval, etc., for example, the offset of the measurement interval is 0, then the start position of the measurement interval and the period of the measurement interval The starting position is the same position.
  • the measurement interval of the next cycle is only one cycle apart from the measurement interval of this cycle. If the offset of the measurement interval is ⁇ , the measurement interval of the next cycle is separated from the measurement interval of this cycle by one (period + ⁇ ).
  • the terminal After determining the time information of the measurement interval, the terminal starts the measurement interval at the start position of the determined measurement interval, and measures the reference signal in the started measurement interval.
  • the technical solution provided by the embodiments of the present application can be configured with a smaller measurement interval length.
  • the measurement interval can be configured with a length of 1.25 ms, which can save the resource overhead of the terminal for cell measurement as much as possible. .
  • the methods provided in the embodiments of the present application are introduced from the perspective of the terminal, the network device, and the interaction between the terminal and the network device.
  • the terminal and the network device may include a hardware structure and/or software module, and the above functions are realized in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 4 shows a schematic structural diagram of a communication device 400.
  • the communication device 400 can correspondingly implement the functions or steps implemented by the terminal or the network device in the foregoing method embodiments.
  • the communication device may include a sending unit 410 and a receiving unit 420, and a processing unit 430.
  • a storage unit may also be included, and the storage unit may be used to store instructions (codes or programs) and/or data.
  • the sending unit 410, the receiving unit 420, and the processing unit 430 may be coupled with the storage unit.
  • the processing unit 430 may read instructions (codes or programs) and/or data in the storage unit to implement corresponding methods.
  • the above-mentioned units can be set independently, or can be partially or fully integrated.
  • the sending unit 410 and the receiving unit 420 can be integrated and are called a transceiver unit.
  • the communication device 400 can correspondingly implement the behaviors and functions of the terminal in the foregoing method embodiments.
  • the communication device 400 may be a terminal, or a component (such as a chip or a circuit) applied to the terminal.
  • the sending unit 410 and the receiving unit 420 may be used to perform all receiving or sending operations performed by the terminal in the embodiment shown in FIG. 3, such as S302 in the embodiment shown in FIG. Other processes of the described technology.
  • the processing unit 430 is configured to perform all operations performed by the terminal in the embodiment shown in FIG. 3 except for receiving and sending operations, such as S303 in the embodiment shown in FIG. 3, and/or used to support this text. Other processes of the described technique.
  • the transceiver unit is used to receive measurement configuration information from a network device, the measurement configuration information is used to configure measurement interval parameters and the length of the synchronization signal measurement window, and the measurement interval parameters are used for terminal measurement
  • the time length of the synchronization signal measurement window is used to determine the cell measurement time
  • the measurement interval parameter and the time length of the synchronization signal measurement window are configured according to the subcarrier interval SCS
  • the processing unit 430 is configured to determine a measurement interval according to the measurement configuration information, and measure the to-be-measured reference signal according to the measurement interval.
  • the SCS is greater than or equal to 240kHz
  • the measurement interval is a first value
  • the first value is in the first set.
  • the first set may include 1ms, 1.25ms, 1.5ms, At least two values among 2ms, 2.25ms, 2.5ms, 3ms, 3.25ms, and 3.5ms.
  • the first set may be any one of the following sets:
  • the value of the first set may further include one or more of the following values:
  • the at least two SCSs include a first SCS and a second SCS, and the value in the first set corresponding to the first SCS corresponds to the second SCS
  • the values in the first set may all be different.
  • the measurement interval parameter further includes a measurement interval period, and the value of the measurement interval period may be in the range of [20ms, 40ms, 80ms, 160ms].
  • the communication device 400 can correspondingly implement the behaviors and functions of the network device in the foregoing method embodiments.
  • the communication device 400 may be a network device, or a component (such as a chip or a circuit) applied to the network device.
  • the sending unit 410 and the receiving unit 420 may be used to perform all receiving or sending operations performed by the network device in the embodiment shown in FIG. 3, such as S302 in the embodiment shown in FIG. 3, and/or used to support this text Other processes of the described technique.
  • the processing unit 430 is configured to perform all operations performed by the network device in the embodiment shown in FIG. 3 except for receiving and sending operations, such as S301 in the embodiment shown in FIG. 3, and/or for supporting Other processes of the technique described in this article.
  • the processing unit 430 may be used to generate measurement configuration information according to the subcarrier interval SCS, the measurement configuration information is used to configure the measurement interval parameter and the time length of the synchronization signal measurement window, and the measurement interval parameter is used
  • the terminal measures the reference signal to be measured, the time length of the synchronization signal measurement window is used to determine the cell measurement time; the transceiver unit is used to send the measurement configuration information to the terminal.
  • the value of the measurement interval may be the first value, which is located in the first set, and the first set may be from 1ms, 1.25ms, A set consisting of at least two values of 1.5ms, 2ms, 2.25ms, 2.5ms, 3ms, 3.25ms, and 3.5ms.
  • the first set may be any one of the following sets: [1.5ms, 2.5ms, 3.5ms]; or [1ms, 2ms, 3ms]; or [1.25ms, 2.25ms, 3.25 ms].
  • the value of the first set may further include one or more of the following values: 4ms, 5.5ms, or 6ms.
  • the at least two SCSs include a first SCS and a second SCS, and the value in the first set corresponding to the first SCS corresponds to the second SCS.
  • the values in the first set may all be different.
  • the measurement interval parameter further includes a measurement interval period, and the value of the measurement interval period may be in the range of [20ms, 40ms, 80ms, 160ms].
  • the communication device 500 may be a terminal, which can implement the function of the terminal in the method provided in the embodiment of this application, or the communication device 500 may be a network device, which can Realize the function of the network device in the method provided in the embodiment of this application; the communication device 500 may also be a device that can support the terminal to implement the corresponding function in the method provided in the embodiment of this application, or can support the network device to implement the function provided in the embodiment of this application The device corresponding to the function in the method.
  • the communication device 500 may be a chip system. In the embodiments of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 500 may include a communication interface 510 for communicating with other devices through a transmission medium, so that the device used in the communication device 500 can communicate with other devices.
  • the communication device when the communication device is a terminal, the other device is a network device; or, when the communication device is a network device, the other device is a terminal.
  • the communication interface 510 may specifically be a transceiver.
  • the foregoing sending unit 410 and receiving unit 420 may be transceivers, and the transceivers are integrated in the communication device 500 to form a communication interface 510.
  • the communication device 500 further includes at least one processor 520, and the processor 520 can use the communication interface 510 to send and receive data for implementing or supporting the communication device 500 to implement the functions of the terminal or network device in the method provided in the embodiments of the present application.
  • the communication device 500 can correspondingly implement the behaviors and functions of the terminal in the foregoing method embodiments.
  • the communication interface 510 may be used to perform all receiving or sending operations performed by the terminal in the embodiment shown in FIG. 3, such as S302 in the embodiment shown in FIG. 3, and/or for supporting the technology described herein Other processes.
  • at least one processor 520 is configured to perform all operations performed by the terminal in the embodiment shown in FIG. 3 except for receiving and sending operations, such as S303 in the embodiment shown in FIG. 3, and/or for Other processes that support the technology described in this article.
  • the communication device 500 can correspondingly implement the behaviors and functions of the network equipment in the foregoing method embodiments.
  • the communication interface 510 may be used to perform all receiving or sending operations performed by the network device in the embodiment shown in FIG. 3, such as S302 in the embodiment shown in FIG. 3, and/or used to support the technology described herein Other processes.
  • at least one processor 520 is configured to perform all operations performed by the network device in the embodiment shown in FIG. 3 except for receiving and sending operations, such as S301 in the embodiment shown in FIG. 3, and/or using To support other processes that support the techniques described in this article.
  • the communication device 500 may further include at least one memory 530 for storing program instructions and/or data.
  • the memory 530 and the processor 520 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 520 may cooperate with the memory 530 to operate.
  • the processor 520 may execute program instructions and/or data stored in the memory 530, so that the communication device 500 implements a corresponding method. At least one of the at least one memory may be included in the processor.
  • the specific connection medium between the aforementioned communication interface 510, the processor 520, and the memory 530 is not limited in the embodiment of the present application.
  • the memory 530, the processor 520, and the communication interface 510 are connected by a bus 540 in FIG. 5, and the bus is represented by a thick line in FIG. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used to represent in FIG. 5, but it does not mean that there is only one bus or one type of bus.
  • the processor 520 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can be implemented Or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 530 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory (volatile memory). For example, random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the communication device in the foregoing embodiment may be a terminal or a network device or a circuit, or a chip applied to a terminal or a network device, or other combination devices, components, etc. having the functions of the foregoing terminal or network device.
  • the transceiving unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver unit may be an input/output interface of the chip system
  • the processing module may be a processor of the chip system.
  • Fig. 6 shows a schematic structural diagram of a simplified communication device. It is easy to understand and easy to illustrate.
  • the communication device takes the network device as a base station as an example.
  • the base station may be applied to the system shown in FIG. 2, and may be the network device in FIG. 2, which performs the functions of the network device in the foregoing method embodiment.
  • the communication device 600 may include one or more radio frequency units, such as a remote radio unit (RRU) 610 and one or more active antenna units (AAU) (also known as digital units, digital units). unit, DU)620.
  • RRU remote radio unit
  • AAU active antenna units
  • unit, DU unit
  • AAU can be considered as a combination of a baseband unit (BBU) and an antenna, that is, a structure that integrates radio frequency functions with the antenna.
  • BBU baseband unit
  • the antenna port of the AAU can be connected to an external RRU or a built-in radio frequency unit.
  • the RRU 610 may be called a communication module, which corresponds to the sending unit 410 and the receiving unit 420 in FIG. 4.
  • the communication module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include At least one antenna 611 and radio frequency unit 612.
  • the RRU 610 part is mainly used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the AAU 620 part is mainly used for baseband processing, base station control, and so on.
  • the RRU 610 and the AAU 620 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the AAU 620 is the control center of the base station, and may also be called a processing module, which may correspond to the processing unit 430 in FIG. 4, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the AAU processing module
  • the AAU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing instruction information.
  • the AAU 620 may be composed of one or more single boards, and multiple single boards may jointly support a single access standard radio access network (such as an LTE network), or can support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the AAU 620 further includes a memory 621 and a processor 622.
  • the memory 621 is used to store necessary instructions and data.
  • the processor 622 is used to control the base station to perform necessary actions, for example, it is used to control the base station to perform the operation process of the network device in the above method embodiment, for example, the processor 622 is used to execute the network device in the embodiment shown in FIG.
  • the memory 621 and the processor 622 may serve one or more single boards.
  • the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor.
  • necessary circuits can be provided on each board.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal or a circuit.
  • the communication device can be used to perform the actions performed by the terminal in the foregoing method embodiments.
  • Figure 7 shows a simplified structural diagram of a terminal. It is easy to understand and easy to illustrate.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the vehicle-mounted unit, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only one memory and processor are shown in FIG. 7. In an actual device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the device, and the processor with the processing function can be regarded as the processing unit of the device.
  • the device includes a transceiver unit 710 and a processing unit 720.
  • the transceiving unit 710 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 720 may also be referred to as a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 710 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 710 can be regarded as the sending unit, that is, the transceiving unit 710 includes a receiving unit and a sending unit.
  • the transceiving unit 710 may also be referred to as a transceiver, a transceiver, or a transceiving circuit or the like.
  • the receiving unit may sometimes be referred to as a receiver, a receiver, or a receiving circuit.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 710 is used to perform the sending and receiving operations on the terminal side in the foregoing method embodiment
  • processing unit 720 is used to perform other operations on the terminal in addition to the transceiving operation in the foregoing method embodiment.
  • the transceiving unit 710 may be used to perform S302 in the embodiment shown in FIG. 3, and/or used to support other processes of the technology described herein.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or microprocessor or integrated circuit.
  • the device can perform functions similar to the processing unit 430 in FIG. 4.
  • the device includes a processor 810, a data sending processor 820, and a data receiving processor 830.
  • the processing unit 430 in the foregoing embodiment may be the processor 810 in FIG. 8 and completes corresponding functions.
  • the processing unit 430 in the foregoing embodiment may be the sending data processor 820 and/or the receiving data processor 830 in FIG. 8.
  • the channel encoder and the channel decoder are shown in FIG. 8, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the communication device 900 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as a modulation subsystem therein.
  • the modulation subsystem may include a processor 903 and an interface 904.
  • the processor 903 completes the functions of the aforementioned processing unit 430
  • the interface 904 completes the aforementioned functions of the sending unit 410 and the receiving unit 420.
  • the modulation subsystem includes a memory 906, a processor 903, and a program stored in the memory 906 and running on the processor.
  • the processor 903 executes the program to implement the terminal device in the foregoing method embodiment. method.
  • the memory 906 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the communication device 900, as long as the memory 906 can be connected to the The processor 903 is sufficient.
  • the embodiments of the present application also provide a communication system.
  • the communication system includes network equipment and terminals, or may also include more terminals and access network equipment.
  • the communication system includes network equipment and terminals for realizing the above-mentioned related functions of FIG. 3.
  • the network devices are respectively used to implement the functions of the above-mentioned related network part of FIG. 3.
  • the terminal is used to implement the functions of the terminal related to FIG. 3 described above.
  • the network device may execute S301 and S302 in the embodiment shown in FIG. 3, and the terminal may execute S302 and S303 in the embodiment shown in FIG. 3.
  • An embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method executed by the terminal or network device in FIG. 3.
  • the embodiment of the present application also provides a computer program product, including computer program code, which when the computer program code runs on a computer, causes the computer to execute the method executed by the terminal or network device in FIG. 3.
  • the embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory, which is used to implement the functions of the terminal or the network device in the foregoing method.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • An embodiment of the present application also provides a communication device, including a processor and an interface; the processor is configured to execute the information processing method described in any of the foregoing method embodiments.
  • the aforementioned communication device may be a chip, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software, At this time, the processor may be a general-purpose processor, which is realized by reading the software code stored in the memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • a computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, hard disk, Magnetic tape), optical media (for example, digital video disc (DVD for short)), or semiconductor media (for example, SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种测量配置方法及通信装置,该方法包括网络设备根据子载波间隔SCS生成测量配置信息,并向终端发送所述测量配置信息,其中,测量配置信息用于配置测量间隔参数和同步信号测量窗口的时间长度;终端根据测量间隔参数和同步信号测量窗口的时间长度确定测量间隔的时间信息,并根据测量间隔的时间信息测量待测量的参考信号。由于网络设备可根据子载波间隔配置测量间隔,所以在大子载波间隔的应用场景中,网络设备可配置更小的测量间隔,从而减小测量的资源开销。

Description

一种测量配置方法及通信装置
相关申请的交叉引用
本申请要求在2020年06月05日提交中国专利局、申请号为202010505019.7、申请名称为“一种测量配置方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种测量配置方法及通信装置。
背景技术
由于终端的移动性,终端可能从一个小区的覆盖范围移动到另一个小区的覆盖范围,为了保证终端的业务连续性和通信质量,终端会进行小区重选(reselection)或者小区切换(handover)。小区重选和小区切换都需要终端进行小区测量,也就是终端进行无线资源管理(radio resource management,RRM)测量。
网络设备可使用同步信号块(synchronization signal block,SSB)或者信道状态信息参考信号(channel state information reference signal,CSI-RS)进行相邻小区的测量。请参见图1,终端在测量相邻小区的过程当中,需要从当前所在小区切换到与当前所在小区相邻的小区(也称为相邻小区或者邻区)所在的频点上进行测量。例如,终端工作在频点为f1的小区1上,进行数据的接收,在进行小区测量的过程当中,终端需要切换到频率点在f2的小区2上进行测量,当终端完成测量后,终端需要从该频点f2回到f1上,也就是从小区2切换到小区1上。终端完成整个小区测量过程所需要的时间称为测量间隔(gap),也就是终端从小区1切换到小区2的时间、终端进行小区测量的时间,以及终端从小区2切换到小区1的时间之和。
小区测量的时间一般为基于同步信号(synchronisation signal,SS)块的RRM测量定时配置(SS block based RRM measurement timing configuration,SMTC)的持续时间。随着数据的子载波宽度的增大,SSB的持续时间长度减小,例如数据的子载波宽度为240KHz,SSB的持续时间为2.25ms,数据的子载波宽度为480KHz,SSB的持续时间为1.125ms。第五代移动通信技术(the 5th generation,5G)新空口(new radio,NR)系统可应用于大于或等于52.6GHz的载波频段,由于载波频率更高,所以支持更大的子载波间隔,例如可支持的子载波宽度包括240KHz、480KHz、960KHz、1920KHz、3840KHz。这种情况下,如果沿用120KHz以下配置的gap,显然测量时间较长,导致资源的浪费。
发明内容
本申请实施例提供一种测量配置方法及通信装置,在大子载波间隔的应用场景中,提供更小的gap配置,以尽量节约资源。
第一方面,提供一种测量配置方法,该第一方面的方法可由第一装置执行,第一装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。 示例性地,通信设备可以为网络设备。该方法包括:网络设备根据子载波间隔SCS生成测量配置信息,并向终端发送所述测量配置信息;其中,测量配置信息用于配置测量间隔参数和同步信号测量窗口的时间长度,测量间隔参数用于终端测量待测量的参考信号,同步信号测量窗口的时间长度用于确定小区测量时间。
第二方面,提供一种测量配置方法,该第一方面的方法可由第二装置执行,第二装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,通信设备可以为终端。该方法包括:终端接收来自网络设备的测量配置信息,该测量配置信息用于配置测量间隔参数和同步信号测量窗口的时间长度,其中,测量间隔参数用于终端测量待测量的参考信号,同步信号测量窗口的时间长度用于确定小区测量时间,测量间隔参数和所述同步信号测量窗口的时间长度是根据子载波间隔SCS配置的;终端根据所述测量间隔参数和所述同步信号测量窗口的时间长度确定测量间隔,并根据测量间隔测量所述待测量的参考信号。
在第一方面和第二方面的方案中,网络设备可根据SCS配置测量间隔参数和同步信号测量窗口的时间长度。换句话说,测量间隔参数和同步信号测量窗口的时间长度与SCS相关,可保证SCS大于或等于240KHz的情况下,配置的测量间隔更小。即可保证SCS大于或等于240KHz的情况下所配置的测量间隔,又可保证SCS小于120KHz以下的SCS所配置的测量间隔,从而节约进行小区测量的资源。
由于系统应用于大于或等于52.6GHz的情况下,SCS大于或等于240KHz,所以网络设备根据SCS生成测量配置信息,也可以认为是,网络设备根据频段生成测量配置信息,即测量间隔参数和同步信号测量窗口的时间长度是根据频段配置的。例如频段可以是位于0~7.125GHz的FR1、位于7.125GHz~52.6GHz的FR2以及位于52.6GHz-100GHz的FR3等等。
在一种可能的实现方式中,SCS大于或等于240kHz时,测量间隔参数可以包括测量间隔,该测量间隔的取值为第一取值,第一取值位于第一集合,第一集合可以包括1ms、1.25ms、1.5ms、2ms、2.25ms、2.5ms、3ms、3.25ms和3.5ms中的至少两个取值。该方案中,即测量间隔小于或等于3.5ms时,在SCS大于或等于240kHz的场景中,可减少测量的资源开销。
在一种可能的实现方式中,所述第一集合可以为如下任意一个集合:
[1.5ms,2.5ms,3.5ms];或者,[1ms,2ms,3ms];或者,[1.25ms,2.25ms,3.25ms]。
在一种可能的实现方式中,所述第一集合的取值还可以包括如下取值的一种或多种:4ms、5.5ms或6ms。也就是,第一集合的取值可包括:1ms、1.25ms、1.5ms、2ms、2.25ms、2.5ms、3ms、3.25ms和3.5ms,以及4ms、5.5ms和6ms中的一种或多种。该方案可以认为是在小于或等于120kHz的情况下的测量间隔,即在已有的测量间隔的集合中增加了测量间隔的一些可能的较小取值,既可以保证大于或等于240kHz的情况下,降低测量的资源浪费,又可以兼容小于或等于120kHz的情况下的测量间隔的配置。
在一种可能的实现方式中,可能存在至少两种SCS,所述至少两种SCS包括第一SCS和第二SCS,所述第一SCS对应的第一集合中的取值与所述第二SCS对应的第一集合中的取值可以均不同。该方案中,第一SCS对应的第一集合和第二SCS对应的第一集合分别包括不同的值,可降低协议设计的难度,节省配置测量间隔参数的开销和资源。
在一种可能的实现方式中,测量间隔参数还包括测量间隔周期,所述测量间隔周期的 取值可以位于[20ms,40ms,80ms,160ms]范围内,以利于兼容现有协议的设计。
第三方面,本申请实施例还提供一种通信装置,该通信装置具有实现上述第一方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一种可能的实现方式中,通信装置具体可以包括收发单元和处理单元,所述处理单元,用于根据子载波间隔SCS生成测量配置信息,所述测量配置信息用于配置测量间隔参数和同步信号测量窗口的时间长度,所述测量间隔参数用于终端测量待测量的参考信号,所述同步信号测量窗口的时间长度用于确定小区测量时间;所述收发单元,用于向所述终端发送所述测量配置信息。
在一种可能的实现方式中,所述SCS大于或等于240kHz时,所述测量间隔参数可以包括测量间隔,所述测量间隔的取值为第一取值,所述第一取值位于第一集合,所述第一集合可以包括1ms、1.25ms、1.5ms、2ms、2.25ms、2.5ms、3ms、3.25ms和3.5ms中的至少两个取值。
示例性的,所述第一集合可以为如下任意一个集合:
[1.5ms,2.5ms,3.5ms];或者,[1ms,2ms,3ms];或者,[1.25ms,2.25ms,3.25ms]。
在一种可能的实现方式中,所述第一集合的取值还可以包括如下取值中的一个或多个:
4ms、5.5ms或6ms。
在一种可能的实现方式中,可能存在至少两种SCS,所述至少两种SCS包括第一SCS和第二SCS,所述第一SCS对应的第一集合中的取值与所述第二SCS对应的第一集合中的取值可以均不同。
在一种可能的实现方式中,所述测量间隔参数还包括测量间隔周期,所述测量间隔周期的取值可以位于[20ms,40ms,80ms,160ms]范围内。
关于第三方面或第三方面的各种可能的实施方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第四方面,本申请实施例还提供一种通信装置,该通信装置具有实现上述第二方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一种可能的实现方式中,通信装置可以具体包括收发单元和处理单元,其中所述收发单元,用于接收来自网络设备的测量配置信息,所述测量配置信息用于配置测量间隔参数和同步信号测量窗口的时间长度,所述测量间隔参数用于终端测量待测量的参考信号,所述同步信号测量窗口的时间长度用于确定小区测量时间,所述测量间隔参数和所述同步信号测量窗口的时间长度是根据子载波间隔SCS配置的;所述处理单元,用于根据所述测量配置信息确定测量间隔,并根据所述测量间隔测量所述待测量的参考信号。
在一种可能的实现方式中,所述SCS大于或等于240kHz时,所述测量间隔的取值为第一取值,所述第一取值位于第一集合,所述第一集合可以包括1ms、1.25ms、1.5ms、2ms、2.25ms、2.5ms、3ms、3.25ms和3.5ms中的至少两个取值。
在一种可能的实现方式中,所述第一集合可以为如下任意一个集合:
[1.5ms,2.5ms,3.5ms];或者,[1ms,2ms,3ms];或者,[1.25ms,2.25ms,3.25ms]。
在一种可能的实现方式中,所述第一集合的取值还可以包括如下取值中的一个或多个:
4ms、5.5ms或6ms。
在一种可能的实现方式中,可能存在至少两种SCS,所述至少两种SCS包括第一SCS 和第二SCS,所述第一SCS对应的第一集合中的取值与所述第二SCS对应的第一集合中的取值可能均不同。
在一种可能的实现方式中,所述测量间隔参数还包括测量间隔周期,所述测量间隔周期的取值可以位于[20ms,40ms,80ms,160ms]范围内。
关于第四方面或第四方面的各种可能的实施方式所带来的技术效果,可参考对于第二方面或第二方面的各种可能的实施方式的技术效果的介绍。
第五方面,本申请实施例还提供一种通信装置,该通信装置可以为上述实施例中第三方面或第四方面中的通信装置,或者为设置在上述第三方面或第四方面中的通信装置中的芯片。该通信装置可以包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令或者数据,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令或数据时,使通信装置可以执行上述方法实施例中由终端或网络设备所执行的方法。
应理解,该通信接口可以是通信装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现,或者,如果通信装置为设置在网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。该收发器用于该通信装置与其它设备进行通信。示例性地,当该通信装置为终端时,该其它设备为网络设备;或者,当该通信装置为网络设备时,该其它设备为终端。
第六方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第三方面或第四方面中的通信装置执行的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第七方面,本申请实施例还提供一种通信系统,所述通信系统包括第三方面所述的通信装置和第四方面所述的通信装置。
第八方面,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,可以实现上述各方面中由终端执行的方法;或实现上述各方面中由网络设备执行的方法。
第九方面,还提供一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由终端执行的方法被执行,或使得上述各方面中由网络设备执行的方法被执行。
上述第五方面至第九方面及其实现方式的有益效果可以参考对第一方面或第二方面的方法及其实现方式的有益效果的描述,这里不再重复赘述。
附图说明
图1为本申请实施例提供的小区测量过程示意图;
图2为本申请实施例的一种应用场景示意图;
图3为本申请实施例提供的测量配置方法的流程图;
图4为本申请实施例提供的通信装置的一种结构示意图;
图5为本申请实施例提供的通信装置的另一种结构示意图;
图6为本申请实施例提供的一示例通信装置的另一种结构示意图;
图7为本申请实施例提供的另一通信装置的一种结构示意图;
图8为本申请实施例提供的另一通信装置的又一种结构示意图;
图9为本申请实施例提供的另一通信装置的再一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
下文所描述的本申请实施例的技术方案可以应用于如图2所示的通信系统,该通信系统可以包括网络侧设备和与网络侧设备通信的用户设备(user equipment,UE)。图2是该通信系统的一个例子,图2所示的通信系统包括一个网络侧设备和与其通信的1个用户设备,实际上该通信系统可以包括多个用户设备,本申请实施例对此不作限制。
其中,网络侧设备可以是能和用户设备通信的设备,也称为网络设备。网络设备可以是接入网设备,接入网设备也可以称为无线接入网(radio access network,RAN)设备,是一种为终端设备提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、未来移动通信系统中的基站或WiFi系统中的接入点等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、车载设备以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备等。
用户设备,也称为终端装置或者终端,又或者终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端装置可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端装置可以包括用户设备(user equipment,UE)、无线终端装置、移动终端装置、设备到设备通信(device-to-device,D2D)终端装置、V2X终端装置、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端装置、物联网(internet of things,IoT)终端装置、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、飞行器(如无人机、热气球、民航客机等)或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端装置的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,放置或安装在车辆上的车载装置还可以包括可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、 服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
由于终端的移动性,终端可能从一个小区的覆盖范围移动到另一个小区的覆盖范围,为了保证终端的业务连续性和通信质量,终端会进行小区重选(reselection)或者小区切换(handover)。小区重选和小区切换都需要终端进行小区测量,也就是终端进行RRM测量。
网络设备可将SSB或者CSI-RS作为波束信号进行相邻小区的测量。网络设备可配置测量gap,例根据所配置的测量gap进行RRM测量。例如网络设备可以配置SMTC的周期、SMTC的持续时间,以及SMTC的偏移值,终端可根据SMTC的周期、SMTC的持续时间,以及SMTC的偏移值确定小区测量时间。进而终端根据小区测量时间,以及测量切换时间确定测量gap。例如在第三代移动通信标准化伙伴项目(3rd generation partnership project,3GPP)的第15个版本的38系列协议定义的过程中,高频段的情况下,单个测量切换时间定义为0.25ms,低频段的情况下,单个测量切换时间为0.5ms。
当前通信系统,例如长期演进(long term evolution,LTE)系统应用于小于52.6GHz的载波频段。数据的子载波宽度(也可称为子载波间隔(subcarrier spaceing,SCS))可以为15KHz、30KHz、60KHz、120KHz。SCS是正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。关于SCS可参考如下的表1:
表1
μ Δf=2 μ×15[kHz]
0 15
1 30
2 60
3 120
4 240
其中,μ用于指示子载波间隔,例如,μ=0时,子载波间隔为15kHz,μ=1时,子载波间隔为30kHz。在NR系统中,可支持大于或等于52.6GHz的载波频段,由于载波频率更高,所以支持更大的子载波间隔,例如可支持的子载波的宽度可包括240KHz、480KHz、960KHz、1920KHz、3840KHz等。
不同的子载波间隔对应的一个时隙的长度是不同的,15kHz的子载波间隔对应的一个时隙的长度为0.5ms,60kHz的子载波间隔对应的一个时隙的长度为0.125ms,等等。从这个角度来说,μ可以认为是确定一个OFDM子载波信号的频域宽度和时域长度的参数。在NR系统中,引入了“Numerology”用于确定OFDM子载波信号的频域宽度和时域宽度,其中,μ可以认为是Numerology的配置索引,所以也可以认为NR系统支持多种Numerology。 为了便于描述,下文中将Numerology称为参数集,即表示用于确定OFDM子载波信号的频域宽度和时域宽度的参数。
对于一个子载波,可配置一个SMTC。由于SSB是网络设备基于波束发送的,不同的波束对应不同的小区覆盖区域,也对应不同的SSB,所以不同的SSB可对应不同的SMTC。在LTE系统中,SMTC的周期可以是5ms,10ms,20ms,40ms,80ms,160ms,具体取值可以由系统消息进行配置。SMTC的持续时间可为1ms,2ms,3ms,4ms或5ms。SMTC的偏移值可以为{0,1,…,SMTC的周期-1}ms。随着数据的子载波宽度的增大,SSB的持续时间长度减小,例如数据的子载波宽度为240KHz,SSB的持续时间为2.25ms,数据的子载波宽度为480KHz,SSB的持续时间为1.125ms。
在一些实施例中,对于低频的测量,测量gap包括3ms,4ms或6ms;对于高频的测量,测量gap可为1.5ms,3.5ms或5.5ms。具体测量gap可通过如表2所述的测量pattern配置。
表2 测量gap的配置pattern
Figure PCTCN2021097975-appb-000001
且由于支持演进的通用陆面无线接入与新空口双连接(E-UTRA NR dual connectivity,EN-DC)架构的终端,可以具有两套收发系统。对于处于EN-DC架构下的终端,例如该终端的服务小区为LTE小区,如果该终端要对相应的NR小区进行测量,则如果LTE基站识别出该终端仅做异系统测量(即,仅测量NR小区,而不测量其他的LTE小区),并且所要测量的频率与当前的服务小区的频率属于终端支持的EN-DC频率组合,则LTE基站可以不为终端配置测量gap。具体的终端的测量gap配置可参考表3和表4,针对不同的频段配置不同的值。
其中,低频段位于0~7.125GHz的FR1(frequency range1,可记为FR1),较高频段位于7.125GHz~52.6GHz(frequency range2,可记为FR2),相对而言,大于52.6GHz-100GHz的频段记为FR3。E-UTRA表示LTE网络。non-NR RAT表示不是5G的网络,包含4G,3G和2G网络。从表3和表4中可以看出,当FR1测量FR1的时候,需要测量Gap;或者FR2测量FR2的时候需要测量gap,其他情况不需要测量gap。
表3 测量gap在5G和其他网络制式联合组网中的应用
Figure PCTCN2021097975-appb-000002
Figure PCTCN2021097975-appb-000003
表4 测量gap在5G独立组网中的应用
Figure PCTCN2021097975-appb-000004
在NR系统中,由于载波频率更高,所以支持更大的子载波间隔,例如可支持的子载波宽度包括240KHz、480KHz、960KHz、1920KHz、3840KHz。这种情况下,如果沿用120KHz以下配置的gap,显然测量时间较长,导致资源的浪费。
鉴于此,本申请实施例提供了一种测量配置方法及通信装置,在大于120KHz的SCS的应用场景下,配置更小的测量gap,以尽量节约系统资源。
本申请实施例提供的两种技术方案均可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)系统,如新无线(new radio, NR)系统,及下一代的通信系统,如6G系统等。当然,本申请实施例的技术方案也可以应用于其它的通信系统,只要该通信系统存在波束切换的需求即可。
下面结合附图对本申请实施例提供的方案进行详细介绍。
应理解,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c或a、b和c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一消息和第二消息,只是为了区分不同的消息,而并不是表示这两种消息的优先级、发送顺序或者重要程度等的不同。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
请参见图3,为本申请实施例提供的测量配置方法的一种流程示意图,在下文的介绍过程中,以该方法应用于图2所示的通信系统为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。为了便于介绍,在下文中,以该方法由网络设备和终端执行为例,且以网络设备是基站为例,也就是,以第一通信装置是终端,第二通信装置是基站为例。
具体的,本申请实施例提供的测量配置方法的流程描述如下。
S301、基站生成测量配置信息,所述测量配置信息用于配置测量间隔参数和同步信号测量窗口的时间长度,该测量间隔参数用于终端测量待测量的参考信号,该同步信号测量窗口的时间长度用于确定小区测量时间。
在本申请实施例中,待测量的参考信号可以包括SS和/或CSI-RS,当然还可能包括其他的参考信号。终端通过测量SS可以完成与小区的同步等工作。CSI-RS是基于小区的参考信号,可以用于信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indication,RI)等信息的测量。在一些实施例中,空闲(idle)态的终端和连接(connected)态的终端都可以基于SS进行测量,另外,连接态的终端除了可以基于SS进行测量之外,还可以基于CSI-RS进行测量。但终端在测量CSI-RS之前需要先通过测量SS来获取小区的同步,即获取小区的时间信息,否则终端无法知道CSI-RS的出现位置,无法进行测量。终端通过对SS的测量获取小区的时间信息,从而完成对后面出现的CSI-RS的测量。应理解,待测量的参考信号可以是所述基站发送的参考信号,还可以包括除所述基站之外的其他网络设备发送的参考信号。
测量间隔参数可包括测量gap的长度(MGL)和测量gap的周期(MGRP),以及测量 gap的时间提前量。基站可根据约定确定为终端配置测量间隔参数的取值,例如基站可配置测量间隔,也可配置测量间隔周期,还可以配置测量间隔的偏移值。需要说明的是,这里的约定可以是协议规定的,也可以是基站和终端之间的约定。
示例性的,该约定可以是服务小区配置的频段与测量间隔参数的取值的对应关系。例如,如下表5,示出了一种可能的测量间隔配置图案,即示出了MGL和MGRP的可能的取值。
表5 测量gap的配置pattern
Figure PCTCN2021097975-appb-000005
从表5和表2可以看出,表5相较于表2多了间隔图案索引为24-27时,MGL和MGRP的可能的取值,即MGL的取值可为2.5ms。当然在另一些实施例中,间隔图案索引为24-27 时,MGL的取值也可为2ms等,这里不再一一举例。
应理解,这里的SCS可以是发送参考信号的子载波宽度,如果SCS大于120kHz,例如SCS等于240kHz,也可以理解为服务小区配置的频段大于56.2GHz的情况下,如有采用间隔图案索引[0-23]配置MGL和MGRP,显然最终配置的测量gap的取值较大,会浪费测量的资源开销。为此,在本申请实施例中,可采用间隔图案索引[24-27]配置MGL和MGRP,以减小测量gap的取值,减少测量的资源开销。换句话说,在本申请实施例中,基站可根据SCS配置测量gap,即所述测量间隔与SCS相关。例如当SCS大于或等于240kHz,基站根据SCS配置的测量gap的最小取值为第一取值;当SCS小于或等于120kHz,基站根据SCS配置的测量gap的最小取值为第二取值,所述第一取值小于所述第二取值。也就是,SCS大于或等于240kHz相较于小于或等于120kHz,所配置的gap更小,从而可减少测量的资源开销。
在一些实施例中,当单个测量切换时间为0.5ms,服务小区配置的频段为FR3,MGL的最大值可为3.5ms,也就是可采用如表5中间隔图案索引[16-27]来配置测量间隔参数。基站根据表5中间隔图案索引[16-27]所配置从测量间隔参数,可用于测量如下多种小区中的任意一种小区:频段为FR3的小区,频段为FR3和FR2的小区、频段为FR3和FR1的小区、频段FR3以及E-UTRA的小区,或者频段为FR3以及FR1和FR2的小区、频段为FR3以及FR2和E-UTRA的小区、频段为FR3以及FR1和E-UTRA的小区,或者,频段为FR3、FR1、FR2以及E-UTRA的小区。基站可根据小区所在的频段来配置测量间隔,以尽量减少测量的资源开销。
示例性的,基站可配置测量间隔为第一集合中的任意一个值。该第一集合可以包括1ms、1.25ms、1.5ms、2ms、2.25ms、2.5ms、3ms、3.25ms和3.5ms中的至少两个取值。换句话说,第一集合可以为由1ms、1.25ms、1.5ms、2ms、2.25ms、2.5ms、3ms、3.25ms和3.5ms中的至少两个取值组成的集合。
例如,基站可配置测量间隔为集合1中的任意一个值。集合1可为[1ms,2.5ms,3.5ms]、[1ms,1.5ms,3.5ms]、[1ms,2.5ms,3.5ms]、[2.5ms,3.5ms]、[1.5ms,2ms,3.5ms]、[2.5ms,2ms,3.5ms]、[1ms,2ms,3ms]等,即测量间隔小于或等于3.5ms,可适用于SCS大于或等于240kHz的场景中,且可减少测量的资源开销。
又例如,基站可配置测量间隔为集合2中的任意一个值。集合2可以为[1ms,1.5ms,2ms,3ms,3.5ms,4ms,5.5ms,6ms]、[1ms,1.5ms,2ms,2.5ms,3ms,3.5ms,4ms,5.5ms,6ms]、[1.5ms,2ms,2.5ms,3ms,3.5ms,4ms,5.5ms,6ms]、[1ms,1.5ms,2ms,2.5ms,3ms,3.5ms,4ms,5.5ms,6ms]、[1.5ms,2ms,3ms,3.5ms,4ms,5.5ms,6ms]、[1.5ms,2ms,2.5ms,3ms,3.5ms,4ms,5.5ms,6ms]或[1.5ms,2.5ms,3ms,3.5ms,4ms,5.5ms,6ms]等。可以理解为在已有的测量间隔的集合中增加了测量间隔的一些可能的较小取值,既可以保证大于或等于240kHz的情况下,降低测量的资源浪费,又可以兼容小于或等于120kHz的情况下的测量间隔的配置。
基站还可以根据SCS的值配置同步信号测量窗口的时间长度,即SMTC的长度。不同的SCS的取值对应SMTC的不同取值。当SCS较大时,为了尽量降低测量的开销浪费,可减小SMTC的长度。例如,在一些实施例中,当SCS等于240kHz时,SMTC的取值位于集合1;当SCS等于480kHz时,SMTC的取值位于集合2;当SCS等于960kHz时,SMTC的取值位于集合3;当SCS等于1920kHz时,SMTC取值位于集合4。集合1、集合2、集 合3以及集合4中的取值可以为如下多个集合中的任意一个或多个集合中的取值:[1ms,2ms,3ms]、[0.5ms,1ms,2ms,3ms]、[0.5ms,1ms,2ms]、[0.25ms,0.5ms,1ms,2ms,3ms]、[0.25ms,0.5ms,1ms,2ms]、[0.25ms,0.5ms,1ms],以及[0.5ms,1ms,1.5ms]。集合1、集合2、集合3和集合4可包括相同的值。例如,集合1可以为[1ms,2ms,3ms],集合2可以为[0.5ms,1ms,2ms],集合3可以为[0.25ms,0.5ms,1ms]。集合1、集合2和集合3以及集合4分别包括不同的值,这样可降低协议设计的难度,节省配置测量间隔参数的开销和资源。
基站还可以根据频段或SCS配置SMTC的长度,不同的载波或频段的取值对应SMTC的不同取值。当载波或频段较大时,为了尽量降低测量的开销浪费,可减小SMTC的长度。例如,在一些实施例中,当载波或频段为FR3时,SMTC的取值位于集合1;当载波或频段为FR2时,SMTC的取值位于集合3。当集合1中的取值可以为如下多个集合中的任意一个或多个集合中的取值:[1ms,2ms,3ms]、[0.5ms,1ms,2ms,3ms]、[0.5ms,1ms,2ms]、[0.25ms,0.5ms,1ms,2ms,3ms]、[0.25ms,0.5ms,1ms,2ms]、[0.25ms,0.5ms,1ms],以及[0.5ms,1ms,1.5ms]。集合2的值可以为[1ms,2ms,3ms,4ms,5ms]。集合1和集合2分别包括不同的值,这样可降低协议设计的难度,节省配置测量间隔参数的开销和资源。
又一示例性的,如下表6,示出了另一种可能的测量间隔配置图案,即示出了MGL和MGRP的可能的取值。
表6 测量gap的配置pattern
Figure PCTCN2021097975-appb-000006
Figure PCTCN2021097975-appb-000007
从表6和表2可以看出,表6相较于表2多了间隔图案索引为24-35时,MGL和MGRP的可能的取值,即MGL的取值可为1.25ms。当然在另一些实施例中,间隔图案索引为24-35时,MGL的取值也可为1ms等,这里不再一一举例。
应理解,如果SCS大于120kHz,例如SCS等于240kHz,也可以理解为服务小区配置的频段大于56.2GHz的情况下,如有采用间隔图案索引[24-35]配置MGL和MGRP,显然最终配置的测量gap的取值较大,会浪费测量的资源开销。为此,在本申请实施例中,可采用间隔图案索引[24-35]配置MGL和MGRP,以减小测量gap的取值,减少测量的资源开销。
例如,当单个测量切换时间为0.25ms,服务小区配置的频段为FR3,MGL的最大值可为1.25ms,也就是可采用如表6中间隔图案索引[24-35]来配置测量间隔参数。基站根据表6中间隔图案索引[24-35]所配置从测量间隔参数,可用于测量如下多种小区中的任意一种小区:频段为FR3的小区,频段为FR3和FR2的小区、频段为FR3和FR1的小区、频段FR3以及E-UTRA的小区,或者频段为FR3以及FR1和FR2的小区、频段为FR3以及FR2和E-UTRA的小区、频段为FR3以及FR1和E-UTRA的小区,或者,频段为FR3、FR1、FR2以及E-UTRA的小区。
基站可配置的测量间隔的可能值组成的集合可以为[1.25ms,2.25ms,3.25ms,1.5ms,4ms,3ms,3.5ms,4.5ms,5.5ms,6ms]。
例如,基站可配置测量间隔为集合1中的任意一个值。集合1可为[1.25ms,2.25ms,3.25ms]、[1ms,2.25ms,3.25ms]]、[1ms,2ms,3.25ms]、[1ms,1.5ms,3.25ms]、[1.25ms,1.5ms,3.25ms]、[1.25ms,2.5ms,3.25ms]、[1.25ms,2.5ms,3.25ms]等,即测量间隔小于或等于3.25ms,可适用于SCS大于或等于240kHz的场景中,且可减少测量的资源开销。
又例如,基站可配置测量间隔为集合2中的任意一个值。集合2可以为[1.25ms,2.25ms,3.25ms,1.5ms,3ms,3.5ms,4ms,5.5ms,6ms]、[1ms,2.25ms,3.25ms,1.5ms,3ms,3.5ms,4ms,5.5ms,6ms]、[1ms,2ms,3.25ms,1.5ms,3ms,3.5ms,4ms,5.5ms,6ms]、[1.5ms,2.25ms,3.25ms,1.5ms,3ms,3.5ms,4ms,5.5ms,6ms]、[1ms,2ms,1.5ms,3ms,3.5ms,4ms,5.5ms,6ms],[1.25ms,2.25ms,3.25ms,1.5ms,3ms,3.5ms,4ms,5.5ms,6ms]等。可以理解为在已有的测量间隔的集合中增加了测量间隔的一些可能的较小取值,既可以保证大于或等于240kHz的情况下,降低测量的资源浪费,又可以兼容小于或等于120kHz的情况下的测量间隔的配置。
基站还可以根据SCS的值配置SMTC的长度,不同的SCS的取值对应SMTC的不同取值。当SCS较大时,为了尽量降低测量的开销浪费,可减小SMTC的长度。例如,在一些实施例中,当SCS等于240kHz时,SMTC的取值位于集合1;当SCS等于480kHz时,SMTC的取值位于集合2;当SCS等于960kHz时,SMTC的取值位于集合3;当SCS等于1920kHz时,SMTC取值位于集合4。集合1、集合2、集合3以及集合4中的取值可以为如下多个集合中的任意一个或多个集合中的取值:[1ms,2ms,3ms]、[0.5ms,1ms,2ms,3ms]、[0.5ms,1ms,2ms]、[0.25ms,0.5ms,1ms,2ms,3ms]、[0.25ms,0.5ms,1ms,2ms]、[0.25ms,0.5ms,1ms],以及[0.5ms,1ms,1.5ms]。集合1、集合2、集合3和集合4可包括相同的值。例如,集合1可以为[1ms,2ms,3ms],集合2可以为[0.5ms,1ms,2ms],集合3可以为[0.25ms,0.5ms,1ms]。集合1、集合2和集合3以及集合4分别包括不同的值,这样可降低协议设计的难度,节省配置测量间隔参数的开销和资源。
S302、基站向终端发送测量配置信息,终端接收该测量配置信息。
基站为终端配置测量间隔参数后,可向终端发送测量配置信息,该测量配置信息可包括基站为终端配置的测量间隔参数。例如基站为终端配置了测量间隔、测量间隔周期,则测量配置信息包括测量间隔、测量间隔周期,而如果基站为终端还配置了测量间隔的偏移值,则测量配置信息还包括测量间隔的偏移值。
其中,如果测量配置信包括测量间隔、测量间隔周期,则基站可通过一条消息将测量间隔、测量间隔周期发送给终端,这样可以节省传输资源。或者基站也可通过不同的消息分别将测量间隔、测量间隔周期发送给终端。如果基站通过不同的消息分别将测量间隔、测量间隔周期发送给终端,则基站可以同时发送测量间隔、测量间隔周期,或者先发送测量间隔,之后再发送测量间隔周期。
在一些实施例中,测量配置信息可以承载在物理广播信道(physical broadcast channel,PBCH)、剩余最小系统信息(remaining minimum system information,RMSI)、系统信息块(system information block,SIB)1、SIB2、SIB3,媒体接入控制元素(media access control-control element,MAC-CE)、下行控制信息(downlink control information,DCI)、无线资源控制(radio resource control,RRC)以及系统消息中的任意一项中。
终端设备接收测量配置信息后,即可根据测量配置信息启动相应的测量间隔,下面进行介绍。
S303、终端根据测量配置信息包括的测量间隔参数以及同步信号测量窗口的时间长度确定测量间隔的时间信息,并对所述待测量的参考信号进行测量。
测量间隔参数可包括测量间隔,测量间隔周期,以及测量间隔的偏移量等,其中,测量间隔,测量间隔周期以及测量间隔的偏移量可用来确定测量间隔的时间信息。需要说明 的是,基站和终端都需要确定测量间隔的时间信息,在确定测量间隔的时间信息后,基站可知道终端何时启动测量间隔,而终端也可以在确定的位置启动测量间隔。
本申请实施例中所述的终端启动测量间隔,可以是指终端中断在终端的服务小区的工作频点内收发数据,即终端中断在终端的服务小区的工作频点中的工作,而开始到其他频点测量参考信号。至于在一个测量间隔中终端究竟在哪个频点测量待测量的参考信号,可以由终端自行选择。例如基站预先为终端指示了除终端的服务小区的工作频带(或中心频点)之外的多个频点,则终端启动一个测量间隔后,可以在该测量间隔中选择在基站指示的至少一个频点中测量待测量的参考信号。
终端可根据测量间隔的长度、测量间隔的周期,测量间隔的偏移量等确定测量间隔的时间信息,例如测量间隔的偏移量为0,那么测量间隔的起始位置和测量间隔的周期的起始位置是同一位置。下个周期的测量间隔与本周期的测量间隔仅相隔一个周期。若测量间隔的偏置为δ,则下个周期的测量间隔与本周期的测量间隔相隔一个(周期+δ)。
终端确定测量间隔的时间信息后,在确定的测量间隔的起始位置启动测量间隔,并在所启动的测量间隔中测量参考信号。
本申请实施例提供的技术方案可配置更小的测量间隔的长度,例如在SCS大于或等于240kHz的情况下,可配置测量间隔的长度为1.25ms,这样可尽量节约终端进行小区测量的资源开销。
上述本申请提供的实施例中,分别从终端、网络设备,以及终端和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端、网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图4示出了一种通信装置400的结构示意图。该通信装置400可以对应实现上述各个方法实施例中由终端或网络设备实现的功能或者步骤。该通信装置可以包括发送单元410和接收单元420,以及处理单元430。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。发送单元410、接收单元420和处理单元430可以与该存储单元耦合,例如,处理单元430可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成,例如发送单元410和接收单元420可集成,称为收发单元。
在一些可能的实施方式中,通信装置400能够对应实现上述方法实施例中终端的行为和功能。例如通信装置400可以为终端,也可以为应用于终端中的部件(例如芯片或者电路)。发送单元410和接收单元420可以用于执行图3所示的实施例中由终端所执行的全部接收或发送操作,例如图3所示的实施例中的S302,和/或用于支持本文所描述的技术的其它过程。其中,处理单元430用于执行如图3所示的实施例中由终端所执行的除了收发操作之外的全部操作,例如图3所示的实施例中的S303,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,所述收发单元用于接收来自网络设备的测量配置信息,所述测量配置信息用于配置测量间隔参数和同步信号测量窗口的时间长度,所述测量间隔参数用于终端测量待测量的参考信号,所述同步信号测量窗口的时间长度用于确定小区测量时间,所 述测量间隔参数和所述同步信号测量窗口的时间长度是根据子载波间隔SCS配置的;所述处理单元430用于根据所述测量配置信息确定测量间隔,并根据所述测量间隔的测量所述待测量的参考信号。
作为一种可选的实现方式,SCS大于或等于240kHz,测量间隔的取值为第一取值,该第一取值位于第一集合,该第一集合可以包括1ms、1.25ms、1.5ms、2ms、2.25ms、2.5ms、3ms、3.25ms和3.5ms中的至少两个取值。
作为一种可选的实现方式,所述第一集合可以为如下任意一个集合:
[1.5ms,2.5ms,3.5ms];或者[1ms,2ms,3ms];或者[1.25ms,2.25ms,3.25ms]。
作为一种可选的实现方式,所述第一集合的取值还可以包括如下取值中一个或多个:
4ms、5.5ms或6ms。
作为一种可选的实现方式,若存在至少两种SCS,假设所述至少两种SCS包括第一SCS和第二SCS,第一SCS对应的第一集合中的取值与第二SCS对应的第一集合中的取值可以均不相同。
作为一种可选的实现方式,测量间隔参数还包括测量间隔周期,该测量间隔周期的取值可以位于[20ms,40ms,80ms,160ms]范围内。
在另一些可能的实施方式中,通信装置400能够对应实现上述方法实施例中网络设备的行为和功能。例如通信装置400可以为网络设备,也可以为应用于网络设备中的部件(例如芯片或者电路)。发送单元410和接收单元420可以用于执行图3所示的实施例中由网络设备所执行的全部接收或发送操作,例如图3所示的实施例中的S302,和/或用于支持本文所描述的技术的其它过程。其中,处理单元430用于执行如图3所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如图3所示的实施例中的S301,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,所述处理单元430可以用于根据子载波间隔SCS生成测量配置信息,所述测量配置信息用于配置测量间隔参数和同步信号测量窗口的时间长度,所述测量间隔参数用于终端测量待测量的参考信号,所述同步信号测量窗口的时间长度用于确定小区测量时间;所述收发单元用于向所述终端发送所述测量配置信息。
作为一种可选的实现方式,SCS大于或等于240kHz时,测量间隔的取值可以为第一取值,该第一取值位于第一集合,该第一集合可以为由1ms、1.25ms、1.5ms、2ms、2.25ms、2.5ms、3ms、3.25ms和3.5ms中的至少两个取值组成的集合。作为一种可选的实现方式,所述第一集合可为如下任意一个集合:[1.5ms,2.5ms,3.5ms];或者[1ms,2ms,3ms];或者[1.25ms,2.25ms,3.25ms]。
作为一种可选的实现方式,所述第一集合的取值还可以包括如下取值中的一个或多个:4ms、5.5ms或6ms。
作为一种可选的实现方式,如果存在至少两种SCS,假设所述至少两种SCS包括第一SCS和第二SCS,第一SCS对应的第一集合中的取值与第二SCS对应的第一集合中的取值可以均不相同。
作为一种可选的实现方式,测量间隔参数还包括测量间隔周期,该测量间隔周期的取值可以位于[20ms,40ms,80ms,160ms]范围内。
如图5所示为本申请实施例提供的通信装置500,其中,通信装置500可以是终端,能够实现本申请实施例提供的方法中终端的功能,或者,通信装置500可以是网络设备, 能够实现本申请实施例提供的方法中网络设备的功能;通信装置500也可以是能够支持终端实现本申请实施例提供的方法中对应的功能的装置,或者能够支持网络设备实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置500可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在一些实施例中,通信装置500可包括通信接口510,用于通过传输介质和其它设备进行通信,从而用于通信装置500中的装置可以和其它设备进行通信。示例性地,当该通信装置为终端时,该其它设备为网络设备;或者,当该通信装置为网络设备时,该其它设备为终端。通信接口510具体可以是收发器。在硬件实现上,上述发送单元410和接收单元420可以为收发器,收发器集成在通信装置500中构成通信接口510。
通信装置500还包括至少一个处理器520,处理器520可以利用通信接口510收发数据,用于实现或用于支持通信装置500实现本申请实施例提供的方法中终端或网络设备的功能。
例如通信装置500能够对应实现上述方法实施例中终端的行为和功能。通信接口510可以用于执行图3所示的实施例中由终端所执行的全部接收或发送操作,例如图3所示的实施例中的S302,和/或用于支持本文所描述的技术的其它过程。其中,至少一个处理器520用于执行如图3所示的实施例中由终端所执行的除了收发操作之外的全部操作,例如图3所示的实施例中的S303,和/或用于支持本文所描述的技术的其它过程。
例如通信装置500能够对应实现上述方法实施例中网络设备的行为和功能。通信接口510可以用于执行图3所示的实施例中由网络设备所执行的全部接收或发送操作,例如图3所示的实施例中的S302,和/或用于支持本文所描述的技术的其它过程。其中,至少一个处理器520用于执行如图3所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,例如图3所示的实施例中的S301,和/或用于支持本文所描述的技术的其它过程。
在另一些实施例中,通信装置500还可以包括至少一个存储器530,用于存储程序指令和/或数据。存储器530和处理器520耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器520可能和存储器530协同操作。处理器520可能执行存储器530中存储的程序指令和/或数据,以使得通信装置500实现相应的方法。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口510、处理器520以及存储器530之间的具体连接介质。本申请实施例在图5中以存储器530、处理器520以及通信接口510之间通过总线540连接,总线在图5中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器520可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器530可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory), 例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是终端或网络设备也可以是电路,也可以是应用于终端或网络设备中的芯片或者其他具有上述终端或网络设备功能的组合器件、部件等。当通信装置是终端或网络设备时收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当通信装置是具有上述终端或网络设备功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
图6示出了一种简化的通信装置的结构示意图。便于理解和图示方便,图6中,通信装置以网络设备是基站作为例子。该基站可应用于如图2所示的系统中,可以为图2中的网络设备,执行上述方法实施例中网络设备的功能。通信装置600可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)610和一个或多个有源天线单元(active antenna unit,AAU)(也可称为数字单元,digital unit,DU)620。AAU可以认为是基带单元(base band unit,BBU)与天线的结合,即将射频功能与天线集成在一起的结构。AAU的天线端口可与外部的RRU连接,也可与内置的射频单元连接。所述RRU 610可以称为通信模块,与图4中的发送单元410和接收单元420对应,可选地,该通信模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线611和射频单元612。所述RRU 610部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述AAU 620部分主要用于进行基带处理,对基站进行控制等。所述RRU 610与AAU 620可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述AAU 620为基站的控制中心,也可以称为处理模块,可以与图4中的处理单元430对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述AAU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述AAU 620可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述AAU 620还包括存储器621和处理器622。所述存储器621用以存储必要的指令和数据。所述处理器622用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如处理器622用于执行如图3所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程;或者处理器622用于执行如图3所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。
所述存储器621和处理器622可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种通信装置,该通信装置可以是终端也可以是电路。该通信装 置可以用于执行上述方法实施例中由终端所执行的动作。
图7示出了一种简化的终端的结构示意图。便于理解和图示方便,图7中,该终端以手机作为例子。如图7所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对该车载单元进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到该设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器。在实际的设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为该装置的收发单元,将具有处理功能的处理器视为该装置的处理单元。如图7所示,该装置包括收发单元710和处理单元720。收发单元710也可以称为收发器、收发机、收发装置等。处理单元720也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元710中用于实现接收功能的器件视为接收单元,将收发单元710中用于实现发送功能的器件视为发送单元,即收发单元710包括接收单元和发送单元。收发单元710有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元710用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元720用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元710可以用于执行图3所示的实施例中的S302,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中,可以参照图8所示的装置。作为一个例子,该装置可以完成类似于图4中处理单元430的功能。在图8中,该装置包括处理器810,发送数据处理器820,接收数据处理器830。上述实施例中的处理单元430可以是图8中的该处理器810,并完成相应的功能。上述实施例中的处理单元430可以是图8中的发送数据处理器820,和/或接收数据处理器830。虽然图8中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图9示出本实施例的另一种形式。通信装置900中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器903,接口904。其中处理器903完成上述处理单元430的功能,接口904完成上述发送单元410和接收单元420的功能。作为另一种变形,该调制子系统 包括存储器906、处理器903及存储在存储器906上并可在处理器上运行的程序,该处理器903执行该程序时实现上述方法实施例中终端设备的方法。需要注意的是,所述存储器906可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于通信装置900中,只要该存储器906可以连接到所述处理器903即可。
本申请实施例还提供一种通信系统,具体的,通信系统包括网络设备和终端,或者还可以包括更多个终端和接入网设备。示例性的,该通信系统包括用于实现上述图3的相关功能的网络设备和终端。
所述网络设备分别用于实现上述图3相关网络部分的功能。所述终端用于实现上述图3相关终端的功能。例如网络设备可执行例如图3所示的实施例中的S301、S302,终端可执行图3所示的实施例中的S302和S303。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图3中终端或网络设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行图3中终端或网络设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中终端或网络设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种通信装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例所述的信息处理方法。
应理解,上述通信装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (27)

  1. 一种测量配置方法,其特征在于,包括:
    网络设备根据子载波间隔SCS生成测量配置信息,所述测量配置信息用于配置测量间隔参数和同步信号测量窗口的时间长度,所述测量间隔参数用于终端测量待测量的参考信号,所述同步信号测量窗口的时间长度用于确定小区测量时间;
    所述网络设备向所述终端发送所述测量配置信息。
  2. 如权利要求1所述的方法,其特征在于,所述SCS大于或等于240kHz,所述测量间隔参数包括测量间隔,所述测量间隔的取值为第一取值,所述第一取值位于第一集合,所述第一集合包括1ms、1.25ms、1.5ms、2ms、2.25ms、2.5ms、3ms、3.25ms和3.5ms中的至少两个取值。
  3. 如权利要求2所述的方法,其特征在于,所述第一集合为如下任意一个集合:
    [1.5ms,2.5ms,3.5ms];或者,
    [1ms,2ms,3ms];或者,
    [1.25ms,2.25ms,3.25ms]。
  4. 如权利要求2或3所述的方法,其特征在于,所述第一集合的取值还包括如下取值中的一个或多个:
    4ms、5.5ms或6ms。
  5. 如权利要求2-4任一项所述的方法,其特征在于,存在至少两种SCS,所述至少两种SCS包括第一SCS和第二SCS,所述第一SCS对应的第一集合中的取值与所述第二SCS对应的第一集合中的取值均不同。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述测量间隔参数还包括测量间隔周期,所述测量间隔周期的取值位于[20ms,40ms,80ms,160ms]范围内。
  7. 一种测量配置方法,其特征在于,包括:
    终端接收来自网络设备的测量配置信息,所述测量配置信息用于配置测量间隔参数和同步信号测量窗口的时间长度,所述测量间隔参数用于终端测量待测量的参考信号,所述同步信号测量窗口的时间长度用于确定小区测量时间,所述测量间隔参数和所述同步信号测量窗口的时间长度是根据子载波间隔SCS配置的;
    所述终端根据所述测量间隔参数和所述同步信号测量窗口的时间长度确定测量间隔,并根据所述测量间隔测量所述待测量的参考信号。
  8. 如权利要求7所述的方法,其特征在于,所述SCS大于或等于240kHz,所述测量间隔参数包括测量间隔,所述测量间隔的取值为第一取值,所述第一取值位于第一集合,所述第一集合包括1ms、1.25ms、1.5ms、2ms、2.25ms、2.5ms、3ms、3.25ms和3.5ms中的至少两个取值。
  9. 如权利要求8所述的方法,其特征在于,所述第一集合为如下任意一个集合:
    [1.5ms,2.5ms,3.5ms];或者,
    [1ms,2ms,3ms];或者,
    [1.25ms,2.25ms,3.25ms]。
  10. 如权利要求8或9所述的方法,其特征在于,所述第一集合的取值还包括如下取值中的一个或多个:
    4ms、5.5ms或6ms。
  11. 如权利要求8-10任一项所述的方法,其特征在于,存在至少两种SCS,所述至少两种SCS包括第一SCS和第二SCS,所述第一SCS对应的第一集合中的取值与所述第二SCS对应的第一集合中的取值均不同。
  12. 如权利要求7-11任一项所述的方法,其特征在于,所述测量间隔参数还包括测量间隔周期,所述测量间隔周期的取值位于[20ms,40ms,80ms,160ms]范围内。
  13. 一种通信装置,其特征在于,包括处理单元和收发单元,其中:
    所述处理单元,用于根据子载波间隔SCS生成测量配置信息,所述测量配置信息用于配置测量间隔参数和同步信号测量窗口的时间长度,所述测量间隔参数用于终端测量待测量的参考信号,所述同步信号测量窗口的时间长度用于确定小区测量时间;
    所述收发单元,用于向所述终端发送所述测量配置信息。
  14. 如权利要求13所述的通信装置,其特征在于,所述SCS大于或等于240kHz,所述测量间隔参数包括测量间隔,所述测量间隔的取值为第一取值,所述第一取值位于第一集合,所述第一集合包括1ms、1.25ms、1.5ms、2ms、2.25ms、2.5ms、3ms、3.25ms和3.5ms中的至少两个取值。
  15. 如权利要求14所述的通信装置,其特征在于,所述第一集合为如下任意一个集合:
    [1.5ms,2.5ms,3.5ms];或者,
    [1ms,2ms,3ms];或者,
    [1.25ms,2.25ms,3.25ms]。
  16. 如权利要求14或15所述的通信装置,其特征在于,所述第一集合的取值还包括如下取值中的一个或多个:
    4ms、5.5ms或6ms。
  17. 如权利要求14-16任一项所述的通信装置,其特征在于,存在至少两种SCS,所述至少两种SCS包括第一SCS和第二SCS,所述第一SCS对应的第一集合中的取值与所述第二SCS对应的第一集合中的取值均不同。
  18. 如权利要求13-17任一项所述的通信装置,其特征在于,所述测量间隔参数还包括测量间隔周期,所述测量间隔周期的取值位于[20ms,40ms,80ms,160ms]范围内。
  19. 一种通信装置,其特征在于,包括处理单元和收发单元,其中,
    所述收发单元,用于接收来自网络设备的测量配置信息,所述测量配置信息用于配置测量间隔参数和同步信号测量窗口的时间长度,所述测量间隔参数用于终端测量待测量的参考信号,所述同步信号测量窗口的时间长度用于确定小区测量时间,所述测量间隔参数和所述同步信号测量窗口的时间长度是根据子载波间隔SCS配置的;
    所述处理单元,用于根据所述测量间隔参数和所述同步信号测量窗口的时间长度确定测量间隔,并根据所述测量间隔测量所述待测量的参考信号。
  20. 如权利要求19所述的通信装置,其特征在于,所述SCS大于或等于240kHz,所述测量间隔参数包括测量间隔,所述测量间隔的取值为第一取值,所述第一取值位于第一集合,所述第一集合包括1ms、1.25ms、1.5ms、2ms、2.25ms、2.5ms、3ms、3.25ms和3.5ms中的至少两个取值。
  21. 如权利要求20所述的通信装置,其特征在于,所述第一集合为如下任意一个集合:
    [1.5ms,2.5ms,3.5ms];或者,
    [1ms,2ms,3ms];或者,
    [1.25ms,2.25ms,3.25ms]。
  22. 如权利要求20或21所述的通信装置,其特征在于,所述第一集合的取值还包括如下取值中的一个或多个:
    4ms、5.5ms或6ms。
  23. 如权利要求20-22任一项所述的通信装置,其特征在于,存在至少两种SCS,所述至少两种SCS包括第一SCS和第二SCS,所述第一SCS对应的第一集合中的取值与所述第二SCS对应的第一集合中的取值均不同。
  24. 如权利要求19-23任一项所述的通信装置,其特征在于,所述测量间隔参数还包括测量间隔周期,所述测量间隔周期的取值位于[20ms,40ms,80ms,160ms]范围内。
  25. 一种通信装置,其特征在于,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于执行存储在所述存储器上的计算机程序,使得所述装置执行如权利要求1~6或7~12中任一项所述的方法。
  26. 一种通信系统,其特征在于,包括如权利要求13~18之一的通信装置,和如权利要求19~24之一的通信装置。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~6或7~12中任意一项所述的方法。
PCT/CN2021/097975 2020-06-05 2021-06-02 一种测量配置方法及通信装置 WO2021244580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010505019.7A CN113766583A (zh) 2020-06-05 2020-06-05 一种测量配置方法及通信装置
CN202010505019.7 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021244580A1 true WO2021244580A1 (zh) 2021-12-09

Family

ID=78784933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097975 WO2021244580A1 (zh) 2020-06-05 2021-06-02 一种测量配置方法及通信装置

Country Status (2)

Country Link
CN (1) CN113766583A (zh)
WO (1) WO2021244580A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019091265A1 (zh) * 2017-11-10 2019-05-16 维沃移动通信有限公司 测量间隔的指示方法、接收方法、终端及网络设备
WO2019101299A1 (en) * 2017-11-21 2019-05-31 Nokia Technologies Oy Method for efficient measurement gap offset signaling
WO2019165224A1 (en) * 2018-02-23 2019-08-29 Idac Holdings, Inc. System and method for bandwidth part operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019091265A1 (zh) * 2017-11-10 2019-05-16 维沃移动通信有限公司 测量间隔的指示方法、接收方法、终端及网络设备
WO2019101299A1 (en) * 2017-11-21 2019-05-31 Nokia Technologies Oy Method for efficient measurement gap offset signaling
WO2019165224A1 (en) * 2018-02-23 2019-08-29 Idac Holdings, Inc. System and method for bandwidth part operation

Also Published As

Publication number Publication date
CN113766583A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
US11626947B2 (en) Communication method and communications device
US9949063B2 (en) Bluetooth low energy triggering NAN for further discovery and connection
WO2021098568A1 (zh) 一种能力信息发送方法、接收方法及装置
WO2021197241A1 (zh) 一种放松测量方法和通信装置
EP4084513A1 (en) Communication method and apparatus
US10285040B2 (en) Neighbor awareness networking—accelerated discovery
JP7150042B2 (ja) 信号伝送方法、ネットワーク装置及び端末装置
WO2021249001A1 (zh) 一种小区测量方法及装置
WO2021213217A1 (zh) 一种放松测量方法和通信装置
WO2021104192A1 (zh) 一种通信方法与通信装置
US20220346014A1 (en) Random access method and apparatus
US20230179374A1 (en) Channel transmission method, terminal device, and network device
CN113261320A (zh) 通信方法、装置及系统
US20220217034A1 (en) Communication method and apparatus
JP2023526581A (ja) 通信方法および通信装置
WO2019238007A1 (zh) 检测波束的方法和装置
KR102501134B1 (ko) 무선 통신들에서의 유연한 다운링크 제어 신호 모니터링
US11212806B2 (en) NAN fine-grained availability schedule indications
CN113170420B (zh) 默认pucch和srs波束确定
US10893482B2 (en) Selection of mode and data range in device-to-device close field communication
WO2022022517A1 (zh) 确定传输功率的方法及装置
WO2021197233A1 (zh) 一种通信方法及设备
WO2021026929A1 (zh) 一种通信方法及装置
WO2021244580A1 (zh) 一种测量配置方法及通信装置
US20210336735A1 (en) Electronic device, wireless communication method and computer readable medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817240

Country of ref document: EP

Kind code of ref document: A1