WO2021098568A1 - 一种能力信息发送方法、接收方法及装置 - Google Patents

一种能力信息发送方法、接收方法及装置 Download PDF

Info

Publication number
WO2021098568A1
WO2021098568A1 PCT/CN2020/128099 CN2020128099W WO2021098568A1 WO 2021098568 A1 WO2021098568 A1 WO 2021098568A1 CN 2020128099 W CN2020128099 W CN 2020128099W WO 2021098568 A1 WO2021098568 A1 WO 2021098568A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency bands
frequency band
terminal device
message
cell
Prior art date
Application number
PCT/CN2020/128099
Other languages
English (en)
French (fr)
Inventor
王洲
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021098568A1 publication Critical patent/WO2021098568A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • This application relates to the field of communication technology, and in particular to a method for sending capability information, a method for receiving, and a device.
  • the terminal device may move from the coverage area of one cell to the coverage area of another cell.
  • the terminal device is required to perform cell reselection or cell handover. Both cell reselection and cell handover require terminal equipment to perform cell measurement.
  • the types of cell measurement include intra-frequency measurement and inter-frequency/different system measurement.
  • the terminal equipment can use a measurement method that requires gap measurement to perform cell measurement, or it can use a measurement method that does not require gap measurement to perform cell measurement.
  • some terminal devices support more carrier aggregation (CA) combinations of different frequency bands and have multiple receiving channels, so these terminal devices have the ability to perform inter-frequency/different-system measurement without the need to configure gaps.
  • CA carrier aggregation
  • the system supports many combinations of frequency bands and CAs, and there are many different frequency/different system frequency bands that need to be measured.
  • terminal equipment usually can only support a limited number of frequency band combinations.
  • the terminal device can report the measurement capability to the base station to indicate which measurement frequency band combinations need to measure the gap, and which measurement frequency band combinations do not need to measure the gap.
  • the system supports many combinations of frequency bands and CAs
  • messages used for terminal equipment to report measurement capabilities also called measurement capabilities report messages
  • the reporting is prone to failure, that is, the reporting success rate is low.
  • the number of frequency bands of the terminal device is N
  • the number of CA combinations supported by the terminal device is L
  • the number of different system frequency bands supported by the terminal device is M
  • the number of information bits that the terminal device needs to report is (N+L)*(N+ M).
  • LTE long term evolution
  • NR new radio
  • This application provides a method for sending capability information, a method for receiving it, and a device for improving the success rate of terminal equipment reporting measurement capabilities.
  • an embodiment of the present application provides a method for sending capability information.
  • the execution subject of the method may be a terminal device or a chip applied to the terminal device.
  • the execution subject is a terminal device as an example for description.
  • the method includes: receiving a first message from a network device, the first message being used to query the measurement capability of the terminal device; sending a second message to the network device, the second message including first indication information, The first indication information is used to indicate that the second message includes measurement capability information of some frequency bands of the terminal device in all frequency bands.
  • the embodiments of the present application provide a method for receiving capability information.
  • the execution subject of the method may be a network device or a chip applied to the network device.
  • the method includes: sending a first message to a terminal device, the first message being used to query the measurement capability of the terminal device; receiving a second message from the terminal device, the second message including first indication information, The first indication information is used to indicate that the second message includes measurement capability information of some frequency bands of the terminal device in all frequency bands.
  • the terminal device can report the measurement capability information of the terminal device in some frequency bands in all frequency bands to the network device, and inform the network device through the first indication information.
  • the amount of information reported by the terminal equipment is relatively small, so as to maximize the success rate of the terminal equipment reporting. It can be seen that the method provided by the embodiment of the present application is applied to a scenario that supports a combination of more frequency bands and CAs, and the success rate of the measurement capability information reporting can be ensured.
  • the content included in the first message may be any of the following:
  • the first message includes measurement configuration information of all frequency bands or part of the frequency bands of the primary cell where the terminal device is currently located.
  • the network device can determine which frequency bands the terminal device needs to report the measurement capability information, for example, the measurement capability information of the terminal device in all frequency bands or some frequency bands of the current primary cell, so that the terminal device can determine the second frequency band according to the first message.
  • Message that is, only report the measurement capability information of the terminal equipment in some frequency bands in all frequency bands, reducing the amount of reported information.
  • the signal quality of the primary cell is usually the best, it is possible to ensure the success rate of reporting measurement capability information as much as possible.
  • the first message includes the measurement configuration information of the terminal device in all frequency bands or part of the frequency band of the primary cell where the terminal device is currently located, and all the measurement configuration information of the terminal device in at least one secondary cell related to the primary cell.
  • the measurement configuration information of the frequency band or part of the frequency band can be determined which frequency bands the terminal device needs to report the measurement capability information.
  • the terminal device in addition to the measurement capability information of the terminal device in all frequency bands or some frequency bands of the current primary cell, it can also report to the terminal device Measurement capability information in all frequency bands or partial frequency bands of at least one secondary cell, so that the terminal device only needs to report the measurement capability information of the terminal device in some frequency bands in all frequency bands, reducing the amount of reported information.
  • at least one secondary cell is related to the primary cell, for example, it may be a cell to which a subsequent terminal device will be handed over, so as to ensure the stability of the subsequent terminal device in cell handover.
  • the content included in the second message may be any of the following:
  • the second message may also include measurement capability information of all frequency bands or part of the frequency bands of the primary cell where the terminal device is currently located.
  • the second message may also include measurement capability information of the terminal device in all frequency bands or part of the frequency band of the primary cell where the terminal device is currently located, and the terminal device in at least one secondary cell related to the primary cell. Measurement capability information of all frequency bands or part of frequency bands.
  • the second message can be determined according to the first message to report measurement capability information according to the actual needs of the network device, and at the same time only report the measurement capability information of the terminal device in some frequency bands in all frequency bands, reducing the amount of reported information and increasing the reported amount. Success rate.
  • the measurement capability information may be predefined, wherein the measurement capability information includes: all frequency bands or part of the primary cell where the terminal device is currently located Frequency band measurement capability information; or the measurement capability information of the terminal equipment in all frequency bands or part of the frequency bands of the current primary cell, and the terminal equipment in all frequency bands or part of the frequency bands of at least one secondary cell related to the primary cell Information about measurement capabilities.
  • the second message may only include the first indication information, occupies fewer bits, and reports less information, which further improves the success rate of the reported measurement capability information.
  • the at least one secondary cell there are multiple selection strategies for at least one secondary cell, which may include any one of the following: the signal strength of the at least one secondary cell is higher than that of all secondary cells. The signal strength of the remaining secondary cells except for the at least one secondary cell. Or the priority of the data transmission of the at least one secondary cell is higher than the priority of the data transmission of the remaining secondary cells in all the secondary cells except the at least one secondary cell. Or the at least one secondary cell includes the cell to which the terminal device is to be handed over from the primary cell.
  • the at least one secondary cell may be a cell related to the primary cell.
  • the signal strength of the at least one secondary cell is higher, or the priority of data transmission is higher, or the network equipment prejudges and determines that it includes the terminal The cell to which the device switches from the primary cell, so that while reducing the amount of reported information, the terminal device can retain better handover capabilities and ensure that the terminal device will not reselect or re-access the cell during cell switching.
  • the signal strength of the part of the frequency band is higher than or equal to the signal strength of the part of the frequency band divided by the The signal strength of the remaining frequency bands other than some frequency bands.
  • the priority of data transmission in the part of the frequency band is higher than the priority of data transmission in the rest of the frequency bands except for the part of the frequency bands.
  • the part of the frequency band includes the frequency band to which the terminal device will switch from the current frequency band.
  • some frequency bands are also preferentially selected for higher signal strength, or higher priority for data transmission, or frequency bands that the terminal device will switch to subsequently to reduce the amount of reported information. At the same time, it can be ensured that no cell reselection or re-access occurs when the terminal device performs cell handover, so as to ensure the stability of communication.
  • the second message may further include indication information for indicating whether the gap needs to be measured.
  • the second message may include indication information for indicating whether the measurement gap gap is required, and may support the measurement capability information that does not need to measure the gap in the NR system, and is compatible with the reporting of whether the measurement gap needs to be measured in the LTE system.
  • the part of the frequency band may include, but is not limited to, the frequency band supported by the aggregate carrier CA, the dual-connection EN-DC of the 4G radio access network and the 5G radio access network, and 5G At least one of the frequency band supported by the dual-connection NE-DC of the radio access network and the 4G radio access network and the CA under the independent networking SA.
  • some frequency bands can indicate one or more of the above several situations, and the specific selection can be configured by network equipment or specified by agreement.
  • the terminal device reports some frequency bands as described above, and does not need to report all frequency bands, reducing the amount of reported information.
  • a communication device is provided.
  • the communication device has the function of realizing the behavior in the method embodiment of the first aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes a processing unit and a transceiving unit, wherein the processing unit is used to generate messages to be sent and/or received by the transceiving unit; the transceiving unit is used to: receive messages from the network The first message of the device, the first message is used to query the measurement capability of the communication device; the second message is sent to the network device, the second message includes the first indication information, and the first indication information is used To indicate that the second message includes measurement capability information of a part of all frequency bands of the communication device.
  • These modules can perform the corresponding functions in the above-mentioned method example of the first aspect. For details, please refer to the detailed description in the method example, which will not be repeated here.
  • a communication device is provided, and the beneficial effects can be referred to the description of the second aspect and will not be repeated here.
  • the communication device has the function of realizing the behavior in the method example of the second aspect described above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes a processing unit and a transceiving unit, where the processing unit is used to generate a message to be sent and/or received by the transceiving unit; the transceiving unit is used to: Send a first message, the first message is used to query the measurement capability of the terminal device; receive a second message from the terminal device, the second message includes the first indication information, the first indication information is used To indicate that the second message includes measurement capability information of a part of all frequency bands of the terminal device.
  • These modules can perform the corresponding functions in the method example of the second aspect. For details, please refer to the detailed description in the method example, which will not be repeated here.
  • a communication device may be the terminal device in the foregoing method embodiment, or a chip set in the terminal device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store a computer program or instruction, and the processor is coupled with the memory and a communication interface.
  • the processor executes the computer program or instruction
  • the communication device executes the method executed by the terminal device in the foregoing method embodiment.
  • a communication device may be the network device in the foregoing method embodiment, or a chip set in the network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store a computer program or instruction, and the processor is coupled with the memory and a communication interface.
  • the processor executes the computer program or instruction
  • the communication device executes the method executed by the network device in the foregoing method embodiment.
  • a computer program product includes: computer program code, which when the computer program code is running, causes the methods executed by the terminal device or the network device in the above aspects to be executed.
  • the present application provides a chip system, which includes a processor, configured to implement the functions of the terminal device or the network device in the methods of the foregoing aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • this application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method executed by the terminal device or the network device in the above aspects is implemented.
  • the terminal device can report the measurement capability information of the terminal device in some frequency bands in all frequency bands to the network device, and notify the network device through the first indication information, which is compared with the current report of the terminal device's measurement capability in all frequency bands.
  • capability information it is obvious that the amount of information reported by the terminal device is small, so as to maximize the success rate of the terminal device reporting. It can be seen that the method provided by the embodiment of the present application is applied to a scenario that supports a combination of more frequency bands and CAs, and can ensure the success rate of the measurement capability information reporting.
  • FIG. 1 is a schematic diagram of the architecture of a communication system to which an embodiment of the application is applicable;
  • FIG. 2 is a schematic diagram of the RRC state transition of the UE according to an embodiment of the application
  • FIG. 3 is a schematic diagram of a UE moving between multiple cells according to an embodiment of the application
  • FIG. 4 is a schematic diagram of the configuration of the gap provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a method for sending and receiving capability information according to an embodiment of the application
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of another structure of a communication device provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 10 is another schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of still another structure of another communication device provided by an embodiment of this application.
  • the communication system may include a network-side device and a user equipment (UE) that communicates with the network-side device.
  • UE user equipment
  • Fig. 1 is an example of the communication system.
  • the communication system shown in Fig. 1 includes a network-side device and a user equipment communicating with it. In fact, the communication system may include multiple user equipments. limit.
  • the network-side device may be a device that can communicate with user equipment, and is also referred to as a network device.
  • the network device may be an access network device, and the access network device may also be referred to as a radio access network (radio access network, RAN) device, which is a device that provides wireless communication functions for terminal devices.
  • the access network equipment includes, but is not limited to: next-generation base stations (generation nodeB, gNB) in 5G, evolved node B (evolved node B, eNB), baseband unit (BBU), and transmitting and receiving points. point, TRP), transmitting point (transmitting point, TP), the base station in the future mobile communication system or the access point in the WiFi system, etc.
  • the access network equipment can also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or a network
  • the equipment can be a relay station, a vehicle-mounted device, and a network device in the PLMN network that will evolve in the future.
  • the terminal device may include user equipment (UE), wireless terminal devices, mobile terminal devices, device-to-device communication (device-to-device, D2D) terminal devices, V2X terminal devices, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal devices, Internet of things (IoT) terminal devices, subscriber units, subscriber stations, mobile stations , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), aircraft (such as UAV, hot air balloon, civil aviation passenger plane, etc.) or user device, etc.
  • UE user equipment
  • D2D device-to-device communication
  • V2X terminal devices machine-to-machine/machine-type communication
  • M2M/MTC machine-to-machine/machine-type communications
  • M2M/MTC Internet of things
  • IoT Internet of things
  • a mobile phone or called a "cellular" phone
  • a computer with a mobile terminal device, a portable, pocket-sized, handheld, and a mobile device with a built-in computer, and so on.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the in-vehicle device placed or installed on the vehicle may also include a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the embodiments of the present application may also be applicable to other future-oriented communication technologies.
  • the network architecture and business scenarios described in this application are intended to explain the technical solutions of this application more clearly, and do not constitute a limitation on the technical solutions provided by this application. Those of ordinary skill in the art will know that with the evolution of the network architecture and new business scenarios The technical solutions provided in this application are equally applicable to similar technical problems.
  • the NR system Compared with the LTE system which only has two RRC states, RRC_IDLE and RRC_CONNECTED, the NR system introduces a new state (RRC INACTIVE) to meet the requirements of low latency and low power consumption. That is, the NR system supports RRC to support three states, which are connected (RRC_CONNECTED) state, deactivated (RRC_INACTIVE) state, and idle (RRC_IDLE) state. The transition between these three states is shown in Figure 2. When the UE is in the idle state, it can establish an RRC connection, switch to the connected state, and return to the idle state by releasing the RRC connection. When the UE in the connected state is in a low demand state, it can delay releasing the RRC connection to switch to the deactivated state, and return to the idle state by releasing the RRC connection.
  • Figure 3 shows a schematic diagram of terminal equipment moving in cell 1, cell 2, and cell 3. Due to the mobility of the terminal equipment, the terminal equipment may move from the coverage area of one cell to the coverage area of another cell. In order to ensure the service continuity and communication quality of the terminal equipment, the terminal equipment is required to perform cell reselection (reselection) or cell handover (handover). The terminal equipment obtains continuous service of the wireless network by reselecting and switching between cells with different coverage areas. Both cell reselection and cell handover require terminal equipment to perform cell measurement. The types of cell measurement include intra-frequency measurement and inter-frequency/different system measurement.
  • the terminal device when the terminal device is in an idle state or a deactivated state, there is no RRC connection between the terminal device and the network device.
  • the terminal device measures the signals of the cell and the neighboring cell in the same frequency, different frequency and/or different system neighboring cell information configured in the system message by the network device Quality, to determine whether the signal quality of the neighboring cell meets the cell reselection conditions. If the signal quality of the neighboring cell meets the cell reselection condition, the terminal device resides in the neighboring cell.
  • the network device configures the terminal device to perform same-frequency, different-frequency, and/or different system neighbor cell measurements through RRC signaling.
  • the terminal device reports the signal quality measurement results of the serving cell and neighboring cells to the network device through RRC signaling, and the network device switches the terminal device to a cell with better signal quality according to the measurement result when the terminal device is in. Therefore, whether it is the cell reselection in the idle state and the deactivated state, or the cell handover in the connected state, it is based on the signal quality measurement results of the terminal device on the serving cell and neighboring cells.
  • the terminal device can use a measurement method that requires gap measurement, or a measurement method that does not require gap measurement for inter-frequency and/or measurement. Or measure in the neighboring area of a different system. If the terminal device has multiple sets of radio frequency channels and can support receiving signals on different frequencies or neighboring cells of different systems at the same time when transmitting and receiving signals on the serving cell, the terminal device supports measurement methods that do not require gap measurement to measure the neighboring cells of different frequencies or different systems. Otherwise, the terminal equipment uses a measurement method that does not require gap measurement to measure signals of different frequencies or neighboring cells of different systems.
  • the terminal equipment stops the signal receiving and sending on the serving cell in the gap, adjusts the radio frequency path to the different frequency or the different system frequency point, and receives the signal of the different frequency or the neighboring cell of the different system.
  • the network device configures the gap semi-statically through RRC signaling.
  • FIG 4 is a configuration diagram of gap, which is mainly composed of three parameters.
  • These three parameters are measurement gap repetition period (MGRP), which are used to configure the gap period; measure the length of the time slot.
  • the measurement gap length (MGL) is used to configure the length of the gap;
  • the measurement offset (gapOffset) is used to configure the starting position of the gap.
  • SFN system frame number
  • subframe subframe
  • subframe gapOffset mod 10;
  • the above SFN and subframe are the SFN and subframe of the primary cell (primary cell, PCell).
  • the maximum MGL is 6ms.
  • the measurement of the NR neighbor cell can be based on the synchronization signal block (Synchronization Signal Block, SSB), but due to the particularity of the SSB signal design, if the measurement method that needs to measure the gap is used to perform the connection state inter-frequency or different system neighbor cell measurement), the network The device needs to be configured with an accurate gap location to include the SSB of the neighboring cell.
  • SSB Synchronization Signal Block
  • the time domain position of the measurement gap needs to refer to the PCell timing, and the time domain position of the neighboring cell SSB is sent at the neighboring cell timing.
  • the network device needs to know the PCell and the NR neighboring cell Therefore, it is determined that the SFN and subframe number of the SSB of the NR neighboring cell correspond to the SFN and subframe number of the PCell.
  • the timing deviation between the PCell and the NR neighboring cell can be obtained by measuring the system frame number and frame timing difference (SFTD) of the terminal device.
  • SFTD measurement results include SFN deviation and frame boundary timing deviation.
  • the current protocol supports (EUTRA-NR Dual Connectivity, EUTRA-NR dual connectivity), also known as SFTD measurement between LTE PCell and NR PSCell under EN-DC, and supports (NR-EUTRA Dual Connectivity, NR-EUTRA dual connectivity) ), also known as SFTD measurement between NR PCell and LTE PSCell under NE-DC, and also supports (NR Dual Connectivity, NR dual connectivity), also known as SFTD measurement between NR PCell and NR PSCell under NR-DC , And supports SFTD measurement between LTE PCell and NR neighbor cells under non-DC (Dual Connectivity).
  • EUTRA-NR Dual Connectivity, EUTRA-NR dual connectivity also known as SFTD measurement between LTE PCell and NR PSCell under EN-DC
  • NR-EUTRA Dual Connectivity, NR-EUTRA dual connectivity also known as SFTD measurement between NR PCell and LTE PSCell under NE-DC
  • NR Dual Connectivity, NR dual connectivity also known as SFTD measurement between NR
  • the terminal device needs to receive a signal from another cell under test other than the PCell to obtain the timing information of the cell.
  • DC since the terminal device can support simultaneous work on PCell and PSCell and know the timing information of PCell and PSCell at any time, there will be no difficulty in SFTD measurement.
  • the non-DC SFTD measurement between the LTE PCell and the NR neighboring cell if the radio frequency path of the terminal device does not support receiving and sending signals on the PCell while receiving signals on the NR neighboring cell, the SFTD measurement will be difficult. For this reason, the current protocol supports the following two methods: SFTD measurement that requires gap and SFTD measurement in the non-active period of connected discontinuous reception (connected discontinuous reception, CDRX).
  • the terminal device first detects the synchronization signals of other cells, obtains synchronization with other cells based on the synchronization signals of other cells, and then performs related measurements on the reference signals sent by other cells to complete the measurement. Measurements in other cells.
  • interrupting the receiving and sending of data in the original service area in the measurement gap will have a greater impact on throughput.
  • LTE terminal equipment can support CA combinations in many different frequency bands, have multiple receiving channels, and have the ability to directly measure different frequencies/systems without the need to configure gaps. In this way, the data transmission in the original service area is not interrupted, and the service in the original service area of the terminal is not affected.
  • LTE supports many frequency bands and CA combinations, and there are many different frequency/different system frequency bands that need to be measured.
  • terminal devices usually only support a limited number of frequency band combinations, and cannot support all frequency band combinations without measuring gap. Measure different frequency/different system.
  • the band of the service area is indicated by the cell “bandListEUTRA” that supports single band or the cell “bandCombinationListEUTRA” that supports CA; the target measurement inter-frequency band is indicated by the cell “interFreqBandList”, and the target measurement inter-system band It is indicated by the cell "interRAT-BandList”.
  • 1 bit is used to indicate the band/CA combination of the service area and whether to measure the gap between different frequency bands or different frequency bands. For example, the value of 1 bit is 1 (True) means that gap measurement is required, and the value of 1 bit is 0 (False). ) Means that no gap measurement is required.
  • the network device may determine according to Table 1 whether to configure the gap during measurement.
  • the message used for terminal equipment to report the measurement capability also called the measurement capability report message
  • the measurement capability report message has a large amount of information and is prone to failure, that is, the success rate is low.
  • the number of frequency bands of the terminal device is N
  • the number of CA combinations supported by the terminal device is L
  • the number of different system frequency bands supported by the terminal device is M
  • the number of information bits that the terminal device needs to report is (N+L)*(N+ M).
  • the current terminal equipment can typically support 500 CA combinations, 20 inter-frequency band measurements, and 10 inter-system measurements.
  • the amount of messages that need to be reported is 15600 bits, which is a large amount of information, and the reporting process is prone to errors.
  • the current measurement capability message does not support NR measurement gap capability reporting.
  • NR supports more frequency bands, supports EN-DC/NE-DC, NR CA and other frequency band combinations. Need to measure NR different frequency, LTE different system, NSA also needs to measure 2G, 3G different system, need to measure more different frequency, different system. NR also needs to report whether each measurement frequency band combination needs to be measured by the gap for measurement.
  • the NR system Compared with LTE, the NR system supports more frequency band combinations and the frequency band combinations that need to be measured. It is more difficult for terminal equipment to support all frequency band combinations without configuring gap measurement inter-frequency and different systems. It needs to be similar to LTE sub-band reporting whether the ability to configure measurement gaps is required. Compared with the LTE system, the NR system supports more frequency bands and CA combinations, etc. If you continue to use the LTE measurement capability to report messages, it is obvious that the amount of information is greater and the success rate is lower.
  • the embodiment of the present application provides a method for reporting capability information.
  • the terminal device can report the measurement capability information of the terminal device in all frequency bands to the network device. Compared with the current reporting of the terminal device in all frequency bands, In terms of the measurement capability information of the frequency band, it is obvious that the amount of information reported by the terminal device is relatively small, so as to maximize the success rate of the terminal device reporting.
  • the technical solutions provided by the embodiments of the present application can be used in wireless communication systems, such as 4.5G systems or 5G systems, and further evolution systems based on LTE or NR, as well as future wireless communication systems or other similar communication systems.
  • the embodiment of the present application provides a method for sending or receiving capability information.
  • the method is applied to the network architecture shown in FIG. 1 as an example.
  • the method can be executed by two communication devices, for example, the first communication device and the second communication device.
  • the first communication device may be a network device or a communication device capable of supporting the network device to realize the functions required by the method
  • the first communication device may be a terminal device or a communication device capable of supporting the terminal device to realize the functions required by the method (For example, chip system).
  • the second communication device may be a network device or a communication device capable of supporting the network device to realize the functions required by the method.
  • the second communication device may be a network device or a communication device capable of supporting the functions required by the network device to implement the method, or the second communication device may be a terminal device or capable of supporting the terminal device to implement the method.
  • Communication device with required functions such as chip system.
  • the first communication device and the second communication device are both terminal devices, or the first communication device is a terminal device, and the second communication device is capable of supporting A communication device for terminal equipment to implement the functions required by the method, and so on.
  • the network device is, for example, a base station.
  • FIG. 5 is a flowchart of a method for sending or receiving capability information according to an embodiment of this application.
  • the method is executed by a network device and a terminal device as an example, that is, a first communication device Take terminal equipment and the second communication device as network equipment as an example.
  • a network device and a terminal device as an example, that is, a first communication device Take terminal equipment and the second communication device as network equipment as an example.
  • the embodiments of the present application only take execution through network equipment and terminal equipment as an example, and are not limited to this scenario.
  • the network device sends a first message to the terminal device, and the terminal device receives the first message, where the first message is used to query the measurement capability of the terminal device.
  • the network device may send a first message to the terminal device to query the measurement capability of the terminal device, for example, query whether the terminal device needs to measure the gap. For another example, the terminal device switches to a new cell, and the network device queries whether the terminal device has reported the measurement capability of the relevant frequency band of the new cell. If the terminal device has not reported, the network device can send the first message to the terminal device to query the terminal device Measurement capabilities.
  • the terminal device sends a second message to the network device, and the network device receives the second message.
  • the second message may include first indication information, and the first indication information may be used to indicate that the second message includes the terminal equipment operating in all frequency bands.
  • the terminal device receives the first message, and can report the measurement capability information required by the network device to the network device according to the first message. Since the NR system supports more frequency band combinations, if the terminal equipment reports the measurement capability information of all frequency bands, it is obvious that the amount of information is large and it is prone to failure. In order to ensure the success rate of the terminal device reporting measurement capability information as much as possible, the first message may indicate which frequency bands the terminal device needs to inquire about the measurement capability information of the terminal device, thereby eliminating the need for the terminal device to report measurement capability information for all frequency bands.
  • the terminal device may report measurement capability information to the network device through the second message, and may notify the network device through the first indication information.
  • the measurement capability information reported by the terminal device is the measurement capability of the terminal device in some frequency bands in all frequency bands. information.
  • the network device can specify which frequency band measurement information needs to be reported by the terminal device through the first message.
  • the terminal device can also clearly report measurement information of which frequency bands according to the first message.
  • the first message and the second message may respectively include the following types of information:
  • the first message may include the measurement configuration information of the terminal device in all frequency bands of the primary cell
  • the second message may include the measurement capability information of the terminal device in all frequency bands of the primary cell
  • the terminal equipment reporting the measurement capability information of all frequency bands of the primary cell can ensure the success rate of reporting the measurement capability information as much as possible. Furthermore, since the terminal device reports the measurement capability information of all frequency bands of the primary cell, rather than the measurement capability information of the terminal device in all frequency bands of all cells, obviously the amount of information reported by the terminal device is relatively small. It can be seen that in a scenario where the communication system supports more frequency band combinations, the success rate of the terminal equipment reporting measurement capability information can be guaranteed.
  • the second message may include measurement capability information of the terminal device in a part of the frequency band of the primary cell. That is, the terminal device can report less measurement capability information to ensure the success rate of reporting the measurement capability information as much as possible.
  • the first message may include the measurement configuration information of the terminal device in a part of the frequency band of the primary cell
  • the second message may include the measurement capability information of the terminal device in the part of the frequency band of the primary cell.
  • the network device may instruct the terminal device to report measurement capability information in a part of the frequency band of the primary cell.
  • some frequency bands may satisfy one or more of the following conditions:
  • the signal strength of some frequency bands is higher than or equal to the signal strength of the rest of the frequency bands except for some frequency bands.
  • some frequency bands may be selected from all frequency bands according to the signal strength.
  • the terminal device may preferentially report the measurement capability information of the frequency band with stronger signal strength. For example, if the terminal device determines to report a frequency band, it can select the frequency band with the strongest signal strength, that is, report the measurement capability information of the frequency band with the strongest signal strength. For another example, if the terminal device determines to report multiple frequency bands, the terminal device can select these multiple frequency bands from all frequency bands according to the strength of the signal strength, and the signal strength of these multiple frequency bands is higher than the signal strength of the other frequency bands.
  • the embodiment of the present application may also select some frequency bands from all frequency bands according to the priority of data transmission.
  • the terminal device may preferentially report the measurement capability information of the frequency band with a higher priority for data transmission. For example, if the terminal device determines to report a frequency band, it can select the frequency band with the highest priority for data transmission, that is, report the measurement capability information of the frequency band with the highest priority for data transmission. For another example, the terminal device determines to report multiple frequency bands, then the terminal device can select these multiple frequency bands from all frequency bands according to the priority of data transmission, and the data transmission priority of these multiple frequency bands is higher than that of the other frequency bands. The priority of the transmission. With this scheme, since the priority of data transmission is higher, the timeliness of reporting measurement capability information can be ensured as much as possible.
  • Some frequency bands include the frequency band that the terminal equipment will switch to from the current frequency band.
  • the embodiment of the present application can also select some frequency bands according to the switching pre-judgment strategy, that is, pre-determine the frequency band that the terminal device may switch to, and give priority to reporting the measurement capability information of the frequency band that the terminal device may switch to in the future to ensure that the terminal device is performing No cell reselection or re-access occurs during cell handover, ensuring the stability of communication.
  • the terminal device may determine part of the frequency band according to at least two factors of signal strength, priority of data transmission, and handover pre-judgment strategy. For example, if there are two frequency bands with the same signal strength, then the terminal device determines to report the measurement capability information of one of the frequency bands, then the terminal device can choose to report the measurement capability information of the frequency band with the higher data transmission priority among the two frequency bands .
  • part of the frequency band may include, but is not limited to, the frequency band supported by the aggregate carrier CA, the dual-connection EN-DC of the 4G wireless access network and the 5G wireless access network, and the frequency band of the 5G wireless access network and the 4G wireless access network.
  • the specific frequency bands include which frequency bands can be configured by network equipment or specified by agreement. In this way, the terminal device reports some frequency bands as described above, and does not need to report all frequency bands, reducing the amount of reported information.
  • the first message may include measurement configuration information of the terminal device in all frequency bands or part of the frequency band of the primary cell, and measurement configuration information of the terminal device in all frequency bands or part of the frequency band of at least one secondary cell related to the primary cell.
  • the second message may include measurement capability information of the terminal device in all frequency bands of the primary cell, and measurement capability information of the terminal device in all frequency bands of a secondary cell with the strongest signal strength.
  • the second message may include measurement capability information of the terminal device in all frequency bands of the primary cell, and measurement capability information of the terminal device in a part of the frequency band of a secondary cell with the strongest signal strength.
  • the second message may include measurement capability information of the terminal device in a part of the frequency band of the primary cell, and measurement capability information of the terminal device in all frequency bands of a secondary cell with the strongest signal strength.
  • the second message may include the measurement capability information of the terminal device in the partial frequency band of the primary cell, and the measurement capability information of the terminal device in the partial frequency band of the secondary cell with the strongest signal strength.
  • the second message may include measurement capability information of the terminal device in all frequency bands or part of the frequency band of the primary cell, and measurement capability information of the terminal device in all frequency bands or part of the frequency band of at least one secondary cell related to the primary cell. That is, the terminal device only needs to report the measurement capability information of the terminal device in some frequency bands in all frequency bands, which reduces the amount of reported information.
  • at least one secondary cell is related to the primary cell, for example, it may be a cell to which a subsequent terminal device will be handed over, so as to ensure the stability of the subsequent terminal device in cell handover.
  • At least one secondary cell may satisfy one or more of the following conditions:
  • the signal strength of at least one secondary cell is higher than the signal strength of the remaining secondary cells except at least one secondary cell among all secondary cells.
  • the priority of data transmission of at least one secondary cell is higher than the priority of data transmission of other secondary cells except at least one secondary cell in all secondary cells.
  • the at least one secondary cell includes the cell to which the terminal device will be handed over from the primary cell.
  • the selection condition of at least one secondary cell is similar to the selection condition of some frequency bands, that is, the embodiment of this application can select all the factors based on at least two factors of signal strength, data transmission priority and handover pre-judgment strategy. At least one secondary cell is selected from the secondary cells.
  • the terminal device may report the measurement capability information of the terminal device in all frequency bands of the primary cell, and the measurement capability information of the terminal device in all frequency bands of the secondary cell with the strongest signal strength.
  • the terminal device may report the measurement capability information of the terminal device in all frequency bands of the primary cell, and the measurement capability information of the terminal device in all frequency bands of a secondary cell with the highest data transmission priority.
  • the terminal device may report the measurement capability information of the terminal device in all frequency bands of the primary cell, and the measurement capability information of the terminal device in all frequency bands of a secondary cell to be handed over to.
  • the terminal device can report the measurement capability information of the terminal device in all frequency bands of the primary cell, and the terminal device in the signal strength of the strongest one.
  • the measurement capability information of the frequency band with the highest data transmission priority of the secondary cell can be combined.
  • the terminal device can report the measurement capability information of the terminal device in all frequency bands of the primary cell, and the measurement capability information of the terminal device in the secondary cell with the strongest signal strength and the frequency band to which the terminal device will switch, etc., here I will not list them one by one.
  • the second message may include the information element "interFreqNeedForGaps"/"interRAT-NeedForGaps", and the content indicated by the information element "interFreqNeedForGaps"/"interRAT-NeedForGaps” is the measurement capability information reported by the terminal device.
  • the information element "interFreqNeedForGaps” can indicate the measurement capability information of part of the frequency band reported by the terminal equipment
  • the information element "interRAT-NeedForGaps” can indicate the measurement capability information of the primary cell or at least one secondary cell reported by the terminal equipment for all frequency bands or part of the frequency band. . It can be better compatible with the measurement capability information defined by the current agreement.
  • the second message can also include indication information for indicating whether the gap needs to be measured. It can be applied to the NR system, and can support the measurement capability information that does not need to measure the gap in the NR system, and is compatible with the LTE system, whether the gap needs to be measured. Reported.
  • the measurement capability information may be predefined.
  • the second message may not include the measurement capability information, and the network device and the measurement capability information of the terminal device are notified through the first indication information. That is, as shown in Figure 5, S502 and S503 are mutually replaceable steps. When the system has predefined measurement capability information, then step S502 can be performed in Figure 5, and when the system does not have predefined measurement capability information, then step S503 can be performed in Figure 5 . It should be understood that the dashed line in FIG. 5 indicates that S503 is only for distinguishing from S502.
  • Table 2 it is an indication of the predefined measurement capabilities.
  • the network device may determine whether to configure the gap during measurement according to Table 2.
  • Table 2 takes the measurement capability information reported by the terminal equipment in the primary cell and the measurement capability information in the secondary cell with the strongest signal strength as an example.
  • band1 corresponds to the primary cell
  • band3 corresponds to the secondary cell with the strongest signal strength.
  • the capabilities that require gap measurement and those that do not require gap measurement can correspond to the frequency band sequence, as shown in Table 2. Therefore, the network device can learn the measurement capability information of the terminal device according to Table 2.
  • the network device may record the measurement capability information reported by the terminal device, and the measurement capability information includes whether the gap capability needs to be measured. After the terminal device re-accesses or switches to a cell in the same frequency band of the primary cell's frequency band, the network device can no longer query the measurement capability of the terminal device.
  • the measurement capability information reported by the terminal device may be the measurement capability information of the terminal device in a part of the frequency band.
  • the measurement capability information reported by the terminal device may include the measurement capability information of the terminal device in the primary cell and some secondary cells. , Excluding measurement capability information of frequency bands that are not related to the primary cell and some secondary cells, reducing the amount of reported information, and ensuring the success rate of reporting measurement capability information.
  • the frequency band of the terminal equipment in the service area of the current cell must include the frequency band of the primary cell, there will be no frequency bands that are not related to the primary cell.
  • the measurement capability information reported by the terminal equipment does not include the primary cell and some secondary cells
  • the measurement capability information of the unrelated frequency band does not affect the measurement of the terminal equipment in the cell.
  • retaining the measurement capability information of some secondary cells is beneficial to the mobility management of the terminal equipment.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of interaction between a terminal device and a network device.
  • the terminal device and the network device may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. . Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 6 is a schematic block diagram of a communication device 600 according to an embodiment of the application.
  • the communication apparatus 600 can correspondingly implement the functions or steps implemented by the first network device or the second network device or the terminal device in the foregoing method embodiments.
  • the communication device may include a processing unit 610 and a transceiving unit 620.
  • a storage unit may also be included, and the storage unit may be used to store instructions (code or program) and/or data.
  • the processing unit 610 and the transceiving unit 620 may be coupled with the storage unit.
  • the processing unit 610 may read instructions (codes or programs) and/or data in the storage unit to implement corresponding methods.
  • the above-mentioned units can be set independently, or partly or fully integrated.
  • the communication apparatus 600 can correspondingly implement the behaviors and functions of the terminal device in the foregoing method embodiments.
  • the communication device 600 may be a terminal device, or a component (such as a chip or a circuit) applied to the terminal device.
  • the transceiving unit 620 may be used to perform all receiving or sending operations performed by the terminal device in the embodiment shown in FIG. 5, such as S501 and S502 in the embodiment shown in FIG. 5, and/or to support the descriptions described herein. Other processes of the technology.
  • the processing unit 610 is configured to perform all operations performed by the terminal device in the embodiment shown in FIG. 5 except for the transceiving operations, and/or other processes used to support the technology described herein.
  • the processing unit 610 is used to generate a message to be sent and/or received by the transceiving unit 620; the transceiving unit 620 is used to: receive a first message from a network device, the first message is used to query the measurement capability of the communication device ; Send a second message to the network device, the second message includes the first indication information, the first indication information is used to indicate that the second message includes the measurement capability information of a part of the communication device in all frequency bands.
  • the first message includes measurement configuration information of all frequency bands or partial frequency bands of the primary cell where the communication device is currently located; or the first message includes measurement configuration information of all frequency bands or partial frequency bands of the primary cell where the communication device is currently located. Measurement configuration information of part of the frequency band, and measurement configuration information of the communication device in all frequency bands or partial frequency bands of at least one secondary cell related to the primary cell.
  • the second message further includes the measurement capability information of the communication device in all frequency bands or part of the frequency band of the primary cell where the communication device is currently located; or the second message also includes the communication device in all frequency bands of the primary cell where the current location is located. Or measurement capability information of part of the frequency band, and measurement capability information of the communication device in all frequency bands or partial frequency bands of at least one secondary cell related to the primary cell.
  • the measurement capability information may be predefined, where the measurement capability information may include the measurement capability information of the communication device in all frequency bands or part of the frequency band of the primary cell where the communication device is currently located; Measurement capability information of all frequency bands or partial frequency bands of the primary cell where it is located, and measurement capability information of the communication device in all frequency bands or partial frequency bands of at least one secondary cell related to the primary cell.
  • the signal strength of at least one secondary cell may be higher than the signal strength of other secondary cells except at least one secondary cell among all secondary cells; or the priority of data transmission of at least one secondary cell The priority of data transmission is higher than that of the remaining secondary cells except at least one secondary cell among all secondary cells; or at least one secondary cell includes the cell to which the communication device is to be handed over from the primary cell.
  • the signal strength of some frequency bands may be higher than or equal to the signal strength of the rest of the frequency bands except for some frequency bands; or the priority of data transmission in some frequency bands is higher than that of all frequency bands except The priority of data transmission in the remaining frequency bands other than part of the frequency band; or the part of the frequency band includes the frequency band to which the communication device will switch from the current frequency band.
  • the second message may further include indication information used to indicate whether a gap measurement needs to be performed.
  • the partial frequency bands may include, but are not limited to, at least one of aggregate carrier CA, frequency bands supported by EN-DC, frequency bands supported by NE-DC, and CA under SA.
  • processing unit 610 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiving unit 620 may be implemented by a transceiver or transceiver-related circuit components or a communication interface.
  • the communication apparatus 600 can correspondingly implement the behaviors and functions of the network equipment in the foregoing method embodiments.
  • the communication device 600 may be a network device, or a component (such as a chip or a circuit) applied to the network device.
  • the transceiving unit 620 may be used to perform all the receiving or sending operations performed by the network device in the embodiment shown in FIG. 5, such as S501 and S502 in the embodiment shown in FIG. 5, and/or to support the descriptions described herein. Other processes of the technology.
  • the processing unit 610 is configured to perform all operations performed by the network device in the embodiment shown in FIG. 5 except for the transceiving operation, and/or other processes used to support the technology described herein.
  • the processing unit 610 is configured to generate a message to be sent and/or received by the transceiver unit 620;
  • the transceiver unit 620 is configured to: send a first message to the terminal device, the first message is used to query the measurement capability of the terminal device, and receive a second message from the terminal device, the second message includes the first indication information, the first indication information is used for Indicate that the second message includes measurement capability information of some frequency bands of the terminal device in all frequency bands.
  • the first message includes the measurement configuration information of the terminal device in all frequency bands or part of the frequency bands of the primary cell where it is currently located; or,
  • the first message includes measurement configuration information of the terminal device in all frequency bands or part of the frequency band of the current primary cell, and measurement configuration information of the terminal device in all frequency bands or part of the frequency band of at least one secondary cell related to the primary cell.
  • the second message further includes the measurement capability information of the terminal device in all frequency bands or part of the frequency bands of the primary cell where it is currently located; or,
  • the second message also includes measurement capability information of the terminal equipment in all frequency bands or part of the frequency band of the primary cell where it is currently located, and measurement capability information of the terminal equipment in all frequency bands or part of the frequency band of at least one secondary cell related to the primary cell.
  • the measurement capability information may be predefined, where the measurement capability information includes:
  • the measurement capability information of the terminal equipment in all frequency bands or part of the frequency bands of the current primary cell or,
  • the measurement capability information of the terminal device in all frequency bands or part of the frequency band of the current primary cell and the measurement capability information of the terminal device in all frequency bands or part of the frequency band of at least one secondary cell related to the primary cell.
  • the signal strength of at least one secondary cell is higher than the signal strength of other secondary cells except at least one secondary cell among all secondary cells; or,
  • the priority of data transmission in at least one secondary cell is higher than the priority of data transmission in all the secondary cells except at least one secondary cell; or,
  • the at least one secondary cell includes the cell to which the terminal device will be handed over from the primary cell.
  • the signal strength of some frequency bands is higher than or equal to the signal strength of the rest of the frequency bands except for some frequency bands; or,
  • the priority of data transmission in some frequency bands is higher than the priority of data transmission in the rest of the frequency bands except for some frequency bands; or,
  • Part of the frequency band includes the frequency band that the terminal device will switch to from the current frequency band.
  • the second message further includes indication information used to indicate whether the measurement gap gap is required.
  • the partial frequency bands include at least one of aggregated carrier CA, frequency bands supported by EN-DC, frequency bands supported by NE-DC, and CA under SA.
  • processing unit 610 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiving unit 620 may be implemented by a transceiver or transceiver-related circuit components or a communication interface.
  • the communication device 700 may be a terminal device, which can realize the function of the terminal device in the method provided in the embodiment of this application, or the communication device 700 may be a network device. , Can realize the function of the network device in the method provided in the embodiment of this application; the communication device 700 can also be a device that can support the terminal device to realize the corresponding function in the method provided in the embodiment of this application, or can support the network device to realize the implementation of this application The corresponding function device in the method provided in the example.
  • the communication device 700 may be a chip system. In the embodiments of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • the foregoing transceiver unit 620 may be a transceiver, and the transceiver is integrated in the communication device 700 to form a communication interface 710.
  • the communication device 700 includes at least one processor 720, which is configured to implement or support the communication device 700 to implement the functions of the network device or the terminal device in the method provided in the embodiments of the present application. For details, please refer to the detailed description in the method example, which will not be repeated here.
  • the communication device 700 may further include at least one memory 730 for storing program instructions and/or data.
  • the memory 730 and the processor 720 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 720 may operate in cooperation with the memory 730.
  • the processor 720 may execute program instructions and/or data stored in the memory 730, so that the communication device 700 implements a corresponding method. At least one of the at least one memory may be included in the processor.
  • the communication device 700 may further include a communication interface 710 for communicating with other devices through a transmission medium, so that the device used in the communication device 700 can communicate with other devices.
  • a communication interface 710 for communicating with other devices through a transmission medium, so that the device used in the communication device 700 can communicate with other devices.
  • the communication device is a terminal device
  • the other device is a network device; or, when the communication device is a network device, the other device is a terminal device.
  • the processor 720 may use the communication interface 710 to send and receive data.
  • the communication interface 710 may specifically be a transceiver.
  • connection medium between the above-mentioned communication interface 710, the processor 720, and the memory 730 is not limited in the embodiment of the present application.
  • the memory 730, the processor 720, and the communication interface 710 are connected by a bus 740 in FIG. 7.
  • the bus is represented by a thick line in FIG. 7, and the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 7, but it does not mean that there is only one bus or one type of bus.
  • the processor 720 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement Or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 730 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory (volatile memory). For example, random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the communication device in the foregoing embodiment may be a terminal device or a circuit, and may also be a chip applied to a terminal device or other combination devices or components having the functions of the foregoing terminal device.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver unit may be an input/output interface of the chip system
  • the processing module may be a processor of the chip system.
  • Fig. 8 shows a schematic structural diagram of a simplified communication device. It is easy to understand and easy to illustrate.
  • the communication device takes the network device as a base station as an example.
  • the base station may be applied to the system shown in FIG. 1, and may be the network device in FIG. 1, which performs the functions of the network device in the foregoing method embodiment.
  • the network device 800 may include one or more radio frequency units, such as a remote radio unit (RRU) 810 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU). )820.
  • RRU 810 may be called a communication module, which corresponds to the transceiver unit 620 in FIG. 6.
  • the communication module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 811 And radio frequency unit 812.
  • the RRU 810 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 820 part of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 810 and the BBU 820 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 820 is the control center of the base station, and may also be called a processing module, which may correspond to the processing unit 610 in FIG. 6, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing first message.
  • the BBU 820 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) with a single access standard, or can support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 820 further includes a memory 821 and a processor 822.
  • the memory 821 is used to store necessary instructions and data.
  • the processor 822 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 821 and the processor 822 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the embodiment of the present application also provides a communication device, and the communication device may be a terminal device or a circuit.
  • the communication device may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • Figure 9 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, control the vehicle-mounted unit, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 9 only one memory and processor are shown in FIG. 9. In an actual device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the device, and the processor with the processing function can be regarded as the processing unit of the device.
  • the terminal device 900 includes a transceiving unit 910 and a processing unit 920.
  • the transceiving unit 910 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 920 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiving unit 910 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 910 can be regarded as the sending unit, that is, the transceiving unit 910 includes a receiving unit and a sending unit.
  • the transceiving unit 910 may also be referred to as a transceiver, a transceiver, or a transceiving circuit or the like.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 910 is used to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 920 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the transceiving unit 910 may be used to perform S501 and S502 in the embodiment shown in FIG. 5 and/or other processes used to support the technology described herein.
  • the device may include a transceiver unit and a processing unit.
  • the transceiving unit may be an input/output circuit and/or a communication interface;
  • the processing unit is an integrated processor or a microprocessor or an integrated circuit.
  • the device can perform functions similar to the processing unit 610 in FIG. 6.
  • the device includes a processor 1010, a data sending processor 1020, and a data receiving processor 1030.
  • the processing unit 610 in the foregoing embodiment may be the processor 1010 in FIG. 10, and performs corresponding functions.
  • the processing unit 610 in the foregoing embodiment may be the sending data processor 1020 and/or the receiving data processor 1030 in FIG. 10.
  • the channel encoder and the channel decoder are shown in FIG. 10, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are merely illustrative.
  • the communication device 1100 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1103 and an interface 1104.
  • the processor 1103 completes the function of the aforementioned processing unit 610
  • the interface 1104 completes the function of the aforementioned transceiver unit 620.
  • the modulation subsystem includes a memory 1106, a processor 1103, and a program stored in the memory 1106 and running on the processor.
  • the processor 1103 executes the program to implement the terminal device in the foregoing method embodiment. method.
  • the memory 1106 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the communication device 1100, as long as the memory 1106 can be connected to the The processor 1103 is sufficient.
  • the embodiments of the present application also provide a communication system.
  • the communication system includes a network device and a terminal device, or may also include more network devices and multiple terminal devices.
  • the communication system includes network equipment and terminal equipment for realizing the above-mentioned related functions of FIG. 5.
  • the network devices are respectively used to implement the functions of the above-mentioned related network parts in FIG. 5.
  • the terminal device is used to implement the functions of the above-mentioned terminal related to FIG. 5.
  • the embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method executed by the network device in FIG. 5; or when it runs on a computer, cause the computer to execute Figure 5 shows the method executed by the terminal device.
  • the embodiment of the present application also provides a computer program product, including instructions, when it runs on a computer, causes the computer to execute the method executed by the network device in FIG. 5; or when it runs on a computer, causes the computer to execute FIG. 5 The method executed by the terminal device.
  • the embodiment of the present application provides a chip system, which includes a processor and may also include a memory, which is used to implement the functions of the network device or terminal device in the foregoing method; or is used to implement the function of the network device and terminal device in the foregoing method.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • At least one means one or more
  • plural means two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c or a-b-c, where a, b, and c can be single or multiple.
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first message and the second message are only for distinguishing different messages, but do not indicate the difference in priority, sending order, or importance of the two messages.
  • processors mentioned in the embodiments of this application may be a CPU, or other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), ready-made Field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种能力信息发送方法、接收方法及装置,应用于移动通信领域。该方法包括接收来自网络设备的第一消息,所述第一消息用于查询终端设备的测量能力;向所述网络设备发送第二消息,所述第二消息包括第一指示信息,所述第一指示信息用于指示所述第二消息包括所述终端设备在所有频段中的部分频段的测量能力信息。通过该方法,终端设备上报的是终端设备在部分频段的测量能力信息,而不是终端设备在所有频段的测量能力信息,减少上报的信息量,以尽量保证上报测量能力信息的成功率。

Description

一种能力信息发送方法、接收方法及装置
相关申请的交叉引用
本申请要求在2019年11月19日提交中国专利局、申请号为201911132845.5、申请名称为“一种能力信息发送方法、接收方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种能力信息发送方法、接收方法及装置。
背景技术
终端设备可能从一个小区的覆盖范围移动到另一个小区的覆盖范围,为了保证终端设备的业务连续性和通信质量,需要终端设备进行小区重选(reselection)或者小区切换(handover)。小区重选和小区切换都需要终端设备进行小区测量,小区测量的种类包括同频测量、异频/异系统测量。
终端设备可以采用需要gap测量的测量方式进行小区测量,也可以采用不需要gap测量的测量方式进行小区测量。例如,某些终端设备支持较多不同频段的载波聚合(carrier aggregation,CA)组合,具有多个接收通路,那么这些终端设备具备在不需要配置gap的情况下进行异频/异系统测量的能力,可以采用不需要gap测量的测量方式进行小区测量。
通常系统支持的频段和CA组合较多,需要测量的异频/异系统频段也较多,基于成本考虑,终端设备通常只能支持有限个数的频段组合。终端设备可以向基站上报测量能力以指示哪些测量频段组合需要测量gap,哪些测量频段组合不需要测量gap。
由于系统支持的频段和CA组合较多,所以用于终端设备上报测量能力的消息,也称为测量能力上报消息的信息量较大,上报容易失败,即上报成功率较低。例如,终端设备的频段数为N,终端设备支持的CA组合数为L,终端设备支持的异系统频段数为M,那么终端设备需要上报的信息比特数为(N+L)*(N+M)。且新无线(new radio,NR)系统相对于长期演进(long term evolution,LTE)系统来说,支持更多的频段和CA组合等,如果继续沿用LTE的测量能力上报消息,显然信息量更大,上报成功率更低。
发明内容
本申请提供一种能力信息发送方法、接收方法及装置,用于提高终端设备上报测量能力的成功率。
第一方面,本申请实施例提供了一种能力信息发送方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。该方法包括:接收来自网络设备的第一消息,所述第一消息用于查询所述终端设备的测量能力;向所述网络设备发送第二消息,所述第二消息包括第一指示信息,所述第一指示信息用于指示所述第二消息包括所述终端设备在所有频段中的部分频段的测量能力信息。
第二方面,本申请实施例提供了一种能力信息接收方法,该方法的执行主体可以是网 络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:向终端设备发送第一消息,所述第一消息用于查询所述终端设备的测量能力;接收来自所述终端设备的第二消息,所述第二消息包括第一指示信息,所述第一指示信息用于指示所述第二消息包括所述终端设备在所有频段中的部分频段的测量能力信息。
在上述第一方面与第二方面的实施例中,终端设备可以向网络设备上报终端设备在所有频段中的部分频段的测量能力信息,并通过第一指示信息告知网络设备,相较于目前上报终端设备在所有频段的测量能力信息来说,显然终端设备上报的信息量较少,以尽量提高终端设备上报的成功率。可见,通过本申请实施例提供的方法,应用于支持较多频段和CA组合的场景,可以保证测量能力信息上报的成功率。
在上述第一方面与第二方面在的实施例中,第一消息包括的内容可以为下述任一种:
一个示例,所述第一消息包括所述终端设备在当前所在的主小区的全部频段或部分频段的测量配置信息。采用这种方案,网络设备可以确定需要终端设备上报哪些频段的测量能力信息,例如终端设备在当前的主小区的全部频段或部分频段的测量能力信息,这样终端设备根据第一消息可以确定第二消息,即只上报终端设备在所有频段中的部分频段的测量能力信息,减少上报的信息量。同时,由于主小区的信号质量通常最优,所以还可以尽量保证上报测量能力信息的成功率。
另一个示例,所述第一消息包括所述终端设备在当前所在的主小区的全部频段或部分频段的测量配置信息,以及所述终端设备在与所述主小区相关的至少一个辅小区的全部频段或部分频段的测量配置信息。采用这种方案,与上述方案类似,网络设备可以确定需要终端设备上报哪些频段的测量能力信息,例如除了终端设备在当前的主小区的全部频段或部分频段的测量能力信息,还可以上报终端设备在至少一个辅小区的全部频段或部分频段的测量能力信息,这样终端设备只需上报终端设备在所有频段中的部分频段的测量能力信息,减少上报的信息量。同时,至少一个辅小区与主小区相关,例如可以是后续终端设备将要切换至的小区,以尽量保证后续终端设备进行小区切换的稳定性。
在上述第一方面与第二方面在的实施例中,第二消息包括的内容可以为下述任一种:
一个示例,所述第二消息还可以包括所述终端设备在当前所在的主小区的全部频段或部分频段测量能力信息。
另一个示例,所述第二消息还可以包括所述终端设备在当前所在的主小区的全部频段或部分频段的测量能力信息,以及所述终端设备在与所述主小区相关的至少一个辅小区的全部频段或部分频段的测量能力信息。
例如第二消息可以根据第一消息来确定,以根据网络设备的实际需求上报测量能力信息,同时只上报终端设备在所有频段中的部分频段的测量能力信息,减少上报的信息量,提高上报的成功率。
在上述第一方面与第二方面在的实施例中,所述测量能力信息可以是预定义的,其中,所述测量能力信息包括:所述终端设备在当前所在的主小区的全部频段或部分频段测量能力信息;或者所述终端设备在当前所在的主小区的全部频段或部分频段的测量能力信息,以及所述终端设备在与所述主小区相关的至少一个辅小区的全部频段或部分频段的测量能力信息。这种方式下,第二消息可以只包括第一指示信息,占用的比特数更少,上报的信息量也更少,进一步提高上报的测量能力信息的成功率。
在上述第一方面与第二方面在的实施例中,至少一个辅小区的选择策略有多种,可以 包括如下任意一种:所述至少一个辅小区的信号强度高于全部辅小区中除所述至少一个辅小区之外的其余辅小区的信号强度。或者所述至少一个辅小区的数据传输的优先级高于全部辅小区中除所述至少一个辅小区之外的其余辅小区的数据传输的优先级。或者所述至少一个辅小区包括所述终端设备从所述主小区将要切换到的小区。
在该方案中,至少一个辅小区可以是与主小区相关的小区,例如,至少一个辅小区的信号强度较高,或者数据传输的优先级较高,又或者是网络设备预判确定的包括终端设备从主小区之后要切换到的小区,从而在减少上报信息量的同时,可以使得终端设备保留较好的切换能力,确保终端设备在进行小区切换时不会发生小区重选或重新接入。
在上述第一方面与第二方面在的实施例中,部分频段的选择策略也有多种,可以包括如下任意一种:所述部分频段的信号强度高于或等于所述全部频段中除所述部分频段之外的其余频段的信号强度。或者所述部分频段的数据传输的优先级高于所述全部频段中除所述部分频段之外的其余频段的数据传输的优先级。或者所述部分频段包括所述终端设备从当前频段将要切换至的频段。
与至少一个辅小区的选择策略类似,部分频段也是优先选择信号强度较高,或者数据传输优先级较高,又或者是终端设备后续将要切换到的频段,以减少上报信息量。同时,可以确保终端设备在进行小区切换时不会发生小区重选或重新接入,保障通信的稳定性。
在上述第一方面与第二方面在的实施例中,所述第二消息还可以包括用于指示是否需要测量gap的指示信息。在该方案中,第二消息可以包括用于指示是否需要测量间隙gap的指示信息,可以支持NR系统中不需要测量gap的测量能力信息,且兼容LTE系统的是否需要测量gap的上报。
在上述第一方面与第二方面在的实施例中,所述部分频段可以但不限于包括聚合载波CA、4G无线接入网与5G无线接入网的双连接EN-DC支持的频段、5G无线接入网与4G无线接入网的双连接NE-DC支持的频段和独立组网SA下的CA中的至少一种。
在实际应用中,部分频段可以指示如上的几种情况中的一种或多种,具体选择哪种可通过网络设备配置,或通过协议规定。这样终端设备上报如上述的部分频段,不需要上报所有频段,减少上报的信息量。
第三方面,提供了一种通信装置,有益效果可以参见第一方面描述,在此不再赘述,该通信装置具有实现上述第一方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括处理单元和收发单元,其中,所述处理单元用于生成所述收发单元要发送和/或接收的消息;所述收发单元用于:接收来自网络设备的第一消息,所述第一消息用于查询所述通信装置的测量能力;向所述网络设备发送第二消息,所述第二消息包括第一指示信息,所述第一指示信息用于指示所述第二消息包括所述通信装置在所有频段中的部分频段的测量能力信息。这些模块可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处事不再赘述。
第四方面,提供一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括处理单元和收发单元,其中,所述处理单元用于生成所述收发单元要发送和/或接收的消息;所述收发单元用于:向终端设备发送 第一消息,所述第一消息用于查询所述终端设备的测量能力;接收来自所述终端设备的第二消息,所述第二消息包括第一指示信息,所述第一指示信息用于指示所述第二消息包括所述终端设备在所有频段中的部分频段的测量能力信息。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第六方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备或网络设备执行的方法被执行。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备或网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备或网络设备执行的方法。
在本申请实施例中,终端设备可以向网络设备上报终端设备在所有频段中的部分频段的测量能力信息,并通过第一指示信息告知网络设备,相较于目前上报终端设备在所有频段的测量能力信息来说,显然终端设备上报的信息量较少,以尽量提高终端设备上报的成功率。可见,通过本申请实施例提供的方法,应用于支持较多频段和CA组合的场景,可以保证测量能力信息上报的成功率。
附图说明
图1为本申请实施例适用的一种通信系统的架构示意图;
图2为本申请实施例提供的UE的RRC状态转换示意图;
图3为本申请实施例提供的UE在多个小区之间移动的示意图;
图4为本申请实施例提供的gap的配置示意图;
图5为本申请实施例提供的能力信息发送和接收方法的流程示意图;
图6为本申请实施例提供的通信装置的一种结构示意图;
图7为本申请实施例提供的通信装置的另一种结构示意图;
图8为本申请实施例提供的一种通信装置的一种结构示意图;
图9为本申请实施例提供的另一种通信装置的一种结构示意图;
图10为本申请实施例提供的另一种通信装置的又一种结构示意图;
图11为本申请实施例提供的另一种通信装置的再一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合说明书附图以及具体的实施方式对本申请实施例中的技术方案进行详细的说明。
下文所描述的本申请实施例的技术方案可以应用于如图1所示的通信系统,该通信系统可以包括网络侧设备和与网络侧设备通信的用户设备(user equipment,UE)。图1是该通信系统的一个例子,图1所示的通信系统包括一个网络侧设备和与其通信的1个用户设备,实际上该通信系统可以包括多个用户设备,本申请实施例对此不作限制。
其中,网络侧设备可以是能和用户设备通信的设备,也称为网络设备。网络设备可以是接入网设备,接入网设备也可以称为无线接入网(radio access network,RAN)设备,是一种为终端设备提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、未来移动通信系统中的基站或WiFi系统中的接入点等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、车载设备以及未来演进的PLMN网络中的网络设备等。
用户设备,也称为终端装置或者终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端装置可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端装置可以包括用户设备(user equipment,UE)、无线终端装置、移动终端装置、设备到设备通信(device-to-device,D2D)终端装置、V2X终端装置、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端装置、物联网(internet of things,IoT)终端装置、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、飞行器(如无人机、热气球、民航客机等)或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端装置的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,放置或安装在车辆上的车载装置还可以包括可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设 备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
相较于LTE系统只有RRC_IDLE和RRC_CONNECTED两种RRC状态,NR系统引入了一个新状态(RRC INACTIVE),用以应对低时延低功耗的需求。即NR系统支持RRC支持三种状态,这三种状态分别为连接(RRC_CONNECTED)态,去激活(RRC_INACTIVE)态,空闲(RRC_IDLE)态。这三种状态之间的转换如图2所示,UE处于空闲态可以建立RRC连接,转至连接态,并通过释放RRC连接回退至空闲态。当处于连接态的UE处于低需求状态时,可以延迟释放RRC连接转至去激活态,并通过释放RRC连接回退至空闲态。
如图3所示为终端设备在小区1、小区2、小区3移动的示意图,由于终端设备的移动性,终端设备可能从一个小区的覆盖范围移动到另一个小区的覆盖范围。为了保证终端设备的业务连续性和通信质量,需要终端设备进行小区重选(reselection)或者小区切换(handover)。终端设备通过在具有不同的覆盖范围的小区间重选和切换,从而获得无线网络持续不断的服务。小区重选和小区切换都需要终端设备进行小区测量,小区测量的种类包括同频测量、异频/异系统测量。例如根据终端设备与网络设备之间RRC状态的不同,当终端设备处于空闲态或去激活态,终端设备和网络设备之间没有RRC连接。当终端设备驻留的小区的信号质量低于一定门限时,终端设备根据网络设备在系统消息中配置的同频、异频和/或异系统邻区信息,测量驻留小区和邻区的信号质量,判断邻区的信号质量是否满足小区重选条件。如果邻区的信号质量满足小区重选条件,则终端设备在邻区驻留。当终端设备处于连接态,终端设备和网络设备之间存在RRC连接,网络设备通过RRC信令配置终端设备进行同频、异频和/或异系统邻区测量。终端设备将服务小区和邻区的信号质量测量结果通过RRC信令上报网络设备,网络设备再根据当终端设备处于测量结果将终端设备切换到信号质量更好的小区上。因此无论是空闲态和去激活态的小区重选,还是连接态的小区切换,都是基于终端设备对服务小区和邻区的信号质量测量结果。
对于连接态的异频和/或异系统邻区测量,根据终端设备的能力,终端设备可以采用需要间隙(gap)测量的测量方式,也可以采用不需要gap测量的测量方式对异频和/或异系统邻区进行测量。如果终端设备有多套射频通路,能够支持在服务小区上收发信号时同时在异频或异系统邻区上接收信号,则终端设备支持不需要gap测量的测量方式测量异频或异系统邻区的信号;否则,终端设备采用不需要gap测量的测量方式测量异频或异系统邻区的信号。终端设备在gap内停止服务小区上的信号收发,将射频通路调整至异频或异系统频点上,接收异频或异系统邻区的信号。网络设备通过RRC信令半静态配置gap。
请参见图4,为gap的一种配置示意,主要由3个参数构成,这3个参数分别是测量时隙重复周期(measurement gap repetition period,MGRP),用于配置gap周期;测量时隙长度(measurement gap length,MGL),用于配置gap的长度;测量偏移(gapOffset),用 于配置gap的起始位置。根据这3个参数,可确定gap起始在满足以下条件的系统帧号(system frame number,SFN)和子帧(subframe)上:
SFN mod T=FLOOR(gapOffset/10);
subframe=gapOffset mod 10;
T=MGRP/10;
以上SFN和subframe为主小区(primary cell,PCell)的SFN和subframe。MGL最大为6ms。
对于空闲态或去激活态的异频和/或异系统邻区测量,由于终端设备不需要在驻留小区上收发数据,因此可以不需要配置测量窗。
对NR邻区的测量可基于同步信号块(Synchronization Signal Block,SSB),但由于SSB信号设计的特殊性,若采用需要测量gap的测量方式执行连接态异频或异系统邻区测量),网络设备需要配置准确的gap位置,以包括邻区的SSB。
准确的gap位置,需要测量gap的时域位置参考的是PCell的定时,而邻区SSB的时域位置是按邻区定时发送,为了配置正确的gap位置,网络设备需要知道PCell和NR邻区之间的定时偏差,从而确定NR邻区的SSB的SFN和子帧号对应PCell的SFN和子帧号。PCell和NR邻区之间的定时偏差可以通过终端设备的系统帧号和帧定时偏差(SFN and frame timing difference,SFTD)测量获得。SFTD测量结果包括SFN的偏差和帧边界的定时偏差。
目前协议上支持(EUTRA-NR Dual Connectivity,EUTRA-NR双连接),也称为EN-DC下的LTE PCell和NR PSCell之间的SFTD测量,支持(NR-EUTRA Dual Connectivity,NR-EUTRA双连接),也称为NE-DC下的NR PCell和LTE PSCell之间的SFTD测量,也支持(NR Dual Connectivity,NR双连接)也称为NR-DC下的NR PCell和NR PSCell之间的SFTD测量,以及支持非DC(Dual Connectivity,双连接)下的LTE PCell和NR邻区之间的SFTD测量。
SFTD测量时,终端设备需要接收PCell之外的另一被测小区的信号,以获取该小区的定时信息。在DC下,由于终端设备能够支持在PCell和PSCell上同时工作,知道任意时刻PCell和PSCell的定时信息,因此SFTD测量不会存在困难。而非DC下LTE PCell和NR邻区之间的SFTD测量,如果终端设备的射频通路不支持在PCell上收发信号的同时,在NR邻区上接收信号,则SFTD测量存在一定困难。为此,目前协议支持以下两种方式:需要gap的SFTD测量和连接态非连续接收(connected discontinuous reception,CDRX)非激活期的SFTD测量。
通常来说,终端设备在测量间隙(measurement gap)内,先探测其他小区的同步信号,根据其他小区的同步信号和其他小区取得同步,再对其他小区发送的参考信号进行相关测量,从而完成对其他小区的测量。但是测量gap内中断原服务区数据的接收和发送,会对吞吐量造成较大影响。目前LTE的终端设备可以支持很多不同频段的CA组合,具有多个接收通路,具备在不需要配置gap的情况下直接测量异频/异系统的能力。这样就可以不打断原服务区的数据传输,对终端原服务区的服务不造成影响。但是LTE支持的频段、CA组合很多,需要测量的异频/异系统频段也很多,基于成本考虑,终端设备通常只能支持有限个数的频段组合,而不能支持所有频段组合下不需要测量gap测量异频/异系统。
目前协议规定,LTE可以通过信元“interFreqNeedForGaps”/“interRAT-NeedForGaps” 在能力消息中的上报哪些测量频段组合需要测量gap,哪些测量频段组合不需要测量gap。其中,服务区的频带(band)由支持单band的信元“bandListEUTRA”指示或由支持CA的信元“bandCombinationListEUTRA”指示;目标测量异频band由信元“interFreqBandList”指示,目标测量异系统band由信元“interRAT-BandList”指示。通过1比特来指示服务区band/CA组合,测量异频频段或异频频段是否需要测量gap,例如1比特的取值为1(True)表示需要gap测量,1比特的取值为0(False)表示不需要gap测量。
示例性的,如表1所示,为终端设备上报的测量能力的一种示意,网络设备可以根据表1确定测量时是否配置gap。
表1-测量能力信息的示意
Figure PCTCN2020128099-appb-000001
由于系统支持的频段和CA组合较多,所以用于终端设备上报测量能力的消息,也称为测量能力上报消息的信息量较大,容易失败,即成功率较低。例如,终端设备的频段数为N,终端设备支持的CA组合数为L,终端设备支持的异系统频段数为M,那么终端设备需要上报的信息比特数为(N+L)*(N+M)。例如目前终端设备典型可支持500个CA组合,20个异频band测量,10个异系统测量,则需要上报的消息量为15600bit,信息量较大,上报过程容易出错。
目前测量能力的消息中不支持NR的测量gap的能力上报。NR支持更多的频段、支持EN-DC/NE-DC、NR CA等更多的频段组合。需要测量NR异频、LTE异系统,NSA下还需要测量2G、3G异系统,需要测量的异频、异系统更多。NR也需要上报各测量频段组合否需要测量gap进行测量。
NR系统支持的频段组合和所需要测量的频段组合相对LTE更多,终端设备更难支持所有频段组合下不配置gap测量异频异系统,需要类似LTE分频段上报是否需要配置测量gap的能力。由于NR系统相对于LTE系统来说,支持更多的频段和CA组合等,如果继续沿用LTE的测量能力上报消息,显然信息量更大,成功率更低。
鉴于此,本申请实施例提供了一种能力信息上报方法,该方法中,终端设备可以向网络设备上报终端设备在所有频段中的部分频段的测量能力信息,相较于目前上报终端设备在所有频段的测量能力信息来说,显然终端设备上报的信息量较少,以尽量提高终端设备上报的成功率。
本申请实施例提供的技术方案可以用于无线通信系统,例如4.5G系统或5G系统,以 及基于LTE或者NR的进一步演进系统,以及未来的无线通信系统或其他类似的通信系统等。
接下来结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供一种能力信息发送方法或接收方法,在下文的介绍过程中,以该方法应用于图1所示的网络架构为例。另外,该方法可由两个通信设备执行,这两个通信设备例如为第一通信装置和第二通信装置。其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置(例如芯片系统)。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置(例如芯片系统)。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置和第二通信装置都是终端设备,或者第一通信装置是终端设备,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
请参考图5,为本申请实施例提供的能力信息发送方法或接收方法的流程图,在下文的介绍中,以该方法由网络设备和终端设备执行为例,也就是,以第一通信装置是终端设备、第二通信装置是网络设备为例。需要说明的是,本申请实施例只是以通过网络设备和终端设备执行为例,并不限制于这种场景。
S501、网络设备向终端设备发送第一消息,终端设备接收该第一消息,该第一消息用于查询终端设备的测量能力。
本申请实施例中的终端设备可以支持更多的频段,例如支持EN-DC、NE-DC、NR系统下的CA,LTE系统下的CA等更多的频段组合。所以当终端设备支持较多频段组合的情况下,网络设备需要查询终端设备的测量能力,以根据终端设备的测量能力,为终端设备配置进行小区测量的测量信息。具体的,网络设备可以通过第一消息查询终端设备的测量能力信息。示例性的,网络设备可以向终端设备发送第一消息,该第一消息可以是测量配置消息。
例如,当终端设备进行注册,初始接入网络时,网络设备可以向终端设备发送第一消息,用于查询终端设备的测量能力,例如查询终端设备是否需要测量gap。又例如,终端设备切换到新小区,网络设备查询终端设备是否上报过该新小区相关频段的测量能力,如果终端设备没有上报过,那么网络设备可以向终端设备发送第一消息,以查询终端设备的测量能力。
S502、终端设备向网络设备发送第二消息,网络设备接收该第二消息,该第二消息可以包括第一指示信息,该第一指示信息可以用于指示该第二消息包括终端设备在所有频段中的部分频段的测量能力信息。
终端设备接收第一消息,可以根据第一消息向网络设备上报网络设备需要的测量能力信息。由于NR系统支持更多的频段组合,如果终端设备上报全部频段的测量能力信息,显然信息量较大,容易失败。为了尽量保证终端设备上报测量能力信息的成功率,第一消息可以指示网络设备需要查询的是终端设备在哪些频段的测量能力信息,从而不需要终端设备上报全部频段的测量能力信息。
示例性的,终端设备可以通过第二消息向网络设备上报测量能力信息,且可以通过第 一指示信息告知网络设备,终端设备上报的测量能力信息是终端设备在所有频段中的部分频段的测量能力信息。
但是目前针对网络设备如何指示终端设备上报哪些频段的测量能力信息,还没有定义。本申请实施例在NR系统支持更多频段组合的场景下,网络设备通过第一消息可以明确需要终端设备上报哪些频段的测量信息。相对的,终端设备根据第一消息也可以明确上报哪些频段的测量信息。示例性的,第一消息和第二消息分别可以包括以下几种信息:
第一种情况,第一消息可以包括终端设备在主小区的全部频段的测量配置信息,相对的,第二消息可以包括终端设备在主小区的全部频段的测量能力信息。
由于主小区的信号质量通常最优,所以终端设备上报主小区的全部频段的测量能力信息,可以尽量保证上报测量能力信息的成功率。再者,由于终端设备上报的是主小区的全部频段的测量能力信息,而不是终端设备在所有小区的所有频段的测量能力信息,显然终端设备上报的信息量较少。可见,在通信系统支持更多频段组合的场景下,能够保证终端设备上报测量能力信息的成功率。
应理解,当第一消息包括终端设备在主小区的全部频段的测量配置信息,相对的,第二消息可以包括终端设备在主小区的部分频段的测量能力信息。即终端设备可以上报更少的测量能力信息,以尽量保证上报测量能力信息的成功率。
第二种情况,第一消息可以包括终端设备在主小区的部分频段的测量配置信息,相对的,第二消息可以包括终端设备在主小区的部分频段的测量能力信息。与第一种情况的不同之处在于,为了进一步保证终端设备上报测量能力信息的成功率,网络设备可以指示终端设备上报在主小区的部分频段的测量能力信息。
示例性的,部分频段可以满足如下条件的一种或多种:
(1)部分频段的信号强度高于或等于全部频段中除部分频段之外的其余频段的信号强度。
本申请实施例可以根据信号强度从全部频段中选择部分频段,例如终端设备可以优先上报信号强度较强的频段的测量能力信息。例如,终端设备确定上报一个频段,那么可以选择信号强度最强的频段,即上报信号强度最强的频段的测量能力信息。又例如,终端设备确定上报多个频段,那么终端设备可以根据信号强度的强弱依次从全部频段中选择这多个频段,这多个频段的信号强度高于其余频段的信号强度。采用该方案,由于信号强度较强,所以通信质量较高,可以尽量保证上报测量能力信息的稳定性。
(2)部分频段的数据传输的优先级高于全部频段中除部分频段之外的其余频段的数据传输的优先级。
本申请实施例也可以根据数据传输的优先级从全部频段中选择部分频段,例如终端设备可以优先上报数据传输的优先级较高的频段的测量能力信息。例如,终端设备确定上报一个频段,那么可以选择数据传输的优先级最高的频段,即上报数据传输的优先级最高的频段的测量能力信息。又例如,终端设备确定上报多个频段,那么终端设备可以根据数据传输的优先级的高低依次从全部频段中选择这多个频段,这多个频段的数据传输的优先级高于其余频段的数据传输的优先级。采用该方案,由于数据传输的优先级较高,所以可以尽量保证上报测量能力信息的及时性。
(3)部分频段包括终端设备从当前频段将要切换至的频段。
本申请实施例也可以根据切换预判策略来选择部分频段,即预先判断终端设备可能要 切换到的频段,优先上报终端设备后续可能要切换到的频段的测量能力信息,以确保终端设备在进行小区切换时不会发生小区重选或重新接入,保障通信的稳定性。
应理解,终端设备可以根据信号强度、数据传输的优先级和切换预判策略中的至少两种因素来确定部分频段。例如,如果存在信号强度相同的两个频段,那么终端设备确定上报其中的一个频段的测量能力信息,那么终端设备可以选择上报这两个频段中的数据传输优先级较高的频段的测量能力信息。
在一些实施例中,部分频段可以但不限于包括聚合载波CA、4G无线接入网与5G无线接入网的双连接EN-DC支持的频段、5G无线接入网与4G无线接入网的双连接NE-DC支持的频段和独立组网SA下的CA中的至少一种。具体部分频段包括哪种频段可通过网络设备配置,或通过协议规定。这样终端设备上报如上述的部分频段,不需要上报所有频段,减少上报的信息量。
第三种情况,第一消息可以包括终端设备在主小区的全部频段或部分频段的测量配置信息,以及终端设备在与主小区相关的至少一个辅小区的全部频段或部分频段的测量配置信息。
这种情况下,例如第二消息可以包括终端设备在主小区的全部频段的测量能力信息,以及终端设备在信号强度最强的一个辅小区的全部频段的测量能力信息。或者,第二消息可以包括终端设备在主小区的全部频段的测量能力信息,以及终端设备在信号强度最强的一个辅小区的部分频段的测量能力信息。或者,第二消息可以包括终端设备在主小区的部分频段的测量能力信息,以及终端设备在信号强度最强的一个辅小区的全部频段的测量能力信息。第二消息可以包括终端设备在主小区的部分频段的测量能力信息,以及终端设备在信号强度最强的一个辅小区的部分频段的测量能力信息。
由于第二消息可以包括终端设备在主小区的全部频段或部分频段的测量能力信息,以及终端设备在与主小区相关的至少一个辅小区的全部频段或部分频段的测量能力信息。即终端设备只需上报终端设备在所有频段中的部分频段的测量能力信息,减少上报的信息量。同时,至少一个辅小区与主小区相关,例如可以是后续终端设备将要切换至的小区,以尽量保证后续终端设备进行小区切换的稳定性。
其中,示例性的,至少一个辅小区可以满足如下条件的一种或多种:
(1)至少一个辅小区的信号强度高于全部辅小区中除至少一个辅小区之外的其余辅小区的信号强度。
(2)至少一个辅小区的数据传输的优先级高于全部辅小区中除至少一个辅小区之外的其余辅小区的数据传输的优先级。
(3)至少一个辅小区包括终端设备从主小区将要切换到的小区。
在本申请实施例中,至少一个辅小区的选择条件与部分频段的选择条件类似,即本申请实施例可以根据信号强度、数据传输的优先级和切换预判策略中的至少两种因素从所有辅小区中选择至少一个辅小区。
例如,终端设备可以上报终端设备在主小区的全部频段的测量能力信息,以及终端设备在信号强度最强的一个辅小区的全部频段的测量能力信息。或者,终端设备可以上报终端设备在主小区的全部频段的测量能力信息,以及终端设备在数据传输的优先级最高的一个辅小区的全部频段的测量能力信息。或者,终端设备可以上报终端设备在主小区的全部频段的测量能力信息,以及终端设备在将要切换至的一个辅小区的全部频段的测量能力信 息。应理解,如上仅是列举仅是示意,本申请实施例不限如上的几种列举,具体可以参见上述部分频段的选择的介绍,这里不再赘述。
应理解,本申请实施例辅小区的选择和部分频段的选择可以结合,示例性的,终端设备可以上报终端设备在主小区的全部频段的测量能力信息,以及终端设备在信号强度最强的一个辅小区的数据传输优先级最高的频段的测量能力信息。或者,终端设备可以上报终端设备在主小区的全部频段的测量能力信息,以及终端设备在信号强度最强的一个辅小区的,且终端设备将要切换至的频段的测量能力信息,等等,这里就不一一列举了。
在本申请实施例中,第二消息可以包括信元“interFreqNeedForGaps”/“interRAT-NeedForGaps”,信元“interFreqNeedForGaps”/“interRAT-NeedForGaps”指示的内容即为终端设备上报的测量能力信息。例如,信元“interFreqNeedForGaps”可以指示终端设备上报的部分频段的测量能力信息,信元“interRAT-NeedForGaps”可以指示终端设备上报的主小区或者至少一个辅小区的全部频段或部分频段的测量能力信息。可以更好地与目前协议定义的测量能力信息兼容。
另外,第二消息还可以包括用于指示是否需要测量gap的指示信息,可以应用于NR系统中,可以支持NR系统中不需要测量gap的测量能力信息,且兼容LTE系统的是否需要测量gap的上报。
需要说明的是,测量能力信息可以是预定义的,这种情况下,第二消息可以不包括测量能力信息,通过第一指示信息告知网络设备,终端设备的测量能力信息。即如图5所示,S502和S503是相互可以替换的步骤,当系统预定义了测量能力信息,那么图5可以执行步骤S502,当系统没有预定义测量能力信息,那么图5可以执行步骤S503。应理解,图5以虚线示意S503只是为了与S502区分。
示例性的,如表2所示,为预定义的测量能力的一种示意,网络设备可以根据表2确定测量时是否配置gap。其中,表2以终端设备上报在主小区的测量能力信息,以及在信号强度最强的辅小区的测量能力信息为例。表2中,假设band1对应主小区,band3对应信号强度最强的辅小区。
表2-测量能力信息的示意
Figure PCTCN2020128099-appb-000002
当系统预定义或者预配置了测量能力信息,需要gap测量的能力和不需要gap测量的 能力可以与频段顺序对应,如表2所示。从而网络设备可以根据表2获知终端设备的测量能力信息。
网络设备可以记录终端设备上报的测量能力信息,该测量能力信息包括是否需要测量gap的能力。当终端设备重新接入或切换到主小区的频段相同频段的小区后,网络设备可以不再查询该终端设备的测量能力。
在本申请实施例中,终端设备上报的测量能力信息可以是终端设备在部分频段上的测量能力信息,例如终端设备上报的测量能力信息可以包括终端设备在主小区和部分辅小区的测量能力信息,不包括与该主小区和部分辅小区不相关的频段的测量能力信息,减少了上报的信息量,可以保证上报测量能力信息的成功率。同时,因为终端设备在当前小区的服务区频段一定包括主小区的频段,不会出现与主小区不相关的频段,因此,即使终端设备上报的测量能力信息不包括与该主小区和部分辅小区不相关的频段的测量能力信息,并不影响终端设备在该小区的测量。同时,保留部分辅小区的测量能力信息有利于对终端设备进行移动性管理。
上述本申请提供的实施例中,分别从终端设备和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图6为本申请实施例提供的通信装置600的示意性框图。该通信装置600可以对应实现上述各个方法实施例中由第一网络设备或第二网络设备或终端设备实现的功能或者步骤。该通信装置可以包括处理单元610和收发单元620。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理单元610和收发单元620可以与该存储单元耦合,例如,处理单元610可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置600能够对应实现上述方法实施例中终端设备的行为和功能。例如通信装置600可以为终端设备,也可以为应用于终端设备中的部件(例如芯片或者电路)。收发单元620可以用于执行图5所示的实施例中由终端设备所执行的全部接收或发送操作,例如图5所示的实施例中的S501和S502,和/或用于支持本文所描述的技术的其它过程。其中,处理单元610用于执行如图5所示的实施例中由终端设备所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,处理单元610用于生成收发单元620要发送和/或接收的消息;收发单元620用于:接收来自网络设备的第一消息,第一消息用于查询通信装置的测量能力;向网络设备发送第二消息,第二消息包括第一指示信息,第一指示信息用于指示第二消息包括通信装置在所有频段中的部分频段的测量能力信息。
在一种可选的实施方式中,第一消息包括通信装置在当前所在的主小区的全部频段或部分频段的测量配置信息;或者第一消息包括通信装置在当前所在的主小区的全部频段或部分频段的测量配置信息,以及通信装置在与主小区相关的至少一个辅小区的全部频段或部分频段的测量配置信息。
在一种可选的实施方式中,第二消息还包括通信装置在当前所在的主小区的全部频段或部分频段测量能力信息;或者第二消息还包括通信装置在当前所在的主小区的全部频段或部分频段的测量能力信息,以及通信装置在与主小区相关的至少一个辅小区的全部频段或部分频段的测量能力信息。
在一种可选的实施方式中,测量能力信息可以是预定义的,其中,测量能力信息可以包括通信装置在当前所在的主小区的全部频段或部分频段测量能力信息;或者包括通信装置在当前所在的主小区的全部频段或部分频段的测量能力信息,以及通信装置在与主小区相关的至少一个辅小区的全部频段或部分频段的测量能力信息。
在一种可选的实施方式中,至少一个辅小区的信号强度可以高于全部辅小区中除至少一个辅小区之外的其余辅小区的信号强度;或者至少一个辅小区的数据传输的优先级高于全部辅小区中除至少一个辅小区之外的其余辅小区的数据传输的优先级;或者至少一个辅小区包括通信装置从主小区将要切换到的小区。
在一种可选的实施方式中,部分频段的信号强度可以高于或等于全部频段中除部分频段之外的其余频段的信号强度;或者部分频段的数据传输的优先级高于全部频段中除部分频段之外的其余频段的数据传输的优先级;或者部分频段包括通信装置从当前频段将要切换至的频段。
在一种可选的实施方式中,第二消息还可以包括用于指示是否需要测量间隙gap的指示信息。
在一种可选的实施方式中,部分频段可以但不限于包括聚合载波CA、EN-DC支持的频段、NE-DC支持的频段和SA下的CA中的至少一种。
应理解,本申请实施例中的处理单元610可以由处理器或处理器相关电路组件实现,收发单元620可以由收发器或收发器相关电路组件或者通信接口实现。
一些可能的实施方式中,通信装置600能够对应实现上述方法实施例中网络设备的行为和功能。例如通信装置600可以为网络设备,也可以为应用于网络设备中的部件(例如芯片或者电路)。收发单元620可以用于执行图5所示的实施例中由网络设备所执行的全部接收或发送操作,例如图5所示的实施例中的S501和S502,和/或用于支持本文所描述的技术的其它过程。其中,处理单元610用于执行如图5所示的实施例中由网络设备所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,处理单元610用于生成收发单元620要发送和/或接收的消息;
收发单元620用于:向终端设备发送第一消息,第一消息用于查询终端设备的测量能力;接收来自终端设备的第二消息,第二消息包括第一指示信息,第一指示信息用于指示第二消息包括终端设备在所有频段中的部分频段的测量能力信息。
在一种可选的实施方式中,第一消息包括终端设备在当前所在的主小区的全部频段或部分频段的测量配置信息;或者,
第一消息包括终端设备在当前所在的主小区的全部频段或部分频段的测量配置信息,以及终端设备在与主小区相关的至少一个辅小区的全部频段或部分频段的测量配置信息。
在一种可选的实施方式中,第二消息还包括终端设备在当前所在的主小区的全部频段或部分频段测量能力信息;或者,
第二消息还包括终端设备在当前所在的主小区的全部频段或部分频段的测量能力信息,以及终端设备在与主小区相关的至少一个辅小区的全部频段或部分频段的测量能力信 息。
在一种可选的实施方式中,测量能力信息可以是预定义的,其中,测量能力信息包括:
终端设备在当前所在的主小区的全部频段或部分频段测量能力信息;或者,
终端设备在当前所在的主小区的全部频段或部分频段的测量能力信息,以及终端设备在与主小区相关的至少一个辅小区的全部频段或部分频段的测量能力信息。
在一种可选的实施方式中,至少一个辅小区的信号强度高于全部辅小区中除至少一个辅小区之外的其余辅小区的信号强度;或者,
至少一个辅小区的数据传输的优先级高于全部辅小区中除至少一个辅小区之外的其余辅小区的数据传输的优先级;或者,
至少一个辅小区包括终端设备从主小区将要切换到的小区。
在一种可选的实施方式中,部分频段的信号强度高于或等于全部频段中除部分频段之外的其余频段的信号强度;或者,
部分频段的数据传输的优先级高于全部频段中除部分频段之外的其余频段的数据传输的优先级;或者,
部分频段包括终端设备从当前频段将要切换至的频段。
在一种可选的实施方式中,第二消息还包括用于指示是否需要测量间隙gap的指示信息。
在一种可选的实施方式中,部分频段包括聚合载波CA、EN-DC支持的频段、NE-DC支持的频段、SA下的CA中的至少一种。
应理解,本申请实施例中的处理单元610可以由处理器或处理器相关电路组件实现,收发单元620可以由收发器或收发器相关电路组件或者通信接口实现。
如图7所示为本申请实施例提供的通信装置700,其中,通信装置700可以是终端设备,能够实现本申请实施例提供的方法中终端设备的功能,或者,通信装置700可以是网络设备,能够实现本申请实施例提供的方法中网络设备的功能;通信装置700也可以是能够支持终端设备实现本申请实施例提供的方法中对应的功能的装置,或者能够支持网络设备实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置700可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述收发单元620可以为收发器,收发器集成在通信装置700中构成通信接口710。
通信装置700包括至少一个处理器720,用于实现或用于支持通信装置700实现本申请实施例提供的方法中网络设备或终端设备的功能。具体参见方法示例中的详细描述,此处不做赘述。
通信装置700还可以包括至少一个存储器730,用于存储程序指令和/或数据。存储器730和处理器720耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器720可能和存储器730协同操作。处理器720可能执行存储器730中存储的程序指令和/或数据,以使得通信装置700实现相应的方法。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置700还可以包括通信接口710,用于通过传输介质和其它设备进行通信,从而用于通信装置700中的装置可以和其它设备进行通信。示例性地,当该通信装置为终端 设备时,该其它设备为网络设备;或者,当该通信装置为网络设备时,该其它设备为终端设备。处理器720可以利用通信接口710收发数据。通信接口710具体可以是收发器。
本申请实施例中不限定上述通信接口710、处理器720以及存储器730之间的具体连接介质。本申请实施例在图7中以存储器730、处理器720以及通信接口710之间通过总线740连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器720可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器730可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是终端设备也可以是电路,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当通信装置是终端设备时收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当通信装置是具有上述终端设备功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
图8示出了一种简化的通信装置的结构示意图。便于理解和图示方便,图8中,通信装置以网络设备是基站作为例子。该基站可应用于如图1所示的系统中,可以为图1中的网络设备,执行上述方法实施例中网络设备的功能。网络设备800可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)810和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)820。所述RRU 810可以称为通信模块,与图6中的收发单元620对应,可选地,该通信模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线811和射频单元812。所述RRU 810部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 820部分主要用于进行基带处理,对基站进行控制等。所述RRU 810与BBU 820可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 820为基站的控制中心,也可以称为处理模块,可以与图6中的处理单元610对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述第一消息等。
在一个示例中,所述BBU 820可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如 LTE网,5G网或其他网)。所述BBU 820还包括存储器821和处理器822。所述存储器821用以存储必要的指令和数据。所述处理器822用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器821和处理器822可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由终端设备所执行的动作。
图9示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图9中,该终端设备以手机作为例子。如图9所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对该车载单元进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到该设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图9中仅示出了一个存储器和处理器。在实际的设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为该装置的收发单元,将具有处理功能的处理器视为该装置的处理单元。如图9所示,该终端设备900包括收发单元910和处理单元920。收发单元910也可以称为收发器、收发机、收发装置等。处理单元920也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元910中用于实现接收功能的器件视为接收单元,将收发单元910中用于实现发送功能的器件视为发送单元,即收发单元910包括接收单元和发送单元。收发单元910有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元910用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元920用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元910可以用于执行图5所示的实施例中的S501、S502和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中,可以参照图10所示的装置。作为一个例子,该装置可以完成类似于图6中处理单元610的功能。在图10中,该装置包括处理器1010,发送数据处理器1020,接收数据处理器1030。上述实施例中的处理单元610可以是图10中的该处理器1010,并完 成相应的功能。上述实施例中的处理单元610可以是图10中的发送数据处理器1020,和/或接收数据处理器1030。虽然图10中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图11示出本实施例的另一种形式。通信装置1100中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1103,接口1104。其中处理器1103完成上述处理单元610的功能,接口1104完成上述收发单元620的功能。作为另一种变形,该调制子系统包括存储器1106、处理器1103及存储在存储器1106上并可在处理器上运行的程序,该处理器1103执行该程序时实现上述方法实施例中终端设备的方法。需要注意的是,所述存储器1106可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于通信装置1100中,只要该存储器1106可以连接到所述处理器1103即可。
本申请实施例还提供一种通信系统,具体的,通信系统包括网络设备和终端设备,或者还可以包括更多个网络设备和多个终端设备。示例性的,通信系统包括用于实现上述图5的相关功能的网络设备和终端设备。
所述网络设备分别用于实现上述图5相关网络部分的功能。所述终端设备用于实现上述图5相关终端的功能。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图5中网络设备执行的方法;或者当其在计算机上运行时,使得计算机执行图5中终端设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图5中网络设备执行的方法;或者当其在计算机上运行时,使得计算机执行图5中终端设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中网络设备或终端设备的功能;或者用于实现前述方法中网络设备和终端设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
应理解,本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一消息和第二消息,只是为了区分不同的消息,而并不是表示这两种消息的优先级、发送顺序或者重要程度等的不同。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器 或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计 算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (30)

  1. 一种能力信息发送方法,其特征在于,包括:
    接收来自网络设备的第一消息,所述第一消息用于查询终端设备的测量能力;
    向所述网络设备发送第二消息,所述第二消息包括第一指示信息,所述第一指示信息用于指示所述第二消息包括所述终端设备在所有频段中的部分频段的测量能力信息。
  2. 如权利要求1所述的方法,其特征在于,所述第一消息包括所述终端设备在当前所在的主小区的全部频段或部分频段的测量配置信息;或者,
    所述第一消息包括所述终端设备在当前所在的主小区的全部频段或部分频段的测量配置信息,以及所述终端设备在与所述主小区相关的至少一个辅小区的全部频段或部分频段的测量配置信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述第二消息还包括所述终端设备在当前所在的主小区的全部频段或部分频段测量能力信息;或者,
    所述第二消息还包括所述终端设备在当前所在的主小区的全部频段或部分频段的测量能力信息,以及所述终端设备在与所述主小区相关的至少一个辅小区的全部频段或部分频段的测量能力信息。
  4. 如权利要求2-3任一所述的方法,其特征在于,所述至少一个辅小区的信号强度高于全部辅小区中除所述至少一个辅小区之外的其余辅小区的信号强度;或者,
    所述至少一个辅小区的数据传输的优先级高于全部辅小区中除所述至少一个辅小区之外的其余辅小区的数据传输的优先级;或者,
    所述至少一个辅小区包括所述终端设备从所述主小区将要切换到的小区。
  5. 如权利要求2-4任一所述的方法,其特征在于,所述部分频段的信号强度高于或等于所述全部频段中除所述部分频段之外的其余频段的信号强度;或者,
    所述部分频段的数据传输的优先级高于所述全部频段中除所述部分频段之外的其余频段的数据传输的优先级;或者,
    所述部分频段包括所述终端设备从当前频段将要切换至的频段。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述第二消息还包括用于指示是否需要测量间隙gap的指示信息。
  7. 如权利要求2-6任一所述的方法,其特征在于,所述部分频段包括聚合载波CA、4G无线接入网与5G无线接入网的双连接EN-DC支持的频段、5G无线接入网与4G无线接入网的双连接NE-DC支持的频段和独立组网SA下的CA中的至少一种。
  8. 一种能力信息接收方法,其特征在于,包括:
    向终端设备发送第一消息,所述第一消息用于查询所述终端设备的测量能力;
    接收来自所述终端设备的第二消息,所述第二消息包括第一指示信息,所述第一指示信息用于指示所述第二消息包括所述终端设备在所有频段中的部分频段的测量能力信息。
  9. 如权利要求8所述的方法,其特征在于,所述第一消息包括所述终端设备在当前所在的主小区的全部频段或部分频段的测量配置信息;或者,
    所述第一消息包括所述终端设备在当前所在的主小区的全部频段或部分频段的测量配置信息,以及所述终端设备在与所述主小区相关的至少一个辅小区的全部频段或部分频段的测量配置信息。
  10. 如权利要求8或9所述的方法,其特征在于,所述第二消息还包括所述终端设备在当前所在的主小区的全部频段或部分频段测量能力信息;或者,
    所述第二消息还包括所述终端设备在当前所在的主小区的全部频段或部分频段的测量能力信息,以及所述终端设备在与所述主小区相关的至少一个辅小区的全部频段或部分频段的测量能力信息。
  11. 如权利要求9-10任一所述的方法,其特征在于,所述至少一个辅小区的信号强度高于全部辅小区中除所述至少一个辅小区之外的其余辅小区的信号强度;或者,
    所述至少一个辅小区的数据传输的优先级高于全部辅小区中除所述至少一个辅小区之外的其余辅小区的数据传输的优先级;或者,
    所述至少一个辅小区包括所述终端设备从所述主小区将要切换到的小区。
  12. 如权利要求9-11任一所述的方法,其特征在于,所述部分频段的信号强度高于或等于所述全部频段中除所述部分频段之外的其余频段的信号强度;或者,
    所述部分频段的数据传输的优先级高于所述全部频段中除所述部分频段之外的其余频段的数据传输的优先级;或者,
    所述部分频段包括所述终端设备从当前频段将要切换至的频段。
  13. 如权利要求8-12任一所述的方法,其特征在于,所述第二消息还包括用于指示是否需要测量间隙gap的指示信息。
  14. 如权利要求9-13任一所述的方法,其特征在于,所述部分频段包括聚合载波CA、4G无线接入网与5G无线接入网的双连接EN-DC支持的频段、5G无线接入网与4G无线接入网的双连接NE-DC支持的频段和独立组网SA下的CA中的至少一种。
  15. 一种通信装置,其特征在于,包括处理单元和收发单元,其中:
    所述处理单元用于生成所述收发单元要发送和/或接收的消息;
    所述收发单元用于:接收来自网络设备的第一消息,所述第一消息用于查询所述通信装置的测量能力;向所述网络设备发送第二消息,所述第二消息包括第一指示信息,所述第一指示信息用于指示所述第二消息包括所述通信装置在所有频段中的部分频段的测量能力信息。
  16. 如权利要求15所述的通信装置,其特征在于,所述第一消息包括所述通信装置在当前所在的主小区的全部频段或部分频段的测量配置信息;或者,
    所述第一消息包括所述通信装置在当前所在的主小区的全部频段或部分频段的测量配置信息,以及所述通信装置在与所述主小区相关的至少一个辅小区的全部频段或部分频段的测量配置信息。
  17. 如权利要求15或16所述的通信装置,其特征在于,所述第二消息还包括所述通信装置在当前所在的主小区的全部频段或部分频段测量能力信息;或者,
    所述第二消息还包括所述通信装置在当前所在的主小区的全部频段或部分频段的测量能力信息,以及所述通信装置在与所述主小区相关的至少一个辅小区的全部频段或部分频段的测量能力信息。
  18. 如权利要求16-17任一所述的通信装置,其特征在于,所述至少一个辅小区的信号强度高于全部辅小区中除所述至少一个辅小区之外的其余辅小区的信号强度;或者,
    所述至少一个辅小区的数据传输的优先级高于全部辅小区中除所述至少一个辅小区之外的其余辅小区的数据传输的优先级;或者,
    所述至少一个辅小区包括所述通信装置从所述主小区将要切换到的小区。
  19. 如权利要求16-18任一所述的通信装置,其特征在于,所述部分频段的信号强度高于或等于所述全部频段中除所述部分频段之外的其余频段的信号强度;或者,
    所述部分频段的数据传输的优先级高于所述全部频段中除所述部分频段之外的其余频段的数据传输的优先级;或者,
    所述部分频段包括所述通信装置从当前频段将要切换至的频段。
  20. 如权利要求16-19任一所述的通信装置,其特征在于,所述部分频段包括聚合载波CA、4G无线接入网与5G无线接入网的双连接EN-DC支持的频段、5G无线接入网与4G无线接入网的双连接NE-DC支持的频段和独立组网SA下的CA中的至少一种。
  21. 一种通信装置,其特征在于,包括处理单元和收发单元,其中:
    所述处理单元用于生成所述收发单元要发送和/或接收的消息;
    所述收发单元用于:向终端设备发送第一消息,所述第一消息用于查询所述终端设备的测量能力;接收来自所述终端设备的第二消息,所述第二消息包括第一指示信息,所述第一指示信息用于指示所述第二消息包括所述终端设备在所有频段中的部分频段的测量能力信息。
  22. 如权利要求21所述的通信装置,其特征在于,所述第一消息包括所述终端设备在当前所在的主小区的全部频段或部分频段的测量配置信息;或者,
    所述第一消息包括所述终端设备在当前所在的主小区的全部频段或部分频段的测量配置信息,以及所述终端设备在与所述主小区相关的至少一个辅小区的全部频段或部分频段的测量配置信息。
  23. 如权利要求21或22所述的通信装置,其特征在于,所述第二消息还包括所述终端设备在当前所在的主小区的全部频段或部分频段测量能力信息;或者,
    所述第二消息还包括所述终端设备在当前所在的主小区的全部频段或部分频段的测量能力信息,以及所述终端设备在与所述主小区相关的至少一个辅小区的全部频段或部分频段的测量能力信息。
  24. 如权利要求22-23任一所述的通信装置,其特征在于,所述至少一个辅小区的信号强度高于全部辅小区中除所述至少一个辅小区之外的其余辅小区的信号强度;或者,
    所述至少一个辅小区的数据传输的优先级高于全部辅小区中除所述至少一个辅小区之外的其余辅小区的数据传输的优先级;或者,
    所述至少一个辅小区包括所述终端设备从所述主小区将要切换到的小区。
  25. 如权利要求22-24任一所述的通信装置,其特征在于,所述部分频段的信号强度高于或等于所述全部频段中除所述部分频段之外的其余频段的信号强度;或者,
    所述部分频段的数据传输的优先级高于所述全部频段中除所述部分频段之外的其余频段的数据传输的优先级;或者,
    所述部分频段包括所述终端设备从当前频段将要切换至的频段。
  26. 如权利要求22-25任一所述的通信装置,其特征在于,所述部分频段包括聚合载波CA、4G无线接入网与5G无线接入网的双连接EN-DC支持的频段、5G无线接入网与4G无线接入网的双连接NE-DC支持的频段和独立组网SA下的CA中的至少一种。
  27. 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的所述计算 机程序,使得所述装置实现如权利要求1~7或8~14中任一项所述的方法。
  28. 一种通信系统,其特征在于,包括如权利要求15-20中任一项所述的通信装置和如权利要求21-26中任一项所述的通信装置。
  29. 一种芯片,其特征在于,所述芯片与电子设备中的存储器耦合,所述芯片在读取并执行所述存储器中存储的计算机可读指令时,实现如权利要求1~7或8~14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~7或8~14中任一项所述的方法。
PCT/CN2020/128099 2019-11-19 2020-11-11 一种能力信息发送方法、接收方法及装置 WO2021098568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911132845.5 2019-11-19
CN201911132845.5A CN112911654B (zh) 2019-11-19 2019-11-19 一种能力信息发送方法、接收方法及装置

Publications (1)

Publication Number Publication Date
WO2021098568A1 true WO2021098568A1 (zh) 2021-05-27

Family

ID=75980807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128099 WO2021098568A1 (zh) 2019-11-19 2020-11-11 一种能力信息发送方法、接收方法及装置

Country Status (2)

Country Link
CN (1) CN112911654B (zh)
WO (1) WO2021098568A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113873500A (zh) * 2021-11-10 2021-12-31 维沃移动通信有限公司 信息上报方法、信息上报装置、终端和网络设备
WO2024065429A1 (zh) * 2022-09-29 2024-04-04 Oppo广东移动通信有限公司 一种通信方法、终端设备以及网络设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113453314B (zh) * 2021-06-07 2022-09-02 Tcl通讯(宁波)有限公司 一种endc频段组合的上报方法、装置及移动终端
US11711862B1 (en) 2021-07-15 2023-07-25 T-Mobile Usa, Inc. Dual connectivity and carrier aggregation band selection
CN115707033A (zh) * 2021-08-06 2023-02-17 华为技术有限公司 一种通信方法及装置
CN115988426A (zh) * 2021-10-15 2023-04-18 华为技术有限公司 一种通信方法及装置
CN117158026A (zh) * 2022-03-30 2023-12-01 北京小米移动软件有限公司 一种传输测量配置信息的方法、装置及可读存储介质
CN117580059A (zh) * 2022-08-08 2024-02-20 华为技术有限公司 通信方法与通信装置
WO2024065088A1 (zh) * 2022-09-26 2024-04-04 北京小米移动软件有限公司 频段配置方法、指示方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873646A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种多载波聚合系统的测量间隙的配置方法及装置
US20140376393A1 (en) * 2013-06-19 2014-12-25 Qualcomm Incorporated Apparatus and methods for dynamically reporting inter-system measurement capability in a wireless communication network
CN107637119A (zh) * 2015-05-15 2018-01-26 高通股份有限公司 载波聚集中的测量间隙
WO2019054749A1 (ko) * 2017-09-12 2019-03-21 엘지전자 주식회사 무선 통신 시스템에서 csi-rs에 기초하여 측정을 수행하는 방법 및 이를 위한 장치
CN111372264A (zh) * 2018-12-25 2020-07-03 中国电信股份有限公司 用于异频测量的方法、基站、终端和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469498A (zh) * 2010-11-12 2012-05-23 中兴通讯股份有限公司 频外检测小区的测量上报方法、ue及rnc
CN112584425B (zh) * 2019-09-30 2022-07-12 华为技术有限公司 一种测量能力上报的网络系统、电子设备及芯片系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873646A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种多载波聚合系统的测量间隙的配置方法及装置
US20140376393A1 (en) * 2013-06-19 2014-12-25 Qualcomm Incorporated Apparatus and methods for dynamically reporting inter-system measurement capability in a wireless communication network
CN107637119A (zh) * 2015-05-15 2018-01-26 高通股份有限公司 载波聚集中的测量间隙
WO2019054749A1 (ko) * 2017-09-12 2019-03-21 엘지전자 주식회사 무선 통신 시스템에서 csi-rs에 기초하여 측정을 수행하는 방법 및 이를 위한 장치
CN111372264A (zh) * 2018-12-25 2020-07-03 中国电信股份有限公司 用于异频测量的方法、基站、终端和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "UE Capability Coordination for LTE-NR Interworking", 3GPP DRAFT; R2-1708032 - UE CAPABILITY COORDINATION FOR LTE-NR INTERWORKING, vol. RAN WG2, 20 August 2017 (2017-08-20), Berlin, Germany, pages 1 - 9, XP051317942 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113873500A (zh) * 2021-11-10 2021-12-31 维沃移动通信有限公司 信息上报方法、信息上报装置、终端和网络设备
WO2024065429A1 (zh) * 2022-09-29 2024-04-04 Oppo广东移动通信有限公司 一种通信方法、终端设备以及网络设备

Also Published As

Publication number Publication date
CN112911654A (zh) 2021-06-04
CN112911654B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2021098568A1 (zh) 一种能力信息发送方法、接收方法及装置
US11129191B2 (en) Signal transmission method and device
WO2020135400A1 (zh) 通信方法和通信装置
US11363552B2 (en) Method of synchronized signal block measurement, user equipment and network device
WO2021197241A1 (zh) 一种放松测量方法和通信装置
WO2020135383A1 (zh) 通信方法和通信装置
WO2021213217A1 (zh) 一种放松测量方法和通信装置
WO2021249001A1 (zh) 一种小区测量方法及装置
CN112954734A (zh) 一种通信方法和装置,测量方法和测量装置,存储介质
US10432366B2 (en) Carrier aggregation with improved efficiency
US20220264393A1 (en) Cell configuration method and apparatus, terminal device, and network device
WO2019242154A1 (zh) 信息测量方法、终端设备和网络设备
CN111148196B (zh) 通过经由附加信令预先获得时域资源分配模式来降低功耗
US20210321335A1 (en) Method and device for rrm measurement
US11546044B2 (en) Wireless communication method, terminal device and network device
WO2021104039A1 (zh) 一种测量配置方法及装置
CN117978345A (zh) 无线通信中的灵活下行链路控制信号监测
WO2021036569A1 (zh) 一种通信方法及装置
US20230354252A1 (en) Positioning information transmission method and apparatus
AU2017427055A1 (en) Data transmission method, terminal device, and network device
WO2021026929A1 (zh) 一种通信方法及装置
WO2022141417A1 (zh) 一种信息上报方法及装置
WO2018227585A1 (zh) 测量同步信号块的方法和设备
WO2020164455A1 (zh) 一种测量信息上报方法以及相关装置
CN115915167A (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890185

Country of ref document: EP

Kind code of ref document: A1