WO2022141417A1 - 一种信息上报方法及装置 - Google Patents

一种信息上报方法及装置 Download PDF

Info

Publication number
WO2022141417A1
WO2022141417A1 PCT/CN2020/142197 CN2020142197W WO2022141417A1 WO 2022141417 A1 WO2022141417 A1 WO 2022141417A1 CN 2020142197 W CN2020142197 W CN 2020142197W WO 2022141417 A1 WO2022141417 A1 WO 2022141417A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
terminal device
frequency
cell
index
Prior art date
Application number
PCT/CN2020/142197
Other languages
English (en)
French (fr)
Inventor
江新
卢哲军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/142197 priority Critical patent/WO2022141417A1/zh
Priority to CN202080053594.6A priority patent/CN115066922A/zh
Publication of WO2022141417A1 publication Critical patent/WO2022141417A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and device for reporting information.
  • the 5th Generation mobile communication technology (5G) is widely used.
  • a time division duplex (Tim-division duplex, TDD) mode can be used.
  • the TDD mode is a communication mode that uses the same frequency band for uplink and downlink, and uses different time slots for uplink and downlink in one frequency band.
  • the neighboring cell and the serving cell are the same-frequency cell, wherein the neighboring cell is the same-frequency neighboring cell of the serving cell.
  • intra-frequency cells maintain synchronization.
  • TDD mode when the same-frequency cells are not synchronized, the terminal equipment cannot report the measurement results of the same-frequency neighboring cells to the access network equipment, and the same-frequency neighboring cells with strong signal quality may interfere with the serving cell. As a result, the terminal equipment stays in the cell with poor signal quality for a long time, and cannot switch to the same-frequency adjacent cell with good signal quality.
  • the embodiments of the present application provide an information reporting method and a communication device, which can report the measurement results of the same-frequency neighboring cells in time in the TDD mode when the same-frequency cells are not synchronized.
  • the present application provides an information reporting method, the method comprising: a terminal device decoding a physical broadcast channel PBCH in a first synchronization signal block SSB sent by a first same-frequency adjacent cell of the terminal device, to obtain the first SSB
  • the first co-frequency adjacent cell adopts time division duplex mode for communication, and the first co-frequency adjacent cell is asynchronous with the serving cell of the terminal device;
  • the terminal device measures the first SSB to obtain the signal measurement result of the first SSB;
  • the terminal The device reports the signal measurement result of the first SSB and the index of the first SSB to the access network device.
  • the terminal device decodes the PBCH in the SSB sent by the asynchronous cell to obtain the SSB index of the asynchronous cell.
  • the measurement result of the asynchronous cell can be reported in time.
  • the terminal device decodes the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first same-frequency adjacent cell of the terminal device, and before obtaining the index of the first SSB, the method further includes: the terminal The device determines that the first intra-frequency neighbor cell is asynchronous with the serving cell of the terminal device. The terminal equipment determines whether the first same-frequency adjacent cell is an asynchronous cell, so that the PBCH in the SSB sent by the asynchronous cell can be decoded to obtain the SSB index of the asynchronous cell. In the TDD mode, the measurement result of the asynchronous cell can be reported in time, reducing the load.
  • the terminal device decodes the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first same-frequency adjacent cell of the terminal device, and after obtaining the index of the first SSB, the method further includes: the terminal device Decoding the physical broadcast channel PBCH in the second synchronization signal block SSB sent by the second co-frequency adjacent cell of the terminal device to obtain the index of the second SSB, and the second co-frequency adjacent cell is synchronized with the serving cell of the terminal device; the terminal device The second SSB is measured to obtain a signal measurement result of the second SSB; the terminal device reports the signal measurement result of the second SSB and the index of the second SSB to the access network device.
  • the terminal device decodes the PBCH in the SSB sent by the synchronous cell measured after the first intra-frequency adjacent cell to obtain the index of the second SSB. That is to say, the terminal equipment does not need to judge whether the second same-frequency neighboring cell is a synchronous cell or an asynchronous cell. For the first asynchronous cell and all the same-frequency cells measured after it, no matter whether it is a synchronous cell or an asynchronous cell, all of them are asynchronous.
  • the processing method of the cell is to decode the PBCH in the SSB to obtain the index of the SSB of the cell, which is beneficial to simplify the process, has high feasibility and simple control process.
  • the terminal device decodes the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first same-frequency adjacent cell of the terminal device, and after obtaining the index of the first SSB, the method further includes: the terminal device Determine whether the second co-frequency adjacent cell of the terminal device is synchronized with the serving cell of the terminal device; if the second co-frequency adjacent cell is synchronized with the serving cell of the terminal device, based on the correspondence between the frequency point and the SSB index stored by the terminal device , and the frequency point where the second SSB sent by the second same-frequency adjacent cell is located to determine the index of the second SSB; the terminal equipment measures the second SSB to obtain the signal measurement result of the second SSB; The signal measurement result of the second SSB and the index of the second SSB are reported.
  • the terminal device determines the SSB index of the synchronous cell based on the stored correspondence between the frequency point and the SSB index, which can avoid the reporting delay caused by decoding the PBCH in the SSB sent by the newly emerging synchronous cell, and can reduce the load. It is beneficial to report the measurement results of the same-frequency neighboring cell in time, and switch to the same-frequency neighboring cell with good signal quality in time.
  • the terminal device determines that the first same-frequency neighbor cell is asynchronous with the serving cell of the terminal device, including: the terminal device based on the stored correspondence between the frequency point and the SSB index and the frequency point of the first SSB, It is determined that the first intra-frequency adjacent cell is asynchronous with the serving cell of the terminal device.
  • the terminal device determines whether the first same-frequency adjacent cell is an asynchronous cell based on the stored correspondence between the frequency point and the SSB index, which helps to avoid decoding the PBCH in the SSB sent by the synchronous cell, improves efficiency and reduces reporting delay. , and simultaneously decode the PBCH in the SSB sent by the asynchronous cell to obtain the index of the SSB of the asynchronous cell, and can report the measurement result of the asynchronous cell in time.
  • the information reporting method further includes: the terminal device decodes the physical broadcast channel PBCH in the second synchronization signal block SSB sent by the second same-frequency adjacent cell of the terminal device to obtain the index of the second SSB, The second same-frequency adjacent cell is synchronized with the serving cell of the terminal device; the terminal device measures the second SSB to obtain the signal measurement result of the second SSB; the terminal device reports the signal measurement result of the second SSB to the access network device and the second SSB Index of SSB. That is to say, the terminal equipment uses the PBCH decoding of the SSB for all synchronous cells and asynchronous cells to obtain the index of the SSB. Asynchronous cells can reduce processes and improve reporting efficiency.
  • the present application provides a communication device, including: the device may be a terminal device, or a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the communication device may also be a chip system.
  • the communication device may perform the method described in the first aspect.
  • the functions of the communication device may be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the unit may be software and/or hardware.
  • an embodiment of the present invention provides a communication device, where the communication device includes a processor, and when the processor calls a computer program in a memory, the method according to the first aspect is executed.
  • the present application provides a communication device, the communication device includes a processor and a memory, the memory is used for storing computer-executed instructions; the processor is used for executing the computer-executed instructions stored in the memory, to The communication device is caused to perform the method of the first aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory and a transceiver, the transceiver is used for receiving a channel or a signal, or sending a channel or signal; the memory is used for Store program code; the processor is configured to call the program code from the memory to execute the method according to the first aspect.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive a code instruction and transmit it to the processor; the processor executes the code instructions to perform the method of the first aspect.
  • an embodiment of the present invention provides a computer-readable storage medium, wherein the computer-readable storage medium stores one or more instructions, and the one or more instructions are suitable for being loaded and executed by a processor as described in the first method described in the aspect.
  • the present application provides a computer program product comprising instructions which, when executed, cause the method of the first aspect to be implemented.
  • FIG. 1 is a schematic diagram of a system architecture of a method for reporting information provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a flow of information reporting provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an SSB provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another information reporting process provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another information reporting process provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another information reporting process provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • At least one (item) means one or more
  • plural means two or more
  • at least two (item) means two or three and three
  • “and/or” is used to describe the relationship of related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and both A and B exist three A case where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
  • the neighboring cell and the serving cell are the same-frequency cell.
  • the neighboring cell is the same-frequency neighboring cell of the serving cell.
  • intra-frequency cells maintain subframe boundary synchronization and the configured uplink and downlink ratios in intra-frequency cells are the same, intra-frequency cells are synchronized, and the serving cell is synchronized with neighboring cells.
  • the neighboring cells are The same-frequency synchronization cell of the serving cell (referred to as the synchronization cell).
  • the serving cell is asynchronous with the neighboring cell, and the neighboring cell is the same-frequency asynchronous cell of the serving cell (abbreviated as asynchronous cell) .
  • TDD mode is a communication mode in which transceivers share a single radio frequency point, and the default network is basically synchronized, that is, reception and transmission are in the same frequency channel, and the uplink and downlink use different time slots in a frequency band. and transmission channel.
  • TDD network deployment requires precise synchronization of subframe boundaries between cells (microsecond level), and the same uplink and downlink configuration is configured in the same TDD synchronization cell.
  • a network device needs to send a Synchronization Signal Block (SSB) for a terminal device to perform synchronization, system information acquisition, measurement, and the like.
  • SSB is composed of three parts: Primary Synchronization Signals (PSS), Secondary Synchronization Signals (SSS) and Physical Broadcast Channel (PBCH).
  • PSS and SSS are used for downlink synchronization of terminal equipment (including timing synchronization, frame synchronization and symbol synchronization); PSS and SSS are also used to obtain cell identifier (Cell Identifier, CID) and measure cell signal quality.
  • PSS Primary Synchronization Signals
  • SSS Secondary Synchronization Signals
  • PBCH Physical Broadcast Channel
  • PSS and SSS are used for downlink synchronization of terminal equipment (including timing synchronization, frame synchronization and symbol synchronization); PSS and SSS are also used to obtain cell identifier (Cell Identifier, CID) and measure cell signal quality.
  • CID cell identifier
  • the PSS is used to obtain a cell identifier (Cell Identifier, CID), determine that the cell communication mode is a time division duplex (Tim-division duplex, TDD) mode or a frequency division duplex (Frequency division duplexing, FDD) mode, and can also It is used for time domain synchronization, such as orthogonal frequency division multiplexing (Orthogonal frequency division multiplexing, OFDM) symbol synchronization, time slot synchronization and/or frequency domain synchronization, etc.
  • TDD time division duplex
  • FDD frequency division duplex
  • OFDM orthogonal frequency division multiplexing
  • the SSS is used to determine the physical layer identity (Identity document, ID) of the cell, and can also be used to measure the signal quality of the cell, so that the terminal device and the access network device can select beams and RRM measurements according to the measurement results.
  • the SSB is associated with one or more beams for carrying random access messages, and is used for the access network device to communicate with the terminal device through the cell corresponding to the SSB based on the beam associated with the SSB. Wherein, the SSB calibrates the associated beam through a unique SSB index.
  • the terminal device can determine the SSB index of the neighboring cell based on the stored correspondence between the frequency point and the SSB index and the frequency point of the SSB of the neighboring cell, it indicates that the serving cell and the neighboring cell are synchronized cells, and the terminal device can send
  • the access network equipment reports the index of the SSB of the neighboring cell and the signal measurement result of the SSB.
  • the terminal equipment cannot determine the SSB index of the adjacent cell, it means that the serving cell and the adjacent cell are asynchronous cells, the terminal equipment cannot report the SSB index of the asynchronous cell and the signal measurement result of the SSB to the access network equipment, and the signal quality is strong.
  • the same-frequency neighbor cell may interfere with the signal of the serving cell, causing the terminal equipment to stay in a cell with poor signal quality for a long time and unable to switch to the same-frequency neighbor cell with good signal quality.
  • the correspondence between the frequency point and the SSB index stored by the terminal device is the correspondence relationship between the frequency point and the SSB index of the serving cell where the terminal device currently resides.
  • the corresponding relationship between the frequency point and the SSB index of the serving cell where the terminal device currently resides may be different from the corresponding relationship between the frequency point and the SSB index of the serving cell where the terminal device has historically resided.
  • the serving cell 174 includes 8 frequency point ranges and the corresponding index of the SSB, wherein, in [168,936]
  • the index of SSB corresponding to the frequency between [1812, 2580] is 0, the frequency between [1812, 2580] corresponds to the index of SSB, and the frequency between [4008, 4776] corresponds to the index of SSB is 2, in [ The frequency between 5652, 6420] corresponds to the SSB index of 3, the frequency between [7848, 8616] corresponds to the SSB index of 4, and the frequency between [9492, 10260] corresponds to the SSB index of 5.
  • the frequency between [11688, 12456] corresponds to the SSB index of 6, and the frequency between [13332, 14100] corresponds to the SSB index of 7.
  • the frequency of the SSB of the neighboring cell 420 is 170, and the terminal device determines the neighboring cell based on the correspondence between the eight frequencies of the serving cell 174 and the SSB index shown in Table 1, and the frequency of the SSB of the neighboring cell 420
  • the frequency point 170 of the SSB of 420 is between [168, 936], and the index of the corresponding SSB is 0.
  • the terminal device determines that the index of the SSB of the neighbor cell 420 is 0.
  • the terminal device can determine the SSB index of the neighboring cell 420 according to the corresponding relationship in Table 1, indicating that the neighboring cell 420 and the serving cell 174 are synchronized cells.
  • the frequency of the SSB of the neighboring cell 419 is 1000. Based on the correspondence between the 8 frequency points of the serving cell 174 and the SSB index shown in Table 1, the terminal equipment, the frequency point 1000 of the adjacent cell 419 is not within the range of the 8 frequency points in Table 1, and the terminal equipment cannot The correspondence in Table 1 determines the index of the SSB of the neighbor cell 419, indicating that the neighbor cell 419 and the serving cell 174 are asynchronous cells.
  • the signal measurement result of the SSB indicates the signal quality of the SSB.
  • the signal measurement result of the SSB includes one or more of the following parameters: Reference signal receiving power (RSRP), Received signal strength indicator (RSSI), Reference signal received quality (Reference signal received quality, RSRQ) and signal to interference noise ratio (Signal to interference noise ratio, SINR).
  • RSRP Reference signal receiving power
  • RSSI Received signal strength indicator
  • RSRQ Reference signal received quality
  • SINR Signal to interference noise ratio
  • RSRP is used to reflect the path loss strength of the current channel, used for cell coverage measurement and cell selection/reselection and handover
  • RSSI is used to reflect the received signal strength and interference level of the current channel
  • RSRQ is used to reflect and indicate the current channel.
  • Quality signal-to-noise ratio and interference level is used to reflect the link quality of the current channel and is an important indicator to measure the performance parameters of terminal equipment.
  • Signal measurement is the basis of mobility management, which is an important part of wireless mobile communication.
  • Mobility management is to ensure that the communication link between the access network equipment and the terminal equipment is not interrupted due to the movement of the terminal equipment.
  • the state of the terminal device it can be divided into two parts: idle state mobility management and connected state mobility management.
  • idle state mobility management mainly refers to the process of cell selection/reselection
  • connected state mobility management mainly refers to cell handover. Whether it is cell selection/reselection or handover, it is based on the result of signal measurement.
  • PBCH Physical Broadcast Channel
  • the PBCH is used for radio frame number synchronization and SIB1 configuration.
  • the PBCH carries a demodulation reference signal (DMRS) required for demodulating the PBCH and a master information block (Master information block, MIB) for acquiring cell parameter information.
  • DMRS demodulation reference signal
  • MIB master information block
  • the SSB index can be obtained by parsing the DMRS.
  • the terminal device reports the signal measurement result of the SSB to the access network device through the index of the SSB, and the access network device determines the beam associated with the SSB for receiving data based on the index of the SSB.
  • the MIB includes necessary parameter configuration information required for parsing the SIB1, for example, the MIB includes information about the subcarrier spacing applied to the SIB1 and scheduling information of the SIB1.
  • SIB1 includes timer and constant information for the terminal equipment to use in idle and connected states.
  • the scheduling information of the SIB1 is obtained, and the SIB1 of the cell is received based on the scheduling information of the SIB1, and the parameter information of the cell can be obtained.
  • the parameter information of the cell includes, but is not limited to, the bandwidth, frame number, subframe number, frequency band, and the like of the cell.
  • the terminal device determines whether the cell can camp on based on the parameter information of the cell obtained by parsing the MIB and SIB1.
  • the methods provided in the embodiments of the present application are applied in a wireless communication system.
  • the methods provided in the embodiments of the present application can be applied to various communication systems, for example, an internet of things (internet of things, IoT) system, a narrow band internet of things (NB-IoT) system, a long-term evolution ( long term evolution, LTE) system, it can also be a fifth-generation (5th-generation, 5G) communication system, it can also be a hybrid architecture of LTE and 5G, it can also be a 5G new radio (NR) system, and future communications New communication systems emerging in development, etc.
  • IoT internet of things
  • NB-IoT narrow band internet of things
  • LTE long-term evolution
  • 5G fifth-generation
  • 5G fifth-generation
  • NR 5G new radio
  • FIG. 1 is a schematic diagram of a system architecture of a communication system in an embodiment.
  • the solution in this application is applicable to this communication system.
  • the communication system may include at least one access network device and at least one terminal device.
  • FIG. 1 takes the communication system including one access network device and one terminal device as an example. As shown in FIG.
  • the terminal device 101 decodes the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first co-frequency adjacent cell of the terminal device 101 to obtain the index of the first SSB, the first co-frequency adjacent cell
  • the time division duplex mode is used for communication, and the first co-frequency adjacent cell is asynchronous with the serving cell of the terminal device; the terminal device 101 measures the first SSB to obtain the signal measurement result of the first SSB; the terminal device 101 sends the access network device 102 The signal measurement result of the first SSB and the index of the first SSB are reported.
  • the access network device involved in the embodiments of this application is an entity on the network side that is used to transmit or receive signals, and can be used to convert received air frames and Internet protocol (Internet protocol, IP) packets to each other. , as a router between the terminal device and the rest of the access network, where the rest of the access network may include an IP network and the like.
  • IP Internet protocol
  • the access network equipment can also coordinate the attribute management of the air interface.
  • the access network device may be an evolutional Node B (evolutional Node B, eNB or e-NodeB) in LTE, a new radio controller (new radio controller, NR controller), or a gNode B in the 5G system (gNB), which can be a centralized unit, a new wireless base station, a remote radio module, a micro base station, a relay, or a distributed unit ), which may be a reception point (transmission reception point, TRP) or a transmission point (transmission point, TP) or any other wireless access device, but the embodiment of the present application is not limited to this.
  • evolutional Node B evolutional Node B, eNB or e-NodeB
  • a new radio controller new radio controller, NR controller
  • gNode B in the 5G system gNB
  • TRP transmission reception point
  • TP transmission point
  • the terminal equipment involved in the embodiments of this application is an entity on the user side that is used to receive or transmit signals.
  • a terminal device may be a device that provides voice and/or data connectivity to a user, eg, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • the terminal device may also be other processing device connected to the wireless modem.
  • Terminal devices can communicate with a radio access network (RAN).
  • RAN radio access network
  • Terminal equipment may also be referred to as wireless terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment, UE) and so on.
  • Terminal devices may be mobile terminals, such as mobile phones (or “cellular" phones) and computers with mobile terminals, for example, may be portable, pocket-sized, hand-held, computer-built, or vehicle-mounted mobile devices, which are associated with wireless The access network exchanges language and/or data.
  • the terminal device may also be a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), and other equipment.
  • Common terminal devices include, for example: mobile phones, tablet computers, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices, such as smart watches, smart bracelets, pedometers, etc. The example is not limited to this.
  • the embodiments of the present application provide an information reporting method and a device thereof, which can timely report the measurement results of the same-frequency neighboring cells in the TDD mode when the same-frequency cells do not maintain synchronization.
  • the information reporting method provided by the embodiment of the present application is further described in detail below:
  • FIG. 2 is a schematic flowchart of an information reporting method provided by an embodiment of the present application.
  • the information reporting method includes the following S201-S203.
  • the method execution subject shown in FIG. 2 is a terminal device, or the subject may be a chip in the terminal device. in:
  • the terminal device decodes the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first co-frequency adjacent cell of the terminal device to obtain the index of the first SSB, and the first co-frequency adjacent cell adopts the time division duplex mode Communication; the first co-frequency adjacent cell is asynchronous with the serving cell of the terminal device.
  • the first intra-frequency adjacent cell is an intra-frequency adjacent cell adjacent to the serving cell where the terminal device currently resides.
  • the PBCH carries the demodulation reference signal (DMRS) required for demodulating the PBCH, the master information blocks MIB and SIB1 for acquiring cell parameter information.
  • the terminal device may decode the DMRS carried by the PBCH in the first SSB to obtain the index of the first SSB.
  • the terminal device may parse the MIB and SIB1 carried by the first PBCH to obtain parameter information of the first intra-frequency adjacent cell.
  • the terminal device determines whether the first intra-frequency adjacent cell can camp on based on the parameter information of the first intra-frequency adjacent cell.
  • each co-frequency adjacent cell includes one or more synchronization signal blocks SSB.
  • Each synchronization signal block SSB consists of a PSS, an SSS and a PBCH.
  • the terminal device decodes the DMRS carried by the PBCH to obtain the index of the SSB.
  • the index of each SSB is associated with an identifier (beam ID) of a beam used for co-frequency neighbor communication.
  • the terminal device decodes the DMRS carried by the PBCH in each first synchronization signal block SSB to obtain indices of the multiple first SSBs.
  • the indices of each first SSB are respectively associated with different beam identifiers.
  • the first synchronization signal block SSB sent by the first same-frequency adjacent cell is two, namely SSB1 and SSB2.
  • SSB1 consists of PSS1, SSS1 and PBCH1
  • SSB2 consists of PSS2, SSS2 and PBCH2 composition.
  • the terminal device decodes the DMRS1 carried by the PBCH1 to obtain the index of the SSB1
  • the terminal device decodes the DMRS2 carried by the PBCH2 to obtain the index of the SSB2.
  • the index of SSB1 is associated with the identifier of beam 1
  • the index of SSB2 is associated with the identifier of beam 2.
  • the terminal device parses the main information block MIB carried by the PBCH in SSB1 and SSB2, obtains the scheduling information of SIB1, receives the SIB1 of the first intra-frequency adjacent cell 419 based on the scheduling information of SIB1, and parses the SIB1 of the first intra-frequency adjacent cell 419 , to obtain parameter information of the first intra-frequency adjacent cell 419 (including parameter information such as cell bandwidth, frame number, subframe number, frequency band, etc.).
  • the terminal device measures the first SSB to obtain a signal measurement result of the first SSB.
  • step S202 and step S201 are not in any particular order.
  • Step S202 may be performed simultaneously with step S201, step S202 may also be performed before step S201, and step S202 may also be performed after step S201, which is not limited in this embodiment of the present application.
  • the terminal device measures the first SSB to obtain a signal measurement result of the first SSB
  • the signal measurement result of the first SSB includes one or more of the following parameters: reference signal received power RSRP, received signal strength indication RSSI, reference signal reception quality RSRQ and signal to interference and noise ratio SINR.
  • the signal measurement result of the first SSB may further include other parameters, which are not limited in this embodiment of the present application.
  • the terminal device reports the signal measurement result of the first SSB and the index of the first SSB to the access network device.
  • the access network device may receive the signal measurement result of the first SSB and the index of the first SSB. After the access network device receives the index of the first SSB and the signal measurement result, if the signal measurement result of the first SSB (representing the signal quality of the first intra-frequency neighbor cell) meets the preset handover condition, it switches from the serving cell to the first SSB. co-frequency neighbors.
  • the access network device determines a beam for transmitting data based on the beam identifier associated with the index of the first SSB.
  • the preset switching condition may be that the signal quality of the first intra-frequency neighbor cell is better than the signal quality of the serving cell.
  • the terminal device reports the index of SSB1 of the first intra-frequency neighbor cell 419 and the signal measurement result of SSB1 to the access network device. If the signal measurement result of SSB1 satisfies the preset handover condition, the access network device switches from the serving cell to the first co-frequency neighbors. And based on the identifier of the beam 1 associated with the index of the SSB1, it is determined that the beam used for transmitting data is the beam 1.
  • the terminal device obtains a reporting condition for screening the first intra-frequency adjacent cell, and the reporting condition may be that the signal quality indicated by the signal measurement result of the first SSB satisfies a preset value.
  • the terminal device determines whether the parameter information of the first intra-frequency adjacent cell meets the reporting condition based on the parameter information of the first intra-frequency adjacent cell obtained by parsing the MIB and SIB1 of the first intra-frequency adjacent cell. If the reporting conditions are met, indicating that the first intra-frequency adjacent cell can reside, the terminal device reports the index of the first SSB and the signal measurement result of the first intra-frequency adjacent cell to the access network device.
  • the access network device may be an access network device corresponding to the serving cell, or may be an access network device corresponding to the first same-frequency adjacent cell.
  • the terminal device reports the first SSB to the access network device index and signal measurement results.
  • the terminal device reports to the access network device the information of the first SSB that satisfies the reporting condition. index and signal measurement results.
  • the access network device when there are multiple indices of the first SSB and signal measurement results reported by the terminal device to the access network device, the access network device, based on the signal quality of the multiple first SSBs, Identify the target first SSB. The access network device determines the beam for transmitting data according to the beam identifier associated with the index of the target first SSB.
  • the terminal equipment reports the index of SSB1, the signal measurement result of SSB1, the index of SSB2, and the signal measurement result of SSB2 of the first intra-frequency adjacent cell to the access network equipment, and the access network equipment switches from the serving cell to the first intra-frequency Neighborhood.
  • the signal quality of SSB1 is better than that of SSB2, and the access network device determines that SSB1 is the target first SSB.
  • the access network device determines that the beam used for data transmission is beam 1 according to the identifier of beam 1 associated with the index of SSB1.
  • the terminal device decodes the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first same-frequency adjacent cell (which may be a synchronous cell or an asynchronous cell) of the terminal device, and obtains the first The index of an SSB, the first co-frequency adjacent cell uses time division duplex mode for communication, and the first co-frequency adjacent cell is asynchronous with the serving cell; the terminal equipment measures the first SSB to obtain the signal measurement result of the first SSB; the terminal equipment The signal measurement result of the first SSB and the index of the first SSB are reported to the access network device.
  • the first same-frequency adjacent cell which may be a synchronous cell or an asynchronous cell
  • the terminal device decodes the PBCH in the SSB sent by the asynchronous cell to obtain the SSB index of the asynchronous cell, and can report the measurement result of the asynchronous cell in time, thereby switching to the same-frequency neighboring cell with good signal quality.
  • FIG. 4 is a schematic flowchart of another information reporting method provided by the present application, which is provided by an embodiment of the present application. As shown in FIG. 4 , the information reporting method is as follows from steps S401 to S407:
  • the terminal device determines that the first same-frequency adjacent cell is asynchronous with the serving cell of the terminal device.
  • the terminal device may determine, based on the stored correspondence between the frequency point and the index of the SSB, and the frequency point of the first SSB, that the first same-frequency neighbor cell is asynchronous with the serving cell of the terminal device. Specifically, the terminal device acquires the first SSB of the first intra-frequency adjacent cell, and determines the frequency point of the first SSB based on the first PSS and the first SSS in the first SSB.
  • the frequency of the first SSB is within the nth frequency range of the serving cell, it is determined that the first same-frequency adjacent cell is synchronized with the serving cell of the terminal device, and the SSB index corresponding to the nth frequency range of the serving cell is determined to be The index of the first SSB. If the frequency of the first SSB is not within the range of n frequency points of the serving cell, it is determined that the first same-frequency neighboring cell is asynchronous with the serving cell of the terminal device.
  • the terminal device acquires the first SSB of the first co-frequency adjacent cell 419, and determines that the frequency point of the first SSB is 1000 based on the first PSS and the first SSS in the first SSB. Based on the correspondence between the 8 frequency points of the serving cell 174 and the SSB index shown in Table 1, the terminal equipment determines that the frequency point of the first SSB is not within the frequency point range corresponding to the indexes 0 to 7 of the SSB.
  • In-frequency neighbor cell 419 is asynchronous to serving cell 174 .
  • the terminal device decodes the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first co-frequency adjacent cell of the terminal device to obtain the index of the first SSB, and the first co-frequency adjacent cell adopts the time division duplex mode For communication, the first co-frequency neighbor cell is asynchronous with the serving cell.
  • step S402 reference may be made to the specific description of the decoding of the physical broadcast channel PBCH in the first synchronization signal block SSB by the terminal device in step S201 in FIG. 2, which is not repeated here.
  • the terminal device measures the first SSB to obtain a signal measurement result of the first SSB.
  • step S403 reference may be made to the specific description of step S202 in FIG. 2, and details are not repeated here.
  • the terminal device reports the signal measurement result of the first SSB and the index of the first SSB to the access network device.
  • step S404 reference may be made to the specific description of the terminal device reporting the signal measurement result of the first SSB and the index of the first SSB to the access network device in step S203 in FIG. 2, which will not be repeated here.
  • the terminal device decodes the physical broadcast channel PBCH in the second synchronization signal block SSB sent by the second same-frequency neighboring cell of the terminal device, to obtain the index of the second SSB, the second same-frequency neighboring cell and the serving cell of the terminal device Synchronize.
  • the second intra-frequency adjacent cell is a synchronization adjacent cell measured after the first intra-frequency adjacent cell.
  • the terminal device decodes the physical broadcast channel PBCH in the second synchronization signal block SSB (there may be one or more second synchronization signal blocks SSB) sent by the second same-frequency adjacent cell of the terminal device to obtain the index of the second SSB.
  • the terminal device decodes the DMRS carried by the second PBCH to obtain the index of the first SSB, and parses the MIB and SIB1 carried by the first PBCH to obtain parameter information of the first intra-frequency adjacent cell.
  • the terminal device determines whether the second intra-frequency adjacent cell can camp on based on the parameter information of the second intra-frequency adjacent cell. That is to say, when the terminal device measures the first asynchronous cell and all subsequent synchronous cells, it uses the method of decoding the PBCH of the SSB to obtain the SSB indices of the first asynchronous cell and all subsequent synchronous cells.
  • the terminal device decodes the DMRS carried by the PBCH in each second synchronization signal block SSB respectively, and obtains multiple first synchronization signal blocks.
  • the indices of each second SSB are respectively associated with different beam identifiers.
  • the terminal device decodes the PBCH in SSB3 and SSB4 respectively to obtain the index of SSB3, the index of SSB4 and the second Parameter information of the same-frequency neighbor cell.
  • the terminal device measures the second SSB to obtain a signal measurement result of the second SSB.
  • step S406 and step S405 are not in any particular order.
  • Step S406 may be performed simultaneously with step S405, step S406 may also be performed before step S405, and step S406 may also be performed after step S405, which is not limited in this embodiment of the present application.
  • the terminal device reports the signal measurement result of the second SSB and the index of the second SSB to the access network device.
  • the terminal device obtains the reporting conditions for screening and reporting the second same-frequency neighboring cell. Based on the parameter information of the second intra-frequency adjacent cell obtained by parsing the MIB and SIB1 of the second intra-frequency adjacent cell, the terminal device determines whether the parameter information of the second intra-frequency adjacent cell meets the reporting condition. If the reporting conditions are met, indicating that the second intra-frequency adjacent cell can reside, the terminal device reports the index of the second SSB and the signal measurement result of the second intra-frequency adjacent cell to the access network device.
  • the terminal device reports the second SSB to the access network device index and signal measurement results.
  • the terminal device reports the information of the second SSBs that meet the reporting conditions to the access network device. index and signal measurement results.
  • the access network device switches from the serving cell to the corresponding SSB that satisfies the switching condition. Neighboring neighborhood.
  • the handover condition may be the SSB with the best signal quality among the signal measurement result of the first SSB, the signal measurement result of the second SSB, and the signal measurement result of the SSB of the serving cell.
  • the access network may select a beam corresponding to the first SSB with the best signal quality.
  • the access network may select a beam corresponding to the second SSB with the best signal quality.
  • the signal measurement result of the SSB of the serving cell is optimal, it continues to camp on the current serving cell.
  • the terminal device reports the index of SSB1, the signal measurement result of SSB1, the index of SSB2, and the signal measurement result of SSB2 of the first intra-frequency adjacent cell to the access network device, the index of SSB3 of the second intra-frequency adjacent cell, the signal measurement result of SSB3 Signal measurement result, index of SSB4, and signal measurement result of SSB4.
  • the signal measurement results of each SSB it is determined that the signal quality from strong to weak is respectively: SSB1>SSB2>SSB3>SSB4>SSB of the serving cell.
  • the access network device switches to the first same-frequency adjacent cell, and determines the beam used for data transmission based on the beam identifier associated with the index of SSB1.
  • the first intra-frequency adjacent cell is the asynchronous cell measured by the terminal equipment
  • the second intra-frequency adjacent cell is the synchronous cell measured after the first intra-frequency adjacent cell
  • the terminal equipment decodes the PBCH in the SSB sent by the first intra-frequency adjacent cell , to obtain the index of the first SSB
  • the terminal device decodes the PBCH in the SSB sent by the synchronous cell measured after the first same-frequency adjacent cell, to obtain the index of the second SSB. That is to say, the terminal equipment decodes the PBCH in the SSB of the first asynchronous cell measured to obtain the index of the first SSB; the synchronous cell measured after the asynchronous cell, the terminal equipment sends the PBCH in the SSB to it.
  • the terminal device Decoding to obtain the index of the second SSB; for the asynchronous cell measured after the asynchronous cell, the terminal device also decodes the PBCH in the SSB sent by the asynchronous cell to obtain the index of the SSB. For the same-frequency cell measured after the first asynchronous cell, the terminal device does not need to judge whether it is a synchronous cell or an asynchronous cell. All the processing methods of the asynchronous cell are used to decode the PBCH in the SSB to obtain the SSB index of the cell, which simplifies Process, high feasibility, simple control process.
  • the terminal device determines that the first intra-frequency adjacent cell is asynchronous with the serving cell of the terminal device, and decodes the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first intra-frequency adjacent cell , obtain the index of the first SSB, and report the signal measurement result of the first SSB and the index of the first SSB to the access network device.
  • the terminal equipment decodes the PBCH in the second synchronization signal block SSB sent by the second same-frequency adjacent cell to obtain the index of the second SSB, and the second same-frequency adjacent cell is synchronized with the serving cell; the terminal equipment reports the second synchronization signal block to the access network equipment.
  • the signal measurement result of the SSB and the index of the second SSB does not need to judge whether the second same-frequency neighboring cell is a synchronous cell or an asynchronous cell.
  • the terminal equipment does not need to judge whether the second same-frequency neighboring cell is a synchronous cell or an asynchronous cell.
  • the processing method of the cell is to decode the PBCH in the SSB to obtain the index of the SSB of the cell. Simplified process, high feasibility and simple control process.
  • FIG. 5 is a schematic flowchart of another information reporting method provided by the present application, which is provided by an embodiment of the present application. As shown in Figure 5, the information reporting method is as follows from steps S501 to S507:
  • the terminal device determines that the first intra-frequency adjacent cell is asynchronous with the serving cell of the terminal device.
  • step S501 for the execution process of step S501, reference may be made to the specific description that the terminal device determines that the first intra-frequency neighbor cell is asynchronous with the serving cell of the terminal device in step S401 in FIG. 4, which will not be repeated here.
  • the terminal device decodes the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first co-frequency adjacent cell of the terminal device to obtain the index of the first SSB, and the first co-frequency adjacent cell adopts the time division duplex mode For communication, the first co-frequency neighbor cell is asynchronous with the serving cell.
  • step S502 referring to step S201 in FIG. 2, the terminal device decodes the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first same-frequency adjacent cell of the terminal device, and obtains the first synchronization signal block SSB.
  • the specific description of the index of an SSB will not be repeated here.
  • the terminal device measures the first SSB to obtain a signal measurement result of the first SSB.
  • step S503 for the execution process of step S503, reference may be made to the specific description of the terminal device measuring the first SSB in step S202 in FIG. 2 to obtain the signal measurement result of the first SSB, which will not be repeated here.
  • the terminal device reports the signal measurement result of the first SSB and the index of the first SSB to the access network device.
  • step S504 reference may be made to the specific description of the terminal device reporting the signal measurement result of the first SSB and the index of the first SSB to the access network device in step S203 in FIG. 2, which will not be repeated here.
  • the terminal device determines whether the second same-frequency neighbor cell of the terminal device is synchronized with the serving cell of the terminal device; if the second same-frequency neighbor cell is synchronized with the serving cell of the terminal device, then based on the frequency point stored by the terminal device and the SSB index and the frequency point where the second SSB sent by the second same-frequency neighboring cell is located, to determine the index of the second SSB.
  • the terminal device determines the frequency point of the second SSB based on the PSS and SSS of the second SSB in the second co-frequency adjacent cell.
  • the terminal device may determine whether the frequency of the second SSB is within the stored frequency range of the serving cell based on the stored correspondence between the frequency of the serving cell and the index of the SSB, and the frequency of the second SSB. If the frequency of the second SSB is within the stored frequency range of the serving cell, it is determined that the second intra-frequency adjacent cell is synchronized with the serving cell of the terminal device, and the second intra-frequency adjacent cell is a synchronous cell. Based on the corresponding relationship between the frequency point and the SSB index stored by the terminal device, it is determined that the index of the SSB corresponding to the frequency point where the second SSB is located in the corresponding relationship is the index of the second SSB.
  • the frequency point of the SSB of the second intra-frequency adjacent cell 420 is 170
  • the terminal device is based on the correspondence between the 8 frequency points of the serving cell 174 and the SSB index shown in Table 1 above, and the second intra-frequency adjacent cell
  • the frequency point of the SSB of 420 it is determined that the frequency point 170 of the SSB of the second same-frequency adjacent cell 420 is between [168, 936], and the index of the corresponding SSB is 0.
  • the terminal device determines that the index of the SSB of the second intra-frequency adjacent cell 420 is 0.
  • the terminal device measures the second SSB to obtain a signal measurement result of the second SSB.
  • step S506 for the execution process of step S506, reference may be made to step S406 in FIG. 4 for the terminal device to measure the second SSB to obtain the specific description of the signal measurement result of the second SSB, which will not be repeated here.
  • the terminal device reports the signal measurement result of the second SSB and the index of the second SSB to the access network device.
  • step S507 for the execution process of step S507, reference may be made to the specific description of the terminal device reporting the signal measurement result of the second SSB and the index of the second SSB to the access network device in step S407 in FIG.
  • the first intra-frequency adjacent cell is the first asynchronous cell measured by the terminal device
  • the second intra-frequency adjacent cell is the synchronous cell measured after the first intra-frequency adjacent cell
  • the SSB sent by the terminal equipment to the measured first asynchronous cell The PBCH in the PBCH is decoded to obtain the index of the first SSB; the index of the second SSB of the synchronous cell measured after the first asynchronous cell is determined based on the correspondence between the frequency point and the SSB index stored by the terminal device;
  • the PBCH in the SSB sent by the asynchronous cell measured after the asynchronous cell is decoded to obtain the index of the SSB of the asynchronous cell.
  • the terminal device only decodes the PBCH in the SSB sent by the asynchronous cell to obtain the index of the SSB of the asynchronous cell.
  • the terminal device first determines whether the co-frequency cell is a synchronous cell. If so, the SSB index of the intra-frequency cell is preferentially determined based on the correspondence between the frequency point and the SSB index stored by the terminal device, and the frequency point of the intra-frequency cell. If not (that is, when the same-frequency cell is an asynchronous cell), then decode the PBCH in the SSB sent by the asynchronous cell to obtain the index of the SSB of the asynchronous cell.
  • the terminal device decodes the PBCH in the SSB sent by the first same-frequency adjacent cell, obtains the index of the first SSB, and reports the signal measurement result of the first SSB and the first SSB to the access network device.
  • An index of the SSB the terminal device determines the index of the second SSB based on the correspondence between the frequency point and the SSB index stored by the terminal device, and the SSB sent by the synchronization cell, and the second same-frequency neighbor cell is synchronized with the serving cell; the terminal device The signal measurement result of the second SSB and the index of the second SSB are reported to the access network device.
  • the terminal equipment decodes the PBCH in the SSB sent by the asynchronous cell to obtain the SSB index of the asynchronous cell, and determines the synchronous cell based on the correspondence between the frequency point and the SSB index stored by the terminal equipment, and the frequency point of the SSB sent by the synchronous cell.
  • the index of the SSB The reporting delay caused by decoding the PBCH in the SSB sent by the newly emerging synchronous cell can be avoided, and the load can be reduced.
  • TDD mode when the same-frequency cells are not synchronized, the terminal equipment reports the measurement results of the same-frequency neighboring cells in time, and switches to the same-frequency neighboring cells with good signal quality in time.
  • FIG. 6 is a schematic flowchart of another information reporting method provided by the present application, which is provided by an embodiment of the present application. As shown in FIG. 6 , the information reporting method is as follows from steps S601 to S607:
  • the terminal device decodes the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first co-frequency adjacent cell of the terminal device to obtain the index of the first SSB, and the first co-frequency adjacent cell adopts the time division duplex mode For communication, the first co-frequency neighbor cell is asynchronous with the serving cell.
  • step S601 referring to step S201 in FIG. 2, the terminal device decodes the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first same-frequency adjacent cell of the terminal device, and obtains the first synchronization signal block SSB.
  • the specific description of the index of an SSB will not be repeated here.
  • the terminal device measures the first SSB to obtain a signal measurement result of the first SSB.
  • step S602 for the execution process of step S602, reference may be made to the specific description of the terminal device measuring the first SSB in step S202 in FIG. 2 to obtain the signal measurement result of the first SSB, which will not be repeated here.
  • the terminal device reports the signal measurement result of the first SSB and the index of the first SSB to the access network device.
  • step S603 For the execution process of step S603, reference may be made to the specific description of the terminal device reporting the signal measurement result of the first SSB and the index of the first SSB to the access network device in step S203 in FIG. 2, which will not be repeated here.
  • the terminal device decodes the physical broadcast channel PBCH in the second synchronization signal block SSB sent by the second same-frequency neighboring cell of the terminal device, to obtain the index of the second SSB, the second same-frequency neighboring cell and the serving cell of the terminal device Synchronize.
  • step S604 referring to step S405 in FIG. 4, the terminal device decodes the physical broadcast channel PBCH in the second synchronization signal block SSB sent by the second same-frequency adjacent cell of the terminal device, and obtains the first The specific description of the index of the second SSB will not be repeated here.
  • the terminal device measures the second SSB to obtain a signal measurement result of the second SSB.
  • step S605 For the execution process of step S605, reference may be made to the specific description of the terminal device measuring the second SSB in step S406 in FIG. 4 to obtain the signal measurement result of the second SSB, which will not be repeated here.
  • the terminal device reports the signal measurement result of the second SSB and the index of the second SSB to the access network device.
  • step S606 reference may be made to the specific description of the terminal device reporting the signal measurement result of the second SB and the index of the second SSB to the access network device in step S407 in FIG.
  • Steps S604 to S606 and steps S601 to S603 are executed in no particular order.
  • Steps S604 to S606 can be executed simultaneously with steps S601 to S603, or can be executed before steps S601 to S603, or can be executed before steps S601 to S601. Execute after step S603, which is not limited in this embodiment of the present application.
  • the terminal equipment does not need to judge whether the first same-frequency neighboring cell and the second same-frequency neighboring cell are asynchronous with the serving cell.
  • the PBCH is decoded to obtain the index of the SSB. That is to say, the terminal equipment decodes the PBCH in the SSB for all the same-frequency neighboring cells of the serving cell to obtain the index of the SSB.
  • the terminal equipment uses the PBCH decoding of the SSB for all the same-frequency cells to obtain the index of the SSB, and the terminal equipment does not need to judge whether the first same-frequency neighboring cell and the second same-frequency neighboring cell are Synchronous cells or asynchronous cells can reduce the process and improve the reporting efficiency.
  • the communication apparatus 700 shown in Fig. 7 can be used to execute part or all of the functions of the server in the method embodiments described in Figs. 2-6. Wherein, the communication apparatus 700 may also be a chip system.
  • the communication apparatus 700 shown in FIG. 7 may include a processing unit 701 and a communication unit 702. The detailed description of each unit is as follows:
  • the processing unit 701 is used for the terminal device to decode the physical broadcast channel PBCH in the first synchronization signal block SSB sent by the first co-frequency adjacent cell of the terminal device to obtain the index of the first SSB, and the first co-frequency adjacent cell adopts time division
  • the communication is performed in a duplex mode, and the first co-frequency adjacent cell is asynchronous with the serving cell of the terminal device; the terminal device measures the first SSB to obtain a signal measurement result of the first SSB;
  • the communication unit 702 is used for the terminal device to report the signal measurement result of the first SSB and the index of the first SSB to the access network device.
  • the processing unit 701 is further configured for the terminal device to determine that the first intra-frequency adjacent cell is asynchronous with the serving cell of the terminal device.
  • the processing unit 701 is further configured for the terminal device to decode the physical broadcast channel PBCH in the second synchronization signal block SSB sent by the second same-frequency adjacent cell of the terminal device to obtain the index of the second SSB , the second same-frequency neighboring cell is synchronized with the serving cell of the terminal device; the terminal device measures the second SSB to obtain a signal measurement result of the second SSB; the communication unit 702 is also used for the terminal device to report the second SSB to the access network device The signal measurement result of the SSB and the index of the second SSB.
  • the processing unit 701 is further configured for the terminal equipment to determine whether the second intra-frequency adjacent cell of the terminal equipment is synchronized with the serving cell of the terminal equipment; if the second intra-frequency adjacent cell is synchronized with the serving cell of the terminal equipment , then the index of the second SSB is determined based on the correspondence between the frequency point and the SSB index stored by the terminal equipment, and the frequency point where the second SSB sent by the second same-frequency adjacent cell is located; the terminal equipment measures the second SSB , to obtain the signal measurement result of the second SSB; the communication unit 702 is further configured for the terminal device to report the signal measurement result of the second SSB and the index of the second SSB to the access network device.
  • the processing unit 701 is further configured to: based on the stored correspondence between the frequency point and the SSB index and the frequency point of the first SSB, the terminal device determines the relationship between the first same-frequency neighbor cell and the terminal device.
  • the serving cell is asynchronous.
  • the processing unit 701 is further configured to: the terminal device decodes the physical broadcast channel PBCH in the second synchronization signal block SSB sent by the second same-frequency adjacent cell of the terminal device, and obtains the second SSB's index, the second same-frequency neighboring cell is synchronized with the serving cell of the terminal device; the terminal device measures the second SSB to obtain the signal measurement result of the second SSB; the communication unit 702 is also used for the terminal device to report the first SSB to the access network device The signal measurement result of the second SSB and the index of the second SSB.
  • an embodiment of the present application further provides a communication apparatus 800 .
  • the communication apparatus at least includes a communication interface 801 , a processor 802 and a memory 803 .
  • the communication interface 801, the processor 802 and the memory 803 may be connected through a bus 804 or other means.
  • the bus is represented by a thick line in FIG. 8 , and the connection mode between other components is only for schematic illustration, and is not intended to be limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of presentation, only one thick line is used in FIG. 8, but it does not mean that there is only one bus or one type of bus.
  • Memory 803 may include read only memory and random access memory, and provides instructions and data to processor 802 .
  • a portion of memory 803 may also include non-volatile random access memory.
  • the processor 802 may be a central processing unit (Central Processing Unit, CPU), and the processor 802 may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor can be a microprocessor, alternatively, the processor 802 can also be any conventional processor or the like. in:
  • the memory 803 is used to store program instructions.
  • the processor 802 is used to call the program instructions stored in the memory 803, so as to realize the data processing function of the above-mentioned terminal device in this application;
  • the calling communication interface 801 is used to implement the sending and receiving operations of the above-mentioned terminal device in this application.
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 801 is used in the communication apparatus 800 so that the communication apparatus 800 can communicate with other devices.
  • the processor 802 uses the communication interface 801 to send and receive data, and is used to implement the methods of the above method embodiments.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the specific connection medium between the communication interface 801 , the processor 802 , and the memory 803 is not limited in this embodiment of the present application.
  • FIG. 2-FIG. 6 The embodiments of the present invention and the method embodiments shown in FIG. 2-FIG. 6 are based on the same concept, and bring about the same technical effects. For specific principles, please refer to the description of the embodiments shown in FIG. 2-FIG. 6, which will not be repeated here.
  • FIG. 9 is a schematic structural diagram of another communication apparatus 900 provided by an embodiment of the present application.
  • the communication device 900 may be a server.
  • the communication apparatus 900 may perform the operations performed by the server in the foregoing method embodiments.
  • FIG. 9 only shows the main components of the communication device 900 .
  • the communication device 900 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control the entire communication device 900, execute software programs, and process data of the software programs, for example, to support the communication device 900 to execute the flow described in FIG. 2-FIG. 6 .
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the communication device 900 may further include an input and output device, such as a touch screen, a display screen, a keyboard, etc., which are mainly used for receiving data input by the user and outputting data to the user. It should be noted that some types of communication devices 900 may not have an input/output device.
  • the processor can read the software program in the storage unit, interpret and execute the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data .
  • FIG. 9 only shows one memory and a processor.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit (CPU).
  • the baseband processor is mainly used to process communication protocols and communication data, and the CPU is mainly used to process the entire communication
  • the apparatus 900 controls, executes a software program, and processes data of the software program.
  • the processor may also be a network processor (NP) or a combination of CPU and NP.
  • the processor may further include hardware chips.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (programmale logic device, PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination thereof.
  • the memory may include volatile memory (volatile memory), such as random-access memory (RAM); the memory may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory) , a hard disk drive (HDD) or a solid-state drive (SSD); the memory may also include a combination of the above-mentioned types of memory.
  • an antenna with a transceiver function and a radio frequency circuit can be regarded as the communication unit 901 of the communication device 900
  • a processor with a processing function can be regarded as a part of the communication device 900 .
  • processing unit 902 can be regarded as a part of the communication device 900 .
  • the communication unit 901 may also be referred to as a transceiver, a transceiver, a transceiver device, a transceiver unit, etc., and is used to implement a transceiver function.
  • the device for implementing the receiving function in the communication unit 901 may be regarded as a receiving unit
  • the device for implementing the transmitting function in the communication unit 901 may be regarded as a transmitting unit, that is, the communication unit 901 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, and the like
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit, or the like.
  • the communication unit 901 and the processing unit 902 may be integrated into one device or separated into different devices.
  • the processor and the memory may also be integrated into one device or separated into different devices.
  • the communication unit 901 may be configured to perform the transceiving operations of the communication apparatus 900 in the above method embodiments.
  • the processing unit 902 may be configured to perform data processing operations of the communication apparatus 900 in the above method embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is executed on a processor, the method flow of the foregoing method embodiment is implemented.
  • the embodiment of the present application further provides a computer program product, when the computer program product runs on the processor, the method flow of the above method embodiment is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信息上报方法及通信装置。其中,该方法可包括:终端设备对终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引,第一同频邻区采用时分双工模式进行通信;终端设备对第一SSB进行测量,得到第一SSB的信号测量结果;终端设备向接入网设备上报第一SSB的信号测量结果与第一SSB的索引。可以在TDD模式下,同频小区之间未保持同步时,及时上报异步小区的测量结果。

Description

一种信息上报方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种信息上报方法及装置。
背景技术
第五代移动通信技术(the 5th Generation mobile communicationtechnology,5G)应用日益广泛。为了充分利用5G的带宽资源,可以采用时分双工(Tim-division duplex,TDD)模式。TDD模式是一种上下行采用相同的频带,在一个频带内上下行链路使用不同时隙的通信模式。终端设备当前驻留的服务小区与邻小区的频段相同时,该邻小区与服务小区为同频小区,其中,该邻小区为服务小区的同频邻区。在TDD网络部署中,当同频小区之间保持子帧边界同步,且同频小区内配置的上下行配比相同时,同频小区之间保持同步。在TDD模式下,同频小区之间未保持同步时,终端设备无法向接入网设备上报同频邻区的测量结果,并且,信号质量强的同频邻区可能对服务小区的信号干扰,导致终端设备长时间驻留在信号质量较差的小区,无法切换到信号质量好的同频邻区。
发明内容
本申请实施例提供了一种信息上报方法及通信装置,可以在TDD模式下,同频小区之间未保持同步时,及时上报同频邻区的测量结果。
第一方面,本申请提供一种信息上报方法,该方法包括:终端设备对终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引,第一同频邻区采用时分双工模式进行通信,第一同频邻区与终端设备的服务小区异步;终端设备对第一SSB进行测量,得到第一SSB的信号测量结果;终端设备向接入网设备上报第一SSB的信号测量结果与第一SSB的索引。终端设备在TDD模式下,对异步小区发送的SSB中的PBCH解码,得到异步小区的SSB的索引,可以在TDD模式下,同频小区之间未保持同步时,及时上报异步小区的测量结果。
在一种可能的实现中,终端设备对终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引之前,方法还包括:终端设备确定第一同频邻区与终端设备的服务小区异步。终端设备判断第一同频邻区是否为异步小区,以使对异步小区发送的SSB中的PBCH解码,得到异步小区的SSB的索引,可以在TDD模式下,及时上报异步小区的测量结果,减少负载。
在一种可能的实现中,终端设备对终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引之后,还包括:终端设备对终端设备的第二同频邻区发送的第二同步信号块SSB中的物理广播信道PBCH进行解码,得到第二SSB的索引,第二同频邻区与终端设备的服务小区同步;终端设备对第二SSB进行测量,得到第二SSB的信号测量结果;终端设备向接入网设备上报第二SSB的信号测量结果与第二SSB的索引。终端设备对第一同频邻区之后测量的同步小区发送的SSB中的PBCH解码,得到第二SSB的索引。也即是说,终端设备不用判断第二同频邻区是否为同步小区或异步小区,对第一个异步小区及其之后测量的所有同频小区,无论是同步小 区还是异步小区,全部按照异步小区的处理方式,均采用对SSB中的PBCH解码,得到小区的SSB的索引,有利于简化流程,可行性高,控制流程简单。
在一种可能的实现中,终端设备对终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引之后,还包括:终端设备确定终端设备的第二同频邻区是否与终端设备的服务小区同步;若第二同频邻区与终端设备的服务小区同步,则基于终端设备存储的频点和SSB索引之间的对应关系,以及第二同频邻区发送的第二SSB所在的频点,确定第二SSB的索引;终端设备对第二SSB进行测量,得到第二SSB的信号测量结果;终端设备向接入网设备上报第二SSB的信号测量结果与第二SSB的索引。终端设备基于存储的频点和SSB索引之间的对应关系确定同步小区的SSB的索引,能够避免对新出现的同步小区发送的SSB中的PBCH进行解码造成的上报时延,可以降低负载,有利于及时上报同频邻区的测量结果,及时切换到信号质量好的同频邻区。
在一种可能的实现中,终端设备确定第一同频邻区与终端设备的服务小区异步,包括:终端设备基于存储的频点和SSB索引之间的对应关系和第一SSB的频点,确定第一同频邻区与终端设备的服务小区异步。终端设备基于存储的频点和SSB索引之间的对应关系确定第一同频邻区是否为异步小区,有利于避免对同步小区发送的SSB中的PBCH进行解码,能够提高效率,减少上报时延,同时对异步小区发送的SSB中的PBCH解码,得到异步小区的SSB的索引,可以及时上报异步小区的测量结果。
在一种可能的实现中,信息上报方法还包括:终端设备对终端设备的第二同频邻区发送的第二同步信号块SSB中的物理广播信道PBCH进行解码,得到第二SSB的索引,第二同频邻区与终端设备的服务小区同步;终端设备对第二SSB进行测量,得到第二SSB的信号测量结果;终端设备向接入网设备上报第二SSB的信号测量结果与第二SSB的索引。也即是说,终端设备对所有的同步小区和异步小区均采用对SSB的PBCH解码,得到SSB的索引,终端设备无需判断第一同频邻区与第二同频邻区是否为同步小区或异步小区,可以减少流程,提高上报效率。
第二方面,本申请提供一种通信装置,包括:该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第一方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面所述的方法以及有益效果,重复之处不再赘述。
第三方面,本发明实施例提供一种通信装置,所述通信装置包括处理器,当所述处理器调用存储器中的计算机程序时,如第一方面所述的方法被执行。
第四方面,本申请提供了一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第一方面所述的方法。
第五方面,本申请提供了一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信道或信号,或者发送信道或信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第一方面所述的方法。
第六方面,本申请提供了一种通信装置,所述通信装置包括处理器和接口电路,所述 接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面所述的方法。
第七方面,本发明实施例提供一种计算机可读存储介质,其特征在于,计算机可读存储介质存储有一条或多条指令,一条或多条指令适于由处理器加载并执行如第一方面所描述的方法。
第八方面,本申请提供一种包括指令的计算机程序产品,当所述指令被执行时,使得如第一方面所述的方法被实现。
附图说明
图1是本申请实施例提供的一种信息上报方法的系统架构示意图;
图2是本申请实施例提供的一种信息上报的流程结构示意图;
图3为本申请实施例提供的一种SSB结构示意图;
图4为本申请实施例提供的又一种信息上报的流程结构示意图;
图5为本申请实施例提供的又一种信息上报的流程结构示意图;
图6是本申请实施例提供的又一种信息上报的流程结构示意图;
图7是本申请实施例提供的又一种通信装置的结构示意图;
图8是本申请实施例提供的又一种通信装置的结构示意图;
图9是本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
为了更好地理解本申请实施例,下面对本申请实施例涉及的专业术语进行介绍:
(一)同频邻区
终端设备当前驻留的服务小区与邻小区的频段相同时,该邻小区与服务小区为同频小区。
其中,该邻小区为服务小区的同频邻区。在TDD网络部署中,当同频小区之间保持子帧边界同步,且同频小区内配置的上下行配比相同时,同频小区之间保持同步,服务小区与邻小区同步,邻小区为服务小区的同频同步小区(简称同步小区)。当同频小区之间的子帧边界不同步,或同频小区内配置的上下行配比不相同时,服务小区与邻小区异步,邻小区为服务小区的同频异步小区(简称异步小区)。
(二)时分双工(Tim-division duplex,TDD)模式
TDD模式是一种收发共用一个射频频点,默认网络基本同步,即接收和传送是在同一个频率信道,在一个频带内上下行链路使用不同时隙的通信模式,即用时间来分离接收和传送信道。TDD网络部署需要小区之间保持子帧边界的精确同步(微秒级),并在同一个TDD同步小区内配置成相同的上下行配比。
(三)同步信号块(Synchronization Signal Block,SSB)
在新空口(Newradio,NR)系统中,网络设备需要发送同步信号块(Synchronization Signal Block,SSB)以供终端设备进行同步、系统信息获取、测量等。SSB由主同步信号(PrimARy Synchronization Signals,PSS)、辅同步信号(Secondary Synchronization Signals,SSS)以及物理广播信道(Physical Broadcast Channel,PBCH)三部分共同组成。其中,PSS和SSS用于终端设备进行下行同步(包括定时同步、帧同步和符号同步);PSS和SSS还用于获取小区标识码(Cell Identifier,CID)以及测量小区信号质量。
具体的,PSS用于获取小区标识码(Cell Identifier,CID)、确定小区通信模式为时分双工(Tim-division duplex,TDD)模式或者频分双工(Frequency division duplexing,FDD)模式,还可以用于时域同步,例如正交频分复用技术(Orthogonal frequency division multiplexing,OFDM)符号同步、时隙同步和/或频域同步等。SSS用于确定小区的物理层标识(Identity document,ID),还可以用于测量小区的信号质量,以使终端设备与接入网设备根据测量结果选择波束和RRM测量等。SSB关联一个或多个用于承载随机接入消息的波束,用于接入网设备基于SSB关联的波束、通过SSB对应的小区与终端设备进行通信。其中,SSB通过唯一的SSB的索引对关联的波束进行标定。
当终端设备可以基于存储的频点和SSB索引之间的对应关系、和邻小区的SSB的频点,确定邻小区的SSB的索引时,说明服务小区与邻小区为同步小区,终端设备可以向接入网设备上报邻小区的SSB的索引与SSB的信号测量结果。当终端设备无法确定邻小区的SSB的索引,说明服务小区与邻小区为异步小区,终端设备无法向接入网设备上报异步小区的SSB的索引与SSB的信号测量结果,并且,信号质量强的同频邻区可能对服务小区的信号干扰,导致终端设备长时间驻留在信号质量较差的小区,无法切换到信号质量好的同频邻区。
其中,终端设备存储的频点和SSB索引之间的对应关系,为终端设备当前驻留的服务小区的频点和SSB索引之间的对应关系。终端设备当前驻留的服务小区的频点和SSB索引之间的对应关系,可以与终端设备历史驻留的服务小区的频点和SSB索引之间的对应关系不同。
如表1所示,终端设备存储服务小区174的频点与SSB的索引之间的对应关系为:服 务小区174包括8个频点范围及对应的SSB的索引,其中,处于[168,936]之间的频点对应SSB的索引为0,处于[1812,2580]之间的频点对应SSB的索引为1,处于[4008,4776]之间的频点对应SSB的索引为2,处于[5652,6420]之间的频点对应SSB的索引为3,处于[7848,8616]之间的频点对应SSB的索引为4,处于[9492,10260]之间的频点对应SSB的索引为5,处于[11688,12456]之间的频点对应SSB的索引为6,处于[13332,14100]之间的频点对应SSB的索引为7。
表1.服务小区174的频点与SSB的索引之间的对应关系
SSB的索引 频点
0 [168,936]
1 [1812,2580]
2 [4008,4776]
3 [5652,6420]
4 [7848,8616]
5 [9492,10260]
6 [11688,12456]
7 [13332,14100]
邻小区420的SSB的频点为170,终端设备基于上述表1所示的服务小区174的8个频点和SSB索引之间的对应关系、和邻小区420的SSB的频点,确定邻小区420的SSB的频点170处于[168,936]之间,对应的SSB的索引为0。终端设备确定邻小区420的SSB的索引为0。终端设备能够根据上述表1中的对应关系确定邻小区420的SSB的索引,说明邻小区420与服务小区174为同步小区。
邻小区419的SSB的频点为1000。终端设备基于上述表1所示的服务小区174的8个频点与SSB索引之间的对应关系,邻小区419的频点1000不处于表1中的8个频点范围内,终端设备无法根据表1中的对应关系确定邻小区419的SSB的索引,说明邻小区419与服务小区174为异步小区。
(四)同步信号块SSB的信号测量结果
SSB的信号测量结果表示SSB的信号质量,SSB的信号测量结果包括以下一个或多个参数:参考信号接收功率(Reference signal receiving power,RSRP)、接收信号强度指示(Received signal strength indicator,RSSI)、参考信号接收质量(Reference signal received quality,RSRQ)和信干噪比(Signal to interference noise ratio,SINR)。
其中,RSRP用于反映当前信道的路径损耗强度,用于小区覆盖的测量和小区选择/重选和切换;RSSI用于反映当前信道的接收信号强度和干扰程度;RSRQ用于反映和指示当前信道质量的信噪比和干扰水平;SINR用于反映当前信道的链路质量,是衡量终端设备性能参数的一个重要指标。
信号测量是移动性管理的基础,移动性管理是无线移动通信中的重要组成部分。移动性管理是为了保证接入网设备与终端设备之间的通信链路不因终端设备的移动而中断。根据终端设备的状态可以分为空闲态移动性管理和连接态移动性管理两部分。在空闲态下,移动性管理主要指的是小区选择/重选(Cell selection/reselection)的过程,在连接态下,移动性管理主要指的是小区切换(handover)。不论是小区选择/重选还是切换,都是基于信号测量的结果进行的。
(五)物理广播信道(Physical Broadcast Channel,PBCH)
PBCH用于无线帧号同步以及SIB1的配置。PBCH承载了用于解调PBCH所需的解调参考信号(DMRS)和用于获取小区参数信息的主信息块(Master information block,MIB)。其中,通过解析DMRS可以获得SSB的索引(SSB index)。终端设备通过SSB的索引向接入网设备上报SSB的信号测量结果,接入网设备基于SSB的索引确定SSB关联的用于接收数据的波束。
MIB包括对SIB1进行解析所需的必要参数配置信息,例如,MIB中包括关于应用于SIB1子载波间距的信息、SIB1的调度信息。SIB1包括用于终端设备在空闲态和连接态下所使用的定时器和常数信息。通过解析PBCH中的MIB,得到SIB1的调度信息,基于SIB1的调度信息接收小区的SIB1,可以得到小区的参数信息。小区的参数信息包括但不限于是:小区的带宽、帧号、子帧号、频点频段等。终端设备基于解析MIB和SIB1得到的小区的参数信息,确定小区是否可以驻留。
本申请实施例提供的方法应用于无线通信系统中。本申请实施例提供的方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)系统、窄带物联网(narrow band internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)系统,以及未来通信发展中出现的新的通信系统等。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或模块的过程、方法、系统、产品或设备没有限定于已列出的步骤或模块,而是可选地还包括没有列出的步骤或模块,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或模块。
图1为一个实施例中通信系统的一种系统架构示意图。本申请中的方案可适用于该通信系统。该通信系统可以包括至少一个接入网设备和至少一个终端设备,图1以通信系统中包括一个接入网设备和一个终端设备为例。如图1所示,终端设备101对终端设备101的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引,第一同频邻区采用时分双工模式进行通信,第一同频邻区与终端设备的服务小区异步;终端设备101对第一SSB进行测量,得到第一SSB的信号测量结果;终端设备101向接入网设备102上报第一SSB的信号测量结果与第一SSB的索引。
本申请实施例中所涉及的接入网设备,是网络侧的一种用于发射或接收信号的实体,可以用于将收到的空中帧与网络协议(Internet protocol,IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可以包括IP网络等。接入网设备还可以协调对空中接口的属性管理。例如,接入网设备可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB),还可以是新无线控制器(new radio controller,NR controller),可以是5G系统中的gNode B(gNB),可以是集中式网元(centralized unit), 可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是中继(relay),可以是分布式网元(distributed unit),可以是接收点(transmission reception point,TRP)或传输点(transmission point,TP)或者任何其它无线接入设备,但本申请实施例不限于此。
本申请实施例中涉及的终端设备,是用户侧的一种用于接收或发射信号的实体。终端设备可以是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端设备也可以是连接到无线调制解调器的其他处理设备。终端设备可以与无线接入网(radio access network,RAN)进行通信。终端设备也可以称为无线终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment,UE)等等。终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,终端设备还可以是个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。常见的终端设备例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等,但本申请实施例不限于此。
本申请实施例提供了一种信息上报方法及其装置,可以在TDD模式下,同频小区之间未保持同步时,及时上报同频邻区的测量结果。下面对本申请实施例提供的信息上报方法进一步进行详细描述:
请参见图2,图2是本申请实施例提供的一种信息上报方法的流程示意图。如图2所示,该信息上报方法包括如下S201~S203。图2所示的方法执行主体为终端设备,或主体可以为终端设备中的芯片。其中:
S201、终端设备对终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引,第一同频邻区采用时分双工模式进行通信;第一同频邻区与终端设备的服务小区异步。
本申请实施例中,第一同频邻区为终端设备当前驻留的服务小区相邻的同频邻区。PBCH承载了用于解调PBCH所需的解调参考信号(DMRS)、用于获取小区参数信息的主信息块MIB和SIB1。终端设备可对第一SSB中的PBCH承载的DMRS解码,得到第一SSB的索引。可选的,终端设备可对第一PBCH承载的MIB与SIB1解析,得到第一同频邻区的参数信息。终端设备基于第一同频邻区的参数信息,确定第一同频邻区是否可以驻留。
本申请实施例中,每个同频邻区包括一个或多个同步信号块SSB。每个同步信号块SSB由一个PSS、一个SSS和一个PBCH组成,终端设备对PBCH承载的DMRS解码,得到SSB的索引。每个SSB的索引关联一个用于同频邻区通信的波束的标识(beam ID)。第一同频邻区发送的第一同步信号块SSB为多个时,终端设备对每个第一同步信号块SSB中的PBCH承载的DMRS分别解码,得到多个第一SSB的索引。每个第一SSB的索引分别关联不同的波束标识。
例如,第一同频邻区发送的第一同步信号块SSB为两个,分别为SSB1和SSB2,参见图3所示的SSB结构示意图,SSB1由PSS1、SSS1和PBCH1组成,SSB2由PSS2、SSS2和PBCH2组成。终端设备对PBCH1承载的DMRS1解码,得到SSB1的索引,终端设备对PBCH2承载的DMRS2解码,得到SSB2的索引。SSB1的索引关联波束1的标识,SSB2的索引关联波束2的标识。
终端设备对SSB1和SSB2中的PBCH承载的主信息块MIB解析,得到SIB1的调度信息,基于SIB1的调度信息接收第一同频邻区419的SIB1,对第一同频邻区419的SIB1解析,得到第一同频邻区419的参数信息(包括小区的带宽、帧号、子帧号、频点频段等参数信息)。
S202、终端设备对第一SSB进行测量,得到第一SSB的信号测量结果。
需要说明的是,步骤S202与步骤S201的执行顺序不分先后。步骤S202可以与步骤S201同时执行,步骤S202也可以在步骤S201之前执行,步骤S202还可以在步骤S201之后执行,本申请实施例不做限定。
在一种实现方式中,终端设备对第一SSB进行测量,得到第一SSB的信号测量结果,第一SSB的信号测量结果包括以下一个或多个参数:参考信号接收功率RSRP、接收信号强度指示RSSI、参考信号接收质量RSRQ和信干噪比SINR。第一SSB的信号测量结果还可以包括其他的参数,本申请实施例不做限定。
S203、终端设备向接入网设备上报第一SSB的信号测量结果与第一SSB的索引。
相应地,接入网设备可以接收第一SSB的信号测量结果与第一SSB的索引。接入网设备接收到第一SSB的索引以及信号测量结果之后,若第一SSB的信号测量结果(代表第一同频邻区的信号质量)满足预设切换条件,则从服务小区切换至第一同频邻区。接入网设备基于该第一SSB的索引关联的波束标识,确定传输数据的波束。其中,预设切换条件可以是第一同频邻区的信号质量好于服务小区的信号质量。
例如,终端设备向接入网设备上报第一同频邻区419的SSB1的索引以及SSB1的信号测量结果,若SSB1的信号测量结果满足预设切换条件,接入网设备从服务小区切换至第一同频邻区。并基于SSB1的索引关联的波束1的标识,确定用于传输数据的波束为波束1。
在一种实现方式中,终端设备获取用于筛选第一同频邻区的上报条件,上报条件可以是第一SSB的信号测量结果表示的信号质量满足预设值。终端设备基于解析第一同频邻区的MIB和SIB1得到的第一同频邻区的参数信息,并确定第一同频邻区的参数消息是否满足上报条件。若满足上报条件,说明第一同频邻区可以驻留,则终端设备向接入网设备上报第一同频邻区的第一SSB的索引以及信号测量结果。其中,接入网设备可以是服务小区对应的接入网设备,也可以是第一同频邻区对应的接入网设备。
具体的,当第一同频邻区的第一同步信号块SSB为一个,且对第一PBCH解码得到的唯一的第一SSB满足上报条件时,终端设备向接入网设备上报该第一SSB的索引以及信号测量结果。当第一同频邻区的第一同步信号块SSB为多个,对第一SSB中的PBCH解码得到多个第一SSB时,终端设备向接入网设备上报满足上报条件的第一SSB的索引以及信号测量结果。
在一种实现方式中,终端设备向接入网设备上报的第一SSB的索引以及信号测量结果为多个时,接入网设备基于多个第一SSB的信号质量,在多个第一SSB中确定目标第一 SSB。接入网设备根据目标第一SSB的索引关联的波束标识,确定传输数据的波束。
例如,终端设备向接入网设备上报第一同频邻区的SSB1的索引、SSB1的信号测量结果、SSB2的索引以及SSB2的信号测量结果,接入网设备从服务小区切换至第一同频邻区。其中,SSB1的信号质量比SSB2的信号质量好,接入网设备确定SSB1为目标第一SSB。接入网设备根据SSB1的索引关联的波束1的标识,确定用于传输数据的波束为波束1。
通过图2所描述的信息上报方法,终端设备对终端设备的第一同频邻区(可以是同步小区或异步小区)发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引,第一同频邻区采用时分双工模式进行通信,第一同频邻区与服务小区异步;终端设备对第一SSB进行测量,得到第一SSB的信号测量结果;终端设备向接入网设备上报第一SSB的信号测量结果与第一SSB的索引。终端设备在TDD模式下,对异步小区发送的SSB中的PBCH解码,得到异步小区的SSB的索引,能够及时上报异步小区的测量结果,从而切换到信号质量好的同频邻区。
参见图4,图4是本申请提供是本申请实施例提供的另一种信息上报方法的流程示意图。如图4所示,该信息上报方法如下步骤S401至步骤S407:
S401,终端设备确定第一同频邻区与终端设备的服务小区异步。
本申请实施例中,终端设备可以基于存储的频点和SSB的索引之间的对应关系,以及第一SSB的频点,确定第一同频邻区与终端设备的服务小区异步。具体的,终端设备获取第一同频邻区的第一SSB,并基于第一SSB中的第一PSS和第一SSS确定第一SSB的频点。若第一SSB的频点处于服务小区的第n个频点范围内,确定第一同频邻区与终端设备的服务小区同步,且确定服务小区的第n个频点范围对应的SSB索引为第一SSB的索引。若第一SSB的频点不处于服务小区的n个频点范围内,确定第一同频邻区与终端设备的服务小区异步。
例如,终端设备获取第一同频邻区419的第一SSB,并基于第一SSB中的第一PSS和第一SSS确定第一SSB的频点为1000。终端设备基于上述表1所示的服务小区174的8个频点与SSB索引之间的对应关系,第一SSB的频点不处于SSB的索引0~7对应的频点范围内,确定第一同频邻区419与服务小区174异步。
S402,终端设备对终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引,第一同频邻区采用时分双工模式进行通信,第一同频邻区与服务小区异步。
需要说明的是,步骤S402的执行过程可以参见图2中的步骤S201中终端设备对第一同步信号块SSB中的物理广播信道PBCH进行解码的具体描述,此处不再赘述。
S403,终端设备对第一SSB进行测量,得到第一SSB的信号测量结果。
需要说明的是,步骤S403的执行过程可以参见图2中的步骤S202中的具体描述,此处不再赘述。
S404,终端设备向接入网设备上报第一SSB的信号测量结果与第一SSB的索引。
需要说明的是,步骤S404的执行过程可以参见图2中的步骤S203中终端设备向接入网设备上报第一SSB的信号测量结果与第一SSB的索引的具体描述,此处不再赘述。
S405,终端设备对终端设备的第二同频邻区发送的第二同步信号块SSB中的物理广播信道PBCH进行解码,得到第二SSB的索引,第二同频邻区与终端设备的服务小区同步。
在一种实现方式中,第二同频邻区为第一同频邻区之后测量的同步邻区。终端设备对终端设备的第二同频邻区发送的第二同步信号块SSB(第二同步信号块SSB可以为一个或多个)中的物理广播信道PBCH进行解码,得到第二SSB的索引。具体的,终端设备对第二PBCH承载的DMRS解码,得到第一SSB的索引,对第一PBCH承载的MIB与SIB1解析,得到第一同频邻区的参数信息。终端设备基于第二同频邻区的参数信息,确定第二同频邻区是否可以驻留。也即是说,终端设备测量到第一个异步小区及其之后的所有同步小区,均采用对SSB的PBCH解码的方法,得到第一个异步小区及其之后的所有同步小区的SSB的索引。
在一种实现方式中,第二同频邻区发送的第二同步信号块SSB为多个时,终端设备对每个第二同步信号块SSB中的PBCH承载的DMRS分别解码,得到多个第二SSB的索引和第二同频邻区的参数信息。每个第二SSB的索引分别关联不同的波束标识。例如,第二同频邻区发送的第二同步信号块SSB为两个,分别为SSB3和SSB4时,终端设备分别对SSB3和SSB4中的PBCH解码,得到SSB3的索引、SSB4的索引以及第二同频邻区的参数信息。
S406,终端设备对第二SSB进行测量,得到第二SSB的信号测量结果。
需要说明的是,步骤S406与步骤S405的执行顺序不分先后。步骤S406可以与步骤S405同时执行,步骤S406也可以在步骤S405之前执行,步骤S406还可以在步骤S405之后执行,本申请实施例不做限定。
S407,终端设备向接入网设备上报第二SSB的信号测量结果与第二SSB的索引。
在一种实现方式中,终端设备获取用于筛选上报的第二同频邻区的上报条件。终端设备基于解析第二同频邻区的MIB和SIB1得到的第二同频邻区的参数信息,并确定第二同频邻区的参数消息是否满足上报条件。若满足上报条件,说明第二同频邻区可以驻留,则终端设备向接入网设备上报第二同频邻区的第二SSB的索引以及信号测量结果。
具体的,当第二同频邻区的第二同步信号块SSB为一个,且对第二PBCH解码得到的唯一的第二SSB满足上报条件时,终端设备向接入网设备上报该第二SSB的索引以及信号测量结果。当第二同频邻区的第二同步信号块SSB为多个,对第二SSB中的PBCH解码得到多个第二SSB时,终端设备向接入网设备上报满足上报条件的第二SSB的索引以及信号测量结果。
相应地,接入网设备接收到终端设备上报的第一SSB的索引以及信号测量结果、第二SSB的索引以及信号测量结果之后,接入网设备从服务小区切换至满足切换条件的SSB对应的邻小区。切换条件可以是:第一SSB的信号测量结果、第二SSB的信号测量结果以及服务小区的SSB的信号测量结果中,信号质量最优的SSB。
若第一SSB的信号测量结果(代表第一同频邻区的信号质量)最优,则从服务小区切换至第一同频邻区,并基于第一同频邻区的第一SSB的索引关联的波束标识,确定传输数据的波束。当第一SSB的索引为多个时,接入网可以选择信号质量最好的第一SSB对应的波束。
若第二SSB的信号测量结果(代表第二同频邻区的信号质量)最优,则从服务小区切换至第二同频邻区。并基于第二同频邻区的第二SSB的索引关联的波束标识,确定传输数据的波束。当第二SSB的索引为多个时,接入网可以选择信号质量最好的第二SSB对应的波束。
若服务小区的SSB的信号测量结果最优,则继续驻留在当前服务小区。
例如,终端设备向接入网设备上报第一同频邻区的SSB1的索引、SSB1的信号测量结果、SSB2的索引以及SSB2的信号测量结果,第二同频邻区的SSB3的索引、SSB3的信号测量结果、SSB4的索引以及SSB4的信号测量结果。其中,根据各个SSB的信号测量结果,确定信号质量从强到弱分别为:SSB1>SSB2>SSB3>SSB4>服务小区的SSB。接入网设备切换至第一同频邻区,并基于SSB1的索引关联的波束标识,确定用于传输数据的波束。
第一同频邻区为终端设备测量到的异步小区,第二同频邻区为第一同频邻区之后测量的同步小区,终端设备对第一同频邻区发送的SSB中的PBCH解码,得到第一SSB的索引;终端设备对第一同频邻区之后测量的同步小区发送的SSB中的PBCH解码,得到第二SSB的索引。也即是说,终端设备对测量到的第一个异步小区的SSB中的PBCH解码,得到第一SSB的索引;在异步小区之后测量到的同步小区,终端设备对其发送的SSB中的PBCH解码,得到第二SSB的索引;在异步小区之后测量到的异步小区,终端设备也对其发送的SSB中的PBCH解码,得到SSB的索引。终端设备对第一个异步小区之后测量的同频小区,不用判断是否为同步小区或异步小区,全部按照异步小区的处理方式,均采用对SSB中的PBCH解码,得到小区的SSB的索引,简化流程,可行性高,控制流程简单。
通过图4所描述的信息上报方法,终端设备确定第一同频邻区与终端设备的服务小区异步,对第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引,向接入网设备上报第一SSB的信号测量结果与第一SSB的索引。终端设备对第二同频邻区发送的第二同步信号块SSB中PBCH进行解码,得到第二SSB的索引,第二同频邻区与服务小区同步;终端设备向接入网设备上报第二SSB的信号测量结果与第二SSB的索引。也即是说,终端设备不用判断第二同频邻区是否为同步小区或异步小区,对第一个异步小区及其之后测量的所有同频小区,无论是同步小区还是异步小区,全部按照异步小区的处理方式,均采用对SSB中的PBCH解码,得到小区的SSB的索引。简化流程,可行性高,控制流程简单。
参见图5,图5是本申请提供是本申请实施例提供的另一种信息上报方法的流程示意图。如图5所示,该信息上报方法如下步骤S501至步骤S507:
S501,终端设备确定第一同频邻区与终端设备的服务小区异步。
需要说明的是,步骤S501的执行过程可以参见图4中的步骤S401中终端设备确定第一同频邻区与终端设备的服务小区异步的具体描述,此处不再赘述。
S502,终端设备对终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引,第一同频邻区采用时分双工模式进行通信,第一同频邻区与服务小区异步。
需要说明的是,步骤S502的执行过程可以参见图2中的步骤S201中终端设备对终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引的具体描述,此处不再赘述。
S503,终端设备对第一SSB进行测量,得到第一SSB的信号测量结果。
需要说明的是,步骤S503的执行过程可以参见图2中的步骤S202中终端设备对第一SSB进行测量,得到第一SSB的信号测量结果的具体描述,此处不再赘述。
S504,终端设备向接入网设备上报第一SSB的信号测量结果与第一SSB的索引。
需要说明的是,步骤S504的执行过程可以参见图2中的步骤S203中终端设备向接入网设备上报第一SSB的信号测量结果与第一SSB的索引的具体描述,此处不再赘述。
S505,终端设备确定终端设备的第二同频邻区是否与终端设备的服务小区同步;若第二同频邻区与终端设备的服务小区同步,则基于终端设备存储的频点和SSB索引之间的对应关系,以及第二同频邻区发送的第二SSB所在的频点,确定第二SSB的索引。
在一种实现方式中,终端设备基于第二同频邻区的第二SSB的PSS与SSS,确定第二SSB的频点。终端设备可以基于存储的服务小区的频点和SSB的索引之间的对应关系,以及第二SSB的频点,确定第二SSB的频点是否处于存储的服务小区的频点范围内。若第二SSB的频点处于存储的服务小区的频点范围内,则确定第二同频邻区与终端设备的服务小区同步,第二同频邻区为同步小区。基于终端设备存储的频点和SSB索引之间的对应关系,确定对应关系中第二SSB所在的频点对应的SSB的索引为第二SSB的索引。
例如,第二同频邻区420的SSB的频点为170,终端设备基于上述表1所示的服务小区174的8个频点和SSB索引之间的对应关系、和第二同频邻区420的SSB的频点,确定第二同频邻区420的SSB的频点170处于[168,936]之间,对应的SSB的索引为0。终端设备确定第二同频邻区420的SSB的索引为0。
S506,终端设备对第二SSB进行测量,得到第二SSB的信号测量结果。
需要说明的是,步骤S506的执行过程可以参见图4中的步骤S406终端设备对第二SSB进行测量,得到第二SSB的信号测量结果的具体描述,此处不再赘述。
S507,终端设备向接入网设备上报第二SSB的信号测量结果与第二SSB的索引。
需要说明的是,步骤S507的执行过程可以参见图4中的步骤S407终端设备向接入网设备上报第二SSB的信号测量结果与第二SSB的索引的具体描述,此处不再赘述。
第一同频邻区为终端设备测量到第一个异步小区,第二同频邻区为第一同频邻区之后测量的同步小区,终端设备对测量到的第一个异步小区发送的SSB中的PBCH解码,得到第一SSB的索引;基于终端设备存储的频点和SSB索引之间的对应关系,确定第一个异步小区之后测量的同步小区的第二SSB的索引;对第一个异步小区之后测量的异步小区发送的SSB中的PBCH解码,得到该异步小区的SSB的索引。也即是说,终端设备仅对异步小区发送的SSB中的PBCH解码,得到异步小区的SSB的索引。对于新出现的同频小区,终端设备先判断同频小区是否为同步小区。若是,则优先基于终端设备存储的频点和SSB索引之间的对应关系、同频小区的频点确定同频小区的SSB的索引。若否(即同频小区为异步小区时),再对异步小区发送的SSB中的PBCH解码,得到异步小区的SSB的索引。
通过图5所描述的信息上报方法,终端设备对第一同频邻区发送的SSB中的PBCH进行解码,得到第一SSB的索引,向接入网设备上报第一SSB的信号测量结果与第一SSB的索引;终端设备基于终端设备存储的频点和SSB索引之间的对应关系,以及同步小区发送的SSB,确定第二SSB的索引,第二同频邻区与服务小区同步;终端设备向接入网设备上报第二SSB的信号测量结果与第二SSB的索引。终端设备对异步小区发送的SSB中的PBCH解码,得到异步小区的SSB的索引,基于终端设备存储的频点和SSB索引之间的对应关系,以及同步小区发送的SSB所在的频点确定同步小区的SSB的索引。能够避免对新出现的同步小区发送的SSB中的PBCH进行解码造成的上报时延,可以降低负载。可以 在TDD模式下,同频小区之间未保持同步时,终端设备及时上报同频邻区的测量结果,及时切换到信号质量好的同频邻区。
参见图6,图6是本申请提供是本申请实施例提供的另一种信息上报方法的流程示意图。如图6所示,该信息上报方法如下步骤S601至步骤S607:
S601,终端设备对终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引,第一同频邻区采用时分双工模式进行通信,第一同频邻区与服务小区异步。
需要说明的是,步骤S601的执行过程可以参见图2中的步骤S201中终端设备对终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引的具体描述,此处不再赘述。
S602,终端设备对第一SSB进行测量,得到第一SSB的信号测量结果。
需要说明的是,步骤S602的执行过程可以参见图2中的步骤S202中终端设备对第一SSB进行测量,得到第一SSB的信号测量结果的具体描述,此处不再赘述。
S603,终端设备向接入网设备上报第一SSB的信号测量结果与第一SSB的索引。
需要说明的是,步骤S603的执行过程可以参见图2中的步骤S203中终端设备向接入网设备上报第一SSB的信号测量结果与第一SSB的索引的具体描述,此处不再赘述。
S604,终端设备对终端设备的第二同频邻区发送的第二同步信号块SSB中的物理广播信道PBCH进行解码,得到第二SSB的索引,第二同频邻区与终端设备的服务小区同步。
需要说明的是,步骤S604的执行过程可以参见图4中的步骤S405中终端设备对终端设备的第二同频邻区发送的第二同步信号块SSB中的物理广播信道PBCH进行解码,得到第二SSB的索引的具体描述,此处不再赘述。
S605,终端设备对第二SSB进行测量,得到第二SSB的信号测量结果。
需要说明的是,步骤S605的执行过程可以参见图4中的步骤S406中终端设备对第二SSB进行测量,得到第二SSB的信号测量结果的具体描述,此处不再赘述。
S606,终端设备向接入网设备上报第二SSB的信号测量结果与第二SSB的索引。
需要说明的是,步骤S606的执行过程可以参见图4中的步骤S407中终端设备向接入网设备上报第二SB的信号测量结果与第二SSB的索引的具体描述,此处不再赘述。
步骤S604~步骤S606与步骤S601~步骤S603的执行顺序不分先后,步骤S604~步骤S606可以与步骤S601~步骤S603同时执行,也可以在步骤S601~步骤S603之前执行,还可以在步骤S601~步骤S603之后执行,本申请实施例不做限定。
终端设备无需判断第一同频邻区与第二同频邻区是否与服务小区异步,无论第一同频邻区、第二同频邻区与服务小区异步或同步,终端设备均采用对SSB中PBCH进行解码,得到SSB的索引。也即是说,终端设备对服务小区所有的同频邻区,均采用对SSB中PBCH进行解码,得到SSB的索引。
通过图6所描述的信息上报方法,终端设备对所有的同频小区均采用对SSB的PBCH解码,得到SSB的索引,终端设备无需判断第一同频邻区与第二同频邻区是否为同步小区或异步小区,可以减少流程,提高上报效率。
图7所示的通信装置700可以用于执行上述图2-图6所描述的方法实施例中服务器的 部分或全部功能。其中,该通信装置700还可以为芯片系统。图7所示的通信装置700可以包括处理单元701和通信单元702,各个单元的详细描述如下:
处理单元701,用于终端设备对终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到第一SSB的索引,第一同频邻区采用时分双工模式进行通信,第一同频邻区与终端设备的服务小区异步;终端设备对第一SSB进行测量,得到第一SSB的信号测量结果;
通信单元702,用于终端设备向接入网设备上报第一SSB的信号测量结果与第一SSB的索引。
在一种可能的实现中,处理单元701,还用于终端设备确定第一同频邻区与终端设备的服务小区异步。
在一种可能的实现中,处理单元701,还用于终端设备对终端设备的第二同频邻区发送的第二同步信号块SSB中的物理广播信道PBCH进行解码,得到第二SSB的索引,第二同频邻区与终端设备的服务小区同步;终端设备对第二SSB进行测量,得到第二SSB的信号测量结果;通信单元702,还用于终端设备向接入网设备上报第二SSB的信号测量结果与第二SSB的索引。
在一种可能的实现中,处理单元701,还用于终端设备确定终端设备的第二同频邻区是否与终端设备的服务小区同步;若第二同频邻区与终端设备的服务小区同步,则基于终端设备存储的频点和SSB索引之间的对应关系,以及第二同频邻区发送的第二SSB所在的频点,确定第二SSB的索引;终端设备对第二SSB进行测量,得到第二SSB的信号测量结果;通信单元702,还用于终端设备向接入网设备上报第二SSB的信号测量结果与第二SSB的索引。
在一种可能的实现中,处理单元701,还用于:终端设备基于存储的频点和SSB索引之间的对应关系和第一SSB的频点,确定第一同频邻区与终端设备的服务小区异步。
在一种可能的实现中,处理单元701,还用于:终端设备对终端设备的第二同频邻区发送的第二同步信号块SSB中的物理广播信道PBCH进行解码,得到第二SSB的索引,第二同频邻区与终端设备的服务小区同步;终端设备对第二SSB进行测量,得到第二SSB的信号测量结果;通信单元702,还用于终端设备向接入网设备上报第二SSB的信号测量结果与第二SSB的索引。
基于上述方法实施例以及装置实施例的描述,本申请实施例还提供一种通信装置800。请参见图8,该通信装置至少包括通信接口801、处理器802以及存储器803。其中,通信接口801、处理器802以及存储器803可通过总线804或其他方式连接。总线在图8中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器803可以包括只读存储器和随机存取存储器,并向处理器802提供指令和数据。存储器803的一部分还可以包括非易失性随机存取存储器。
处理器802可以是中央处理单元(Central Processing Unit,CPU),该处理器802还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable  Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器,可选的,该处理器802也可以是任何常规的处理器等。其中:
存储器803,用于存储程序指令。
处理器802,用于调用存储器803中存储的程序指令,以用于实现本申请中上述终端设备的数据处理功能;
调用通信接口801用于实现本申请中上述终端设备的收发操作。
在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口801用于通信装置800中使得该通信装置800可以和其它设备进行通信。处理器802利用通信接口801收发数据,并用于实现上述方法实施例的方法。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。本申请实施例中不限定上述通信接口801、处理器802以及存储器803之间的具体连接介质。
本发明实施例和图2-图6所示方法实施例基于同一构思,其带来的技术效果也相同,具体原理请参照图2-图6所示实施例的描述,在此不赘述。
作为示例,图9为本申请实施例提供的另一种通信装置900的结构示意图。该通信装置900可以是服务器。通信装置900可执行上述方法实施例中服务器所执行的操作。
为了便于说明,图9仅示出了通信装置900的主要部件。如图9所示,通信装置900包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个通信装置900进行控制,执行软件程序,处理软件程序的数据,例如用于支持通信装置900执行图2-图6所描述的流程。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。通信装置900还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的通信装置900可以不具有输入输出装置。
当通信装置900开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的,处理软件程序的数据。当需要通过无线传输数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置900时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在实际的通信装置900中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个通信装置900进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还 可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmale logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmale logic device,CPLD),现场可编程逻辑门阵列(field-programmale gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
示例性的,在本申请实施例中,如图9所示,可以将具有收发功能的天线和射频电路视为通信装置900的通信单元901,将具有处理功能的处理器视为通信装置900的处理单元902。
通信单元901也可以称为收发器、收发机、收发装置、收发单元等,用于实现收发功能。可选的,可以将通信单元901中用于实现接收功能的器件视为接收单元,将通信单元901中用于实现发送功能的器件视为发送单元,即通信单元901包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在一些实施例中,通信单元901、处理单元902可能集成为一个器件,也可以分离为不同的器件,此外,处理器与存储器也可以集成为一个器件,或分立为不同器件。
其中,通信单元901可用于执行上述方法实施例中通信装置900的收发操作。处理单元902可用于执行上述方法实施例中通信装置900的数据处理操作。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当计算机程序产品在处理器上运行时,上述方法实施例的方法流程得以实现。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些操作可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本申请提供的各实施例的描述可以相互参照,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的操作可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参考、结合或引用。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种信息上报方法,其特征在于,所述方法包括:
    终端设备对所述终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到所述第一SSB的索引,所述第一同频邻区采用时分双工模式进行通信,所述第一同频邻区与所述终端设备的服务小区异步;
    所述终端设备对所述第一SSB进行测量,得到所述第一SSB的信号测量结果;
    所述终端设备向接入网设备上报所述第一SSB的信号测量结果与所述第一SSB的索引。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备对所述终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到所述第一SSB的索引之前,所述方法还包括:
    所述终端设备确定所述第一同频邻区与所述终端设备的服务小区异步。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备对所述终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到所述第一SSB的索引之后,所述方法还包括:
    所述终端设备对所述终端设备的第二同频邻区发送的第二同步信号块SSB中的物理广播信道PBCH进行解码,得到所述第二SSB的索引,所述第二同频邻区与所述终端设备的服务小区同步;
    所述终端设备对所述第二SSB进行测量,得到所述第二SSB的信号测量结果;
    所述终端设备向所述接入网设备上报所述第二SSB的信号测量结果与所述第二SSB的索引。
  4. 根据权利要求2所述的方法,其特征在于,所述终端设备对所述终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到所述第一SSB的索引之后,所述方法还包括:
    所述终端设备确定所述终端设备的第二同频邻区是否与所述终端设备的服务小区同步;
    若所述第二同频邻区与所述终端设备的服务小区同步,则基于所述终端设备存储的频点和SSB索引之间的对应关系,以及所述第二同频邻区发送的第二SSB所在的频点,确定所述第二SSB的索引;
    所述终端设备对所述第二SSB进行测量,得到所述第二SSB的信号测量结果;
    所述终端设备向所述接入网设备上报所述第二SSB的信号测量结果与所述第二SSB的索引。
  5. 根据权利要求2~4所述的方法,其特征在于,所述终端设备确定所述第一同频邻区与所述终端设备的服务小区异步,包括:
    所述终端设备基于存储的频点和SSB索引之间的对应关系和所述第一SSB的频点, 确定所述第一同频邻区与所述终端设备的服务小区异步。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    终端设备对所述终端设备的第二同频邻区发送的第二同步信号块SSB中的物理广播信道PBCH进行解码,得到所述第二SSB的索引,所述第二同频邻区与所述终端设备的服务小区同步;
    所述终端设备对所述第二SSB进行测量,得到所述第二SSB的信号测量结果;
    所述终端设备向接入网设备上报所述第二SSB的信号测量结果与所述第二SSB的索引。
  7. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于终端设备对所述终端设备的第一同频邻区发送的第一同步信号块SSB中的物理广播信道PBCH进行解码,得到所述第一SSB的索引,所述第一同频邻区采用时分双工模式进行通信,所述第一同频邻区与所述终端设备的服务小区异步;所述终端设备对所述第一SSB进行测量,得到所述第一SSB的信号测量结果;
    通信单元,用于所述终端设备向接入网设备上报所述第一SSB的信号测量结果与所述第一SSB的索引。
  8. 根据权利要求7所述的装置,其特征在于,所述处理单元,还用于:所述终端设备确定所述第一同频邻区与所述终端设备的服务小区异步。
  9. 根据权利要求8所述的装置,其特征在于:
    所述处理单元,还用于所述终端设备对所述终端设备的第二同频邻区发送的第二同步信号块SSB中的物理广播信道PBCH进行解码,得到所述第二SSB的索引,所述第二同频邻区与所述终端设备的服务小区同步;所述终端设备对所述第二SSB进行测量,得到所述第二SSB的信号测量结果;
    所述通信单元,还用于所述终端设备向所述接入网设备上报所述第二SSB的信号测量结果与所述第二SSB的索引。
  10. 根据权利要求8所述的装置,其特征在于:
    所述处理单元,还用于所述终端设备确定所述终端设备的第二同频邻区是否与所述终端设备的服务小区同步;若所述第二同频邻区与所述终端设备的服务小区同步,则基于所述终端设备存储的频点和SSB索引之间的对应关系,以及所述第二同频邻区发送的第二SSB所在的频点,确定所述第二SSB的索引;所述终端设备对所述第二SSB进行测量,得到所述第二SSB的信号测量结果;
    所述通信单元,还用于所述终端设备向所述接入网设备上报所述第二SSB的信号测量结果与所述第二SSB的索引。
  11. 根据权利要求8~10所述的装置,其特征在于,所述处理单元,还用于:所述终端设备基于存储的频点和SSB索引之间的对应关系和所述第一SSB的频点,确定所述第 一同频邻区与所述终端设备的服务小区异步。
  12. 根据权利要求7所述的装置,其特征在于:
    所述处理单元,还用于终端设备对所述终端设备的第二同频邻区发送的第二同步信号块SSB中的物理广播信道PBCH进行解码,得到所述第二SSB的索引,所述第二同频邻区与所述终端设备的服务小区同步;所述终端设备对所述第二SSB进行测量,得到所述第二SSB的信号测量结果;
    所述通信单元,还用于所述终端设备向接入网设备上报所述第二SSB的信号测量结果与所述第二SSB的索引。
  13. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于与其它通信装置进行通信;所述处理器用于运行程序,以使得所述通信装置实现权利要求1~6中任一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有一条或多条指令,所述一条或多条指令适于由处理器加载并执行如权利要求1~6中任一项所述的方法。
PCT/CN2020/142197 2020-12-31 2020-12-31 一种信息上报方法及装置 WO2022141417A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/142197 WO2022141417A1 (zh) 2020-12-31 2020-12-31 一种信息上报方法及装置
CN202080053594.6A CN115066922A (zh) 2020-12-31 2020-12-31 一种信息上报方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/142197 WO2022141417A1 (zh) 2020-12-31 2020-12-31 一种信息上报方法及装置

Publications (1)

Publication Number Publication Date
WO2022141417A1 true WO2022141417A1 (zh) 2022-07-07

Family

ID=82260107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142197 WO2022141417A1 (zh) 2020-12-31 2020-12-31 一种信息上报方法及装置

Country Status (2)

Country Link
CN (1) CN115066922A (zh)
WO (1) WO2022141417A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060137A1 (en) * 2022-09-22 2024-03-28 Mavenir Systems, Inc. Method to improve sinr of 5g nr ssb using time shifting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117998391A (zh) * 2022-11-03 2024-05-07 维沃移动通信有限公司 Ssb测量方法、装置、用户设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997774A (zh) * 2014-05-13 2014-08-20 华为技术有限公司 降低用户设备功耗的方法和用户设备
US20190394663A1 (en) * 2018-06-25 2019-12-26 Lg Electronics Inc. Method for determining transmission power and a mobile communication device performing the method
WO2020168450A1 (en) * 2019-02-18 2020-08-27 Mediatek Singapore Pte. Ltd. Ssb design for v2x communication
CN111885633A (zh) * 2020-07-06 2020-11-03 武汉虹信通信技术有限责任公司 一种nr系统的同频邻区检测方法及装置
CN111918353A (zh) * 2020-08-10 2020-11-10 展讯通信(上海)有限公司 移动终端的邻区信号测量的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997774A (zh) * 2014-05-13 2014-08-20 华为技术有限公司 降低用户设备功耗的方法和用户设备
US20190394663A1 (en) * 2018-06-25 2019-12-26 Lg Electronics Inc. Method for determining transmission power and a mobile communication device performing the method
WO2020168450A1 (en) * 2019-02-18 2020-08-27 Mediatek Singapore Pte. Ltd. Ssb design for v2x communication
CN111885633A (zh) * 2020-07-06 2020-11-03 武汉虹信通信技术有限责任公司 一种nr系统的同频邻区检测方法及装置
CN111918353A (zh) * 2020-08-10 2020-11-10 展讯通信(上海)有限公司 移动终端的邻区信号测量的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION, SANECHIPS: "Clarification on SSB-ToMeasure bitmap in SMTC configuration", 3GPP DRAFT; R2-1802023 CLARIFICATION ON SSB-TOMEASURE BITMAP IN SMTC CONFIGURATION, vol. RAN WG2, 15 February 2018 (2018-02-15), Athens, Greece, pages 1 - 5, XP051399793 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060137A1 (en) * 2022-09-22 2024-03-28 Mavenir Systems, Inc. Method to improve sinr of 5g nr ssb using time shifting

Also Published As

Publication number Publication date
CN115066922A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
US11129191B2 (en) Signal transmission method and device
WO2021098568A1 (zh) 一种能力信息发送方法、接收方法及装置
TWI742533B (zh) 輔小區之小區激活之方法及其電子設備
EP3720074A1 (en) Synchronous signal configuration method and apparatus
EP3928568B1 (en) Method and apparatus for configuring prs resources, ue and network device
US20220264393A1 (en) Cell configuration method and apparatus, terminal device, and network device
WO2021249001A1 (zh) 一种小区测量方法及装置
EP3665946B1 (en) Wireless device and method performed by the wireless device for handling measurements on a set of cells
US20220394504A1 (en) Beam pair training method and communication apparatus
US11172414B2 (en) Coordinated cell determining method and network device
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
WO2018171666A1 (zh) 信息收发方法和设备
US20230262497A1 (en) Measurement configuration method, device, and system
WO2022141417A1 (zh) 一种信息上报方法及装置
WO2021159258A1 (zh) 一种数据传输方法及装置
US20230354252A1 (en) Positioning information transmission method and apparatus
US20230319613A1 (en) Method and apparatus for determining measurement gap, and terminal device
US11979766B2 (en) Measurement gap configuration method and apparatus, and terminal device and network device
WO2017000269A1 (zh) 一种数据传输方法及装置
WO2022120524A1 (zh) 非独立组网与独立组网的切换方法、装置与系统
CN116980904A (zh) 信息处理方法、网络侧设备及终端
WO2018053708A1 (zh) 寻呼装置、方法以及通信系统
CN114208262B (zh) 载波测量方法和装置
EP4329362A1 (en) Method and apparatus for reporting cell or carrier information
WO2023130449A1 (zh) 信号接收方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967756

Country of ref document: EP

Kind code of ref document: A1