WO2024082926A1 - 信号传输方法、通信系统及通信装置 - Google Patents

信号传输方法、通信系统及通信装置 Download PDF

Info

Publication number
WO2024082926A1
WO2024082926A1 PCT/CN2023/121006 CN2023121006W WO2024082926A1 WO 2024082926 A1 WO2024082926 A1 WO 2024082926A1 CN 2023121006 W CN2023121006 W CN 2023121006W WO 2024082926 A1 WO2024082926 A1 WO 2024082926A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
communication device
subcarrier group
indication information
papr
Prior art date
Application number
PCT/CN2023/121006
Other languages
English (en)
French (fr)
Inventor
于天航
张公正
王晓鲁
乔云飞
陈莹
李榕
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024082926A1 publication Critical patent/WO2024082926A1/zh

Links

Definitions

  • the present application relates to the field of communication technology, and in particular to a signal transmission method, a communication system and a communication device.
  • Orthogonal frequency division multiplexing (OFDM) technology is a type of multi-carrier broadband digital modulation and demodulation technology. It divides a channel into several mutually orthogonal sub-carriers, and divides a high-speed serial data stream into the same number of parallel low-speed sub-data streams, and then modulates each sub-data stream onto a different orthogonal sub-carrier. Since the waveform of the OFDM signal output by the transmitter is the superposition of all sub-carrier waveforms, the OFDM signal has a higher peak to average power ratio (PAPR).
  • PAPR peak to average power ratio
  • a method for reducing a transmission signal is that the transmitter reserves a portion of subcarriers for reducing the PAPR of the transmission signal without sending data, that is, the transmitter sends useful data only on a portion of the subcarriers.
  • the subcarriers used to reduce the PAPR of the transmission signal can be called reserved subcarriers
  • the subcarriers used to send useful data can be called data subcarriers.
  • the transmitter can map the data to be transmitted to the data subcarriers, and generate a data signal through an inverse discrete Fourier transform (IDFT).
  • IDFT inverse discrete Fourier transform
  • the transmitter generates a suppression signal on the reserved subcarrier, so that the PAPR of the transmission signal generated by superimposing the suppression signal and the data signal is less than the PAPR of the data signal, thereby achieving the purpose of reducing the PAPR of the transmission signal.
  • the embodiments of the present application disclose a signal transmission method, a communication system and a communication device, which can improve spectrum efficiency.
  • an embodiment of the present application provides a signal transmission method, which can be performed by a first communication device, or can also be performed by a component (such as a chip or circuit) of the first communication device, without limitation.
  • the method includes:
  • a first communication device receives a first message sent by a second communication device, where the first message includes first resource indication information.
  • the first resource indication information is a first value
  • the first resource indication information is used to instruct a third communication device to transmit data on a first subcarrier group of the first communication device, where the first subcarrier group does not include a data subcarrier of the first communication device.
  • the first communication device sends a first transmission signal based on the first message.
  • the first communication device when the first resource indication information is the first value, the first communication device does not transmit useful data on the first subcarrier group.
  • the first communication device can use the first subcarrier group to reduce the PAPR of the first transmission signal.
  • the first resource indication information is used to instruct the third communication device to transmit data on the first subcarrier group, so that the first subcarrier group carries the data of the third communication device, and can make full use of the spectrum resources of the first subcarrier group, avoid wasting spectrum resources, and thus improve spectrum efficiency.
  • the first transmitted signal includes a first signal and a second signal
  • the first signal is a signal on the first subcarrier group
  • the second signal is a signal on a second subcarrier group
  • the second subcarrier group includes the data subcarrier
  • the first transmission signal sent by the first communication device is formed by superimposing the first signal on the first subcarrier group and the second signal on the second subcarrier group.
  • the second signal can carry the first data
  • the first data is the data to be sent by the first communication device to the second communication device.
  • the first signal is not used to carry useful data, and the first signal is related to the second signal, that is, the first signal can be determined by the second signal.
  • a peak-to-average power ratio PAPR of the first transmitted signal is less than or equal to a PAPR of the second signal.
  • the first communication device can use the first subcarrier group to reduce the PAPR of the first transmission signal.
  • the first communication device maps the first data to be transmitted to the second subcarrier group to generate the second signal.
  • the first signal generated by the first communication device on the first subcarrier group, after superimposing the first signal and the second signal, has a PAPR less than or equal to the PAPR of the second signal, which can reduce the PAPR of the first transmission signal, thereby avoiding or reducing the nonlinear distortion caused by the excessively high PAPR of the first transmission signal.
  • the first message further includes a first time-frequency resource and first indication information, wherein the first time-frequency resource indicates a time-frequency resource about the first subcarrier group and the second subcarrier group, and the first indication information indicates the position of the first subcarrier group.
  • the method further comprises:
  • the first communication device generates the first signal and the second signal based on the first time-frequency resource and the first indication information.
  • the first communication device can determine the time-frequency resources corresponding to the first subcarrier group, the time-frequency resources corresponding to the second subcarrier group, the position of the first subcarrier group, and the position of the second subcarrier group based on the first time-frequency resources and the first indication information, so that the first communication device can generate a first signal on the first subcarrier group and a second signal on the second subcarrier group.
  • the method further includes:
  • the first communication device generates the first signal on the first subcarrier group according to a first sequence, where the first sequence is one of the sequence groups that enables the PAPR of the first transmission signal to meet a preset condition.
  • the sequence group may be a sequence group agreed upon by the first communication device and the second communication device, and the sequence group may include one or more sequences, and the first sequence is one of the sequence group that makes the PAPR of the first transmission signal meet the preset condition.
  • the first communication device may map the first sequence to the first subcarrier group to generate the first signal.
  • the first communication device may directly carry the first sequence on the first subcarrier group, so that the first transmission signal generated after the first signal is superimposed with the second signal satisfies the preset condition, while reducing the complexity of the process of generating the first signal.
  • the method further includes:
  • the first communication device sends second indication information, where the second indication information is used to indicate the first sequence.
  • the first communication device can indicate the first sequence through the second indication information, so that the second communication device can quickly determine the first sequence based on the second indication information.
  • the method further includes:
  • the first communication device generates the first signal on the first subcarrier group based on the PAPR suppression parameter and the second signal; the first communication device sends third indication information, where the third indication information is used to indicate the PAPR suppression parameter.
  • the first communication device may indicate the PAPR suppression parameter through the third indication information, so that the second communication device can reconstruct the first signal based on the PAPR suppression parameter.
  • the PAPR suppression parameter includes at least one of a PAPR suppression threshold, carrier reservation TR algorithm indication information, and a number of TR algorithm iteration rounds.
  • the first message also includes a first threshold, wherein the power of the first signal is less than or equal to the first threshold, and the first threshold is related to at least one of the channel capacity, the power of the third signal, the modulation order of the third signal, and the code rate of the third signal, wherein the third signal is a signal sent by the third communication device on the first subcarrier group.
  • the second communication device can limit the power of the first signal so that the second communication device can use the first signal as an interference signal for the third signal, thereby being able to demodulate the second data sent by the third communication device from the first subcarrier group.
  • an embodiment of the present application provides a signal transmission method, which can be performed by a second communication device, or can also be performed by a component (such as a chip or circuit) of the second communication device, without limitation.
  • the method includes:
  • the second communication device sends a first message to the first communication device, the first message including first resource indication information, and when the first resource indication information is a first value, the first resource indication information is used to instruct the third communication device to transmit data on the first subcarrier group of the first communication device, and the first subcarrier group does not include the data subcarrier of the first communication device; the second communication device sends a second message to the third communication device, the second message including second resource indication information, and when the second resource indication information is a second value, the second resource indication information is used to instruct the third communication device to transmit data on the first subcarrier group.
  • the first communication device does not transmit useful data on the first subcarrier group.
  • the first communication device can use the first subcarrier group to reduce the PAPR of the first transmission signal.
  • the second communication device can instruct the third communication device to transmit data on the first subcarrier group through the first resource indication information and the second resource indication information, so that the first subcarrier group carries the data of the third communication device, and can make full use of the spectrum resources of the first subcarrier group, avoid wasting spectrum resources, and thus improve spectrum efficiency.
  • the method further includes:
  • the second communication device receives a first received signal, which is a superposition of a first transmitted signal sent by the first communication device and a third signal sent by the third communication device on the first subcarrier group; the second communication device determines the third signal from the first received signal.
  • the first transmission signal carries the first data transmitted by the first communication device
  • the third signal carries the second data transmitted by the third communication device.
  • the first reception signal received by the second communication device is a superposition of the first transmission signal and the third signal.
  • the second communication device determines the third signal from the first reception signal, so that the second data can be demodulated from the third signal.
  • the first transmitted signal includes a first signal and a second signal, the first signal being the first sub-signal.
  • the second signal is a signal on a second subcarrier group, and the second subcarrier group includes the data subcarrier.
  • the first transmission signal is formed by superimposing the first signal on the first subcarrier group and the second signal on the second subcarrier group. That is, the signal of the first received signal on the second subcarrier group is the second signal, and the signal on the first subcarrier group of the first received signal is the superposition of the first signal and the third signal.
  • the second signal carries the first data transmitted by the first communication device, and the first signal does not carry useful data.
  • the first signal is related to the second signal, that is, the second communication device can determine the first signal according to the second signal, thereby determining the third signal.
  • a peak-to-average power ratio PAPR of the first transmitted signal is less than or equal to a PAPR of the second signal.
  • the first communication device can use the first subcarrier group to reduce the PAPR of the first transmitted signal, that is, the first signal is used to reduce the PAPR of the first transmitted signal, thereby avoiding or reducing the nonlinear distortion caused by the excessively high PAPR of the first transmitted signal.
  • the first message also includes a first time-frequency resource and first indication information, wherein the first time-frequency resource indicates the time-frequency resource about the first subcarrier group and the second subcarrier group, and the first indication information indicates the position of the first subcarrier group and the position of the second subcarrier group.
  • the second communication device can indicate the time-frequency resources corresponding to the first subcarrier group, the time-frequency resources corresponding to the second subcarrier group, the position of the first subcarrier group, and the position of the second subcarrier group through the first time-frequency resources and the first indication information, so that the first communication device can generate a first signal on the first subcarrier group and a second signal on the second subcarrier group.
  • the second message further includes a second time-frequency resource and fourth indication information, wherein the second time-frequency resource indicates a time-frequency resource about the first subcarrier group, and the fourth indication information is used to indicate a position of the first subcarrier group.
  • the second communication device can indicate the time-frequency resources corresponding to the first subcarrier group and the position of the first subcarrier group through the second time-frequency resources and the fourth indication information, so that the third communication device can generate a third signal on the first subcarrier group.
  • the second communication device determines the third signal from the first received signal, including:
  • the second communication device determines the second signal of the first received signal on the second subcarrier group; the second communication device determines the first transmitted signal based on the second signal; the second communication device uses the first transmitted signal to eliminate interference with the first received signal to obtain the third signal.
  • the signal of the first received signal on the second subcarrier group is the second signal
  • the signal on the first subcarrier group of the first received signal is the superposition of the first signal and the third signal.
  • the second signal carries the first data transmitted by the first communication device, and the first signal does not carry useful data.
  • the first signal is related to the second signal, that is, the second communication device can determine the first signal according to the second signal, and then reconstruct the first transmission signal. Thereby, the second communication device can use the first transmission signal to eliminate interference with the first received signal to obtain the third signal.
  • the second communication device determines the first send signal based on the second signal, including:
  • the second communication device generates the first signal on the first subcarrier group using a first sequence; the second communication device superimposes the first signal and the second signal to obtain the first transmission signal, and the first sequence is one of the sequence group that makes the peak-to-average power ratio PAPR of the first transmission signal meet a preset condition.
  • the sequence group may be a sequence group agreed upon by the first communication device and the second communication device, and the sequence group may include one or more sequences, and the first sequence is one of the sequence group that makes the PAPR of the first transmission signal meet the preset condition.
  • the second communication device may map the first sequence to the first subcarrier group to generate the first signal.
  • the second communication device may directly carry the first sequence on the first subcarrier group, so that the first transmission signal generated after the first signal and the second signal are superimposed meets the preset condition, while reducing the complexity of the process of generating the first signal.
  • the method further includes:
  • the second communication device receives second indication information, where the second indication information is used to indicate the first sequence.
  • the second communication device can quickly determine the first sequence from the sequence group based on the second indication information.
  • the method further includes:
  • the second communication device receives third indication information, where the third indication information is used to indicate a PAPR suppression parameter
  • the second communication device determines the first transmission signal based on the second signal, including:
  • the second communication device generates the first signal on the first subcarrier group based on the PAPR suppression parameter and the second signal; the second communication device superimposes the first signal and the second signal to obtain the first transmission signal.
  • the second communication device can reconstruct the first transmission signal based on the PAPR suppression parameter and the second signal, so as to determine the third signal from the first reception signal.
  • the PAPR suppression parameters include a PAPR suppression threshold, carrier reservation TR algorithm indication information, At least one of the TR algorithm iteration rounds.
  • the first message also includes a first threshold, wherein the power of the first signal is less than or equal to the first threshold, and the first threshold is related to at least one of the channel capacity, the code rate of the third signal, the power of the third signal, and the modulation order of the third signal, wherein the first signal is the signal of the first transmitted signal on the first subcarrier group.
  • the second communication device can limit the power of the first signal so that the second communication device can use the first signal as an interference signal for the third signal, thereby being able to demodulate the second data sent by the third communication device from the first subcarrier group.
  • an embodiment of the present application provides a signal transmission method, which can be performed by a third communication device, or can also be performed by a component (such as a chip or circuit) of the third communication device, without limitation.
  • the method includes:
  • a third communication device receives a second message sent by a second communication device, where the second message includes second resource indication information, and when the second resource indication information is a second value, the second resource indication information is used to instruct the third communication device to transmit data on the first subcarrier group; the third communication device sends a third signal on the first subcarrier group based on the second message.
  • the first communication device does not transmit data on the first subcarrier group.
  • the first communication device can use the first subcarrier group to reduce the PAPR of the first transmitted signal.
  • the third communication device can send a third signal on the first subcarrier group based on the second resource indication information, so that the first subcarrier group carries the data of the third communication device, and the spectrum resources of the first subcarrier group can be fully utilized to avoid wasting spectrum resources, thereby improving spectrum efficiency.
  • the second message further includes a second time-frequency resource and fourth indication information
  • the second time-frequency resource indicates a time-frequency resource about the first subcarrier group
  • the fourth indication information is used to indicate a position of the first subcarrier group
  • the third communication device sends a third signal on the first subcarrier group based on the second message, including:
  • the third communication device sends a third signal on the first subcarrier group based on the second time-frequency resources and the fourth indication information.
  • the third communication device can determine the time-frequency resources and position corresponding to the first subcarrier group based on the second time-frequency resources and the fourth indication information, so that the third communication device can send the third signal on the first subcarrier group.
  • an embodiment of the present application provides a communication system, which includes a first communication device, a second communication device, and a third communication device, wherein the first communication device is used to execute the method shown in the first aspect or any possible implementation of the first aspect, the second communication device is used to execute the method shown in the second aspect or any possible implementation of the second aspect, and the third communication device is used to execute the method shown in the third aspect or any possible implementation of the third aspect.
  • an embodiment of the present application provides a communication device, which is used to execute the method in the first aspect or any possible implementation.
  • the communication device includes a unit having the function of executing the method in the first aspect or any possible implementation of the first aspect.
  • an embodiment of the present application provides a communication device, which is used to execute the method in the second aspect or any possible implementation.
  • the communication device includes a unit having the function of executing the method in the second aspect or any possible implementation of the second aspect.
  • an embodiment of the present application provides a communication device, which is used to execute the method in the third aspect or any possible implementation.
  • the communication device includes a unit having the function of executing the method in the third aspect or any possible implementation of the third aspect.
  • an embodiment of the present application provides a communication device, the communication device comprising a processor, configured to execute the method described in the first aspect or any possible implementation.
  • the processor is configured to execute a program stored in a memory, and when the program is executed, the method described in the first aspect or any possible implementation is executed.
  • the memory is located outside the above communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is used to receive a signal or send a signal.
  • an embodiment of the present application provides a communication device, the communication device comprising a processor, configured to execute the method described in the second aspect or any possible implementation.
  • the processor is configured to execute a program stored in a memory, and when the program is executed, the method described in the second aspect or any possible implementation is executed.
  • the memory is located outside the above communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is used to receive a signal or send a signal.
  • an embodiment of the present application provides a communication device, the communication device comprising a processor, configured to execute the method described in the third aspect or any possible implementation manner.
  • the processor is configured to execute a program stored in a memory, and when the program is executed, the third aspect The method shown in any aspect or possible implementation is performed.
  • the memory is located outside the above communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is used to receive a signal or send a signal.
  • an embodiment of the present application provides a communication device, which includes a logic circuit and an interface, wherein the logic circuit and the interface are coupled; the interface is used to input a first message and output a first sending signal.
  • first message and the first sent signal can refer to the method shown in the first aspect or any possible implementation method, and will not be described in detail here.
  • an embodiment of the present application provides a communication device, which includes a logic circuit and an interface, wherein the logic circuit and the interface are coupled; the interface is used to output a first message and output a second message.
  • first message and the second message can refer to the method shown in the second aspect or any possible implementation method, and will not be described in detail here.
  • an embodiment of the present application provides a communication device, which includes a logic circuit and an interface, wherein the logic circuit and the interface are coupled; the interface is used to input a second message and output a third signal.
  • an embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program.
  • the computer-readable storage medium is run on a computer, the method shown in the first aspect or any possible implementation of the first aspect is executed, or the method shown in the second aspect or any possible implementation of the second aspect is executed, or the method shown in the third aspect or any possible implementation of the third aspect is executed.
  • an embodiment of the present application provides a computer program product, which includes a computer program or a computer code.
  • the computer program product is run on a computer, the method shown in the first aspect or any possible implementation of the first aspect is executed, or the method shown in the second aspect or any possible implementation of the second aspect is executed, or the method shown in the third aspect or any possible implementation of the third aspect is executed.
  • FIG1 is a schematic diagram of the structure of a communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of another communication system provided in an embodiment of the present application.
  • FIG3 is a processing flow of a transmitting end and a receiving end provided in an embodiment of the present application
  • FIG4 is an interactive schematic diagram of a signal transmission method provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a TR pattern provided in an embodiment of the present application.
  • FIG6 is an interactive schematic diagram of another signal transmission method provided in an embodiment of the present application.
  • FIG7 is an interactive schematic diagram of another signal transmission method provided in an embodiment of the present application.
  • FIG8 is a waveform diagram of a fourth signal provided in an embodiment of the present application.
  • FIG9 is an interactive schematic diagram of another signal transmission method provided in an embodiment of the present application.
  • 10 to 12 are schematic diagrams of the structure of a communication device provided in an embodiment of the present application.
  • the terminal device in the embodiments of the present application may refer to user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may also refer to a terminal device that implements the communication function of the present application, such as a communication module or communication chip therein.
  • the terminal device may be a device that provides voice and/or data connectivity to a user, and also includes a device capable of sidelink communication, such as a vehicle-mounted terminal, or a handheld terminal capable of vehicle-to-everything (V2X) communication, etc.
  • V2X vehicle-to-everything
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in a future 5G network, or a terminal device in a future evolved public land mobile network (PLMN), etc., and the embodiments of the present application are not limited to this.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the network device in the embodiment of the present application may be a device that connects a terminal device to a wireless network, specifically a base station.
  • the base station may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, etc., or relay stations or access points, or vehicle-mounted devices, wearable devices, and the next generation Node B (the next generation Node B, gNB) in the 5G system or base stations in the future evolved PLMN network, etc.
  • the network device may be a base station (such as gNB) with a centralized unit (CU) and a distributed unit (DU) separated architecture.
  • the network device may also refer to a network device that implements the communication function of the present application, such as a communication module or a communication chip therein.
  • the technical solution provided in the embodiments of the present application can be applied to various communication systems, for example, the fifth generation mobile communication (5th generation, 5G) system, narrow band Internet of things (NB-IoT) system, wireless local area network (WLAN), wireless fidelity (Wi-Fi), device to device (D2D) communication system, machine to machine (M2M) communication system, machine type communication (MTC) system, vehicle to vehicle (V2V) communication system and other communication systems that will evolve in the future, next generation communication systems, etc., which are not listed here one by one.
  • the embodiments of the present application can also be applied to non-terrestrial networks (NTN), such as satellite communication systems. Satellite communication has the advantages of wide coverage, long communication distance, high reliability, high flexibility, and high throughput.
  • the communication system may include at least one network device and at least one terminal device, and Figure 1 shows a network device and two terminal devices.
  • the network device provides communication services to the terminal device.
  • the network device may include a baseband unit (baseband unit, BBU) and a remote radio unit (remote radio unit, RRU).
  • BBU and RRU can be placed in different places, for example: RRU is remote and placed in an area with high traffic volume, and BBU is placed in a central computer room.
  • BBU and RRU can also be placed in the same computer room.
  • BBU and RRU can also be different components under one rack.
  • the transmitting end and the receiving end for data exchange in the communication system can use orthogonal frequency division multiplexing (OFDM) technology for data adjustment and demodulation.
  • OFDM technology is a kind of multi-carrier broadband digital modulation and demodulation technology. Its basic idea is to divide a channel into a number of mutually orthogonal subcarriers, and divide a high-speed serial data stream into the same number of parallel low-speed sub-data streams, and then modulate each sub-data stream to a different orthogonal subcarrier.
  • OFDM technology can effectively suppress inter-code interference, improve the utilization of spectrum, and has good anti-multipath interference capability.
  • the waveform of the OFDM signal output by the transmitting end is the superposition of all subcarrier waveforms, so the OFDM signal has a higher peak to average power ratio (PAPR). For example, at a certain moment, if the phase of the modulated data on N subcarriers is the same, the power of the OFDM signal is N times the average power.
  • PAPR peak to average power ratio
  • the communication system may include a transmitting end and a receiving end, and the transmitting end may include multiple antenna subarrays, and the power amplifiers between any two antenna subarrays in the multiple antenna subarrays are independent of each other. That is, any two antenna subarrays of the transmitting end can independently send signals.
  • the transmitting end can be the terminal device described above, or it can be the network device described above, and the receiving end can be the terminal device described above, or it can be the network device described above, and the present application does not limit it.
  • the communication distance is long and the link budget is poor, so the efficiency of the power amplifier is improved.
  • the PAPR of the transmitted signal such as an OFDM signal
  • the nonlinear power amplifier will cause nonlinear distortion of the transmitted signal. Therefore, in satellite communication scenarios, there is a higher demand to reduce the PAPR of the transmitted signal.
  • a method for reducing the transmission signal is that the transmitter reserves a portion of subcarriers for reducing the PAPR of the transmission signal without sending data, that is, the transmitter sends useful data only on some subcarriers.
  • the subcarriers used to reduce the PAPR of the transmission signal can be called reserved subcarriers, and the subcarriers used to send useful data can be called data subcarriers.
  • the transmitter can map the data to be transmitted To the data subcarrier, a data signal is generated through an inverse discrete Fourier transform (IDFT).
  • IDFT inverse discrete Fourier transform
  • the transmitter can perform PAPR reduction processing on the reserved subcarrier, that is, the transmitter can generate a suppression signal on the reserved subcarrier, so that the PAPR of the generated transmission signal after the suppression signal is superimposed on the data signal is less than the PAPR of the data signal, thereby achieving the purpose of reducing the PAPR of the transmission signal.
  • the processing flow of the transmitting end and the receiving end can be referred to FIG3.
  • the processing flow of the transmitting end mainly includes channel coding, modulation, resource mapping, IDFT, PAPR reduction, and cyclic prefix (CP) insertion.
  • the processing flow of the receiving end mainly includes CP removal, DFT, channel estimation compensation, resource inverse mapping, demodulation, and channel decoding. It can be understood that when the transmitting end uses the reserved subcarrier to reduce the PAPR of the transmitted signal, the receiving end can directly perform resource inverse mapping and demodulation on the signal on the data subcarrier after receiving the transmitted signal of the transmitting end, without paying attention to the signal on the reserved subcarrier.
  • an embodiment of the present application provides a signal transmission method, a communication system and a communication device, which can improve spectrum efficiency.
  • the method provided by the embodiment of the present application can be applied to the communication system as shown in Figure 1.
  • the method provided by the embodiment of the present application can be applied to the communication system as shown in Figure 2.
  • the method provided by the embodiment of the present application can be applied to a first communication device, a second communication device and a third communication device.
  • the first communication device and the third communication device can be the terminal device described above, and the second communication device can be the network device described above.
  • the first communication device and the third communication device can be any two antenna sub-arrays of the transmitting end described above, and the second communication device can be the receiving end described above.
  • Figure 4 is an interactive schematic diagram of a signal transmission method provided in an embodiment of the present application. As shown in Figure 4, the method includes but is not limited to the following steps.
  • a second communication device sends a first message, and correspondingly, a first communication device receives the first message, where the first message includes first resource indication information, and when the first resource indication information is a first value, the first resource indication information is used to indicate that a third communication device transmits data on a first subcarrier group of the first communication device, and the first subcarrier group does not include a data subcarrier of the first communication device.
  • the data subcarrier of the first communication device is a subcarrier used by the first communication device to transmit data
  • the first subcarrier group does not include the data subcarrier of the first communication device, that is, the first communication device does not transmit data on the first subcarrier group.
  • the first subcarrier group may include a reserved subcarrier used by the first communication device to reduce the PAPR of the transmitted signal.
  • the first subcarrier group may include one or more subcarriers, and the one or more subcarriers may be continuous in the frequency domain, or discontinuous in the frequency domain, which is not limited in the present application.
  • the first resource indication information is used to instruct the third communication device to transmit data on the first subcarrier group of the first communication device, and to instruct the first communication device to perform PAPR reduction processing on the first subcarrier group to reduce the transmitted signal.
  • the first resource indication information when the first resource indication information is the second value, the first resource indication information is used to indicate that the first communication device transmits data on the first subcarrier group.
  • the first communication device can determine whether to transmit data on the first subcarrier group based on the value of the first resource indication information, thereby achieving reasonable utilization of resources and avoiding waste of resources.
  • the first value and the second value may be configured by the second communication device, or determined by negotiation between the first communication device and the second communication device.
  • the first value may be 1, and the second value may be 0, that is, when the first resource indication information is 1, the first resource indication information is used to instruct the third communication device to transmit data on the first subcarrier group.
  • the first resource indication information is used to instruct the first communication device to transmit data on the first subcarrier group.
  • the first resource indication information may not be included in the first message, and the value of the first resource indication information may be indicated by other signaling in the first message.
  • the first communication device and the second communication device default the value of the first resource indication information to the first value or the second value.
  • the first message may not include the first resource indication information.
  • the first communication device and the second communication device may determine that the first message is used to indicate that the first resource indication information is the first value, that is, the first message is used for the first communication device to perform PAPR reduction processing of the transmitted signal on the first subcarrier group, and the third communication device to transmit data on the first subcarrier group.
  • the second communication device sends a second message, and correspondingly, the third communication device receives the second message, where the second message includes second resource indication information, and when the second resource indication information is a second value, the second resource indication information is used to instruct the third communication device to transmit data on the first subcarrier group.
  • the second resource indication information is used to instruct the third communication device to perform PAPR reduction processing on the first subcarrier group to transmit the signal, and to instruct the first communication device to transmit data on the first subcarrier group.
  • the second resource indication information is used to instruct the third communication device to transmit data on the first subcarrier group, and to instruct the first communication device to perform PAPR reduction processing on the first subcarrier group to transmit the signal.
  • the second communication device instructs the first communication device to perform PAPR reduction processing of the transmitted signal on the first subcarrier group through the first resource indication information, and instructs the third communication device to transmit data on the first subcarrier group through the second resource indication information.
  • the first resource indication information and the second resource indication information in the first message and the second message sent by the second communication device have different values, so as to indicate that one of the first communication device and the third communication device transmits data on the first subcarrier group, and the other performs PAPR reduction processing of the transmitted signal on the first subcarrier group.
  • the first resource indication information is a first value
  • the second resource indication information is a second value
  • the first communication device performs PAPR reduction processing of the transmitted signal on the first subcarrier group
  • the third communication device transmits data on the first subcarrier group.
  • the first resource indication information is a second value
  • the first resource indication information is a first value
  • the third communication device performs PAPR reduction processing of the transmitted signal on the first subcarrier group
  • the first communication device transmits data on the first subcarrier group.
  • the first communication device and the third communication device can be any two antenna subarrays of the transmitting end, and the second communication device can be the receiving end
  • the first message or the second message can be sent by the first communication device or the second communication device
  • the first resource indication information or the second resource indication information is used to indicate that there is a transmission on the first subcarrier group.
  • the method shown in FIG. 4 includes step 403 and step 404 .
  • the first communication device sends a first transmission signal
  • the third communication device sends a third signal
  • the second communication device receives a first reception signal, where the first reception signal is a superposition of the first transmission signal and the third signal.
  • the first transmitted signal includes a first signal and a second signal
  • the first signal is a signal on a first subcarrier group
  • the second signal is a signal on a second subcarrier group
  • the second subcarrier group includes a data subcarrier.
  • the second signal carries first data
  • the first data is data to be transmitted by the first communication device to the second communication device.
  • the first signal does not carry useful data, and the first signal is related to the second signal.
  • the third communication device may transmit the third signal on the first subcarrier group based on the second resource indication information, where the third signal carries second data, and the second data is data that the third communication device wants to send to the second communication device.
  • the PAPR of the first transmission signal is less than or equal to the PAPR of the second signal. That is, the first communication device performs a process of reducing the PAPR of the transmission signal on the first subcarrier group.
  • the first signal is generated on the first subcarrier group, and the first signal is used to make the PAPR of the first transmission signal less than or equal to the second signal.
  • the first communication device may map the first data to be transmitted to the second subcarrier group to generate the second signal, and generate the first signal on the first subcarrier group, and superimpose the first signal and the second signal to generate the first transmission signal.
  • the first communication device may use the first signal to clip the second signal, so that the PAPR of the generated first transmission signal is less than the PAPR of the second signal.
  • the first message further includes a first time-frequency resource and first indication information, the first time-frequency resource indicating the time-frequency resource about the first subcarrier group and the second subcarrier group, the first indication information indicating the position of the first subcarrier group and the position of the second subcarrier group.
  • the first communication device generates the first signal and the second signal based on the first time-frequency resource and the first indication information.
  • the first time-frequency resource is used to indicate the time-frequency resource used by the first communication device to send an uplink transmission signal
  • the first time-frequency resource may include the time-frequency resource corresponding to the first subcarrier group and the second subcarrier group.
  • the first communication device determines the position of the first subcarrier group and the position of the second subcarrier group according to the first time-frequency resource and the first indication information.
  • the first communication device can transmit the first transmission signal on the first time-frequency resource.
  • the first communication device may perform resource mapping according to the positions of the first subcarrier group and the second subcarrier group to generate the second signal. For example, the first communication device may map the first data to the position of the second subcarrier group, set the position of the first subcarrier group to 0, and then generate the second signal through IDFT. The first communication device then maps the specific sequence to the position of the first subcarrier group, and then generates the first signal through IDFT. The first communication device uses the first signal and the second signal to perform peak clipping by superimposing them to generate the first transmission signal, so that the PAPR of the first transmission signal is less than or equal to the second signal.
  • the second message further includes a second time-frequency resource and fourth indication information
  • the second time-frequency resource indicates a time-frequency resource about the first subcarrier group
  • the fourth indication information is used to indicate a position of the first subcarrier group.
  • the third communication device sends the third signal on the first subcarrier group based on the second time-frequency resource and the fourth indication information.
  • the third communication device may determine the position of the first subcarrier group based on the second time-frequency resource and the fourth indication information, map the second data to the position of the first subcarrier group, and then generate the third signal through IDFT.
  • the first time-frequency resource and the second time-frequency resource may be the same or different.
  • the bandwidth of the first time-frequency resource may be greater than the bandwidth of the second time-frequency resource
  • the frequency domain resource corresponding to the first time-frequency resource may include the frequency domain resource corresponding to the second time-frequency resource.
  • the bandwidth of the first time-frequency resource is 100 megabytes
  • the bandwidth of the second time-frequency resource may be 20 megabytes.
  • the first indication information may include a first tone reservation (TR) pattern
  • the fourth indication information may include a second TR pattern.
  • the first TR pattern and the second TR pattern may be the same or different.
  • the first TR pattern corresponds to the first time-frequency resource
  • the second TR pattern corresponds to the second time-frequency resource.
  • FIG. 5 is an example of a TR pattern, in which the dotted line is used to indicate the position of the reserved subcarrier in the first subcarrier group, and the solid line is used to indicate the position of the data subcarrier in the second subcarrier group.
  • the first communication device and the third communication device may adopt a CP-OFDM waveform.
  • the second communication device determines a third signal from the first received signal.
  • the second communication device needs to determine the first transmitted signal and the third signal from the first received signal.
  • the first transmitted signal includes the first signal transmitted by the first communication device on the first subcarrier group and the second signal transmitted by the first communication device on the second subcarrier group
  • the third signal is the signal transmitted by the third communication device on the first subcarrier group. Therefore, the signal of the first received signal on the first subcarrier group is the superposition of the first signal and the third signal, and the signal of the first received signal on the second subcarrier group is the second signal.
  • the second communication device determines the third signal from the first received signal, which may include: the second communication device determines the second signal of the first received signal on the second subcarrier group; the second communication device determines the first transmitted signal based on the second signal; and the second communication device uses the first transmitted signal to eliminate interference with the first received signal to obtain the third signal.
  • the first signal sent by the first communication device on the first subcarrier group is related to the second signal sent on the second subcarrier group, so the second communication device can determine the first signal based on the second signal, thereby reconstructing the first transmitted signal.
  • the second communication device uses the first transmitted signal to perform interference elimination on the first received signal, that is, the second communication device subtracts the first transmitted signal from the first received signal to obtain the third signal.
  • the second communication device performs a discrete Fourier transform (DFT) on the first received signal to determine a second signal of the first received signal on the second subcarrier group.
  • DFT discrete Fourier transform
  • the first communication device does not transmit useful data on the first subcarrier group.
  • the first communication device can use the first subcarrier group to reduce the PAPR of the first transmission signal.
  • the second communication device can instruct the third communication device to transmit data on the first subcarrier group through the first resource indication information and the second resource indication information, so that the first subcarrier group carries the data of the third communication device, and can make full use of the spectrum resources of the first subcarrier group, avoid wasting spectrum resources, and thus improve spectrum efficiency.
  • the third communication device may be a low-power device, or a device that occupies a small bandwidth.
  • the third communication device may include one or more low-power devices, and any of the one or more low-power devices occupies one or more subcarriers.
  • the first communication device may be a high-throughput device, and the first communication device may be applied to scenarios such as smart homes and smart wearables.
  • Figure 6 is an interactive schematic diagram of another signal transmission method provided in an embodiment of the present application. As shown in Figure 6, the method includes but is not limited to the following steps.
  • a first communication device generates a first signal on a first subcarrier group according to a first sequence, where the first sequence is one of the sequence groups that enables a PAPR of a first transmitted signal to satisfy a preset condition.
  • the sequence group may be pre-agreed by the first communication device and the second communication device, and the sequence group may include one or more sequences.
  • the first communication device maps the first sequence to the first subcarrier group to generate a first signal.
  • the preset condition may include a threshold condition or a minimum PAPR of the first transmitted signal, that is, the first sequence may be one of the sequence groups that minimizes the PAPR of the first transmitted signal, or the first sequence may be any one of the sequence groups that makes the PAPR of the first transmitted signal meet the threshold condition.
  • the first sequence may be one of the sequence groups that minimizes the PAPR of the first transmission signal, and the first communication device determines a sequence in the sequence group that minimizes the PAPR of the first transmission signal as the first sequence.
  • the first communication device may map one or more sequences in the sequence group to the first subcarrier group to obtain one or more first signals.
  • the first communication device then superimposes the one or more first signals with the second signal to obtain one or more first transmission signals.
  • the first communication device sends one of the one or more first transmission signals with the smallest PAPR, and determines a sequence corresponding to one of the one or more first transmission signals with the smallest PAPR as the first sequence.
  • the sequence group includes N sequences, and the N sequences are ⁇ S1, S2, ..., SN ⁇ , respectively.
  • the first communication device may select a first sequence Sn that minimizes the PAPR of the first transmission signal from the sequence group, and use Sn to generate and send the first transmission signal.
  • the first communication device may also send the number of Sn to the second communication device.
  • the first communication device determines one of the sequence groups that minimizes the PAPR of the first transmitted signal as the first sequence, so that the PAPR of the first transmitted signal sent by the first communication device is minimized, thereby avoiding or reducing nonlinear distortion caused by excessively high PAPR of the first transmitted signal.
  • the first sequence is any one of the sequence group that makes the PAPR of the first transmitted signal meet the threshold condition.
  • the PAPR of the first transmitted signal meeting the threshold condition may include that the PAPR of the first transmitted signal is less than a first threshold.
  • the first threshold may be determined by the first communication device, or by the second communication device.
  • the first threshold may be determined by the linear range of the power amplifier of the first communication device.
  • the first communication device may generate a first signal using the sequences in the sequence group one by one, and superimpose the first signal with the second signal to obtain a first transmission signal.
  • the first communication device determines whether the PAPR of the first transmission signal satisfies the threshold condition.
  • the sequence that makes the first transmission signal meet the threshold condition may be determined as the first sequence, and the first transmission signal is transmitted.
  • the first communication device after determining the first sequence, the first communication device no longer needs to use other sequences in the sequence group to generate the first transmission signal, so that the first communication device can determine the first sequence and the first transmission signal more quickly, and at the same time can avoid the energy consumption of the first communication device using other sequences to generate the first transmission signal.
  • the first communication device sends a first transmission signal
  • the third communication device sends a third signal
  • the second communication device receives a first reception signal, where the first reception signal is formed by superposition of the first transmission signal and the third signal.
  • the method shown in FIG. 6 includes step 603 .
  • the first communication device sends second indication information, and correspondingly, the second communication device receives the second indication information, where the second indication information is used to indicate the first sequence.
  • the second indication information may include the serial number of the first sequence.
  • the first communication device may indicate the first sequence through the second indication information, so that the second communication device can quickly determine the first sequence from the sequence group based on the second indication information.
  • the second communication device determines a second signal of the first received signal on a second subcarrier group.
  • the second communication device generates a first signal on a first subcarrier group using a first sequence, where the first sequence is one of the sequence groups that enables a PAPR of a first transmitted signal to meet a preset condition.
  • the second communication device may map the first sequence to the first subcarrier group to generate the first signal.
  • the second communication device may determine the first sequence based on the second indication information.
  • the second indication information includes a serial number of the first sequence in a sequence group, and the second communication device may determine the first sequence based on the serial number.
  • the second communication device may determine the first sequence by blind detection.
  • the second communication device may respectively generate the first transmission signal using one or more sequences in the sequence group, determine a sequence from the one or more sequences that makes the PAPR of the first transmission signal meet a preset condition, and determine it as the first sequence.
  • the second communication device superimposes the first signal and the second signal to obtain a first transmission signal.
  • the second communication device uses the first transmitted signal to eliminate interference with the first received signal to obtain a third signal.
  • the first communication device and the second communication device can determine a first sequence from an agreed sequence group so that the PAPR of the first transmitted signal meets a preset condition, and can directly generate the first signal on the first subcarrier group based on the first sequence, thereby reducing the complexity of generating the first signal.
  • Figure 7 is an interactive schematic diagram of another signal transmission method provided in an embodiment of the present application. As shown in Figure 7, the method includes but is not limited to the following steps.
  • a first communication device generates a first signal on a first subcarrier group based on a PAPR suppression parameter and a second signal.
  • the PAPR suppression parameter includes at least one of a PAPR suppression threshold, carrier reservation TR algorithm indication information, and a number of TR algorithm iteration rounds.
  • the TR algorithm indication information is used to indicate the manner in which the first communication device performs PAPR suppression, such as eliminating a single peak in one iteration, eliminating multiple peaks in one iteration, and an algorithm based on least squares.
  • the first communication device may map the first data to be transmitted to the second subcarrier group, and then generate the second signal through IDFT.
  • the first communication device may generate the fourth signal using the first subcarrier group, and shift the fourth signal in the time domain according to the power peak of the second signal, so that the peak value of the fourth signal can be subtracted from the peak value of the second signal, so that the PAPR of the generated first transmission signal is less than the PAPR of the second signal.
  • the fourth signal may also be referred to as a peak clipping signal, a time domain kernel, a time domain original kernel, or a time domain signal kernel.
  • the waveform of the fourth signal in the time domain may be as shown in FIG8 , and the fourth signal includes a peak value.
  • the first communication device may map a specific sequence to a first subcarrier group to generate the fourth signal.
  • the specific sequence may be 1.
  • the first communication device determines the first peak value of the second signal in the time domain, and after multiplying the fourth signal by a first value and performing a shift, the peak value of the fourth signal can be subtracted from the first peak value, so that the first peak value is less than or equal to the PAPR suppression threshold.
  • the first coefficient is determined by the first peak value and the PAPR suppression threshold.
  • the first coefficient may be the difference between the first peak value and the PAPR suppression threshold.
  • the first peak value is 8, the PAPR suppression threshold is 5, and the first coefficient may be 3.
  • the second signal may include multiple peaks
  • the first communication device may use the fourth signal to perform multiple rounds of iterations to clip the multiple peaks to obtain a first transmission signal.
  • the number of iterations of the first communication device is the number of iterations of the TR algorithm.
  • the first communication device uses the fourth signal to perform multiple rounds of iterations to clip the second signal, and then generates a first signal on the first subcarrier group.
  • the PAPR suppression parameter may be determined by the second communication device, and the second communication device may be instructed to perform a process of reducing the PAPR of the transmitted signal based on the PAPR suppression parameter.
  • the PAPR suppression parameter may be determined by the first communication device.
  • the first communication device sends a first transmission signal
  • the third communication device sends a third signal
  • the second communication device receives a first reception signal, where the first reception signal is formed by superposition of the first transmission signal and the third signal.
  • the method shown in FIG. 7 includes step 703 .
  • the first communication device sends third indication information, and correspondingly, the second communication device receives the third indication information.
  • the third indication information is used to indicate a PAPR suppression parameter.
  • the third indication information may be included in the first transmitted signal, or the first communication device may send the third indication information to the second communication device via other uplink signals.
  • the second communication device determines a second signal of the first received signal on a second subcarrier group.
  • the second communication device generates a first signal on a first subcarrier group based on the PAPR suppression parameter and the second signal.
  • step 505 can refer to the process of the first communication device generating the first signal in step 501, which will not be described in detail here.
  • the second communication device superimposes the first signal and the second signal to obtain a first transmission signal.
  • the second communication device uses the first transmitted signal to eliminate interference with the first received signal to obtain a third signal.
  • the first communication device can perform a PAPR reduction process on the transmitted signal based on the PAPR suppression parameter, so that the first transmitted signal has a lower PAPR, thereby avoiding or reducing the nonlinear distortion caused by the excessively high PAPR of the first transmitted signal.
  • the first communication device can indicate the PAPR suppression parameter to the second communication device through the third indication information, so that the second communication device can reconstruct the first signal based on the PAPR suppression parameter, thereby being able to determine the third signal from the first received signal.
  • Figure 9 is an interactive schematic diagram of another signal transmission method provided in an embodiment of the present application. As shown in Figure 9, the method also includes but is not limited to the following steps.
  • the method shown in FIG. 9 includes step 901 and step 902 .
  • a first communication device sends a first uplink signal, and correspondingly, a second communication device receives the first uplink signal.
  • the second communication device may measure the power of the first uplink signal, thereby determining the power of the uplink signal sent by the first communication device.
  • the third communication device sends a second uplink signal, and correspondingly, the second communication device receives the second uplink signal.
  • the second communication device may measure the power of the second uplink signal, thereby determining the power of the uplink signal sent by the third communication device.
  • the second communication device sends a first message, and accordingly, the first communication device receives the first message, where the first message includes first resource indication information.
  • the first resource indication information is a first value
  • the first resource indication information is used to indicate that the third communication device transmits data on a first subcarrier group of the first communication device, where the first subcarrier group does not include a data subcarrier of the first communication device.
  • the first message further includes a first threshold value, and the first threshold value is used to limit the power of the first signal transmitted by the first communication device on the first subcarrier group.
  • the power of the first signal is less than or equal to the first threshold value.
  • the first threshold value is related to at least one of the channel capacity, the power of the third signal, the modulation order of the third signal, and the code rate of the third signal, wherein the third signal is a signal sent by the third communication device on the first subcarrier group.
  • the second communication device instructs the third communication device to transmit data on the first subcarrier group, and the signal received by the second communication device on the first subcarrier group is a superposition of the first signal and the third signal.
  • the second communication device can use the first signal as interference to the third signal, and by limiting the power of the first signal, the second communication device can demodulate the second data carried by the third signal.
  • the second communication device can demodulate the second data carried by the third signal from the received signal.
  • the channel capacity can be determined by the power of the third signal, the power of the first signal, and the channel bandwidth.
  • the power of the first signal, the power of the third signal, the channel bandwidth, and the code rate of the third signal satisfy the following formula: R ⁇ Blog 2 (1+S/N) (1)
  • R is the code rate of the third signal
  • B is the channel bandwidth
  • S is the power of the third signal
  • N is the sum of the power of the first signal and the power of white noise.
  • the second communication device can determine the first threshold according to the above formula (1) so that the power of the first signal can satisfy the formula (1).
  • the second communication device may use the power of the second uplink signal as the power of the third signal, that is, the second communication device may determine the first threshold based on the power of the second uplink signal.
  • the first message further includes the first time-frequency resource and the first indication information. It is understandable that the specific description of the first time-frequency resource and the first indication information can refer to the above related description, which will not be described in detail here.
  • the second communication device sends a second message, and correspondingly, the third communication device receives the second message, the second message includes second resource indication information, and when the second resource indication information is a second value, the second resource indication information is used to instruct the third communication device to transmit data on the first subcarrier group.
  • the second message may further include a second threshold value, and the second threshold value is used to limit the power of the third signal.
  • the power of the third signal is greater than or equal to the second threshold value.
  • the second threshold value may be related to at least one of the channel capacity, the power of the first signal, the modulation order of the third signal, and the code rate of the third signal.
  • the second communication device may determine the second threshold according to the above formula (1) so that the power of the third signal can satisfy the formula (1).
  • the first communication device sends a first transmission signal
  • the third communication device sends a third signal
  • the second communication device receives a first reception signal, where the first reception signal is a superposition of the first transmission signal and the third signal.
  • the second communication device demodulates the first received signal to obtain first data and second data.
  • the first transmitted signal includes a first signal and a second signal, wherein the first signal is a signal transmitted by the first communication device on the first subcarrier group, and the second signal is a signal transmitted by the first communication device on the second subcarrier group.
  • the third signal is a signal transmitted by the third communication device on the first subcarrier group.
  • the second signal carries the first data, and the third signal carries the second data.
  • the second communication device may perform DFT on the first received signal to obtain a signal of the first received signal in the frequency domain, and obtain a signal of the first received signal on the first subcarrier and a second signal.
  • the second communication device performs resource inverse mapping and demodulation on the second signal to obtain the first data.
  • the second communication device performs resource inverse mapping and demodulation on the signal on the first subcarrier to obtain the second data.
  • the second communication device can use the first signal as interference to the third signal, and by limiting the power of the first signal, the second communication device can demodulate the second data carried by the third signal from the signal received on the first subcarrier, so that the third communication device can transmit data on the first subcarrier group, thereby allocating resources more reasonably. And the second communication device does not need to reconstruct the first transmission signal sent by the first communication device, which can reduce complexity.
  • the present application divides the functional modules of the communication device according to the above method embodiment.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • the communication device of the embodiment of the present application will be described in detail below in conjunction with Figures 10 to 12.
  • FIG10 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device includes a processing unit 1001 , a sending unit 1002 , and a receiving unit 1003 .
  • the communication device may be the first communication device shown above. That is, the communication device shown in FIG. 10 may be used to execute the steps or functions performed by the first communication device in the above method embodiment.
  • the communication device may be a beamforming transmission device or chip, etc., which is not limited in the embodiments of the present application.
  • the receiving unit 1003 is configured to receive a first message
  • the sending unit 1002 is configured to send a first sending signal.
  • the processing unit 1001 is used to generate a first signal and a second signal.
  • the sending unit 1002 is further used to send second indication information.
  • the sending unit 1002 is further used to send third indication information.
  • first message the first sent signal, the first signal, the second signal, the first indication information and the second indication information, etc.
  • the specific description of the first message, the first sent signal, the first signal, the second signal, the first indication information and the second indication information, etc. can refer to the method embodiments shown above, such as the relevant descriptions of the methods shown in Figures 4, 6, 7, and 9, etc., which will not be described in detail here.
  • the communication device may be the second communication device shown above. That is, the communication device shown in Figure 10 may be used to execute the steps or functions performed by the second communication device in the above method embodiment.
  • the communication device may be a beamforming receiving device or chip, etc., which is not limited in the embodiments of the present application.
  • the sending unit 1002 is configured to send a first message and a second message.
  • the receiving unit 1003 is used to receive a first received signal; and the processing unit 1001 is used to determine a third signal from the first received signal.
  • the receiving unit 1003 is further used to receive second indication information.
  • the receiving unit 1003 is further used to receive third indication information.
  • first message the second message, the first received signal, the first signal, the second signal, the third signal, the first indication information, the second indication information, etc.
  • first message the first message, the second message, the first received signal, the first signal, the second signal, the third signal, the first indication information, the second indication information, etc.
  • the communication device may be the third communication device shown above. That is, the communication device shown in Figure 10 may be used to execute the steps or functions performed by the third communication device in the above method embodiment.
  • the communication device may be a beamforming receiving device or chip, etc., which is not limited in the embodiments of the present application.
  • the receiving unit 1003 is configured to receive a second message
  • the sending unit 1002 is configured to send a third signal.
  • first message the second message, the first received signal, the first signal, the second signal, the third signal, the first indication information, the second indication information, etc.
  • first message the first message, the second message, the first received signal, the first signal, the second signal, the third signal, the first indication information, the second indication information, etc.
  • the first communication device, the second communication device and the third communication device of the embodiment of the present application are introduced above, and the possible product forms of the first communication device, the second communication device and the third communication device are introduced below. It should be understood that any product having the function of the first communication device described in FIG. 10 above, or any product having the function of the second communication device described in FIG. 10 above, or any product having the function of the third communication device described in FIG. 10 above, falls within the protection scope of the embodiment of the present application. It should also be understood that the following introduction is only an example, and does not limit the product forms of the first communication device, the second communication device and the third communication device of the embodiment of the present application to this.
  • the processing unit 1001 may be one or more processors, the sending unit 1002 may be a transmitter, and the receiving unit 1003 may be a receiver, and the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processing unit 1001 may be one or more processors (or the processing unit 1001 may be one or more logic circuits), the sending unit 1002 may be an output interface, and the receiving unit 1003 may be an input interface, and the input interface and the output interface may be integrated into one unit, such as an input-output interface. This will be described in detail below.
  • the processing unit 1001 may be one or more processors, and the sending unit 1002 and the receiving unit 1003 are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, etc., and the embodiment of the present application does not limit the connection method between the processor and the transceiver.
  • the communication device 110 includes one or more processors 1120 and a transceiver 1110 .
  • the transceiver 1110 when the communication device is used to execute the steps, methods or functions executed by the first communication device, the transceiver 1110 is used to receive the first message and send the first transmission signal.
  • the processor 1120 is used to generate the first signal and the second signal.
  • the transceiver 1110 is also used to send the second indication information.
  • the transceiver 1110 is also used to send the third indication information.
  • the transceiver 1110 when the communication device is used to execute the steps, methods or functions executed by the second communication device, the transceiver 1110 is used to send the first message and the second message.
  • the transceiver 1110 is also used to receive a first received signal; the processor 1120 is used to determine a third signal from the first received signal.
  • the transceiver 1110 is also used to receive the second indication information.
  • the transceiver 1110 is also used to receive the third indication information.
  • the transceiver 1110 is used to receive the second message and send the third signal.
  • first message the second message, the first sent signal, the first signal, the second signal, the third signal, the second indication information and the third indication information
  • first message the first message, the second message, the first sent signal, the first signal, the second signal, the third signal, the second indication information and the third indication information
  • the transceiver may include a receiver and a transmitter, wherein the receiver is used to perform a receiving function (or operation) and the transmitter is used to perform a transmitting function (or operation).
  • the transceiver is used to communicate with other devices/devices through a transmission medium.
  • the communication device 110 may also include one or more memories 1130 for storing program instructions and/or data.
  • the memory 1130 is coupled to the processor 1120.
  • the coupling in the embodiment of the present application is an indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1120 may operate in conjunction with the memory 1130.
  • the processor 1120 may execute program instructions stored in the memory 1130.
  • at least one of the one or more memories may be included in the processor.
  • connection medium between the above-mentioned transceiver 1110, processor 1120 and memory 1130 is not limited in the embodiment of the present application.
  • the memory 1130, processor 1120 and transceiver 1110 are connected through a bus 1140.
  • the bus is represented by a bold line in FIG. 11.
  • the connection mode between other components is only for schematic illustration and is not limited thereto.
  • the bus can be divided into an address bus, a data bus, a control bus, etc. For ease of representation, only one bold line is used in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc., and may implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed by a hardware processor, or may be executed by a combination of hardware and software modules in the processor, etc.
  • the memory may include, but is not limited to, non-volatile memories such as hard disk drive (HDD) or solid-state drive (SSD), random access memory (RAM), erasable programmable read-only memory (EPROM), read-only memory (ROM) or portable read-only memory (CD-ROM), etc.
  • the memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures and can be read and/or written by a computer (such as the communication device shown in the present application), but is not limited to this.
  • the memory in the embodiments of the present application can also be a circuit or any other device that can realize a storage function, which is used to store program instructions and/or data.
  • the processor 1120 is mainly used to process the communication protocol and communication data, and to control the entire communication device, execute the software program, and process the data of the software program.
  • the memory 1130 is mainly used to store the software program and data.
  • the transceiver 1110 may include a control circuit and an antenna.
  • the control circuit is mainly used to convert the baseband signal and the radio frequency signal and to process the radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output devices such as a touch screen, a display screen, a keyboard, etc., are mainly used to receive data input by the user and output data to the user.
  • the processor 1120 can read the software program in the memory 1130, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1120 performs baseband processing on the data to be sent, and outputs the baseband signal to the RF circuit.
  • the RF circuit performs RF processing on the baseband signal and then sends the RF signal outward in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor 1120.
  • the processor 1120 converts the baseband signal into data and processes the data.
  • the RF circuit and antenna may be arranged independently of the processor performing baseband processing.
  • the RF circuit and antenna may be arranged independently of the communication device in a remote manner.
  • the communication device shown in the embodiment of the present application may also have more components than those in FIG11, and the embodiment of the present application is not limited to this.
  • the method performed by the processor and transceiver shown above is only an example, and the specific steps performed by the processor and transceiver can refer to the method described above.
  • the processing unit 1001 may be one or more logic circuits
  • the sending unit 1002 may be an output interface
  • the receiving unit 1003 may be an input interface.
  • the input interface and the output interface may be integrated into one unit, such as an input-output interface.
  • the input-output interface may also be called a communication interface, or an interface circuit, or an interface, etc.
  • the communication device shown in FIG12 includes a logic circuit 1201 and an interface 1202. That is, the processing unit 1001 can be implemented by the logic circuit 1201, and the sending unit 1002 and the receiving unit 1003 can be implemented by the interface 1202.
  • the logic circuit 1201 can be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 1202 can be a communication interface, an input and output interface, a pin, etc.
  • FIG12 is an example of the communication device as a chip, and the chip includes a logic circuit 1201 and an interface 1202.
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiment of the present application does not limit the specific connection method between the logic circuit and the interface.
  • the interface 1202 is used to receive the first message and send the first transmission signal.
  • the logic circuit 1201 is used to generate the first signal and the second signal.
  • the interface 1202 is also used to send the second indication information.
  • the interface 1202 is also used to send the third indication information.
  • the interface 1202 is used to send the first message and the second message.
  • the interface 1202 is also used to receive the first received signal; the logic circuit 1201 is used to determine the third signal from the first received signal.
  • the interface 1202 is also used to receive the second indication information.
  • the interface 1202 is also used to receive the third indication information.
  • the interface 1202 is used to receive the second message and send the third signal.
  • the communication device shown in the embodiment of the present application can implement the method provided in the embodiment of the present application in the form of hardware, or can implement the method provided in the embodiment of the present application in the form of software, etc., and the embodiment of the present application is not limited to this.
  • first message the second message, the first sent signal, the first signal, the second signal, the third signal, the second indication information and the third indication information
  • first message the first message, the second message, the first sent signal, the first signal, the second signal, the third signal, the second indication information and the third indication information
  • the present application also provides a communication system, which includes: a first communication device, a second communication device, and a third communication device.
  • the first communication device, the second communication device, and the third communication device can be used to execute the method in any of the above embodiments (such as Figure 4, Figure 6, Figure 7, Figure 9, etc.).
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the first communication device in the method provided by the present application.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the second communication device in the method provided by the present application.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the third communication device in the method provided by the present application.
  • the present application also provides a computer-readable storage medium, in which computer codes are stored.
  • the computer codes are executed on a computer, the computer executes the operations and/or processes performed by the first communication device in the method provided in the present application.
  • the present application also provides a computer-readable storage medium, in which computer codes are stored.
  • the computer codes are executed on a computer, the computer executes the operations and/or processes performed by the second communication device in the method provided in the present application.
  • the present application also provides a computer-readable storage medium, in which computer code is stored.
  • the computer code When the computer code is executed on a computer, the computer executes the operations and/or processing performed by the third communication device in the method provided in the present application.
  • the present application also provides a computer program product, which includes a computer code or a computer program.
  • a computer program product which includes a computer code or a computer program.
  • the present application also provides a computer program product, which includes a computer code or a computer program.
  • a computer program product which includes a computer code or a computer program.
  • the present application also provides a computer program product, which includes a computer code or a computer program.
  • a computer program product which includes a computer code or a computer program.
  • An embodiment of the present application also provides a chip or a chip system, including: a processor, used to execute the method in any of the aforementioned embodiments (such as Figure 4, Figure 6, Figure 7, Figure 9, etc.).
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or units, or it can be an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided in the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned readable storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk and other media that can store program codes.

Abstract

本申请提供一种信号传输方法、通信系统及通信装置。第二通信装置发送第一消息,相应的,第一通信装置接收该第一消息,第一消息包括第一资源指示信息,在第一资源指示信息为第一值时,第一资源指示信息用于指示第三通信装置在第一通信装置的第一子载波组上传输数据,第一子载波组不包括第一通信装置的数据子载波。第二通信装置发送第二消息,相应的,第三通信装置接收第二消息,第二消息包括第二资源指示信息,在第二资源指示信息为第二值时,第二资源指示信息用于指示第三通信装置在所述第一子载波组上传输数据。采用本申请方案,能够提高频谱效率。

Description

信号传输方法、通信系统及通信装置
本申请要求于2022年09月28日提交中国专利局、申请号为202211193545.X、申请名称为“信号传输方法、通信系统及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信号传输方法、通信系统及通信装置。
背景技术
正交频分复用(orthogonal frequency division multiplexing,OFDM)技术是多载波宽带数字调制解调技术的一种,它将一个信道划分成若干个互相正交的子载波,并且将高速串行数据流分成相同个数的并行的低速子数据流,再将每个子数据流分别调制到不同的正交子载波上。由于发送端输出的OFDM信号的波形是所有子载波波形的叠加,因此该OFDM信号拥有较高的峰值平均功率比(peak to average power ratio,PAPR)。
在OFDM系统中,一种降低发送信号的方法为发送端预留一部分子载波用于降低发送信号的PAPR而不发送数据,即发送端仅在部分子载波上发送有用数据。示例性地,用于降低发送信号的PAPR的子载波可以称为预留子载波,用于发送有用数据的子载波可以称为数据子载波。发送端可以将要传输的数据映射到数据子载波上,经过离散傅里叶逆变换(inverse discrete fourier transform,IDFT)生成数据信号。发送端在该预留子载波上生成抑制信号,使得该抑制信号与该数据信号叠加后生成的发送信号的PAPR小于该数据信号的PAPR,从而实现降低发送信号的PAPR的目的。
然而,在该种方法中,有一部分子载波不能承载有用数据,因此会造成频谱效率的损失。
发明内容
本申请实施例公开了一种信号传输方法、通信系统及通信装置,能够提高频谱效率。
第一方面,本申请实施例提供一种信号传输方法,该方法可以由第一通信装置执行,或者,也可以由第一通信装置的组成部件(例如芯片或者电路)执行,对此不作限定。该方法包括:
第一通信装置接收第二通信装置发送的第一消息,所述第一消息包括第一资源指示信息,在所述第一资源指示信息为第一值时,所述第一资源指示信息用于指示第三通信装置在所述第一通信装置的第一子载波组上传输数据,所述第一子载波组不包括所述第一通信装置的数据子载波;所述第一通信装置基于所述第一消息发送第一发送信号。
本申请实施例中,第一资源指示信息为第一值时,第一通信装置不在该第一子载波组上传输有用数据,例如,该第一通信装置可以利用该第一子载波组降低该第一发送信号的PAPR。第一资源指示信息用于指示第三通信装置在该第一子载波组上传输数据,使得该第一子载波组上承载第三通信装置的数据,能够充分利用该第一子载波组的频谱资源,避免频谱资源的浪费,从而提升频谱效率。
在一种可能的实现方式中,所述第一发送信号包括第一信号和第二信号,所述第一信号为所述第一子载波组上的信号,所述第二信号为第二子载波组上的信号,所述第二子载波组包括所述数据子载波。
本申请实施例中,第一通信装置发送的第一发送信号是由第一子载波组上的第一信号和第二子载波组上的第二信号叠加而成的。该第二信号可以承载第一数据,该第一数据为该第一通信装置要向第二通信装置发送的数据。该第一信号不用于承载有用数据,该第一信号与该第二信号相关,即该第一信号可以由该第二信号确定。
在一种可能的实现方式中,所述第一发送信号的峰值平均功率比PAPR小于或等于所述第二信号的PAPR。
本申请实施例中,该第一通信装置可以利用该第一子载波组降低该第一发送信号的PAPR。第一通信装置将需要传输的第一数据映射到该第二子载波组上生成该第二信号。该第一通信装置在该第一子载波组上生成的第一信号,将第一信号与第二信号叠加之后生成的第一发送信号的PAPR小于或等于第二信号的PAPR,能够降低该第一发送信号的PAPR,从而避免或减轻了由于第一发送信号的PAPR过高而导致的非线性失真。
在一种可能的实现方式中,所述第一消息还包括第一时频资源和第一指示信息,所述第一时频资源指示关于所述第一子载波组和所述第二子载波组的时频资源,所述第一指示信息指示所述第一子载波组的位 置以及所述第二子载波组的位置;所述方法还包括:
所述第一通信装置基于所述第一时频资源和所述第一指示信息生成所述第一信号和所述第二信号。
本申请实施例中,第一通信装置可以基于该第一时频资源和该第一指示信息确定该第一子载波组对应的时频资源、该第二子载波组对应的时频资源、该第一子载波组的位置以及该第二子载波组的位置,从而使得该第一通信装置能够在该第一子载波组上生成第一信号以及在该第二子载波组上生成第二信号。
在一种可能的实现方式中,所述方法还包括:
所述第一通信装置根据第一序列在所述第一子载波组上生成所述第一信号,所述第一序列为序列组中使所述第一发送信号的PAPR满足预设条件的一个。
本申请实施例中,该序列组可以为该第一通信装置和第二通信装置约定的序列组,该序列组中可以包括一个或多个序列,该第一序列为该序列组中使第一发送信号的PAPR满足预设条件的一个。第一通信装置可以将第一序列映射到该第一子载波组上,生成该第一信号。第一通信装置可以直接通过在第一子载波组上承载该第一序列,使得生成的第一信号与第二信号叠加之后的第一发送信号满足预设条件的同时,能够降低生成该第一信号过程的复杂度。
在一种可能的实现方式中,所述方法还包括:
所述第一通信装置发送第二指示信息,所述第二指示信息用于指示所述第一序列。
本申请实施例中,第一通信装置可以通过该第二指示信息指示该第一序列,使得该第二通信装置能够基于该第二指示信息快速确定该第一序列。
在一种可能的实现方式中,所述方法还包括:
所述第一通信装置基于PAPR抑制参数和所述第二信号在所述第一子载波组上生成所述第一信号;所述第一通信装置发送第三指示信息,所述第三指示信息用于指示所述PAPR抑制参数。
本申请实施例中,第一通信装置可以通过该第三指示信息指示PAPR抑制参数,使得第二通信装置能够基于该PAPR抑制参数重建该第一信号。
在一种可能的实现方式中,所述PAPR抑制参数包括PAPR抑制门限、载波预留TR算法指示信息、TR算法迭代轮数中的至少一项。
在一种可能的实现方式中,所述第一消息还包括第一阈值,其中所述第一信号的功率小于或等于所述第一阈值,所述第一阈值与信道容量、第三信号的功率、第三信号调制阶数以及第三信号的码率中至少一项相关,其中所述第三信号为所述第三通信装置在所述第一子载波组上发送的信号。
本申请实施例中,第二通信装置可以对该第一信号的功率进行限制,使得该第二通信装置能够将该第一信号作为该第一信号作为该第三信号的干扰信号,从而能够从第一子载波组上解调出该第三通信装置发送的第二数据。
第二方面,本申请实施例提供一种信号传输方法,该方法可以由第二通信装置执行,或者,也可以由第二通信装置的组成部件(例如芯片或者电路)执行,对此不作限定。该方法包括:
第二通信装置向第一通信装置发送第一消息,所述第一消息包括第一资源指示信息,在所述第一资源指示信息为第一值时,所述第一资源指示信息用于指示第三通信装置在所述第一通信装置的第一子载波组上传输数据,所述第一子载波组不包括所述第一通信装置的数据子载波;所述第二通信装置向所述第三通信装置发送第二消息,所述第二消息包括第二资源指示信息,在所述第二资源指示信息为第二值时,所述第二资源指示信息用于指示所述第三通信装置在所述第一子载波组上传输数据。
本申请实施例中,第一通信装置不在该第一子载波组上传输有用数据,例如,该第一通信装置可以利用该第一子载波组降低该第一发送信号的PAPR。第二通信装置可以通过第一资源指示信息和第二资源指示信息指示该第三通信装置在第一子载波组上传输数据,使得该第一子载波组上承载第三通信装置的数据,能够充分利用该第一子载波组的频谱资源,避免频谱资源的浪费,从而提升频谱效率。
在一种可能的实现方式中,所述方法还包括:
所述第二通信装置接收第一接收信号,所述第一接收信号由所述第一通信装置发送的第一发送信号和所述第三通信装置在所述第一子载波组上发送的第三信号叠加而成;所述第二通信装置从所述第一接收信号中确定所述第三信号。
本申请实施例中,该第一发送信号承载第一通信装置传输的第一数据,第三信号承载第三通信装置传输的第二数据。第二通信装置接收到的第一接收信号为第一发送信号和第三信号的叠加,第二通信装置从该第一接收信号中确定第三信号,从而能够从该第三信号中解调出该第二数据。
在一种可能的实现方式中,所述第一发送信号包括第一信号和第二信号,所述第一信号为所述第一子 载波组上的信号,所述第二信号为第二子载波组上的信号,所述第二子载波组包括所述数据子载波。
本申请实施例中,第一发送信号由第一子载波组上的第一信号和第二子载波组上的第二信号叠加而成。即该第一接收信号在第二子载波组上的信号为该第二信号,第一接收信号的第一子载波组上的信号为该第一信号和第三信号的叠加。该第二信号承载第一通信装置传输的第一数据,该第一信号不承载有用数据。该第一信号与该第二信号相关,即第二通信装置可以根据第二信号确定第一信号,从而确定该第三信号。
在一种可能的实现方式中,所述第一发送信号的峰值平均功率比PAPR小于或等于所述第二信号的PAPR。
本申请实施例中,该第一通信装置可以利用该第一子载波组降低该第一发送信号的PAPR,即该第一信号用于降低该第一发送信号的PAPR,从而避免或减轻了由于第一发送信号的PAPR过高而导致的非线性失真。
在一种可能的实现方式中,所述第一消息还包括第一时频资源和第一指示信息,所述第一时频资源指示关于所述第一子载波组和所述第二子载波组的时频资源,所述第一指示信息指示所述第一子载波组的位置以及所述第二子载波组的位置。
本申请实施例中,第二通信装置可以通过该第一时频资源和该第一指示信息指示该第一子载波组对应的时频资源、该第二子载波组对应的时频资源、该第一子载波组的位置以及该第二子载波组的位置,从而使得该第一通信装置能够在该第一子载波组上生成第一信号以及在该第二子载波组上生成第二信号。
在一种可能的实现方式中,所述第二消息还包括第二时频资源和第四指示信息,所述第二时频资源指示关于所述第一子载波组的时频资源,所述第四指示信息用于指示所述第一子载波组的位置。
本申请实施例中,第二通信装置可以通过该第二时频资源和第四指示信息指示该第一子载波组对应的时频资源以及该第一子载波组的位置,使得该第三通信装置能够在该第一子载波组上生成第三信号。
在一种可能的实现方式中,所述第二通信装置从所述第一接收信号中确定所述第三信号,包括:
所述第二通信装置确定所述第一接收信号在所述第二子载波组上的所述第二信号;所述第二通信装置基于所述第二信号确定所述第一发送信号;所述第二通信装置利用所述第一发送信号对所述第一接收信号进行干扰消除,得到所述第三信号。
本申请实施例中,该第一接收信号在第二子载波组上的信号为该第二信号,第一接收信号的第一子载波组上的信号为该第一信号和第三信号的叠加。该第二信号承载第一通信装置传输的第一数据,该第一信号不承载有用数据。该第一信号与该第二信号相关,即第二通信装置可以根据第二信号确定第一信号,进而重建第一发送信号。从而使得该第二通信装置能够利用该第一发送信号对第一接收信号进行干扰消除,得到第三信号。
在一种可能的实现方式中,所述第二通信装置基于所述第二信号确定所述第一发送信号,包括:
所述第二通信装置利用第一序列在所述第一子载波组上生成所述第一信号;所述第二通信装置将所述第一信号和所述第二信号进行叠加,得到所述第一发送信号,所述第一序列为序列组中使所述第一发送信号的峰值平均功率比PAPR满足预设条件的一个。
本申请实施例中,该序列组可以为该第一通信装置和第二通信装置约定的序列组,该序列组中可以包括一个或多个序列,该第一序列为该序列组中使第一发送信号的PAPR满足预设条件的一个。第二通信装置可以将第一序列映射到该第一子载波组上,生成该第一信号。第二通信装置可以直接通过在第一子载波组上承载该第一序列,使得生成的第一信号与第二信号叠加之后的第一发送信号满足预设条件的同时,能够降低生成该第一信号过程的复杂度。
在一种可能的实现方式中,所述方法还包括:
所述第二通信装置接收第二指示信息,所述第二指示信息用于指示所述第一序列。
本申请实施例中,第二通信装置可以基于该第二指示信息快速地从序列组中确定该第一序列。
在一种可能的实现方式中,所述方法还包括:
所述第二通信装置接收第三指示信息,所述第三指示信息用于指示PAPR抑制参数;
所述第二通信装置基于所述第二信号确定所述第一发送信号,包括:
所述第二通信装置基于所述PAPR抑制参数和所述第二信号在所述第一子载波组上生成所述第一信号;所述第二通信装置将所述第一信号和所述第二信号进行叠加,得到所述第一发送信号。
本申请实施例中,第二通信装能够置基于PAPR抑制参数和第二信号重建第一发送信号,从而能够从第一接收信号中确定第三信号。
在一种可能的实现方式中,所述PAPR抑制参数包括PAPR抑制门限、载波预留TR算法指示信息、 TR算法迭代轮数中的至少一项。
在一种可能的实现方式中,所述第一消息还包括第一阈值,其中第一信号的功率小于或等于所述第一阈值,所述第一阈值与信道容量、所述第三信号的码率、所述第三信号的功率以及所述第三信号调制阶数中至少一项相关,其中所述第一信号为所述第一发送信号在所述第一子载波组上的信号。
本申请实施例中,第二通信装置可以对该第一信号的功率进行限制,使得该第二通信装置能够将该第一信号作为该第一信号作为该第三信号的干扰信号,从而能够从第一子载波组上解调出该第三通信装置发送的第二数据。
第三方面,本申请实施例提供一种信号传输方法,该方法可以由第三通信装置执行,或者,也可以由第三通信装置的组成部件(例如芯片或者电路)执行,对此不作限定。该方法包括:
第三通信装置接收第二通信装置发送的第二消息,所述第二消息包括第二资源指示信息,在所述第二资源指示信息为第二值时,所述第二资源指示信息用于指示所述第三通信装置在所述第一子载波组上传输数据;所述第三通信装置基于所述第二消息在所述第一子载波组上发送第三信号。
本申请实施例中,第一通信装置不在第一子载波组上传输数据,例如,该第一通信装置可以利用该第一子载波组降低该第一发送信号的PAPR。第三通信装置可以基于该第二资源指示信息在该第一子载波组上发送第三信号,使得该第一子载波组上承载第三通信装置的数据,能够充分利用该第一子载波组的频谱资源,避免频谱资源的浪费,从而提升频谱效率。
在一种可能的实现方式中,所述第二消息还包括第二时频资源和第四指示信息,所述第二时频资源指示关于所述第一子载波组的时频资源,所述第四指示信息用于指示所述第一子载波组的位置;所述第三通信装置基于所述第二消息在所述第一子载波组上发送第三信号,包括:
所述第三通信装置基于所述第二时频资源和所述第四指示信息在所述第一子载波组上发送第三信号。
本申请实施例中,第三通信装置可以基于该第二时频资源和该第四指示信息确定该第一子载波组对应的时频资源和位置,从而使得该第三通信装置能够在该第一子载波组上发送该第三信号。
第四方面,本申请实施例提供一种通信系统,该通信系统包括第一通信装置、第二通信装置以及第三通信装置,所述第一通信装置用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法,所述第二通信装置用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法,所述第三通信装置用于执行上述第三方面或第三方面的任意可能的实现方式所示的方法。
第五方面,本申请实施例提供一种通信装置,用于执行第一方面或任意可能的实现方式中的方法。该通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第六方面,本申请实施例提供一种通信装置,用于执行第二方面或任意可能的实现方式中的方法。该通信装置包括具有执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
第七方面,本申请实施例提供一种通信装置,用于执行第三方面或任意可能的实现方式中的方法。该通信装置包括具有执行第三方面或第三方面的任意可能的实现方式中的方法的单元。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第一方面或任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第一方面或任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第九方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第二方面或任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的程序,当该程序被执行时,上述第二方面或任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第十方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第三方面或任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的程序,当该程序被执行时,上述第三 方面或任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。
第十一方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;接口,用于输入第一消息以及输出第一发送信号。
可理解,关于该第一消息和该第一发送信号的说明可以参考第一方面或任意可能的实现方式所示的方法,这里不再一一详述。
第十二方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;接口,用于输出第一消息以及输出第二消息。
可理解,关于第一消息、第二消息的说明可以参考第二方面或任意可能的实现方式所示的方法,这里不再一一详述。
第十三方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;接口,用于输入第二消息以及输出第三信号。
可理解,关于第二消息、第三信号的说明可以参考第三方面或任意可能的实现方式所示的方法,这里不再一一详述。
第十四方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行,或者使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行,或者使得上述第三方面或第三方面的任意可能的实现方式所示的方法被执行。
第十五方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行,或者使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行,或者使得上述第三方面或第三方面的任意可能的实现方式所示的方法被执行。
附图说明
以下对本申请实施例涉及到的附图进行介绍。
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的另一种通信系统的结构示意图;
图3是本申请实施例提供的一种发送端和接收端的处理流程;
图4是本申请实施例提供的一种信号传输方法的交互示意图;
图5是本申请实施例提供的一种TR图样的示意图;
图6是本申请实施例提供的另一种信号传输方法的交互示意图;
图7是本申请实施例提供的又一种信号传输方法的交互示意图;
图8是本申请实施例提供的一种第四信号的波形图;
图9是本申请实施例提供的又一种信号传输方法的交互示意图;
图10至图12是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于限定多个对象的顺序、时序、优先级或者重要程度。本申请实施例中“多个”是指两个或两个以上。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互 斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例中的终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备还可以指代实现本申请通信功能的终端装置,例如其中的通信模组或通信芯片。终端设备可以是指向用户提供语音和/或数据连通性的设备,也包括能够进行侧行链路(sidelink)通信的设备,如车载终端,或者能进行车联网(vehicle-to-everything,V2X)通信的手持终端等。示例性地,终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是一种将终端设备接入到无线网络的设备,具体可以为基站。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,或者中继站或接入点,或者车载设备、可穿戴设备以及5G系统中的下一代节点B(the next generation Node B,gNB)或者未来演进的PLMN网络中的基站等。一种可能的方式中,网络设备可以是集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)分离架构的基站(如gNB)。网络设备还可以指代实现本申请通信功能的网络装置,例如其中的通信模组或通信芯片。
本申请实施例提供的技术方案可以应用于各种通信系统,例如,第五代移动通信(5th generation,5G)系统、窄带物联网系统(narrow band-internet of things,NB-IoT)、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,Wi-Fi)、设备到设备(device to device,D2D)通信系统,机器到机器(machine to machine,M2M)通信系统,机器类型通信(machine type communication,MTC)系统,车辆间(vehicle to vehicle,V2V)通信系统以及未来演进的其他通信系统,下一代通信系统等,此处不再一一列举。本申请实施例也可以应用于非地面网络(non-terrestrial networks,NTN),例如卫星通信系统。卫星通信具有覆盖范围广、通信距离远、可靠性高、灵活性大、吞吐高等优点。
请参见图1,图1为本申请实施例提供的一种通信系统的结构示意图。如图1所示,该通信系统可以包括至少一个网络设备和至少一个终端设备,图1示出一个网络设备和两个终端设备。该网络设备向终端设备提供通信服务。其中,该网络设备可以包含基带单元(baseband unit,BBU)和远端射频单元(remote radio unit,RRU)。BBU和RRU可以放置在不同的地方,例如:RRU拉远,放置于高话务量的区域,BBU放置于中心机房。BBU和RRU也可以放置在同一机房。BBU和RRU也可以为一个机架下的不同部件。
示例性地,在该通信系统中进行数据交互的发送端和接收端可以采用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术进行数据调整解调。OFDM技术是多载波宽带数字调制解调技术的一种,它的基本思想是将一个信道划分成若干个互相正交的子载波,并且将高速串行数据流分成相同个数的并行的低速子数据流,再将每个子数据流分别调制到不同的正交子载波上。OFDM技术可以有效抑制码间串扰,提高频谱的利用率,并且具有良好的抗多径干扰能力。采用OFDM技术进行信号调制,发送端输出的OFDM信号的波形是所有子载波波形的叠加,因此OFDM信号拥有较高的峰值平均功率比(peak to average power ratio,PAPR)。例如,在某一时刻存在N个子载波上调制数据的相位相同,则OFDM信号的功率就是平均功率的N倍。
请参见图2,图2为本申请实施例提供的另一种通信系统的结构示意图。如图2所示,该通信系统可以包括发送端和接收端,该发送端可以包括多个天线子阵,该多个天线子阵中的任意两个天线子阵之间的功率放大器相互独立。即该发送端的任意两个天线子阵间能够独立发送信号。示例性地,该发送端可以为前文描述的终端设备,也可以为前文描述的网络设备,该接收端可以为前文描述的终端设备,也可以为前文描述的网络设备,本申请不做限制。
在一些场景下,例如卫星通信中,通信距离远,链路预算较差,提高功率放大器的效率。然而,在发送端输出的发送信号(例如OFDM信号)的PAPR较高的情况下,非线性功率放大器会导致发送信号的非线性失真。因此在卫星通信场景下,降低发送信号的PAPR具有更高的需求。
在OFDM系统中,一种降低发送信号的方法为发送端预留一部分子载波用于降低发送信号的PAPR而不发送数据,即发送端仅在部分子载波上发送有用数据。示例性地,用于降低发送信号的PAPR的子载波可以称为预留子载波,用于发送有用数据的子载波可以称为数据子载波。发送端可以将要传输的数据映射 到数据子载波上,经过离散傅里叶逆变换(inverse discrete fourier transform,IDFT)生成数据信号。发送端可以在该预留子载波上进行降低发送信号的PAPR处理,即发送端可以在该预留子载波上生成抑制信号,使得该抑制信号与该数据信号叠加后生成的发送信号的PAPR小于该数据信号的PAPR,从而实现降低发送信号的PAPR的目的。
示例性地,发送端和接收端的处理流程可以参见图3,如图3所示,发送端的处理流程主要包括信道编码、调制、资源映射、IDFT、降PAPR、插循环前缀(cyclic prefix,CP)。接收端的处理流程主要包括去CP、DFT、信道估计补偿、资源逆映射、解调以及信道译码。可理解,在发送端利用预留子载波降低发送信号的PAPR的情况下,该接收端接收到发送端的发送信号之后,可以直接对数据子载波上的信号进行资源逆映射和解调,而无需关注该预留子载波上的信号。
在上述降低PAPR的方法中,需要预留一部分子载波用于降低PAPR,而不发送有用数据,会导致频谱效率的损失。
鉴于此,本申请实施例提供一种信号传输方法、通信系统及通信装置,能够提高频谱效率。本申请实施例提供的方法可以应用于如图1所示的通信系统。或者,本申请实施例提供的方法可以应用于如图2所述的通信系统。或者,本申请实施例提供的方法可以应用于第一通信装置、第二通信装置以及第三通信装置。该第一通信装置和第三通信装置可以是前文描述的终端设备、第二通信装置可以为前文描述的网络设备。或者,该第一通信装置和该第三通信装置可以为前文描述的发送端的任意两个天线子阵,该第二通信装置可以为前文描述的接收端。
请参见图4,图4为本申请实施例提供的一种信号传输方法的交互示意图。如图4所示,该方法包括但不限于如下步骤。
401,第二通信装置发送第一消息,相应的,第一通信装置接收第一消息,该第一消息包括第一资源指示信息,在该第一资源指示信息为第一值时,该第一资源指示信息用于指示第三通信装置在该第一通信装置的第一子载波组上传输数据,该第一子载波组不包括该第一通信装置的数据子载波。
示例性地,该第一通信装置的数据子载波为该第一通信装置用于传输数据的子载波,该第一子载波组不包括该第一通信装置的数据子载波,即该第一通信装置不在第一子载波组上传输数据。例如,该第一子载波组可以包括第一通信装置用于降低发送信号的PAPR的预留子载波。
示例性地,该第一子载波组上可以包括一个或多个子载波,该一个或多个子载波可以在频域上连续,或者在频域上不连续,本申请不做限制。
示例性地,该第一资源指示信息为第一值时,该第一资源指示信息用于指示第三通信装置在该第一通信装置的第一子载波组上传输数据,以及用于指示该第一通信装置在该第一子载波组上进行降低发送信号的PAPR处理。
示例性地,在该第一资源指示信息为第二值时,该第一资源指示信息用于指示第一通信装置在第一子载波组上传输数据。该第一通信装置可以基于该第一资源指示信息的取值确定是否在该第一子载波组上传输数据,从而能够实现资源的合理利用,避免资源浪费。
可理解,该第一值和第二值可以为第二通信装置配置的,或者该第一通信装置和该第二通信装置协商确定。例如,第一值可以为1,第二值可以为0,即在该第一资源指示信息为1时,该第一资源指示信息用于指示第三通信装置在该第一子载波组上传输数据。在该第一资源指示信息为0时,该第一资源指示信息用于指示第一通信装置在第一子载波组上传输数据。
在一些实现方式在,第一消息中可以不包括该第一资源指示信息,该第一资源指示信息的值可以通过该第一消息中的其他信令指示。例如,该其他信令的值为A时,第一通信装置和第二通信装置默认该第一资源指示信息的值为第一值或第二值。或者,在另一些实现方式中,第一消息可以不包括第一资源指示信息,在该第一消息包括第一子载波组对应的时频资源以及第二子载波组对应的时频资源的情况下,第一通信装置和第二通信装置可以确定该第一消息用于指示该第一资源指示信息为第一值,即第一消息用于第一通信装置在第一子载波组上进行降低发送信号的PAPR处理,以及第三通信装置在该第一子载波组上传输数据。
402,第二通信装置发送第二消息,相应的,第三通信装置接收第二消息,该第二消息包括第二资源指示信息,在该第二资源指示信息为第二值时,该第二资源指示信息用于指示该第三通信装置在第一子载波组上传输数据。
示例性地,在该第二资源指示信息为第一值时,第二资源指示信息用于指示第三通信装置在该第一子载波组上进行降低发送信号的PAPR处理,以及指示第一通信装置在该第一子载波组上传输数据。
示例性地,该第二资源指示信息为第二值时,第二资源指示信息用于指示第三通信装置在第一子载波组上传输数据,以及指示第一通信装置在该第一子载波组上进行降低发送信号的PAPR处理。
示例性地,第二通信装置在通过第一资源指示信息指示第一通信装置在第一子载波组上进行降低发送信号的PAPR处理,以及通过该第二资源指示信息指示第三通信装置在该第一子载波组上传输数据。可理解,第二通信装置发送的第一消息和第二消息中的第一资源指示信息与第二资源指示信息的取值不同,以指示该第一通信装置和第三通信装置中的一个在第一子载波组上传输数据,另一个在该第一子载波组上进行降低发送信号的PAPR处理。例如,该第一资源指示信息为第一值,该第二资源指示信息为第二值,第一通信装置在第一子载波组上进行降低发送信号的PAPR处理,第三通信装置在该第一子载波组上传输数据。又如,第一资源指示信息为第二值,第一资源指示信息为第一值,第三通信装置在第一子载波组上进行降低发送信号的PAPR处理,第一通信装置在该第一子载波组上传输数据。
可选的,在该第一通信装置和该第三通信装置可以为发送端的任意两个天线子阵,该第二通信装置可以为接收端的情况下,该第一消息或该第二消息可以由该第一通信装置或该第二通信装置发送,该第一资源指示信息或该第二资源指示信息用于指示该第一子载波组上有传输传输。
在一种可能的实现方式中,图4所示的方法包括步骤403和步骤404。
403,第一通信装置发送第一发送信号,第三通信装置发送第三信号,相应的,第二通信装置接收第一接收信号,该第一接收信号由该第一发送信号和该第三信号叠加而成。
示例性地,该第一发送信号包括第一信号和第二信号,该第一信号为第一子载波组上的信号,第二信号为第二子载波组上的信号,第二子载波组包括数据子载波。示例性地,该第二信号携带第一数据,该第一数据为该第一通信装置要向第二通信装置传输的数据。该第一信号不携带有用数据,该第一信号与该第二信号相关。
示例性地,第三通信装置在接收到第二消息之后,可以基于该第二资源指示信息在该第一子载波组上传输该第三信号,该第三信号承载第二数据,该第二数据为该第三通信装置要向第二通信装置发送的数据。
在一种可能的实现方式中,第一发送信号的PAPR小于或等于该第二信号的PAPR。即该第一通信装置在该第一子载波组上进行降低发送信号的PAPR处理。例如,该第一子载波组上生成该第一信号,该第一信号用于使该第一发送信号的PAPR小于或等于该第二信号。示例性地,该第一通信装置可以将要传输的第一数据映射到该第二子载波组上生成该第二信号,并在第一子载波组上生成第一信号,并将该第一信号和该第二信号叠加生成该第一发送信号。示例性地,该第一通信装置可以利用该第一信号对该第二信号进行削峰,从而使得生成该第一发送信号的PAPR小于该第二信号的PAPR。
在一种可能的实现方式中,第一消息还包括第一时频资源和第一指示信息,该第一时频资源指示关于第一子载波组和第二子载波组的时频资源,该第一指示信息指示该第一子载波组的位置以及该第二子载波组的位置。该第一通信装置基于该第一时频资源和该第一指示信息生成第一信号和第二信号。
示例性地,该第一时频资源用于指示该第一通信装置发送上行传输信号使用的时频资源,该第一时频资源可以包括该第一子载波组和该第二子载波组对应的时频资源。第一通信装置根据该第一时频资源和该第一指示信息确定该第一子载波组的位置和该第二子载波组的位置。该第一通信装置可以在该第一时频资源上传输该第一发送信号。
示例性地,该第一通信装置可以根据该第一子载波组和该第二子载波组的位置进行资源映射生成该第二信号。例如,该第一通信装置可以将第一数据映射到该第二子载波组的位置上,并在该第一子载波组的位置上置0,再经过IDFT生成该第二信号。第一通信装置再将特定序列映射到该第一子载波组的位置上,再经过IDFT生成第一信号。该第一通信装置利用该第一信号与该第二信号叠加进行削峰,生成该第一发送信号,使得该第一发送信号的PAPR小于或等于该第二信号。
在一种可能的实现方式中,该第二消息还包括第二时频资源和第四指示信息,该第二时频资源指示关于第一子载波组的时频资源,第四指示信息用于指示第一子载波组的位置。该第三通信装置基于该第二时频资源和该第四指示信息在该第一子载波组上发送该第三信号。
示例性地,该第三通信装置可以基于该第二时频资源和该第四指示信息确定该第一子载波组的位置,并将该第二数据映射到该第一子载波组的位置上,再经过IDFT生成该第三信号。
示例性地,该第一时频资源和该第二时频资源可以相同,也可以不同。在该第一时频资源与该第二时频资源不相同时,该第一时频资源的带宽可以大于该第二时频资源的带宽,且该第一时频资源对应的频域资源可以包含该第二时频资源对应的频域资源。举例来说,该第一时频资源的带宽为100兆,该第二时频资源的带宽可以为20兆。
示例性地,该第一指示信息可以包括第一载波预留(tone reservation,TR)图样,该第四指示信息可以包括第二TR图样。该第一TR图样和该第二TR图样可以相同,也可以不相同。示例性地,该第一TR图样与该第一时频资源对应,该第二TR图样与该第二时频资源对应。如图5所示,图5为TR图样的一种示例,图5中虚线用于表示第一子载波组中的预留子载波的位置,实线用于表示第二子载波组中的数据子载波的位置。
示例性地,该第一通信装置和该第三通信装置可以采用CP-OFDM波形。
404,第二通信装置从第一接收信号中确定第三信号。
示例性地,该第二通信装置在接收到第一接收信号之后,需要从该第一接收信号中确定第一发送信号和第三信号。示例性地,该第一发送信号包括第一通信装置在第一子载波组上发送的第一信号和该第一通信装置在第二子载波组上发送的第二信号,该第三信号为该第三通信装置在该第一子载波组上发送的信号。因此,该第一接收信号在第一子载波组上的信号为该第一信号和该第三信号的叠加,该第一接收信号在第二子载波组上的信号为该第二信号。
在一种可能的实现方式中,第二通信装置从第一接收信号中确定第三信号可以包括:第二通信装置确定第一接收信号在第二子载波组上的第二信号;第二通信装置基于所述第二信号确定所述第一发送信号;所述第二通信装置利用所述第一发送信号对所述第一接收信号进行干扰消除,得到所述第三信号。
示例性地,该第一通信装置在第一子载波组上发送的第一信号与该第二子载波组上发送的第二信号相关,因此第二通信装置可以基于该第二信号确定该第一信号,从而重建该第一发送信号。第二通信装置再利用该第一发送信号对该第一接收信号进行干扰消除,即第二通信装置在该第一接收信号中减去该第一发送信号,得到该第三信号。
示例性地,第二通信装置将该第一接收信号进行离散傅里叶变换(discrete fourier transform,DFT),从而确定该第一接收信号在该第二子载波组上的第二信号。
本申请实施例中,第一通信装置不在该第一子载波组上传输有用数据,例如,该第一通信装置可以利用该第一子载波组降低该第一发送信号的PAPR。第二通信装置可以通过第一资源指示信息和第二资源指示信息指示该第三通信装置在第一子载波组上传输数据,使得该第一子载波组上承载第三通信装置的数据,能够充分利用该第一子载波组的频谱资源,避免频谱资源的浪费,从而提升频谱效率。
本申请实施例中,该第三通信装置可以为低功耗设备,或占用带宽小的设备。例如,该第三通信装置可以包括一个或多个低功耗设备,该一个或多个低功耗设备中的任一低功耗设备占用一个或多个子载波。该第一通信装置可以为高吞吐的设备,该第一通信装置可以应用于智能家居、智能穿戴等场景。
请参见图6,图6为本申请实施例提供的另一种信号传输方法的交互示意图。如图6所示,该方法包括但不限于如下步骤。
601,第一通信装置根据第一序列在第一子载波组上生成第一信号,该第一序列为序列组中使第一发送信号的PAPR满足预设条件的一个。
示例性地,该序列组可以为该第一通信装置和该第二通信装置预先约定的,该序列组可以包括一个或多个序列。第一通信装置将该第一序列映射到第一子载波组上,生成第一信号。
示例性地,该预设条件可以包括阈值条件或第一发送信号的PAPR最小,即该第一序列可以为序列组中使第一发送信号的PAPR最小的一个,或者该第一序列可以为序列组中使第一发送信号的PAPR满足阈值条件的任一个。
在一种可能的实现方式中,该第一序列可以为该序列组中使该第一发送信号的PAPR最小的一个,第一通信装置将该序列组中使第一发送信号的PAPR最小的一个序列确定为该第一序列。示例性地,第一通信装置可以分别将序列组中的一个或多个序列映射到该第一子载波组上,得到一个或多个第一信号。第一通信装置再分别将该一个或多个第一信号与第二信号进行叠加,得到一个或多个第一发送信号。第一通信装置发送该一个或多个第一发送信号中PAPR最小的一个,并将一个或多个第一发送信号中PAPR最小的一个对应的序列确定为第一序列。例如,序列组包括N个序列,该N个序列分别为{S1,S2,...,SN},第一通信装置可以从该序列组中选择使第一发送信号的PAPR最小的第一序列Sn,利用Sn生成并发送第一发送信号。示例性地,第一通信装置还可以将该Sn的编号发给第二通信装置。
在该种实现方式中,第一通信装置将序列组中使得第一发送信号的PAPR最小的一个确定为第一序列,使得第一通信装置发送的第一发送信号的PAPR最小,避免或减轻了由于第一发送信号的PAPR过高而导致的非线性失真。
在另一种可能的实现方式中,第一序列为序列组中使第一发送信号的PAPR满足阈值条件的任一个。示例性地,该第一发送信号的PAPR满足阈值条件可以包括第一发送信号的PAPR小于第一阈值。该第一阈值可以是由该第一通信装置确定,或由第二通信装置确定的。示例性地,该第一阈值可以由第一通信装置的功率放大器的线性范围确定。
示例性地,该第一通信装置可以逐一利用该序列组中的序列生成第一信号,并将第一信号与第二信号进行叠加,得到第一发送信号。第一通信装置确定该第一发送信号的PAPR是否满足该阈值条件。第一通信装置在确定该第一发送信号的PAPR满足阈值条件的情况下,可以将使得该第一发送信号满足阈值条件的序列确定为第一序列,并发送该第一发送信号。可理解,在该种实现方式中,第一通信装置在确定该第一序列之后,无需再利用该序列组中的其他序列生成第一发送信号,从使得该第一通信装置能够更快的确定第一序列和第一发送信号,同时能够避免第一通信装置利用其他序列生成第一发送信号的能耗。
602,第一通信装置发送第一发送信号,第三通信装置发送第三信号,第二通信装置接收第一接收信号,第一接收信号由该第一发送信号和第三信号叠加而成。
可理解,关于该第一发送信号和该第三信号的具体说明可以参考上文,这里不再一一详述。
在一种可能的实现方式中,图6所示的方法包括步骤603。
603,第一通信装置发送第二指示信息,相应的,第二通信装置接收该第二指示信息,该第二指示信息用于指示第一序列。
示例性地,第二指示信息可以包括该第一序列的编号。第一通信装置可以通过该第二指示信息指示该第一序列,使得该第二通信装置能够基于该第二指示信息快速地从该序列组中确定该第一序列。
604,第二通信装置确定第一接收信号在第二子载波组上的第二信号。
605,第二通信装置利用第一序列在第一子载波组上生成第一信号,第一序列为序列组中使第一发送信号的PAPR满足预设条件的一个。
示例性地,第二通信装置可以将该第一序列映射到该第一子载波组上,生成该第一信号。
在一种可能的实现方式中,第二通信装置可以基于第二指示信息确定该第一序列。示例性地,该第二指示信息包括该第一序列在序列组中的编号,该第二通信装置可以基于该编号确定该第一序列。
在另一种可能的实现方式中,第二通信装置可以通过盲检测确定该第一序列。示例性地,第二通信装置可以分别利用序列组中的一个或多个序列生成第一发送信号,从该一个或多个序列中确定使该第一发送信号的PAPR满足预设条件的序列,将其确定为第一序列。
606,第二通信装置将第一信号和第二信号进行叠加,得到第一发送信号。
607,第二通信装置利用第一发送信号对第一接收信号进行干扰消除,得到第三信号。
本申请实施例中,第一通信装置和第二通信装置可以从约定的序列组中确定使得第一发送信号的PAPR满足预设条件的第一序列,能够直接基于该第一序列在第一子载波组上生成该第一信号,从而降低生成第一信号的复杂度。
请参见图7,图7为本申请实施例提供的又一种信号传输方法的交互示意图。如图7所示,该方法包括但不限于如下步骤。
701,第一通信装置基于PAPR抑制参数和第二信号在第一子载波组上生成第一信号。
示例性地,PAPR抑制参数包括PAPR抑制门限、载波预留TR算法指示信息、TR算法迭代轮数中的至少一项。该TR算法指示信息用于指示该第一通信装置进行PAPR抑制采用的方式,例如一轮迭代消除单个峰值、一轮迭代消除多个峰值、基于最小二乘的算法等。
示例性地,第一通信装置可以将要传输的第一数据映射到第二子载波组后,经过IDFT生成第二信号。第一通信装置可以利用第一子载波组生成第四信号,根据该第二信号的功率峰值在时域上将该第四信号进行平移,以使得该第四信号的峰值能够与该第二信号的峰值相减,从而使得生成的第一发送信号的PAPR小于第二信号的PAPR。示例性地,该第四信号也可以称为削峰信号、时域kernel、时域原始核或时域信号核。
示例性地,该第四信号在时域上的波形可以如图8所示,该第四信号包括一个峰值。第一通信装置可以将特定序列映射到第一子载波组上,生成该第四信号。例如,该特定序列可以为1。第一通信装置确定该第二信号在时域上的第一峰值,在该第四信号上乘以第一数值后进行平移之后,使得该第四信号的峰值能够与该第一峰值相减,从而使得第一峰值小于或等于该PAPR抑制门限。可理解,该第一系数由该第一峰值和PAPR抑制门限确定。示例性地,该第一系数可以为该第一峰值和该PAPR抑制门限的差值。例如, 该第一峰值为8,PAPR抑制门限为5,则该第一系数可以为3。
示例性地,该第二信号可以包括多个峰值,第一通信装置可以利用该第四信号经过多轮迭代从而对该多个峰值进行削峰,得到第一发送信号。示例性地,该第一通信装置迭代的次数为该TR算法迭代轮数。示例性地,第一通信装置利用第四信号经过多个轮迭代对第二信号进行削峰之后,在第一子载波组上生成第一信号。
示例性地,该PAPR抑制参数可以是由第二通信装置确定,并指示该第一通信装置基于该PAPR抑制参数进行降低发送信号的PAPR处理。或者,该PAPR抑制参数可以是该第一通信装置确定的。
702,第一通信装置发送第一发送信号,第三通信装置发送第三信号,第二通信装置接收第一接收信号,第一接收信号由该第一发送信号和第三信号叠加而成。
可理解,关于该第一发送信号和该第三信号的具体说明可以参考上文,这里不再一一详述。
在一种可能的实现方式中,图7所示的方法包括步骤703。
703,第一通信装置发送第三指示信息,相应的,第二通信装置接收该第三指示信息。该第三指示信息用于指示PAPR抑制参数。
示例性地,该第三指示信息可以包含在该第一发送信号中,或者第一通信装置可以通过其他上行信号将该第三指示信息发送至第二通信装置。
704,第二通信装置确定第一接收信号在第二子载波组上的第二信号。
705,第二通信装置基于PAPR抑制参数和第二信号在第一子载波组上生成第一信号。
可理解,关于这步骤505的具体实现方式可以参考步骤501中第一通信装置生成第一信号的过程,这里不再详述。
706,第二通信装置将第一信号和第二信号进行叠加,得到第一发送信号。
707,第二通信装置利用第一发送信号对第一接收信号进行干扰消除,得到第三信号。
本申请实施例中,第一通信装置可以基于PAPR抑制参数进行降低发送信号的PAPR处理,使得该第一发送信号具有较低的PAPR,避免或减轻了因第一发送信号的PAPR过高而导致非线性失真。另外,第一通信装置可以通过第三指示信息指示第二通信装置该PAPR抑制参数,使得该第二通信装置能够基于该PAPR抑制参数重建该第一信号,从而能够从第一接收信号中确定第三信号。
请参见图9,图9为本申请实施例提供的又一种信号传输方法的交互示意图。如图9所示,该方法还包括但不限于如下步骤。
在一种可能的实现方式中,图9所示的方法包括步骤901和步骤902。
901,第一通信装置发送第一上行信号,相应的,第二通信装置接收该第一上行信号。
示例性地,该第二通信装置可以测量该第一上行信号的功率,从而确定该第一通信装置发送的上行信号的功率。
902,第三通信装置发送第二上行信号,相应的,第二通信装置接收该第二上行信号。
示例性地,第二通信装置可以测量该第二上行信号的功率,从而确定该第三通信装置发送的上行信号的功率。
903,第二通信装置发送第一消息,相应的,第一通信装置接收该第一消息,该第一消息包括第一资源指示信息。在该第一资源指示信息为第一值时,该第一资源指示信息用于指示第三通信装置在第一通信装置的第一子载波组上传输数据,该第一子载波组不包括第一通信装置的数据子载波。
示例性地,该第一消息还包括第一阈值,该第一阈值用于对第一通信装置在第一子载波组上传输的第一信号的功率进行限制。例如,第一信号的功率小于或等于第一阈值。该第一阈值与信道容量、第三信号的功率、第三信号调制阶数以及第三信号的码率中至少一项相关,其中第三信号为第三通信装置在所述第一子载波组上发送的信号。
示例性地,第二通信装置指示第三通信装置在第一子载波组上传输数据,第二通信装置在第一子载波组上接收到的信号第一信号与第三信号的叠加。第二通信装置可以将该第一信号作为该第三信号的干扰,通过对该第一信号的功率进行限制,使得第二通信装置能够解调出第三信号承载的第二数据。
示例性地,在该第三信号的码率小于信道容量的情况下,第二通信装置可以从接收到的信号中解调出该第三信号承载的第二数据。该信道容量可以由第三信号的功率、第一信号的功率以及信道带宽确定。示例性地,在该第一信号的功率、第三信号的功率、信道带宽以及第三信号的码率满足如下公式:
R≤Blog2(1+S/N)       (1)
其中,R为第三信号的码率,B为信道带宽,S为第三信号的功率,N为该第一信号的功率和白噪声功率的和。该第二通信装置可以根据上述公式(1)确定第一阈值,使得第一信号的功率能够满足该公式(1)。
示例性地,第二通信装置可以将上述第二上行信号的功率作为该第三信号的功率,即该第二通信装置可以基于该第二上行信号的功率确定该第一阈值。
示例性地,该第一消息还包括第一时频资源和第一指示信息。可理解,关于该第一时频资源和该第一指示信息的具体说明可以参考上文的相关描述,这里不再一一详述。
904,第二通信装置发送第二消息,相应的,第三通信装置接收该第二消息,该第二消息包括第二资源指示信息,在第二资源指示信息为第二值时,第二资源指示信息用于指示第三通信装置在第一子载波组上传输数据。
示例性地,该第二消息还可以包括第二阈值,该第二阈值用于对第三信号的功率进行限制。例如,该第三信号的功率大于或等于该第二阈值。示例性地,该第二阈值可以与信道容量、第一信号的功率、第三信号调制阶数以及第三信号的码率中至少一项相关。
示例性地,第二通信装置可以根据上述公式(1)确定该第二阈值,使得该第三信号的功率能够满足该公式(1)。
905,第一通信装置发送第一发送信号,第三通信装置发送第三信号,第二通信装置接收第一接收信号,该第一接收信号由该第一发送信号和该第三信号叠加。
906,第二通信装置对第一接收信号进行解调,得到第一数据和第二数据。
示例性地,该第一发送信号包括第一信号和第二信号,第一信号为第一通信装置在第一子载波组上发送的信号,第二信号为第一通信装置在第二子载波组上发送的信号。该第三信号为第三通信装置在第一子载波组上发送的信号。该第二信号承载第一数据,该第三信号承载第二数据。
示例性地,第二通信装置可以对该第一接收信号进行DFT得到该第一接收信号在频域上的信号,得到该第一接收信号在第一子载波上的信号和第二信号。第二通信装置对该第二信号进行资源逆映射并解调,得到该第一数据。第二通信装置对该第一子载波上的信号进行资源逆映射并解调,得到该第二数据。
本申请实施例中,第二通信装置可以将第一信号作为第三信号的干扰,通过对第一信号的功率进行限制,使得第二通信装置能够从在第一子载波上接收到的信号中解调出第三信号承载的第二数据,使得第三通信装置能够在该第一子载波组上进行传输数据,从而能够更合理地分配资源。且第二通信装置无需重建第一通信装置发送的第一发送信号,能够降低复杂度。
以下将介绍本申请实施例提供的通信装置。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图10至图12详细描述本申请实施例的通信装置。
图10是本申请实施例提供的一种通信装置的结构示意图,如图10所示,该通信装置包括处理单元1001、发送单元1002以及接收单元1003。
在本申请的一些实施例中,该通信装置可以是上文示出的第一通信装置。即图10所示的通信装置可以用于执行上文方法实施例中由第一通信装置执行的步骤或功能等。示例性的,该通信装置可以是波束成型发射设备或芯片等,本申请实施例对此不作限定。
接收单元1003,用于接收第一消息;
发送单元1002,用于发送第一发送信号。
可选的,处理单元1001,用于生成第一信号和第二信号。
可选的,发送单元1002,还用于发送第二指示信息。
可选的,发送单元1002,还用于发送第三指示信息。
可理解,关于该第一消息、第一发送信号、第一信号、第二信号、第一指示信息和第二指示信息等的具体说明可以参考上文所示的方法实施例,如图4、图6、图7、图9所示的方法的相关描述等,这里不再详述。
可理解,本申请实施例示出的处理单元、发送单元和接收单元的具体说明仅为示例,对于处理单元、 发送单元和接收单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
复用图10,在本申请的另一些实施例中,该通信装置可以是上文示出的第二通信装置。即图10所示的通信装置可以用于执行上文方法实施例中由第二通信装置执行的步骤或功能等。示例性的,该通信装置可以是波束成型接收设备或芯片等,本申请实施例对此不作限定。
发送单元1002,用于发送第一消息和第二消息。
可选的,接收单元1003,用于接收第一接收信号;处理单元1001,用于从第一接收信号中确定第三信号。
可选的,接收单元1003,还用于接收第二指示信息。
可选的,接收单元1003,还用于接收第三指示信息。
可理解,关于该第一消息、第二消息、第一接收信号、第一信号、第二信号、第三信号、第一指示信息、第二指示信息等的具体说明可以参考上文所示的方法实施例,如图4、图6、图7、图9所示的方法的相关描述等,这里不再详述。
可理解,本申请实施例示出的接收单元、发送单元和处理单元的具体说明仅为示例,对于接收单元、发送单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
复用图10,在本申请的另一些实施例中,该通信装置可以是上文示出的第三通信装置。即图10所示的通信装置可以用于执行上文方法实施例中由第三通信装置执行的步骤或功能等。示例性的,该通信装置可以是波束成型接收设备或芯片等,本申请实施例对此不作限定。
接收单元1003,用于接收第二消息;
发送单元1002,用于发送第三信号。
可理解,关于该第一消息、第二消息、第一接收信号、第一信号、第二信号、第三信号、第一指示信息、第二指示信息等的具体说明可以参考上文所示的方法实施例,如图4、图6、图7、图9所示的方法的相关描述等,这里不再详述。
可理解,本申请实施例示出的接收单元、发送单元和处理单元的具体说明仅为示例,对于接收单元、发送单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
以上介绍了本申请实施例的第一通信装置、第二通信装置以及第三通信装置,以下介绍所述第一通信装置、第二通信装置以及第三通信装置可能的产品形态。应理解,但凡具备上述图10所述的第一通信装置的功能的任何形态的产品,或者,但凡具备上述图10所述的第二通信装置的功能的任何形态的产品,或者,但凡具备上述图10所述的第三通信装置的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的第一通信装置、第二通信装置以及第三通信装置的产品形态仅限于此。
图10所示的通信装置中,处理单元1001可以是一个或多个处理器,发送单元1002可以是发送器,接收单元1003可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。或者,处理单元1001可以是一个或多个处理器(或者处理单元1001可以是一个或多个逻辑电路),发送单元1002可以是输出接口,接收单元1003可以是输入接口,该输入接口和该输出接口可以集成于一个单元,例如输入输出接口。以下将详细说明。
在一种可能的实现方式中,图10所示的通信装置中,处理单元1001可以是一个或多个处理器,该发送单元1002和接收单元1003集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。
如图11所示,该通信装置110包括一个或多个处理器1120和收发器1110。
示例性的,当该通信装置用于执行上述第一通信装置执行的步骤或方法或功能时,收发器1110,用于接收第一消息以及发送第一发送信号。可选的,处理器1120,用于生成第一信号和第二信号。可选的,收发器1110,还用于发送第二指示信息。可选的,收发器1110,还用于发送第三指示信息。
示例性的,当该通信装置用于执行上述第二通信装置执行的步骤或方法或功能时,收发器1110,用于发送第一消息以及第二消息。可选的,收发器1110,还用于接收第一接收信号;处理器1120,用于从第一接收信号中确定第三信号。可选的,收发器1110,还用于接收第二指示信息。可选的,收发器1110,还用于接收第三指示信息。
示例性的,当该通信装置用于执行上述第三通信装置执行的步骤或方法或功能时,收发器1110,用于接收第二消息以及发送第三信号。
可理解,关于该第一消息、第二消息、第一发送信号、第一信号、第二信号、第三信号、第二指示信息以及第三指示信息等的具体说明可以参考上文所示的方法实施例,如图4、图6、图7、图9所示的方法的相关描述等,这里不再详述。
可理解,对于处理器和收发器的具体说明还可以参考图10所示的处理单元、发送单元和接收单元的介绍,这里不再赘述。
在图10所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。
可选的,通信装置110还可以包括一个或多个存储器1130,用于存储程序指令和/或数据。存储器1130和处理器1120耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1120可能和存储器1130协同操作。处理器1120可以执行存储器1130中存储的程序指令。可选的,上述一个或多个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1110、处理器1120以及存储器1130之间的具体连接介质。本申请实施例在图11中以存储器1130、处理器1120以及收发器1110之间通过总线1140连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
处理器1120主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1130主要用于存储软件程序和数据。收发器1110可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1120可以读取存储器1130中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1120对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1120,处理器1120将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
可理解,本申请实施例示出的通信装置还可以具有比图11更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,图10所示的通信装置中,处理单元1001可以是一个或多个逻辑电路,发送单元1002可以是输出接口,接收单元1003可以是输入接口,该输入接口和该输出接口可以集成于一个单元,例如输入输出接口。该输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。如图 12所示,图12所示的通信装置包括逻辑电路1201和接口1202。即上述处理单元1001可以用逻辑电路1201实现,发送单元1002和接收单元1003可以用接口1202实现。其中,该逻辑电路1201可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口1202可以为通信接口、输入输出接口、管脚等。示例性的,图12是以上述通信装置为芯片为例出的,该芯片包括逻辑电路1201和接口1202。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
示例性的,当通信装置用于执行上述第一通信装置执行的方法或功能或步骤时,接口1202,用于接收第一消息以及发送第一发送信号。可选的,逻辑电路1201,用于生成第一信号和第二信号。可选的,接口1202,还用于发送第二指示信息。可选的,接口1202,还用于发送第三指示信息。
示例性的,当通信装置用于执行上述第二通信装置执行的方法或功能或步骤时,接口1202,用于发送第一消息以及第二消息。可选的,接口1202,还用于接收第一接收信号;逻辑电路1201,用于从第一接收信号中确定第三信号。可选的,接口1202,还用于接收第二指示信息。可选的,接口1202,还用于接收第三指示信息。
示例性的,当该通信装置用于执行上述第四通信装置执行的步骤或方法或功能时,接口1202,用于接收第二消息以及发送第三信号。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
可理解,关于该第一消息、第二消息、第一发送信号、第一信号、第二信号、第三信号、第二指示信息以及第三指示信息等的具体说明可以参考上文所示的方法实施例,如图4、图6、图7、图9所示的方法的相关描述等,这里不再详述。
对于图12所示的各个实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。
本申请实施例还提供了一种通信系统,该通信系统包括:第一通信装置、第二通信装置、第三通信装置。第一通信装置、第二通信装置、第三通信装置可以用于执行前述任一实施例中的方法(如图4、图6、图7、图9等)。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第一通信装置执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第二通信装置执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第三通信装置执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第一通信装置执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第二通信装置执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第三通信装置执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第一通信装置执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第二通信装置执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第三通信装置执行的操作和/或处理被执行。
本申请实施例还提供一种芯片或芯片系统,包括:处理器,用于执行前述任一实施例中的方法(如图4、图6、图7、图9等)。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (23)

  1. 一种信号传输方法,其特征在于,包括:
    第一通信装置接收第二通信装置发送的第一消息,所述第一消息包括第一资源指示信息,在所述第一资源指示信息为第一值时,所述第一资源指示信息用于指示第三通信装置在所述第一通信装置的第一子载波组上传输数据,所述第一子载波组不包括所述第一通信装置的数据子载波;
    所述第一通信装置基于所述第一消息发送第一发送信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一发送信号包括第一信号和第二信号,所述第一信号为所述第一子载波组上的信号,所述第二信号为第二子载波组上的信号,所述第二子载波组包括所述数据子载波。
  3. 根据权利要求2所述的方法,其特征在于,所述第一发送信号的峰值平均功率比PAPR小于或等于所述第二信号的PAPR。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一消息还包括第一时频资源和第一指示信息,所述第一时频资源指示关于所述第一子载波组和所述第二子载波组的时频资源,所述第一指示信息指示所述第一子载波组的位置以及所述第二子载波组的位置;所述方法还包括:
    所述第一通信装置基于所述第一时频资源和所述第一指示信息生成所述第一信号和所述第二信号。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置根据第一序列在所述第一子载波组上生成所述第一信号,所述第一序列为序列组中使所述第一发送信号的PAPR满足预设条件的一个。
  6. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置发送第二指示信息,所述第二指示信息用于指示所述第一序列。
  7. 根据权利要求2-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置基于PAPR抑制参数和所述第二信号在所述第一子载波组上生成所述第一信号;
    所述第一通信装置发送第三指示信息,所述第三指示信息用于指示所述PAPR抑制参数。
  8. 根据权利要求2-4任一项所述的方法,其特征在于,所述第一消息还包括第一阈值,
    其中所述第一信号的功率小于或等于所述第一阈值,所述第一阈值与信道容量、第三信号的功率、所述第三信号调制阶数以及所述第三信号的码率中至少一项相关,其中所述第三信号为所述第三通信装置在所述第一子载波组上发送的信号。
  9. 一种信号传输方法,其特征在于,包括:
    第二通信装置向第一通信装置发送第一消息,所述第一消息包括第一资源指示信息,在所述第一资源指示信息为第一值时,所述第一资源指示信息用于指示第三通信装置在所述第一通信装置的第一子载波组上传输数据,所述第一子载波组不包括所述第一通信装置的数据子载波;
    所述第二通信装置向所述第三通信装置发送第二消息,所述第二消息包括第二资源指示信息,在所述第二资源指示信息为第二值时,所述第二资源指示信息用于指示所述第三通信装置在所述第一子载波组上传输数据。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收第一接收信号,所述第一接收信号由所述第一通信装置发送的第一发送信号和所述第三通信装置在所述第一子载波组上发送的第三信号叠加而成;
    所述第二通信装置从所述第一接收信号中确定所述第三信号。
  11. 根据权利要求10所述的方法,其特征在于,所述第一发送信号包括第一信号和第二信号,所述第一信号为所述第一子载波组上的信号,所述第二信号为第二子载波组上的信号,所述第二子载波组包括所述数据子载波。
  12. 根据权利要求11所述的方法,其特征在于,所述第一发送信号的峰值平均功率比PAPR小于或等于所述第二信号的PAPR。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一消息还包括第一时频资源和第一指示信息,所述第一时频资源指示关于所述第一子载波组和所述第二子载波组的时频资源,所述第一指示信息指示所述第一子载波组的位置以及所述第二子载波组的位置。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述第二消息还包括第二时频资源和第四指示信息,所述第二时频资源指示关于所述第一子载波组的时频资源,所述第四指示信息用于指示所述第一子载波组的位置。
  15. 根据权利要求11-14任一项所述的方法,其特征在于,所述第二通信装置从所述第一接收信号中确定所述第三信号,包括:
    所述第二通信装置确定所述第一接收信号在所述第二子载波组上的所述第二信号;
    所述第二通信装置基于所述第二信号确定所述第一发送信号;
    所述第二通信装置利用所述第一发送信号对所述第一接收信号进行干扰消除,得到所述第三信号。
  16. 根据权利要求15所述的方法,其特征在于,所述第二通信装置基于所述第二信号确定所述第一发送信号,包括:
    所述第二通信装置利用第一序列在所述第一子载波组上生成所述第一信号;
    所述第二通信装置将所述第一信号和所述第二信号进行叠加,得到所述第一发送信号,所述第一序列为序列组中使所述第一发送信号的峰值平均功率比PAPR满足预设条件的一个。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收第二指示信息,所述第二指示信息用于指示所述第一序列。
  18. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收第三指示信息,所述第三指示信息用于指示PAPR抑制参数;
    所述第二通信装置基于所述第二信号确定所述第一发送信号,包括:
    所述第二通信装置基于所述PAPR抑制参数和所述第二信号在所述第一子载波组上生成所述第一信号;
    所述第二通信装置将所述第一信号和所述第二信号进行叠加,得到所述第一发送信号。
  19. 根据权利要求18所述的方法,其特征在于,所述PAPR抑制参数包括PAPR抑制门限、载波预留TR算法指示信息、TR算法迭代轮数中的至少一项。
  20. 根据权利要求10所述的方法,其特征在于,所述第一消息还包括第一阈值,
    其中第一信号的功率小于或等于所述第一阈值,所述第一阈值与信道容量、所述第三信号的码率、所述第三信号的功率以及所述第三信号调制阶数中至少一项相关,其中所述第一信号为所述第一发送信号在所述第一子载波组上的信号。
  21. 一种通信系统,其特征在于,包括:第一通信装置和第二通信装置,所述第一通信装置用于执行如权利要求1-8任一项所述的方法,所述第二通信装置用于执行如权利要求9-20任一项所述的方法。
  22. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述计算机执行指令,以使权利要求1-8任一项所述的方法被执行;或者,以使权利要求9-20任一项所述的方法被执行。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序被执行时,权利要求1-8任一项所述的方法被执行;或者,权利要求9-20任一项所述的方法被执行。
PCT/CN2023/121006 2022-09-28 2023-09-25 信号传输方法、通信系统及通信装置 WO2024082926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211193545.X 2022-09-28
CN202211193545.XA CN117834362A (zh) 2022-09-28 2022-09-28 信号传输方法、通信系统及通信装置

Publications (1)

Publication Number Publication Date
WO2024082926A1 true WO2024082926A1 (zh) 2024-04-25

Family

ID=90508434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121006 WO2024082926A1 (zh) 2022-09-28 2023-09-25 信号传输方法、通信系统及通信装置

Country Status (2)

Country Link
CN (1) CN117834362A (zh)
WO (1) WO2024082926A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968237A (zh) * 2005-11-18 2007-05-23 华为技术有限公司 一种降低正交频分复用系统峰均功率比的装置和方法
CN102056248A (zh) * 2009-10-28 2011-05-11 中国移动通信集团公司 一种降低峰均比的方法和设备
CN105049386A (zh) * 2015-05-26 2015-11-11 浙江大学 一种ufmc系统中的主动干扰消除方法
US20200014506A1 (en) * 2018-07-09 2020-01-09 Hao Li Dynamic spectrum spreading of data symbols for multiple access transmission
CN110768921A (zh) * 2018-07-25 2020-02-07 中国移动通信集团有限公司 基于预留符号的无失真初相序列降低papr的方法及装置
CN111313968A (zh) * 2020-01-17 2020-06-19 东南大学 一种基于led非线性特性的速率自适应可见光传输方法
CN113037677A (zh) * 2021-04-14 2021-06-25 清华大学深圳国际研究生院 一种基于abo-ofdm的低papr通信方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1968237A (zh) * 2005-11-18 2007-05-23 华为技术有限公司 一种降低正交频分复用系统峰均功率比的装置和方法
CN102056248A (zh) * 2009-10-28 2011-05-11 中国移动通信集团公司 一种降低峰均比的方法和设备
CN105049386A (zh) * 2015-05-26 2015-11-11 浙江大学 一种ufmc系统中的主动干扰消除方法
US20200014506A1 (en) * 2018-07-09 2020-01-09 Hao Li Dynamic spectrum spreading of data symbols for multiple access transmission
CN110768921A (zh) * 2018-07-25 2020-02-07 中国移动通信集团有限公司 基于预留符号的无失真初相序列降低papr的方法及装置
CN111313968A (zh) * 2020-01-17 2020-06-19 东南大学 一种基于led非线性特性的速率自适应可见光传输方法
CN113037677A (zh) * 2021-04-14 2021-06-25 清华大学深圳国际研究生院 一种基于abo-ofdm的低papr通信方法

Also Published As

Publication number Publication date
CN117834362A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
US11665656B2 (en) Information transmission method and information transmission apparatus
US11528728B2 (en) Information transmission method and device
TWI499344B (zh) A method and apparatus for device-to-device communication
CN109391431A (zh) 一种获取参考信号的方法、装置和计算机可读存储介质
CN108833070B (zh) 基于序列的信号处理方法及装置
US11438204B2 (en) Physical layer convergence procedure protocol data unit communication method and related apparatus
WO2022068689A1 (zh) 物理层协议数据单元ppdu传输方法及相关装置
US9917678B2 (en) Method and apparatus for generating a long training sequence and sending a signal
CN112511285B (zh) 基于序列的信号处理方法及装置
WO2024082926A1 (zh) 信号传输方法、通信系统及通信装置
CN114845399A (zh) 一种全双工ofdma ppdu传输方法及装置
WO2018137219A1 (zh) 一种信息传输方法及装置
WO2023226854A1 (zh) 数据传输方法及装置、数据处理方法及装置、存储介质
WO2023142825A1 (zh) 一种数据处理方法、装置及相关设备
WO2022253116A1 (zh) 一种多用户通信的方法及相关通信装置
WO2024065196A1 (zh) 数据传输方法及装置
US20230421417A1 (en) Communication method and communication apparatus
WO2021093616A1 (zh) 一种信号传输方法及装置
WO2022087970A1 (zh) 无线通信的方法和通信设备
US20220329379A1 (en) Signal sending method, signal receiving method, and apparatus
WO2024007937A1 (zh) 调制编码的方法和装置
WO2022222775A1 (zh) 信息传输的方法、装置、计算机可读存储介质和芯片
CN115333907A (zh) 一种通信方法及装置
CN117880974A (zh) 传输信号的频谱扩展
CN115189851A (zh) 频域资源位置确定方法与装置、终端和网络设备