WO2022068689A1 - 物理层协议数据单元ppdu传输方法及相关装置 - Google Patents

物理层协议数据单元ppdu传输方法及相关装置 Download PDF

Info

Publication number
WO2022068689A1
WO2022068689A1 PCT/CN2021/120238 CN2021120238W WO2022068689A1 WO 2022068689 A1 WO2022068689 A1 WO 2022068689A1 CN 2021120238 W CN2021120238 W CN 2021120238W WO 2022068689 A1 WO2022068689 A1 WO 2022068689A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppdu
frequency
communication device
eht
domain
Prior art date
Application number
PCT/CN2021/120238
Other languages
English (en)
French (fr)
Inventor
刘辰辰
淦明
于健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022068689A1 publication Critical patent/WO2022068689A1/zh
Priority to US18/186,225 priority Critical patent/US20230231752A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method for transmitting a physical layer protocol data unit PPDU and a related device.
  • IEEE 802.11ax The Institute of Electrical and Electronics Engineers (IEEE) 802.11ax standard has become difficult to Meet user needs in terms of high throughput, low jitter, and low latency. Therefore, there is an urgent need to develop the next-generation wireless local area networks (WLAN) technology, namely the IEEE 802.11be standard or the extremely high throughput (EHT) standard or the Wi-Fi7 standard. Different from IEEE 802.11ax, IEEE 802.11be will adopt ultra-large bandwidth, such as 320MHz, to achieve ultra-high transmission rate and support scenarios of ultra-dense users.
  • WLAN wireless local area networks
  • EHT extremely high throughput
  • the 320MHz bandwidth can be divided into multiple frequency domain slices with non-overlapping frequencies.
  • the signaling information of the users (or stations) parked on the frequency domain slice is transmitted within the domain slice.
  • the 80MHz frequency domain slice only the signaling information of the users docked on the 80MHz frequency domain slice is transmitted.
  • Different 80MHz frequency domain slices have different SIG domains, which are used to transmit different 80MHz frequency domain slices. Signaling information of the docked user.
  • FIG. 1 is a schematic diagram of an aggregated PPDU.
  • a sub-PPDU (sub-PPDU1) in EHT format is transmitted on an 80MHz frequency domain slice
  • a sub-PPDU (sub-PPDU2) in high efficiency (HE) format is transmitted on a 160MHz frequency domain slice.
  • the 80MHz frequency domain slice and the 160MHz frequency domain slice do not overlap in frequency.
  • the EHT standard also allows the transmission of PPDUs in a multi-frequency-domain slice transmission mode, that is, simultaneous/parallel transmission of multiple PPDUs of the same standard on multiple different frequency-domain slices. For example, a PPDU in an EHT format is transmitted on one 80MHz frequency domain slice, and a PPDU in the same format, that is, a PPDU in the EHT format, is transmitted on another 80MHz frequency domain slice.
  • each frequency-domain fragment can be Indicate different bandwidths, so when a station receives a PPDU on one of the frequency domain slices, how to correctly determine the short training field (short training field, STF) and long training field (LTF) on the frequency domain slice ) to ensure the correctness of the subsequent data analysis stage, which has become an urgent problem to be solved.
  • STF short training field
  • LTF long training field
  • the embodiments of the present application provide a PPDU transmission method and a related device, which can correctly determine the STF corresponding to the frequency-domain slice where the receiving end is docked when the transmitting end sends an aggregated PPDU or adopts a multi-frequency-domain fragmentation transmission mode and the rotation coefficient of the LTF, thereby improving the accuracy of the analysis at the receiving end.
  • the present application provides a PPDU transmission method, the method includes: a first communication device generates and sends a first PPDU, where the first PPDU is a sub-PPDU in an aggregated PPDU or a PPDU using a multi-frequency domain fragmentation transmission mode
  • the first PPDU carries rotation coefficient indication information, and the rotation coefficient indication information is used to indicate that at least one of the EHT-STF and EHT-LTF corresponding to the frequency domain slice of the first PPDU is transmitted.
  • the rotation factor for a field.
  • the multi-PPDU transmission method can also be described as: the first communication device generates the signaling field of the PPDU, and sends the signaling field on the first frequency domain slice.
  • the channel bandwidth for transmitting the PPDU includes at least two frequency-domain slices, the at least two frequency-domain slices include the first frequency-domain slice, and the signaling field carries rotation coefficient indication information, and the rotation coefficient indication information is used for It is used to indicate the rotation coefficient of at least one field in the EHT-STF and the EHT-LTF corresponding to the transmission of the first frequency domain slice.
  • the above-mentioned first communication device is an access point device.
  • the above-mentioned rotation coefficient indication information is carried in the EHT-SIG or the universal signaling field (universal SIG, U-SIG) of the above-mentioned first PPDU.
  • the above signaling field is EHT-SIG or U-SIG.
  • an indication of a rotation coefficient is added to the U-SIG or EHT-SIG to indicate that the aggregated PPDU or the PPDU in the multi-frequency domain slice transmission mode is transmitted in a frequency domain slice corresponding to one frequency domain slice.
  • the coefficients are implemented by demodulating the data field.
  • the present application provides a PPDU transmission method.
  • the method includes: a second communication device receives a first PPDU, and analyzes the first PPDU to obtain a frequency domain for transmitting the first PPDU indicated by rotation coefficient indication information
  • the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain fragmentation in the PPDU in the multi-frequency-domain fragmentation transmission mode , the rotation coefficient indication information is carried in the first PPDU, and the rotation coefficient indication information is used to indicate the rotation coefficient of at least one field in the EHT-STF and EHT-LTF corresponding to the frequency domain slice of the transmission of the first PPDU.
  • the PPDU transmission method can also be described as: the second communication device receives the signaling field of the PPDU on the first frequency domain slice, and parses the signaling field to obtain the corresponding signal field of the first frequency domain slice.
  • the channel bandwidth for transmitting the PPDU includes at least two frequency-domain slices, the at least two frequency-domain slices include the first frequency-domain slice, and the signaling field carries rotation coefficient indication information, and the rotation coefficient indication information It is used to indicate the rotation coefficient of at least one field in the EHT-STF and the EHT-LTF corresponding to the first frequency domain slice.
  • the above-mentioned second communication device is a site device.
  • the frequency-domain slice on which the second communication device stops is the frequency-domain slice for transmitting the above-mentioned first PPDU.
  • the above-mentioned first frequency domain slice is the frequency domain slice where the second communication device is docked.
  • the above-mentioned rotation coefficient indication information is carried in the EHT-SIG or U-SIG of the above-mentioned first PPDU.
  • the above signaling field is EHT-SIG or U-SIG.
  • the present application provides a communication apparatus, where the communication apparatus may be a first communication device or a chip in the first communication device, such as a Wi-Fi chip.
  • the communication device includes: a processing unit configured to generate a first PPDU, where the first PPDU carries rotation coefficient indication information, where the rotation coefficient indication information is used to indicate the EHT-STF corresponding to the frequency domain slice for transmitting the first PPDU and the rotation coefficient of at least one field in the EHT-LTF, the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU of the multi-frequency-domain slice transmission mode; the transceiver unit is used to send the first PPDU.
  • the function of the above processing unit can also be described as: a signaling field for generating a PPDU, wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain slices, and the at least two frequency domain slices include the first A frequency domain slice, the signaling field carries rotation coefficient indication information, and the rotation coefficient indication information is used to indicate the transmission of the rotation coefficient of at least one field of the EHT-STF and EHT-LTF corresponding to the first frequency domain slice ;
  • the function of the above-mentioned transceiver unit can also be described as: sending the signaling field on the first frequency domain slice.
  • the above-mentioned rotation coefficient indication information is carried in the EHT-SIG or U-SIG of the above-mentioned first PPDU.
  • the above signaling field is EHT-SIG or U-SIG.
  • the present application provides a communication apparatus, where the communication apparatus may be a second communication device or a chip in the second communication device, such as a Wi-Fi chip.
  • the communication device includes: the transceiver unit, configured to receive a first PPDU, where the first PPDU carries rotation coefficient indication information, where the rotation coefficient indication information is used to indicate the EHT-corresponding frequency domain slice for transmitting the first PPDU.
  • the rotation coefficient of at least one field in the STF and the EHT-LTF, the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode; the processing unit is used for The first PPDU is parsed to obtain the rotation coefficient of at least one field of the EHT-STF and the EHT-LTF corresponding to the frequency domain slice of the transmission of the first PPDU indicated by the rotation coefficient indication information.
  • the function of the above-mentioned transceiver unit can also be described as: receiving the signaling field of the PPDU on the first frequency domain slice, wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain slices, the at least two frequency domain slices.
  • the domain slice includes the first frequency domain slice, and the signaling field carries rotation coefficient indication information, and the rotation coefficient indication information is used to indicate at least one of the EHT-STF and EHT-LTF corresponding to the first frequency domain slice.
  • the rotation coefficient of one field; the function of the above processing unit can also be described as: parse the signaling field to obtain the rotation coefficient of at least one field in the EHT-STF and EHT-LTF corresponding to the first frequency domain slice.
  • the frequency domain slice on which the communication device stops is the frequency domain slice for transmitting the above-mentioned first PPDU.
  • the above-mentioned first frequency domain slice is the frequency domain slice where the communication device is docked.
  • the above-mentioned rotation coefficient indication information is carried in the EHT-SIG or U-SIG of the above-mentioned first PPDU.
  • the above signaling field is EHT-SIG or U-SIG.
  • the present application provides a PPDU transmission method, the method comprising: a first communication device generating and sending a first PPDU, where the first PPDU is a sub-PPDU in an aggregated PPDU or a PPDU using a multi-frequency domain fragmentation transmission mode Among the PPDUs on one frequency domain slice, the HE-STF, HE-LTF and data fields corresponding to the frequency domain slice of the first PPDU have the same rotation coefficient, or the EHT corresponding to the frequency domain slice of the first PPDU - The rotation coefficients of the STF, EHT-LTF, and data fields are the same.
  • the sub-PPDU may be an EHT PPDU or a HE PPDU.
  • the frequency-domain fragmentation of the first PPDU herein refers to the frequency-domain fragmentation for transmitting the first PPDU.
  • the above-mentioned first communication device is an access point device.
  • this scheme rotates the HE/EHT-STF, HE/EHT-LTF and data fields in the aggregated PPDU by the same phase (or multiplied by the same rotation coefficient) according to the frequency domain slice, and can be considered at the transmitting end by considering The rotation coefficient of the overall bandwidth to reduce the PAPR of the STF and LTF within the overall bandwidth, and also to improve the correctness of the data field parsing by the receiver, because the STF, LTF, and data fields are rotated by the same phase (or multiplied by the same rotation factor), will not affect the demodulation of the data field.
  • the embodiment of the present application does not need to add signaling information to the PPDU to indicate the rotation coefficient, which can reduce signaling overhead.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the HE-STF, HE-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the EHT-STF, EHT-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • the first communication device may use the corresponding rotation coefficient to process the HE-STF, HE-LTF and the data field, or the first communication device (sending end) may use the corresponding rotation coefficient to process the EHT-STF, EHT -LTF and data fields.
  • the HE-STF, the HE-LTF and the frequency domain signal corresponding to the data field are rotated by a specified phase according to the rotation coefficient.
  • the signaling field of the first PPDU (here refers to the signaling field before the HE-STF) and the following HE-STF, HE-LTF and data fields have different rotation coefficients.
  • the signaling field of the first PPDU (here refers to the signaling field before the EHT-STF) and the following EHT-STF, EHT-LTF and data fields have different rotation coefficients.
  • the rotation coefficients under different bandwidths are determined by the standard or the sender (ie the first communication device) from the signal on the overall bandwidth, and the sender (ie the first communication device) generates and transmits the rotated phase PPDU ( i.e. the first PPDU).
  • the present application provides a PPDU transmission method.
  • the method includes: a second communication device receives a first PPDU, and parses the first PPDU.
  • the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in a PPDU that adopts the multi-frequency-domain slice transmission mode, and the HE-STF corresponding to the frequency-domain slice of the first PPDU, HE-STF, HE -
  • the rotation coefficients of the LTF and the data field are the same, or the rotation coefficients of the EHT-STF, the EHT-LTF, and the data field corresponding to the frequency domain slice of the first PPDU are the same.
  • the sub-PPDU may be an EHT PPDU or a HE PPDU.
  • the second communication device obtains a channel estimation result by using HE/EHT-LTF, and the channel estimation result includes the phase rotation information corresponding to each frequency domain slice, and then uses the channel estimation result.
  • the channel estimation result demodulates the corresponding data field. Because the channel estimation information (such as HE/EHT-LTF) and the data field contain the same rotation coefficient and are rotated by the same phase, they can cancel each other out during the demodulation process, thereby restoring the original data.
  • the original data here can be understood as the data before modulation by the transmitting end (ie, the first communication device).
  • the above-mentioned second communication device is a site device.
  • the frequency-domain slice on which the second communication device stops is the frequency-domain slice for transmitting the above-mentioned first PPDU.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the HE-STF, HE-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the EHT-STF, EHT-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • the signaling field of the first PPDU (here refers to the signaling field before the HE-STF) and the following HE-STF, HE-LTF and data fields have different rotation coefficients.
  • the signaling field of the first PPDU (here refers to the signaling field before the EHT-STF) and the following EHT-STF, EHT-LTF and data fields have different rotation coefficients.
  • the rotation coefficients under different bandwidths are specified by the standard or determined by the transmitting end (ie, the first communication device) from the signals on the overall bandwidth.
  • the present application provides a communication apparatus, where the communication apparatus may be a first communication device or a chip in the first communication device, such as a Wi-Fi chip.
  • the communication device includes: a processing unit configured to generate a first PPDU, where the first PPDU is a sub-PPDU in an aggregated PPDU or a PPDU on a frequency-domain slice in a PPDU in a multi-frequency-domain slice transmission mode, the first PPDU
  • the HE-STF, HE-LTF and the rotation coefficient of the data field corresponding to the frequency-domain fragmentation are the same, or the corresponding EHT-STF, EHT-LTF, and the rotation coefficient of the data field of the frequency-domain fragmentation of the first PPDU
  • the sub-PPDU is an EHT PPDU or a HE PPDU.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the HE-STF, HE-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the EHT-STF, EHT-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • the signaling field of the first PPDU (here refers to the signaling field before the HE-STF) and the following HE-STF, HE-LTF and data fields have different rotation coefficients.
  • the signaling field of the first PPDU (here refers to the signaling field before the EHT-STF) and the following EHT-STF, EHT-LTF and data fields have different rotation coefficients.
  • the rotation coefficients under different bandwidths are determined by the standard or the sender (ie the first communication device) from the signal on the overall bandwidth, and the sender (ie the first communication device) generates and transmits the rotated phase PPDU ( i.e. the first PPDU).
  • the present application provides a communication apparatus, where the communication apparatus may be a second communication device or a chip in the second communication device, such as a Wi-Fi chip.
  • the communication device includes: a transceiver unit for receiving a first PPDU, where the first PPDU is a sub-PPDU in an aggregated PPDU or a PPDU on a frequency-domain slice in a PPDU in a multi-frequency-domain slice transmission mode, the first PPDU
  • the HE-STF, HE-LTF and the rotation coefficient of the data field corresponding to the frequency-domain fragmentation are the same, or the corresponding EHT-STF, EHT-LTF, and the rotation coefficient of the data field of the frequency-domain fragmentation of the first PPDU
  • the sub-PPDU may be an EHT PPDU or a HE PPDU.
  • the above processing unit is specifically configured to: obtain a channel estimation result by using HE/EHT-LTF, the channel estimation result contains phase rotation information corresponding to each frequency domain slice, and use the channel estimation result to demodulate the corresponding phase rotation information. data field.
  • the frequency domain slice on which the communication device stops is the frequency domain slice for transmitting the above-mentioned first PPDU.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the HE-STF, HE-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the EHT-STF, EHT-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • the signaling field of the first PPDU (here refers to the signaling field before the HE-STF) and the following HE-STF, HE-LTF and data fields have different rotation coefficients.
  • the signaling field of the first PPDU (here refers to the signaling field before the EHT-STF) and the following EHT-STF, EHT-LTF and data fields have different rotation coefficients.
  • the rotation coefficients under different bandwidths are specified by the standard or determined by the transmitting end (ie, the first communication device) from the signals on the overall bandwidth.
  • the present application provides a PPDU transmission method, the method includes: a first communication device generates and sends a first PPDU, where the first PPDU carries a transmission bandwidth of an aggregated PPDU or a PPDU in a multi-frequency domain fragmented transmission mode , the transmission bandwidth includes at least two frequency-domain slices, and the first PPDU is a sub-PPDU transmitted on any frequency-domain slice of the at least two frequency-domain slices in the aggregated PPDU or a sub-PPDU that adopts a multi-frequency-domain slice transmission mode A PPDU transmitted on any frequency domain slice of the at least two frequency domain slices in the PPDU.
  • the PPDU transmission method can also be described as: the first communication device generates a signaling field of the PPDU, and sends the signaling field on the first frequency domain slice.
  • the channel bandwidth for transmitting the PPDU includes at least two frequency-domain slices, the at least two frequency-domain slices include the first frequency-domain slice, and the signaling field carries the channel bandwidth.
  • the above-mentioned first communication device is an access point device.
  • the above-mentioned transmission bandwidth is carried in the EHT-SIG or U-SIG of the above-mentioned first PPDU.
  • the above signaling field is EHT-SIG or U-SIG.
  • the EHT-SIG or U-SIG also carries the bandwidth of the frequency domain slice (or the above-mentioned first frequency domain slice) for transmitting the first PPDU.
  • the present application provides a PPDU transmission method, the method comprising: a second communication device receiving a first PPDU, and determining a frequency domain slice where the second communication device is docked and a transmission bandwidth carried in the first PPDU.
  • the first PPDU carries the transmission bandwidth of the aggregated PPDU or the PPDU in the multi-frequency-domain fragmentation transmission mode
  • the transmission bandwidth includes at least two frequency-domain fragments
  • the first PPDU is the at least two frequency-domain fragments in the aggregated PPDU.
  • the PPDU transmission method can also be described as: the second communication device receives the signaling field of the PPDU on the first frequency domain slice, and according to the channel bandwidth and the first frequency domain slice carried in the signaling field , and determine the rotation coefficient of at least one field in the EHT-STF and the EHT-LTF corresponding to the first frequency domain slice.
  • the channel bandwidth for transmitting the PPDU includes at least two frequency-domain slices, the at least two frequency-domain slices include the first frequency-domain slice, and the signaling field carries the channel bandwidth.
  • the above-mentioned second communication device is a site device.
  • the frequency-domain slice on which the second communication device stops is the frequency-domain slice for transmitting the above-mentioned first PPDU.
  • the frequency domain slice where the second communication device is docked is the above-mentioned first frequency domain slice.
  • the above-mentioned transmission bandwidth is carried in the EHT-SIG or U-SIG of the above-mentioned first PPDU.
  • the above signaling field is EHT-SIG or U-SIG.
  • the EHT-SIG or U-SIG also carries the bandwidth of the frequency domain slice (or the above-mentioned first frequency domain slice) for transmitting the first PPDU.
  • an indication of the transmission bandwidth is added to the U-SIG or EHT-SIG to indicate the transmission bandwidth (or channel bandwidth, or overall bandwidth) for transmitting aggregated PPDUs or PPDUs using the multi-frequency domain fragmentation transmission mode, so that the receiving The terminal determines the rotation coefficients of the EHT-STF and EHT-LTF corresponding to the frequency domain segment where the receiving terminal is parked according to the position of the frequency domain segment where the receiving terminal is parked on the transmitting bandwidth.
  • the PAPR of the STF and LTF fields in the overall bandwidth can be reduced by considering the rotation coefficient of the overall bandwidth at the transmitting end, and the correctness of the parsing of the data field at the receiving end can also be improved, because the correct rotation coefficient is used for the data field. demodulated.
  • the present application provides a communication apparatus, where the communication apparatus may be a first communication device or a chip in the first communication device, such as a Wi-Fi chip.
  • the communication device includes: the processing unit, configured to generate a first PPDU, where the first PPDU carries a transmission bandwidth of an aggregated PPDU or a PPDU using a multi-frequency-domain fragmentation transmission mode, and the transmission bandwidth includes at least two frequency-domain fragments , the first PPDU is a sub-PPDU transmitted on any frequency-domain slice of the at least two frequency-domain slices in the aggregated PPDU or the at least two frequency-domain slices in the PPDU using the multi-frequency-domain slice transmission mode The PPDU transmitted on any frequency domain slice of ; the transceiver unit is used to send the first PPDU.
  • the function of the above processing unit can also be described as: generating a signaling field of a PPDU, wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain slices, and the at least two frequency domain slices include the first frequency domain. domain fragmentation, the signaling field carries the channel bandwidth; the function of the above-mentioned transceiver unit can also be described as: sending the signaling field on the first frequency domain fragmentation.
  • the above-mentioned transmission bandwidth is carried in the EHT-SIG or U-SIG of the above-mentioned first PPDU.
  • the above signaling field is EHT-SIG or U-SIG.
  • the EHT-SIG or U-SIG also carries the bandwidth of the frequency domain slice (or the above-mentioned first frequency domain slice) for transmitting the first PPDU.
  • the present application provides a communication apparatus, where the communication apparatus may be a second communication device or a chip in the second communication device, such as a Wi-Fi chip.
  • the communication device includes: the transceiver unit for receiving a first PPDU, where the first PPDU carries a transmission bandwidth of an aggregated PPDU or a PPDU using a multi-frequency-domain fragmentation transmission mode, and the transmission bandwidth includes at least two frequency-domain fragments , the first PPDU is a sub-PPDU transmitted on any frequency-domain slice of the at least two frequency-domain slices in the aggregated PPDU or the at least two frequency-domain slices in the PPDU using the multi-frequency-domain slice transmission mode The PPDU transmitted on any frequency-domain fragmentation of the The rotation coefficient of at least one field in the EHT-STF and EHT-LTF.
  • the function of the above-mentioned transceiver unit can also be described as: receiving the signaling field of the PPDU on the first frequency domain slice, wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain slices, the at least two frequency domain slices.
  • the domain slice includes the first frequency domain slice, and the signaling field carries the channel bandwidth;
  • the function of the processing unit can also be described as: according to the channel bandwidth and the first frequency domain slice carried in the signaling field , and determine the rotation coefficient of at least one field in the EHT-STF and the EHT-LTF corresponding to the first frequency domain slice.
  • the frequency domain slice on which the communication device stops is the frequency domain slice for transmitting the above-mentioned first PPDU.
  • the frequency domain slice where the communication device stops is the above-mentioned first frequency domain slice.
  • the above-mentioned transmission bandwidth is carried in the EHT-SIG or U-SIG of the above-mentioned first PPDU.
  • the above signaling field is EHT-SIG or U-SIG.
  • the EHT-SIG or U-SIG also carries the bandwidth of the frequency domain slice (or the above-mentioned first frequency domain slice) for transmitting the first PPDU.
  • the present application provides a PPDU transmission method, the method comprising: a second communication device according to the frequency-domain slice where the second communication device is docked and the difference between each frequency-domain slice and a rotation coefficient in a 320MHz bandwidth According to the corresponding relationship, the rotation coefficient of at least one field in the EHT-STF and the EHT-LTF corresponding to the frequency-domain slice where the second communication device is docked is determined.
  • the frequency-domain slice at which the receiving end is docked can be determined without adding additional indications in the signaling field.
  • the corresponding rotation coefficients of EHT-STF and EHT-LTF can not only save signaling overhead, but also consider the rotation coefficient of the maximum bandwidth, thereby reducing the PAPR of the STF and LTF fields.
  • the present application provides a communication apparatus, where the communication apparatus may be a second communication device or a chip in the second communication device, such as a Wi-Fi chip.
  • the communication device includes: a processing unit configured to determine the frequency domain slice where the communication device is docked according to the corresponding relationship between the frequency domain slice at which the communication device is docked and each frequency domain slice in the 320MHz bandwidth and the rotation coefficient.
  • the present application provides a PPDU transmission method, the method comprising: a first communication device generates and sends an HE PPDU, where the HE PPDU is a sub-PPDU in an aggregated PPDU or a PPDU in a multi-frequency domain fragmentation transmission mode A PPDU on a frequency domain slice.
  • the first communication device may be an EHT standard device.
  • the present application provides a PPDU transmission method, the method comprising: a second communication device receives an HE PPDU on a frequency domain slice where the second communication device is docked, and parses the received HE PPDU, and the first The rotation coefficients of the HE-STF and the HE-LTF corresponding to the frequency domain slices where the two communication devices are docked are both 1.
  • the HE PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on one frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode.
  • the second communication device is an 802.11ax standard device.
  • This solution restricts the 802.11ax standard equipment to only dock in the frequency domain slice corresponding to the rotation factor of 1, which does not affect the reception of the old standard equipment, thereby supporting the new feature of 802.11be physical layer PPDU aggregation.
  • the present application provides a communication apparatus, where the communication apparatus may be a first communication device or a chip in the first communication device, such as a Wi-Fi chip.
  • the communication device includes: a processing unit for generating a HE PPDU, where the HE PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU in a multi-frequency-domain slice transmission mode; a transceiver unit for sending the HE PPDU.
  • the present application provides a communication apparatus, where the communication apparatus may be a second communication device or a chip in the second communication device, such as a Wi-Fi chip.
  • the communication device includes: a transceiver unit for receiving HE PPDUs on the frequency domain slice where the communication device is parked, and the rotation coefficients of the HE-STF and the HE-LTF corresponding to the frequency domain slice where the communication device is parked are both 1;
  • the processing unit is used to parse the received HE PPDU.
  • the HE PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on one frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode.
  • the present application provides a PPDU transmission method, the method comprising: the rotation coefficients of the HE-STF and the HE-LTF corresponding to the frequency domain slice where the second communication device is docked are not 1, and the first communication device pairs The rotation coefficients of the STF and LTF corresponding to all the frequency-domain slices of the transmission aggregated PPDU or the PPDU using the multi-frequency-domain slice transmission mode are respectively phase-rotated, so that the HE corresponding to the frequency-domain slice where the second communication device is docked -The rotation coefficients of both STF and HE-LTF become 1; the first communication device generates and sends an HE PPDU, which is a sub-PPDU in the aggregated PPDU or a frequency domain in a PPDU that adopts a multi-frequency domain fragmentation transmission mode PPDUs on a fragment.
  • the first communication device may be an EHT standard device.
  • the second communication device is an 802.11ax standard device.
  • This scheme multiplies the rotation coefficients corresponding to all frequency-domain slices (or channel bandwidths) of the aggregated PPDU or PPDU in the multi-frequency-domain slice transmission mode by -1, so that the second communication device stops the frequency-domain slices.
  • the rotation coefficients of the corresponding HE-STF and HE-LTF both become 1, which can neither affect the PAPR in the channel bandwidth nor the reception of the old standard equipment.
  • the present application provides a PPDU transmission method, the method comprising: a second communication device receives an HE PPDU on a frequency domain slice where the second communication device is docked, and parses the received HE PPDU, the The HE PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on one frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode.
  • the second communication device is an 802.11ax standard device.
  • the present application provides a communication apparatus, where the communication apparatus may be a first communication device or a chip in the first communication device, such as a Wi-Fi chip.
  • the communication device includes: a processing unit configured to aggregate PPDUs for transmission or adopt multi-frequency-domain slices when the rotation coefficients of the HE-STF and HE-LTF corresponding to the frequency-domain slices where the second communication device is docked are not 1
  • the rotation coefficients of the STF and LTF corresponding to all the frequency-domain slices of the PPDU in the transmission mode are phase-rotated respectively, so that the rotation coefficients of the HE-STF and the HE-LTF corresponding to the frequency-domain slices where the second communication device is docked are both becomes 1;
  • the processing unit is also used to generate a HE PPDU, which is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU that adopts the multi-frequency-domain slice transmission mode; the transcei
  • the present application provides a communication apparatus, where the communication apparatus may be a second communication device or a chip in the second communication device, such as a Wi-Fi chip.
  • the communication device includes: a transceiver unit for receiving a HE PPDU on the frequency domain slice where the communication device is parked, where the HE PPDU is a sub-PPDU in the aggregated PPDU or a frequency domain slice in a PPDU that adopts a multi-frequency domain slice transmission mode.
  • On-chip PPDU processing unit for parsing the received HE PPDU.
  • the present application provides a communication apparatus, specifically a first communication device, including a processor and a transceiver.
  • the processor is configured to generate a first PPDU, where the first PPDU carries rotation coefficient indication information, where the rotation coefficient indication information is used to indicate the frequency domain slice corresponding to the transmission of the first PPDU
  • the rotation coefficient of at least one field in the EHT-STF and the EHT-LTF, the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain fragmentation in the PPDU in the multi-frequency-domain fragmentation transmission mode; the transceiver , used to send the first PPDU.
  • the processor is configured to generate a first PPDU, where the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode,
  • the HE-STF, HE-LTF and data fields corresponding to the frequency-domain slice of the first PPDU have the same rotation coefficient, or the EHT-STF, EHT-LTF, and data corresponding to the frequency-domain slice of the first PPDU
  • the rotation coefficients of the fields are the same; the transceiver is used to transmit the first PPDU.
  • the processor is configured to generate a first PPDU, where the first PPDU carries a transmission bandwidth of an aggregated PPDU or a PPDU that adopts a multi-frequency domain fragmentation transmission mode, and the transmission bandwidth includes at least two frequencies.
  • Domain fragmentation the first PPDU is a sub-PPDU transmitted on any frequency domain fragment of the at least two frequency domain fragments in the aggregated PPDU or the at least two frequency domain fragments in the PPDU using the multi-frequency domain fragmentation transmission mode.
  • the PPDU transmitted on any frequency domain slice of the domain slice; the transceiver is used to send the first PPDU.
  • the processor is configured to generate a HE PPDU, where the HE PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU that adopts the multi-frequency-domain slice transmission mode; the transceiving The device is used to send the HE PPDU.
  • the processor is configured to, when the rotation coefficients of the HE-STF and the HE-LTF corresponding to the frequency-domain slice on which the second communication device is docked is not 1, perform the transmission of the aggregated PPDU or the HE-LTF.
  • the rotation coefficients of the STF and LTF corresponding to all the frequency-domain slices of the PPDU in the multi-frequency-domain slice transmission mode are phase-rotated respectively, so that the HE-STF and HE corresponding to the frequency-domain slices where the second communication device is docked are rotated.
  • the processor is also used to generate a HE PPDU, the HE PPDU is a sub-PPDU in the aggregated PPDU or a frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode PPDU; the transceiver, used to send the HE PPDU.
  • the first communication device may further include a memory, which is used for coupling with the processor, and which stores necessary program instructions and data of the AP MLD.
  • the present application provides a communication apparatus, in particular a second communication device, including a processor and a transceiver.
  • the transceiver is configured to receive a first PPDU, where the first PPDU carries rotation coefficient indication information, where the rotation coefficient indication information is used to indicate the frequency domain slice corresponding to the transmission of the first PPDU
  • the rotation coefficient of at least one field in the EHT-STF and the EHT-LTF, the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain fragmentation in the PPDU of the multi-frequency-domain fragmented transmission mode; the processor , which is used to parse the first PPDU to obtain the rotation coefficient of at least one field in the EHT-STF and EHT-LTF corresponding to the frequency domain slice of the transmission of the first PPDU indicated by the rotation coefficient indication information.
  • the transceiver is configured to receive a first PPDU, where the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode,
  • the HE-STF, HE-LTF and data fields corresponding to the frequency-domain slice of the first PPDU have the same rotation coefficient, or the EHT-STF, EHT-LTF, and data corresponding to the frequency-domain slice of the first PPDU
  • the rotation coefficients of the fields are the same; the processor is used for parsing the first PPDU.
  • the transceiver is configured to receive a first PPDU, where the first PPDU carries a transmission bandwidth of an aggregated PPDU or a PPDU that adopts a multi-frequency domain fragmentation transmission mode, and the transmission bandwidth includes at least two frequencies. Domain fragmentation, the first PPDU is a sub-PPDU transmitted on any frequency domain fragment of the at least two frequency domain fragments in the aggregated PPDU or the at least two frequency domain fragments in the PPDU using the multi-frequency domain fragmentation transmission mode.
  • the processor is configured to determine the frequency at which the communication device is parked according to the frequency domain slice at which the communication device is parked and the corresponding relationship between each frequency domain slice in the 320MHz bandwidth and the rotation coefficient.
  • the transceiver is configured to receive the HE PPDU on the frequency domain slice where the communication device is parked, and the rotation coefficients of the HE-STF and HE-LTF corresponding to the frequency domain slice where the communication device is parked Both are 1, and the HE PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode; the processor is used to parse the received HE PPDU.
  • the transceiver is configured to receive a HE PPDU on the frequency domain slice where the communication device is docked, where the HE PPDU is a sub-PPDU in an aggregated PPDU or a PPDU in a multi-frequency domain slice transmission mode.
  • the processor is used to parse the received HE PPDU.
  • the second communication device may further include a memory, which is used for coupling with the processor, and which stores necessary program instructions and data of the AP MLD.
  • the present application provides a communication device, the communication device can exist in the form of a chip, and the structure of the communication device includes an input and output interface and a processing circuit.
  • the processing circuit is configured to generate a first PPDU, where the first PPDU carries rotation coefficient indication information, where the rotation coefficient indication information is used to indicate the frequency domain slice corresponding to the transmission of the first PPDU
  • the rotation coefficient of at least one field in the EHT-STF and EHT-LTF, the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain fragmentation in the PPDU of the multi-frequency-domain fragmentation transmission mode; the input and output The interface is used for transmitting the first PPDU to the transceiver for sending.
  • the processing circuit is configured to generate a first PPDU, where the first PPDU carries a transmission bandwidth of an aggregated PPDU or a PPDU that adopts a multi-frequency domain fragmentation transmission mode, and the transmission bandwidth includes at least two frequencies.
  • Domain fragmentation the first PPDU is a sub-PPDU transmitted on any frequency domain fragment of the at least two frequency domain fragments in the aggregated PPDU or the at least two frequency domain fragments in the PPDU using the multi-frequency domain fragmentation transmission mode.
  • the PPDU transmitted on any frequency domain slice of the domain slice; the input and output interface is used to transmit the first PPDU to the transceiver for sending.
  • the processing circuit is used to generate a HE PPDU, where the HE PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode; the input The output interface is used to transmit the HE PPDU to the transceiver for transmission.
  • the processing circuit is configured to, in the case where the rotation coefficients of the HE-STF and the HE-LTF corresponding to the frequency-domain slice where the second communication device is docked is not 1, transmit the aggregated PPDU or the HE-LTF.
  • the rotation coefficients of the STF and LTF corresponding to all the frequency-domain slices of the PPDU in the multi-frequency-domain slice transmission mode are phase-rotated respectively, so that the HE-STF and HE corresponding to the frequency-domain slices where the second communication device is docked are rotated.
  • the processing circuit is also used to generate a HE PPDU, which is a sub-PPDU in the aggregated PPDU or a frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode PPDU; the input and output interface is used to transmit the HE PPDU to the transceiver for transmission.
  • the present application provides a communication device, the communication device can exist in the form of a chip, and the structure of the communication device includes an input and output interface and a processing circuit.
  • the input and output interface is used to receive the first PPDU received by the receiver, the first PPDU carries rotation coefficient indication information, and the rotation coefficient indication information is used to indicate the transmission of the first PPDU.
  • the rotation coefficient of at least one field in the EHT-STF and EHT-LTF corresponding to the frequency-domain fragmentation, and the first PPDU is a sub-PPDU in the aggregated PPDU or a frequency-domain fragmentation in the PPDU in the multi-frequency-domain fragmentation transmission mode
  • the PPDU; the processing circuit is used to parse the first PPDU, and obtain at least one field in the EHT-STF and the EHT-LTF corresponding to the frequency domain fragmentation of the transmission of the first PPDU indicated by the rotation coefficient indication information. rotation factor.
  • the input and output interface is used to receive the first PPDU received by the receiver, and the first PPDU carries the transmission bandwidth of the aggregated PPDU or the PPDU using the multi-frequency domain fragmentation transmission mode.
  • the bandwidth includes at least two frequency-domain slices, and the first PPDU is a sub-PPDU transmitted on any frequency-domain slice of the at least two frequency-domain slices in the aggregated PPDU or the PPDU using a multi-frequency-domain slice transmission mode
  • the PPDU transmitted on any frequency domain slice of the at least two frequency domain slices in the The rotation coefficient of at least one field in the EHT-STF and the EHT-LTF corresponding to the frequency-domain slice where the communication device is docked.
  • the processing circuit is configured to determine the frequency at which the communication device is parked according to the frequency domain slice at which the communication device is parked and the corresponding relationship between each frequency domain slice in the 320MHz bandwidth and the rotation coefficient.
  • the input and output interface is used to receive the HE PPDU received by the receiver on the frequency domain slice where the communication device is parked, and the HE-STF and HE corresponding to the frequency domain slice where the communication device is parked -
  • the rotation coefficients of the LTF are all 1, and the HE PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode; the processing circuit is used for receiving the received PPDU.
  • HE PPDU for parsing.
  • the input and output interface is used to receive the HE PPDU received by the receiver on the frequency domain slice where the communication device is docked, and the HE PPDU is a sub-PPDU in the aggregated PPDU or adopts multiple frequency domain slices.
  • the present application provides a computer-readable storage medium, where program instructions are stored in the computer-readable storage medium, and when the program instructions are executed on a computer, the computer is made to execute the first aspect or the first aspect described above.
  • the second aspect, or the fifth aspect above, or the sixth aspect, above, or the ninth aspect, above, or the tenth aspect, above, or the thirteenth aspect, above, or the fifteenth aspect, above, or the sixteenth aspect, above, or the above The nineteenth aspect, or the method described in the twentieth aspect.
  • the present application provides a computer program product comprising program instructions, which, when run on a computer, enables the computer to execute the above-mentioned first aspect, or the above-mentioned second aspect, or the above-mentioned fifth aspect, or the above-mentioned first aspect
  • 1 is a schematic diagram of an aggregated PPDU
  • FIG. 2 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 3a is a schematic structural diagram of an access point provided by an embodiment of the present application.
  • 3b is a schematic structural diagram of a site provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the division of frequency-domain fragmentation in a 320 MHz channel provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of a PPDU using a multi-frequency domain fragmentation transmission mode provided by an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a signaling part of a PPDU provided by an embodiment of the present application.
  • Figure 7a is a schematic diagram of a frame structure of a PPDU in 802.11ac
  • Fig. 7b is a schematic diagram of signal transmission in the 80MHz bandwidth
  • FIG. 8 is a schematic flowchart of a PPDU transmission method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a frame structure of an EHT PPDU provided by an embodiment of the present application.
  • FIG. 10 is another schematic flowchart of a PPDU transmission method provided by an embodiment of the present application.
  • FIG. 11 is another schematic flowchart of a PPDU transmission method provided by an embodiment of the present application.
  • FIG. 12 is yet another schematic flowchart of a PPDU transmission method provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device 2 provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication apparatus 1000 provided by an embodiment of the present application.
  • system architecture of the PPDU transmission method provided by the embodiments of the present application. It is understandable that the system architecture described in the embodiments of the present application is to more clearly describe the technical solutions of the embodiments of the present application, and does not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the embodiment of the present application provides a PPDU transmission method, which can be applied to a wireless communication system.
  • the PPDU transmission method determines the corresponding STF and/or LTF rotation coefficients corresponding to the frequency-domain fragmentation of the transmission of the PPDU in the PPDU to determine the corresponding frequency-domain fragmentation of the receiving end.
  • the rotation coefficients of the STF and LTF are obtained, thereby improving the correctness of the analysis of the PPDU transmitted on the frequency domain slice by using the rotation coefficients.
  • the PPDU transmission method carries the transmission bandwidth of the aggregated PPDU or the PPDU in the multi-frequency-domain fragmentation transmission mode in the PPDU, so that the receiving end determines that the frequency-domain fragmentation that it docks is within the transmission bandwidth. Which position is used to determine the rotation coefficients of the STF and LTF corresponding to the frequency-domain slice where the receiver is docked, thereby improving the correctness of using the rotation coefficient to parse the PPDU transmitted on the frequency-domain slice.
  • the PPDU transmission method specifies the corresponding relationship between each frequency domain slice and the rotation coefficient in the 320MHz bandwidth in the standard protocol, so that the receiving end determines the STF and LTF corresponding to the frequency domain slice that it docks. The rotation coefficient is used to improve the accuracy of parsing the PPDU transmitted on the frequency domain slice by using the rotation coefficient.
  • the wireless communication system may be a wireless local area network or a cellular network, and the PPDU transmission method may be implemented by a communication device in the wireless communication system or a chip or processor in the communication device.
  • the communication device may be an access point (AP) device or a station (station, STA) device; the communication device may also be a wireless communication device that supports parallel transmission of multiple links, for example, the communication device may It is called a multi-link device (MLD) or a multi-band device.
  • MLD multi-link device
  • multi-link devices have higher transmission efficiency and greater throughput.
  • the PPDU transmission method provided in this embodiment of the present application can be applied to a scenario where one node and one or more nodes perform data transmission; it can also be applied to uplink/downlink transmission of a single user, and uplink/downlink transmission of multiple users. ; can also be applied to device-to-device (D2D) transfers.
  • the above node may be either an AP or a STA.
  • the design of the LTF sequence in the frame structure of the PPDU needs to be designed according to the 802.11be carrier plan (tone plan).
  • the tone plan at 160MHz and 320MHz is the tone plan of 80MHz. repeat.
  • the following description takes the communication between the AP and the STA as an example.
  • FIG. 2 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system may include one or more APs (such as AP1 in FIG. 2 ) and one or more STAs (such as STA1 , STA2 and STA3 in FIG. 2 ).
  • the AP and the STA support a WLAN communication protocol, which may include IEEE 802.11be (or Wi-Fi 7, EHT protocol), and may also include IEEE 802.11ax, IEEE 802.11ac and other protocols.
  • the communication protocol may also include the next-generation protocol of IEEE 802.11be, and the like.
  • the device implementing the method of the present application may be an AP or STA in the WLAN, or a chip or a processing system installed in the AP or STA.
  • An access point (such as AP1 in FIG. 2 ) is a device with wireless communication functions, supports communication using the WLAN protocol, and has the function of communicating with other devices (such as stations or other access points) in the WLAN network, and of course, also Can have the ability to communicate with other devices.
  • an access point may be referred to as an access point station (AP STA).
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device. The device with these chips or processing system installed can be controlled by the chip or the processing system.
  • the AP in this embodiment of the present application is a device that provides services for the STA, and can support the 802.11 series of protocols.
  • the AP can be a communication entity such as a communication server, router, switch, and bridge; the AP can include various forms of macro base stations, micro base stations, relay stations, etc.
  • the AP can also be the chips and processing devices in these various forms of equipment. system, so as to implement the methods and functions of the embodiments of the present application.
  • a station (eg STA1 or STA2 in FIG. 2 ) is a device with wireless communication function, supports communication using WLAN protocol, and has the ability to communicate with other stations or access points in the WLAN network.
  • a station can be referred to as a non-access point station (non-access point station, non-AP STA).
  • STA is any user communication device that allows the user to communicate with the AP and then communicate with the WLAN.
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device. The devices on which these chips or processing systems are installed may implement the methods and functions of the embodiments of the present application under the control of the chips or processing systems.
  • the STA may be a tablet computer, a desktop computer, a laptop computer, a notebook computer, an Ultra-mobile Personal Computer (UMPC), a handheld computer, a netbook, a Personal Digital Assistant (PDA), a mobile phone, etc.
  • UMPC Ultra-mobile Personal Computer
  • PDA Personal Digital Assistant
  • the WLAN system can provide high-speed and low-latency transmission.
  • the WLAN system will be applied in more scenarios or industries, such as the Internet of Things industry, the Internet of Vehicles industry, or the Banking industry, used in corporate offices, stadiums and exhibition halls, concert halls, hotel rooms, dormitories, wards, classrooms, supermarkets, squares, streets, production workshops and warehousing, etc.
  • devices that support WLAN communication can be sensor nodes in smart cities (such as smart water meters, smart electricity meters, and smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, etc.) devices, display screens, TV sets, stereos, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment terminals (such as AR, VR and other wearable devices), smart devices in smart office (such as printers, projectors, Amplifiers, stereos, etc.), IoV devices in the Internet of Vehicles, infrastructure in daily life scenarios (such as vending machines, self-service navigation desks in supermarkets, self-service cash registers, self-service ordering machines, etc.), and large-scale sports And equipment for music venues, etc.
  • the specific forms of the STA and the AP are not limited in the embodiments of the present application, which are only exemplary descriptions herein.
  • FIG. 3a is a schematic structural diagram of an access point provided by an embodiment of the present application.
  • the AP may be multi-antenna or single-antenna.
  • the AP includes a physical layer (PHY) processing circuit and a medium access control (MAC) processing circuit, the physical layer processing circuit can be used to process physical layer signals, and the MAC layer processing circuit can be used to process MAC layer signal.
  • PHY physical layer
  • MAC medium access control
  • the 802.11 standard focuses on the PHY and MAC parts.
  • FIG. 3b is a schematic structural diagram of a site provided by an embodiment of the present application.
  • FIG. 3b shows a schematic diagram of a STA structure with a single antenna.
  • the STA may also have multiple antennas, and may be a device with more than two antennas.
  • the STA may include a PHY processing circuit and a MAC processing circuit
  • the physical layer processing circuit may be used for processing physical layer signals
  • the MAC layer processing circuit may be used for processing MAC layer signals.
  • channels are usually divided into master channels and slave channels, wherein slave channels may contain one or more sub-channels. If 20MHz is used as the basic bandwidth unit for division, the 320MHz channel can be divided into 16 sub-channels, which are sequentially numbered from channel 1 to channel 16, and each number represents a 20MHz channel.
  • a WLAN channel may include multiple frequency domain slices, wherein the bandwidth of each frequency domain slice may be 80MHz, 40MHz, 20MHz or 160MHz.
  • FIG. 4 is a schematic diagram of division of frequency domain slices in a 320 MHz channel provided by an embodiment of the present application. As shown in FIG. 4 , taking the bandwidth of the frequency domain slice as an example of 80 MHz, the 320 MHz channel shown in FIG. 4 can be divided into 4 frequency domain slices. Frequency domain slices may also be referred to as frequency slices, or simply slices or segments.
  • the multi-frequency-domain slice transmission mode refers to the simultaneous/parallel transmission of multiple PPDUs of the same standard on multiple frequency-domain slices.
  • FIG. 5 is a schematic diagram of a PPDU that adopts a multi-frequency domain fragmentation transmission mode provided by an embodiment of the present application. As shown in Figure 5, EHT PPDU1 is transmitted on one 80MHz frequency domain slice, and EHT PPDU2 is transmitted on another 80MHz frequency domain slice.
  • the signaling part in the high efficiency physical protocol data unit needs to be carried repeatedly on each 20MHz channel.
  • the bandwidth supported by users in the WLAN is extended from 160MHz to 320MHz, as the number of users (or sites) increases, the signaling information of multiple users still needs to be repeatedly sent on each 20MHz channel, which results in too many repeated signaling. , the signaling overhead is large, and the transmission efficiency is low.
  • an improved idea is to divide the entire large bandwidth (for example, 320MHz) into several segments, each segment stops at several sites, and each segment only transmits the Signaling information for the stations parked on the segment.
  • the above parking refers to a corresponding relationship determined or known by the system, which is semi-static, that is to say, the corresponding relationship between the frequency domain slice and one or more parked sites is configured. remain unchanged for a certain period of time.
  • the site described in this application is parked in a certain frequency domain slice, which may also be referred to as a station parked on (parking on) a certain frequency domain slice, or is located in or belongs to a certain frequency domain slice. site in the film.
  • FIG. 6 is a schematic structural diagram of a signaling part of a PPDU provided by an embodiment of the present application.
  • the extremely high throughput physical layer protocol data unit EHT PPDU
  • the extremely high throughput physical layer protocol data unit repeatedly carries the universal signaling field (universal SIG , U-SIG) U-SIG1
  • U-SIG1 includes the transmission parameters of the stations docked on this first segment, instead of including the transmission parameters of all stations in the entire 320MHz bandwidth in U-SIG1, it can reduce the The amount of U-SIG information transmitted on each 20MHz channel.
  • the EHT PPDU also repeatedly carries the two content channels of the EHT-SIG, EHT-SIG1_1 and EHT-SIG1_2, over 4 20MHz on the first segment.
  • EHT-SIG further includes other transmission parameters of the station parked on the first segment, for example, EHT-SIG1_1 includes part of the transmission parameters of the station parked on the first segment, and EHT-SIG1_2 includes the station parked on the first segment.
  • Another part of a segment transmits parameters. Therefore, on the one hand, it is not necessary to repeatedly send the same U-SIG on every 20MHz channel in the entire 320MHz bandwidth, but only need to repeatedly send the same U-SIG within each segment of the 320MHz bandwidth, and send the same U-SIG in different segments.
  • the U-SIG is not the same, which reduces the number of repetitions and also reduces the amount of information in the U-SIG.
  • it is also not necessary to repeatedly transmit the two content channels of EHT-SIG on the 320MHz bandwidth. It is only necessary to repeatedly transmit the two content channels of EHT-SIG within each segment of the 320MHz bandwidth.
  • the EHT-SIGs are different, thereby greatly reducing the signaling overhead, shortening the number of symbols occupied by the signaling part, and improving the transmission efficiency.
  • the STA parked on or operating on the first segment can parse and obtain its own data according to U-SIG1, EHT-SIG1_1 and EHT-SIG1_2.
  • U-SIG and EHT-SIG are both signaling fields in the PPDU.
  • the U-SIG is used to carry some common information, such as information indicating the version of the PPDU, information indicating the uplink/downlink, information indicating the frequency domain bandwidth of the PPDU, and puncturing indication information.
  • the EHT-SIG includes information indicating resource allocation, information indicating data demodulation, and the like.
  • the signaling field of the PPDU is transmitted on the frequency domain slice where the station is parked, and the data field in the PPDU can be allocated to the entire large bandwidth (such as 320MHz). ) at any position.
  • the station receives the signaling field on the frequency domain slice where it is docked, and according to the indication of the signaling field, receives the data field on one or more frequency domain slices, and the one or more frequency domain slices may include
  • the frequency domain shards where the station stops may also not include the frequency domain shards where the station stops.
  • the frequency-domain slicing referred to in this application as the station stops may be different from the frequency band range in which the station performs data transmission.
  • a station docks on the second frequency domain slice of the 320MHz channel shown in Figure 4, and the station receives U-SIG and EHT-SIG on this second frequency domain slice.
  • the station uses the 160MHz bandwidth to receive the data field according to the instructions of the U-SIG and EHT-SIG, and demodulates the data field according to the data demodulation information indicated by the EHT-SIG. tune.
  • FIG. 7a is a schematic diagram of a frame structure of a PPDU in 802.11ac.
  • an 802.11ac PPDU includes a legacy short training field (L-STF), a legacy long training field (L-LTF), and a legacy signaling field (L-STF).
  • L-STF legacy short training field
  • L-LTF legacy long training field
  • L-STF legacy signaling field
  • L-STF, L-LTF, and L-SIG can be understood as traditional preamble fields, which are used to ensure the coexistence of new equipment and traditional equipment.
  • L-STF, L-LTF, L-SIG and VHT-SIG-A in 802.11ac PPDU are duplicated and transmitted on each 20MHz channel, and use the same bandwidth as 40MHz in 802.11n
  • the rotation factor that is, the signal transmitted on the second 20MHz channel is multiplied by the rotation factor j, that is, the signal transmitted on the second 20MHz channel is rotated by 90 segments.
  • FIG. 7b is a schematic diagram of signal transmission in a bandwidth of 80MHz. As shown in Figure 7b, assuming that the signal transmitted on the first 20MHz channel is S20, the signal transmitted on the second 20MHz channel is (-1)*S20, and the third 20MHz channel and the fourth 20MHz channel are transmitted The signals are all (-1)*S20. Wherein, -128, -64, 0, 64, and 127 in Fig. 7b are subcarrier numbers.
  • the VHT-STF, VHT-LTF, VHT-SIG-B, and Data parts in the 802.11ac PPDU are transmitted over the entire 80MHz bandwidth, and do not need to be duplicated and transmitted on each 20MHz channel like the traditional preamble field.
  • PAPR peak to average power ratio
  • the data with subcarrier numbers from -128 to -65 is multiplied by a rotation factor of 1
  • the data with subcarrier numbers from -63 to -1 Multiply by a rotation factor (-1)
  • data with subcarrier numbers from 1 to 63 are multiplied by a rotation factor (-1)
  • data with subcarrier numbers from 65 to 127 are multiplied by a rotation factor (-1).
  • the rotation coefficients of the signals transmitted on the eight 20MHz channels are [1 -1 -1 -1 1 -1 -1 -1] respectively. If the bandwidth of the 802.11ac PPDU is a discontinuous 160MHz, such as two discontinuous 80MHz, each 80MHz uses the rotation coefficient when the bandwidth is 80MHz, that is, each 80MHz uses the rotation coefficient [1 -1 -1 -1] .
  • the rotation coefficient of each bandwidth of 802.11ac is used in 802.11ax.
  • rotation coefficient in this application can be used to modulate and demodulate the data part in the PPDU.
  • the EHT standard proposes an aggregated PPDU for physical layer packet aggregation, it also allows the transmission of PPDUs in a multi-frequency-domain fragmentation transmission mode, and the EHT standard allows frequency-domain fragmentation of different bandwidths, and the rotation coefficient is related to the bandwidth. Therefore, if the rotation coefficient at the transmitting end is not coordinated according to the entire bandwidth, the PAPR of the signal over the entire bandwidth will be higher.
  • the entire bandwidth of the aggregated PPDU of FIG. 1 is determined by the bandwidth of sub-PPDU1 (sub-PPDU1) and the bandwidth of sub-PPDU2 (sub-PPDU2).
  • composition that is, the sum of 80MHz and 160MHz is 240MHz;
  • the entire bandwidth of the PPDU in the multi-frequency domain fragmentation transmission mode in Figure 5 is composed of the bandwidth of EHT PPDU1 and the bandwidth of EHT PPDU2, that is, the sum of 80MHz and 80MHz is 160MHz. Therefore, for the sender, if the rotation coefficient is not coordinated according to the entire 240MHz bandwidth, but modulates the sub-PPDU1 with the rotation coefficient of the 80MHz bandwidth, or modulates the sub-PPDU2 with the rotation coefficient of the 160MHz bandwidth, it may cause the whole
  • the PAPR of the 240MHz bandwidth signal is higher. In other words, because each frequency domain slice in the EHT standard can indicate different bandwidths, if the rotation coefficients between different frequency domain slices are not coordinated as a whole, the PAPR of the entire 240MHz bandwidth will be high, thus affecting the communication performance.
  • the stations docked in different frequency domain slices and the stations docked in the same frequency domain slice may be devices of different generations
  • the stations usually use their own supported standard protocols (such as The rotation coefficient specified in 802.11ax) demodulates the received data field, but the AP (transmitter) may use the rotation coefficient specified in the latest standard (such as 802.11be) to modulate the data field, so the station adopts 802.11ax If the specified rotation coefficient is used to demodulate the received data field, there will be a problem of demodulation error.
  • the physical layer PPDU aggregation technology enables the transmission of PPDUs of different protocols on different frequency domain slices, but the devices of the old protocol will use the rotation coefficient specified by the old protocol.
  • the demodulation of the PPDU received on the frequency domain slice will cause the data after the phase rotation of the PPDU to be incorrectly received.
  • the embodiment of the present application provides a PPDU transmission method, which can not only reduce the PAPR of the STF and LTF fields in the overall bandwidth, but also does not affect the reception of old standard equipment, thereby supporting the new feature of 802.11be physical layer PPDU aggregation;
  • the rotation coefficients of the STF and LTF corresponding to the frequency-domain slice where the receiving end is docked can be correctly determined, thereby improving the accuracy of the receiving end's analysis.
  • Embodiment 1 describes adding an indication of a rotation coefficient in U-SIG or EHT-SIG;
  • Embodiment 2 describes that without modifying the signaling field in the PPDU, How to ensure that the receiving end can demodulate correctly;
  • the third embodiment describes the instruction to add the overall bandwidth information in U-SIG or EHT-SIG;
  • the rotation factor rotates each frequency domain slice.
  • Embodiments 1 to 3 are respectively described in detail below.
  • the first communication device mentioned in this application may be an access point device, and the second communication device may be a station device.
  • the first communication device may support the latest generation of standard protocols, such as the 802.11be protocol (or Wi-Fi 7, EHT protocol), and the second communication device may support protocols such as 802.11be, 802.11ax, or 802.11ac.
  • 802.11be protocol or Wi-Fi 7, EHT protocol
  • 802.11ax or 802.11ac
  • 802.11ac 802.11ax
  • 802.11ac 802.11ac
  • the first communication device and the second communication device in the embodiments of the present application may also support the next-generation protocol of IEEE 802.11be.
  • an indication of a rotation coefficient is added to the U-SIG or EHT-SIG to indicate the transmission of an aggregated PPDU or one of multiple frequency-domain slices of a PPDU in a multi-frequency-domain slice transmission mode.
  • the rotation coefficient corresponding to the slice can not only reduce the PAPR of the STF and LTF fields in the overall bandwidth, but also correctly determine the rotation coefficient of the STF and LTF corresponding to the frequency domain slice where the receiver is docked, thereby improving the resolution of the receiver. correctness.
  • FIG. 8 is a schematic flowchart of a PPDU transmission method provided by an embodiment of the present application. As shown in Figure 8, the PPDU transmission method includes but is not limited to the following steps:
  • the first communication device generates a first physical layer protocol data unit PPDU, where the first PPDU carries rotation coefficient indication information, where the rotation coefficient indication information is used to indicate the extremely high frequency corresponding to the frequency domain slice for transmitting the first PPDU
  • the first communication device sends the first PPDU.
  • the above-mentioned first PPDU may be any sub-PPDU in the aggregated PPDU, such as the sub-PPDU1 shown in the aforementioned FIG. 1 , or the first PPDU may be a frequency-domain segmented PPDU in a multi-frequency-domain segmented transmission mode.
  • the on-chip PPDU for example, the aforementioned EHT PPDU1 shown in Figure 5.
  • the EHT PPDU is a PPDU in EHT format. It is understandable that the channel bandwidth for transmitting the aggregated PPDU includes multiple frequency-domain slices, and the channel bandwidth for transmitting the PPDU in the multi-frequency-domain slice transmission mode also includes multiple frequency-domain slices. One frequency domain slice of the plurality of frequency domain slices is used to transmit the first PPDU.
  • the signaling field of the first PPDU may carry rotation coefficient indication information, where the rotation coefficient indication information is used to indicate the rotation of at least one field in the EHT-STF and EHT-LTF corresponding to the frequency domain slice of the first PPDU transmission coefficient.
  • the rotation coefficient indicated by the rotation coefficient indication information is a section of rotation coefficients among the rotation coefficients corresponding to the channel bandwidth for transmitting the aggregated PPDU (or the PPDU in the multi-frequency domain slice transmission mode). Corresponding to the frequency domain fragmentation of the PPDU. It is understandable that the rotation coefficient of this segment may also have only one value, but not necessarily multiple values, depending on the provisions of the 802.11be protocol on the rotation coefficients corresponding to various sizes of channel bandwidths.
  • the channel bandwidth of the aggregated PPDU is 240MHz (ie, 80MHz+160MHz, assuming that the frequency of the continuous 80MHz bandwidth is lower than the frequency of the continuous 160MHz bandwidth), and the 240MHz channel bandwidth includes an 80MHz frequency domain slice and a 160MHz frequency domain slice.
  • the rotation coefficient corresponding to the 240MHz channel bandwidth is [x1 x2 x3 x4 x5 x6]]
  • the rotation coefficient corresponding to the 240MHz channel bandwidth can also be divided into two sections of rotation coefficients (ie [x1 x2] and [x3 x4 x5 x6] ])
  • these two rotation coefficients correspond to 80MHz frequency domain slice and 160MHz frequency domain slice respectively.
  • the first PPDU is sub-PPDU1 in FIG.
  • the frequency domain slice for transmitting the first PPDU is the first 80MHz frequency domain slice of the 240MHz channel bandwidth, so the rotation coefficient indicated by the rotation coefficient indication information is the 240MHz channel A segment of the rotation coefficient [x1 x2] in the rotation coefficient [x1 x2 x3 x4 x5 x6] corresponding to the bandwidth.
  • the first PPDU is sub-PPDU2 in FIG.
  • the frequency domain slice for transmitting the first PPDU is a 160MHz frequency domain slice with a 240MHz channel bandwidth, so the rotation coefficient indicated by the rotation coefficient indication information is corresponding to the 240MHz channel bandwidth
  • the value of xi is 1 or -1, and i represents the ith element in the rotation coefficient corresponding to the channel bandwidth.
  • the embodiment of the present application considers the overall coordination of the rotation coefficients of multiple frequency domain slices at the transmitting end, that is, using the rotation coefficients corresponding to the channel bandwidth, can reduce the PAPR of the STF and LTF fields within the overall bandwidth and improve system performance.
  • the rotation coefficient indication information may indicate the rotation coefficient of any one of the fields of the EHT-STF and the EHT-LTF. If the rotation coefficient of the EHT-STF and the rotation coefficient of the EHT-LTF are different, the rotation coefficient indication information needs to indicate the rotation coefficient of the EHT-STF and the rotation coefficient of the EHT-LTF respectively.
  • FIG. 9 is a schematic diagram of a frame structure of an EHT PPDU provided by an embodiment of the present application.
  • the EHT PPDU includes L-STF, L-LTF, L-SIG, repeated legacy signal field (RL-SIG), U-SIG, very high throughput signal field (EHT -SIG), EHT Short Training Field (EHT-STF), EHT Long Training Field (EHT-LTF), and Data (Data) field.
  • the package extension field is also included.
  • the above rotation coefficient indication information may be carried in the U-SIG or EHT-SIG of the first PPDU.
  • the second communication device receives the first PPDU.
  • the second communication device parses the first PPDU, and obtains the rotation coefficient of at least one field of the EHT-STF and EHT-LTF corresponding to the frequency domain slice of the transmission of the first PPDU indicated by the rotation coefficient indication information.
  • the frequency-domain slice in which the second communication device is parked is the frequency-domain slice in which the above-mentioned first PPDU is transmitted.
  • the second communication device receives the first PPDU on the frequency domain slice where it is docked.
  • the second communication device parses the first PPDU, and obtains the rotation coefficient of at least one field in the EHT-STF and the EHT-LTF corresponding to the frequency domain slice of the transmission of the first PPDU indicated by the rotation coefficient indication information.
  • Embodiment 1 of the present application focuses on the signaling field part of the first PPDU. Therefore, the aforementioned steps S101 to S104 can be described as: the first communication device can also generate a signaling field of the first PPDU, and the signaling field carries rotation coefficient indication information, and the rotation coefficient indication information is used to instruct the transmission of the signaling
  • the rotation coefficient of at least one field in the EHT-STF and EHT-LTF corresponding to the frequency-domain fragmentation of the field, and the first PPDU is a sub-PPDU in the aggregated PPDU or a frequency-domain in the PPDU in the multi-frequency-domain fragmentation transmission mode
  • the second communication device may also receive the signaling field of the first PPDU on the frequency-domain segment where it is docked, analyze the signaling field, and obtain the signal field corresponding to the frequency-domain segment that transmits the signaling field indicated by the signaling field
  • the rotation coefficient of at least one field in the EHT-STF and EHT-LTF is the same as the frequency domain slice in which the signaling field is transmitted.
  • the second communication device may receive and process the EHT-STF and EHT-LTF fields by using the rotation coefficients of the EHT-STF and the EHT-LTF, so as to realize the subsequent reception.
  • the data (referring to the demodulated data at the receiving end) is consistent with the data before modulation that the sending end (ie, the first communication device) wants to send to the receiving end (ie, the second communication device).
  • an indication of a rotation coefficient is added to the U-SIG or EHT-SIG to indicate the transmission of an aggregated PPDU or one of multiple frequency-domain slices of a PPDU that adopts a multi-frequency-domain slice transmission mode
  • the rotation coefficient corresponding to the frequency-domain slicing can reduce the PAPR of the STF and LTF fields in the overall bandwidth by considering the rotation coefficient of the overall bandwidth at the transmitting end, and can also improve the accuracy of the data field parsing by the receiving end. Because the correct rotation coefficient is used to demodulate the data field.
  • steps S101 to S104 are all described from the perspective of aggregating PPDUs or PPDUs on a frequency-domain slice in the PPDUs adopting the multi-frequency-domain slice transmission mode.
  • the signaling field part in the PPDU so the technical solution provided by the first embodiment of the present application can also be described from another perspective. For example, start the description from the entire aggregated PPDU or the entire PPDU in the multi-frequency domain slice transmission mode, and focus on the signaling fields on one of the frequency domain slices.
  • the above steps S101 and S102 can also be described as: the first communication device generates a signaling field of a PPDU, wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain slices, the at least two frequency domain slices.
  • the slice includes a first frequency-domain slice, and the signaling field carries rotation coefficient indication information, where the rotation coefficient indication information is used to indicate at least one field of the EHT-STF and EHT-LTF corresponding to the first frequency-domain slice. rotation coefficient;
  • the first communication device sends the signaling field on the first frequency domain slice.
  • the above steps S103 and S104 can also be described as: the second communication device receives the signaling field of the PPDU on the first frequency domain slice, wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain slices, the At least two frequency-domain slices include the first frequency-domain slice, and the signaling field carries rotation coefficient indication information, where the rotation coefficient indication information is used to indicate the EHT-STF and EHT corresponding to the first frequency-domain slice - the rotation coefficient of at least one field in the LTF; the second communication device parses the signaling field to obtain the rotation coefficient of at least one field in the EHT-STF and the EHT-LTF corresponding to the first frequency domain slice.
  • the second communication device is docked on the first frequency domain slice.
  • the PPDU may be an aggregated PPDU or a PPDU in a multi-frequency domain fragmentation mode, for example, the above-mentioned aggregated PPDU shown in FIG. 1 or the above-mentioned PPDU in the multi-frequency domain fragmentation transmission mode shown in FIG. 5 .
  • the above signaling field may be U-SIG or EHT-SIG.
  • an indication of the rotation coefficient corresponding to the frequency-domain slice is added to the U-SIG or EHT-SIG transmitted on a frequency-domain slice.
  • a frequency domain fragment in the channel bandwidth of the entire PPDU in the fragmented transmission mode can reduce the PAPR of the STF and LTF fields within the overall bandwidth while considering the rotation coefficient of the overall bandwidth, and can also improve the receiver's response to the data field.
  • the correctness of the parsing is achieved by demodulating the data field with the correct rotation coefficient.
  • the rotation coefficients of various bandwidth sizes in the 802.11ax standard are different from the rotation coefficients of various bandwidth sizes in the 802.11be standard. Therefore, in order to ensure that the 802.11ax standard devices can work normally in the 802.11be standard (such as sending and receiving PPDUs normally), it is necessary to constrain the frequency domain slicing where the 802.11ax standard devices dock.
  • the rotation coefficients of the HE-STF and HE-LTF corresponding to the frequency domain slices where the device is docked are constrained.
  • the first communication device when the second communication device is an 802.11ax standard device or the second communication device works under the 802.11ax protocol, the first communication device generates a HE PPDU, where the HE PPDU is the one in the aggregated PPDU.
  • the sub-PPDU or the PPDU on one frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode; the first communication device sends the HE PPDU.
  • the second communication device receives the HE PPDU on the frequency domain segment where it is docked, and parses the HE PPDU.
  • the rotation coefficients of the HE-STF and HE-LTF corresponding to the frequency domain segment where the second communication device is docked are both 1 .
  • the first communication device is an EHT standard device. It can be seen that by restricting the 802.11ax standard device to only dock in the frequency domain slice corresponding to the rotation coefficient of 1, this implementation does not affect the reception of the old standard device, thereby supporting the new feature of 802.11be physical layer PPDU aggregation.
  • the first communication device in the case that the second communication device is an 802.11ax standard device (or a device working under the 802.11ax protocol), the first communication device generates a signaling field of a PPDU, wherein the transmission of the PPDU is a signaling field.
  • the channel bandwidth includes at least two frequency-domain slices, and the at least two frequency-domain slices include a first frequency-domain slice; the first communication device sends the signaling field of the PPDU on the first frequency-domain slice.
  • the second communication device receives the signaling field of the PPDU on the first frequency-domain slice, and parses the signaling field.
  • the rotation coefficients of the HE-STF and HE-LTF corresponding to the first frequency-domain slice are both 1 .
  • the frequency domain slice where the second communication device is docked is the first frequency domain slice.
  • the signaling field is a signaling field in HE format, such as HE-SIG.
  • the first communication device is an EHT standard device.
  • the second communication device is an 802.11ax standard device or the second communication device works under the 802.11ax protocol, but the HE-STF and HE-LTF corresponding to the frequency domain slice where the second communication device is docked
  • the rotation coefficient is not 1
  • the first communication device performs phase analysis on the rotation coefficients of the STF and LTF corresponding to all the frequency-domain slices (or channel bandwidths) of the aggregated PPDU or the PPDU using the multi-frequency-domain slice transmission mode, respectively. Rotate, for example, multiply by -1, so that the rotation coefficients of both the HE-STF and the HE-LTF corresponding to the frequency domain slice where the second communication device is docked become 1.
  • the first communication device generates a HE PPDU, which is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency domain fragment in the PPDU in the multi-frequency domain fragmentation transmission mode; the first communication device sends the HE PPDU.
  • the second communication device receives the HE PPDU on the frequency domain slice where it is docked, and parses the HE PPDU.
  • the first communication device is an EHT standard device.
  • the channel bandwidth of the aggregated PPDU is 240MHz, including one 80MHz frequency domain slice and one 160MHz frequency domain slice, and it is assumed that the frequency of the continuous 80MHz bandwidth is lower than the frequency of the continuous 160MHz bandwidth.
  • the rotation coefficient corresponding to the 240MHz channel bandwidth is [x1 x2 x3 x4 x5 x6]
  • the rotation coefficient corresponding to the 240MHz channel bandwidth can also be divided into two sections of rotation coefficients (ie [x1 x2] and [x3 x4 x5 x6] ]), these two rotation coefficients correspond to 80MHz frequency domain slice and 160MHz frequency domain slice respectively.
  • the rotation coefficients of the HE-STF and HE-LTF corresponding to the 160MHz frequency domain slice are [x3 x4 x5 x6], all of which are not 1, that is, x3 , x4, x5 and x6 are all -1; then the first communication device can multiply the rotation coefficient [x1 x2 x3 x4 x5 x6] corresponding to the 240MHz channel bandwidth by -1 to obtain the rotation coefficient [-x1 -x2 - x3 -x4 -x5 -x6], so that the rotation coefficients of the HE-STF and the HE-LTF (ie [x3 x4 x5 x6]) corresponding to the frequency domain slice where the second communication device is docked become 1.
  • This implementation manner can also be described as: in the case that the rotation coefficients of the HE-STF and HE-LTF corresponding to the frequency domain slice where the second communication device is docked are not 1, the first communication device will not transmit the PPDU.
  • the rotation coefficients of the STF and LTF corresponding to the channel bandwidth are respectively phase-rotated, so that the rotation coefficients of the HE-STF and the HE-LTF corresponding to the first frequency-domain slice where the second communication device is docked become 1.
  • the channel bandwidth for transmitting the PPDU includes at least two frequency domain slices, and the at least two frequency domain slices include the first frequency domain slice; the first communication device generates a signaling field corresponding to the first frequency domain slice, and send the signaling field on the first frequency domain slice; the second communication device receives the signaling field on the first frequency domain slice, and parses the signaling field.
  • the signaling field is a signaling field in an HE format, such as HE-SIG.
  • this implementation multiplies the rotation coefficients corresponding to all frequency-domain slices (or channel bandwidths) of the aggregated PPDU or PPDU that adopts the multi-frequency-domain slice transmission mode by -1, so that the second communication device stops at the frequency of the second communication device.
  • the rotation coefficients of the HE-STF and HE-LTF corresponding to the domain slicing are both changed to 1, which can neither affect the PAPR in the channel bandwidth nor the reception of the old standard equipment.
  • FIG. 10 is another schematic flowchart of a PPDU transmission method provided by an embodiment of the present application. As shown in Figure 10, the PPDU transmission method includes but is not limited to the following steps:
  • the first communication device generates a first PPDU, where the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in a PPDU in a multi-frequency-domain slice transmission mode, and the frequency-domain slice of the first PPDU is
  • the HE-STF, the HE-LTF and the data field corresponding to the slice have the same rotation coefficient, or the EHT-STF, EHT-LTF and the data field corresponding to the frequency domain slice of the first PPDU have the same rotation coefficient.
  • the first communication device sends the first PPDU.
  • the above-mentioned first PPDU may be any sub-PPDU in the aggregated PPDUs, such as the sub-PPDU1 shown in FIG. 1; or the first PPDU may be a frequency-domain segmented PPDU in a multi-frequency-domain segmented transmission mode.
  • the on-chip PPDU for example, the aforementioned EHT PPDU1 shown in Figure 5.
  • the sub-PPDU may be an EHT PPDU or a HE PPDU, or the first PPDU may be an EHT PPDU or a HE PPDU.
  • the sub-PPDU may also be a PPDU in future standards of one or more generations, such as a PPDU in Wi-Fi 8 and Wi-Fi 9.
  • the channel bandwidth for transmitting the aggregated PPDU includes multiple frequency-domain slices
  • the channel bandwidth for transmitting the PPDU in the multi-frequency-domain slice transmission mode also includes multiple frequency-domain slices.
  • One frequency domain slice of the plurality of frequency domain slices is used to transmit the first PPDU.
  • the frequency-domain fragmentation for transmitting the first PPDU is referred to as the frequency-domain fragmentation of the first PPDU.
  • the HE-STF, HE-LTF and the rotation coefficient of the data field corresponding to the frequency domain fragmentation of the above-mentioned first PPDU are the same, or the EHT-STF, EHT-STF and EHT-STF corresponding to the frequency domain fragmentation of the above-mentioned first PPDU.
  • the rotation coefficients of the LTF and the data field are the same.
  • the first communication device (sending end) can use the rotation coefficient to process the HE/EHT-STF, HE/EHT-LTF and the data field, for example, the HE/EHT-STF, HE/EHT-LTF and the data field according to the rotation coefficient
  • the frequency domain signal rotation corresponding to the field specifies the phase.
  • the rotation coefficient here may be a vector, which includes one or more elements.
  • the HE/EHT-STF, the HE/EHT-LTF and the rotation coefficient of the data field corresponding to the frequency domain slice of the transmission first PPDU are all [x1 x2].
  • the HE/EHT-STF, the HE/EHT-LTF and the rotation coefficient of the data field corresponding to the frequency domain slice of the transmission first PPDU are all [x1].
  • the value of x1 may be -1 or 1
  • the value of x2 may also be -1 or 1.
  • the values of x1 and x2 may also be other values, and the specific value of the rotation coefficient is not limited in the embodiment of the present application.
  • the first PPDU includes HE-STF and HE-LTF; similarly, if the above-mentioned first PPDU is an EHT PPDU, then correspondingly, the first PPDU contains HE-STF and HE-LTF. Included are EHT-STF and EHT-LTF.
  • the above-mentioned first PPDU is a PPDU of a certain generation standard in the future, it correspondingly includes the STF and LTF of this generation standard. That is to say, the embodiments of the present application are not only applicable to the 802.11be standard and the 802.11ax standard, but also applicable to the standards of one or more generations in the future.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the HE/EHT-STF, HE/EHT-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • the frequency domain slice for transmitting the first PPDU is 160MHz, and assuming that every 20MHz corresponds to a rotation coefficient, then the rotation of the HE/EHT-STF, HE/EHT-LTF and data fields corresponding to the frequency domain slice of the first PPDU
  • the coefficients are [x1 x2 x3 x4 x5 x6 x7 x8].
  • x1, x2, x3, x4, x5, x6, x7, x8 correspond to 8 20MHz frequency from low to high (or from high to low) in 160MHz respectively, x1 ⁇ x8 can be partially or all the same; Totally different. Assuming that every 40MHz corresponds to a rotation coefficient, the rotation coefficients of the HE/EHT-STF, HE/EHT-LTF and data fields corresponding to the frequency domain slice of the first PPDU are [x1 x2 x3 x4]. x1, x2, x3, and x4 correspond to four 40MHz frequency from low to high (or from high to low) in 160MHz, respectively. x1 to x4 can be partially the same, or all of them; or completely different.
  • the rotation coefficients of the HE/EHT-STF, HE/EHT-LTF and data fields corresponding to the frequency domain slice of the first PPDU are [x1 x2].
  • x1, x2 respectively correspond to two 80MHz frequency from low to high (or from high to low) in 160MHz, x1 to x2 can be partially the same, or all of them; or completely different.
  • the rotation coefficients of the HE/EHT-STF, HE/EHT-LTF and data fields corresponding to the frequency domain slice of the first PPDU are [x1].
  • x1 corresponds to 160MHz. The same is true for the 320MHz bandwidth, which will not be repeated here.
  • one rotation coefficient for every 40MHz can also be understood as the same rotation coefficient corresponding to two 20MHz in every 40MHz.
  • “every 80MHz corresponds to a rotation coefficient” can be understood as the same rotation coefficient corresponding to two 40MHz or four 20MHz in every 80MHz.
  • “every 160MHz corresponds to a rotation coefficient” can be understood as the same rotation coefficient corresponding to 2 80MHz or 4 40MHz or 8 20MHz in every 160MHz.
  • the signaling field of the first PPDU may have different rotation coefficients from the following HE/EHT-STF, HE/EHT-LTF and data fields.
  • the rotation coefficients under different bandwidths can be determined by the standard or by the sender (ie, the first communication device) from the signals on the overall bandwidth.
  • the sender ie, the first communication device
  • the sender generates and transmits the rotated phase PPDU according to the standard. (ie the first PPDU).
  • the second communication device receives the first PPDU.
  • the second communication device parses the first PPDU.
  • the frequency-domain slice in which the second communication device is parked is the frequency-domain slice in which the above-mentioned first PPDU is transmitted.
  • the second communication device receives the first PPDU on the frequency domain slice where it is docked.
  • the second communication device parses the first PPDU to restore the original data.
  • the second communication device obtains a channel estimation result by using HE/EHT-LTF, the channel estimation result contains phase rotation information corresponding to each frequency domain slice, and then uses the channel estimation result to demodulate the corresponding data field. .
  • the channel estimation information (such as HE/EHT-LTF) and the data field contain the same rotation coefficient and are rotated by the same phase, they can cancel each other out during the demodulation process, thereby restoring the original data.
  • the original data here can be understood as the data before modulation by the transmitting end (ie, the first communication device).
  • the HE/EHT-STF, HE/EHT-LTF and data fields in the aggregated PPDU are rotated by the same phase (or multiplied by the same rotation coefficient) respectively according to the frequency domain slice, and can be transmitted by
  • the receiver considers the rotation coefficient of the overall bandwidth to reduce the PAPR of the STF and LTF within the overall bandwidth, and can also improve the accuracy of the data field parsing by the receiver, because the STF, LTF, and data fields are rotated by the same phase (or multiplied by the same phase). with the same rotation factor), will not affect the demodulation of the data field.
  • the embodiment of the present application does not need to add signaling information to the PPDU to indicate the rotation coefficient, which can reduce signaling overhead.
  • Embodiment 3 of the present application indicates the transmission bandwidth (or channel bandwidth, or overall bandwidth) for transmitting aggregated PPDUs or PPDUs using the multi-frequency domain fragmentation transmission mode by adding an indication of transmission bandwidth to the U-SIG or EHT-SIG,
  • the receiving end In order to enable the receiving end to determine the rotation coefficients of the EHT-STF and EHT-LTF corresponding to the frequency domain segment it parked according to the frequency domain segment it parked and the transmission bandwidth, it can reduce the PAPR of the STF and LTF fields in the overall bandwidth.
  • the rotation coefficients of the STF and LTF corresponding to the frequency-domain slices where the receiving end is docked can also be correctly determined, thereby improving the accuracy of the receiving end's analysis.
  • FIG. 11 is another schematic flowchart of a PPDU transmission method provided by an embodiment of the present application. As shown in Figure 11, the PPDU transmission method includes but is not limited to the following steps:
  • the first communication device generates a first PPDU, where the first PPDU carries the transmission bandwidth of the aggregated PPDU or the PPDU in the multi-frequency domain fragmentation transmission mode, the transmission bandwidth includes at least two frequency domain fragments, the first PPDU is a sub-PPDU transmitted on any one of the at least two frequency-domain slices in the aggregated PPDU or any frequency-domain of the at least two frequency-domain slices in the PPDU using the multi-frequency-domain slice transmission mode PPDUs transmitted on fragments.
  • the first communication device sends the first PPDU.
  • the above-mentioned first PPDU may be any sub-PPDU transmitted in the aggregated PPDU, such as the sub-PPDU1 shown in FIG. 1, or the first PPDU may be a frequency domain of PPDUs in a multi-frequency domain fragmented transmission mode
  • the PPDU transmitted on the fragment for example, the aforementioned EHT PPDU1 shown in FIG. 5 .
  • the EHT PPDU is a PPDU in EHT format.
  • the signaling field of the first PPDU may carry the transmission bandwidth of the aggregated PPDU or the PPDU in the multi-frequency-domain slice transmission mode, and the transmission bandwidth includes at least two frequency-domain slices.
  • the transmission bandwidth is the sum of the bandwidths of sub-PPDU1 and sub-PPDU2, that is, the sum of 80MHz and 160MHz is 240MHz; taking the aforementioned FIG. 5 as an example, the transmission bandwidth is the transmission bandwidth on each frequency domain slice.
  • the sum of the bandwidth of the PPDU that is, 160MHz.
  • One of the at least two frequency-domain slices is used to transmit the first PPDU.
  • the first PPDU is a sub-PPDU that is transmitted on a frequency-domain slice of the transmission bandwidth in the aggregated PPDU, or the first PPDU is a frequency-domain slice of the transmission bandwidth in a PPDU that adopts the multi-frequency-domain slice transmission mode. Transmitted PPDUs.
  • the signaling field of the first PPDU may be U-SIG or EHT-SIG, that is, the transmission bandwidth is carried in U-SIG or EHT-SIG.
  • the U-SIG or EHT-SIG is transmitted on one frequency-domain slice of the transmission bandwidth, and only the information of stations parked on this frequency-domain slice is transmitted.
  • the U-SIG or EHT-SIG may further carry the bandwidth of the frequency domain slice for transmitting the first PPDU.
  • the second communication device receives the first PPDU.
  • the second communication device determines the EHT-STF and EHT-STF corresponding to the frequency domain slice where the second communication device is docked and the transmission bandwidth carried in the first PPDU according to the Rotation factor for at least one field in the LTF.
  • the frequency-domain slice in which the second communication device is parked is the frequency-domain slice in which the above-mentioned first PPDU is transmitted.
  • the second communication device receives the above-mentioned first PPDU on the frequency domain slice where it is docked.
  • the second communication device may determine the second communication device according to the above-mentioned transmission bandwidth carried in the above-mentioned first PPDU, the position in the transmission bandwidth of the frequency domain slice where the second communication device is docked, and the rotation coefficient corresponding to the transmission bandwidth.
  • the rotation coefficient corresponding to the frequency domain slice where the second communication device is docked is a segment of rotation coefficients among the rotation coefficients corresponding to the transmission bandwidth.
  • the rotation coefficient corresponding to the transmission bandwidth may be specified by a standard protocol, that is, rotation coefficients of various bandwidth sizes are specified in the standard protocol, for example, rotation coefficients for respective bandwidths of 80 MHz, 160 MHz, and 320 MHz.
  • the embodiment of the present application considers the overall coordination of the rotation coefficients of multiple frequency domain slices at the transmitting end, that is, using the rotation coefficients corresponding to the channel bandwidth, can reduce the PAPR of the STF and LTF fields within the overall bandwidth and improve system performance.
  • the rotation coefficient corresponding to the frequency-domain fragmentation of the docking terminal determined at the receiving end is a segment of the rotation coefficients in the rotation coefficients corresponding to the transmission bandwidth, thereby ensuring that the STF and the frequency-domain fragmentation corresponding to the docking terminal of the receiving terminal are The correctness of the rotation coefficient of the LTF, thereby improving the correctness of the parsing at the receiving end.
  • the transmission bandwidth of the PPDU adopting the multi-frequency domain slice transmission mode is 160MHz, including two 80MHz frequency domain slices.
  • the second communication device determines the overall rotation coefficient under the entire 160M bandwidth according to the 160MHz transmission bandwidth and standard regulations, and then divides the frequency according to the frequency it is parked on.
  • the position of the slice in the 160MHz transmission bandwidth determines the rotation coefficient corresponding to the 80MHz frequency domain slice where it is docked.
  • the rotation coefficient corresponding to the 160MHz transmission bandwidth can be divided into two segments corresponding to two 80MHz frequency domain slices respectively.
  • the 160MHz transmission bandwidth can only be composed of the first 80MHz frequency domain slice and the second 80MHz frequency domain slice of the 320MHz channel, or the third 80MHz frequency domain slice of the 320MHz channel.
  • the frequency domain slice and the fourth 80MHz frequency domain slice are composed. Because the second communication device is docked on the third 80MHz frequency domain slice of the 320MHz channel, the 160MHz transmission bandwidth can only be composed of the third 80MHz frequency domain slice and the fourth 80MHz frequency domain slice in the 320MHz channel.
  • the frequency slice where the second communication device stops is the first frequency slice in the 160 MHz transmission bandwidth. Therefore, the rotation coefficients of the corresponding EHT-STF and EHT-LTF corresponding to the frequency domain slice where the second communication device is docked are: in the rotation coefficient [x1 x2 x3 x4] corresponding to the 160MHz transmission bandwidth, the 80MHz docked with the second communication device A segment of the rotation coefficient corresponding to the frequency domain slice, namely [x1 x2].
  • the value of xi is 1 or -1, and i represents the ith element in the rotation coefficient corresponding to the transmission bandwidth. It should be understood that the aggregated PPDU is the same as the PPDU in the multi-frequency domain fragmentation transmission mode, and details are not repeated here.
  • the second communication device can determine the overall bandwidth according to the location of the frequency domain slice it is parked on and the overall bandwidth.
  • the respective rotation coefficients of the EHT-STF and EHT-LTF in the frequency domain slice are the respective rotation coefficients of the EHT-STF and EHT-LTF in the frequency domain slice.
  • Embodiment 2 of the present application focuses on the signaling field part of the first PPDU. Therefore, the aforementioned steps S201 to S204 can be described as: the first communication device can also generate a signaling field of the first PPDU, and the signaling field carries the transmission bandwidth of the aggregated PPDU or the PPDU using the multi-frequency domain fragmentation transmission mode,
  • the transmission bandwidth includes at least two frequency-domain slices, the at least two frequency-domain slices include a first frequency-domain slice, and the first PPDU is a sub-PPDU transmitted on the first frequency-domain slice or the multi-frequency-domain slice
  • the second communication device may also receive the signaling field of the first PPDU on the frequency domain slice where it is docked, and determine the The rotation coefficient of at least one field in the EHT-STF and the EHT-LTF corresponding to the frequency-domain slice where the second communication device is docked.
  • the frequency domain slice where the second communication device is docked is the same as the first frequency domain slice.
  • the second communication device may receive and process the EHT-STF and EHT-LTF fields by using the rotation coefficients of the EHT-STF and the EHT-LTF, so as to realize the subsequent reception.
  • the data (referring to the demodulated data at the receiving end) is consistent with the data before modulation that the sending end (ie, the first communication device) wants to send to the receiving end (ie, the second communication device).
  • an indication of the transmission bandwidth is added to the U-SIG or EHT-SIG to indicate the transmission bandwidth (or channel bandwidth, or overall bandwidth) for transmitting aggregated PPDUs or PPDUs using the multi-frequency domain fragmentation transmission mode. , so that after the receiving end receives the transmission bandwidth, it determines where the frequency domain segment of the receiving end is in the transmission bandwidth, and determines the corresponding EHT- Rotation factor for STF and EHT-LTF.
  • the PAPR of the STF and LTF fields in the overall bandwidth can be reduced by considering the rotation coefficient of the overall bandwidth at the transmitting end, and the correctness of the parsing of the data field at the receiving end can also be improved, because the correct rotation coefficient is used for the data field. demodulated.
  • steps S201 to S204 are all described from the perspective of aggregating PPDUs or PPDUs on a frequency-domain slice in the PPDUs adopting the multi-frequency-domain slice transmission mode.
  • the signaling field part in the PPDU so the technical solution provided by the second embodiment of the present application can also be described from another perspective. For example, start the description from the entire aggregated PPDU or the entire PPDU in the multi-frequency domain slice transmission mode, and focus on the signaling fields on one of the frequency domain slices.
  • the above steps S201 and S202 can also be described as: the first communication device generates the signaling field of the PPDU, wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain slices, the at least two frequency domain slices.
  • the slice includes a first frequency domain slice, and the signaling field carries the channel bandwidth; the first communication device sends the signaling field on the first frequency domain slice.
  • the above steps S203 and S204 can also be described as: the second communication device receives the signaling field of the PPDU on the first frequency domain slice, wherein the channel bandwidth for transmitting the PPDU includes at least two frequency domain slices, the The at least two frequency-domain slices include the first frequency-domain slice, and the signaling field carries the channel bandwidth; the second communication device determines, according to the channel bandwidth and the first frequency-domain slice carried in the signaling field, Rotation coefficients of the EHT-STF and EHT-LTF corresponding to the first frequency domain slice. Wherein, the second communication device is docked on the first frequency domain slice.
  • the PPDU may be an aggregated PPDU or a PPDU in a multi-frequency domain fragmentation mode, for example, the above-mentioned aggregated PPDU shown in FIG. 1 or the above-mentioned PPDU in the multi-frequency domain fragmentation transmission mode shown in FIG. 5 .
  • the channel bandwidth for transmitting the PPDU is also the bandwidth used for transmitting the entire aggregated PPDU, or the bandwidth used for transmitting the entire PPDU in the multi-frequency domain fragmentation mode.
  • the channel bandwidth is sub- The sum of the bandwidths of PPDU1 and sub-PPDU2, that is, the sum of 80 MHz and 160 MHz is 240 MHz; taking the aforementioned Figure 5 as an example, the channel bandwidth is the sum of the bandwidths of PPDUs transmitted on each frequency domain slice, that is, 160 MHz.
  • channel bandwidth in this example is the same as the transmission bandwidth mentioned in the foregoing steps S201 to S204, and has the same meaning.
  • the above signaling field may be U-SIG or EHT-SIG.
  • the bandwidth of the foregoing first frequency domain slice may also be carried in the U-SIG or the EHT-SIG.
  • an indication of the transmission bandwidth is added to the U-SIG or EHT-SIG to indicate the channel bandwidth (or overall bandwidth) for transmitting the entire aggregated PPDU or the entire PPDU in the multi-frequency domain fragmentation transmission mode, to
  • the receiving end determines the rotation coefficients of the EHT-STF and EHT-LTF corresponding to the frequency domain segment where the receiving end is parked according to the channel bandwidth and the frequency domain segment where the receiving end stops by itself.
  • the rotation coefficient of the overall bandwidth the PAPR of the STF and LTF fields in the overall bandwidth can be reduced, and the accuracy of the data field parsing by the receiving end can also be improved, because the correct rotation coefficient is used for the data field. demodulation is achieved.
  • the rotation coefficients of various bandwidth sizes in the 802.11ax standard are different from the rotation coefficients of various bandwidth sizes in the 802.11be standard. Therefore, in order to ensure that the 802.11ax standard devices can work normally in the 802.11be standard (such as sending and receiving PPDUs normally), it is necessary to constrain the frequency domain slicing where the 802.11ax standard devices dock.
  • the rotation coefficients of the EHT-STF and EHT-LTF corresponding to the frequency domain slices where the device is docked are constrained.
  • the first communication device when the second communication device is an 802.11ax standard device or the second communication device works under the 802.11ax protocol, the first communication device generates a HE PPDU, where the HE PPDU is a sub-PPDU in the aggregated PPDU or adopts multiple A PPDU on a frequency domain slice among the PPDUs in the frequency domain slice transmission mode; the first communication device sends the HE PPDU.
  • the second communication device receives the HE PPDU on the frequency domain segment where it is docked, and parses the HE PPDU.
  • the rotation coefficients of the EHT-STF and EHT-LTF corresponding to the frequency domain segment where the second communication device is docked are both 1 .
  • the first communication device is an EHT standard device.
  • the rotation coefficient of each frequency domain slice in the maximum bandwidth supported by the standard protocol (for example, the maximum bandwidth supported by 802.11be is 320MHz) is specified in the standard protocol, and the sender is constrained to always follow the maximum bandwidth (for example, 320MHz).
  • the rotation coefficient of each frequency domain slice is set, so that the receiving end can determine the EHT-STF and EHT-
  • the rotation coefficient of the LTF can reduce the PAPR of the STF and LTF fields, and can also correctly determine the rotation coefficients of the STF and LTF corresponding to the frequency domain slices where the receiver is docked, thereby improving the accuracy of the receiver's analysis.
  • FIG. 12 is still another schematic flowchart of the PPDU transmission method provided by the embodiment of the present application. As shown in Figure 12, the PPDU transmission method includes but is not limited to the following steps:
  • the second communication device determines the frequency domain slice corresponding to the docked frequency domain slice of the second communication device according to the corresponding relationship between each frequency domain slice in the 320MHz bandwidth and the rotation coefficient The rotation coefficient of at least one field in the EHT-STF and EHT-LTF.
  • the second communication device may be a station device.
  • Site equipment docks on one of the frequency-domain slices of the 320MHz bandwidth (or channel).
  • the frequency domain slice shown in FIG. 4 is taken as an example, that is, the 320MHz bandwidth (or channel) is divided into four 80MHz frequency domain slices.
  • the second communication device will inform the second communication device which frequency domain slice of the 320MHz channel the second communication device will be docked on through signaling. After the second communication device receives the signaling , it will stop at the frequency domain slice indicated by the AP to receive signaling information/scheduling information. For example, if the AP instructs the second communication device to dock on the second 80MHz frequency domain slice of the 320MHz channel, the second communication device will dock on the frequency domain slice indicated by the AP, that is, the second 80MHz frequency domain slice of the 320MHz channel. Receive signaling information/scheduling information of the AP.
  • the second communication device Because after the second communication device is associated with the AP, it will know which frequency domain slice in the 320MHz bandwidth the second communication device is docked in, so the second communication device can directly base on the frequency domain slice it is docked and the standard protocol.
  • the correspondence between each frequency-domain slice and the rotation coefficient in the 320MHz bandwidth determines the rotation coefficient of at least one field in the EHT-STF and EHT-LTF corresponding to the frequency-domain slice that is docked by itself.
  • the rotation coefficient corresponding to the 320MHz bandwidth is [x1 x2 x3 x4 x5 x6 x7 x8], and the 320MHz bandwidth is divided into four 80MHz frequency domain slices
  • the rotation coefficient corresponding to the 320MHz bandwidth can also be divided into 4 segments of rotation accordingly. coefficients, each segment of the rotation coefficient corresponds to an 80MHz frequency domain slice.
  • the rotation coefficients of the EHT-STF and EHT-LTF corresponding to the frequency-domain slice where the second communication device is parked are among the rotation coefficients corresponding to the 320MHz bandwidth
  • the second segment rotation factor of i.e. [x3 x4].
  • the value of xi is 1 or -1, and i represents the ith element.
  • the "a segment of rotation coefficient" mentioned in the embodiments of the present application can be understood as a part of the whole, and the segment of rotation coefficient does not necessarily have multiple elements, but may have only one element, depending on the various parameters in the 802.11be protocol.
  • the EHT- The rotation coefficients of STF and EHT-LTF are the second rotation coefficients in the rotation coefficients corresponding to the 320MHz bandwidth, that is, [x2].
  • the "320MHz bandwidth" mentioned in step S301 of the embodiment of the present application is only for the 802.11be standard protocol, but the technical solutions provided by the embodiment of the present application may be applicable to the future standard protocol (or the next generation of the 802.11be standard protocol). protocol).
  • the "320MHz bandwidth” mentioned in step S301 of the embodiment of the present application can be replaced with the maximum bandwidth supported by a future standard protocol. Assuming that the maximum bandwidth supported by a certain generation of standard protocols in the future is 640MHz, the "320MHz bandwidth" in step S301 320MHz bandwidth" can be replaced with "640MHz".
  • the second communication device is an 802.11ax standard device or the second communication device works under the 802.11ax protocol
  • it can be specified in the standard protocol that the second communication device is docked on the frequency domain slice corresponding to the rotation coefficient of 1.
  • the 802.11ax standard device can only dock on the first frequency-domain slice in the 320MHz bandwidth. It can be seen that by restricting the 802.11ax standard device to only dock in the frequency domain slice corresponding to the rotation coefficient of 1, this implementation does not affect the reception of the old standard device, and realizes the compatibility between the 802.11be standard and the 802.11ax standard.
  • the first communication device and the second communication device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one in the processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 13 to FIG. 15 .
  • the communication device is an access point or a station, and further, the communication device may be a device in a first communication device; or, the communication device is a device in a second communication device.
  • FIG. 13 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present application.
  • the communication apparatus 1 may be a first communication device or a chip in the first communication device, such as a Wi-Fi chip or the like.
  • the communication device 1 includes: a processing unit 11 and a transceiver unit 12 .
  • the processing unit 11 is used to generate a first PPDU, and the first PPDU carries rotation coefficient indication information, and the rotation coefficient indication information is used to indicate the EHT corresponding to the frequency domain slice for transmitting the first PPDU -the rotation coefficient of at least one field in the STF and the EHT-LTF, the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU of the multi-frequency-domain slice transmission mode; the transceiver unit 12, for sending the first PPDU.
  • the above-mentioned rotation coefficient indication information is carried in the EHT-SIG or U-SIG of the above-mentioned first PPDU.
  • the communication device 1 instructs the transmission of an aggregated PPDU or a frequency domain of multiple frequency domain slices of a PPDU using a multi-frequency domain slice transmission mode by adding an indication of a rotation coefficient to the U-SIG or EHT-SIG For the rotation coefficient corresponding to the fragment, the PAPR of the STF and LTF fields in the overall bandwidth can be reduced by considering the rotation coefficient of the overall bandwidth at the transmitting end, and the accuracy of the data field parsing at the receiving end can also be improved.
  • the communication device 1 in such a design can correspondingly execute the foregoing first embodiment, and the above operations or functions of each unit in the communication device 1 are respectively in order to realize the corresponding operations of the first communication device in the foregoing first embodiment, in order to It is concise and will not be repeated here.
  • the processing unit 11 is configured to generate a first PPDU, where the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode, the The rotation coefficients of the HE-STF, HE-LTF and the data field corresponding to the frequency-domain fragmentation of the first PPDU are the same, or the EHT-STF, EHT-LTF, and data fields corresponding to the frequency-domain fragmentation of the first PPDU The rotation coefficients are the same; the transceiver unit 12 is used to send the first PPDU.
  • the sub-PPDU is an EHT PPDU or a HE PPDU.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the HE-STF, HE-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the EHT-STF, EHT-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • the signaling field of the first PPDU (here refers to the signaling field before the HE-STF) and the following HE-STF, HE-LTF and data fields have different rotation coefficients.
  • the signaling field of the first PPDU (here refers to the signaling field before the EHT-STF) and the following EHT-STF, EHT-LTF and data fields have different rotation coefficients.
  • the communication device 1 in this design can correspondingly execute the foregoing second embodiment, and the above-mentioned operations or functions of each unit in the communication device 1 are respectively in order to realize the corresponding operations of the first communication device in the foregoing second embodiment, in order to It is concise and will not be repeated here.
  • the processing unit 11 is configured to generate a first PPDU, where the first PPDU carries the transmission bandwidth of the aggregated PPDU or the PPDU using the multi-frequency domain fragmentation transmission mode, and the transmission bandwidth includes at least two frequency domains.
  • the first PPDU is a sub-PPDU transmitted on any frequency-domain fragment of the at least two frequency-domain fragments in the aggregated PPDU or the at least two frequency-domain fragments in the PPDU using the multi-frequency-domain fragmentation transmission mode
  • the PPDU transmitted on any frequency domain slice of the slice; the transceiver unit 12 is configured to send the first PPDU.
  • the above-mentioned transmission bandwidth is carried in the EHT-SIG or U-SIG of the above-mentioned first PPDU, and the EHT-SIG or U-SIG also carries the bandwidth for transmitting the frequency domain fragmentation of the first PPDU, and the transmission of this
  • the frequency domain slice of the first PPDU is the frequency domain slice where the second communication device is docked.
  • the communication device 1 instructs the transmission bandwidth of the aggregated PPDU or the PPDU using the multi-frequency domain fragmentation transmission mode by adding an indication of the transmission bandwidth to the U-SIG or EHT-SIG, so that the receiving end receives the transmission bandwidth.
  • the position of the frequency domain segment where the receiving end is parked is determined in the transmission bandwidth, and the rotation coefficients of the EHT-STF and EHT-LTF corresponding to the frequency domain segment where the receiving end is parked are determined according to the determined position.
  • the PAPR of the STF and LTF fields in the overall bandwidth can be reduced by considering the rotation coefficient of the overall bandwidth at the transmitting end, and the accuracy of the data field parsing by the receiving end can also be improved.
  • the communication device 1 in this design can correspondingly execute the foregoing third embodiment, and the above operations or functions of each unit in the communication device 1 are respectively in order to realize the corresponding operations of the first communication device in the foregoing third embodiment, in order to It is concise and will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a communication apparatus 2 provided by an embodiment of the present application.
  • the communication apparatus 2 may be a second communication device or a chip in the second communication device, such as a Wi-Fi chip or the like.
  • the communication device 2 includes: a transceiver unit 21 and a processing unit 22 .
  • the transceiver unit 21 is used to receive a first PPDU, and the first PPDU carries rotation coefficient indication information, and the rotation coefficient indication information is used to indicate the EHT corresponding to the frequency domain slice for transmitting the first PPDU.
  • the first PPDU is a sub-PPDU in the aggregated PPDU or a PPDU on a frequency-domain slice in the PPDU in the multi-frequency-domain slice transmission mode; in the processing unit 22
  • the parsing subunit 221 is used for parsing the first PPDU to obtain the rotation of at least one field in the EHT-STF and EHT-LTF corresponding to the frequency domain fragmentation of the first PPDU transmission indicated by the rotation coefficient indication information coefficient.
  • the frequency domain slice for transmitting the above-mentioned first PPDU is the frequency domain slice where the communication device 2 is docked.
  • the above-mentioned rotation coefficient indication information is carried in the EHT-SIG or U-SIG of the above-mentioned first PPDU.
  • the communication device 2 in this design can correspondingly execute the foregoing first embodiment, and the above operations or functions of each unit in the communication device 2 are respectively in order to implement the corresponding operations of the second communication device in the foregoing first embodiment, in order to It is concise and will not be repeated here.
  • the transceiver unit 21 is configured to receive a first PPDU, where the first PPDU is a sub-PPDU in an aggregated PPDU or a PPDU on a frequency-domain slice in a PPDU that adopts a multi-frequency-domain slice transmission mode, the The rotation coefficients of the HE-STF, HE-LTF and the data field corresponding to the frequency-domain fragmentation of the first PPDU are the same, or the EHT-STF, EHT-LTF, and data fields corresponding to the frequency-domain fragmentation of the first PPDU The rotation coefficients are the same; the parsing subunit 221 in the processing unit 22 is used for parsing the first PPDU.
  • the sub-PPDU may be an EHT PPDU or a HE PPDU.
  • the above-mentioned parsing subunit 221 is specifically configured to: obtain a channel estimation result by using HE/EHT-LTF, the channel estimation result contains the phase rotation information corresponding to each frequency domain slice, and use the channel estimation result to solve the problem. Adjust the corresponding data field.
  • the frequency domain slice on which the communication device stops is the frequency domain slice for transmitting the above-mentioned first PPDU.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the HE-STF, HE-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • each 20MHz, 40MHz, 80MHz or 160MHz in the EHT-STF, EHT-LTF and data fields corresponding to the frequency domain slice of the first PPDU corresponds to a rotation coefficient.
  • the signaling field of the first PPDU (here refers to the signaling field before the HE-STF) and the following HE-STF, HE-LTF and data fields have different rotation coefficients.
  • the signaling field of the first PPDU (here refers to the signaling field before the EHT-STF) and the following EHT-STF, EHT-LTF and data fields have different rotation coefficients.
  • the communication device 2 in this design can correspondingly execute the foregoing second embodiment, and the above operations or functions of each unit in the communication device 2 are respectively in order to realize the corresponding operations of the second communication device in the foregoing second embodiment, in order to It is concise and will not be repeated here.
  • the transceiver unit 21 is configured to receive a first PPDU, where the first PPDU carries a transmission bandwidth of an aggregated PPDU or a PPDU using a multi-frequency domain fragmentation transmission mode, and the transmission bandwidth includes at least two frequency domains.
  • the first PPDU is a sub-PPDU transmitted on any frequency-domain fragment of the at least two frequency-domain fragments in the aggregated PPDU or the at least two frequency-domain fragments in the PPDU using the multi-frequency-domain fragmentation transmission mode
  • the PPDU transmitted on any frequency domain slice of the slice; the first determination subunit 222 in the processing unit 22 is used for the frequency domain slice where the communication device 2 is docked and the transmission bandwidth carried in the first PPDU , and determine the rotation coefficient of at least one field in the EHT-STF and the EHT-LTF corresponding to the frequency domain slice where the communication device 2 is docked.
  • the above-mentioned transmission bandwidth is carried in the EHT-SIG or U-SIG of the above-mentioned first PPDU, and the EHT-SIG or U-SIG also carries the bandwidth for transmitting the frequency domain fragmentation of the first PPDU, and the transmission of this
  • the frequency domain slice of the first PPDU is the frequency domain slice where the communication device 2 is docked.
  • the communication device 2 in this design can correspondingly execute the foregoing third embodiment, and the above operations or functions of each unit in the communication device 2 are respectively in order to realize the corresponding operations of the second communication device in the foregoing third embodiment, in order to It is concise and will not be repeated here.
  • the second determination sub-unit 223 in the processing unit 22 is used for the frequency-domain slice where the communication device 2 is docked and the correspondence between each frequency-domain slice and the rotation coefficient in the 320MHz bandwidth. relationship, and determine the rotation coefficient of at least one field in the EHT-STF and the EHT-LTF corresponding to the frequency domain slice where the communication device 2 is docked.
  • each frequency-domain slice in the 320MHz bandwidth and the rotation coefficient is specified by a standard protocol.
  • the communication device 2 can determine the docking station of the receiving end without adding an additional indication in the signaling field.
  • the rotation coefficients of the EHT-STF and EHT-LTF corresponding to the frequency-domain slicing can not only save signaling overhead, but also consider the rotation coefficient of the maximum bandwidth, thereby reducing the PAPR of the STF and LTF fields.
  • the communication device 2 in this design can correspondingly implement the foregoing fourth embodiment, and the above operations or functions of each unit in the communication device 2 are respectively in order to realize the corresponding operations of the second communication device in the foregoing fourth embodiment, in order to It is concise and will not be repeated here.
  • the first communication device and the second communication device according to the embodiments of the present application are described above, and possible product forms of the first communication device and the second communication device are described below. It should be understood that any product having the function of the first communication device described in FIG. 13 in any form, and any product having the function of the second communication device described in FIG. 14 in any form, all fall into the embodiments of the present application. scope of protection. It should also be understood that the following description is only an example, and the product forms of the first communication device and the second communication device in the embodiments of the present application are not limited thereto.
  • the first communication device and the second communication device described in the embodiments of the present application may be implemented by a general bus architecture.
  • FIG. 15 is a schematic structural diagram of a communication apparatus 1000 provided by an embodiment of the present application.
  • the communication apparatus 1000 may be a first communication device or a second communication device, or an apparatus therein.
  • the communication device 1000 includes a processor 1001 and a transceiver 1002 that is internally connected and communicated with the processor.
  • the processor 1001 is a general-purpose processor or a special-purpose processor or the like. For example, it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data, and the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute computer programs, process computer program data.
  • the transceiver 1002 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 1002 may include a receiver and a transmitter, the receiver may be called a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be called a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication apparatus 1000 may further include an antenna 1003 and/or a radio frequency unit (not shown in the figure).
  • the antenna 1003 and/or the radio frequency unit may be located inside the communication apparatus 1000, or may be separated from the communication apparatus 1000, that is, the antenna 1003 and/or the radio frequency unit may be deployed remotely or in a distributed manner.
  • the communication apparatus 1000 may include one or more memories 1004 on which instructions may be stored, and the instructions may be a computer program, and the computer program may be executed on the communication apparatus 1000, so that the communication apparatus 1000 executes the above The method described in the method example.
  • the memory 1004 may also store data.
  • the communication device 1000 and the memory 1004 may be provided separately or integrated together.
  • the processor 1001, the transceiver 1002, and the memory 1004 may be connected through a communication bus.
  • the communication apparatus 1000 may be used to perform the function of the first communication device in the foregoing first embodiment: the processor 1001 may be used to perform step S101 in FIG. 8 and/or other processes for the techniques described herein ; Transceiver 1002 may be used to perform step S102 in FIG. 8 and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the function of the second communication device in the foregoing first embodiment: the processor 1001 may be used to perform step S104 in FIG. 8 and/or other techniques used in the techniques described herein Process; transceiver 1002 may be used to perform step S103 in FIG. 8 and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the function of the first communication device in the foregoing second embodiment: the processor 1001 may be used to perform step S201 in FIG. 11 and/or to perform other techniques described herein. Process; transceiver 1002 may be used to perform step S202 in FIG. 11 and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the function of the second communication device in the foregoing second embodiment: the processor 1001 may be used to perform step S204 in FIG. 11 and/or other techniques used in the techniques described herein Process; transceiver 1002 may be used to perform step S203 in FIG. 11 and/or other processes for the techniques described herein.
  • the communication apparatus 1000 may be used to perform the function of the second communication device in the foregoing third embodiment: the processor 1001 may be used to perform step S301 in FIG. 12 and/or other processes for the techniques described herein .
  • the processor 1001 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 1001 may store instructions, and the instructions may be computer programs.
  • the computer program runs on the processor 1001 to enable the communication device 1000 to execute the methods described in the above method embodiments.
  • the computer program may be embodied in the processor 1001, in which case the processor 1001 may be implemented by hardware.
  • the communication apparatus 1000 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 15 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the communication means may be:
  • the IC set can also include a storage component for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the first communication device and the second communication device described in the embodiments of the present application may be implemented by a general-purpose processor.
  • a general-purpose processor implementing the first communication device includes a processing circuit and an input and output interface that communicates internally with the processing circuit.
  • the general-purpose processor may be used to execute the function of the first communication device in the foregoing first embodiment.
  • the processing circuit is used to perform step S101 in FIG. 8 and/or other processes used in the techniques described herein;
  • the input and output interface is used to perform step S102 in FIG. 8 and/or used in the techniques described herein. other processes of the technology.
  • the general-purpose processor may be used to execute the function of the first communication device in the foregoing second embodiment.
  • the processing circuit is used for performing step S201 in FIG. 11 and/or for performing other processes of the techniques described herein;
  • the input and output interface is used for performing step S202 in FIG. 11 and/or for performing the process described herein.
  • Other procedures of the described techniques are used for performing step S201 in FIG. 11 and/or for performing other processes of the techniques described herein.
  • a general-purpose processor implementing the second communication device includes a processing circuit and an input-output interface that communicates internally with the processing circuit.
  • the general-purpose processor may be used to execute the function of the second communication device in the foregoing first embodiment.
  • the processing circuit is used to perform step S104 in FIG. 8 and/or other processes used in the techniques described herein;
  • the input and output interface is used to perform step S103 in FIG. 8 and/or used in the techniques described herein. other processes of the technology.
  • the general-purpose processor may be used to execute the function of the second communication device in the foregoing second embodiment.
  • the processing circuit is used to perform step S204 in FIG. 11 and/or other processes used in the techniques described herein;
  • the input and output interface is used to perform step S203 in FIG. 11 and/or used in the techniques described herein. other processes of the technology.
  • the general-purpose processor may be used to execute the function of the second communication device in the foregoing third embodiment.
  • the processing circuit is used to perform step S301 in FIG. 12 and/or other processes for the techniques described herein.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer program code is stored in the computer-readable storage medium, and when the processor executes the computer program code, the electronic device executes the method in any of the foregoing embodiments.
  • Embodiments of the present application also provide a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the method in any of the foregoing embodiments.
  • An embodiment of the present application further provides a communication device, which can exist in the form of a chip, and the structure of the device includes a processor and an interface circuit, and the processor is used to communicate with other devices through a receiving circuit, so that the device performs the above-mentioned The method of any of the embodiments.
  • the steps of the methods or algorithms described in conjunction with the disclosure of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), electrically erasable programmable Programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist in the core network interface device as discrete components.
  • the functions described in this application may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions When implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer-readable storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信领域,比如应用于支持802.11be标准的无线局域网中,尤其涉及一种PPDU传输方法及相关装置。该方法包括:第一通信设备生成并发送第一PPDU,第一PPDU中携带旋转系数指示信息,用于指示传输第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,第一PPDU是聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU。采用本申请实施例,可以在发送端发送聚合PPDU或采用多频域分片传输模式的情况下,正确地确定出接收端停靠的频域分片所对应的STF和LTF的旋转系数,从而提高接收端解析的正确性。

Description

物理层协议数据单元PPDU传输方法及相关装置
本申请要求于2020年9月29日提交中国国家知识产权局、申请号为202011047462.0、申请名称为“物理层协议数据单元PPDU传输方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种物理层协议数据单元PPDU传输方法及相关装置。
背景技术
随着移动互联网的发展和智能终端的普及,数据流量快速增长,用户对通信服务质量的需求也越来越高,电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11ax标准已经难以在大吞吐量、低抖动和低延迟等方面满足用户需求。因此,迫切需要发展下一代无线局域网(wireless local area networks,WLAN)技术,即IEEE 802.11be标准或极高吞吐率(extremely high throughput,EHT)标准或Wi-Fi7标准。与IEEE 802.11ax不同,IEEE 802.11be将采用超大带宽,例如320MHz,以实现超高传输速率和支持超密集用户的场景。
EHT标准中,为了减少在信令字段(signal field,SIG)域内指示320MHz带宽内的信息所导致的信息冗余,可以将320MHz带宽分成多个频率互不重叠的频域分片,在一个频域分片内传输该频域分片上所停靠(parking)的用户(或站点)的信令信息。比如,在80MHz的频域分片内只传输该80MHz频域分片上所停靠的用户的信令信息,不同80MHz的频域分片有不同的SIG域,用于传输不同的80MHz频域分片上所停靠的用户的信令信息。EHT标准中允许在不同频域分片上同时/并行传输不同代标准的物理层协议数据单元(physical protocol data unit,PPDU),即在多个频域分片上传输聚合PPDU。参见图1,图1是聚合PPDU的示意图。如图1所示,在一个80MHz的频域分片上传输EHT格式的子PPDU(sub-PPDU1),在一个160MHz的频域分片上传输高效(high efficient,HE)格式的子PPDU(sub-PPDU2),该80MHz的频域分片和该160MHz的频域分片在频率上不重叠。EHT标准还允许采用多频域分片传输模式传输PPDU,即在多个不同频域分片上同时/并行地传输同一标准多个的PPDU。例如,在一个80MHz的频域分片上传输EHT格式的PPDU,在另一个80MHz的频域分片上传输相同格式的PPDU,即EHT格式的PPDU。
由于聚合PPDU和采用多频域分片传输模式的PPDU均是在多个频域分片上同时/并行地传输多个PPDU(或sub-PPDU),并且EHT标准中,每个频域分片可以指示不同的带宽,所以当站点接收到其中某个频域分片上的PPDU时,如何正确地确定该频域分片上短训练字段(short training field,STF)和长训练字段(long training field,LTF)的旋转系数,以保证后续的数据解析阶段的正确性,成为了亟待解决的问题。
发明内容
本申请实施例提供一种PPDU传输方法及相关装置,可以在发送端发送聚合PPDU或采用多频域分片传输模式的情况下,正确地确定出接收端停靠的频域分片所对应的STF和LTF的旋转系数,从而提高接收端解析的正确性。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可 以互相参考。
第一方面,本申请提供一种PPDU传输方法,该方法包括:第一通信设备生成并发送第一PPDU,该第一PPDU是聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,该第一PPDU中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
可理解的,该多PPDU传输方法还可以描述为:第一通信设备生成PPDU的信令字段,并在第一频域分片上发送该信令字段。其中,传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括第一频域分片,该信令字段中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
可选的,上述第一通信设备是接入点设备。
可选的,上述旋转系数指示信息携带于上述第一PPDU的EHT-SIG或通用信令字段(universal SIG,U-SIG)中。或者,上述信令字段为EHT-SIG或U-SIG。
本方案通过在U-SIG或EHT-SIG中添加旋转系数的指示,来指示传输聚合PPDU或采用多频域分片传输模式的PPDU的多个频域分片中的一个频域分片所对应的旋转系数,可以通过在发送端考虑整体带宽的旋转系数,来降低整体带宽内的STF和LTF字段的PAPR,还可以提高接收端对数据字段解析的正确性,这是因为采用了正确的旋转系数对数据字段进行解调实现的。
第二方面,本申请提供一种PPDU传输方法,该方法包括:第二通信设备接收第一PPDU,并对该第一PPDU进行解析,得到旋转系数指示信息指示的传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数;该第一PPDU是聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,该第一PPDU中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
可理解的,该PPDU传输方法还可以描述为:第二通信设备在第一频域分片上接收PPDU的信令字段,并对该信令字段进行解析,得到第一频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。其中,传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括该第一频域分片,该信令字段中携带旋转系数指示信息,该旋转系数指示信息用于指示该第一频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
可选的,上述第二通信设备为站点设备。第二通信设备停靠的频域分片是传输上述第一PPDU的频域分片。或者,上述第一频域分片就是第二通信设备停靠的频域分片。
可选的,上述旋转系数指示信息携带于上述第一PPDU的EHT-SIG或U-SIG中。或者,上述信令字段为EHT-SIG或U-SIG。
第三方面,本申请提供一种通信装置,该通信装置可以为第一通信设备或第一通信设备中的芯片,比如Wi-Fi芯片。该通信装置包括:处理单元,用于生成第一PPDU,该第一PPDU中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,该第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该收发单元,用于发送该第一PPDU。
可理解的,上述处理单元的功能还可以描述为:用于生成PPDU的信令字段,其中,传 输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括第一频域分片,该信令字段中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数;上述收发单元的功能还可以描述为:在第一频域分片上发送该信令字段。
可选的,上述旋转系数指示信息携带于上述第一PPDU的EHT-SIG或U-SIG中。或者,上述信令字段为EHT-SIG或U-SIG。
第四方面,本申请提供一种通信装置,该通信装置可以为第二通信设备或第二通信设备中的芯片,比如Wi-Fi芯片。该通信装置包括:该收发单元,用于接收第一PPDU,该第一PPDU中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,该第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该处理单元,用于对该第一PPDU进行解析,得到该旋转系数指示信息指示的传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
可理解的,上述收发单元的功能还可以描述为:在第一频域分片上接收PPDU的信令字段,其中,传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括该第一频域分片,该信令字段中携带旋转系数指示信息,该旋转系数指示信息用于指示该第一频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数;上述处理单元的功能还可以描述为:对该信令字段进行解析,得到第一频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
可选的,该通信装置停靠的频域分片是传输上述第一PPDU的频域分片。或者,上述第一频域分片就是该通信装置停靠的频域分片。
可选的,上述旋转系数指示信息携带于上述第一PPDU的EHT-SIG或U-SIG中。或者,上述信令字段为EHT-SIG或U-SIG。
第五方面,本申请提供一种PPDU传输方法,该方法包括:第一通信设备生成并发送第一PPDU,该第一PPDU是聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,该第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段的旋转系数相同,或者该第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同。该子PPDU可以是EHT PPDU或HE PPDU。本文中第一PPDU的频域分片指传输该第一PPDU的频域分片。
可选的,上述第一通信设备是接入点设备。
可见,本方案通过对聚合PPDU中的HE/EHT-STF,HE/EHT-LTF以及数据字段按照频域分片分别旋转相同的相位(或乘以相同的旋转系数),可以通过在发送端考虑整体带宽的旋转系数,来降低整体带宽内的STF和LTF的PAPR,还可以提高接收端对数据字段解析的正确性,这是因为STF、LTF以及数据字段旋转了相同的相位(或乘以相同的旋转系数),不会影响数据字段的解调。此外,本申请实施例无需在PPDU中增加信令信息来指示旋转系数,可以减少信令开销。
可选的,上述第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。或者,上述第一PPDU的频域分片所对应的EHT-STF、EHT-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。第一通信设备(发送端)可以采用对应的旋转系数处理该HE-STF,HE-LTF 以及数据字段,或者,第一通信设备(发送端)可以采用对应的旋转系数处理该EHT-STF,EHT-LTF以及数据字段。比如按照旋转系数将该HE-STF,HE-LTF以及数据字段对应的频域信号旋转指定相位。或者,按照旋转系数将该EHT-STF,EHT-LTF以及数据字段对应的频域信号旋转指定相位。
可选的,上述第一PPDU的信令字段(这里指HE-STF之前的信令字段)与后面的HE-STF,HE-LTF和数据字段具有不同的旋转系数。或者,上述第一PPDU的信令字段(这里指EHT-STF之前的信令字段)与后面的EHT-STF,EHT-LTF和数据字段具有不同的旋转系数。而不同带宽下的旋转系数通过标准规定或发送端(即第一通信设备)从整体带宽上的信号自行决定,发送端(即第一通信设备)按照标准规定生成和传输旋转相位后的PPDU(即第一PPDU)。
第六方面,本申请提供一种PPDU传输方法,该方法包括:第二通信设备接收第一PPDU,并对该第一PPDU进行解析。其中,该第一PPDU是聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,该第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段的旋转系数相同,或者该第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同。该子PPDU可以是EHT PPDU或HE PPDU。
可选的,第二通信设备在解析第一PPDU的过程中,利用HE/EHT-LTF获取信道估计结果,该信道估计结果内包含了每个频域分片对应的相位旋转信息,然后利用该信道估计结果解调对应的数据字段。因为信道估计信息(如HE/EHT-LTF)和数据字段包含相同的旋转系数,被旋转了相同的相位,所以在解调过程中可以互相抵消,从而恢复出原始数据。这里的原始数据可以理解为发送端(即第一通信设备)调制前的数据。
可选的,上述第二通信设备为站点设备。第二通信设备停靠的频域分片是传输上述第一PPDU的频域分片。
可选的,上述第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。或者,上述第一PPDU的频域分片所对应的EHT-STF、EHT-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。
可选的,上述第一PPDU的信令字段(这里指HE-STF之前的信令字段)与后面的HE-STF,HE-LTF和数据字段具有不同的旋转系数。或者,上述第一PPDU的信令字段(这里指EHT-STF之前的信令字段)与后面的EHT-STF,EHT-LTF和数据字段具有不同的旋转系数。而不同带宽下的旋转系数通过标准规定或发送端(即第一通信设备)从整体带宽上的信号自行决定。
第七方面,本申请提供一种通信装置,该通信装置可以为第一通信设备或第一通信设备中的芯片,比如Wi-Fi芯片。该通信装置包括:处理单元,用于生成第一PPDU,该第一PPDU是聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,该第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段的旋转系数相同,或者该第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同;收发单元,用于发送该第一PPDU。该子PPDU是EHT PPDU或HE PPDU。
可选的,上述第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。或者,上述第一PPDU的频域分片所对应的EHT-STF、EHT-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。
可选的,上述第一PPDU的信令字段(这里指HE-STF之前的信令字段)与后面的HE-STF, HE-LTF和数据字段具有不同的旋转系数。或者,上述第一PPDU的信令字段(这里指EHT-STF之前的信令字段)与后面的EHT-STF,EHT-LTF和数据字段具有不同的旋转系数。而不同带宽下的旋转系数通过标准规定或发送端(即第一通信设备)从整体带宽上的信号自行决定,发送端(即第一通信设备)按照标准规定生成和传输旋转相位后的PPDU(即第一PPDU)。
第八方面,本申请提供一种通信装置,该通信装置可以为第二通信设备或第二通信设备中的芯片,比如Wi-Fi芯片。该通信装置包括:收发单元,用于接收第一PPDU,该第一PPDU是聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,该第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段的旋转系数相同,或者该第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同;处理单元,用于对该第一PPDU进行解析。该子PPDU可以是EHT PPDU或HE PPDU。
可选的,上述处理单元,具体用于:利用HE/EHT-LTF获取信道估计结果,该信道估计结果内包含了每个频域分片对应的相位旋转信息,利用该信道估计结果解调对应的数据字段。
可选的,该通信装置停靠的频域分片是传输上述第一PPDU的频域分片。
可选的,上述第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。或者,上述第一PPDU的频域分片所对应的EHT-STF、EHT-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。
可选的,上述第一PPDU的信令字段(这里指HE-STF之前的信令字段)与后面的HE-STF,HE-LTF和数据字段具有不同的旋转系数。或者,上述第一PPDU的信令字段(这里指EHT-STF之前的信令字段)与后面的EHT-STF,EHT-LTF和数据字段具有不同的旋转系数。而不同带宽下的旋转系数通过标准规定或发送端(即第一通信设备)从整体带宽上的信号自行决定。
第九方面,本申请提供一种PPDU传输方法,该方法包括:第一通信设备生成并发送第一PPDU,该第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽包括至少两个频域分片,该第一PPDU是聚合PPDU中该至少两个频域分片的任一频域分片上传输的子PPDU或采用多频域分片传输模式的PPDU中该至少两个频域分片的任一频域分片上传输的PPDU。
可理解的,该PPDU传输方法还可以描述为:第一通信设备生成PPDU的信令字段,并在第一频域分片上发送该信令字段。其中,传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括第一频域分片,该信令字段中携带该信道带宽。
可选的,上述第一通信设备是接入点设备。
可选的,上述发送带宽携带于上述第一PPDU的EHT-SIG或U-SIG中。或者,上述信令字段为EHT-SIG或U-SIG。EHT-SIG或U-SIG还携带传输该第一PPDU的频域分片(或上述第一频域分片)的带宽。
第十方面,本申请提供一种PPDU传输方法,该方法包括:第二通信设备接收第一PPDU,并根据第二通信设备停靠的频域分片和该第一PPDU中携带的发送带宽,确定第二通信设备停靠的频域分片对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。其中,该第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽包括至少两个频域分片,该第一PPDU是聚合PPDU中该至少两个频域分片的任一频域分片上传输的子PPDU或采用多频域分片传输模式的PPDU中该至少两个频域分片的任一频域分片上传输的PPDU。
可理解的,该PPDU传输方法还可以描述为:第二通信设备在第一频域分片上接收PPDU的信令字段,并根据该信令字段携带的该信道带宽和该第一频域分片,确定该第一频域分片对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。其中,传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括该第一频域分片,该信令字段中携带该信道带宽。
可选的,上述第二通信设备为站点设备。第二通信设备停靠的频域分片是传输上述第一PPDU的频域分片。或者,第二通信设备停靠的频域分片是上述第一频域分片。
可选的,上述发送带宽携带于上述第一PPDU的EHT-SIG或U-SIG中。或者,上述信令字段为EHT-SIG或U-SIG。EHT-SIG或U-SIG还携带传输该第一PPDU的频域分片(或上述第一频域分片)的带宽。
本方案通过在U-SIG或EHT-SIG中添加发送带宽的指示,来指示传输聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽(或信道带宽,或整体带宽),以使接收端根据该发送带宽后,和接收端自己停靠的频域分段在该发送带宽的什么位置,确定接收端自己停靠的频域分段对应的EHT-STF和EHT-LTF的旋转系数。可以通过在发送端考虑整体带宽的旋转系数,来降低整体带宽内的STF和LTF字段的PAPR,还可以提高接收端对数据字段解析的正确性,这是因为采用了正确的旋转系数对数据字段进行解调实现的。
第十一方面,本申请提供一种通信装置,该通信装置可以为第一通信设备或第一通信设备中的芯片,比如Wi-Fi芯片。该通信装置包括:该处理单元,用于生成第一PPDU,该第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽包括至少两个频域分片,该第一PPDU为该聚合PPDU中该至少两个频域分片的任一频域分片上传输的子PPDU或该采用多频域分片传输模式的PPDU中该至少两个频域分片的任一频域分片上传输的PPDU;该收发单元,用于发送该第一PPDU。
可理解的,上述处理单元的功能还可以描述为:生成PPDU的信令字段,其中,传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括第一频域分片,该信令字段中携带该信道带宽;上述收发单元的功能还可以描述为:在该第一频域分片上发送该信令字段。
可选的,上述发送带宽携带于上述第一PPDU的EHT-SIG或U-SIG中。或者,上述信令字段为EHT-SIG或U-SIG。EHT-SIG或U-SIG还携带传输该第一PPDU的频域分片(或上述第一频域分片)的带宽。
第十二方面,本申请提供一种通信装置,该通信装置可以为第二通信设备或第二通信设备中的芯片,比如Wi-Fi芯片。该通信装置包括:该收发单元,用于接收第一PPDU,该第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽包括至少两个频域分片,该第一PPDU为该聚合PPDU中该至少两个频域分片的任一频域分片上传输的子PPDU或该采用多频域分片传输模式的PPDU中该至少两个频域分片的任一频域分片上传输的PPDU;该处理单元,用于根据该通信装置停靠的频域分片和该第一PPDU中携带的该发送带宽,确定该通信装置停靠的频域分片对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
可理解的,上述收发单元的功能还可以描述为:在第一频域分片上接收PPDU的信令字段,其中,传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括该第一频域分片,该信令字段中携带该信道带宽;上述处理单元的功能还可以描述为:根据该信令字段携带的该信道带宽和该第一频域分片,确定该第一频域分片对应的EHT-STF和 EHT-LTF中至少一个字段的旋转系数。
可选的,该通信装置停靠的频域分片是传输上述第一PPDU的频域分片。或者,该通信装置停靠的频域分片是上述第一频域分片。
可选的,上述发送带宽携带于上述第一PPDU的EHT-SIG或U-SIG中。或者,上述信令字段为EHT-SIG或U-SIG。EHT-SIG或U-SIG还携带传输该第一PPDU的频域分片(或上述第一频域分片)的带宽。
第十三方面,本申请提供一种PPDU传输方法,该方法包括:第二通信设备根据该第二通信设备停靠的频域分片和320MHz带宽中每个频域分片与旋转系数之间的对应关系,确定该第二通信设备停靠的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
其中,320MHz带宽中每个频域分片与旋转系数之间的对应关系由标准协议规定。
本方案通过在标准协议中约束该标准协议支持的最大带宽中每个频域分片与旋转系数的对应关系,无需在信令字段中增加额外指示,就能确定接收端停靠的频域分片所对应的EHT-STF和EHT-LTF的旋转系数,不仅可以节省信令开销,还可以考虑最大带宽的旋转系数,从而降低STF和LTF字段的PAPR。
第十四方面,本申请提供一种通信装置,该通信装置可以为第二通信设备或第二通信设备中的芯片,比如Wi-Fi芯片。该通信装置包括:处理单元,用于根据该通信装置停靠的频域分片和320MHz带宽中每个频域分片与旋转系数之间的对应关系,确定该通信装置停靠的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
其中,320MHz带宽中每个频域分片与旋转系数之间的对应关系由标准协议规定。
第十五方面,本申请提供一种PPDU传输方法,该方法包括:第一通信设备生成并发送HE PPDU,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU。其中,第一通信设备可以是EHT标准设备。
第十六方面,本申请提供一种PPDU传输方法,该方法包括:第二通信设备在该第二通信设备停靠的频域分片上接收HE PPDU,并对接收到的该HE PPDU进行解析,第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数均为1。其中,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU。
可选的,第二通信设备是802.11ax标准设备。
本方案通过限制802.11ax标准的设备只能停靠在旋转系数为1对应的频域分片,可以不影响旧标准设备的接收,从而支持802.11be的物理层PPDU聚合的新特性。
第十七方面,本申请提供一种通信装置,该通信装置可以为第一通信设备或第一通信设备中的芯片,比如Wi-Fi芯片。该通信装置包括:处理单元,用于生成HE PPDU,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;收发单元,用于发送该HE PPDU。
第十八方面,本申请提供一种通信装置,该通信装置可以为第二通信设备或第二通信设备中的芯片,比如Wi-Fi芯片。该通信装置包括:收发单元,用于在该通信装置停靠的频域分片上接收HE PPDU,该通信装置停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数均为1;处理单元,用于对接收到的该HE PPDU进行解析。其中,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU。
第十九方面,本申请提供一种PPDU传输方法,该方法包括:第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数不为1,第一通信设备对传输聚合PPDU或采用多频域分片传输模式的PPDU的所有频域分片所对应的STF和LTF的旋转系数分别进行相位 旋转,以使第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数都变为1;第一通信设备生成并发送HE PPDU,该HE PPDU为该聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU。
可选的,第一通信设备可以是EHT标准设备。第二通信设备是802.11ax标准设备。
本方案通过对传输聚合PPDU或采用多频域分片传输模式的PPDU的所有频域分片(或信道带宽)所对应的旋转系数乘以-1,使第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数都变为1,可以既不影响该信道带宽内的PAPR,也不影响旧标准设备的接收。
第二十方面,本申请提供一种PPDU传输方法,该方法包括:第二通信设备在该第二通信设备停靠的频域分片上接收HE PPDU,并对接收到的该HE PPDU进行解析,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU。
可选的,第二通信设备是802.11ax标准设备。
第二十一方面,本申请提供一种通信装置,该通信装置可以为第一通信设备或第一通信设备中的芯片,比如Wi-Fi芯片。该通信装置包括:处理单元,用于当第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数不为1时,对传输聚合PPDU或采用多频域分片传输模式的PPDU的所有频域分片所对应的STF和LTF的旋转系数分别进行相位旋转,以使第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数都变为1;该处理单元,还用于生成HE PPDU,该HE PPDU为该聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;收发单元,用于发送该HE PPDU。
第二十二方面,本申请提供一种通信装置,该通信装置可以为第二通信设备或第二通信设备中的芯片,比如Wi-Fi芯片。该通信装置包括:收发单元,用于在该通信装置停靠的频域分片上接收HE PPDU,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;处理单元,用于对接收到的该HE PPDU进行解析。
第二十三方面,本申请提供一种通信装置,具体为第一通信设备,包括处理器和收发器。
在一种可能的设计中,该处理器,用于生成第一PPDU,该第一PPDU中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,该第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该收发器,用于发送该第一PPDU。
在一种可能的设计中,该处理器,用于生成第一PPDU,该第一PPDU是聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,该第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段的旋转系数相同,或者该第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同;该收发器,用于发送该第一PPDU。
在一种可能的设计中,该处理器,用于生成第一PPDU,该第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽包括至少两个频域分片,该第一PPDU为该聚合PPDU中该至少两个频域分片的任一频域分片上传输的子PPDU或该采用多频域分片传输模式的PPDU中该至少两个频域分片的任一频域分片上传输的PPDU;该收发器,用于发送该第一PPDU。
在一种可能的设计中,该处理器,用于生成HE PPDU,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该收发器,用于发送该HE PPDU。
在一种可能的设计中,该处理器,用于在第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数不为1的情况下,对传输聚合PPDU或采用多频域分片传输模式的PPDU的所有频域分片所对应的STF和LTF的旋转系数分别进行相位旋转,以使第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数都变为1;该处理器,还用于生成HE PPDU,该HE PPDU为该聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该收发器,用于发送该HE PPDU。
可选的,该第一通信设备还可以包括存储器,该存储器用于与处理器耦合,其保存AP MLD必要的程序指令和数据。
第二十四方面,本申请提供一种通信装置,具体为第二通信设备,包括处理器和收发器。
在一种可能的设计中,该收发器,用于接收第一PPDU,该第一PPDU中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,该第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该处理器,用于对该第一PPDU进行解析,得到该旋转系数指示信息指示的传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
在一种可能的设计中,该收发器,用于接收第一PPDU,该第一PPDU是聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,该第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段的旋转系数相同,或者该第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同;该处理器,用于对该第一PPDU进行解析。
在一种可能的设计中,该收发器,用于接收第一PPDU,该第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽包括至少两个频域分片,该第一PPDU为该聚合PPDU中该至少两个频域分片的任一频域分片上传输的子PPDU或该采用多频域分片传输模式的PPDU中该至少两个频域分片的任一频域分片上传输的PPDU;该处理器,用于根据该通信装置停靠的频域分片和该第一PPDU中携带的该发送带宽,确定该通信装置停靠的频域分片对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
在一种可能的设计中,该处理器,用于根据该通信装置停靠的频域分片和320MHz带宽中每个频域分片与旋转系数之间的对应关系,确定该通信装置停靠的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
在一种可能的设计中,该收发器,用于在该通信装置停靠的频域分片上接收HE PPDU,该通信装置停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数均为1,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该处理器,用于对接收到的该HE PPDU进行解析。
在一种可能的设计中,该收发器,用于在该通信装置停靠的频域分片上接收HE PPDU,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该处理器,用于对接收到的该HE PPDU进行解析。
可选的,该第二通信设备还可以包括存储器,该存储器用于与处理器耦合,其保存AP MLD必要的程序指令和数据。
第二十五方面,本申请提供一种通信装置,该通信装置可以以芯片的产品形态存在,该通信装置的结构中包括输入输出接口和处理电路。在一种可能的设计中,该处理电路,用于生成第一PPDU,该第一PPDU中携带旋转系数指示信息,该旋转系数指示信息用于指示传 输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,该第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该输入输出接口,用于将该第一PPDU传输至收发机进行发送。
在一种可能的设计中,该处理电路,用于生成第一PPDU,该第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽包括至少两个频域分片,该第一PPDU为该聚合PPDU中该至少两个频域分片的任一频域分片上传输的子PPDU或该采用多频域分片传输模式的PPDU中该至少两个频域分片的任一频域分片上传输的PPDU;该输入输出接口,用于将该第一PPDU传输至收发机进行发送。
在一种可能的设计中,该处理电路,用于生成HE PPDU,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该输入输出接口,用于将该HE PPDU传输至收发机进行发送。
在一种可能的设计中,该处理电路,用于在第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数不为1的情况下,对传输聚合PPDU或采用多频域分片传输模式的PPDU的所有频域分片所对应的STF和LTF的旋转系数分别进行相位旋转,以使第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数都变为1;该处理电路,还用于生成HE PPDU,该HE PPDU为该聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该输入输出接口,用于将该HE PPDU传输至收发机进行发送。
第二十六方面,本申请提供一种通信装置,该通信装置可以以芯片的产品形态存在,该通信装置的结构中包括输入输出接口和处理电路。在一种可能的设计中,该输入输出接口,用于接收接收机收到的第一PPDU,该第一PPDU中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,该第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该处理电路,用于对该第一PPDU进行解析,得到该旋转系数指示信息指示的传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
在一种可能的设计中,该输入输出接口,用于接收接收机收到的第一PPDU,该第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽包括至少两个频域分片,该第一PPDU为该聚合PPDU中该至少两个频域分片的任一频域分片上传输的子PPDU或该采用多频域分片传输模式的PPDU中该至少两个频域分片的任一频域分片上传输的PPDU;该处理电路,用于根据该通信装置停靠的频域分片和该第一PPDU中携带的该发送带宽,确定该通信装置停靠的频域分片对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
在一种可能的设计中,该处理电路,用于根据该通信装置停靠的频域分片和320MHz带宽中每个频域分片与旋转系数之间的对应关系,确定该通信装置停靠的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
在一种可能的设计中,该输入输出接口,用于接收接收机在该通信装置停靠的频域分片上接收的HE PPDU,该通信装置停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数均为1,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该处理电路,用于对接收到的该HE PPDU进行解析。
在一种可能的设计中,该输入输出接口,用于接收接收机在该通信装置停靠的频域分片 上接收的HE PPDU,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该处理电路,用于对接收到的该HE PPDU进行解析。
第二十七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有程序指令,当该程序指令在计算机上运行时,使得计算机执行上述第一方面、或上述第二方面、或上述第五方面、或上述第六方面、或上述第九方面、或上述第十方面、或上述第十三方面、或上述第十五方面、或上述第十六方面、或上述第十九方面、或上述第二十方面所述的方法。
第二十八方面,本申请提供一种包含程序指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面、或上述第二方面、或上述第五方面、或上述第六方面、或上述第九方面、或上述第十方面、或上述第十三方面、或上述第十五方面、或上述第十六方面、或上述第十九方面、或上述第二十方面所述的方法。
实施本申请实施例,可以在发送端发送聚合PPDU或采用多频域分片传输模式的情况下,正确地确定出接收端停靠的频域分片所对应的STF和LTF的旋转系数,从而提高接收端解析的正确性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是聚合PPDU的示意图;
图2是本申请实施例提供的无线通信系统的一架构示意图;
图3a是本申请实施例提供的接入点的结构示意图;
图3b是本申请实施例提供的站点的结构示意图;
图4是本申请实施例提供的320MHz信道中频域分片的划分示意图;
图5是本申请实施例提供的采用多频域分片传输模式的PPDU的示意图;
图6是本申请实施例提供的一种PPDU的信令部分的结构示意图;
图7a是802.11ac中PPDU的帧结构示意图;
图7b是80MHz带宽内信号传输示意图;
图8是本申请实施例提供的PPDU传输方法的一示意流程图;
图9是本申请实施例提供的EHT PPDU的帧结构示意图;
图10是本申请实施例提供的PPDU传输方法的另一示意流程图;
图11是本申请实施例提供的PPDU传输方法的又一示意流程图;
图12是本申请实施例提供的PPDU传输方法的再又一示意流程图;
图13是本申请实施例提供的通信装置1的结构示意图;
图14是本申请实施例提供的通信装置2的结构示意图;
图15是本申请实施例提供的通信装置1000的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
为便于理解本申请实施例的技术方案,下面将对本申请实施例提供的PPDU传输方法的系统架构进行简要说明。可理解的,本申请实施例描述的系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例提供一种PPDU传输方法,可以应用于无线通信系统中。一种实现方式中,该PPDU传输方法通过显式地在PPDU中携带传输该PPDU的频域分片所对应的STF和/或LTF的旋转系数,来确定接收端停靠的频域分片所对应的STF和LTF的旋转系数,从而提高采用该旋转系数对该频域分片上传输的PPDU解析的正确性。另一种实现方式中,该PPDU传输方法通过在PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,以使接收端确定自己停靠的频域分片在该发送带宽的哪个位置,来确定接收端自己停靠的频域分片所对应STF和LTF的旋转系数,从而提高采用该旋转系数对该频域分片上传输的PPDU解析的正确性。又一种实现方式中,该PPDU传输方法通过在标准协议中规定320MHz带宽中每个频域分片与旋转系数的对应关系,以使接收端确定自己停靠的频域分片所对应STF和LTF的旋转系数,从而提高采用该旋转系数对该频域分片上传输的PPDU解析的正确性。
该无线通信系统可以为无线局域网或蜂窝网,该PPDU传输方法可以由无线通信系统中的通信设备或通信设备中的芯片或处理器实现。该通信设备可以是接入点(access point,AP)设备或站点(station,STA)设备;该通信设备还可以是一种支持多条链路并行传输的无线通信设备,例如,该通信设备可以称为多链路设备(multi-link device,MLD)或多频段设备(multi-band device)。相比于仅支持单条链路传输的通信设备来说,多链路设备具有更高的传输效率和更大的吞吐率。
可选的,本申请实施例提供的PPDU传输方法可以应用于一个节点与一个或多个节点进行数据传输的场景中;也可以应用于单用户的上行/下行传输,多用户的上行/下行传输;还可以应用于设备到设备(device to device,D2D)的传输。其中,上述节点既可以是AP,也可以是STA。当AP与STA,或者STA与STA进行通信时,PPDU的帧结构中LTF序列的设计需要依据802.11be的载波规划(tone plan)来进行设计,160MHz和320MHz下的tone plan为80MHz的tone plan的重复。为便于描述,下文以AP与STA之间的通信为例进行说明。
参见图2,图2是本申请实施例提供的无线通信系统的一架构示意图。如图2所示,该无线通信系统可以包括一个或多个AP(如图2中的AP1)和一个或多个STA(如图2中的STA1、STA2以及STA3)。其中,AP和STA支持WLAN通信协议,该通信协议可以包括IEEE 802.11be(或称为Wi-Fi 7,EHT协议),还可以包括IEEE 802.11ax,IEEE 802.11ac等协议。当然,随着通信技术的不断演进和发展,该通信协议还可以包括IEEE 802.11be的下一代协议等。以WLAN为例,实现本申请方法的装置可以是WLAN中的AP或STA,或者是,安装在AP或STA中的芯片或处理系统。
接入点(例如图2的AP1)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中其他设备(比如站点或其他接入点)通信的功能,当然,还可以具有与其他设备通信的功能。在WLAN系统中,接入点可以称为接入点站点(AP STA)。该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。本申请实施例中的AP是为STA提供服务的装置,可以支持802.11系列协议。例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体;AP可以包括各种形式的宏基站,微基站,中继站等,当然AP还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。
站点(例如图2中的STA1或STA2)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信,具有与WLAN网络中的其他站点或接入点通信的能力。在WLAN系统中,站点可以称为非接入点站点(non-access point station,non-AP STA)。例如,STA是允许用户 与AP通信进而与WLAN通信的任何用户通信设备,该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,STA可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置或,娱乐设备,游戏设备或系统,全球定位系统设备等,STA还可以为上述这些终端中的芯片和处理系统。
WLAN系统可以提供高速率低时延的传输,随着WLAN应用场景的不断演进,WLAN系统将会应用于更多场景或产业中,比如,应用于物联网产业,应用于车联网产业或应用于银行业,应用于企业办公,体育场馆展馆,音乐厅,酒店客房,宿舍,病房,教室,商超,广场,街道,生成车间和仓储等。当然,支持WLAN通信的设备(比如接入点或站点)可以是智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中的智能设备(比如,打印机,投影仪,扩音器,音响等),车联网中的车联网设备,日常生活场景中的基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等),以及大型体育以及音乐场馆的设备等。本申请实施例中对于STA和AP的具体形式不做限制,在此仅是示例性说明。
可选的,参见图3a,图3a是本申请实施例提供的接入点的结构示意图。其中,AP可以是多天线的,也可以是单天线的。图3a中,AP包括物理层(physical layer,PHY)处理电路和介质介入控制(medium access control,MAC)处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。802.11标准关注PHY和MAC部分。参见图3b,图3b是本申请实施例提供的站点的结构示意图。图3b示出了单个天线的STA结构示意图,实际场景中,STA也可以是多天线的,并且可以是两个以上天线的设备。图3b中,STA可以包括PHY处理电路和MAC处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。
上述内容简要阐述了本申请实施例的系统架构,为更好地理解本申请实施例的技术方案,下面将介绍与本申请相关的几个内容。
1、频域分片(frequency segment)
在WLAN中,信道通常分为主信道和从信道,其中,从信道可包含一个或多个子信道。如果以20MHz为基本带宽单位进行划分,320MHz信道可以划分为16个子信道,依次编号为信道1至信道16,每一个编号代表一个20MHz信道。
在WLAN中,一个用于传输的连续频谱块可称为一个频域分片(frequency segment)。一个WLAN信道可以包括多个频域分片,其中每个频域分片的带宽可以是80MHz,40MHz,20MHz或160MHz。参见图4,图4是本申请实施例提供的320MHz信道中频域分片的划分示意图。如图4所示,以频域分片的带宽为80MHz为例,则图4所示的320MHz信道可分为4个频域分片。频域分片还可以称作频率分段,或简称为分片或分段。
2、多频域分片(multiple frequency segment)传输模式
多频域分片传输模式是指在多个频域分片上同时/并行地传输同一标准的多个PPDU。参见图5,图5是本申请实施例提供的采用多频域分片传输模式的PPDU的示意图。如图5所 示,在一个80MHz的频域分片上传输EHT PPDU1,在另一个80MHz的频域分片上传输EHT PPDU2。
3、不同频域分片内的信令字段(signal field,SIG)
在802.11ax协议中,高效物理层协议数据单元(high efficiency physical protocol data unit,HE PPDU)中的信令部分需要在每个20MHz信道上重复携带。当WLAN中用户所支持的带宽从160MHz扩展到320MHz,随着用户(或站点)数增加,多个用户的信令信息依然需要在每个20MHz信道上重复发送,这样导致重复的信令过多,信令开销较大,传输效率低。为提高传输效率,降低信令开销,一个改进的思路是,将整个大带宽(例如,320MHz)分成若干个分段(segment),每个分段停靠若干个站点,每个分段仅传输该分段上所停靠(parking)的站点的信令信息。具体的,上述停靠(parking)是指系统确定或者已知的一种对应关系,是半静态的,也就是说频域分片与停靠的一个或者多个站点的对应关系是配置好的,在一定时间内保持不变。
应理解,本申请所述的站点停靠(parking)在某个频域分片,也可以称为站点驻留在(parking on)某个频域分片,或者说位于或属于某个频域分片中的站点。
为了降低开销,在一个示例中,参见图6,图6是本申请实施例提供的一种PPDU的信令部分的结构示意图。如图6所示,以第一个分段为例进行介绍,极高吞吐率物理层协议数据单元(EHT PPDU)在第一个分段上的4个20MHz重复携带通用信令字段(universal SIG,U-SIG)U-SIG1,U-SIG1包括停靠在该第一个分段上的站点的传输参数,而不需要在U-SIG1中包括整个320MHz带宽内所有站点的传输参数,可以减少每个20MHz信道上传输的U-SIG的信息量。EHT PPDU还在第一个分段上的4个20MHz重复携带EHT-SIG的两个内容信道EHT-SIG1_1和EHT-SIG1_2。EHT-SIG进一步包括停靠在该第一个分段上的站点的其他传输参数,如EHT-SIG1_1包括停靠在该第一个分段上的站点的部分传输参数,EHT-SIG1_2包括停靠在该第一个分段上的另外部分传输参数。因此,一方面不需要在整个320MHz带宽上的每一个20MHz信道上都重复发送相同的U-SIG,只需要在320MHz带宽的每个分段内重复发送相同的U-SIG,不同分段内发送的U-SIG不相同,减少了重复次数,也减少了U-SIG的信息量。另一方面,也不需要在320MHz带宽上重复发送EHT-SIG的两个内容信道,只需要在320MHz带宽的每个分段内重复发送EHT-SIG的两个内容信道,不同分段内发送的EHT-SIG不相同,从而大大降低了信令开销,缩短了信令部分所占据的符号数,提升了传输效率。
可选的,停靠在(parking on)或工作在(operated on)第一个分段上的STA可以根据U-SIG1和EHT-SIG1_1和EHT-SIG1_2解析得到自己的数据。
可理解的,前述U-SIG和EHT-SIG均为PPDU中的信令字段。U-SIG用于携带一些公共信息,例如指示PPDU版本的信息、指示上行/下行的信息、指示PPDU的频域带宽的信息,打孔指示信息等。EHT-SIG中包括指示资源分配的信息以及指示数据解调的信息等。
AP向停靠在某个频域分片中的站点传输PPDU时,该PPDU的信令字段在该站点停靠的频域分片上传输,而该PPDU中的数据字段可以分配在整个大带宽(如320MHz)的任意位置上传输。换句话说,站点在自己所停靠的频域分片上接收信令字段,根据信令字段的指示,在一个或多个频域分片上接收数据字段,该一个或多个频域分片可以包括站点所停靠的频域分片,也可以不包括站点所停靠的频域分片。简言之,本申请所称的站点停靠的频域分片,与站点进行数据传输的频带范围可以是不同的。例如,站点停靠在图4所示的320MHz信道的第二个频域分片上,站点就在该第二个频域分片上接收U-SIG和EHT-SIG。假设U-SIG指 示PPDU的频域带宽为160MHz,站点再根据U-SIG和EHT-SIG的指示,采用160MHz带宽接收数据字段,并根据EHT-SIG指示的数据解调信息对该数据字段进行解调。
4、旋转系数
802.11ac引进了5G频段,支持的最大带宽拓展到160MHz。参见图7a,图7a是802.11ac中PPDU的帧结构示意图。如图7a所示,802.11ac PPDU包括传统短训练字段(legacy short training field,L-STF)、传统长训练字段(legacy long training field,L-LTF)、传统信令字段(legacy signal field,L-SIG)、非常高吞吐量字段A(very high throughput signaling field A,VHT-SIG-A)、非常高吞吐量短训练字段(very high throughput short training field,VHT-STF)、非常高吞吐量长训练字段(very high throughput long training field,VHT-LTF)、非常高吞吐量字段B(very high throughput signaling field B,VHT-SIG-B)、数据(Data)字段。其中,L-STF、L-LTF、以及L-SIG可理解为传统前导码字段,用于保证新设备同传统设备的共存。
当802.11ac PPDU的带宽为40MHz时,802.11ac PPDU中L-STF、L-LTF、L-SIG以及VHT-SIG-A在每个20MHz信道上复制传输,并且采用与802.11n中40MHz带宽相同的旋转系数,即在第二个20MHz信道上传输的信号乘以旋转系数j,即第二个20MHz信道上传输的信号旋转90段。
当802.11ac PPDU的带宽为80MHz时,4个20MHz信道上传输的信号的旋转系数分别为[1 -1 -1 -1]。参见图7b,图7b是80MHz带宽内信号传输示意图。如图7b所示,假设第一个20MHz信道上传输的信号为S20,则第二个20MHz信道上传输的信号为(-1)*S20,第三个20MHz信道和第四个20MHz信道上传输的信号均为(-1)*S20。其中,图7b中的-128、-64、0、64、127是子载波编号。802.11ac PPDU中的VHT-STF、VHT-LTF、VHT-SIG-B以及Data部分在整个80MHz带宽内传输,不需要像传统前导码字段一样在每个20MHz信道上复制传输。但为了降低峰值平均功率比(peak to average power ratio,PAPR,简称峰均比),子载波编号从-128到-65的数据乘以旋转系数1,子载波编号从-63到-1的数据乘以旋转系数(-1),子载波编号从1到63的数据乘以旋转系数(-1),子载波编号从65到127的数据乘以旋转系数(-1)。
当802.11ac PPDU的带宽为连续160MHz时,8个20MHz信道上传输的信号的旋转系数分别为[1 -1 -1 -1 1 -1 -1 -1]。如果802.11ac PPDU的带宽为不连续的160MHz时,比如非连续的2个80MHz,则每个80MHz使用带宽为80MHz时的旋转系数,即每个80MHz使用旋转系数[1 -1 -1 -1]。
因为802.11ax最大支持的带宽与802.11ac最大支持的带宽相同,因此在802.11ax中沿用802.11ac各带宽下的旋转系数。
可理解的,本申请中的旋转系数可用于对PPDU中的数据部分进行调制和解调。
因为EHT标准提出了一种物理层包聚合的聚合PPDU,还允许采用多频域分片传输模式传输PPDU,并且EHT标准中允许不同带宽的频域分片,而旋转系数是与带宽相关的。所以如果在发送端旋转系数没有根据整个带宽进行协调,将导致整个带宽的信号的PAPR较高。例如,以图1的聚合PPDU和图5的多频域分片传输模式的PPDU为例,图1的聚合PPDU的整个带宽由子PPDU1(sub-PPDU1)的带宽和子PPDU2(sub-PPDU2)的带宽组成,即80MHz和160MHz之和为240MHz;图5的多频域分片传输模式的PPDU的整个带宽由EHT PPDU1的带宽和EHT PPDU2的带宽组成,即80MHz和80MHz之和为160MHz。因此,对于发送端而言,如果旋转系数没有根据整个240MHz带宽进行协调,而是对子PPDU1采用80MHz带宽的旋转系数进行调制,或对子PPDU2采用160MHz带宽的旋转系数进行调制,可能会导致 整个240MHz带宽的信号的PAPR较高。换句话说,因为EHT标准中每个频域分片可以指示不同的带宽,若不同频域分片之间的旋转系数未整体协调,会使得整个240MHz带宽的PAPR偏高,从而影响通信性能。
另外,对于接收端而言,因为停靠在不同频域分片的站点和停靠在同一频域分片的站点都可能是不同代标准的设备,所以站点通常会采用自己所支持的标准协议(比如802.11ax)中规定的旋转系数对接收到的数据字段进行解调,然而AP(发送端)可能是采用最新标准(比如802.11be)规定的旋转系数对数据字段进行的调制,所以站点采用802.11ax规定的旋转系数对接收到的数据字段进行解调,将出现解调出错的问题。换句话说,因为EHT标准允许使用物理层PPDU聚合技术,物理层PPDU聚合技术使得不同频域分片上可以传输不同协议的PPDU,但是旧协议的设备会采用旧协议规定的旋转系数对自己停靠的频域分片上接收到的PPDU进行解调,将导致该PPDU进行相位旋转后的数据不能被正确接收。
应理解,本申请中的“解调”和“解析”可以相互替换使用。
因此,本申请实施例提供一种PPDU传输方法,不仅可以降低整体带宽内的STF和LTF字段的PAPR,同时不影响旧标准设备的接收,从而支持802.11be的物理层PPDU聚合的新特性;还可以正确地确定出接收端停靠的频域分片所对应的STF和LTF的旋转系数,从而提高接收端解析的正确性。
下面将结合更多的附图对本申请提供的技术方案进行详细说明。
本申请提供的技术方案分四个实施例进行阐述,实施例一阐述在U-SIG或EHT-SIG中添加旋转系数的指示;实施例二阐述在不修改PPDU中的信令字段的情况下,如何保证接收端能够正确解调;实施例三阐述在U-SIG或EHT-SIG中添加整体带宽信息的指示;实施例四阐述无论PPDU的整体带宽大小,均按照标准协议固定的最大带宽对应的旋转系数旋转各个频域分片。下面分别对实施例一至实施例三进行详细说明。
可理解的,本申请提及的第一通信设备可以是接入点设备,第二通信设备可以是站点设备。第一通信设备可以支持最新一代标准协议,如802.11be协议(或称为Wi-Fi 7,EHT协议),第二通信设备可以支持802.11be、802.11ax或802.11ac等协议。应理解,本申请实施例中的第一通信设备和第二通信设备还可以支持IEEE 802.11be的下一代协议。
实施例一
本申请实施例一通过在U-SIG或EHT-SIG中添加旋转系数的指示,来指示传输聚合PPDU或采用多频域分片传输模式的PPDU的多个频域分片中的一个频域分片所对应的旋转系数,不仅可以降低整体带宽内的STF和LTF字段的PAPR,还可以正确地确定出接收端停靠的频域分片所对应的STF和LTF的旋转系数,从而提高接收端解析的正确性。
参见图8,图8是本申请实施例提供的PPDU传输方法的一示意流程图。如图8所示,该PPDU传输方法包括但不限于以下步骤:
S101,第一通信设备生成第一物理层协议数据单元PPDU,该第一PPDU中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一PPDU的频域分片所对应的极高吞吐率短训练字段EHT-STF和极高吞吐率长训练字段EHT-LTF中至少一个字段的旋转系数,该第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU。
S102,第一通信设备发送该第一PPDU。
其中,上述第一PPDU可以是聚合PPDU中的任一个子PPDU,比如前述图1所示的sub-PPDU1,或者该第一PPDU可以是采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,比如,前述图5所示的EHT PPDU1。该EHT PPDU是EHT格式的PPDU。可理解的,传输聚合PPDU的信道带宽包括多个频域分片,传输采用多频域分片传输模式的PPDU的信道带宽也包括多个频域分片。这多个频域分片中的一个频域分片用于传输该第一PPDU。
该第一PPDU的信令字段中可以携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。该旋转系数指示信息指示的旋转系数是传输聚合PPDU(或采用多频域分片传输模式的PPDU)的信道带宽所对应的旋转系数中的一段旋转系数,该段旋转系数是与传输该第一PPDU的频域分片所对应的。可理解的,该段旋转系数也可以只有一个数值,并不一定是多个数值,取决于802.11be协议中对各种大小的信道带宽所对应的旋转系数的规定。
例如,以图1的聚合PPDU为例,该聚合PPDU的信道带宽为240MHz(即80MHz+160MHz,假设连续80MHz带宽的频率比连续160MHz带宽的频率低),240MHz信道带宽包括一个80MHz频域分片和一个160MHz频域分片。假设240MHz信道带宽所对应的旋转系数为[x1 x2 x3 x4 x5 x6],相应地,240MHz信道带宽所对应的旋转系数也可以划分成2段旋转系数(即[x1 x2]和[x3 x4 x5 x6]),这2段旋转系数分别对应80MHz频域分片和160MHz频域分片。假设第一PPDU为图1中的sub-PPDU1,传输该第一PPDU的频域分片为240MHz信道带宽的第一个80MHz频域分片,故该旋转系数指示信息指示的旋转系数是240MHz信道带宽所对应的旋转系数[x1 x2 x3 x4 x5 x6]中的一段旋转系数[x1 x2]。假设第一PPDU为图1中的sub-PPDU2,传输该第一PPDU的频域分片为240MHz信道带宽的160MHz频域分片,故该旋转系数指示信息指示的旋转系数是240MHz信道带宽所对应的旋转系数[x1 x2 x3 x4 x5 x6]中的一段旋转系数[x3 x4 x5 x6]。其中,xi的取值为1或-1,i表示信道带宽对应的旋转系数中的第i个元素。应理解,多频域分片传输模式的PPDU与聚合PPDU同理,此处不再赘述。
可见,本申请实施例在发送端考虑对多个频域分片的旋转系数进行整体协调,即采用信道带宽对应的旋转系数,可以降低整体带宽内的STF和LTF字段的PAPR,提高系统性能。
可理解的,如果EHT-STF的旋转系数和EHT-LTF的旋转系数相同,旋转系数指示信息可以指示EHT-STF和EHT-LTF中任一个字段的旋转系数。如果EHT-STF的旋转系数和EHT-LTF的旋转系数不相同,旋转系数指示信息需要分别指示EHT-STF的旋转系数和EHT-LTF的旋转系数。
参见图9,图9是本申请实施例提供的EHT PPDU的帧结构示意图。如图9所示,EHT PPDU包括L-STF、L-LTF、L-SIG、重复传统信令字段(repeated legacy signal field,RL-SIG)、U-SIG、极高吞吐率信令字段(EHT-SIG)、EHT短训练字段(EHT-STF)、EHT长训练字段(EHT-LTF)以及数据(Data)字段。可选的,还包括包扩展字段。
可选的,上述旋转系数指示信息可以携带于该第一PPDU的U-SIG或EHT-SIG中。
S103,第二通信设备接收第一PPDU。
S104,第二通信设备对该第一PPDU进行解析,得到该旋转系数指示信息指示的传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
其中,第二通信设备停靠(parking)的频域分片就是传输上述第一PPDU的频域分片。第二通信设备就在自己停靠的频域分片上接收第一PPDU。第二通信设备对该第一PPDU进 行解析,得到上述旋转系数指示信息指示的传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
可理解的,本申请实施例一关注第一PPDU的信令字段部分。所以,前述步骤S101至步骤S104可以描述为:第一通信设备也可以生成第一PPDU的信令字段,该信令字段中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该信令字段的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,该第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;第一通信设备在传输该信令字段的频域分片上发送该第一PPDU的信令字段。第二通信设备也可以在自己停靠的频域分片上接收第一PPDU的信令字段,对该信令字段进行解析,得到该信令字段指示的传输该信令字段的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。第二通信设备停靠的频域分片与传输该信令字段的频域分片相同。
可选的,第二通信设备获得EHT-STF和EHT-LTF的旋转系数后,可以采用EHT-STF和EHT-LTF的旋转系数接收和处理EHT-STF和EHT-LTF字段,从而实现对后续接收到的数据字段的正确解析,得到数据。该数据(指接收端解调后的数据)与发送端(即第一通信设备)想要发送给接收端(即第二通信设备)的调制前数据一致。
可见,本申请实施例中,通过在U-SIG或EHT-SIG中添加旋转系数的指示,来指示传输聚合PPDU或采用多频域分片传输模式的PPDU的多个频域分片中的一个频域分片所对应的旋转系数,可以通过在发送端考虑整体带宽的旋转系数,来降低整体带宽内的STF和LTF字段的PAPR,还可以提高接收端对数据字段解析的正确性,这是因为采用了正确的旋转系数对数据字段进行解调实现的。
可理解的,前述步骤S101至步骤S104均是从聚合PPDU或采用多频域分片传输模式的PPDU中的一个频域分片上的PPDU的角度出发来描述的,但因为本申请实施例一关注PPDU中的信令字段部分,所以本申请实施例一提供的技术方案也可以从另一个角度来描述。比如,从整个聚合PPDU或采用多频域分片传输模式的整个PPDU出发来描述,关注其中一个频域分片上的信令字段。
一个示例中,上述步骤S101和步骤S102还可以描述为:第一通信设备生成PPDU的信令字段,其中,传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括第一频域分片,该信令字段中携带旋转系数指示信息,该旋转系数指示信息用于指示该第一频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数;第一通信设备在该第一频域分片上发送该信令字段。
相应地,上述步骤S103和步骤S104还可以描述为:第二通信设备在第一频域分片上接收PPDU的信令字段,其中,传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括该第一频域分片,该信令字段中携带旋转系数指示信息,该旋转系数指示信息用于指示该第一频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数;第二通信设备对该信令字段进行解析,得到该第一频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。其中,第二通信设备停靠在该第一频域分片上。该PPDU可以是聚合PPDU或采用多频域分片模式的PPDU,比如,前述图1所示的聚合PPDU或前述图5所示的多频域分片传输模式的PPDU。
可选的,上述信令字段可以是U-SIG或EHT-SIG。
可理解的,该示例的实现方式,可以参考前述步骤S101至步骤S104的相应实现方式, 此处不再赘述。
可见,该示例通过在一个频域分片上传输的U-SIG或EHT-SIG中添加该频域分片所对应的旋转系数的指示,该频域分片是传输整个聚合PPDU或采用多频域分片传输模式的整个PPDU的信道带宽中的一个频域分片,可以在考虑整体带宽的旋转系数的情况下,降低整体带宽内的STF和LTF字段的PAPR,还可以提高接收端对数据字段解析的正确性,这是因为采用了正确的旋转系数对数据字段进行解调实现的。
作为一个可选实施例,由于802.11ax标准中各种带宽大小的旋转系数与802.11be标准中各种带宽大小的旋转系数不相同。所以,为了保证802.11ax标准的设备能够在802.11be标准中正常工作(如正常收发PPDU),需要对802.11ax标准的设备停靠的频域分片进行约束,换句话说,需要对802.11ax标准的设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数进行约束。
具体地,一种实现方式,在第二通信设备是802.11ax标准的设备或第二通信设备工作在802.11ax协议下的情况下,第一通信设备生成HE PPDU,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;第一通信设备发送该HE PPDU。第二通信设备在自己停靠的频域分片上接收HE PPDU,并对该HE PPDU进行解析,第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数均为1。其中,第一通信设备为EHT标准设备。可见,该实现方式通过限制802.11ax标准的设备只能停靠在旋转系数为1对应的频域分片,可以不影响旧标准设备的接收,从而支持802.11be的物理层PPDU聚合的新特性。
该实现方式还可以描述为:在第二通信设备是802.11ax标准设备(或工作在802.11ax协议下的设备)的情况下,第一通信设备生成PPDU的信令字段,其中,传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括第一频域分片;第一通信设备在该第一频域分片上发送该PPDU的信令字段。第二通信设备在第一频域分片上接收PPDU的信令字段,并对该信令字段进行解析,该第一频域分片所对应的HE-STF和HE-LTF的旋转系数均为1。其中,第二通信设备停靠的频域分片是第一频域分片。该信令字段是HE格式的信令字段,比如HE-SIG。第一通信设备为EHT标准设备。
另一种实现方式,如果第二通信设备是802.11ax标准的设备或第二通信设备工作在802.11ax协议下,但是第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数不为1,则第一通信设备对传输聚合PPDU或采用多频域分片传输模式的PPDU的所有频域分片(或信道带宽)所对应的STF和LTF的旋转系数分别进行相位旋转,比如乘以-1,以使第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数都变为1。第一通信设备生成HE PPDU,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;第一通信设备发送该HE PPDU。第二通信设备在自己停靠的频域分片上接收HE PPDU,并对该HE PPDU进行解析。其中,第一通信设备为EHT标准设备。
例如,以图1的聚合PPDU为例,该聚合PPDU的信道带宽为240MHz包括一个80MHz频域分片和一个160MHz频域分片,假设连续80MHz带宽的频率比连续160MHz带宽的频率低。假设240MHz信道带宽所对应的旋转系数为[x1 x2 x3 x4 x5 x6],相应地,240MHz信道带宽所对应的旋转系数也可以划分成2段旋转系数(即[x1 x2]和[x3 x4 x5 x6]),这2段旋转系数分别对应80MHz频域分片和160MHz频域分片。假设第二通信设备停 靠的频域分片为160MHz频域分片,这160MHz频域分片所对应HE-STF和HE-LTF的旋转系数为[x3 x4 x5 x6]全部不为1,即x3、x4、x5以及x6的值都为-1;则第一通信设备可以将240MHz信道带宽所对应的旋转系数[x1 x2 x3 x4 x5 x6]乘以-1,得到旋转系数[-x1 -x2 -x3 -x4 -x5 -x6],使得第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数(即[x3 x4 x5 x6])都变为1。
该实现方式该实现方式还可以描述为:在第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数不为1的情况下,第一通信设备对传输PPDU的信道带宽所对应的STF和LTF的旋转系数分别进行相位旋转,以使第二通信设备停靠的第一频域分片所对应的HE-STF和HE-LTF的旋转系数都变为1,所述传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括该第一频域分片;第一通信设备生成该第一频域分片对应的信令字段,并在该第一频域分片上发送该信令字段;第二通信设备在第一频域分片上接收信令字段,并对该信令字段进行解析。其中,该信令字段是HE格式的信令字段,比如HE-SIG。
可见,该实现方式通过对传输聚合PPDU或采用多频域分片传输模式的PPDU的所有频域分片(或信道带宽)所对应的旋转系数乘以-1,使第二通信设备停靠的频域分片所对应的HE-STF和HE-LTF的旋转系数都变为1,可以既不影响该信道带宽内的PAPR,也不影响旧标准设备的接收。
实施例二
参见图10,图10是本申请实施例提供的PPDU传输方法的另一示意流程图。如图10所示,该PPDU传输方法包括但不限于以下步骤:
S1,第一通信设备生成第一PPDU,该第一PPDU是聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,该第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段的旋转系数相同,或者该第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同。
S2,第一通信设备发送该第一PPDU。
其中,上述第一PPDU可以是聚合PPDU中的任一个子PPDU,比如前述图1所示的sub-PPDU1;或者该第一PPDU可以是采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,比如,前述图5所示的EHT PPDU1。该子PPDU可以是EHT PPDU或HE PPDU,或者说该第一PPDU是EHT PPDU或HE PPDU。当然,该子PPDU还可以是未来的一代或多代标准中的PPDU,比如Wi-Fi 8,Wi-Fi 9中的PPDU。可理解的,传输聚合PPDU的信道带宽包括多个频域分片,传输采用多频域分片传输模式的PPDU的信道带宽也包括多个频域分片。这多个频域分片中的一个频域分片用于传输该第一PPDU。本申请实施例为便于描述,将传输该第一PPDU的频域分片称为第一PPDU的频域分片。
可选的,上述第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段的旋转系数相同,或者上述第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同。第一通信设备(发送端)可以采用该旋转系数处理该HE/EHT-STF,HE/EHT-LTF以及数据字段,比如按照该旋转系数将该HE/EHT-STF,HE/EHT-LTF以及数据字段对应的频域信号旋转指定相位。其中,这里的旋转系数可以是一个向量,其包括一个或多个元素。例如,传输第一PPDU的频域分片所对应的HE/EHT-STF,HE/EHT-LTF以及数据字段的旋转系数均为[x1 x2]。或者,传输第一PPDU的频域分片所对应的HE/EHT-STF,HE/EHT-LTF以及数据字段的旋转系数均为[x1]。应理解,x1的取值可以为-1或1,x2的取值也可以为-1或 1。当然,x1和x2的取值也可以是其他数值,本申请实施例对旋转系数的具体值不做限定。
还应理解,如果上述第一PPDU是HE PPDU,则相应地第一PPDU中包括的是HE-STF和HE-LTF;同理,如果上述第一PPDU是EHT PPDU,则相应地第一PPDU中包括的是EHT-STF和EHT-LTF。当然,如果上述第一PPDU是未来某一代标准的PPDU,其相应的包括的是这一代标准的STF和LTF。也就是说,本申请实施例不仅适用于802.11be标准和802.11ax标准,还可以适用于未来的一代或多代标准。
可选的,上述第一PPDU的频域分片所对应的HE/EHT-STF,HE/EHT-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。例如,传输第一PPDU的频域分片为160MHz,假设每20MHz对应一个旋转系数,则第一PPDU的频域分片所对应的HE/EHT-STF,HE/EHT-LTF以及数据字段的旋转系数为[x1 x2 x3 x4 x5 x6 x7 x8]。x1,x2,x3,x4,x5,x6,x7,x8分别对应160MHz中频率从低到高(或从高到低)的8个20MHz,x1~x8可以部分相同,也可以全部相同;还可以完全不相同。假设每40MHz对应一个旋转系数,则第一PPDU的频域分片所对应的HE/EHT-STF,HE/EHT-LTF以及数据字段的旋转系数为[x1 x2 x3 x4]。x1,x2,x3,x4分别对应160MHz中频率从低到高(或从高到低)的4个40MHz,x1~x4可以部分相同,也可以全部相同;还可以完全不相同。假设每80MHz对应一个旋转系数,则第一PPDU的频域分片所对应的HE/EHT-STF,HE/EHT-LTF以及数据字段的旋转系数为[x1 x2]。x1,x2分别对应160MHz中频率从低到高(或从高到低)的2个80MHz,x1~x2可以部分相同,也可以全部相同;还可以完全不相同。假设每160MHz对应一个旋转系数,则第一PPDU的频域分片所对应的HE/EHT-STF,HE/EHT-LTF以及数据字段的旋转系数为[x1]。x1对应160MHz。320MHz带宽同理,此处不再赘述。
应理解,上述“每40MHz对应一个旋转系数”也可以理解为每40MHz内的2个20MHz对应的旋转系数相同。同理,“每80MHz对应一个旋转系数”可以理解为每80MHz内的2个40MHz或4个20MHz对应的旋转系数相同。再同理,“每160MHz对应一个旋转系数”可以理解为每160MHz内的2个80MHz或4个40MHz或8个20MHz对应的旋转系数相同。
可选的,上述第一PPDU的信令字段(这里指HE/EHT-STF之前的信令字段)可以与后面的HE/EHT-STF,HE/EHT-LTF和数据字段具有不同的旋转系数。而不同带宽下的旋转系数可以通过标准规定或发送端(即第一通信设备)从整体带宽上的信号自行决定,发送端(即第一通信设备)按照标准规定生成和传输旋转相位后的PPDU(即第一PPDU)。
S3,第二通信设备接收第一PPDU。
S4,第二通信设备对该第一PPDU进行解析。
其中,第二通信设备停靠(parking)的频域分片就是传输上述第一PPDU的频域分片。第二通信设备就在自己停靠的频域分片上接收第一PPDU。第二通信设备对该第一PPDU进行解析,以恢复原始数据。一个示例中,第二通信设备利用HE/EHT-LTF获取信道估计结果,该信道估计结果内包含了每个频域分片对应的相位旋转信息,然后利用该信道估计结果解调对应的数据字段。因为信道估计信息(如HE/EHT-LTF获)和数据字段包含相同的旋转系数,被旋转了相同的相位,所以在解调过程中可以互相抵消,从而恢复出原始数据。这里的原始数据可以理解为发送端(即第一通信设备)调制前的数据。
可见,本申请实施例通过对聚合PPDU中的HE/EHT-STF,HE/EHT-LTF以及数据字段按照频域分片分别旋转相同的相位(或乘以相同的旋转系数),可以通过在发送端考虑整体带宽的旋转系数,来降低整体带宽内的STF和LTF的PAPR,还可以提高接收端对数据字段解析 的正确性,这是因为STF、LTF以及数据字段旋转了相同的相位(或乘以相同的旋转系数),不会影响数据字段的解调。此外,本申请实施例无需在PPDU中增加信令信息来指示旋转系数,可以减少信令开销。
实施例三
本申请实施例三通过在U-SIG或EHT-SIG中添加发送带宽的指示,来指示传输聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽(或信道带宽,或整体带宽),以使接收端根据自己停靠的频域分段和该发送带宽,确定自己停靠的频域分段对应的EHT-STF和EHT-LTF的旋转系数,可以降低整体带宽内的STF和LTF字段的PAPR,还可以正确地确定出接收端停靠的频域分片所对应的STF和LTF的旋转系数,从而提高接收端解析的正确性。
参见图11,图11是本申请实施例提供的PPDU传输方法的又一示意流程图。如图11所示,该PPDU传输方法包括但不限于以下步骤:
S201,第一通信设备生成第一PPDU,该第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽包括至少两个频域分片,该第一PPDU为该聚合PPDU中该至少两个频域分片的任一频域分片上传输的子PPDU或该采用多频域分片传输模式的PPDU中该至少两个频域分片的任一频域分片上传输的PPDU。
S202,第一通信设备发送该第一PPDU。
其中,上述第一PPDU可以是聚合PPDU中传输的任一个子PPDU,比如前述图1所示的sub-PPDU1,或者该第一PPDU可以是采用多频域分片传输模式的PPDU中一个频域分片上传输的PPDU,比如,前述图5所示的EHT PPDU1。该EHT PPDU是EHT格式的PPDU。
该第一PPDU的信令字段中可以携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽中包括至少两个频域分片。例如,以前述图1为例,该发送带宽为sub-PPDU1和sub-PPDU2的带宽之和,即80MHz和160MHz之和240MHz;以前述图5为例,该发送带宽为各个频域分片上传输的PPDU的带宽之和,即160MHz。该至少两个频域分片中的一个频域分片用于传输该第一PPDU。换句话说,第一PPDU是聚合PPDU中该发送带宽的一个频域分片上传输的子PPDU,或第一PPDU是采用多频域分片传输模式的PPDU中该发送带宽的一个频域分片上传输的PPDU。
可选的,该第一PPDU的信令字段可以是U-SIG或EHT-SIG,即U-SIG或EHT-SIG中携带该发送带宽。换句话说,U-SIG或EHT-SIG在该发送带宽的一个频域分片上传输,且只传输停靠在该频域分片上的站点的信息。其中,U-SIG或EHT-SIG中还可以携带传输该第一PPDU的频域分片的带宽。
S203,第二通信设备接收该第一PPDU。
S204,第二通信设备根据该第二通信设备停靠的频域分片和该第一PPDU中携带的该发送带宽,确定该第二通信设备停靠的频域分片对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
其中,第二通信设备停靠(parking)的频域分片就是传输上述第一PPDU的频域分片。第二通信设备就在自己停靠的频域分片上接收上述第一PPDU。第二通信设备可以根据上述第一PPDU中携带的上述发送带宽,和第二通信设备自己停靠的频域分片在该发送带宽中的位置,以及该发送带宽对应的旋转系数,确定该第二通信设备停靠的频域分片对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。其中,该第二通信设备停靠的频域分片所对应的旋 转系数是该发送带宽对应的旋转系数中的一段旋转系数。该发送带宽对应的旋转系数可以由标准协议规定,即标准协议中会规定各种带宽大小的旋转系数,比如带宽为80MHz、160MHz、以及320MHz各自的旋转系数。
可见,本申请实施例在发送端考虑对多个频域分片的旋转系数进行整体协调,即采用信道带宽对应的旋转系数,可以降低整体带宽内的STF和LTF字段的PAPR,提高系统性能。相应地,在接收端确定出的其停靠的频域分片所对应的旋转系数是该发送带宽对应的旋转系数中的一段旋转系数,从而保证接收端停靠的频域分片所对应的STF和LTF的旋转系数的正确性,进而提高接收端解析的正确性。
例如,以图5中采用多频域分片传输模式的PPDU为例,该采用多频域分片传输模式的PPDU的发送带宽为160MHz,包括两个80MHz频域分片。假设第二通信设备停靠在320MHz信道的第3个80MHz频域分片上,则第二通信设备根据160MHz发送带宽和标准规定,确定整个160M带宽下整体的旋转系数,再根据自己所停靠的频率分片在160MHz发送带宽中的位置确定出自己停靠的80MHz频域分片对应的旋转系数。假设160MHz发送带宽所对应的旋转系数为[x1 x2 x3 x4],160MHz发送带宽所对应的旋转系数相应地可以划分成2段,分别与两个80MHz频域分片对应。由EHT标准中的信道规划(channel plan)可知,160MHz发送带宽只能由320MHz信道的第1个80MHz频域分片和第2个80MHz频域分片组成,或者由320MHz信道的第3个80MHz频域分片和第4个80MHz频域分片组成。因为第二通信设备停靠在320MHz信道的第3个80MHz频域分片上,所以160MHz发送带宽只能由320MHz信道中的第3个80MHz频域分片和第4个80MHz频域分片组成。故,第二通信设备所停靠的频率分片是160MHz发送带宽中的第1个频域分片。因此,第二通信设备停靠的频域分片对应对应的EHT-STF和EHT-LTF的旋转系数是:160MHz发送带宽所对应的旋转系数[x1 x2 x3 x4]中与第二通信设备停靠的80MHz频域分片对应的一段旋转系数,即[x1 x2]。其中,xi的取值为1或-1,i表示发送带宽对应的旋转系数中的第i个元素。应理解,聚合PPDU与多频域分片传输模式的PPDU同理,此处不再赘述。
换句话说,第二通信设备在自己停靠的频域分片上接收到整体带宽(即上述发送带宽)的指示后,第二通信设备可以根据自己停靠的频域分片的位置和该整体带宽确定该频域分片内的EHT-STF和EHT-LTF各自的旋转系数。
可理解的,本申请实施例二关注第一PPDU的信令字段部分。所以,前述步骤S201至步骤S204可以描述为:第一通信设备也可以生成第一PPDU的信令字段,该信令字段中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽包括至少两个频域分片,该至少两个频域分片包括第一频域分片,该第一PPDU为该第一频域分片上传输的子PPDU或该采用多频域分片传输模式的PPDU中该第一频域分片上传输的PPDU;第一通信设备在该第一频域分片上发送该第一PPDU的信令字段。第二通信设备也可以在自己停靠的频域分片上接收第一PPDU的信令字段,并根据该第二通信设备停靠的频域分片和该信令字段中携带的该发送带宽,确定该第二通信设备停靠的频域分片对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。第二通信设备停靠的频域分片与该第一频域分片相同。
可选的,第二通信设备获得EHT-STF和EHT-LTF的旋转系数后,可以采用EHT-STF和EHT-LTF的旋转系数接收和处理EHT-STF和EHT-LTF字段,从而实现对后续接收到的数据字段的正确解析,得到数据。该数据(指接收端解调后的数据)与发送端(即第一通信设备)想要发送给接收端(即第二通信设备)的调制前数据一致。
可见,本申请实施例通过在U-SIG或EHT-SIG中添加发送带宽的指示,来指示传输聚合 PPDU或采用多频域分片传输模式的PPDU的发送带宽(或信道带宽,或整体带宽),以使接收端接收到该发送带宽后,确定接收端自己停靠的频域分段在该发送带宽的什么位置,根据确定出的位置对应确定接收端自己停靠的频域分段对应的EHT-STF和EHT-LTF的旋转系数。可以通过在发送端考虑整体带宽的旋转系数,来降低整体带宽内的STF和LTF字段的PAPR,还可以提高接收端对数据字段解析的正确性,这是因为采用了正确的旋转系数对数据字段进行解调实现的。
可理解的,前述步骤S201至步骤S204均是从聚合PPDU或采用多频域分片传输模式的PPDU中的一个频域分片上的PPDU的角度出发来描述的,但因为本申请实施例二关注PPDU中的信令字段部分,所以本申请实施例二提供的技术方案也可以从另一个角度来描述。比如,从整个聚合PPDU或采用多频域分片传输模式的整个PPDU出发来描述,关注其中一个频域分片上的信令字段。
一个示例中,上述步骤S201和步骤S202还可以描述为:第一通信设备生成PPDU的信令字段,其中,传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括第一频域分片,该信令字段中携带该信道带宽;第一通信设备在该第一频域分片上发送该信令字段。
相应地,上述步骤S203和步骤S204还可以描述为:第二通信设备在第一频域分片上接收PPDU的信令字段,其中,传输该PPDU的信道带宽包括至少两个频域分片,该至少两个频域分片包括该第一频域分片,该信令字段中携带该信道带宽;第二通信设备根据该信令字段携带的该信道带宽和该第一频域分片,确定该第一频域分片对应的EHT-STF和EHT-LTF的旋转系数。其中,第二通信设备停靠在该第一频域分片上。该PPDU可以是聚合PPDU或采用多频域分片模式的PPDU,比如,前述图1所示的聚合PPDU或前述图5所示的多频域分片传输模式的PPDU。传输该PPDU的信道带宽也是传输整个聚合PPDU所使用的带宽大小,或传输采用多频域分片模式的整个PPDU所使用的带宽大小,比如,以前述图1为例,该信道带宽为sub-PPDU1和sub-PPDU2的带宽之和,即80MHz和160MHz之和240MHz;以前述图5为例,该信道带宽为各个频域分片上传输的PPDU的带宽之和,即160MHz。
可理解的,该示例中的信道带宽和前述步骤S201至步骤S204中提及的发送带宽相同,具有相同的含义。
可选的,上述信令字段可以是U-SIG或EHT-SIG。U-SIG或EHT-SIG中还可以携带上述第一频域分片的带宽。
可理解的,该示例的实现方式,可以参考前述步骤S201至步骤S204的相应实现方式,此处不再赘述。
可见,本申请实施例通过在U-SIG或EHT-SIG中添加发送带宽的指示,来指示传输整个聚合PPDU或采用多频域分片传输模式的整个PPDU的信道带宽(或整体带宽),以使接收端根据该信道带宽和接收端自己停靠的频域分段,确定接收端自己停靠的频域分段对应的EHT-STF和EHT-LTF的旋转系数。可以在考虑整体带宽的旋转系数的情况下,降低整体带宽内的STF和LTF字段的PAPR,还可以提高接收端对数据字段解析的正确性,这是因为采用了正确的旋转系数对数据字段进行解调实现的。
作为一个可选实施例,由于802.11ax标准中各种带宽大小的旋转系数与802.11be标准中各种带宽大小的旋转系数不相同。所以,为了保证802.11ax标准的设备能够在802.11be标准 中正常工作(如正常收发PPDU),需要对802.11ax标准的设备停靠的频域分片进行约束,换句话说,需要对802.11ax标准的设备停靠的频域分片所对应的EHT-STF和EHT-LTF的旋转系数进行约束。
具体地,在第二通信设备是802.11ax标准的设备或第二通信设备工作在802.11ax协议下的情况下,第一通信设备生成HE PPDU,该HE PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;第一通信设备发送该HE PPDU。第二通信设备在自己停靠的频域分片上接收HE PPDU,并对该HE PPDU进行解析,第二通信设备停靠的频域分片所对应的EHT-STF和EHT-LTF的旋转系数均为1。其中,第一通信设备为EHT标准设备。
可见,本申请实施例通过限制802.11ax标准的设备只能停靠在旋转系数为1对应的频域分片,可以不影响旧标准设备的接收,从而支持802.11be的物理层PPDU聚合的新特性。
实施例四
本申请实施例四通过在标准协议中规定标准协议支持的最大带宽(比如802.11be支持的最大带宽320MHz)中每个频域分片的旋转系数,并约束发送端一直按照最大带宽(如320MHz)情况下设置每个频域分片的旋转系数,以使接收端根据自己停靠的频域分片在该最大带宽中的位置,确定自己停靠的频域分片所对应的EHT-STF和EHT-LTF的旋转系数,可以降低STF和LTF字段的PAPR,还可以正确地确定出接收端停靠的频域分片所对应的STF和LTF的旋转系数,从而提高接收端解析的正确性。
参见图12,图12是本申请实施例提供的PPDU传输方法的再又一示意流程图。如图12所示,该PPDU传输方法包括但不限于以下步骤:
S301,第二通信设备根据该第二通信设备停靠的频域分片和320MHz带宽中每个频域分片与旋转系数之间的对应关系,确定第二通信设备停靠的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
其中,第二通信设备可以是站点设备。站点设备停靠在320MHz带宽(或信道)的其中一个频域分片上。下文以前述图4所示的频域分片为例,即将320MHz带宽(或信道)划分成4个80MHz的频域分片。
具体地,第二通信设备在与AP关联的过程中,第二通信设备会通过信令告知第二通信设备后续停靠在320MHz信道的哪个频域分片上,第二通信设备接收到该信令之后,会停靠在AP指示的频域分片上接收信令信息/调度信息。比如,AP指示第二通信设备停靠在320MHz信道的第2个80MHz频域分片上,则第二通信设备会停靠在AP指示的频域分片,即320MHz信道的第2个80MHz频域分片上接收AP的信令信息/调度信息。
因为第二通信设备与AP关联后,会知道自己停靠的频域分片是320MHz带宽中的哪个频域分片,所以第二通信设备可以直接根据自己停靠的频域分片和标准协议规定的320MHz带宽中每个频域分片与旋转系数之间的对应关系,确定自己停靠的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。例如,假设320MHz带宽对应的旋转系数为[x1 x2 x3 x4 x5 x6 x7 x8],320MHz带宽划分成4个80MHz的频域分片,则320MHz带宽对应的旋转系数也可以相应地划分成4段旋转系数,每段旋转系数与一个80MHz频域分片对应。假设第二通信设备停靠在320MHz带宽的第2个频域分片,则第二通信设备停靠的频域分片所对应的EHT-STF和EHT-LTF的旋转系数是320MHz带宽对应的旋转系数中的第2段旋转系数,即[x3 x4]。xi的取值为1或-1,i表示第i个元素。
可理解的,本申请实施例提及的“一段旋转系数”可以理解为整体中的一部分,该一段旋转系数不一定有多个元素,也可能只有一个元素,取决于802.11be协议中对各种大小的信道带宽所对应的旋转系数的规定。比如,320MHz带宽对应的旋转系数为[x1 x2 x3 x4],假设第二通信设备停靠在320MHz带宽的第2个频域分片,则第二通信设备停靠的频域分片所对应的EHT-STF和EHT-LTF的旋转系数是320MHz带宽对应的旋转系数中的第2段旋转系数,即[x2]。
应理解,本申请实施例的步骤S301中提及的“320MHz带宽”仅针对802.11be标准协议,但本申请实施例提供的技术方案可以适用于未来的标准协议(或802.11be标准协议的下一代协议)。换句话说,本申请实施例的步骤S301中提及的“320MHz带宽”可以替换成未来标准协议支持的最大带宽,假设,未来某一代标准协议支持的最大带宽为640MHz,则步骤S301中的“320MHz带宽”可替换成“640MHz”。
可选的,如果第二通信设备是802.11ax标准的设备或第二通信设备工作在802.11ax协议下,则可以在标准协议中规定第二通信设备停靠在旋转系数为1对应的频域分片上。例如,假设320MHz带宽中第一个频域分片对应的旋转系数均为1,则802.11ax标准的设备只能停靠在320MHz带宽的第一个频域分片上。可见,该实现方式通过限制802.11ax标准的设备只能停靠在旋转系数为1对应的频域分片,可以不影响旧标准设备的接收,实现802.11be标准与802.11ax标准的兼容。
可见,本申请实施例通过在标准协议中约束该标准协议支持的最大带宽中每个频域分片与旋转系数的对应关系,无需在信令字段中增加额外指示,就能确定接收端停靠的频域分片所对应的EHT-STF和EHT-LTF的旋转系数,不仅可以节省信令开销,还可以考虑最大带宽的旋转系数,从而降低STF和LTF字段的PAPR。
上述内容详细阐述了本申请提供的方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对第一通信设备和第二通信设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图13至图15详细描述本申请实施例的通信装置。其中,该通信装置是接入点或站点,进一步的,该通信装置可以为第一通信设备中的装置;或者,该通信装置为第二通信设备中的装置。
在采用集成的单元的情况下,参见图13,图13是本申请实施例提供的通信装置1的结构示意图。该通信装置1可以为第一通信设备或第一通信设备中的芯片,比如Wi-Fi芯片等。如图13所示,该通信装置1包括:处理单元11和收发单元12。
一种设计中,该处理单元11,用于生成第一PPDU,该第一PPDU中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,该第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该收发单元12,用于发送该第一PPDU。
可选的,上述旋转系数指示信息携带于上述第一PPDU的EHT-SIG或U-SIG中。
可见,该通信装置1通过在U-SIG或EHT-SIG中添加旋转系数的指示,来指示传输聚合PPDU或采用多频域分片传输模式的PPDU的多个频域分片中的一个频域分片所对应的旋转 系数,可以通过在发送端考虑整体带宽的旋转系数,来降低整体带宽内的STF和LTF字段的PAPR,还可以提高接收端对数据字段解析的正确性。
应理解,该种设计中的通信装置1可对应执行前述实施例一,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例一中第一通信设备的相应操作,为了简洁,在此不再赘述。
另一种设计中,该处理单元11,用于生成第一PPDU,该第一PPDU是聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,该第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段的旋转系数相同,或者该第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同;该收发单元12,用于发送该第一PPDU。
该子PPDU是EHT PPDU或HE PPDU。
可选的,上述第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。或者,上述第一PPDU的频域分片所对应的EHT-STF、EHT-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。
可选的,上述第一PPDU的信令字段(这里指HE-STF之前的信令字段)与后面的HE-STF,HE-LTF和数据字段具有不同的旋转系数。或者,上述第一PPDU的信令字段(这里指EHT-STF之前的信令字段)与后面的EHT-STF,EHT-LTF和数据字段具有不同的旋转系数。
应理解,该种设计中的通信装置1可对应执行前述实施例二,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例二中第一通信设备的相应操作,为了简洁,在此不再赘述。
又一种设计中,该处理单元11,用于生成第一PPDU,该第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽包括至少两个频域分片,该第一PPDU为该聚合PPDU中该至少两个频域分片的任一频域分片上传输的子PPDU或该采用多频域分片传输模式的PPDU中该至少两个频域分片的任一频域分片上传输的PPDU;该收发单元12,用于发送该第一PPDU。
可选的,上述发送带宽携带于上述第一PPDU的EHT-SIG或U-SIG中,该EHT-SIG或U-SIG中还携带传输该第一PPDU的频域分片的带宽,该传输该第一PPDU的频域分片为第二通信设备停靠的频域分片。
可见,该通信装置1通过在U-SIG或EHT-SIG中添加发送带宽的指示,来指示传输聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,以使接收端接收到该发送带宽后,确定接收端自己停靠的频域分段在该发送带宽的什么位置,根据确定出的位置对应确定接收端自己停靠的频域分段对应的EHT-STF和EHT-LTF的旋转系数。可以通过在发送端考虑整体带宽的旋转系数,来降低整体带宽内的STF和LTF字段的PAPR,还可以提高接收端对数据字段解析的正确性。
应理解,该种设计中的通信装置1可对应执行前述实施例三,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例三中第一通信设备的相应操作,为了简洁,在此不再赘述。
参见图14,图14是本申请实施例提供的通信装置2的结构示意图。该通信装置2可以为第二通信设备或第二通信设备中的芯片,比如Wi-Fi芯片等。如图14所示,该通信装置2包括:收发单元21和处理单元22。
一种设计中,该收发单元21,用于接收第一PPDU,该第一PPDU中携带旋转系数指示信息,该旋转系数指示信息用于指示传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,该第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;该处理单元22中的解析子单元221,用于对该第一PPDU进行解析,得到该旋转系数指示信息指示的传输该第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
可选的,传输上述第一PPDU的频域分片是该通信装置2停靠的频域分片。
可选的,上述旋转系数指示信息携带于上述第一PPDU的EHT-SIG或U-SIG中。
应理解,该种设计中的通信装置2可对应执行前述实施例一,并且该通信装置2中的各个单元的上述操作或功能分别为了实现前述实施例一中第二通信设备的相应操作,为了简洁,在此不再赘述。
另一种设计中,该收发单元21,用于接收第一PPDU,该第一PPDU是聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,该第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段的旋转系数相同,或者该第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同;该处理单元22中的解析子单元221,用于对该第一PPDU进行解析。该子PPDU可以是EHT PPDU或HE PPDU。
可选的,上述解析子单元221,具体用于:利用HE/EHT-LTF获取信道估计结果,该信道估计结果内包含了每个频域分片对应的相位旋转信息,利用该信道估计结果解调对应的数据字段。
可选的,该通信装置停靠的频域分片是传输上述第一PPDU的频域分片。
可选的,上述第一PPDU的频域分片所对应的HE-STF,HE-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。或者,上述第一PPDU的频域分片所对应的EHT-STF、EHT-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。
可选的,上述第一PPDU的信令字段(这里指HE-STF之前的信令字段)与后面的HE-STF,HE-LTF和数据字段具有不同的旋转系数。或者,上述第一PPDU的信令字段(这里指EHT-STF之前的信令字段)与后面的EHT-STF,EHT-LTF和数据字段具有不同的旋转系数。
应理解,该种设计中的通信装置2可对应执行前述实施例二,并且该通信装置2中的各个单元的上述操作或功能分别为了实现前述实施例二中第二通信设备的相应操作,为了简洁,在此不再赘述。
又一种设计中,该收发单元21,用于接收第一PPDU,该第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,该发送带宽包括至少两个频域分片,该第一PPDU为该聚合PPDU中该至少两个频域分片的任一频域分片上传输的子PPDU或该采用多频域分片传输模式的PPDU中该至少两个频域分片的任一频域分片上传输的PPDU;该处理单元22中的第一确定子单元222,用于根据该通信装置2停靠的频域分片和该第一PPDU中携带的该发送带宽,确定该通信装置2停靠的频域分片对应的EHT-STF和EHT-LTF中至 少一个字段的旋转系数。
可选的,上述发送带宽携带于上述第一PPDU的EHT-SIG或U-SIG中,该EHT-SIG或U-SIG中还携带传输该第一PPDU的频域分片的带宽,该传输该第一PPDU的频域分片为该通信装置2停靠的频域分片。
应理解,该种设计中的通信装置2可对应执行前述实施例三,并且该通信装置2中的各个单元的上述操作或功能分别为了实现前述实施例三中第二通信设备的相应操作,为了简洁,在此不再赘述。
再又一种设计中,该处理单元22中的第二确定子单元223,用于根据该通信装置2停靠的频域分片和320MHz带宽中每个频域分片与旋转系数之间的对应关系,确定该通信装置2停靠的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
可选的,320MHz带宽中每个频域分片与旋转系数之间的对应关系由标准协议规定。
可见,该通信装置2通过在标准协议中约束该标准协议支持的最大带宽中每个频域分片与旋转系数的对应关系,无需在信令字段中增加额外指示,就能确定接收端停靠的频域分片所对应的EHT-STF和EHT-LTF的旋转系数,不仅可以节省信令开销,还可以考虑最大带宽的旋转系数,从而降低STF和LTF字段的PAPR。
应理解,该种设计中的通信装置2可对应执行前述实施例四,并且该通信装置2中的各个单元的上述操作或功能分别为了实现前述实施例四中第二通信设备的相应操作,为了简洁,在此不再赘述。
以上介绍了本申请实施例的第一通信设备和第二通信设备,以下介绍所述第一通信设备和第二通信设备可能的产品形态。应理解,但凡具备上述图13所述的第一通信设备的功能的任何形态的产品,但凡具备上述图14所述的第二通信设备的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的第一通信设备和第二通信设备的产品形态仅限于此。
作为一种可能的产品形态,本申请实施例所述的第一通信设备和第二通信设备,可以由一般性的总线体系结构来实现。
参见图15,图15是本申请实施例提供的通信装置1000的结构示意图。该通信装置1000可以是第一通信设备或第二通信设备,或其中的装置。如图15所示,该通信装置1000包括处理器1001和与所述处理器内部连接通信的收发器1002。其中,处理器1001是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。收发器1002可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1002可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。可选的,通信装置1000还可以包括天线1003和/或射频单元(图未示意)。所述天线1003和/或射频单元可以位于所述通信装置1000内部,也可以与所述通信装置1000分离,即所述天线1003和/或射频单元可以是拉远或分布式部署的。
可选的,通信装置1000中可以包括一个或多个存储器1004,其上可以存有指令,该指令可为计算机程序,所述计算机程序可在通信装置1000上被运行,使得通信装置1000执行上述方法实施例中描述的方法。可选的,所述存储器1004中还可以存储有数据。通信装置 1000和存储器1004可以单独设置,也可以集成在一起。
其中,处理器1001、收发器1002、以及存储器1004可以通过通信总线连接。
一种设计中,通信装置1000可以用于执行前述实施例一中第一通信设备的功能:处理器1001可以用于执行图8中的步骤S101和/或用于本文所描述的技术的其它过程;收发器1002可以用于执行图8中的步骤S102和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例一中第二通信设备的功能:处理器1001可以用于执行图8中的步骤S104和/或用于本文所描述的技术的其它过程;收发器1002可以用于执行图8中的步骤S103和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例二中第一通信设备的功能:处理器1001可以用于执行图11中的步骤S201和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图11中的步骤S202和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例二中第二通信设备的功能:处理器1001可以用于执行图11中的步骤S204和/或用于本文所描述的技术的其它过程;收发器1002可以用于执行图11中的步骤S203和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例三中第二通信设备的功能:处理器1001可以用于执行图12中的步骤S301和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1001可以存有指令,该指令可为计算机程序,计算机程序在处理器1001上运行,可使得通信装置1000执行上述方法实施例中描述的方法。计算机程序可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图15的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、 网络设备、云设备、人工智能设备等等;
(6)其他等等。
作为一种可能的产品形态,本申请实施例所述的第一通信设备和第二通信设备,可以由通用处理器来实现。
实现第一通信设备的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,该通用处理器可以用于执行前述实施例一中第一通信设备的功能。具体地,该处理电路用于执行图8中的步骤S101和/或用于本文所描述的技术的其它过程;该输入输出接口用于执行图8中的步骤S102和/或用于本文所描述的技术的其它过程。
另一种设计中,该通用处理器可以用于执行前述实施例二中第一通信设备的功能。具体地,该处理电路用于执行图11中的步骤S201和/或用于执行本文所描述的技术的其它过程;该输入输出接口用于执行图11中的步骤S202和/或用于本文所描述的技术的其它过程。
实现第二通信设备的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,该通用处理器可以用于执行前述实施例一中第二通信设备的功能。具体地,该处理电路用于执行图8中的步骤S104和/或用于本文所描述的技术的其它过程;该输入输出接口用于执行图8中的步骤S103和/或用于本文所描述的技术的其它过程。
另一种设计中,该通用处理器可以用于执行前述实施例二中第二通信设备的功能。具体地,该处理电路用于执行图11中的步骤S204和/或用于本文所描述的技术的其它过程;该输入输出接口用于执行图11中的步骤S203和/或用于本文所描述的技术的其它过程。
又一种设计中,该通用处理器可以用于执行前述实施例三中第二通信设备的功能。具体地,该处理电路用于执行图12中的步骤S301和/或用于本文所描述的技术的其它过程。
应理解,上述各种产品形态的通信装置,具有上述方法实施例中第一通信设备或第二通信设备的任意功能,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以 用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (29)

  1. 一种物理层协议数据单元PPDU传输方法,其特征在于,包括:
    第一通信设备生成第一物理层协议数据单元PPDU,所述第一PPDU中携带旋转系数指示信息,所述旋转系数指示信息用于指示传输所述第一PPDU的频域分片所对应的极高吞吐率短训练字段EHT-STF和极高吞吐率长训练字段EHT-LTF中至少一个字段的旋转系数,所述第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;
    所述第一通信设备发送所述第一PPDU。
  2. 一种物理层协议数据单元PPDU传输方法,其特征在于,包括:
    第二通信设备接收第一PPDU,所述第一PPDU中携带旋转系数指示信息,所述旋转系数指示信息用于指示传输所述第一PPDU的频域分片所对应的极高吞吐率短训练字段EHT-STF和极高吞吐率长训练字段EHT-LTF中至少一个字段的旋转系数,所述第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;
    所述第二通信设备对所述第一PPDU进行解析,得到所述旋转系数指示信息指示的传输所述第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
  3. 根据权利要求2所述的方法,其特征在于,传输所述第一PPDU的频域分片为所述第二通信设备停靠的频域分片。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述旋转系数指示信息携带于所述第一PPDU的极高吞吐率信令字段EHT-SIG或通用信令字段U-SIG中。
  5. 一种物理层协议数据单元PPDU传输方法,其特征在于,包括:
    第一通信设备生成第一PPDU,所述第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,传输所述第一PPDU的频域分片所对应的高效吞吐率短训练字段HE-STF、高效吞吐率长训练字段HE-LTF、以及数据字段的旋转系数相同,或者传输所述第一PPDU的频域分片所对应的极高吞吐率短训练字段EHT-STF、极高吞吐率长训练字段EHT-LTF、以及数据字段的旋转系数相同;
    所述第一通信设备发送所述第一PPDU。
  6. 一种物理层协议数据单元PPDU传输方法,其特征在于,包括:
    第二通信设备接收第一PPDU,所述第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,传输所述第一PPDU的频域分片所对应的HE-STF、HE-LTF、以及数据字段的旋转系数相同,或者传输所述第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同;
    所述第二通信设备对所述第一PPDU进行解析。
  7. 根据权利要求5或6所述的方法,其特征在于,所述传输所述第一PPDU的频域分片 所对应的HE-STF、HE-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数;
    或者,所述传输所述第一PPDU的频域分片所对应的EHT-STF、EHT-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。
  8. 根据权利要求5-7中任一项所述的方法,其特征在于,所述第一PPDU中位于HE-STF之前的信令字段的旋转系数与所述HE-STF、HE-LTF以及数据字段的旋转系数不相同;
    或者,所述第一PPDU中位于EHT-STF之前的信令字段的旋转系数与所述EHT-STF、EHT-LTF以及数据字段的旋转系数不相同。
  9. 一种物理层协议数据单元PPDU传输方法,其特征在于,包括:
    第一通信设备生成第一PPDU,所述第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,所述发送带宽包括至少两个频域分片,所述第一PPDU为所述聚合PPDU中所述至少两个频域分片的任一频域分片上传输的子PPDU或所述采用多频域分片传输模式的PPDU中所述至少两个频域分片的任一频域分片上传输的PPDU;
    所述第一通信设备发送所述第一PPDU。
  10. 一种物理层协议数据单元PPDU传输方法,其特征在于,包括:
    第二通信设备接收第一PPDU,所述第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,所述发送带宽包括至少两个频域分片,所述第一PPDU为所述聚合PPDU中所述至少两个频域分片的任一频域分片上传输的子PPDU或所述采用多频域分片传输模式的PPDU中所述至少两个频域分片的任一频域分片上传输的PPDU;
    所述第二通信设备根据所述第二通信设备停靠的频域分片和所述第一PPDU中携带的所述发送带宽,确定所述第二通信设备停靠的频域分片对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
  11. 根据权利要求9或10所述的方法,其特征在于,所述发送带宽携带于所述第一PPDU的EHT-SIG或U-SIG中,所述EHT-SIG或U-SIG中还携带传输所述第一PPDU的频域分片的带宽,所述传输所述第一PPDU的频域分片为第二通信设备停靠的频域分片。
  12. 一种通信装置,其特征在于,所述通信装置为第一通信设备或第一通信设备中的芯片,所述通信装置包括:
    处理单元,用于生成第一PPDU,所述第一PPDU中携带旋转系数指示信息,所述旋转系数指示信息用于指示传输所述第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,所述第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;
    收发单元,用于发送所述第一PPDU。
  13. 一种通信装置,其特征在于,所述通信装置为第二通信设备或第二通信设备中的芯片,所述通信装置包括:
    收发单元,用于接收第一PPDU,所述第一PPDU中携带旋转系数指示信息,所述旋转 系数指示信息用于指示传输所述第一PPDU的频域分片所对应的极高吞吐率短训练字段EHT-STF和极高吞吐率长训练字段EHT-LTF中至少一个字段的旋转系数,所述第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;
    处理单元,用于对所述第一PPDU进行解析,得到所述旋转系数指示信息指示的传输所述第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
  14. 根据权利要求13所述的通信装置,其特征在于,传输所述第一PPDU的频域分片为所述第二通信设备停靠的频域分片。
  15. 根据权利要求12-14任一项所述的通信装置,其特征在于,所述旋转系数指示信息携带于所述第一PPDU的极高吞吐率信令字段EHT-SIG或通用信令字段U-SIG中。
  16. 一种通信装置,其特征在于,所述通信装置为第一通信设备或第一通信设备中的芯片,所述通信装置包括:
    处理单元,用于生成第一PPDU,所述第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,传输所述第一PPDU的频域分片所对应的HE-STF、HE-LTF、以及数据字段的旋转系数相同,或者传输所述第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同;
    收发单元,用于发送所述第一PPDU。
  17. 一种通信装置,其特征在于,所述通信装置为第二通信设备或第二通信设备中的芯片,所述通信装置包括:
    收发单元,用于接收第一PPDU,所述第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU,传输所述第一PPDU的频域分片所对应的HE-STF、HE-LTF、以及数据字段的旋转系数相同,或者传输所述第一PPDU的频域分片所对应的EHT-STF、EHT-LTF、以及数据字段的旋转系数相同;
    处理单元,用于对所述第一PPDU进行解析。
  18. 根据权利要求16或17所述的通信装置,其特征在于,所述传输所述第一PPDU的频域分片所对应的HE-STF、HE-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数;
    或者,所述传输所述第一PPDU的频域分片所对应的EHT-STF、EHT-LTF以及数据字段中每20MHz,40MHz,80MHz或160MHz对应一个旋转系数。
  19. 根据权利要求16-18中任一项所述的通信装置,其特征在于,所述第一PPDU中位于HE-STF之前的信令字段的旋转系数与所述HE-STF、HE-LTF以及数据字段的旋转系数不相同;
    或者,所述第一PPDU中位于EHT-STF之前的信令字段的旋转系数与所述EHT-STF、EHT-LTF以及数据字段的旋转系数不相同。
  20. 一种通信装置,其特征在于,所述通信装置为第一通信设备或第一通信设备中的芯 片,所述通信装置包括:
    处理单元,用于生成第一PPDU,所述第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,所述发送带宽包括至少两个频域分片,所述第一PPDU为所述聚合PPDU中所述至少两个频域分片的任一频域分片上传输的子PPDU或所述采用多频域分片传输模式的PPDU中所述至少两个频域分片的任一频域分片上传输的PPDU;
    收发单元,用于发送所述第一PPDU。
  21. 一种通信装置,其特征在于,所述通信装置为第二通信设备或第二通信设备中的芯片,所述通信装置包括:
    收发单元,用于接收第一PPDU,所述第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,所述发送带宽包括至少两个频域分片,所述第一PPDU为所述聚合PPDU中所述至少两个频域分片的任一频域分片上传输的子PPDU或所述采用多频域分片传输模式的PPDU中所述至少两个频域分片的任一频域分片上传输的PPDU;
    处理单元,用于根据所述第二通信设备停靠的频域分片和所述第一PPDU中携带的所述发送带宽,确定所述第二通信设备停靠的频域分片对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
  22. 根据权利要求20或21所述的通信装置,其特征在于,所述发送带宽携带于所述第一PPDU的EHT-SIG或U-SIG中,所述EHT-SIG或U-SIG中还携带传输所述第一PPDU的频域分片的带宽,所述传输所述第一PPDU的频域分片为所述第二通信设备装置停靠的频域分片。
  23. 一种通信装置,其特征在于,包括处理器和收发器,所述处理器用于生成第一物理层协议数据单元PPDU,所述第一PPDU中携带旋转系数指示信息,所述旋转系数指示信息用于指示传输所述第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,所述第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;所述收发器用于发送所述第一PPDU。
  24. 一种通信装置,其特征在于,包括处理器和收发器,所述收发器接收第一PPDU,所述第一PPDU中携带旋转系数指示信息,所述旋转系数指示信息用于指示传输所述第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数,所述第一PPDU为聚合PPDU中的子PPDU或采用多频域分片传输模式的PPDU中一个频域分片上的PPDU;所述处理器用于对所述第一PPDU进行解析,得到所述旋转系数指示信息指示的传输所述第一PPDU的频域分片所对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
  25. 一种通信装置,其特征在于,包括处理器和收发器,所述处理器用于生成第一PPDU,所述第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,所述发送带宽包括至少两个频域分片,所述第一PPDU为所述聚合PPDU中所述至少两个频域分片的任一频域分片上传输的子PPDU或所述采用多频域分片传输模式的PPDU中所述至少两个频域分片的任一频域分片上传输的PPDU;所述收发器用于发送所述第一PPDU。
  26. 一种通信装置,其特征在于,包括处理器和收发器,所述收发器用于接收第一PPDU,所述第一PPDU中携带聚合PPDU或采用多频域分片传输模式的PPDU的发送带宽,所述发送带宽包括至少两个频域分片,所述第一PPDU为所述聚合PPDU中所述至少两个频域分片的任一频域分片上传输的子PPDU或所述采用多频域分片传输模式的PPDU中所述至少两个频域分片的任一频域分片上传输的PPDU;所述处理器用于根据所述第二通信设备停靠的频域分片和所述第一PPDU中携带的所述发送带宽,确定所述第二通信设备停靠的频域分片对应的EHT-STF和EHT-LTF中至少一个字段的旋转系数。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-11任一项所述的方法。
  28. 一种包含程序指令的计算机程序产品,其特征在于,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-11任一项所述的方法。
  29. 一种通信装置,其特征在于,包括输入输出接口和处理电路,所述输入输出接口用于接收代码指令并传输至所述处理电路,所述处理电路用于运行所述代码指令以执行如权利要求1-11任一项所述的方法。
PCT/CN2021/120238 2020-09-29 2021-09-24 物理层协议数据单元ppdu传输方法及相关装置 WO2022068689A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/186,225 US20230231752A1 (en) 2020-09-29 2023-03-20 Physical layer protocol data unit ppdu transmission method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011047462.0A CN114339893A (zh) 2020-09-29 2020-09-29 物理层协议数据单元ppdu传输方法及相关装置
CN202011047462.0 2020-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/186,225 Continuation US20230231752A1 (en) 2020-09-29 2023-03-20 Physical layer protocol data unit ppdu transmission method and related apparatus

Publications (1)

Publication Number Publication Date
WO2022068689A1 true WO2022068689A1 (zh) 2022-04-07

Family

ID=80951123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120238 WO2022068689A1 (zh) 2020-09-29 2021-09-24 物理层协议数据单元ppdu传输方法及相关装置

Country Status (3)

Country Link
US (1) US20230231752A1 (zh)
CN (1) CN114339893A (zh)
WO (1) WO2022068689A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115865284A (zh) * 2021-09-23 2023-03-28 华为技术有限公司 数据传输的方法和通信装置
CN117097446A (zh) * 2022-05-11 2023-11-21 华为技术有限公司 基于物理层协议数据单元的通信方法及装置
CN117713990A (zh) * 2022-09-06 2024-03-15 华为技术有限公司 通信方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324268A (zh) * 2018-03-31 2019-10-11 华为技术有限公司 一种信息传输方法及装置
WO2020060172A1 (ko) * 2018-09-19 2020-03-26 엘지전자 주식회사 무선랜 시스템에서 ppdu를 전송하는 방법 및 장치
US20200228380A1 (en) * 2019-01-16 2020-07-16 Qualcomm Incorporated Signal phase rotation
CN111669783A (zh) * 2019-03-06 2020-09-15 华为技术有限公司 信息发送、信息接收方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324268A (zh) * 2018-03-31 2019-10-11 华为技术有限公司 一种信息传输方法及装置
WO2020060172A1 (ko) * 2018-09-19 2020-03-26 엘지전자 주식회사 무선랜 시스템에서 ppdu를 전송하는 방법 및 장치
US20200228380A1 (en) * 2019-01-16 2020-07-16 Qualcomm Incorporated Signal phase rotation
CN111669783A (zh) * 2019-03-06 2020-09-15 华为技术有限公司 信息发送、信息接收方法及装置

Also Published As

Publication number Publication date
US20230231752A1 (en) 2023-07-20
CN114339893A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2022068689A1 (zh) 物理层协议数据单元ppdu传输方法及相关装置
WO2022037657A1 (zh) Ppdu的上行参数指示方法及相关装置
KR20180091032A (ko) 확장 범위 모드에서의 전송 방법 및 장치
US11438204B2 (en) Physical layer convergence procedure protocol data unit communication method and related apparatus
TW202224462A (zh) Ppdu中空間複用參數欄位的確定方法及相關裝置
JP2022526028A (ja) 複数の周波数セグメントにおける同時伝送
US20220182273A1 (en) Communication apparatus and communication method for ppdu format identification
US20230171129A1 (en) Ppdu transmission method and related apparatus
TWI810692B (zh) Ppdu的上行頻寬指示方法及相關裝置
WO2022222775A1 (zh) 信息传输的方法、装置、计算机可读存储介质和芯片
WO2021244373A1 (zh) 传输物理层协议数据单元的方法和装置
TW202226804A (zh) 空間複用參數指示和空間複用參數欄位的確定方法及裝置
WO2022089549A1 (zh) 前导码打孔传输方法及相关装置
WO2022257836A1 (zh) Ppdu传输方法及相关装置
TWI817661B (zh) 實體層協定資料單元傳輸方法及相關裝置
WO2024082926A1 (zh) 信号传输方法、通信系统及通信装置
WO2022095668A1 (en) Data transmission method and network device
WO2023284644A1 (zh) 一种通信方法及通信装置
US20240048304A1 (en) Ppdu with adjustable subcarrier spacing
WO2021093616A1 (zh) 一种信号传输方法及装置
TW202345541A (zh) 執行增強型遠程(elr)通信的方法以及通信裝置
CN114501638A (zh) Ppdu的上行带宽指示方法及相关装置
CN115087021A (zh) 基于触发的空数据分组传输方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874350

Country of ref document: EP

Kind code of ref document: A1