WO2022222775A1 - 信息传输的方法、装置、计算机可读存储介质和芯片 - Google Patents

信息传输的方法、装置、计算机可读存储介质和芯片 Download PDF

Info

Publication number
WO2022222775A1
WO2022222775A1 PCT/CN2022/085943 CN2022085943W WO2022222775A1 WO 2022222775 A1 WO2022222775 A1 WO 2022222775A1 CN 2022085943 W CN2022085943 W CN 2022085943W WO 2022222775 A1 WO2022222775 A1 WO 2022222775A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppdu
indication information
bandwidth
sig
bit
Prior art date
Application number
PCT/CN2022/085943
Other languages
English (en)
French (fr)
Inventor
于健
狐梦实
刘辰辰
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112023021722A priority Critical patent/BR112023021722A2/pt
Publication of WO2022222775A1 publication Critical patent/WO2022222775A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to the field of communications, and more particularly, to a method, an apparatus, a computer-readable storage medium, and a chip for information transmission.
  • the 802.11 standard versions of the Wireless Local Area Network (WLAN) system are constantly evolving, starting from 802.11a/b/g and going through 802.11n, 802.11ac, 802.11ax to 802.11be.
  • the 802.11ax standard is called High Efficient (HE)
  • the 802.11be standard is called Extremely High Throughput (EHT)
  • EHT+ the standard after 802.11be is represented by EHT+.
  • 802.11ax has four physical layer protocol data unit (Physical Protocol Data Unit, PPDU) formats, and 802.11be defines two PPDU formats.
  • PPDU Physical Protocol Data Unit
  • 802.11be defines two PPDU formats.
  • the current scheme for transmitting PPDU is inefficient and not perfect.
  • Example embodiments of the present disclosure provide an information transmission method, apparatus, computer-readable storage medium, and chip.
  • A-PPDUs can be generated based on at least two PPDUs, and the A-PPDUs can be sent, thereby reducing the number of transmissions, improving channel utilization and efficiency in transmitting PPDUs.
  • a method for information transmission includes: the sending device generates an aggregated physical layer protocol data unit A-PPDU based on at least two physical layer protocol data units PPDU, and the first PPDU in the A-PPDU includes at least one of the following: first indication information, is used to indicate the bandwidth of the first PPDU, the second indication information is used to indicate the total bandwidth of the A-PPDU, or the third indication information is used to indicate the bandwidth combination of the A-PPDU; and the sending The device sends the A-PPDU to the receiving device.
  • the sending device can aggregate at least two PPDUs into A-PPDUs and then send them, so that the transmission bandwidth can be fully utilized, the number of times of sending can be reduced, and the sending device is more energy-efficient and efficient.
  • the first PPDU in the A-PPDU may include one or more of the first indication information, the second indication information and the third indication information, so that the receiving device can learn more comprehensive indication information about the bandwidth, and then based on this Perform more efficient follow-up processing.
  • the first PPDU includes the first indication information and the second indication information, and the first indication information is carried in a first signaling field of the first PPDU , the second indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU is an extremely high throughput EHT multi-user MU PPDU
  • the first signaling field is a universal signaling field U-SIG
  • the second signaling field is an extremely high throughput signaling field EHT. -SIG.
  • the first indication information may be carried in at least one bit in B3-B5 of the first symbol of the U-SIG of the first PPDU.
  • the second indication information may be carried in at least one of the following bits of the first PPDU: B25 of the first symbol of the U-SIG, B2 of the second symbol of the U-SIG, and B2 of the second symbol of the U-SIG B8, B20-B24 for the first symbol of U-SIG, B13-B16 for EHT-SIG.
  • the first PPDU includes both the first indication information and the second indication information, so that the receiving device can not only know the bandwidth of the received first PPDU, but also the total bandwidth of the A-PPDU. In this way, the receiving device can better perform some out-of-band interference suppression, etc., thereby enhancing its reception.
  • the first PPDU includes the first indication information and the second indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the first indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU is an EHT MU PPDU
  • the first signaling field is U-SIG
  • the second signaling field is EHT-SIG
  • the second indication information may be carried in at least one bit in B3-B5 of the first symbol of the U-SIG of the first PPDU.
  • the first indication information may be carried in at least one of the following bits of the first PPDU: B25 of the first symbol of the U-SIG, B2 of the second symbol of the U-SIG, and B2 of the second symbol of the U-SIG. B8, B20-B24 for the first symbol of U-SIG, B13-B16 for EHT-SIG.
  • the first PPDU includes both the first indication information and the second indication information, so that the receiving device can not only know the bandwidth of the received first PPDU, but also the total bandwidth of the A-PPDU. In this way, the receiving device can better perform some out-of-band interference suppression, etc., thereby enhancing its reception.
  • the first PPDU includes the first indication information and the third indication information, and the first indication information is carried in a first signaling field of the first PPDU , the third indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU is an EHT MU PPDU
  • the first signaling field is U-SIG
  • the second signaling field is EHT-SIG.
  • the first indication information may be carried in at least one bit in B3-B5 of the first symbol of the U-SIG of the first PPDU.
  • the third indication information may be carried in at least one of the following bits of the first PPDU: B25 of the first symbol of the U-SIG, B2 of the second symbol of the U-SIG, and B2 of the second symbol of the U-SIG B8, B20-B24 for the first symbol of U-SIG, B13-B16 for EHT-SIG.
  • the first PPDU includes both the first indication information and the third indication information, so that the receiving device can not only know the bandwidth of the received first PPDU, but also the bandwidths of other PPDUs in the A-PPDU. In this way, the receiving device can better perform some out-of-band interference suppression, etc., thereby enhancing its reception.
  • the first PPDU includes the second indication information and the third indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the third indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU is an EHT MU PPDU
  • the first signaling field is U-SIG
  • the second signaling field is EHT-SIG
  • the second indication information may be carried in at least one bit in B3-B5 of the first symbol of the U-SIG of the first PPDU.
  • the third indication information may be carried in at least one of the following bits of the first PPDU: B25 of the first symbol of the U-SIG, B2 of the second symbol of the U-SIG, and B2 of the second symbol of the U-SIG B8, B20-B24 for the first symbol of U-SIG, B13-B16 for EHT-SIG.
  • the first PPDU includes both the second indication information and the third indication information, so that the receiving device can not only know the total bandwidth of the A-PPDU, but also the bandwidth of each PPDU in the A-PPDU. In this way, the receiving device can better perform some out-of-band interference suppression, etc., thereby enhancing its reception.
  • each bandwidth in the bandwidth combination indicated by the third indication information may correspond to each PPDU arranged in an ascending or descending order of frequencies.
  • each bandwidth in the bandwidth combination in an ascending or descending order of frequencies, it is not necessary to additionally indicate the bandwidth of the first PPDU, thereby reducing signaling overhead.
  • the receiving device can quickly and accurately determine the bandwidth of the PPDU received by the receiving device based on the frequency at which it stops from the bandwidth combination, thereby improving the processing efficiency of the receiving device.
  • At least one bit in the first signaling field and/or the second signaling field of the first PPDU is used to indicate that the first PPDU is aggregated in the A- in the PPDU.
  • the receiving device can know the manner in which the transmitting device sends the first PPDU, and the receiving device can quickly determine certain specific parameters based on the at least one bit.
  • the indication information carried in the field is which of the first indication information, the second indication information, and the third indication information, so that the processing efficiency of the receiving device can be improved.
  • At least one bit is an acknowledge bit and/or a ignore bit.
  • At least one bit is carried by the confirmation bit, so that for the first type of device, it can pass the relevant information in the version independent to the MAC layer because the confirmation bit is not equal to the default value, and terminate the reception. In this way, the influence of the first type of equipment on other normal receiving equipment can be avoided. By ignoring the bit to carry at least one bit so that for the first type of device, it can continue other receiving or processing operations regardless of the at least one bit, thus achieving transparency to the first type of device.
  • the A-PPDU further includes a second PPDU, and the second PPDU is an efficient HE MU PPDU or an EHT MU PPDU.
  • HE MU PPDU can also be compatible at the same time, which further realizes the full utilization of wireless transmission bandwidth.
  • generating the A-PPDU includes: the sending device generating the A-PPDU based on at least one of a bandwidth of the first PPDU, a total bandwidth of the A-PPDU, and the combination of bandwidths A long training field LTF in the first PPDU is generated.
  • an LTF eg, EHT-LTF
  • EHT-LTF EHT-LTF
  • generating the LTF further comprises: the transmitting device generating the LTF based on a type of each PPDU in the A-PPDU.
  • the types of each PPDU in the A-PPDU are further considered when generating the LTF (eg, EHT-LTF), so that the LTF can be optimized, and the receiving device can further reduce the PAPR based on this.
  • LTF eg, EHT-LTF
  • a method for information transmission includes: a receiving device receives a first PPDU in an aggregated physical layer protocol data unit A-PPDU from a sending device, where the first PPDU includes at least one of the following: first indication information for indicating the first PPDU The bandwidth of the PPDU, the second indication information is used to indicate the total bandwidth of the A-PPDU, or the third indication information is used to indicate the bandwidth combination of the A-PPDU; and the receiving device parses the first PPDU .
  • the first PPDU received by the receiving device may include one or more of the first indication information, the second indication information, and the third indication information, so that the receiving device can learn more comprehensive information about the bandwidth
  • the indication information which can better perform some out-of-band interference suppression, etc., so as to enhance its reception.
  • the first PPDU includes the first indication information and the second indication information
  • the first indication information is carried in a first signaling field of the first PPDU
  • the second indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU is an extremely high throughput EHT multi-user MU PPDU
  • the first signaling field is a universal signaling field U-SIG
  • the second signaling field is an extremely high throughput signaling field EHT. -SIG.
  • the first indication information may be carried in at least one bit in B3-B5 of the first symbol of the U-SIG of the first PPDU.
  • the second indication information may be carried in at least one of the following bits of the first PPDU: B25 of the first symbol of the U-SIG, B2 of the second symbol of the U-SIG, and B2 of the second symbol of the U-SIG B8, B20-B24 for the first symbol of U-SIG, B13-B16 for EHT-SIG.
  • the first PPDU includes both the first indication information and the second indication information, so that the receiving device can not only know the bandwidth of the received first PPDU, but also the total bandwidth of the A-PPDU. In this way, the receiving device can better perform some out-of-band interference suppression, etc., thereby enhancing its reception.
  • the first PPDU includes the first indication information and the second indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the first indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU is an EHT MU PPDU
  • the first signaling field is U-SIG
  • the second signaling field is EHT-SIG
  • the second indication information may be carried in at least one bit in B3-B5 of the first symbol of the U-SIG of the first PPDU.
  • the first indication information may be carried in at least one of the following bits of the first PPDU: B25 of the first symbol of the U-SIG, B2 of the second symbol of the U-SIG, and B2 of the second symbol of the U-SIG. B8, B20-B24 for the first symbol of U-SIG, B13-B16 for EHT-SIG.
  • the first PPDU includes both the first indication information and the second indication information, so that the receiving device can not only know the bandwidth of the received first PPDU, but also the total bandwidth of the A-PPDU. In this way, the receiving device can better perform some out-of-band interference suppression, etc., thereby enhancing its reception.
  • the first PPDU includes the first indication information and the third indication information
  • the first indication information is carried in a first signaling field of the first PPDU
  • the third indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU is an EHT MU PPDU
  • the first signaling field is U-SIG
  • the second signaling field is EHT-SIG.
  • the first indication information may be carried in at least one bit in B3-B5 of the first symbol of the U-SIG of the first PPDU.
  • the third indication information may be carried in at least one of the following bits of the first PPDU: B25 of the first symbol of the U-SIG, B2 of the second symbol of the U-SIG, and B2 of the second symbol of the U-SIG B8, B20-B24 for the first symbol of U-SIG, B13-B16 for EHT-SIG.
  • the first PPDU includes both the first indication information and the third indication information, so that the receiving device can not only know the bandwidth of the received first PPDU, but also the bandwidths of other PPDUs in the A-PPDU. In this way, the receiving device can better perform some out-of-band interference suppression, etc., thereby enhancing its reception.
  • the first PPDU includes the second indication information and the third indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the third indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU is an EHT MU PPDU
  • the first signaling field is U-SIG
  • the second signaling field is EHT-SIG
  • the second indication information may be carried in at least one bit in B3-B5 of the first symbol of the U-SIG of the first PPDU.
  • the third indication information may be carried in at least one of the following bits of the first PPDU: B25 of the first symbol of the U-SIG, B2 of the second symbol of the U-SIG, and B2 of the second symbol of the U-SIG B8, B20-B24 for the first symbol of U-SIG, B13-B16 for EHT-SIG.
  • the first PPDU includes both the second indication information and the third indication information, so that the receiving device can not only know the total bandwidth of the A-PPDU, but also know the bandwidth of each PPDU in the A-PPDU at the same time. In this way, the receiving device can better perform some out-of-band interference suppression, etc., thereby enhancing its reception.
  • each bandwidth in the bandwidth combination indicated by the third indication information may correspond to each PPDU arranged in an ascending or descending order of frequencies.
  • each bandwidth in the bandwidth combination in an ascending or descending order of frequencies, it is not necessary to additionally indicate the bandwidth of the first PPDU, thereby reducing signaling overhead.
  • the receiving device can quickly and accurately determine the bandwidth of the PPDU received by the receiving device based on the frequency at which it stops from the bandwidth combination, thereby improving the processing efficiency of the receiving device.
  • At least one bit in the first signaling field and/or the second signaling field of the first PPDU is used to indicate that the first PPDU is aggregated in the A- in the PPDU.
  • the receiving device can know the manner in which the transmitting device sends the first PPDU, and the receiving device can quickly determine certain specific parameters based on the at least one bit.
  • the indication information carried in the field is which of the first indication information, the second indication information, and the third indication information, so that the processing efficiency of the receiving device can be improved.
  • At least one of the bits is an acknowledge bit and/or a ignore bit.
  • At least one bit is carried by the confirmation bit, so that for the first type of device, it can pass the relevant information in the version independent to the MAC layer because the confirmation bit is not equal to the default value, and terminate the reception. In this way, the influence of the first type of equipment on other normal receiving equipment can be avoided. By ignoring the bit to carry at least one bit so that for the first type of device, it can continue other receiving or processing operations regardless of the at least one bit, thus achieving transparency to the first type of device.
  • the A-PPDU further includes a second PPDU
  • the second PPDU is an efficient HE MU PPDU or an EHT MU PPDU.
  • HE MU PPDU can also be compatible at the same time, which further realizes the full utilization of wireless transmission bandwidth.
  • the receiving device determining a long training field LTF in the first PPDU based on at least one of the bandwidth, the total bandwidth, and the bandwidth combination; The receiving device performs channel estimation based on the LTF.
  • the receiving device determines the LTF in the first PPDU based on at least one of the bandwidth, the total bandwidth, and the bandwidth combination further comprising: the The receiving device determines the LTF based on the type of each PPDU in the A-PPDU.
  • the receiving device can determine the LTF (eg, EHT-LTF) based on richer information, which can realize the optimization of the LTF and further reduce the PAPR based on this.
  • LTF eg, EHT-LTF
  • an apparatus for information transmission may include: a generating unit configured to generate an aggregated physical layer protocol data unit A-PPDU based on at least two physical layer protocol data units PPDU, wherein the first PPDU in the A-PPDU includes at least one of the following: The first indication information is used to indicate the bandwidth of the first PPDU, the second indication information is used to indicate the total bandwidth of the A-PPDU, or the third indication information is used to indicate the bandwidth combination of the A-PPDU ; and a sending unit configured to send the A-PPDU to a receiving device.
  • the first PPDU includes the first indication information and the second indication information
  • the first indication information is carried in a first signaling field of the first PPDU
  • the second indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU includes the first indication information and the second indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the first indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU includes the first indication information and the third indication information
  • the first indication information is carried in a first signaling field of the first PPDU
  • the third indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU includes the second indication information and the third indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the third indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • each bandwidth in the bandwidth combination indicated by the third indication information may correspond to each PPDU arranged in an ascending or descending order of frequencies.
  • At least one bit in the first signaling field and/or the second signaling field of the first PPDU is used to indicate that the first PPDU is aggregated in the A- in the PPDU.
  • At least one of the bits is an acknowledge bit and/or a ignore bit.
  • the first PPDU is an EHT MU PPDU
  • the first signaling field is U-SIG
  • the second signaling field is EHT-SIG.
  • the A-PPDU further includes a second PPDU, and the second PPDU is a HE MU PPDU or an EHT MU PPDU.
  • the generating unit is configured to generate the first PPDU based on at least one of a bandwidth of the first PPDU, a total bandwidth of the A-PPDU, and the combination of bandwidths LTF in a PPDU.
  • the generating unit is configured to generate the LTF further based on a type of each PPDU in the A-PPDU.
  • the apparatus for information transmission of the third aspect or any of the embodiments thereof may be implemented at a sending device, such as may be implemented at an AP or a STA.
  • an apparatus for information transmission includes: a receiving unit configured to receive a first PPDU in an aggregated physical layer protocol data unit A-PPDU from a sending device, where the first PPDU includes at least one of the following: first indication information for indicating the bandwidth of the first PPDU, the second indication information for indicating the total bandwidth of the A-PPDU, or the third indication information for indicating the bandwidth combination of the A-PPDU; and a parsing unit, configured as Parse the first PPDU.
  • the first PPDU includes the first indication information and the second indication information
  • the first indication information is carried in a first signaling field of the first PPDU
  • the second indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU includes the first indication information and the second indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the first indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU includes the first indication information and the third indication information, and the first indication information is carried in a first signaling field of the first PPDU , the third indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU includes the second indication information and the third indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the third indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • each bandwidth in the bandwidth combination indicated by the third indication information may correspond to each PPDU arranged in an ascending or descending order of frequencies.
  • At least one bit in the first signaling field and/or the second signaling field of the first PPDU is used to indicate that the first PPDU is aggregated in the A- in the PPDU.
  • At least one of the bits is an acknowledge bit and/or a ignore bit.
  • the first PPDU is an EHT MU PPDU
  • the first signaling field is U-SIG
  • the second signaling field is EHT-SIG.
  • the A-PPDU further includes a second PPDU, and the second PPDU is a HE MU PPDU or an EHT MU PPDU.
  • a processing unit configured to: determine a long training field LTF in the first PPDU based on at least one of the bandwidth, the total bandwidth, and the bandwidth combination ; perform channel estimation based on the LTF.
  • processing unit is configured to determine the LTF further based on a type of each PPDU in the A-PPDU.
  • the apparatus for information transmission of the fourth aspect or any of the embodiments thereof may be implemented at a receiving device, such as may be implemented at an AP or a STA.
  • an apparatus for information transmission includes a processor and a memory, the memory stores instructions executed by the processor, and when the instructions are executed by the processor, causes the apparatus to implement: based on at least two physical layer protocol data units PPDU
  • the first PPDU in the A-PPDU includes at least one of the following: first indication information for indicating the bandwidth of the first PPDU, and second indication information, is used to indicate the total bandwidth of the A-PPDU, or the third indication information is used to indicate the bandwidth combination of the A-PPDU; and send the A-PPDU to the receiving device.
  • the first PPDU includes the first indication information and the second indication information
  • the first indication information is carried in a first signaling field of the first PPDU
  • the second indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU includes the first indication information and the second indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the first indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU includes the first indication information and the third indication information, and the first indication information is carried in a first signaling field of the first PPDU , the third indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU includes the second indication information and the third indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the third indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • each bandwidth in the bandwidth combination indicated by the third indication information may correspond to each PPDU arranged in an ascending or descending order of frequencies.
  • At least one bit in the first signaling field and/or the second signaling field of the first PPDU is used to indicate that the first PPDU is aggregated in the A- in the PPDU.
  • At least one bit is an acknowledge bit and/or a ignore bit.
  • the first PPDU is an EHT MU PPDU
  • the first signaling field is U-SIG
  • the second signaling field is EHT-SIG.
  • the A-PPDU further includes a second PPDU, and the second PPDU is an efficient HE MU PPDU or an EHT MU PPDU.
  • the processor executes the instructions, causing the apparatus to implement: based on at least one of the bandwidth of the first PPDU, the total bandwidth of the A-PPDU, and the combination of bandwidths item to generate the LTF in the first PPDU.
  • the processor executes the instructions, causing the apparatus to: generate the LTF further based on a type of each PPDU in the A-PPDU.
  • an apparatus for information transmission includes a processor and a memory, the memory stores instructions executed by the processor, and when the instructions are executed by the processor, causes the apparatus to implement: receiving an aggregated physical layer protocol from a sending device
  • the first PPDU in the data unit A-PPDU, the first PPDU includes at least one of the following: first indication information, used to indicate the bandwidth of the first PPDU, and second indication information, used to indicate the A- The total bandwidth of the PPDU, or the third indication information, is used to indicate the bandwidth combination of the A-PPDU; and the first PPDU is parsed.
  • the first PPDU includes the first indication information and the second indication information
  • the first indication information is carried in a first signaling field of the first PPDU
  • the second indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU includes the first indication information and the second indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the first indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU includes the first indication information and the third indication information, and the first indication information is carried in a first signaling field of the first PPDU , the third indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first PPDU includes the second indication information and the third indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the third indication information is carried in the first signaling field and/or the second signaling field of the first PPDU.
  • each bandwidth in the bandwidth combination indicated by the third indication information may correspond to each PPDU arranged in an ascending or descending order of frequencies.
  • At least one bit in the first signaling field and/or the second signaling field of the first PPDU is used to indicate that the first PPDU is aggregated in the A- in the PPDU.
  • At least one of the bits is an acknowledge bit and/or a ignore bit.
  • the first PPDU is an EHT MU PPDU
  • the first signaling field is U-SIG
  • the second signaling field is EHT-SIG.
  • the A-PPDU further includes a second PPDU, and the second PPDU is an efficient HE MU PPDU or an EHT MU PPDU.
  • the processor executes the instructions, causing the apparatus to: determine the first based on at least one of the bandwidth, the total bandwidth, and the bandwidth combination Long training field LTF in PPDU; channel estimation is performed based on the LTF.
  • the processor executes the instructions such that the apparatus implements: determining the LTF further based on a type of each PPDU in the A-PPDU.
  • any aspect or any implementation manner thereof and the beneficial effects that can be achieved may refer to the information transmission method provided by the corresponding first aspect or the second aspect Any aspect or any implementation manner thereof and the beneficial effects that can be achieved will not be repeated here.
  • an access point in a seventh aspect, includes the apparatus for information transmission according to any one of the third aspect to the sixth aspect or any implementation manner thereof.
  • a site is provided.
  • the station (STA) includes the apparatus for information transmission according to any one of the third aspect to the sixth aspect or any implementation manner thereof.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the information in any of the embodiments according to the first aspect or the second aspect is realized.
  • the operation of the transport method is provided, and a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the information in any of the embodiments according to the first aspect or the second aspect is realized.
  • a tenth aspect provides a chip or a chip system.
  • the chip or chip system includes one or more processing circuits, wherein the one or more processing circuits are used to implement the operation of the method for information transmission in any one of the embodiments of the first aspect or the second aspect.
  • a computer program or computer program product is provided.
  • the computer program or computer program product is tangibly stored on a computer-readable medium and includes computer-executable instructions that, when executed, cause an apparatus to implement any of the embodiments according to the first or second aspects above The operation of the method of information transfer.
  • a twelfth aspect provides a wireless communication system.
  • the system includes a sending device and a receiving device.
  • the sending device may implement operations of the method for information transmission according to any embodiment of the first aspect
  • the receiving device may implement operations of the method for information transmission according to any embodiment of the second aspect.
  • a thirteenth aspect provides a wireless communication system including at least one AP and at least one STA. Any AP or any STA may implement the operation of the method for information transmission according to any one of the embodiments of the first aspect or the second aspect.
  • FIG. 1 shows a schematic diagram of a communication system 100 provided by an embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of another communication system 200 provided by an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of a format 300 of a HE MU PPDU provided by an embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of a format 400 of an EHT MU PPDU provided by an embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of a format 500 of an EHT+MU PPDU provided by an embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of a bandwidth channel division 600 provided by an embodiment of the present disclosure
  • FIG. 7 shows a schematic flowchart of a method 700 for data transmission provided by an embodiment of the present disclosure
  • FIG. 8 shows a schematic diagram of a format 800 of an A-PPDU provided by an embodiment of the present disclosure
  • FIG. 9 shows a schematic diagram of another A-PPDU format 900 provided by an embodiment of the present disclosure.
  • FIG. 10 shows a schematic diagram of another A-PPDU format 1000 provided by an embodiment of the present disclosure.
  • FIG. 11 shows a schematic diagram of another A-PPDU format 1100 provided by an embodiment of the present disclosure.
  • FIG. 12 shows a schematic diagram of another A-PPDU format 1200 provided by an embodiment of the present disclosure.
  • FIG. 13 shows a schematic diagram of another A-PPDU format 1300 provided by an embodiment of the present disclosure
  • FIG. 14 shows a schematic diagram of another A-PPDU format 1400 provided by an embodiment of the present disclosure.
  • FIG. 15 shows a schematic flowchart of another data transmission method 1500 provided by an embodiment of the present disclosure.
  • FIG. 16 shows a schematic diagram of an apparatus 1600 for data transmission provided by an embodiment of the present disclosure
  • FIG. 17 shows a schematic diagram of another apparatus 1700 for data transmission provided by an embodiment of the present disclosure.
  • FIG. 18 shows a schematic diagram of another apparatus 1800 for data transmission provided by an embodiment of the present disclosure.
  • the term “comprising” and the like should be understood as open-ended inclusion, ie, “including but not limited to”.
  • the term “based on” should be understood as “based at least in part on”.
  • the terms “one embodiment” or “the embodiment” should be understood to mean “at least one embodiment”.
  • the terms “first”, “second”, etc. may refer to different or the same objects. Other explicit and implicit definitions may also be included below.
  • the embodiments of the present disclosure may be applied to a wireless communication system, such as a wide area network system or a wireless local area network (WLAN) system.
  • the wireless communication system can support a variety of WLAN communication protocols, such as 802.11ac/802.11ax/802.11be in the Institute of Electrical and Electronics Engineers (IEEE) 802.11 series of protocols or any one of the future IEEE 802.11 series. protocol.
  • IEEE Institute of Electrical and Electronics Engineers
  • the embodiment of the present disclosure takes a WLAN as an example for description.
  • a WLAN may include multiple basic service sets (Basic Service Set, BSS), and the nodes of the basic service set include access point class sites and non-access point class sites (Non Access Point Station, Non-AP STA), wherein , an access point type station is usually referred to as an access point (Access Point, AP), and a non-access point type station is usually referred to as a station (Station, STA).
  • BSS Basic Service Set
  • AP access point
  • STA station
  • Each basic service set may contain an AP and one or more STAs associated with the AP.
  • An access point is a device with a wireless transceiver function that can provide services to a site.
  • a station is a device with wireless transceiver function, which can access a wireless local area network based on an access point.
  • Embodiments of the present disclosure may be implemented at an access point (AP), which may also be referred to as a wireless access point or a hotspot, or the like.
  • APs are access points for mobile users to access wired networks. They are mainly deployed in homes, buildings, and campuses, with a typical coverage radius ranging from tens of meters to hundreds of meters. Of course, they can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired network and wireless network. Its main function is to connect various STAs together, and then connect the wireless network to the wired network.
  • the AP may be a terminal device or a network device with a wireless fidelity (Wireless Fidelity, Wi-Fi) chip, for example, the AP may be a communication server, a router, a switch, or a network bridge.
  • the AP may be a device that supports the 802.11 standard under the current network system or the future network system.
  • the embodiments of the present disclosure may be implemented in a station (STA), and the STA may be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • STA may also be referred to as a system, subscriber unit, access terminal, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, user device, or user equipment (user). equipment, UE).
  • the STA may be a wireless communication chip, a wireless sensor or a wireless communication terminal.
  • STA is a mobile phone that supports Wi-Fi communication, a tablet computer that supports Wi-Fi communication, a set-top box that supports Wi-Fi communication, a smart TV that supports Wi-Fi communication, and a smart TV that supports Wi-Fi communication.
  • Wearable devices in-vehicle communication devices that support Wi-Fi communication functions, and computers that support Wi-Fi communication functions, etc.
  • the STA may support devices of the 802.11 standard under the current network system or the future network system.
  • FIG. 1 shows a schematic diagram of a communication system 100 provided by an embodiment of the present disclosure.
  • the data transmission system includes a sending device 101 and a receiving device 102, and the sending device 101 and the receiving device 102 can communicate through a wireless network.
  • the sending device 101 shown in FIG. 1 may be an AP or a STA, and the receiving device 102 may be an AP or a STA. And it can be understood that although only a single transmitting device 101 and a single receiving device 102 are shown in FIG. 1 , the present disclosure is not limited thereto.
  • the system 100 may include multiple receiving devices 102 , and the transmitting device 101 may be associated with multiple receiving devices 102 .
  • the receiving device 102 performs communication, or other scenarios, etc., which are not listed in this disclosure.
  • FIG. 2 shows a schematic diagram of another communication system 200 provided by an embodiment of the present disclosure.
  • Figure 2 shows two APs, AP 201 and AP 202.
  • Figure 2 also shows three user sites, namely STA 221, STA 222 and STA 223.
  • Wireless communication between APs and APs, APs and STAs, and STAs and STAs can be performed through various standards.
  • the embodiments of the present disclosure can be applied to communication between APs, communication between STAs and STAs, and communication between APs and STAs. For example, in conjunction with FIG.
  • AP 202 may also communicate with at least one of STA 221, STA 222, and STA 223.
  • STA 221 may also communicate with STA 222 and/or STA 223.
  • AP 201 and AP 202 are collectively referred to as AP 20 below, and STA 221, STA 222, and STA 223 are collectively referred to as STA 22 below.
  • FIG. 1 and FIG. 2 are only schematic diagrams, and the system 100 and the system 200 may also include other network devices or terminal devices, such as wireless relay devices and wireless backhaul devices.
  • the embodiments of the present disclosure do not limit the number of the sending device 101 and the receiving device 102 included in the system 100, and the number of APs 20 and STAs 22 included in the system 200.
  • the four PPDU formats supported by 802.11ax of WLAN and the two PPDU formats defined in 802.11be are shown in Table 1 below.
  • HE SU PPDU High Efficient Single User Physical Layer Protocol Data Unit
  • HEMU PPDU High Efficient Multiple User Physical Layer Protocol Data Unit
  • FIG. 3 the format of the HE MU PPDU may be as shown in FIG. 3 .
  • FIG. 3 shows a schematic diagram of a format 300 of a HE MU PPDU provided by an embodiment of the present disclosure.
  • the format 300 includes: a traditional short training field (Legacy-Short Training Field, L-STF) 301, a traditional long training field (Legacy-Long Training Field, L-LTF) 302, a traditional signaling field (Legacy-Short Training Field, L-LTF) 302 -Signal, L-SIG) 303, traditional signaling field repeated (repeated legacy-signal, RL-SIG) 304, high-efficiency signaling field A (High Efficient Signal Field-A, HE-SIG-A) 305, high-efficiency signaling Field B (High Efficient Signal Field-B, HE-SIG-B) 306, High Efficient Short Training Field (HE-STF) 307, High Efficient Long Training Field (HE-LTF) 308.
  • Data Data
  • a packet extension Packet Extension
  • the L-STF 301 can be used for PPDU discovery, coarse synchronization, automatic gain control, and the like.
  • L-LTF 302 may be used for fine synchronization, channel estimation, and the like.
  • the L-SIG 303 can be used to carry signaling information related to the length of the PPDU, to ensure coexistence, and the like.
  • RL-SIG 304 is used to represent a repetition of L-SIG 303.
  • HE-SIG-A 305 may be used to carry signaling, etc. required for demodulation of HE-SIG-B and subsequent data.
  • HE-SIG-B 306 may be used to carry signaling for demodulating subsequent data, mainly including resource unit indication information and the like.
  • HE-STF 307 can be used for automatic gain control of subsequent fields, etc.
  • HE-LTF 308 may be used for channel estimation and the like.
  • Data 309 can be used to carry data information.
  • PE 310 can be used to help the receiving device get more processing time, etc.
  • EHT MU PPDUs as defined in 802.11be may be used for transmission between one or more APs 20 and one or more STAs 22.
  • the format of the EHT MU PPDU may be as shown in FIG. 4 .
  • FIG. 4 shows a schematic diagram of a format 400 of an EHT MU PPDU provided by an embodiment of the present disclosure.
  • the format 400 includes: a traditional short training field (Legacy-Short Training Field, L-STF) 401, a traditional long training field (Legacy-Long Training Field, L-LTF) 402, a traditional signaling field (Legacy-Short Training Field, L-LTF) 402 -Signal, L-SIG) 403, traditional signaling field repeated (repeated legacy-signal, RL-SIG) 404, universal signaling field (Universal SIG, U-SIG) 405, extremely high throughput signaling field (Extremely High Throughput Signal Field, EHT-SIG) 406, Extremely High Throughput Short Training Field (EHT-STF) 407, Extremely High Throughput Long Training Field (EHT-LTF) 408.
  • a packet extension Packet Extension, PE
  • the L-STF 401 can be used for PPDU discovery, coarse synchronization, automatic gain control, and the like.
  • L-LTF 402 may be used for fine synchronization, channel estimation, and the like.
  • the L-SIG 403 can be used to carry signaling information related to the length of the PPDU, to ensure coexistence, etc.
  • RL-SIG 404 is used to represent a repetition of L-SIG 403.
  • U-SIG 405 is a general signaling field used since EHT.
  • the EHT-SIG 406 may be used to carry signaling for demodulating subsequent data, mainly including resource unit indication information and the like.
  • EHT-STF 407 can be used for automatic gain control of subsequent fields, etc.
  • EHT-LTF 408 may be used for channel estimation and the like.
  • Data 409 can be used to carry data information.
  • PE 410 can be used to help the receiving device get more processing time, etc.
  • U-SIG 405 may include two Orthogonal Frequency Division Multiplexing (OFDM) symbols, each symbol including 26 bits.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the content indicated by the 26 bits (B0 to B25) included in the first symbol (U-SIG-1) of the U-SIG 405 can be found in Table 2 below.
  • the second symbol (U-SIG-1) of the U-SIG 405 The contents indicated by the 26 bits (B0 to B25) included in SIG-2) can be referred to in Table 3 below.
  • U-SIG 405 includes bandwidth (BW), located at B3-B5 of U-SIG-1.
  • U-SIG 405 includes Validate bits located at B25 of U-SIG-1 and B2 and B8 of U-SIG-2.
  • U-SIG 405 includes Disregard bits, located at B20-B24 of U-SIG-1.
  • bits in the present disclosure may also be referred to as fields, which are not limited herein.
  • the EHT-SIG 406 may include spatial multiplexing, GI (GI: Guard Interval, guard interval) + EHT-LTF size, number of EHT-LTF symbols, and the like.
  • EHT-SIG 406 also includes a Disregard bit or field, located at B13-B16 of EHT-SIG 406 .
  • EHT+PPDU can be defined as a general term for PPDUs after 802.11be. It can be understood that EHT+ is a general term for codes that may appear after 802.11be, such as 802.11bx, 802.11cx, etc., which is not limited in this disclosure.
  • EHT+MU PPDU may be a format of EHT+PPDU, and may also be used for transmission between one or more APs 20 and one or more STAs 22. Exemplarily, the format of the EHT+MU PPDU may be as shown in FIG. 5 .
  • FIG. 5 shows a schematic diagram of a format 500 of an EHT+MU PPDU provided by an embodiment of the present disclosure.
  • the format 500 includes: a traditional short training field (Legacy-Short Training Field, L-STF) 501, a traditional long training field (Legacy-Long Training Field, L-LTF) 502, a traditional signaling field (Legacy-Short Training Field, L-LTF) 502 -Signal, L-SIG) 503, legacy signaling field repeated (repeated legacy-signal, RL-SIG) 504, universal signaling field (Universal SIG, U-SIG) 505, evolved very high throughput signaling field ( EHT+-SIG) 506, Evolved Extremely High Throughput Short Training Field (EHT+-STF) 507, Evolved Extremely High Throughput Long Training Field (EHT+-LTF) 508.
  • a packet extension Packet Extension, PE
  • PE Packet Extension
  • 501 to 510 in FIG. 5 may have similar meanings to 401 to 410 in FIG. 4 , respectively, and the difference is mainly that EHT in FIG. 4 and EHT+ in FIG. 5 . For brevity, it is not repeated here.
  • the reserved/unused bits (reserved bits) in the signaling field of the physical layer preamble or the reserved/unused status (entry) of a certain (sub)field are divided into two types, which are respectively ignored. (Disregard) and Validate. And, generally, a default value (or default value) is preset for Validate. In some embodiments, this default value (or default value) may be one.
  • the first version of the 802.11be standard involves some basic features. Accordingly, a device that supports the first version can be called a device that implements the basic features of EHT, and can use the attributes in the management information base. For example, only the dot11EHTBaseLineFeaturesImplementedOnly can be marked as 1 to indicate that the device implements the basic EHT feature. Other devices after the first version of the device can be referred to as devices that do not implement the basic EHT features, or can also be referred to as devices that implement the advanced EHT features. For the identification, for example, only the dot11EHTBaseLineFeaturesImplementedOnly can be identified as 0 to indicate that it is not a device that implements the basic EHT feature.
  • a device that implements the basic features of the EHT is referred to as a first-type device, and a device that does not implement the basic EHT feature is referred to as a second-type device.
  • the Validate bit in the PPDU is not set to the default value (or default value) or the value of some subfields is set to Confirm (Validate) state, you need to wait until the end of the PPDU (defer for the duration of the PPDU), and pass the relevant information in the version-independent to the media access control (Medium access Control, MAC) layer to ensure coexistence, and Terminate the reception of this PPDU.
  • the media access control Medium access Control, MAC
  • the receiving device when the combined indication of the uplink and downlink subfields and the PPDU type and compressed mode subfields is in the confirmation state, the receiving device will also wait until the end of the PPDU, and transmit the relevant information in the version-independent to the MAC layer to ensure coexistence. Terminate the reception of this PPDU. No matter what value any ignore bit is set to, if there is no non-default confirmation bit and confirmation status in the PPDU, the receiving device will ignore the ignore bit or the ignore subfield and continue to receive other fields.
  • 802.11a/g standard allows transmission bandwidth of 20MHz
  • 802.11n standard allows transmission bandwidth of 20MHz or 40MHz
  • 802.11ax allows transmission bandwidth of 20MHz, 40MHz, 80MHz or 160MHz
  • 802.11be standard supports the bandwidth to be extended to 320MHz, As a result, the peak throughput rate can be significantly improved, and the transmission rate can be further improved.
  • channels are usually divided into master channels and slave channels.
  • the AP 20 will select a 20MHz channel as the main channel.
  • the 80MHz channel including the primary channel will be called the primary 80MHz channel, and the other 80MHz channels are the non-primary 80Mhz channels.
  • the 160MHz channel containing the primary channel is called the primary 160MHz channel, and the other 160MHz channel is the non-primary 160MHz channel, or the secondary 160MHz channel.
  • the location of the primary 80MHz channel (or the primary 160MHz channel) may be selected by the AP 20 when establishing a basic service set (BSS), and the AP 20 may send a beacon frame in a broadcast form to notify all STA 22.
  • BSS basic service set
  • the bandwidth of a single PPDU may be smaller than the available bandwidth, so aggregating multiple PPDUs can fully utilize the bandwidth in the frequency domain.
  • FIG. 6 shows a schematic diagram of channel division 600 of a bandwidth provided by an embodiment of the present disclosure.
  • the 80MHz 610, 160MHz 620, 320MHz-1 630 and 320MHz-2 640 are shown in Figure 6. It is understandable that, in order to effectively utilize the channel, two 320MHz channels are designed, namely 320MHz-1 with channel center frequencies of 31/95/159 and 320MHz-2 with center frequencies of 63/127/191, as shown in Figure 6. are shown as 630 and 640, respectively.
  • FIG. 6 only shows the channel division 600 in the 6 GHz frequency band, and this schematic diagram is only an example, and is not intended to limit the scenarios of the embodiments of the present disclosure. Although some embodiments of the present disclosure are combined with the channel division 600 shown in FIG. 6 , it should be understood that the embodiments of the present disclosure may also be combined with other channel divisions different from those shown in FIG. 6 , which will not be repeated here.
  • the embodiments of the present disclosure provide an information transmission method, which aggregates at least two PPDUs into A-PPDUs and sends them again, so that the transmission bandwidth can be fully utilized, the number of times of transmission is reduced, and the transmission efficiency is higher. Details will be described below with reference to FIGS. 7 to 15 .
  • FIG. 7 shows a schematic flowchart of a method 700 for data transmission provided by an embodiment of the present disclosure.
  • the method 700 in FIG. 7 involves the sending device 101 and the receiving device 102 .
  • the transmitting device 101 may generate (710) an A-PPDU based on at least two PPDUs, the A-PPDU including the first PPDU.
  • the sending device 101 sends (720) the A-PPDU to the receiving device 102.
  • the receiving device 102 parses (730) the first PPDU in the A-PPDU.
  • the sending device 101 may generate 710 an aggregated physical layer protocol data unit (A-PPDU) based on at least two PPDUs, where the first PPDU in the A-PPDU includes at least one of the following: first indication information, using is used to indicate the bandwidth of the first PPDU; the second indication information is used to indicate the total bandwidth of the A-PPDU; or the third indication information is used to indicate the bandwidth combination of the A-PPDU.
  • A-PPDU aggregated physical layer protocol data unit
  • the sending device 101 may aggregate at least two PPDUs in the frequency domain, thereby generating a physical layer protocol data unit (Frequency Domain Aggregated PPDU, A-PPDU) aggregated in the frequency domain.
  • the A-PPDU may include one or more first PPDUs.
  • the first PPDU included in the A-PPDU is also referred to as a first sub-PPDU (sub PPDU), which is expressed as a part of the A-PPDU.
  • the bandwidth (Bandwidth, BW) of the PPDU may also be referred to as a sub-bandwidth (sub-BW).
  • BW Bandwidth
  • sub-BW sub-bandwidth
  • the total bandwidth of the A-PPDU is not greater than the total available bandwidth.
  • the available bandwidth is 320 MHz.
  • the available bandwidth may be other values, for example, the available bandwidth may be further extended to a larger value, such as 480MHz, 640MHz or other values, in the evolutionary extremely high throughput rate that may be developed in the future.
  • the first PPDU may be an EHT MU PPDU or an EHT+MU PPDU.
  • the first PPDU may have a format 400 as shown in FIG. 4 .
  • the first PPDU as an EHT+MU PPDU as an example, it may have a format 500 as shown in FIG. 5 .
  • EHT+ is a general term for codes that may appear after 802.11be, such as 802.11bx, 802.11cx, etc., which is not limited in the present disclosure.
  • the A-PPDU may further include a second PPDU, where the number of the second PPDU may be zero, one or more.
  • the second PPDU may be any one of HE MU PPDU, EHT MU PPDU or EHT+MU PPDU. If the second PPDU is a HE MU PPDU, it may have the format 300 shown in FIG. 3 . If the second PPDU is an EHT MU PPDU, it may have the format 400 shown in FIG. 4 . If the second PPDU is an EHT+MU PPDU, it may have the format 500 shown in FIG. 5 .
  • the A-PPDU may include a first PPDU and a second PPDU, the number of the first PPDU may be one or more, and the number of the second PPDU may be zero or one or more.
  • the type of the second PPDU may be HE MU PPDU.
  • the type of the second PPDU may be EHT MU PPDU or EHT+MU PPDU, etc.
  • the second PPDU may have a format different from that of the first PPDU.
  • the first PPDU includes the second indication information
  • the second PPDU does not include the second indication information.
  • the first PPDU includes the third indication information
  • the second PPDU does not include the third indication information.
  • the sending device 101 may aggregate at least two PPDUs, and the number of aggregated PPDUs is greater than or equal to 2, for example, it may be assumed that N PPDUs are aggregated to generate A-PPDUs. And, among the N PPDUs, at most N-1 PPDUs are HE MU PPDUs.
  • the first PPDU in the present disclosure may be any one of the N PPDUs except the HE MU PPDU. That is to say, the first PPDU in the embodiment of the present disclosure may be understood as any one of the non-HE MU PPDUs included in the A-PPDU, which will not be repeated in the present disclosure.
  • the second PPDU also similarly includes indication information. That is, in some examples, all or part of the PPDUs in the A-PPDU may include indication information, similar to the first PPDU. Alternatively, in some examples, each non-HE PPDU in the A-PPDU may include indication information, similar to the first PPDU.
  • the type of the first PPDU is EHT MU PPDU as an example for illustration. It can be understood that the type of the first PPDU can also be EHT+MU PPDU, EHT++MU PPDU, etc. Elaborate on other types.
  • the first PPDU may include first indication information, and the first indication information may be used to indicate the bandwidth of the first PPDU.
  • the first indication information may be carried in the first signaling field of the first PPDU.
  • the first signaling field may be U-SIG.
  • the first indication information may be carried in the bandwidth field (BW) of the U-SIG of the first PPDU. That is, the first indication information may be carried in at least one of the 4th bit to the 6th bit (B3-B5) of the first symbol (U-SIG-1) of the U-SIG field of the first PPDU a bit.
  • two bits B3-B4 or B4-B5 can be used to carry the first indication information, such as “0” for 20MHz, “1” for 40MHz, “2” for 80MHz, “3” for 160MHz, or other Way.
  • three bits B3-B5 can be used to carry the first indication information, for example, "0” represents 20MHz, “1” represents 40MHz, “2” represents 80MHz, "3” represents 160MHz, and "4" represents 320MHz -1, "5" for 320MHz-2, or whatever. It is understood that these examples are merely illustrative and should not be construed as limitations of the embodiments of the present disclosure.
  • it may further include generating a long training field (Long Training Field, LTF) according to the first indication information.
  • LTF Long Training Field
  • the long training field of the first PPDU may be generated based on the bandwidth of the first PPDU.
  • the EHT-LTF 408 may be generated based on the BW field.
  • the EHT-LTF 408 is mainly used for channel estimation, and will carry a predetermined sequence (known to the receiving device) for the receiving device 102 to perform channel estimation.
  • the received signal can be divided by the known sequence to obtain the channel value. Since the OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol is composed of multiple independently modulated sub-carrier signals, when the phases of the sub-carriers are the same or similar, the superimposed signals will be subjected to the same initial phase. The modulation of the signal, resulting in a larger instantaneous power peak, which further brings a higher Peak-to-Average Power Ratio (PAPR).
  • PAPR Peak-to-Average Power Ratio
  • EHT-LTF sequences may be designed to optimize PAPR under different bandwidth conditions.
  • the desymbol guard interval of the EHT-LTF 408 field generally has three sizes (3.2 microseconds, 6.4 microseconds, 12.8 microseconds), referred to as 1x/2x/4x EHT-LTF, respectively.
  • the EHT-LTF sequence is a sequence composed of 1, -1, and 0, and the specific sequence form will not be repeated here.
  • the first indication information is "0"-"5" of the BW field (bits B3-B5) of U-SIG-1, indicating that the bandwidths of the first PPDU are 20MHz, 40MHz, 80MHz, 160MHz, and 320MHz in turn. -1, 320MHz-2.
  • the different EHT-LTF sequences generated according to the bandwidth can be:
  • the EHT-LTF sequence can be any of the following: EHTLTF 320MHz_1x , EHTLTF 320MHz_2x , EHTLTF 320MHz_4x ;
  • the EHT-LTF sequence can be any of the following: EHTLTF 160MHz_1x , EHTLTF 160MHz_2x , EHTLTF 160MHz_4x ;
  • the EHT-LTF sequence can be any of the following: EHTLTF 80MHz_1x , EHTLTF 80MHz_2x , EHTLTF 80MHz_4x ;
  • the EHT-LTF sequence can be any of the following: EHTLTF 40MHz_1x , EHTLTF 40MHz_2x , EHTLTF 40MHz_4x ;
  • the EHT-LTF sequence may be any of the following: EHTLTF 20MHz_1x , EHTLTF 20MHz_2x , EHTLTF 20MHz_4x .
  • the selection of 1x/2x/4x EHT-LTF size is a trade-off between channel estimation accuracy and overhead, which depends on the transmission mode, channel environment, etc., which is not limited in this embodiment of the present disclosure.
  • the above is an exemplary rather than an exhaustive enumeration, and other EHT-LTF sequences may also be included, which will not be listed one by one in the present disclosure.
  • FIG. 8 shows a schematic diagram of a format 800 of an A-PPDU provided by an embodiment of the present disclosure.
  • the A-PPDU includes 4 sub-PPDUs, namely PPDU 810, PPDU 820, PPDU 830, and PPDU 840.
  • the type of the PPDU 810 is HE MU PPDU.
  • the type of PPDU 820, PPDU 830 and PPDU 840 is EHT MU PPDU.
  • format 800 the format of PPDU 810 is similar to format 300 in FIG. 3 described above.
  • the format of PPDU 820, PPDU 830, and PPDU 840 is similar to format 400 in FIG. 4 described above.
  • the EHT-LTF field of each of PPDU 820, PPDU 830 and PPDU 840 indicates the corresponding EHT-LTF sequence by "EHTLTF 80MHz_4x ".
  • FIG. 8 is only illustrative, for example, a smaller number of PPDUs may be included, such as may not include PPDU 810, such as may include PPDU 820, one or both of PPDU 830 and PPDU 840, and PPDU 810.
  • the EHT MU PPDU type in FIG. 8 can be replaced by EHT+MU PPDU or EHT++MU PPDU, etc.
  • the difference mainly lies in the different physical layer versions, for example, physical layer version 1 represents EHT+, 2 represents EHT++, etc.; or other forms. The present disclosure is not limited to this.
  • the PPDU in the A-PPDU is consistent with a single PPDU, so that for the receiving device, the A-PPDU and the single PPDU received will also be the same, which can simplify the receiving device's processing without additional operating time, saving power consumption of the receiving device, etc.
  • the BW of the U-SIG is used to indicate the bandwidth of the first PPDU
  • the EHT-LTF is generated based on the bandwidth of the first PPDU. Unification of the first PPDU reception process (including EHT-LTF sequence selection).
  • the first PPDU includes first indication information and second indication information.
  • the first indication information is used to indicate the bandwidth of the first PPDU
  • the second indication information is used to indicate the total bandwidth of the A-PPDU.
  • the total bandwidth of the A-PPDU may also be referred to as an aggregated bandwidth (A-BW), which is not limited in the present disclosure.
  • the first PPDU includes first indication information and second indication information.
  • the first indication information may be carried in the first signaling field of the first PPDU
  • the second indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first signaling field may be U-SIG 405 as shown in FIG. 4 and the second signaling field may be EHT-SIG 406 as shown in FIG. 4 .
  • the first signaling field in which the first indication information is carried in the first PPDU may refer to: the first indication information is carried in the bandwidth field (BW) of the U-SIG of the first PPDU, that is to say , the first indication information may occupy at least one bit from the fourth bit to the sixth bit (B3-B5) of the first symbol (U-SIG-1) of the U-SIG.
  • BW bandwidth field
  • the first indication information may occupy at least one bit from the fourth bit to the sixth bit (B3-B5) of the first symbol (U-SIG-1) of the U-SIG.
  • the first indication information may have a first preset length, which may be represented as L1.
  • the first preset length may be 3 bits.
  • the B3-B5 bits of U-SIG-1 (3 bits in length) can use “0” for 20MHz, “1” for 40MHz, “2” for 80MHz, “3” for 160MHz, "4" for 320MHz-1, "5" represents 320MHz-2, other values are confirmed. It can be understood that "0” to "5" correspond to 000 to 101 in binary, and the usage in each example in this disclosure is consistent, and details are not repeated here.
  • the first indication information is "0"-"5" in the bandwidth field of U-SIG-1, indicating that the bandwidth of the first PPDU is 20MHz, 40MHz, 80MHz, 160MHz, 320MHz-1, 320MHz-2 in turn .
  • the first preset length may be 2 bits or 3 bits. Taking 2 bits as an example, any two bits in the B3-B5 bits of U-SIG-1 can carry the first indication information.
  • “0” can be used to represent 40MHz, "1” to represent 80MHz, and "2" Represents 160MHz, other values are confirmed. That is to say, the first indication information is "0"-"2" in the bandwidth field of U-SIG-1, indicating that the bandwidths of the first PPDU are 40MHz, 80MHz, and 160MHz in sequence.
  • "1” may be used for 40MHz, “2” for 80MHz, “3” for 160MHz, "0” and other values for confirmation.
  • the first preset length may be 1 bit or 2 bits. Taking 1 bit as an example, any one of the B3-B5 bits of the U-SIG-1 may carry the first indication information, and "0" may be used to represent 80 MHz, and “1” may be used to represent 160 MHz. That is to say, the first indication information is "0"-"1" in the bandwidth field of U-SIG-1, indicating that the bandwidths of the first PPDU are 80MHz and 160MHz in turn. Taking 2 bits as an example, in one example, “0” can be used to represent 80MHz, “1” to represent 160MHz, and other values are confirmed. In another example, "2” may be used for 80 MHz, “3” for 160 MHz, "0", “1” and other values for confirmation.
  • the bandwidth of the first PPDU is indicated in this way, and for the two transmission modes of A-PPDU and single PPDU, the unification of the receiving process (including EHT-LTF sequence selection) of the first PPDU is realized.
  • the first preset length may be other values, or the bandwidth of the first PPDU may be indicated in the bandwidth field of U-SIG-1 by other means, etc. This is not limited.
  • the bandwidth of a single PPDU can be extended to 320MHz, 480MHz, or 640MHz or other values, then the granularity of the aggregated bandwidth can be similarly extended to 320MHz, 480MHz, or 640MHz or other values.
  • the preset length is set to other values, such as 4 bits, etc.
  • the granularity of bandwidth may be used to represent the minimum bandwidth of a single PPDU.
  • the second indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU. Specifically, it can include at least three situations: (1) all the second indication information is carried in the first signaling field, (2) all the second indication information is carried in the second signaling field, (3) the second indication A part of the information is carried in the first signaling field, and another part of the second indication information is carried in the second signaling field.
  • the second indication information may be carried in ignore and/or acknowledge bits of U-SIG and/or EHT-SIG of the first PPDU.
  • the second indication information may be located in some or all of the following: bit 26 (B25) of the first symbol (U-SIG-1) of the U-SIG field, second bit (B25) of the U-SIG field The 3rd bit (B2) of the symbol (U-SIG-2), the 9th bit (B8) of U-SIG-2, the 21st to 25th bits of U-SIG-1 (B20-B24 ) and the U-SIG overflow portion of the EHT-SIG (B13-B16).
  • the second indication information may have a second preset length, which may be expressed as L2.
  • L2 bits can be arbitrarily selected from ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ Defined as the total bandwidth of the A-PPDU.
  • the second preset length may be 1 bit or 2 bits. It should be understood that, in this example, the second preset length may be a larger value, such as 3 bits, 4 bits, etc., which is not limited in the present disclosure.
  • 0 may be used to represent the total bandwidth of 160 MHz
  • 1 may be used to represent the total bandwidth of 320 MHz
  • 0 can be used to represent the total bandwidth of 160MHz
  • 1 to represent the total bandwidth of 320MHz-1
  • 2 to represent the total bandwidth of 320MHz-2
  • any bit of ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, and B13-B16 of EHT-SIG ⁇ may carry the second indication information , you can use "0" to represent the total bandwidth of 160MHz, and "1" to represent the total bandwidth of 320MHz.
  • any bit of ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ can be used to carry the second indication information, that is, the confirmation bit can be used to carry the second indication information.
  • Bearing second indication information Considering the characteristics of the confirmation bit, in this example, it can also be selected from ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ that do not carry the second indication information. At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • B25 of U-SIG-1 may be defined as whether it is an A-PPDU, and B25 of U-SIG-1 is a non-default value (eg, 0) indicating that the first PPDU is a part of A-PPDU.
  • the total bandwidth of the A-PPDU is further indicated by B2 of U-SIG-2 and/or B8 of U-SIG-2.
  • B2 of U-SIG-2 may be defined as whether it is an A-PPDU, and its non-default value (eg, 0) indicates that the first PPDU is a part of the A-PPDU.
  • the total bandwidth of the A-PPDU is further indicated by B25 of U-SIG-1 and/or B8 of U-SIG-2.
  • B8 of U-SIG-2 may be defined as whether it is an A-PPDU, and its non-default value (eg, 0) indicates that the first PPDU is a part of the A-PPDU.
  • the total bandwidth of the A-PPDU is further indicated by B25 of U-SIG-1 and/or B2 of U-SIG-2. It should be noted that the above examples are not exhaustive, for example, two bits may be used to define whether it is an A-PPDU, one bit may be used to carry the second indication information, and so on. Not listed in this disclosure.
  • At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the confirmation bit is not equal to the missing A-PPDU. If the value is saved, the receiving of the A-PPDU can be stopped in time, thereby saving power consumption and ensuring the normal reception of other devices.
  • any bit of ⁇ B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ can be used to carry the second indication information, that is, the second indication can be carried by ignoring the bit information.
  • the second indication may not be carried from ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇
  • the position of the information selects at least one of the bits to indicate that the first PPDU is aggregated in the A-PPDU.
  • At least one bit (eg, 1 bit) in ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ can be defined as whether it is an A-PPDU, which is non-missing
  • a default value eg, 0
  • at least one bit (confirmation bit) is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the reception of the A-PPDU can be stopped in time, thereby saving power consumption and ensuring the normal reception of other devices.
  • At least one bit (such as 1) in ⁇ B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ that does not carry the second indication information may be defined as whether it is an A-PPDU, which is A non-default value (eg, 0) indicates that the first PPDU is part of an A-PPDU.
  • At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU, and the A-PPDU can be sent to the first type device and the second type device at the same time, wherein for the first type device, It will ignore the at least one bit, even if the first type device receives the A-PPDU, it will treat it as a single PPDU.
  • the second preset length is 1 bit. It is understood that the second preset length (L2 bit) may be greater than 1 bit.
  • all the bits in the L2 bits are confirmation bits, or all the bits in the L2 bits are ignore bits, or, a part of the bits in the L2 bits are confirmation bits. bits and the other bits are ignore bits. It should be understood that all the bits in the L2 bits mentioned here are confirmation bits, which means that the positions carried by all the bits in the L2 bits are confirmation bits, and the same usages in this disclosure have the same meaning and will not be repeated.
  • the second preset length may be 3 bits or 4 bits. It should be understood that, in this example, the second preset length may be other values, such as 2 bits, 5 bits, etc., which is not limited in the present disclosure.
  • 0 can be used to represent the total bandwidth of 40MHz, "1” to represent the total bandwidth of 80MHz, “2” to represent the total bandwidth of 120MHz, “3” to represent the total bandwidth of 160MHz, and "4" to represent the total bandwidth of 160MHz.
  • the total bandwidth is 320MHz.
  • “0” can be used to represent the total bandwidth of 20MHz, "1” to represent the total bandwidth of 40MHz, “2” to represent the total bandwidth of 60MHz, "3” to represent the total bandwidth of 80MHz, and "4" to represent the total bandwidth
  • the total bandwidth is 100MHz, ..., "15” represents the total bandwidth of 320MHz.
  • all bits in the second preset length are confirm bits, or all bits in L2 bits are ignore bits, or, L2 bits Some of the bits are confirm bits and some are ignore bits.
  • whether the first PPDU is aggregated in an A-PPDU can also be indicated by at least one bit (confirm bit or ignore bit).
  • the particle size of the aggregation in the present disclosure may also be other values, such as 40 MHz and the like.
  • different second preset lengths may be defined for different granularities, so that the second indication information can be fully indicated and at the same time avoid occupying too many bits, so as to realize the difference between the two
  • the trade-off ensures the optimal utilization of resources.
  • FIG. 9 shows a schematic diagram of a format 900 of an A-PPDU provided by an embodiment of the present disclosure.
  • the A-PPDU includes three sub-PPDUs, namely PPDU 910, PPDU 920, and PPDU 930.
  • the type of the PPDU 910 is HE MU PPDU.
  • the type of PPDU 920 and PPDU 930 is EHT MU PPDU.
  • the format of PPDU 910 is similar to format 300 in FIG. 3 described above.
  • the formats of PPDU 920 and PPDU 930 are similar to, but not identical to, format 400 in FIG. 4 above.
  • FIG. 9 is only illustrative, and for example, a smaller number of PPDUs may be included, such as any two of PPDU 910 , PPDU 920 and PPDU 930 may be included.
  • some or all of the EHT MU PPDU types in FIG. 9 may be replaced with EHT+MU PPDU or EHT+MU PPDU, etc. The present disclosure is not limited to this.
  • the second indication information is carried in the ignore and/or confirm bits of U-SIG and/or EHT-SIG.
  • the second indication information may also be carried in the ignore and/or confirm state of the U-SIG and/or EHT-SIG of the first PPDU.
  • the second indication information may be carried by the confirmation status of the BW field of the U-SIG.
  • the second indication information may be carried through the confirmation status of the version indication field of the U-SIG. It will not be described in detail here.
  • the first PPDU includes the first indication information of the bandwidth of the first PPDU and the second indication information of the total bandwidth of the A-PPDU, so that the device (such as the receiving device or the first PPDU) that receives the first PPDU Third-party equipment) can optimize the spatial multiplexing operation for A-PPDU, such as spatial multiplexing transmission within the entire A-PPDU bandwidth.
  • the third-party device that receives the first PPDU it can keep silent (not send) with reference to the total bandwidth or perform spatial multiplexing transmission, without causing excessive interference to the current transmission.
  • the receiving device may also perform some out-of-band interference suppression according to the total bandwidth of the A-PPDU and the bandwidth of the first PPDU, so as to enhance its reception.
  • the first PPDU includes first indication information and second indication information.
  • the second indication information may be carried in the first signaling field of the first PPDU, and the first indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first signaling field may be U-SIG 405 as shown in FIG. 4 and the second signaling field may be EHT-SIG 406 as shown in FIG. 4 .
  • the second indication information is carried in the first signaling field of the first PPDU may refer to: the second indication information is carried in the bandwidth field (BW) of the U-SIG of the first PPDU, that is to say , the second indication information may occupy at least one bit from the 4th bit to the 6th bit (B3-B5) of the first symbol (U-SIG-1) of the U-SIG, and the U-SIG-1
  • BW bandwidth field
  • B3-B5 fields are used to indicate the total bandwidth of the A-PPDU.
  • the second indication information may have a third preset length, which may be expressed as L3.
  • the third preset length may be 1 bit or 2 bits or 3 bits. Taking the third preset length of 1 bit as an example, “0" may be used to represent the total bandwidth of 160 MHz, and “1” may be used to represent the total bandwidth of 320 MHz. Taking the third preset length of 2 bits or 3 bits as an example, “0” can be used to represent the total bandwidth of 160MHz, “1” to represent the total bandwidth of 320MHz-1, “2" to represent the total bandwidth of 320MHz-2, and the rest are confirmed or not. Ignore it.
  • the third preset length may be 3 bits, located at B3-B5 of U-SIG-1.
  • "3" can be used to represent the total bandwidth of 160MHz, "4" to represent the total bandwidth of 320MHz-1, "5" to represent the total bandwidth of 320MHz-2, and the rest are confirmed or ignored.
  • the existing provisions of B3-B5 of U-SIG-1 can be fully utilized, and changes to existing standards can be minimized.
  • the granularity of the bandwidth during aggregation may also be other values, such as 20MHz or 40MHz.
  • the granularity of the above-mentioned 80MHz is similar and will not be described here.
  • the third preset length may be other values, for example, may be 4 bits, or larger bits, and the like.
  • the first indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU may refer to: part or all of the first indication information may be carried in the first PPDU The first signaling field or the second signaling field. Specifically, it can include at least three situations: (1) all the first indication information is carried in the first signaling field, (2) all the first indication information is carried in the second signaling field, (3) the first indication A part of the information is carried in the first signaling field, and another part of the first indication information is carried in the second signaling field.
  • the first indication information may be carried in ignore and/or acknowledge bits of U-SIG and/or EHT-SIG of the first PPDU.
  • the first indication information may be located in some or all of the following: bit 26 (B25) of the first symbol (U-SIG-1) of the U-SIG field, second bit (B25) of the U-SIG field The 3rd bit (B2) of the symbol (U-SIG-2), the 9th bit (B8) of U-SIG-2, the 21st to 25th bits of U-SIG-1 (B20-B24 ) and B13-B16 of the EHT-SIG.
  • the first indication information may have a fourth preset length, which may be expressed as L4.
  • L4 bits can be arbitrarily selected from ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ Defined as the bandwidth of the first PPDU.
  • the fourth preset length may be 1 bit or 2 bits. It should be understood that, in this example, the fourth preset length may be a larger value, such as 3 bits, 4 bits, etc., which is not limited in the present disclosure.
  • 0 may be used to represent the bandwidth of the first PPDU, which is 80 MHz, and "1", which represents the bandwidth of the first PPDU, which is 160 MHz.
  • any bit in ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, and B13-B16 of EHT-SIG ⁇ may carry the first indication information , "0" can be used to represent the bandwidth of the first PPDU 80MHz, and "1" can be used to represent the bandwidth of the first PPDU 160MHz.
  • any bit of ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ can be used to carry the first indication information, that is, the confirmation bit can be used to carry the first indication information. Bearing the first indication information.
  • the confirmation bit in this example, it can also be selected from ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ that do not carry the first indication information. At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • B25 of U-SIG-1 may be defined as whether it is an A-PPDU, and B25 of U-SIG-1 is a non-default value (eg, 0) indicating that the first PPDU is a part of A-PPDU.
  • the bandwidth of the first PPDU is further indicated by B2 of U-SIG-2 and/or B8 of U-SIG-2.
  • B2 of U-SIG-2 may be defined as whether it is an A-PPDU, and its non-default value (eg, 0) indicates that the first PPDU is a part of the A-PPDU.
  • the bandwidth of the first PPDU is further indicated through B25 of U-SIG-1 and/or B8 of U-SIG-2.
  • B8 of U-SIG-2 may be defined as whether it is an A-PPDU, and its non-default value (eg, 0) indicates that the first PPDU is a part of the A-PPDU.
  • the bandwidth of the first PPDU is further indicated by B25 of U-SIG-1 and/or B2 of U-SIG-2.
  • At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the confirmation bit is not equal to the missing A-PPDU. If the value is saved, the receiving of the A-PPDU can be stopped in time, thereby saving power consumption and ensuring the normal reception of other devices.
  • any bit of ⁇ B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ can be used to carry the first indication information, that is, the first indication can be carried by ignoring the bit information.
  • the first indication may not be carried from ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇
  • the position of the information selects at least one of the bits to indicate that the first PPDU is aggregated in the A-PPDU.
  • At least one bit (eg, 1 bit) in ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ can be defined as whether it is an A-PPDU, which is non-missing
  • a default value eg, 0
  • at least one bit (confirmation bit) is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the reception of the A-PPDU can be stopped in time, thereby saving power consumption and ensuring the normal reception of other devices.
  • At least one bit (such as 1) in ⁇ B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ that does not carry the first indication information may be defined as whether it is an A-PPDU, which is A non-default value (eg, 0) indicates that the first PPDU is part of an A-PPDU.
  • At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU, and the A-PPDU can be sent to the first type device and the second type device at the same time, wherein for the first type device, It will ignore the at least one bit, even if the first type device receives the A-PPDU, it will treat it as a single PPDU.
  • the fourth preset length is 1 bit. It can be understood that the fourth preset length (L4 bit) may be greater than 1 bit. And, in the example where the fourth preset length is greater than 1 bit, all the bits in the L4 bits are confirmation bits, or all the bits in the L4 bits are ignore bits, or, a part of the bits in the L4 bits are the confirmation bits bits and the other bits are ignore bits.
  • the fourth preset length may be 2 bits or 3 bits. Taking 2 bits as an example, “0” can be used to represent 20MHz, “1” to represent 40MHz, “2” to represent 80MHz, and “3” to represent 160MHz. Taking 3 bits as an example, “0” can be used to represent 20MHz, “1” to represent 40MHz, “2” to represent 80MHz, and “3” to represent 160MHz. Other values are confirmed.
  • all bits in the fourth preset length are confirm bits, or all bits in L4 bits are ignore bits, or, L4 bits Some of the bits are confirm bits and some are ignore bits.
  • whether the first PPDU is aggregated in an A-PPDU can also be indicated by at least one bit (confirm bit or ignore bit).
  • the particle size of the aggregation in the present disclosure may also be other values, such as 40 MHz and the like.
  • different fourth preset lengths may be defined, so that the first indication information can be fully indicated while avoiding occupying too many bits, so that the communication between the two can be realized. The trade-off ensures the optimal utilization of resources.
  • FIG. 10 shows a schematic diagram of a format 1000 of an A-PPDU provided by an embodiment of the present disclosure.
  • the A-PPDU includes three sub-PPDUs, namely PPDU 1010, PPDU 1020, and PPDU 1030.
  • the type of the PPDU 1010 is HE MU PPDU.
  • the type of PPDU 1020 and PPDU 1030 is EHT MU PPDU.
  • format 1000 the format of PPDU 1010 is similar to format 300 in FIG. 3 described above.
  • the formats of PPDU 1020 and PPDU 1030 are similar to, but not identical to, format 400 in FIG. 4 above.
  • FIG. 10 is only illustrative, for example, a smaller number of PPDUs may be included, such as any two of PPDU 1010, PPDU 1020 and PPDU 1030 may be included.
  • the EHT MU PPDU type in FIG. 10 can be replaced by EHT+MU PPDU or EHT++MU PPDU, etc. The present disclosure is not limited to this.
  • the first indication information is carried in ignore and/or confirm bits of U-SIG and/or EHT-SIG.
  • the first indication information may also be carried in the ignore and/or confirm state of the U-SIG and/or EHT-SIG of the first PPDU.
  • the first indication information may be carried by the confirmation status of the BW field of the U-SIG.
  • the first indication information may be carried by the confirmation state of the version indication field of the U-SIG. It will not be described in detail here.
  • the first PPDU includes the first indication information of the bandwidth of the first PPDU and the second indication information of the total bandwidth of the A-PPDU, so that the device (such as the receiving device or the first PPDU) that receives the first PPDU Third-party equipment) can optimize the spatial multiplexing operation for A-PPDU, such as spatial multiplexing transmission within the entire A-PPDU bandwidth.
  • the third-party device that receives the first PPDU it can keep silent (not send) with reference to the total bandwidth or perform spatial multiplexing transmission, without causing excessive interference to the current transmission.
  • the receiving device can also perform some out-of-band interference suppression according to the total bandwidth of the A-PPDU, so as to enhance its reception.
  • the step 710 may further include: generating a long training field (Long Training Field, LTF) in the first PPDU.
  • LTF Long Training Field
  • the LTF may be generated according to the bandwidth of the first PPDU and/or the total bandwidth of the A-PPDU.
  • the LTF may be generated based on the bandwidth of the first PPDU.
  • the LTF sequence may be constructed based on the bandwidth of the first PPDU.
  • the corresponding LTF may be the first sequence, such as any one of EHTLTF 20MHz_1x , EHTLTF 20MHz_2x , and EHTLTF 20MHz_4x .
  • the corresponding LTF may be the second sequence, such as any one of EHTLTF 40MHz_1x , EHTLTF 40MHz_2x , and EHTLTF 40MHz_4x .
  • the corresponding LTF may be a third sequence, such as any one of EHTLTF 80MHz_1x , EHTLTF 80MHz_2x , and EHTLTF 80MHz_4x .
  • the corresponding LTF may be the fourth sequence, such as any one of EHTLTF 160MHz_1x , EHTLTF 160MHz_2x , and EHTLTF 160MHz_4x .
  • the corresponding LTF may be the fifth sequence, such as any one of EHTLTF 320MHz_1x , EHTLTF 320MHz_2x , and EHTLTF 320MHz_4x .
  • the LTF in this embodiment is consistent with the reception of a single PPDU, so that the second type of device (device that does not implement the basic characteristics of the EHT) receives LTF (channel estimation) unification.
  • the LTF may be generated based on the bandwidth of the first PPDU. Taking the granularity of 80MHz as an example, for example, when the bandwidth of the first PPDU is 80MHz, the corresponding LTF may be the sixth sequence, such as EHTLTF 80MHz_1x , EHTLTF 80MHz_2x , EHTLTF 80MHz_4x any one multiplied by the phase of +1 or -1 coefficient. For example, when the bandwidth of the first PPDU is 160MHz, the corresponding LTF may be the seventh sequence, such as EHTLTF 160MHz_1x , EHTLTF 160MHz_2x , EHTLTF 160MHz_4x multiplied by a phase coefficient of +1 or -1.
  • the existing sequence can be fully utilized, and on the other hand, the existing sequence can be further optimized, such as multiplied by a phase coefficient of +1 or -1.
  • PAPR can be further optimized during subsequent processing such as channel estimation.
  • the LTF may be generated based on the total bandwidth of the A-PPDU.
  • the LTF sequence can be constructed based on the total bandwidth of the A-PPDU.
  • the corresponding LTF may be the first total sequence, such as any one of EHTLTF sub160MHz_1x , EHTLTF sub160MHz_2x , and EHTLTF sub160MHz_4x .
  • the corresponding LTF may be the second total sequence, such as any one of EHTLTF sub320MHz_1x , EHTLTF sub320MHz_2x , and EHTLTF sub320MHz_4x .
  • the receiving device can optimize the PAPR for the aggregated bandwidth (ie, the total bandwidth of the A-PPDU) when performing operations such as channel estimation.
  • the second indication information is carried in B3-B5 of U-SIG-1
  • it can be transparent to the first type of equipment (equipment that implements the basic characteristics of EHT).
  • the transmission of the content in the EHT-SIG needs to be designed according to the aggregated bandwidth (that is, the total bandwidth of the A-PPDU). For example, the number of resource unit allocation subfields should be based on the aggregated bandwidth. Selection, the specific form will not be elaborated in this disclosure.
  • the LTF may be generated based on the total bandwidth of the A-PPDU and the type of individual PPDUs in the A-PPDU. In this way, the type of each PPDU is further considered when generating the LTF, the LTF can be optimized and the PAPR can be further reduced based on the optimized LTF
  • the LTF can be generated based on the total bandwidth of the A-PPDU and the type of PPDU in each 80MHz.
  • the types of PPDUs within each 80MHz may be pre-specified. For example, it can be stipulated that there is only one HEMU PPDU in the A-PPDU, and the HEMU PPDU must be located on the main 80MHz or main 160MHz channel, then the type of PPDU in each 80MHz can be directly obtained based on this regulation.
  • the types of PPDUs within a portion of 80 MHz may be pre-specified. For example, it can be stipulated that there is at most one HE MU PPDU (0 or 1) in the A-PPDU, and the HE MU PPDU must be located on the main 80MHz or main 160MHz channel, then it can be directly indicated by the first preset number of bits. Whether it is a HE MU PPDU on the main 80MHz or main 160MHz channel.
  • the types of one or more PPDUs within 80MHz may be pre-specified, and the types of PPDUs within the remaining 80MHz are indicated by a second preset number of bits.
  • the PPDU types within 160 MHz may be pre-defined as non-HE, such as EHT, EHT+, EHT++, and so on.
  • 2 bits can be used to indicate the type of the PPDU in the two 80MHz in the main 160MHz, each bit can be 0 or 1, and 0 indicates that the type of the PPDU is HE (such as HE MU).
  • PPDU) indicates that the type of PPDU is EHT (such as EHT MU PPDU).
  • the HE MU PPDUs may be sent on the primary 80MHz (or primary 160MHz) channel and the EHT MU PPDUs may be sent on the secondary 80MHz (or secondary 160MHz) channels , in this way, the spectrum can be more fully utilized.
  • the type of PPDU within each 80MHz may be indicated by a third preset length bit number.
  • 4 bits (the third preset number of bits) can be used, corresponding to 4 80MHz, each bit can be 0 or 1, 0 indicates that the type of PPDU is HE (such as HE MU PPDU), and 1 indicates the type of PPDU For EHT (eg EHT MU PPDU).
  • LTF is only for illustration, and the LTF (eg, EHT-LTF) is composed of a series of 1, -1, and 0.
  • the construction (construct) process of the LTF is not limited.
  • the LTF can be generated based on the bandwidth of the first PPDU and/or the total bandwidth of the A-PPDU, so as to realize the optimization of the LTF, so that the receiving device can further reduce the PAPR based on this.
  • the first PPDU includes both the first indication information of the bandwidth of the first PPDU and the second indication information of the total bandwidth of the A-PPDU, so that the device that receives the first PPDU (for example, receiving equipment or third-party equipment) can optimize the spatial multiplexing operation for A-PPDU, such as spatial multiplexing transmission within the entire A-PPDU bandwidth.
  • the third-party device that receives the first PPDU it can keep silent (not send) with reference to the total bandwidth or perform spatial multiplexing transmission, without causing excessive interference to the current transmission.
  • the receiving device can also perform some out-of-band interference suppression according to the total bandwidth of the A-PPDU, so as to enhance its reception.
  • the LTF is generated based on the bandwidth of a single PPDU and/or the total bandwidth of the A-PPDU, so as to realize the optimization of the LTF, so that the receiving device can further reduce the PAPR based on this.
  • the first PPDU includes first indication information and third indication information.
  • the first indication information is used to indicate the bandwidth of the first PPDU
  • the third indication information is used to indicate the bandwidth combination of the A-PPDU.
  • the bandwidth combination may include at least two bandwidth values, which are in one-to-one correspondence with at least two PPDUs in the A-PPDU.
  • the bandwidth combination may include N bandwidth values.
  • each bandwidth in the bandwidth combination may correspond to each PPDU in ascending or descending order of frequency.
  • the third indication information implicitly indicates the total bandwidth of the A-PPDU. That is to say, the first PPDU includes the bandwidth of the first PPDU and the total bandwidth of the A-PPDU, wherein the bandwidth of the first PPDU is explicitly indicated by the first indication information, and the total bandwidth of the A-PPDU is implicitly indicated by the third indication information instruct.
  • the first indication information may be carried in the first signaling field of the first PPDU, and the third indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first signaling field may be U-SIG 405 as shown in FIG. 4 and the second signaling field may be EHT-SIG 406 as shown in FIG. 4 .
  • the first signaling field in which the first indication information is carried in the first PPDU may refer to: the first indication information is carried in the bandwidth field (BW) of the U-SIG of the first PPDU, that is to say , the first indication information may occupy at least one bit from the fourth bit to the sixth bit (B3-B5) of the first symbol (U-SIG-1) of the U-SIG.
  • BW bandwidth field
  • the first indication information may occupy at least one bit from the fourth bit to the sixth bit (B3-B5) of the first symbol (U-SIG-1) of the U-SIG.
  • the first indication information may have a first preset length, which may be represented as L1.
  • the first preset length may be 3 bits.
  • the B3-B5 bits of U-SIG-1 (3 bits in length) can use “0” for 20MHz, “1” for 40MHz, “2” for 80MHz, “3” for 160MHz, "4" for 320MHz-1, "5" represents 320MHz-2, other values are confirmed. That is to say, the first indication information is "0"-"5" in the bandwidth field of U-SIG-1, indicating that the bandwidth of the first PPDU is 20MHz, 40MHz, 80MHz, 160MHz, 320MHz-1, 320MHz-2 in turn .
  • the first preset length may be 2 bits or 3 bits. Taking 2 bits as an example, any two bits in the B3-B5 bits of U-SIG-1 can carry the first indication information, and "0" can be used to represent 40MHz, "1" to represent 80MHz, "2" to represent 160MHz, and other value is confirmed. That is to say, the first indication information is "0"-"2" in the bandwidth field of U-SIG-1, indicating that the bandwidths of the first PPDU are 40MHz, 80MHz, and 160MHz in turn.
  • the first preset length may be 1 bit or 2 bits. Taking 1 bit as an example, any one of the B3-B5 bits of the U-SIG-1 may carry the first indication information, and "0" may be used to represent 80 MHz, and "1" may be used to represent 160 MHz. That is to say, the first indication information is "0"-"1" in the bandwidth field of U-SIG-1, indicating that the bandwidths of the first PPDU are 80MHz and 160MHz in turn.
  • the bandwidth of the first PPDU is indicated in this way, and for the two transmission modes of A-PPDU and single PPDU, the unification of the receiving process (including EHT-LTF sequence selection) of the first PPDU is realized.
  • the first preset length may be other values, or the bandwidth of the first PPDU may be indicated in the bandwidth field of U-SIG-1 by other means, etc. This is not limited. Alternatively, if the bandwidth of a single PPDU can be extended to 320MHz or 640MHz or other values, the first preset length can be set to other values, such as 4 bits or the like.
  • the third indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU may refer to: part or all of the third indication information may be carried in the first PPDU The first signaling field or the second signaling field. Specifically, it can include at least three situations: (1) all the third indication information is carried in the first signaling field, (2) all the third indication information is carried in the second signaling field, (3) the third indication A part of the information is carried in the first signaling field, and another part of the third indication information is carried in the second signaling field.
  • the third indication information may be carried in the ignore and/or confirm bits of the U-SIG and/or EHT-SIG of the first PPDU.
  • the third indication information may be located in some or all of the following: bit 26 (B25) of the first symbol (U-SIG-1) of the U-SIG field, second bit (B25) of the U-SIG field The 3rd bit (B2) of the symbol (U-SIG-2), the 9th bit (B8) of U-SIG-2, the 21st to 25th bits of U-SIG-1 (B20-B24 ) and the U-SIG overflow portion of the EHT-SIG (B13-B16).
  • the third indication information may have a fifth preset length, which may be expressed as L5.
  • the fifth preset length may be at least one bit, for example, may be 1 bit or may be greater than 1 bit.
  • L5 bits can be arbitrarily selected from ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ Defined as the bandwidth combination of A-PPDUs.
  • the bandwidth combination may include at least two bandwidth values, which are in one-to-one correspondence with at least two PPDUs in the A-PPDU.
  • the bandwidth combination may include N bandwidth values.
  • each bandwidth in the bandwidth combination may correspond to each PPDU in ascending or descending order of frequency.
  • the granularity of the bandwidth at which the aggregation is performed is 80 MHz.
  • the fifth preset length of 3 bits “0" can be used to represent the bandwidth combination 80-80-80-80, "1” to represent the bandwidth combination 80-80-160, and “2" to represent the bandwidth combination 160-80- 80, "3” represents the bandwidth combination 160-160, "4" represents the bandwidth combination 80-80, the remaining values are confirmed or ignored, and each bandwidth in the bandwidth combination is arranged from low to high frequency.
  • the granularity of the bandwidth during aggregation may be 20MHz or 40MHz.
  • the fifth preset length may be larger, such as 6 bits or other values, so that it can correspond to more bandwidth combinations.
  • At least one bit of ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ can be used to carry the third indication information, that is, the confirmation bit can be used to carry the third indication information.
  • the third indication information is carried, that is, all the bits in the L5 bits are confirmation bits.
  • the confirmation bit in some examples, it can also be selected from ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ that do not carry the third indication information.
  • At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • At least one bit of the third indication information can also be used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the third indication information may be used to indicate the bandwidth combination, and may also be used to indicate the transmission mode of the first PPDU.
  • the first part of the bits of the third indication information is used to indicate the bandwidth combination
  • the second part of the bits (at least one bit) of the third indication information is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • at least one bit for carrying the third indication information is a default value to indicate that the first PPDU is a separate PPDU
  • at least one bit for carrying the third indication information is a non-default value to indicate the third indication information. That is, if at least one bit carrying the third indication information is a non-default value, it may indirectly indicate that the first PPDU is sent in an A-PPDU, and the non-default value represents a bandwidth combination.
  • B25 of U-SIG-1 may be defined as whether it is an A-PPDU, and B25 of U-SIG-1 is a non-default value (eg, 0) indicating that the first PPDU is a part of A-PPDU.
  • the bandwidth combination is further indicated by B2 of U-SIG-2 and/or B8 of U-SIG-2.
  • B2 of U-SIG-2 may be defined as whether it is an A-PPDU, and its non-default value (eg, 0) indicates that the first PPDU is a part of the A-PPDU.
  • the bandwidth combination is further indicated by B25 of U-SIG-1 and/or B8 of U-SIG-2.
  • B8 of U-SIG-2 may be defined as whether it is an A-PPDU, and its non-default value (eg, 0) indicates that the first PPDU is a part of the A-PPDU.
  • the bandwidth combination is further indicated by B25 of U-SIG-1 and/or B2 of U-SIG-2. It should be noted that the above examples are not exhaustive, for example, two bits may be used to define whether it is an A-PPDU, one bit may be used to carry the third indication information, and so on. Not listed in this disclosure.
  • At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the confirmation bit is not equal to the missing A-PPDU. If the value is saved, the receiving of the A-PPDU can be stopped in time, thereby saving power consumption and ensuring the normal reception of other devices.
  • At least one bit in ⁇ B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ can be used to carry the third indication information, that is, the third indication can be carried by ignoring the bit Information, that is, all of the L5 bits are ignore bits.
  • the third indication may not be carried from ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇
  • the position of the information selects at least one of the bits to indicate that the first PPDU is aggregated in the A-PPDU.
  • At least one bit (eg, 1 bit) in ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ can be defined as whether it is an A-PPDU, which is non-missing
  • a default value eg, 0
  • at least one bit (confirmation bit) is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the reception of the A-PPDU can be stopped in time, thereby saving power consumption and ensuring the normal reception of other devices.
  • At least one bit (such as 1) in ⁇ B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ that does not carry the third indication information can be defined as whether it is an A-PPDU, which is A non-default value (eg, 0) indicates that the first PPDU is part of an A-PPDU.
  • At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU, and the A-PPDU can be sent to the first type device and the second type device at the same time, wherein for the first type device, It will ignore the at least one bit, even if the first type device receives the A-PPDU, it will treat it as a single PPDU.
  • the fifth preset length (L5) is greater than or equal to 2 bits.
  • some bits of the third indication information are located in ⁇ B25 of U-SIG-1, B2 of U-SIG-2, U -In B8 ⁇ of SIG-2, other bits are located in ⁇ B20-B24 of U-SIG-1, B13-B16 ⁇ of EHT-SIG. That is, some of the L5 bits are confirm bits and some are ignore bits.
  • FIG. 11 shows a schematic diagram of a format 1100 of an A-PPDU provided by an embodiment of the present disclosure.
  • the A-PPDU includes 3 sub-PPDUs, namely PPDU 1110 , PPDU 1120 and PPDU 1130 .
  • the types of PPDU 1110, PPDU 1120 and PPDU 1130 are all EHT MU PPDUs.
  • format 1100 the formats of PPDU 1110, PPDU 1120, and PPDU 1130 are similar to, but not identical to, format 400 in FIG. 4 described above.
  • "80-80-160" in PPDU 1110, PPDU 1120 and PPDU 1130 may be carried in ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1 ⁇ part or all of it.
  • FIG. 11 is only illustrative, and for example, a smaller number of PPDUs may be included, such as any two of PPDU 1110, PPDU 1120 and PPDU 1130.
  • the EHT MU PPDU type in Figure 11 can be replaced with HE MU PPDU, EHT+MU PPDU or EHT++MU PPDU, etc. The present disclosure is not limited to this.
  • FIG. 11 shows that the bandwidth combination "80-80-160" is carried in the U-SIG
  • the present disclosure does not limit this, for example, it may be carried in the EH-SIG; for example, it may be carried in part In U-SIG, the other part is carried in EH-SIG.
  • the third indication information is carried in the ignore and/or confirm bits of U-SIG and/or EHT-SIG.
  • the third indication information may also be carried in the ignore and/or confirm state of the U-SIG and/or EHT-SIG of the first PPDU.
  • the third indication information may be carried by the confirmation status of the BW field of the U-SIG.
  • the third indication information may be carried through the confirmation status of the version indication field of the U-SIG. It will not be described in detail here.
  • the first indication information of the bandwidth of the first PPDU and the third indication information of the bandwidth combination of the A-PPDU are included in the first PPDU, so that the device (such as the receiving device or the first PPDU) that receives the first PPDU
  • the three-play device can not only know the bandwidth of the first PPDU, but also know the total bandwidth of the A-PPDU and the bandwidth of other PPDUs in the A-PPDU at the same time. Further, the receiving device can better perform some out-of-band interference suppression, etc., thereby enhancing its reception.
  • the first indication information may be carried in all or part of B3-B5 of U-SIG-1, which can make full use of the existing PPDU format and simplify modification.
  • the third indication information may be carried in the first signaling field of the first PPDU, and the first indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first signaling field may be U-SIG 405 as shown in FIG. 4 and the second signaling field may be EHT-SIG 406 as shown in FIG. 4 .
  • the third indication information is carried in the first signaling field of the first PPDU may refer to: the third indication information is carried in the bandwidth field (BW) of the U-SIG of the first PPDU, that is to say , the third indication information may occupy at least one bit from the fourth bit to the sixth bit (B3-B5) of the first symbol (U-SIG-1) of the U-SIG.
  • B3-B5 of U-SIG-1 can be redefined as the bandwidth combination of A-PPDU.
  • the third indication information may occupy at least one bit, for example, may be 1 bit or may be larger than 1 bit.
  • at least one bit may be arbitrarily selected from B3-B5 of U-SIG-1 to carry the third indication information for indicating the bandwidth combination of the A-PPDU.
  • the bandwidth combination may include at least two bandwidth values, which are in one-to-one correspondence with at least two PPDUs in the A-PPDU.
  • the bandwidth combination may include N bandwidth values.
  • each bandwidth in the bandwidth combination may correspond to each PPDU in ascending or descending order of frequency.
  • the granularity of the bandwidth at which the aggregation is performed is 80 MHz.
  • the third indication information occupying 3 bits (B3-B5) can be used to represent the bandwidth combination 80-80-80-80, "1” to represent the bandwidth combination 80-80-160, and “2” to represent the bandwidth combination 160-80-80, "3” represents the bandwidth combination 160-160, "4" represents the bandwidth combination 80-80, the remaining values are confirmed or ignored, and each bandwidth in the bandwidth combination is arranged from low to high frequency .
  • the granularity of the bandwidth during aggregation may be 20MHz or 40MHz.
  • the third indication information may occupy a larger number of bits, such as 6 bits or other values, so that it can correspond to more Bandwidth combination.
  • the third indication information may occupy B3-B5 of U-SIG-1 and B25 of ⁇ -SIG-1, B2 of U-SIG-2, B8 of U-SIG-2, B20- of U-SIG-1 At least one bit in B24 ⁇ is not listed one by one in this disclosure.
  • the first indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU may refer to: part or all of the first indication information may be carried in the first PPDU The first signaling field or the second signaling field. Specifically, it can include at least three situations: (1) all the first indication information is carried in the first signaling field, (2) all the first indication information is carried in the second signaling field, (3) the first indication A part of the information is carried in the first signaling field, and another part of the first indication information is carried in the second signaling field.
  • the first indication information may be carried in ignore and/or acknowledge bits of U-SIG and/or EHT-SIG of the first PPDU.
  • the first indication information may be located in some or all of the following: bit 26 (B25) of the first symbol (U-SIG-1) of the U-SIG field, second bit (B25) of the U-SIG field The 3rd bit (B2) of the symbol (U-SIG-2), the 9th bit (B8) of U-SIG-2, the 21st to 25th bits of U-SIG-1 (B20-B24 ) and the U-SIG overflow portion of the EHT-SIG (B13-B16).
  • the first indication information may have a fourth preset length, which may be expressed as L4.
  • L4 bits can be arbitrarily selected from ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ Defined as the bandwidth of the first PPDU.
  • the fourth preset length may be 1 bit or 2 bits. It should be understood that, in this example, the fourth preset length may be a larger value, such as 3 bits, 4 bits, etc., which is not limited in the present disclosure.
  • 0 may be used to represent the bandwidth of the first PPDU, which is 80 MHz, and "1", which represents the bandwidth of the first PPDU, which is 160 MHz.
  • any bit in ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, and B13-B16 of EHT-SIG ⁇ may carry the first indication information , "0" can be used to represent the bandwidth of the first PPDU 80MHz, and "1" can be used to represent the bandwidth of the first PPDU 160MHz.
  • any bit of ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ can be used to carry the first indication information, that is, the confirmation bit can be used to carry the first indication information. Bearing the first indication information.
  • the confirmation bit in this example, it can also be selected from ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ that do not carry the first indication information. At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • B25 of U-SIG-1 may be defined as whether it is an A-PPDU, and B25 of U-SIG-1 is a non-default value (eg, 0) indicating that the first PPDU is a part of A-PPDU.
  • the bandwidth of the first PPDU is further indicated by B2 of U-SIG-2 and/or B8 of U-SIG-2.
  • B2 of U-SIG-2 may be defined as whether it is an A-PPDU, and its non-default value (eg, 0) indicates that the first PPDU is a part of the A-PPDU.
  • the bandwidth of the first PPDU is further indicated through B25 of U-SIG-1 and/or B8 of U-SIG-2.
  • B8 of U-SIG-2 may be defined as whether it is an A-PPDU, and its non-default value (eg, 0) indicates that the first PPDU is a part of the A-PPDU.
  • the bandwidth of the first PPDU is further indicated by B25 of U-SIG-1 and/or B2 of U-SIG-2.
  • At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the confirmation bit is not equal to the missing A-PPDU. If the value is saved, the receiving of the A-PPDU can be stopped in time, thereby saving power consumption and ensuring the normal reception of other devices.
  • any bit of ⁇ B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ can be used to carry the first indication information, that is, the first indication can be carried by ignoring the bit information.
  • the first indication may not be carried from ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇
  • the position of the information selects at least one of the bits to indicate that the first PPDU is aggregated in the A-PPDU.
  • At least one bit (eg, 1 bit) in ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ can be defined as whether it is an A-PPDU, which is non-missing
  • a default value eg, 0
  • at least one bit (confirmation bit) is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the reception of the A-PPDU can be stopped in time, thereby saving power consumption and ensuring the normal reception of other devices.
  • At least one bit (such as 1) in ⁇ B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ that does not carry the first indication information may be defined as whether it is an A-PPDU, which is A non-default value (eg, 0) indicates that the first PPDU is part of an A-PPDU.
  • a non-default value eg, 0
  • the fourth preset length is 1 bit. It can be understood that the fourth preset length (L4 bit) may be greater than 1 bit. And, in the example where the fourth preset length is greater than 1 bit, all the bits in the L4 bits are confirmation bits, or all the bits in the L4 bits are ignore bits, or, a part of the bits in the L4 bits are the confirmation bits bits and the other bits are ignore bits.
  • the fourth preset length may be 2 bits or 3 bits. Taking 2 bits as an example, “0” can be used to represent 20MHz, “1” to represent 40MHz, “2” to represent 80MHz, and “3” to represent 160MHz. Taking 3 bits as an example, “0” can be used to represent 20MHz, “1” to represent 40MHz, “2” to represent 80MHz, and “3” to represent 160MHz. Other values are confirmed.
  • all bits in the fourth preset length are confirm bits, or all bits in L4 bits are ignore bits, or, L4 bits Some of the bits are confirm bits and some are ignore bits.
  • whether the first PPDU is aggregated in an A-PPDU can also be indicated by at least one bit (confirm bit or ignore bit).
  • the particle size of the aggregation in the present disclosure may also be other values, such as 40 MHz and the like.
  • different fourth preset lengths may be defined, so that the first indication information can be fully indicated while avoiding occupying too many bits, so that the communication between the two can be realized. The trade-off ensures the optimal utilization of resources.
  • the first indication information of the bandwidth of the first PPDU and the third indication information of the bandwidth combination of the A-PPDU are included in the first PPDU, so that the device (such as the receiving device or the first PPDU) that receives the first PPDU
  • the three-play device can not only know the bandwidth of the first PPDU, but also know the total bandwidth of the A-PPDU and the bandwidth of other PPDUs in the A-PPDU at the same time. Further, the receiving device can better perform some out-of-band interference suppression, etc., thereby enhancing its reception.
  • the step 710 may further include: generating a long training field (Long Training Field, LTF) in the first PPDU.
  • LTF Long Training Field
  • the LTF may be generated according to at least one (one or more) of the bandwidth of the first PPDU, the total bandwidth of the A-PPDU, and the combination of the bandwidth of the A-PPDU.
  • the type of each PPDU in the A-PPDU may also be considered when generating the LTF.
  • the LTF may be generated based on the bandwidth of the first PPDU.
  • the LTF sequence may be constructed based on the bandwidth of the first PPDU.
  • the corresponding LTF may be the first sequence, such as any one of EHTLTF 20MHz_1x , EHTLTF 20MHz_2x , and EHTLTF 20MHz_4x .
  • the corresponding LTF may be the second sequence, such as any one of EHTLTF 40MHz_1x , EHTLTF 40MHz_2x , and EHTLTF 40MHz_4x .
  • the corresponding LTF may be a third sequence, such as any one of EHTLTF 80MHz_1x , EHTLTF 80MHz_2x , and EHTLTF 80MHz_4x .
  • the corresponding LTF may be the fourth sequence, such as any one of EHTLTF 160MHz_1x , EHTLTF 160MHz_2x , and EHTLTF 160MHz_4x .
  • the corresponding LTF may be the fifth sequence, such as any one of EHTLTF 320MHz_1x , EHTLTF 320MHz_2x , and EHTLTF 320MHz_4x .
  • the LTF in this embodiment is consistent with the receiving situation of a single PPDU, so that the second type of device (a device that does not implement the basic characteristics of the EHT) receives LTF unification.
  • the LTF may be generated based on the bandwidth of the first PPDU. Taking the granularity of 80MHz as an example, for example, when the bandwidth of the first PPDU is 80MHz, the corresponding LTF may be the sixth sequence, such as EHTLTF 80MHz_1x , EHTLTF 80MHz_2x , EHTLTF 80MHz_4x any one multiplied by the phase of +1 or -1 coefficient. For example, when the bandwidth of the first PPDU is 160MHz, the corresponding LTF may be the seventh sequence, such as EHTLTF 160MHz_1x , EHTLTF 160MHz_2x , EHTLTF 160MHz_4x multiplied by a phase coefficient of +1 or -1.
  • the existing sequence can be fully utilized, and on the other hand, the existing sequence can be further optimized, such as multiplied by a phase coefficient of +1 or -1.
  • PAPR can be further optimized during subsequent processing such as channel estimation.
  • the LTF may be generated based on the total bandwidth of the A-PPDU. It can be understood that since the third indication information indicates the bandwidth combination of the A-PPDU, the bandwidth combination includes the bandwidth of each PPDU, so the sum of each bandwidth in the bandwidth combination is the total bandwidth of the A-PPDU.
  • the LTF sequence can be constructed based on the total bandwidth of the A-PPDU. For example, when the total bandwidth of the A-PPDU is 160MHz, the corresponding LTF may be the first total sequence, such as any one of EHTLTF sub160MHz_1x , EHTLTF sub160MHz_2x , and EHTLTF sub160MHz_4x .
  • the corresponding LTF may be the second total sequence, such as any one of EHTLTF sub320MHz_1x , EHTLTF sub320MHz_2x , and EHTLTF sub320MHz_4x .
  • the receiving device can optimize the PAPR for the aggregated bandwidth (that is, the total bandwidth of the A-PPDU) when performing operations such as channel estimation.
  • the LTF may be generated based on the total bandwidth of the A-PPDU and the type of individual PPDUs in the A-PPDU. Taking the granularity of 80MHz as an example, for example, the LTF can be generated based on the total bandwidth of the A-PPDU and the type of PPDU in each 80MHz.
  • the types of PPDUs within each 80 MKHz may be pre-specified. For example, it can be stipulated that there is only one HEMU PPDU in the A-PPDU, and the HEMU PPDU must be located on the main 80MHz or main 160MHz channel, then the type of PPDU in each 80MHz can be directly obtained based on this regulation.
  • the types of PPDUs within a portion of 80 MKHz may be pre-specified. For example, it can be stipulated that there is at most one HE MU PPDU (0 or 1) in the A-PPDU, and the HE MU PPDU must be located on the main 80MHz or main 160MHz channel, then it can be directly indicated by the first preset number of bits. Whether it is a HE MU PPDU on the main 80MHz or main 160MHz channel.
  • the types of one or more PPDUs within 80MHz may be pre-specified, and the types of PPDUs within the remaining 80MHz are indicated by a second preset number of bits.
  • the PPDU types within 160 MHz may be pre-defined as non-HE, such as EHT, EHT+, EHT++, and so on.
  • 2 bits can be used to indicate the type of the PPDU in the two 80MHz in the main 160MHz, each bit can be 0 or 1, and 0 indicates that the type of the PPDU is HE (such as HE MU).
  • PPDU) indicates that the type of PPDU is EHT (such as EHT MU PPDU).
  • the type of PPDU within each 80MHz may be indicated by a third preset length bit number.
  • 4 bits (the third preset number of bits) can be used, corresponding to 4 80MHz, each bit can be 0 or 1, 0 indicates that the type of PPDU is HE (such as HE MU PPDU), and 1 indicates the type of PPDU For EHT (eg EHT MU PPDU).
  • the LTF may be generated based on the bandwidth combination of the A-PPDUs.
  • different LTF sequences can be constructed based on different bandwidth combinations.
  • bandwidth combination C1 corresponds to LTF sequence 1
  • bandwidth combination C2 corresponds to LTF sequence 2, and so on.
  • different LTF sequences can be generated by multiplying different +1 or -1 phase coefficients according to different bandwidth combinations. In this way, the LTF can be generated based on the bandwidth combination, so that the LTF sequence in each combination is optimal, the optimal selection of the LTF sequence is realized, and the PAPR can be further reduced.
  • the LTF may be generated based on the bandwidth combination of the A-PPDU and the type of each PPDU in the A-PPDU.
  • the LTF may be generated based on the bandwidth combination of the A-PPDU and the type of each PPDU in the A-PPDU.
  • LTF is only for illustration, and the LTF (eg, EHT-LTF) is composed of a series of 1, -1, and 0.
  • the construction (construct) process of the LTF is not limited.
  • the LTF can be generated based on at least one (one or more) of the bandwidth of the first PPDU, the total bandwidth of the A-PPDU, and the bandwidth combination of the A-PPDU, so as to realize the optimization of the LTF , so that the receiving device can further reduce the PAPR based on this.
  • the first PPDU includes both the first indication information of the bandwidth of the first PPDU and the third indication information of the bandwidth combination of the A-PPDU, so that the device that receives the first PPDU (for example, receiving A device or a third-party device) can not only know the bandwidth of the first PPDU, but also know the total bandwidth of the A-PPDU and the bandwidths of other PPDUs in the A-PPDU at the same time. Further, the device that receives the first PPDU can optimize the spatial multiplexing operation for the A-PPDU, for example, perform spatial multiplexing transmission within the entire A-PPDU bandwidth.
  • the third-party device For the third-party device that receives the first PPDU, it can keep silent (not send) with reference to the total bandwidth or perform spatial multiplexing transmission, without causing excessive interference to the current transmission.
  • the receiving device may also perform some out-of-band interference suppression according to the total bandwidth and/or bandwidth combination of the A-PPDU, thereby enhancing its reception.
  • the LTF is generated based on at least one (one or more) of the bandwidth of a single PPDU, the total bandwidth of the A-PPDU, and the bandwidth combination of the A-PPDU, so as to realize the optimization of the LTF, so that the receiving device can be based on This further reduces PAPR.
  • the first PPDU may include second indication information and third indication information.
  • the second indication information is used to indicate the total bandwidth of the A-PPDU
  • the third indication information is used to indicate the bandwidth combination of the A-PPDU.
  • the bandwidth combination may include at least two bandwidth values, which are in one-to-one correspondence with at least two PPDUs in the A-PPDU.
  • the bandwidth combination may include N bandwidth values.
  • each bandwidth in the bandwidth combination may correspond to each PPDU in ascending or descending order of frequency.
  • the second indication information may be carried in the first signaling field of the first PPDU, and the third indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first signaling field may be U-SIG 405 as shown in FIG. 4 and the second signaling field may be EHT-SIG 406 as shown in FIG. 4 .
  • the second indication information is carried in the first signaling field of the first PPDU may refer to: the second indication information is carried in the bandwidth field (BW) of the U-SIG of the first PPDU, that is to say , the second indication information may occupy at least one bit from the 4th bit to the 6th bit (B3-B5) of the first symbol (U-SIG-1) of the U-SIG, and the U-SIG-1
  • BW bandwidth field
  • B3-B5 fields are used to indicate the total bandwidth of the A-PPDU.
  • the second indication information may have a third preset length, which may be expressed as L3.
  • the third preset length may be 1 bit or 2 bits or 3 bits. Taking the third preset length of 1 bit as an example, “0" may be used to represent the total bandwidth of 160 MHz, and “1” may be used to represent the total bandwidth of 320 MHz. Taking the third preset length of 2 bits or 3 bits as an example, “0” can be used to represent the total bandwidth of 160MHz, “1” to represent the total bandwidth of 240MHz, and “2" to represent the total bandwidth of 320MHz. The rest are confirmed or ignored.
  • the third preset length may be 3 bits, located at B3-B5 of U-SIG-1.
  • "3" can be used to represent the total bandwidth of 160MHz, "4" to represent the total bandwidth of 320MHz-1, "5" to represent the total bandwidth of 320MHz-2, and the rest are confirmed or ignored.
  • the existing provisions of B3-B5 of U-SIG-1 can be fully utilized, and changes to existing standards can be minimized.
  • the granularity of the bandwidth during aggregation may also be other values, such as 20MHz or 40MHz.
  • the granularity of 80 MHz is similar to that described above, and will not be described here.
  • the third preset length may be other values, for example, may be 4 bits, or larger bits, and the like.
  • the third indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU may refer to: part or all of the third indication information may be carried in the first PPDU The first signaling field or the second signaling field. Specifically, it can include at least three situations: (1) all the third indication information is carried in the first signaling field, (2) all the third indication information is carried in the second signaling field, (3) the third indication A part of the information is carried in the first signaling field, and another part of the third indication information is carried in the second signaling field.
  • the third indication information may be carried in the ignore and/or confirm bits of the U-SIG and/or EHT-SIG of the first PPDU.
  • the third indication information may be located in some or all of the following: bit 26 (B25) of the first symbol (U-SIG-1) of the U-SIG field, second bit (B25) of the U-SIG field The 3rd bit (B2) of the symbol (U-SIG-2), the 9th bit (B8) of U-SIG-2, the 21st to 25th bits of U-SIG-1 (B20-B24 ) and the U-SIG overflow portion of the EHT-SIG (B13-B16).
  • the third indication information may have a fifth preset length, which may be expressed as L5.
  • the fifth preset length may be at least one bit, for example, may be 1 bit or may be greater than 1 bit.
  • L5 bits can be arbitrarily selected from ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ Defined as the bandwidth combination of A-PPDUs.
  • the bandwidth combination may include at least two bandwidth values, which are in one-to-one correspondence with at least two PPDUs in the A-PPDU.
  • the bandwidth combination may include N bandwidth values.
  • each bandwidth in the bandwidth combination may correspond to each PPDU in ascending or descending order of frequency.
  • the granularity of the bandwidth at which the aggregation is performed is 80 MHz.
  • “0” can be used to represent the bandwidth combination 80-80-80-80, "1” to represent the bandwidth combination 80-80-160, and “2” to represent the bandwidth combination 160-80- 80, "3” represents the bandwidth combination 160-160, "4" represents the bandwidth combination 80-80, the remaining values are confirmed or ignored, and each bandwidth in the bandwidth combination is arranged from low to high frequency. It can be seen that “0"-"3" is suitable for the case where the total bandwidth is 320MHz, and "4" is suitable for the case where the total bandwidth is 160MHz.
  • the third indication information about the bandwidth combination may be combined with the second indication information. It is still assumed that the granularity of the bandwidth when aggregation is performed is 80MHz. For example, when the second indication information indicates that the total bandwidth is 320MHz, "0" may be used to represent the bandwidth combination 80-80-80-80, “1” to represent the bandwidth combination 80-80-160, and “2" to represent Bandwidth combination 160-80-80, “3” represents bandwidth combination 160-160. In the case that the second indication information indicates that the total bandwidth is 160 MHz, "0" may be used to represent the bandwidth combination 80-80.
  • the receiving device that receives the first PPDU, it can determine whether the third indication information "0" represents the bandwidth combination 80-80-80-80 or the bandwidth combination 80-80 based on the total bandwidth. In this way, signaling overhead can be further reduced.
  • the second indication information indicates that the total bandwidth is 160MHz
  • any one of "1"-"3" can also be used to represent the bandwidth combination 80-80, or "4" or other indications can also be used to represent the bandwidth Combo 80-80.
  • the embodiments of the present disclosure are not listed again.
  • the granularity of the bandwidth during aggregation may be 20MHz or 40MHz.
  • the fifth preset length may be larger, such as 6 bits or other values, so that it can correspond to more bandwidth combinations.
  • At least one bit of ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ can be used to carry the third indication information, that is, the confirmation bit can be used to carry the third indication information.
  • the third indication information is carried, that is, all the bits in the L5 bits are confirmation bits.
  • the confirmation bit in this example, it can also be selected from ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ that do not carry the third indication information.
  • At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • B25 of U-SIG-1 may be defined as whether it is an A-PPDU, and B25 of U-SIG-1 is a non-default value (eg, 0) indicating that the first PPDU is a part of A-PPDU.
  • the bandwidth combination is further indicated by B2 of U-SIG-2 and/or B8 of U-SIG-2.
  • B2 of U-SIG-2 may be defined as whether it is an A-PPDU, and its non-default value (eg, 0) indicates that the first PPDU is a part of the A-PPDU.
  • the bandwidth combination is further indicated by B25 of U-SIG-1 and/or B8 of U-SIG-2.
  • B8 of U-SIG-2 may be defined as whether it is an A-PPDU, and its non-default value (eg, 0) indicates that the first PPDU is a part of the A-PPDU.
  • the bandwidth combination is further indicated by B25 of U-SIG-1 and/or B2 of U-SIG-2. It should be noted that the above examples are not exhaustive, for example, two bits may be used to define whether it is an A-PPDU, one bit may be used to carry the third indication information, and so on. Not listed in this disclosure.
  • At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the confirmation bit is not equal to the missing A-PPDU. If the value is saved, the receiving of the A-PPDU can be stopped in time, thereby saving power consumption and ensuring the normal reception of other devices.
  • At least one bit in ⁇ B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ can be used to carry the third indication information, that is, the third indication can be carried by ignoring the bit Information, that is, all of the L5 bits are ignore bits.
  • the third indication may not be carried from ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇
  • the position of the information selects at least one of the bits to indicate that the first PPDU is aggregated in the A-PPDU.
  • At least one bit (eg, 1 bit) in ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ can be defined as whether it is an A-PPDU, which is non-missing
  • a default value eg, 0
  • at least one bit (confirmation bit) is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the reception of the A-PPDU can be stopped in time, thereby saving power consumption and ensuring the normal reception of other devices.
  • At least one bit (such as 1) in ⁇ B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ that does not carry the third indication information can be defined as whether it is an A-PPDU, which is A non-default value (eg, 0) indicates that the first PPDU is part of an A-PPDU.
  • a non-default value eg, 0
  • the fifth preset length (L5) is greater than or equal to 2 bits.
  • some bits of the third indication information are located in ⁇ B25 of U-SIG-1, B2 of U-SIG-2, U -In B8 ⁇ of SIG-2, other bits are located in ⁇ B20-B24 of U-SIG-1, B13-B16 ⁇ of EHT-SIG. That is, some of the L5 bits are confirm bits and some are ignore bits.
  • FIG. 12 shows a schematic diagram of a format 1200 of an A-PPDU provided by an embodiment of the present disclosure.
  • the A-PPDU includes 3 sub-PPDUs, namely PPDU 1210 , PPDU 1220 and PPDU 1230 .
  • the types of PPDU 1210, PPDU 1220 and PPDU 1230 are all EHT MU PPDUs.
  • format 1200 the formats of PPDU 1210, PPDU 1220, and PPDU 1230 are similar to, but not identical to, format 400 in FIG. 4 described above.
  • "80-80-160" in PPDU 1210, PPDU 1220 and PPDU 1230 may be carried in ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1 ⁇ part or all of it.
  • FIG. 12 is only illustrative, and for example, a smaller number of PPDUs may be included, such as any two of PPDU 1210, PPDU 1220, and PPDU 1230.
  • the EHT MU PPDU type in Figure 12 can be replaced with HE MU PPDU, EHT+MU PPDU or EHT++MU PPDU, etc. The present disclosure is not limited to this.
  • FIG. 12 shows that the bandwidth combination "80-80-160" is carried in the U-SIG
  • the present disclosure does not limit this, for example, it may be carried in the EH-SIG; for example, it may be carried in part In U-SIG, the other part is carried in EH-SIG.
  • the second indication information of the total bandwidth of the A-PPDU and the third indication information of the bandwidth combination of the A-PPDU are included in the first PPDU, so that a device (such as a receiving device or a device that receives the first PPDU)
  • the third amplifier can not only know the total bandwidth of the A-PPDU, but also know the bandwidth of each PPDU in the A-PPDU. Further, the receiving device can better perform some out-of-band interference suppression, etc., thereby enhancing its reception.
  • the second indication information may be carried in all or part of B3-B5 of U-SIG-1, which can make full use of the existing PPDU format and simplify modification.
  • the third indication information may be carried in the first signaling field of the first PPDU, and the second indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU.
  • the first signaling field may be U-SIG 405 as shown in FIG. 4 and the second signaling field may be EHT-SIG 406 as shown in FIG. 4 .
  • the third indication information is carried in the first signaling field of the first PPDU may refer to: the third indication information is carried in the bandwidth field (BW) of the U-SIG of the first PPDU, that is to say , the third indication information may occupy at least one bit from the fourth bit to the sixth bit (B3-B5) of the first symbol (U-SIG-1) of the U-SIG.
  • B3-B5 of U-SIG-1 can be redefined as the bandwidth combination of A-PPDU.
  • the third indication information may occupy at least one bit, for example, may be 1 bit or may be larger than 1 bit.
  • at least one bit can be arbitrarily selected from B3-B5 of U-SIG-1 to carry the third indication information, which is used to indicate the bandwidth combination of the A-PPDU.
  • the bandwidth combination may include at least two bandwidth values, which are in one-to-one correspondence with at least two PPDUs in the A-PPDU.
  • the bandwidth combination may include N bandwidth values.
  • each bandwidth in the bandwidth combination may correspond to each PPDU in ascending or descending order of frequency.
  • the granularity of the bandwidth at which the aggregation is performed is 80 MHz.
  • the third indication information occupying 3 bits (B3-B5) can be used to represent the bandwidth combination 80-80-80-80, "1” to represent the bandwidth combination 80-80-160, and “2” to represent the bandwidth combination 160-80-80, "3” represents the bandwidth combination 160-160, "4" represents the bandwidth combination 80-80, the remaining values are confirmed or ignored, and each bandwidth in the bandwidth combination is arranged from low to high frequency .
  • the granularity of the bandwidth during aggregation may be 20MHz or 40MHz.
  • the third indication information may occupy a larger number of bits, such as 6 bits or other values, so that it can correspond to more Bandwidth combination.
  • the third indication information may occupy B3-B5 of U-SIG-1 and B25 of ⁇ -SIG-1, B2 of U-SIG-2, B8 of U-SIG-2, B20- of U-SIG-1 At least one bit in B24 ⁇ is not listed one by one in this disclosure.
  • the second indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU may refer to: part or all of the second indication information may be carried in the first PPDU The first signaling field or the second signaling field. Specifically, it can include at least three situations: (1) all the second indication information is carried in the first signaling field, (2) all the second indication information is carried in the second signaling field, (3) the second indication A part of the information is carried in the first signaling field, and another part of the second indication information is carried in the second signaling field.
  • the second indication information may be carried in ignore and/or acknowledge bits of U-SIG and/or EHT-SIG of the first PPDU.
  • the second indication information may be located in some or all of the following: bit 26 (B25) of the first symbol (U-SIG-1) of the U-SIG field, second bit (B25) of the U-SIG field The 3rd bit (B2) of the symbol (U-SIG-2), the 9th bit (B8) of U-SIG-2, the 21st to 25th bits of U-SIG-1 (B20-B24 ) and the U-SIG overflow portion of the EHT-SIG (B13-B16).
  • the second indication information may have a second preset length, which may be expressed as L2.
  • L2 bits can be arbitrarily selected from ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ Defined as the total bandwidth of the A-PPDU.
  • the second preset length may be 1 bit or 2 bits. It should be understood that, in this example, the second preset length may be a larger value, such as 3 bits, 4 bits, etc., which is not limited in the present disclosure.
  • 0 may be used to represent the total bandwidth of 160 MHz
  • “1” may be used to represent the total bandwidth of 320 MHz.
  • “0” can be used to represent the total bandwidth of 160MHz
  • "1” to represent the total bandwidth of 240MHz
  • "2" to represent the total bandwidth of 320MHz. The rest are confirmed or ignored.
  • any bit of ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, and B13-B16 of EHT-SIG ⁇ may carry the second indication information , you can use "0" to represent the total bandwidth of 160MHz, and "1" to represent the total bandwidth of 320MHz.
  • any bit of ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ can be used to carry the second indication information, that is, the confirmation bit can be used to carry the second indication information.
  • Bearing second indication information Considering the characteristics of the confirmation bit, in this example, it can also be selected from ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ that do not carry the second indication information. At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • B25 of U-SIG-1 may be defined as whether it is an A-PPDU, and B25 of U-SIG-1 is a non-default value (eg, 0) indicating that the first PPDU is a part of A-PPDU.
  • the total bandwidth of the A-PPDU is further indicated by B2 of U-SIG-2 and/or B8 of U-SIG-2.
  • B2 of U-SIG-2 may be defined as whether it is an A-PPDU, and its non-default value (eg, 0) indicates that the first PPDU is a part of the A-PPDU.
  • the total bandwidth of the A-PPDU is further indicated by B25 of U-SIG-1 and/or B8 of U-SIG-2.
  • B8 of U-SIG-2 may be defined as whether it is an A-PPDU, and its non-default value (eg, 0) indicates that the first PPDU is a part of the A-PPDU.
  • the total bandwidth of the A-PPDU is further indicated by B25 of U-SIG-1 and/or B2 of U-SIG-2. It should be noted that the above examples are not exhaustive, for example, two bits may be used to define whether it is an A-PPDU, one bit may be used to carry the second indication information, and so on. Not listed in this disclosure.
  • At least one bit is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the confirmation bit is not equal to the missing A-PPDU. If the value is saved, the receiving of the A-PPDU can be stopped in time, thereby saving power consumption and ensuring the normal reception of other devices.
  • any bit of ⁇ B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ can be used to carry the second indication information, that is, the second indication can be carried by ignoring the bit information.
  • the second indication may not be carried from ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇
  • the position of the information selects at least one of the bits to indicate that the first PPDU is aggregated in the A-PPDU.
  • At least one bit (eg, 1 bit) in ⁇ B25 of U-SIG-1, B2 of U-SIG-2, B8 of U-SIG-2 ⁇ can be defined as whether it is an A-PPDU, which is non-missing
  • a default value eg, 0
  • at least one bit (confirmation bit) is used to indicate that the first PPDU is aggregated in the A-PPDU.
  • the reception of the A-PPDU can be stopped in time, thereby saving power consumption and ensuring the normal reception of other devices.
  • At least one bit (such as 1) in ⁇ B20-B24 of U-SIG-1, B13-B16 of EHT-SIG ⁇ that does not carry the second indication information may be defined as whether it is an A-PPDU, which is A non-default value (eg, 0) indicates that the first PPDU is part of an A-PPDU.
  • a non-default value eg, 0
  • the second preset length is 1 bit. It is understood that the second preset length (L2 bit) may be greater than 1 bit. And, in the example where the second preset length is greater than 1 bit, all the bits in the L2 bits are confirmation bits, or all the bits in the L2 bits are ignore bits, or, a part of the bits in the L2 bits are confirmation bits. bits and the other bits are ignore bits.
  • the second preset length may be 3 bits or 4 bits. It should be understood that, in this example, the second preset length may be other values, such as 2 bits, 5 bits, etc., which is not limited in the present disclosure.
  • 0 can be used to represent the total bandwidth of 40MHz, "1” to represent the total bandwidth of 80MHz, “2” to represent the total bandwidth of 120MHz, “3” to represent the total bandwidth of 160MHz, and "4" to represent the total bandwidth of 160MHz.
  • the total bandwidth is 320MHz.
  • “0” can be used to represent the total bandwidth of 20MHz, "1” to represent the total bandwidth of 40MHz, “2” to represent the total bandwidth of 60MHz, "3” to represent the total bandwidth of 80MHz, and "4" to represent the total bandwidth
  • the total bandwidth is 100MHz, ..., "15” represents the total bandwidth of 320MHz.
  • all bits in the second preset length are confirm bits, or all bits in L2 bits are ignore bits, or, L2 bits Some of the bits are confirm bits and some are ignore bits.
  • whether the first PPDU is aggregated in an A-PPDU can also be indicated by at least one bit (confirm bit or ignore bit).
  • the particle size of the aggregation in the present disclosure may also be other values, such as 40 MHz and the like.
  • different second preset lengths may be defined for different granularities, so that the second indication information can be fully indicated and at the same time avoid occupying too many bits, so as to realize the difference between the two
  • the trade-off ensures the optimal utilization of resources.
  • the second indication information of the total bandwidth of the A-PPDU and the third indication information of the bandwidth combination of the A-PPDU are included in the first PPDU, so that a device (such as a receiving device or a device that receives the first PPDU)
  • the third amplifier can not only know the total bandwidth of the A-PPDU, but also know the bandwidth of other PPDUs in the A-PPDU at the same time. Further, the receiving device can better perform some out-of-band interference suppression, etc., thereby enhancing its reception.
  • the step 710 may further include: generating a long training field (Long Training Field, LTF) in the first PPDU.
  • LTF Long Training Field
  • the LTF may be generated according to the total bandwidth of the A-PPDU and/or the bandwidth combination of the A-PPDU.
  • the type of each PPDU in the A-PPDU may also be considered when generating the LTF.
  • the LTF may be generated based on the total bandwidth of the A-PPDU.
  • the LTF sequence can be constructed based on the total bandwidth of the A-PPDU.
  • the corresponding LTF may be the first total sequence, such as any one of EHTLTF sub160MHz_1x , EHTLTF sub160MHz_2x , and EHTLTF sub160MHz_4x .
  • the corresponding LTF may be the second total sequence, such as any one of EHTLTF sub320MHz_1x , EHTLTF sub320MHz_2x , and EHTLTF sub320MHz_4x .
  • the receiving device can optimize the PAPR for the aggregated bandwidth (ie, the total bandwidth of the A-PPDU) when performing operations such as channel estimation.
  • the LTF may be generated based on the total bandwidth of the A-PPDU and the type of individual PPDUs in the A-PPDU. Taking the granularity of 80MHz as an example, for example, the LTF can be generated based on the total bandwidth of the A-PPDU and the type of PPDU in each 80MHz.
  • the types of PPDUs within each 80 MKHz may be pre-specified. For example, it can be stipulated that there is only one HEMU PPDU in the A-PPDU, and the HEMU PPDU must be located on the main 80MHz or main 160MHz channel, then the type of PPDU in each 80MHz can be directly obtained based on this regulation.
  • the types of PPDUs within a portion of 80 MKHz may be pre-specified. For example, it can be stipulated that there is at most one HE MU PPDU (0 or 1) in the A-PPDU, and the HE MU PPDU must be located on the main 80MHz or main 160MHz channel, then it can be directly indicated by the first preset number of bits. Whether it is a HE MU PPDU on the main 80MHz or main 160MHz channel.
  • the types of one or more PPDUs within 80MHz may be pre-specified, and the types of PPDUs within the remaining 80MHz are indicated by a second preset number of bits.
  • the PPDU types within 160 MHz may be pre-defined as non-HE, such as EHT, EHT+, EHT++, and so on.
  • 2 bits can be used to indicate the type of the PPDU in the two 80MHz in the main 160MHz, each bit can be 0 or 1, and 0 indicates that the type of the PPDU is HE (such as HE MU).
  • PPDU) indicates that the type of PPDU is EHT (such as EHT MU PPDU).
  • the type of PPDU within each 80MHz may be indicated by a third preset length bit number.
  • 4 bits (the third preset number of bits) can be used, corresponding to 4 80MHz, each bit can be 0 or 1, 0 indicates that the type of PPDU is HE (such as HE MU PPDU), and 1 indicates the type of PPDU For EHT (eg EHT MU PPDU).
  • the LTF may be generated based on the bandwidth combination of the A-PPDUs.
  • different LTF sequences can be constructed based on different bandwidth combinations.
  • bandwidth combination C1 corresponds to LTF sequence 1
  • bandwidth combination C2 corresponds to LTF sequence 2, and so on.
  • different LTF sequences can be generated by multiplying different +1 or -1 phase coefficients according to different bandwidth combinations. In this way, the LTF can be generated based on the bandwidth combination, so that the LTF sequence in each combination is optimal, the optimal selection of the LTF sequence is realized, and the PAPR can be further reduced.
  • the LTF may be generated based on the bandwidth combination of the A-PPDU and the type of each PPDU in the A-PPDU.
  • the LTF may be generated based on the bandwidth combination of the A-PPDU and the type of each PPDU in the A-PPDU.
  • LTF is only for illustration, and the LTF (eg, EHT-LTF) is composed of a series of 1, -1, and 0.
  • the construction (construct) process of the LTF is not limited.
  • the LTF can be generated based on the total bandwidth of the A-PPDU and/or the bandwidth combination of the A-PPDU, so as to realize the optimization of the LTF, so that the receiving device can further reduce the PAPR based on this.
  • the first PPDU includes both the second indication information of the total bandwidth of the A-PPDU and the third indication information of the bandwidth combination of the A-PPDU, so that the device that receives the first PPDU (such as The receiving device or third-party device) can not only know the total bandwidth of the A-PPDU, but also know the bandwidth of other PPDUs in the A-PPDU at the same time. Further, the device that receives the first PPDU can optimize the spatial multiplexing operation for the A-PPDU, for example, perform spatial multiplexing transmission within the entire A-PPDU bandwidth.
  • the third-party device For the third-party device that receives the first PPDU, it can keep silent (not send) with reference to the total bandwidth or perform spatial multiplexing transmission, without causing excessive interference to the current transmission.
  • the receiving device may also perform some out-of-band interference suppression according to the total bandwidth and/or bandwidth combination of the A-PPDU, thereby enhancing its reception.
  • the LTF is generated based on the total bandwidth of the A-PPDU and/or the bandwidth combination of the A-PPDU, so as to realize the optimization of the LTF, so that the receiving device can further reduce the PAPR based on this.
  • the first PPDU may include third indication information, where the third indication information is used to indicate the bandwidth combination of the A-PPDU.
  • the bandwidth combination may include at least two bandwidth values, which are in one-to-one correspondence with at least two PPDUs in the A-PPDU.
  • the bandwidth combination may include N bandwidth values.
  • each bandwidth in the bandwidth combination may correspond to each PPDU in ascending or descending order of frequency.
  • the third indication information implicitly indicates the total bandwidth of the A-PPDU. That is to say, the first PPDU includes the total bandwidth of the A-PPDU, where the total bandwidth of the A-PPDU is implicitly indicated by the third indication information.
  • the third indication information may be carried in the first signaling field of the first PPDU.
  • the first signaling field may be U-SIG 405 as shown in FIG. 4 .
  • the third indication information may be carried in part or all of the 4th bit to the 6th bit (B3-B5) of the first symbol (U-SIG-1) of the U-SIG.
  • B3-B5 of U-SIG-1 can be redefined as the bandwidth combination of A-PPDU.
  • the third indication information may occupy at least one bit, for example, may be 1 bit or may be larger than 1 bit.
  • at least one bit can be arbitrarily selected from B3-B5 of U-SIG-1 to carry the third indication information, which is used to indicate the bandwidth combination of the A-PPDU.
  • the granularity of the bandwidth at which the aggregation is performed is 80 MHz.
  • the third indication information occupying 3 bits (B3-B5) can be used to represent the bandwidth combination 80-80-80-80, "1” to represent the bandwidth combination 80-80-160, and “2” to represent the bandwidth combination 160-80-80, "3” represents the bandwidth combination 160-160, "4" represents the bandwidth combination 80-80, the remaining values are confirmed or ignored, and each bandwidth in the bandwidth combination is arranged from low to high frequency .
  • the granularity of the bandwidth during aggregation may be 20MHz or 40MHz.
  • the third indication information may occupy a larger number of bits, such as 6 bits or other values, so that it can correspond to more Bandwidth combination.
  • the third indication information may occupy B3-B5 of U-SIG-1 and B25 of ⁇ -SIG-1, B2 of U-SIG-2, B8 of U-SIG-2, B20- of U-SIG-1 At least one bit in B24 ⁇ is not listed one by one in this disclosure.
  • the third indication information may be carried in the first signaling field and/or the second signaling field of the first PPDU. That is, part or all of the third indication information may be carried in the first signaling field or the second signaling field of the first PPDU. Specifically, it can include at least three situations: (1) all the third indication information is carried in the first signaling field, (2) all the third indication information is carried in the second signaling field, (3) the third indication A part of the information is carried in the first signaling field, and another part of the third indication information is carried in the second signaling field.
  • the third indication information may be carried in the ignore and/or confirm bits of the U-SIG and/or EHT-SIG of the first PPDU.
  • the third indication information may be located in some or all of the following: bit 26 (B25) of the first symbol (U-SIG-1) of the U-SIG field, second bit (B25) of the U-SIG field The 3rd bit (B2) of the symbol (U-SIG-2), the 9th bit (B8) of U-SIG-2, the 21st to 25th bits of U-SIG-1 (B20-B24 ) and the U-SIG overflow portion of the EHT-SIG (B13-B16).
  • FIG. 13 shows a schematic diagram of a format 1300 of an A-PPDU provided by an embodiment of the present disclosure.
  • the A-PPDU includes three sub-PPDUs, namely PPDU 1310 , PPDU 1320 and PPDU 1330 .
  • the types of PPDU 1310, PPDU 1320 and PPDU 1330 are all EHT MU PPDUs.
  • format 1300 the formats of PPDU 1310, PPDU 1320 and PPDU 1330 are similar to, but not identical to, format 400 in FIG. 4 described above.
  • the respective U-SIG fields of PPDU 1310, PPDU 1320 and PPDU 1330 indicate that the bandwidth combination of A-PPDU 1300 is 80-80-160 by "80-80-160".
  • 80-80-160 in PPDU 1310, PPDU 1320 and PPDU 1330 may be carried in part or all of B3-B5 of U-SIG-1, or may be carried in ⁇ U-SIG-1 Part or all of B25 of U-SIG-2, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1 ⁇ .
  • FIG. 13 is only illustrative, and for example, a smaller number of PPDUs may be included, such as any two of PPDU 1310, PPDU 1320 and PPDU 1330 may be included.
  • the EHT MU PPDU type in Figure 13 can be replaced by HE MU PPDU, EHT+MU PPDU or EHT++MU PPDU, etc. The present disclosure is not limited to this.
  • FIG. 13 shows that the bandwidth combination "80-80-160" is carried in the U-SIG
  • the present disclosure does not limit this, for example, it may be carried in the EH-SIG; for example, it may be carried in part In U-SIG, the other part is carried in EH-SIG.
  • the third indication information of the bandwidth combination of the A-PPDU is also included in the first PPDU, so that a device (such as a receiving device or a third playing device) that receives the first PPDU can implicitly know the A-PPDU
  • the total bandwidth of the PPDU can also be obtained at the same time as the bandwidth of each PPDU in the A-PPDU. Further, subsequent operations can be performed more comprehensively to avoid causing excessive interference to other receiving devices.
  • the step 710 may further include: generating a long training field (Long Training Field, LTF) in the first PPDU.
  • LTF Long Training Field
  • the LTF may be an EHT LTF.
  • the LTF may be generated according to the total bandwidth of the A-PPDU and/or the bandwidth combination of the A-PPDU.
  • the total bandwidth of the A-PPDU can be obtained by summing the bandwidths in the bandwidth combination.
  • the embodiment of generating the LTF reference may be made to the description in the above implementation manner, which will not be repeated in this implementation manner.
  • the third indication information of the bandwidth combination of the A-PPDU is included in the first PPDU, so that a device (such as a receiving device or a third-party device) that receives the first PPDU can implicitly know the bandwidth of the A-PPDU.
  • the total bandwidth, and the bandwidth of each PPDU in the A-PPDU is known.
  • the device that receives the first PPDU can optimize the spatial multiplexing operation for the A-PPDU, for example, perform spatial multiplexing transmission within the entire A-PPDU bandwidth.
  • the third-party device that receives the first PPDU it can keep silent (not send) with reference to the total bandwidth or perform spatial multiplexing transmission, without causing excessive interference to the current transmission.
  • the receiving device may also perform some out-of-band interference suppression according to the total bandwidth and/or bandwidth combination of the A-PPDU, thereby enhancing its reception.
  • the LTF is generated based on the total bandwidth of the A-PPDU and/or the bandwidth combination of the A-PPDU, so as to realize the optimization of the LTF, so that the receiving device can further reduce the PAPR based on this.
  • the first PPDU may include first indication information, second indication information and third indication information.
  • the first indication information is used to indicate the bandwidth of the first PPDU
  • the second indication information is used to indicate the total bandwidth of the A-PPDU
  • the third indication information is used to indicate the bandwidth combination of the A-PPDU.
  • the first indication information is carried in the first signaling field of the first PPDU, or carried in the second signaling field of the first PPDU, or partially carried in the first signaling field of the first PPDU and in addition The part is carried in the second signaling field of the first PPDU.
  • the first indication information may occupy at least one bit, eg, one bit or multiple bits.
  • the second indication information is carried in the first signaling field of the first PPDU, or carried in the second signaling field of the first PPDU, or partially carried in the first signaling field of the first PPDU and in addition The part is carried in the second signaling field of the first PPDU.
  • the second indication information may occupy at least one bit, eg, one bit or multiple bits.
  • the third indication information is carried in the first signaling field of the first PPDU, or carried in the second signaling field of the first PPDU, or partially carried in the first signaling field of the first PPDU and in addition The part is carried in the second signaling field of the first PPDU.
  • the third indication information may occupy at least one bit, eg, one bit or multiple bits.
  • the first signaling field may include B3-B5 of U-SIG-1, and/or, the first signaling field may include B25 of U-SIG-1, B2 and B8 of U-SIG-2 , at least one of U-SIG-1's B20-B24 ⁇ .
  • the second signaling field may include at least one of B13-B16 of the EHT-SIG.
  • FIG. 14 shows a schematic diagram of a format 1400 of an A-PPDU provided by an embodiment of the present disclosure.
  • the A-PPDU includes three sub-PPDUs, namely PPDU 1410 , PPDU 1420 and PPDU 1430 .
  • the types of PPDU 1410, PPDU 1420 and PPDU 1430 are all EHT MU PPDUs.
  • format 1400 the formats of PPDU 1410, PPDU 1420 and PPDU 1430 are similar to, but not identical to, format 400 in FIG. 4 described above.
  • the bandwidth combination is 80-80-160.
  • the bandwidth combination is 80-80-160.
  • FIG. 14 is only illustrative, and for example, a smaller number of PPDUs may be included, such as any two of PPDU 1410, PPDU 1420 and PPDU 1430.
  • the type EHT MU PPDU of at least one PPDU in FIG. 14 may be replaced by HE MU PPDU, EHT+MU PPDU, or EHT++MU PPDU, or the like. The present disclosure is not limited to this.
  • FIG. 14 shows that the bandwidth, the total bandwidth and the bandwidth combination are all carried on the U-SIG, the present disclosure does not limit this, for example, the bandwidth, the total bandwidth and the bandwidth combination can be carried on the EH -SIG.
  • the step 710 may further include: generating a long training field (Long Training Field, LTF) in the first PPDU.
  • LTF Long Training Field
  • the LTF may be an EHT LTF.
  • the LTF may be generated according to at least one (one or more) of the bandwidth of the first PPDU, the total bandwidth of the A-PPDU, and the combination of the bandwidth of the A-PPDU.
  • the embodiment of generating the LTF reference may be made to the description in the above implementation manner, which will not be repeated in this implementation manner.
  • the first PPDU includes the first indication information of the bandwidth of the first PPDU, the second indication information of the total bandwidth of the A-PPDU, and the third indication information of the bandwidth combination of the A-PPDU, so that the received
  • the device of the first PPDU (such as a receiving device or a third-party device) can fully and directly learn various bandwidth information, including not only the bandwidth of the first PPDU, but also the total bandwidth of the A-PPDU and the individual bandwidth of the A-PPDU. Bandwidth of the PPDU.
  • the device that receives the first PPDU can optimize the spatial multiplexing operation for the A-PPDU, for example, perform spatial multiplexing transmission within the entire A-PPDU bandwidth.
  • the third-party device For the third-party device that receives the first PPDU, it can keep silent (not send) with reference to the total bandwidth or perform spatial multiplexing transmission, without causing excessive interference to the current transmission.
  • the receiving device may also perform some out-of-band interference suppression according to the total bandwidth and/or bandwidth combination of the A-PPDU, thereby enhancing its reception.
  • the LTF is generated based on one or more of the bandwidth of the first PPDU, the total bandwidth of the A-PPDU, and the bandwidth combination of the A-PPDU, so as to realize the optimization of the LTF, so that the receiving device can further reduce the PAPR based on this. . It can be understood that although this implementation manner may have information redundancy, this implementation manner can ensure reception by the receiving device, reduce or even avoid retransmission, and the like.
  • the sending device 101 sends 720 the A-PPDU to the receiving device 102.
  • the sending device 101 may send a data frame, and the data frame includes an A-PPDU.
  • the sending device can send the A-PPDU without separately sending a single PPDU, which can make full use of the transmission bandwidth and reduce the number of times of sending. For sending equipment, it is more energy-efficient and efficient.
  • the receiving device 102 may receive 720 the first PPDU of the A-PPDUs. Specifically, the receiving device 102 may receive the first PPDU corresponding to the frequency of its park based on the frequency of its park. That is, the frequency at which the receiving device 102 docks corresponds to the bandwidth of the first PPDU.
  • the receiving device 102 may be a second type of device, that is, a device that does not implement basic features of EHT, or is also referred to as a device that implements advanced features of EHT.
  • the receiving device 102 may further parse 730 the first PPDU.
  • the first PPDU received by the receiving device 102 includes one or more of the first indication information, the second indication information and the third indication information.
  • the first indication information is used to indicate the bandwidth of the first PPDU
  • the second indication information is used to indicate the total bandwidth of the A-PPDU
  • the third indication information is used to indicate the bandwidth combination of the A-PPDU.
  • first indication information For the first indication information, the second indication information, and the third indication information, reference may be made to the various implementation manners described above in conjunction with 710, and to avoid repetition, details are not repeated here.
  • the receiving device 102 can obtain the bandwidth of the first PPDU by parsing. In some embodiments, if the first PPDU includes the second indication information, the receiving device 102 can obtain the total bandwidth of the A-PPDU through parsing. In some embodiments, if the first PPDU includes the third indication information, the receiving device 102 can obtain the bandwidth combination of the A-PPDU through parsing.
  • the first PPDU may also obtain the bandwidth of the first PPDU based on the bandwidth combination of the A-PPDU.
  • the total bandwidth of the A-PPDU may be obtained by adding (summing) the individual bandwidths in the bandwidth combination of the A-PPDU.
  • which of the bandwidth combinations of the A-PPDUs is the bandwidth of the first PPDU may be determined by the frequency at which the receiving device 102 is docked.
  • the first PPDU may further include at least one bit for indicating that the first PPDU is aggregated in an A-PPDU.
  • the receiving device 102 can know, based on the at least one bit, whether the first PPDU is sent alone or as part of an A-PPDU.
  • the at least one bit may be ⁇ B25 of U-SIG-1, B2 and B8 of U-SIG-2, B20-B24 of U-SIG-1, B13-B16 of EHT-SIG of the first PPDU ⁇ at least one bit.
  • the receiving device 102 may further determine the LTF sequence based on the indication information in the first PPDU, and further perform operations such as channel estimation.
  • the receiving device 102 may determine an LTF sequence, such as an EHT-LTF, based on one or more of the bandwidth of the first PPDU, the total bandwidth of the A-PPDU, and the combination of bandwidths of the A-PPDU.
  • the manner in which the receiving device 102 determines the LTF is the same as the manner in which the transmitting device 101 generates the LTF, so the implementation manner of the receiving device 102 for determining the LTF is not detailed here.
  • the receiving device 102 may be a first type of device, that is, a device that implements the basic characteristics of the EHT.
  • the receiving device 102 can determine whether the first PPDU has the following situation: the confirmation bit is not equal to the default value or the confirmation state exists. If yes, wait until the end of the first PPDU, transfer the relevant information in the version independent to the MAC layer, and terminate the reception. If not, the first PPDU is received, and at this time, the receiving device 102 parses B3-B5 of U-SIG-1 of the first PPDU into the bandwidth of the first PPDU.
  • FIG. 15 shows a schematic flowchart of another data transmission method 1500 provided by an embodiment of the present disclosure.
  • the method 1500 in FIG. 15 involves AP 201, STA 221 and STA 223.
  • the AP 201 may generate (1510) an A-PPDU based on at least two PPDUs, the A-PPDU including the first PPDU.
  • AP 201 sends (1520) the A-PPDU.
  • STA 221 parses (1532) the first PPDU in the A-PPDU.
  • STA 223 parses (1534) the second PPDU in the A-PPDU.
  • the AP 201 may generate 1510 an A-PPDU based on at least two PPDUs, and the first PPDU in the A-PPDU includes at least one of the following: first indication information for indicating the bandwidth of the first PPDU; second The indication information is used to indicate the total bandwidth of the A-PPDU; or the third indication information is used to indicate the bandwidth combination of the A-PPDU.
  • the first PPDU is an EHT MU PPDU.
  • the A-PPDU includes at least a first PPDU and a second PPDU, where the second PPDU may be a HE MU PPDU or an EHT MU PPDU.
  • AP 201 may send 1520 A-PPDUs.
  • STA 221 may receive 1520 the first PPDU of the A-PPDUs
  • STA 223 may receive 1520 the second PPDU of the A-PPDUs.
  • the STA 221 may receive 1520 the corresponding first PPDU in the A-PPDU based on the frequency at which the STA 221 stops.
  • the STA 223 may receive 1520 the corresponding second PPDU in the A-PPDU based on the frequency at which the STA 223 docks.
  • STAs different receiving devices
  • STAs can receive corresponding PPDUs at the frequencies where they are docked without interfering with the receiving behavior of other receiving devices.
  • the STA 221 may also parse 1532 the first PPDU. That is, the STA 221 can parse the first PPDU it receives.
  • the STA 223 may also parse 1534 the second PPDU. That is, the STA 223 can parse the second PPDU it receives.
  • parsing 1532 of the STA 221 and the parsing 1534 of the STA 223 are independent of each other, that is, the execution order of steps 1532 and 1534 is not limited, for example, it can be performed at different times or simultaneously.
  • the sending device can fully utilize the bandwidth of wireless transmission and reduce signaling overhead.
  • the corresponding PPDU can be received based on the frequency at which it stops, and since the PPDU received by the receiving device includes A-PPDU information (such as the second indication information and/or the second indication information), the receiving device can receive the corresponding PPDU.
  • the device can also perform some out-of-band interference suppression, etc., to enhance its reception.
  • FIG. 16 shows a schematic diagram of an apparatus 1600 for data transmission provided by an embodiment of the present disclosure.
  • the apparatus 1600 may be implemented at the transmission device 101, or may be implemented as a chip or a system of chips in the transmission device 101, and the scope of the present disclosure is not limited in this regard.
  • the apparatus 1600 may include a generating unit 1610 and a sending unit 1620 .
  • the generating unit 1610 may be configured to generate an A-PPDU based on at least two PPDUs, where the first PPDU in the A-PPDU includes at least one of the following: first indication information for indicating the bandwidth of the first PPDU, and a second indication The information is used to indicate the total bandwidth of the A-PPDU, or the third indication information is used to indicate the bandwidth combination of the A-PPDU.
  • the transmitting unit 1620 may be configured to transmit the A-PPDU generated by the generating unit 1610 to the receiving device.
  • the first PPDU includes first indication information and second indication information
  • the first indication information is carried in a first signaling field of the first PPDU
  • the second indication information is carried in a first signaling field of the first PPDU field and/or the second signaling field.
  • the first PPDU includes first indication information and second indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the first indication information is carried in a first signaling field of the first PPDU field and/or the second signaling field.
  • the first PPDU includes first indication information and third indication information
  • the first indication information is carried in a first signaling field of the first PPDU
  • the third indication information is carried in a first signaling field of the first PPDU field and/or the second signaling field.
  • the first PPDU includes second indication information and third indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the third indication information is carried in a first signaling field of the first PPDU field and/or the second signaling field.
  • each bandwidth in the bandwidth combination indicated by the third indication information may correspond to each PPDU arranged in an ascending or descending order of frequencies.
  • At least one bit in the first signaling field or the second signaling field of the first PPDU is used to indicate that the first PPDU is aggregated in an A-PPDU.
  • At least one bit is an acknowledge bit and/or a ignore bit.
  • the first PPDU is an EHT MU PPDU
  • the first signaling field is U-SIG
  • the second signaling field is EHT-SIG.
  • the second PPDU in the A-PPDU is a HE MU PPDU or an EHT MU PPDU.
  • the generating unit 1610 may be further configured to: generate the LTF in the first PPDU based on at least one of the bandwidth of the first PPDU, the total bandwidth of the A-PPDU, and the bandwidth combination.
  • the generating unit 1610 may be further configured to generate the LTF further based on the type of each PPDU in the A-PPDU.
  • the apparatus 1600 in FIG. 16 may be implemented as the AP 20 or the STA 22, or may be implemented as a chip or a chip system in the AP 20, or may be implemented as a chip or a chip system in the STA 22, the present disclosure
  • the embodiment is not limited to this.
  • the apparatus 1600 in FIG. 16 can be used to implement the various processes described above in conjunction with the sending device 101 in FIG. 7 , which will not be repeated here for brevity.
  • FIG. 17 shows a schematic diagram of another apparatus 1700 for data transmission provided by an embodiment of the present disclosure.
  • the apparatus 1700 may be implemented at the receiving device 102, or may be implemented as a chip or a system of chips in the receiving device 102, the scope of the present disclosure is not limited in this regard.
  • the apparatus 1700 may include a receiving unit 1710 and a parsing unit 1720 .
  • the receiving unit 1710 may be configured to receive the first PPDU in the A-PPDU from the sending device, where the first PPDU includes at least one of the following: first indication information for indicating the bandwidth of the first PPDU, and second indication information for using It is used to indicate the total bandwidth of the A-PPDU, or the third indication information is used to indicate the bandwidth combination of the A-PPDU.
  • the parsing unit 1720 may be configured to parse the first PPDU received by the receiving unit 1710 .
  • the first PPDU includes first indication information and second indication information
  • the first indication information is carried in a first signaling field of the first PPDU
  • the second indication information is carried in a first signaling field of the first PPDU field and/or the second signaling field.
  • the first PPDU includes first indication information and second indication information
  • the second indication information is carried in a first signaling field of the first PPDU
  • the first indication information is carried in a first signaling field of the first PPDU field and/or the second signaling field.
  • the first PPDU includes first indication information and third indication information
  • the first indication information is carried in a first signaling field of the first PPDU
  • the third indication information is carried in a first signaling field of the first PPDU field and/or the second signaling field.
  • the first PPDU includes second indication information and third indication information
  • the second indication information is carried in the first signaling field of the first PPDU
  • the third indication information is carried in the first signaling field of the first PPDU field and/or the second signaling field.
  • each bandwidth in the bandwidth combination indicated by the third indication information may correspond to each PPDU arranged in an ascending or descending order of frequencies.
  • At least one bit in the first signaling field or the second signaling field of the first PPDU is used to indicate that the first PPDU is aggregated in an A-PPDU.
  • At least one bit is an acknowledge bit and/or a ignore bit.
  • the first PPDU is an EHT MU PPDU
  • the first signaling field is U-SIG
  • the second signaling field is EHT-SIG.
  • the second PPDU in the A-PPDU is a HE MU PPDU or an EHT MU PPDU.
  • the apparatus 1700 may further include a processing unit (not shown in FIG. 17 ) configured to determine the LTF in the first PPDU based on at least one of bandwidth, total bandwidth, and bandwidth combination; and perform an LTF based on the LTF channel estimation.
  • a processing unit (not shown in FIG. 17 ) configured to determine the LTF in the first PPDU based on at least one of bandwidth, total bandwidth, and bandwidth combination; and perform an LTF based on the LTF channel estimation.
  • the processing unit is configured to determine the LTF further based on the type of each PPDU in the A-PPDU.
  • the apparatus 1700 in FIG. 17 may be implemented as the AP 20 or the STA 22, or may be implemented as a chip or a chip system in the AP 20, or may be implemented as a chip or a chip system in the STA 22, the present disclosure
  • the embodiment is not limited to this.
  • the apparatus 1700 in FIG. 17 can be used to implement the various processes described above in conjunction with the receiving device 102 in FIG. 7 , which are not repeated here for brevity.
  • FIG. 18 shows a schematic diagram of another apparatus 1800 for information transmission provided by an embodiment of the present disclosure.
  • the apparatus 1800 may be used to implement the sending device 101 and the receiving device 102 as shown in FIG. 1 .
  • the apparatus 1800 includes one or more processors 1810 , one or more memories 1820 coupled to the processors 1810 , and a communication module 1840 coupled to the processors 1810 .
  • the communication module 1840 may be used for two-way communication.
  • the communication module 1840 may have at least one communication interface for communication.
  • Communication interfaces may include any interface necessary to communicate with other devices.
  • the processor 1810 may be of any type suitable for a local technical network, and may include, but is not limited to, at least one of the following: a general purpose computer, a special purpose computer, a microcontroller, a Digital Signal Processor (DSP), or a control-based One or more of the multi-core controller architectures of the server.
  • the apparatus 1800 may have multiple processors, such as application specific integrated circuit chips, which are temporally slaved to a clock synchronized with the main processor.
  • Memory 1820 may include one or more non-volatile memories and one or more volatile memories.
  • non-volatile memory include, but are not limited to, at least one of the following: Read-Only Memory (ROM) 1824, Erasable Programmable Read Only Memory (EPROM), flash memory, hard disk , Compact Disc (CD), Digital Versatile Disc (DVD) or other magnetic and/or optical storage.
  • volatile memory include, but are not limited to, at least one of the following: Random Access Memory (RAM) 1822, or other volatile memory that does not persist for the duration of a power outage.
  • RAM Random Access Memory
  • Computer program 1830 includes computer-executable instructions for execution by associated processor 1810 .
  • Program 1830 may be stored in ROM 1820.
  • Processor 1810 may perform any suitable actions and processes by loading program 1830 into RAM 1820.
  • Embodiments of the present disclosure may be implemented by means of program 1830 such that apparatus 1800 may perform any process as discussed with reference to FIG. 7 .
  • Embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • program 1830 may be tangibly embodied on a computer-readable medium, which may be included in apparatus 1800 (such as in memory 1820 ) or other storage device accessible by apparatus 1800 .
  • Program 1830 may be loaded into RAM 1822 from a computer-readable medium for execution.
  • Computer readable media may include any type of tangible non-volatile memory, such as ROM, EPROM, flash memory, hard disks, CDs, DVDs, and the like.
  • the communication module 1840 in the apparatus 1800 may be implemented as a transmitter and receiver (or transceiver), which may be configured to transmit/receive packet structures, such as PPDUs or A-PPDUs.
  • the apparatus 1800 may further include one or more of a scheduler, a controller, and a radio frequency/antenna, which will not be described in detail in this disclosure.
  • the apparatus 1800 in FIG. 18 may be implemented as the AP 20 or the STA 22, or may be implemented as a chip or a chip system in the AP 20, or may be implemented as a chip or a chip system in the STA 22, the present disclosure
  • the embodiment is not limited to this.
  • Embodiments of the present disclosure also provide a chip, which may include an input interface, an output interface, and one or more processing circuits.
  • the input interface and the output interface may complete the above-mentioned interaction of signaling or data
  • the processing circuit may complete the generation and processing of signaling or data information.
  • An embodiment of the present disclosure further provides a chip system, including a processor, for supporting an AP or a STA to implement the functions involved in any of the foregoing embodiments.
  • the chip system may further include a memory for storing necessary program instructions and data.
  • the processor executes the program instructions, the device on which the chip system is installed can implement any of the above-mentioned embodiments.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • An embodiment of the present disclosure further provides a processor, which is coupled to a memory, and the memory stores instructions.
  • the processor executes the instructions, the processor causes the processor to execute the sending device or the receiving device (AP) involved in any of the foregoing embodiments. or STA) methods and functions.
  • AP sending device or the receiving device (AP) involved in any of the foregoing embodiments. or STA) methods and functions.
  • Embodiments of the present disclosure also provide a computer program product including instructions, which, when run on a computer, cause the computer to execute the method and method involving a sending device or a receiving device (AP or STA) in any of the foregoing embodiments. Function.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which computer instructions are stored, and when the processor executes the instructions, the processor causes the processor to execute the sending device or the receiving device (AP or receiving device) involved in any of the foregoing embodiments.
  • STA STA
  • Embodiments of the present disclosure also provide a wireless communication system, which includes a sending device and a receiving device.
  • the system may include at least one AP and at least one STA.
  • the various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device. Although various aspects of the embodiments of the present disclosure are shown and described as block diagrams, flowcharts, or using some other pictorial representation, it should be understood that the blocks, apparatuses, systems, techniques or methods described herein may be implemented, without limitation, as Illustrative examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controllers or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer-readable storage medium.
  • the computer program product includes computer-executable instructions, eg, instructions included in program modules, which are executed in a device on a target's real or virtual processor to perform the processes/methods as described above with reference to FIGS. 7-15 .
  • program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or divided among the program modules as desired.
  • Machine-executable instructions for program modules may be executed within local or distributed devices. In a distributed facility, program modules may be located in both local and remote storage media.
  • Computer program code for implementing the methods of the present disclosure may be written in one or more programming languages. Such computer program code may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus such that the program code, when executed by the computer or other programmable data processing apparatus, causes the flowchart and/or block diagrams The functions/operations specified in are implemented.
  • the program code may execute entirely on the computer, partly on the computer, as a stand-alone software package, partly on the computer and partly on a remote computer or entirely on the remote computer or server.
  • computer program code or related data may be carried by any suitable carrier to enable a device, apparatus or processor to perform the various processes and operations described above.
  • carriers include signals, computer-readable media, and the like.
  • signals may include electrical, optical, radio, acoustic, or other forms of propagated signals, such as carrier waves, infrared signals, and the like.
  • a computer-readable medium may be any tangible medium that contains or stores a program for or in connection with an instruction execution system, apparatus, or device.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • Computer-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any suitable combination thereof. More detailed examples of computer readable storage media include electrical connections with one or more wires, portable computer disks, hard disks, random memory access (RAM), read only memory (ROM), erasable programmable read only Memory (EPROM or flash memory), optical storage devices, magnetic storage devices, or any suitable combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开的实施例提供了一种信息传输的方法、装置、计算机可读存储介质和芯片。在该方法中,发送设备基于至少两个PPDU而生成A-PPDU,该A-PPDU中的第一PPDU包括以下至少一项:第一指示信息,用于指示第一PPDU的带宽,第二指示信息,用于指示A-PPDU的总带宽,或第三指示信息,用于指示A-PPDU的带宽组合;以及发送设备向接收设备发送该A-PPDU。以此方式,本公开的实施例中发送设备将至少两个PPDU聚合为A-PPDU再进行发送,这样能够充分地利用传输带宽,减少发送的次数,对于发送设备而言更加节能高效。

Description

信息传输的方法、装置、计算机可读存储介质和芯片 技术领域
本公开涉及通信领域,并且更具体地,涉及一种信息传输的方法、装置、计算机可读存储介质和芯片。
背景技术
无线局域网(Wireless Local Area Network,WLAN)系统的802.11各个标准版本在不断演进,从802.11a/b/g开始,历经802.11n,802.11ac,802.11ax到802.11be。其中802.11ax标准称为高效(High Efficient,HE),802.11be标准称为极高吞吐率(Extremely High Throughput,EHT),802.11be以后的标准用EHT+来表示。
802.11ax共有4种物理层协议数据单元(Physical Protocol Data Unit,PPDU)格式,802.11be定义了两种PPDU格式。然而,随着网络中数据传输量的不断增大,目前传输PPDU的方案效率较低并且尚不完善。
发明内容
本公开的示例实施例提供了一种信息传输的方法、装置、计算机可读存储介质和芯片。能够基于至少两个PPDU生成A-PPDU,并发送该A-PPDU,从而能够减少传输次数,提高信道利用率和传输PPDU的效率。
第一方面,提供了一种信息传输的方法。该方法包括:发送设备基于至少两个物理层协议数据单元PPDU而生成聚合的物理层协议数据单元A-PPDU,所述A-PPDU中的第一PPDU包括以下至少一项:第一指示信息,用于指示所述第一PPDU的带宽,第二指示信息,用于指示所述A-PPDU的总带宽,或第三指示信息,用于指示所述A-PPDU的带宽组合;以及所述发送设备向接收设备发送所述A-PPDU。
如此,本公开实施例中,发送设备能够将至少两个PPDU聚合为A-PPDU再进行发送,这样能够充分地利用传输带宽,减少发送的次数,对于发送设备而言更加节能高效。并且,A-PPDU中第一PPDU可以包括第一指示信息、第二指示信息和第三指示信息中的一项或多项,从而接收设备能够获知更全面的关于带宽的指示信息,进而基于此执行更有效的后续处理。
在第一方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第二指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
示例性地,第一PPDU为极高吞吐率EHT多用户MU PPDU,所述第一信令字段为通用信令字段U-SIG,所述第二信令字段为极高吞吐率信令字段EHT-SIG。相应地,第一指示信息可以承载于第一PPDU的U-SIG的第一个符号的B3-B5中的至少一个比特。第二指示信息可以承载于第一PPDU的以下比特中的至少一个比特:U-SIG的第一个符号的B25,U-SIG的第二个符号的B2,U-SIG的第二个符号的B8,U-SIG的第一个符号的B20-B24,EHT-SIG的B13-B16。
如此,第一PPDU同时包括第一指示信息和第二指示信息,从而接收设备不仅能够获知接收到第一PPDU的带宽,还能够同时获知A-PPDU的总带宽。这样,接收设备能够更好地进行一些带外的干扰抑制等,从而增强其接收。
在第一方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第一指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
示例性地,第一PPDU为EHT MU PPDU,所述第一信令字段为U-SIG,所述第二信令字段为EHT-SIG。相应地,第二指示信息可以承载于第一PPDU的U-SIG的第一个符号的B3-B5中的至少一个比特。第一指示信息可以承载于第一PPDU的以下比特中的至少一个比特:U-SIG的第一个符号的B25,U-SIG的第二个符号的B2,U-SIG的第二个符号的B8,U-SIG的第一个符号的B20-B24,EHT-SIG的B13-B16。
如此,第一PPDU同时包括第一指示信息和第二指示信息,从而接收设备不仅能够获知接收到第一PPDU的带宽,还能够同时获知A-PPDU的总带宽。这样,接收设备能够更好地进行一些带外的干扰抑制等,从而增强其接收。
在第一方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第三指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
示例性地,第一PPDU为EHT MU PPDU,所述第一信令字段为U-SIG,所述第二信令字段为EHT-SIG。相应地,第一指示信息可以承载于第一PPDU的U-SIG的第一个符号的B3-B5中的至少一个比特。第三指示信息可以承载于第一PPDU的以下比特中的至少一个比特:U-SIG的第一个符号的B25,U-SIG的第二个符号的B2,U-SIG的第二个符号的B8,U-SIG的第一个符号的B20-B24,EHT-SIG的B13-B16。
如此,第一PPDU同时包括第一指示信息和第三指示信息,从而接收设备不仅能够获知接收到第一PPDU的带宽,还能够同时获知A-PPDU中其他各个PPDU的带宽。这样,接收设备能够更好地进行一些带外的干扰抑制等,从而增强其接收。
在第一方面的某些实施例中,所述第一PPDU包括所述第二指示信息和所述第三指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
示例性地,第一PPDU为EHT MU PPDU,所述第一信令字段为U-SIG,所述第二信令字段为EHT-SIG。相应地,第二指示信息可以承载于第一PPDU的U-SIG的第一个符号的B3-B5中的至少一个比特。第三指示信息可以承载于第一PPDU的以下比特中的至少一个比特:U-SIG的第一个符号的B25,U-SIG的第二个符号的B2,U-SIG的第二个符号的B8,U-SIG的第一个符号的B20-B24,EHT-SIG的B13-B16。
如此,第一PPDU同时包括第二指示信息和第三指示信息,从而接收设备不仅能够获知A-PPDU的总带宽,还能够同时获知A-PPDU中各个PPDU的带宽。这样,接收设备能够更好地进行一些带外的干扰抑制等,从而增强其接收。
在第一方面的某些实施例中,第三指示信息所指示的带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
如此,通过按照频率升序或降序的方式来排列带宽组合中的各个带宽,这样可以不需要 再额外指示第一PPDU的带宽,减小信令开销。并且,接收设备能够从带宽组合中基于其所停靠的频率快速准确地确定其自己接收到的PPDU的带宽,提高接收设备的处理效率。
在第一方面的某些实施例中,所述第一PPDU的第一信令字段和/或第二信令字段中的至少一个比特用于指示所述第一PPDU被聚合在所述A-PPDU中。
如此,通过使用至少一个比特指示第一PPDU是被聚合在A-PPDU中的,从而接收设备能够获知发送设备发送第一PPDU的方式,并且接收设备能够基于该至少一个比特快速地确定某些特定字段所携带的指示信息是第一指示信息、第二指示信息、第三指示信息中的哪一个,这样能够提高接收设备的处理效率。
在第一方面的某些实施例中,至少一个比特为证实比特和/或不理会比特。
如此,通过证实比特来携带至少一个比特,从而对于第一类设备而言,其可以由于证实比特不等于缺省值而将版本无关中的相关信息传递给MAC层,并终止接收。这样,能够避免第一类设备对其他正常接收设备造成的影响。通过不理会比特来携带至少一个比特,从而对于第一类设备而言,其可以无视该至少一个比特而继续其他接收或处理操作,实现了对第一类设备透明。
在第一方面的某些实施例中,所述A-PPDU还包括第二PPDU,该第二PPDU为高效HE MU PPDU或EHT MU PPDU。
如此,本公开实施例中在进行聚合时,还可以同时兼容HE MU PPDU,进一步实现了对于无线传输带宽的充分利用。
在第一方面的某些实施例中,生成所述A-PPDU包括:所述发送设备基于所述第一PPDU的带宽、所述A-PPDU的总带宽和所述带宽组合中至少一项来生成所述第一PPDU中的长训练字段LTF。
如此,本公开实施例中能够基于更丰富的信息来生成LTF(例如EHT-LTF),这样能够实现对于LTF的优化,而且接收设备也能够基于此进一步降低PAPR。
在第一方面的某些实施例中,生成所述LTF还包括:所述发送设备基于所述A-PPDU中每个PPDU的类型来生成所述LTF。
如此,本公开实施例中在生成LTF(例如EHT-LTF)时进一步考虑A-PPDU中各个PPDU的类型,这样能够实现对于LTF的优化,而且接收设备也能够基于此进一步降低PAPR。
第二方面,提供了一种信息传输的方法。该方法包括:接收设备接收来自发送设备的聚合的物理层协议数据单元A-PPDU中的第一PPDU,所述第一PPDU包括以下至少一项:第一指示信息,用于指示所述第一PPDU的带宽,第二指示信息,用于指示所述A-PPDU的总带宽,或第三指示信息,用于指示所述A-PPDU的带宽组合;以及所述接收设备解析所述第一PPDU。
如此,本公开实施例中,接收设备接收到的第一PPDU可以包括第一指示信息、第二指示信息和第三指示信息中的一项或多项,从而接收设备能够获知更全面的关于带宽的指示信息,进而能够更好地进行一些带外的干扰抑制等,从而增强其接收。
在第二方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第二指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
示例性地,第一PPDU为极高吞吐率EHT多用户MU PPDU,所述第一信令字段为通 用信令字段U-SIG,所述第二信令字段为极高吞吐率信令字段EHT-SIG。相应地,第一指示信息可以承载于第一PPDU的U-SIG的第一个符号的B3-B5中的至少一个比特。第二指示信息可以承载于第一PPDU的以下比特中的至少一个比特:U-SIG的第一个符号的B25,U-SIG的第二个符号的B2,U-SIG的第二个符号的B8,U-SIG的第一个符号的B20-B24,EHT-SIG的B13-B16。
如此,第一PPDU同时包括第一指示信息和第二指示信息,从而接收设备不仅能够获知接收到第一PPDU的带宽,还能够同时获知A-PPDU的总带宽。这样,接收设备能够更好地进行一些带外的干扰抑制等,从而增强其接收。
在第二方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第一指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
示例性地,第一PPDU为EHT MU PPDU,所述第一信令字段为U-SIG,所述第二信令字段为EHT-SIG。相应地,第二指示信息可以承载于第一PPDU的U-SIG的第一个符号的B3-B5中的至少一个比特。第一指示信息可以承载于第一PPDU的以下比特中的至少一个比特:U-SIG的第一个符号的B25,U-SIG的第二个符号的B2,U-SIG的第二个符号的B8,U-SIG的第一个符号的B20-B24,EHT-SIG的B13-B16。
如此,第一PPDU同时包括第一指示信息和第二指示信息,从而接收设备不仅能够获知接收到第一PPDU的带宽,还能够同时获知A-PPDU的总带宽。这样,接收设备能够更好地进行一些带外的干扰抑制等,从而增强其接收。
在第二方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第三指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
示例性地,第一PPDU为EHT MU PPDU,所述第一信令字段为U-SIG,所述第二信令字段为EHT-SIG。相应地,第一指示信息可以承载于第一PPDU的U-SIG的第一个符号的B3-B5中的至少一个比特。第三指示信息可以承载于第一PPDU的以下比特中的至少一个比特:U-SIG的第一个符号的B25,U-SIG的第二个符号的B2,U-SIG的第二个符号的B8,U-SIG的第一个符号的B20-B24,EHT-SIG的B13-B16。
如此,第一PPDU同时包括第一指示信息和第三指示信息,从而接收设备不仅能够获知接收到第一PPDU的带宽,还能够同时获知A-PPDU中其他各个PPDU的带宽。这样,接收设备能够更好地进行一些带外的干扰抑制等,从而增强其接收。
在第二方面的某些实施例中,所述第一PPDU包括所述第二指示信息和所述第三指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
示例性地,第一PPDU为EHT MU PPDU,所述第一信令字段为U-SIG,所述第二信令字段为EHT-SIG。相应地,第二指示信息可以承载于第一PPDU的U-SIG的第一个符号的B3-B5中的至少一个比特。第三指示信息可以承载于第一PPDU的以下比特中的至少一个比特:U-SIG的第一个符号的B25,U-SIG的第二个符号的B2,U-SIG的第二个符号的B8,U-SIG的第一个符号的B20-B24,EHT-SIG的B13-B16。
如此,第一PPDU同时包括第二指示信息和第三指示信息,从而接收设备不仅能够获知 A-PPDU的总带宽,还能够同时获知A-PPDU中各个PPDU的带宽。这样,接收设备能够更好地进行一些带外的干扰抑制等,从而增强其接收。
在第二方面的某些实施例中,第三指示信息所指示的带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
如此,通过按照频率升序或降序的方式来排列带宽组合中的各个带宽,这样可以不需要再额外指示第一PPDU的带宽,减小信令开销。并且,接收设备能够从带宽组合中基于其所停靠的频率快速准确地确定其自己接收到的PPDU的带宽,提高接收设备的处理效率。
在第二方面的某些实施例中,所述第一PPDU的第一信令字段和/或第二信令字段中的至少一个比特用于指示所述第一PPDU被聚合在所述A-PPDU中。
如此,通过使用至少一个比特指示第一PPDU是被聚合在A-PPDU中的,从而接收设备能够获知发送设备发送第一PPDU的方式,并且接收设备能够基于该至少一个比特快速地确定某些特定字段所携带的指示信息是第一指示信息、第二指示信息、第三指示信息中的哪一个,这样能够提高接收设备的处理效率。
在第二面的某些实施例中,至少一个比特为证实比特和/或不理会比特。
如此,通过证实比特来携带至少一个比特,从而对于第一类设备而言,其可以由于证实比特不等于缺省值而将版本无关中的相关信息传递给MAC层,并终止接收。这样,能够避免第一类设备对其他正常接收设备造成的影响。通过不理会比特来携带至少一个比特,从而对于第一类设备而言,其可以无视该至少一个比特而继续其他接收或处理操作,实现了对第一类设备透明。
在第二方面的某些实施例中,所述A-PPDU还包括第二PPDU,该第二PPDU为高效HE MU PPDU或EHT MU PPDU。
如此,本公开实施例中在进行聚合时,还可以同时兼容HE MU PPDU,进一步实现了对于无线传输带宽的充分利用。
在第二方面的某些实施例中,还包括:所述接收设备基于所述带宽、所述总带宽和所述带宽组合中的至少一项确定所述第一PPDU中的长训练字段LTF;所述接收设备基于所述LTF进行信道估计。
在第二方面的某些实施例中,其中所述接收设备基于所述带宽、所述总带宽和所述带宽组合中的至少一项确定所述第一PPDU中的所述LTF还包括:所述接收设备基于所述A-PPDU中每个PPDU的类型来确定所述LTF。
如此,本公开实施例中接收设备能够基于更丰富的信息来确定LTF(例如EHT-LTF),这样能够实现对于LTF的优化,也能够基于此进一步降低PAPR。
第三方面,提供了一种信息传输的装置。该装置可以包括:生成单元,被配置为基于至少两个物理层协议数据单元PPDU而生成聚合的物理层协议数据单元A-PPDU,所述A-PPDU中的第一PPDU包括以下至少一项:第一指示信息,用于指示所述第一PPDU的带宽,第二指示信息,用于指示所述A-PPDU的总带宽,或第三指示信息,用于指示所述A-PPDU的带宽组合;以及发送单元,被配置为向接收设备发送所述A-PPDU。
在第三方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第二指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第三方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第一指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第三方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第三指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第三方面的某些实施例中,所述第一PPDU包括所述第二指示信息和所述第三指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第三方面的某些实施例中,第三指示信息所指示的带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
在第三方面的某些实施例中,所述第一PPDU的第一信令字段和/或第二信令字段中的至少一个比特用于指示所述第一PPDU被聚合在所述A-PPDU中。
在第三方面的某些实施例中,至少一个比特为证实比特和/或不理会比特。
在第三方面的某些实施例中,第一PPDU为EHT MU PPDU,所述第一信令字段为U-SIG,所述第二信令字段为EHT-SIG。
在第三方面的某些实施例中,所述A-PPDU还包括第二PPDU,该第二PPDU为HE MU PPDU或EHT MU PPDU。
在第三方面的某些实施例中,所述生成单元被配置为:基于所述第一PPDU的带宽、所述A-PPDU的总带宽和所述带宽组合中至少一项来生成所述第一PPDU中的LTF。
在第三方面的某些实施例中,所述生成单元被配置为:还基于所述A-PPDU中每个PPDU的类型来生成所述LTF。
第三方面或其任一实施例的信息传输的装置可以被实现在发送设备处,如可以被实现在AP或STA处。
第四方面,提供了一种信息传输的装置。该装置包括:接收单元,被配置为接收来自发送设备的聚合的物理层协议数据单元A-PPDU中的第一PPDU,所述第一PPDU包括以下至少一项:第一指示信息,用于指示所述第一PPDU的带宽,第二指示信息,用于指示所述A-PPDU的总带宽,或第三指示信息,用于指示所述A-PPDU的带宽组合;以及解析单元,被配置为解析所述第一PPDU。
在第四方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第二指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第四方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第一指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第四方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第三指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第四方面的某些实施例中,所述第一PPDU包括所述第二指示信息和所述第三指示信 息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第四方面的某些实施例中,第三指示信息所指示的带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
在第四方面的某些实施例中,所述第一PPDU的第一信令字段和/或第二信令字段中的至少一个比特用于指示所述第一PPDU被聚合在所述A-PPDU中。
在第四方面的某些实施例中,至少一个比特为证实比特和/或不理会比特。
在第四方面的某些实施例中,第一PPDU为EHT MU PPDU,所述第一信令字段为U-SIG,所述第二信令字段为EHT-SIG。
在第四方面的某些实施例中,所述A-PPDU还包括第二PPDU,该第二PPDU为HE MU PPDU或EHT MU PPDU。
在第四方面的某些实施例中,还包括处理单元被配置为:基于所述带宽、所述总带宽和所述带宽组合中的至少一项确定所述第一PPDU中的长训练字段LTF;基于所述LTF进行信道估计。
在第四方面的某些实施例中,其中所述处理单元被配置为:还基于所述A-PPDU中每个PPDU的类型来确定所述LTF。
第四方面或其任一实施例的信息传输的装置可以被实现在接收设备处,如可以被实现在AP或STA处。
第五方面,提供了一种信息传输的装置。该装置包括处理器以及存储器,所述存储器上存储有由所述处理器执行的指令,当所述指令被所述处理器执行时使得所述装置实现:基于至少两个物理层协议数据单元PPDU而生成聚合的物理层协议数据单元A-PPDU,所述A-PPDU中的第一PPDU包括以下至少一项:第一指示信息,用于指示所述第一PPDU的带宽,第二指示信息,用于指示所述A-PPDU的总带宽,或第三指示信息,用于指示所述A-PPDU的带宽组合;以及向接收设备发送所述A-PPDU。
在第五方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第二指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第五方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第一指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第五方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第三指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第五方面的某些实施例中,所述第一PPDU包括所述第二指示信息和所述第三指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第五方面的某些实施例中,第三指示信息所指示的带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
在第五方面的某些实施例中,所述第一PPDU的第一信令字段和/或第二信令字段中的 至少一个比特用于指示所述第一PPDU被聚合在所述A-PPDU中。
在第五方面的某些实施例中,至少一个比特为证实比特和/或不理会比特。
在第五方面的某些实施例中,第一PPDU为EHT MU PPDU,所述第一信令字段为U-SIG,所述第二信令字段为EHT-SIG。
在第五方面的某些实施例中,所述A-PPDU还包括第二PPDU,该第二PPDU为高效HE MU PPDU或EHT MU PPDU。
在第五方面的某些实施例中,所述处理器执行所述指令,使得所述装置实现:基于所述第一PPDU的带宽、所述A-PPDU的总带宽和所述带宽组合中至少一项来生成所述第一PPDU中的LTF。
在第五方面的某些实施例中,所述处理器执行所述指令,使得所述装置实现:还基于所述A-PPDU中每个PPDU的类型来生成所述LTF。
第六方面,提供了一种信息传输的装置。该装置包括处理器以及存储器,所述存储器上存储有由所述处理器执行的指令,当所述指令被所述处理器执行时使得所述装置实现:接收来自发送设备的聚合的物理层协议数据单元A-PPDU中的第一PPDU,所述第一PPDU包括以下至少一项:第一指示信息,用于指示所述第一PPDU的带宽,第二指示信息,用于指示所述A-PPDU的总带宽,或第三指示信息,用于指示所述A-PPDU的带宽组合;以及解析所述第一PPDU。
在第六方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第二指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第六方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第一指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第六方面的某些实施例中,所述第一PPDU包括所述第一指示信息和所述第三指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第六方面的某些实施例中,所述第一PPDU包括所述第二指示信息和所述第三指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
在第六方面的某些实施例中,第三指示信息所指示的带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
在第六方面的某些实施例中,所述第一PPDU的第一信令字段和/或第二信令字段中的至少一个比特用于指示所述第一PPDU被聚合在所述A-PPDU中。
在第六方面的某些实施例中,至少一个比特为证实比特和/或不理会比特。
在第六方面的某些实施例中,第一PPDU为EHT MU PPDU,所述第一信令字段为U-SIG,所述第二信令字段为EHT-SIG。
在第六方面的某些实施例中,所述A-PPDU还包括第二PPDU,该第二PPDU为高效HE MU PPDU或EHT MU PPDU。
在第六方面的某些实施例中,所述处理器执行所述指令,使得所述装置实现:基于所述 带宽、所述总带宽和所述带宽组合中的至少一项确定所述第一PPDU中的长训练字段LTF;基于所述LTF进行信道估计。
在第六方面的某些实施例中,所述处理器执行所述指令,使得所述装置实现:还基于所述A-PPDU中每个PPDU的类型来确定所述LTF。
上述第三方面至第六方面提供的信息传输的装置,任一方面或其任一实现方式及其所能实现的有益效果均可以参考对应的第一方面或第二方面提供的信息传输的方法的任一方面或其任一实现方式及其所能实现的有益效果,在此不再赘述。
第七方面,提供了一种接入点。该接入点(AP)包括如上第三方面至第六方面任一方面或其任一实现方式所述的信息传输的装置。
第八方面,提供了一种站点。该站点(STA)包括如上第三方面至第六方面任一方面或其任一实现方式所述的信息传输的装置。
第九方面,提供了计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现根据上述第一方面或第二方面的任一实施例中的信息传输的方法的操作。
第十方面,提供了一种芯片或芯片系统。该芯片或芯片系统包括一个或多个处理电路,其中,所述一个或多个处理电路用于实现上述第一方面或第二方面的任一实施例中的信息传输的方法的操作。
第十一方面,提供了一种计算机程序或计算机程序产品。该计算机程序或计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,计算机可执行指令在被执行时使设备实现根据上述第一方面或第二方面的任一实施例中的信息传输的方法的操作。
第十二方面,提供了一种无线通信系统。该系统包括发送设备和接收设备。发送设备可以实现根据上述第一方面的任一实施例中的信息传输的方法的操作,接收设备可以实现根据上述第二方面的任一实施例中的信息传输的方法的操作。
第十三方面,提供了一种无线通信系统,该系统包括至少一个AP和至少一个STA。任一AP或任一STA可以实现根据上述第一方面或第二方面的任一实施例中的信息传输的方法的操作。
附图说明
图1示出了本公开实施例提供的一种通信系统100的示意图;
图2示出了本公开实施例提供的另一种通信系统200的示意图;
图3示出了本公开实施例提供的一种HE MU PPDU的格式300的示意图;
图4示出了本公开实施例提供的一种EHT MU PPDU的格式400的示意图;
图5示出了本公开实施例提供的一种EHT+MU PPDU的格式500的示意图;
图6示出了本公开实施例提供的一种带宽的信道划分600的示意图;
图7示出了本公开实施例提供的一种数据传输的方法700的流程示意图;
图8示出了本公开实施例提供的一种A-PPDU的格式800的示意图;
图9示出了本公开实施例提供的另一种A-PPDU的格式900的示意图;
图10示出了本公开实施例提供的另一种A-PPDU的格式1000的示意图;
图11示出了本公开实施例提供的另一种A-PPDU的格式1100的示意图;
图12示出了本公开实施例提供的另一种A-PPDU的格式1200的示意图;
图13示出了本公开实施例提供的另一种A-PPDU的格式1300的示意图;
图14示出了本公开实施例提供的另一种A-PPDU的格式1400的示意图;
图15示出了本公开实施例提供的另一种数据传输的方法1500的流程示意图;
图16示出了本公开实施例提供的一种数据传输的装置1600的示意图;
图17示出了本公开实施例提供的另一种数据传输的装置1700的示意图;
图18示出了本公开实施例提供的另一种数据传输的装置1800的示意图。
具体实施方式
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
在本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
本公开实施例可以应用于无线通信系统,例如为广域网系统或者为无线局域网(WLAN)系统。该无线通信系统可以支持多种WLAN通信协议,例如电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11系列协议中的802.11ac/802.11ax/802.11be或者未来IEEE 802.11系列中任意一种协议。为描述方便,本公开实施例以WLAN为例进行说明。WLAN中可以包括多个基本服务集(Basic Service Set,BSS),基本服务集的节点包括接入点类的站点和非接入点类的站点(Non Access Point Station,Non-AP STA),其中,接入点类的站点通常简称为接入点(Access Point,AP),非接入点类的站点通常简称为站点(Station,STA)。每个基本服务集可以包含一个AP和关联于该AP的一个或多个STA。接入点为具有无线收发功能的装置,可以为站点提供服务。站点为具有无线收发功能的装置,可以基于接入点接入无线局域网。本公开实施例可以被实现在接入点(AP),AP也可称为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网络和无线网络的桥梁,其主要作用是将各个STA连接到一起,然后将无线网络接入有线网络。可选地,AP可以是带有无线保真(Wireless Fidelity,Wi-Fi)芯片的终端设备或者网络设备,例如,AP可以是通信服务器、路由器、交换机或网桥等。可选地,AP可以为支持当前网络系统或者未来网络系统下802.11制式的设备。
本公开实施例可以被实现在站点(STA),STA可以是无线通信芯片、无线传感器或无线通信终端。例如,STA也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。STA可以为无线通信芯片、无线传感器或无线通信终端。例如STA为支持Wi-Fi通信功能的移动电话、支持Wi-Fi通信功能的平板电脑、支持Wi-Fi通信功能的机顶盒、支持Wi-Fi通信功能的智能电视、支持Wi-Fi通信功能的智能可穿戴设备、支持Wi-Fi通信功能的车载通信设备和支持Wi-Fi通信功能的计算机等。可选地,STA可以支持当前网络系统或者未来网络系统下802.11制式的设备。
图1示出了本公开实施例提供的一种通信系统100的示意图。如图1所示,该数据传输的系统包括发送设备101和接收设备102,发送设备101和接收设备102之间可以通过无线网络进行通信。
图1中所示的发送设备101可以为AP或STA,接收设备102可以为AP或STA。并且可理解,尽管图1中仅示出了单个发送设备101和单个接收设备102,但是本公开对此不限定,例如,系统100可以包括多个接收设备102,并且发送设备101可以与多个接收设备102进行通信,或其他场景等,本公开中不再罗列。
图2示出了本公开实施例提供的另一种通信系统200的示意图。图2示出了两个AP,即AP 201和AP 202。图2还示出了三个用户站点,即STA 221、STA 222和STA 223。AP与AP、AP与STA、STA与STA之间可以通过各种标准进行无线通信。本公开的实施例可以应用在AP与AP之间的通信、STA与STA之间的通信以及AP与STA之间的通信。例如,结合图2,可以是AP 201与AP202之间的通信,可以是STA 222与STA 223之间的通信,可以是AP 201与STA 221之间的通信或者AP 201与STA 223之间的通信等。应注意,图2仅是示意性的,例如,在一些实施例中,AP 202也可以与STA 221、STA 222和STA 223中的至少一个通信。例如,在一些实施例中,STA 221也可以与STA 222和/或STA 223通信。
为了便于描述,以下将AP 201和AP 202统称为AP 20,并且以下将STA 221、STA 222和STA 223统称为STA 22。
还应理解的是,图1和图2只是示意图,系统100和系统200中还可以包括其它网络设备或者终端设备,如还可以包括无线中继设备和无线回传设备等。另外,本公开实施例对该系统100所包括的发送设备101和接收设备102的数量、系统200所包括的AP 20和STA 22的数量不作限定。
WLAN的802.11ax所支持的4种PPDU格式和802.11be中定义的2种PPDU格式如下表1所示。
表1
Figure PCTCN2022085943-appb-000001
应理解的是,HE SU PPDU(High Efficient Single User Physical Layer Protocol Data Unit)可以用于AP 20与STA 22之间的点对点的传输。HE MU PPDU(High Efficient Multiple User Physical Layer Protocol Data Unit)可以用于AP 20与多个STA 22之间的多用户传输,另外也可以用于AP 20与单个STA 22之间的传输。示例性地,HE MU PPDU的格式可以如图3所示。
图3示出了本公开实施例提供的一种HE MU PPDU的格式300的示意图。如图3所示,格式300包括:传统短训练字段(Legacy-Short Training Field,L-STF)301、传统长训练字段(Legacy-Long Training Field,L-LTF)302、传统信令字段(Legacy-Signal,L-SIG)303、传统信令字段重复(repeated legacy-signal,RL-SIG)304、高效信令字段A(High Efficient Signal  Field-A,HE-SIG-A)305、高效信令字段B(High Efficient Signal Field-B,HE-SIG-B)306、高效短训练字段(High Efficient Short Training Field,HE-STF)307、高效长训练字段(High Efficient Long Training Field,HE-LTF)308。在数据字段(Data)309后,还包括数据包分组扩展(Packet Extension,PE)310。
示例性地,L-STF 301可以用于PPDU的发现,粗同步,自动增益控制等。L-LTF 302可以用于精同步,信道估计等。L-SIG 303可以用于携带PPDU长度相关的信令信息,保证共存等。RL-SIG 304用于表示对L-SIG 303的重复。HE-SIG-A 305可以用于携带用于解调HE-SIG-B和后续数据所需的信令等。HE-SIG-B 306可以用于携带用于解调后续数据的信令,主要包含资源单元指示信息等。HE-STF 307可以用于后续字段的自动增益控制等。HE-LTF 308可以用于信道估计等。Data 309可以用于承载数据信息。PE 310可以用于帮助接收设备获得更多处理时间等。
类似地,802.11be中所定义的EHT MU PPDU可以用于一个或多个AP 20与一个或多个STA 22之间的传输。示例性地,EHT MU PPDU的格式可以如图4所示。
图4示出了本公开实施例提供的一种EHT MU PPDU的格式400的示意图。如图4所示,格式400包括:传统短训练字段(Legacy-Short Training Field,L-STF)401、传统长训练字段(Legacy-Long Training Field,L-LTF)402、传统信令字段(Legacy-Signal,L-SIG)403、传统信令字段重复(repeated legacy-signal,RL-SIG)404、通用信令字段(Universal SIG,U-SIG)405、极高吞吐率信令字段(Extremely High Throughput Signal Field,EHT-SIG)406、极高吞吐率短训练字段(Extremely High Throughput Short Training Field,EHT-STF)407、极高吞吐率长训练字段(Extremely High Throughput Long Training Field,EHT-LTF)408。在数据字段(Data)409后,还包括数据包分组扩展(Packet Extension,PE)410。
示例性地,L-STF 401可以用于PPDU的发现,粗同步,自动增益控制等。L-LTF 402可以用于精同步,信道估计等。L-SIG 403可以用于携带PPDU长度相关的信令信息,保证共存等。RL-SIG 404用于表示对L-SIG 403的重复。U-SIG 405是从EHT开始所采用的通用的信令字段。EHT-SIG 406可以用于携带用于解调后续数据的信令,主要包含资源单元指示信息等。EHT-STF 407可以用于后续字段的自动增益控制等。EHT-LTF 408可以用于信道估计等。Data 409可以用于承载数据信息。PE 410可以用于帮助接收设备获得更多处理时间等。
在一些实施例中,U-SIG 405可以包括两个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,每个符号包括26个比特。U-SIG 405的第一个符号(U-SIG-1)所包括的26个比特(B0至B25)所指示的内容可以参见下面的表2,U-SIG 405的第二个符号(U-SIG-2)所包括的26个比特(B0至B25)所指示的内容可以参见下面的表3。
表2
Figure PCTCN2022085943-appb-000002
Figure PCTCN2022085943-appb-000003
表3
Figure PCTCN2022085943-appb-000004
Figure PCTCN2022085943-appb-000005
示例性地,上下行字段(U-SIG-1的B6)和PPDU类型和压缩模式字段(U-SIG-2的B0-B1)的具体指示见下面的表4所示。
表4
Figure PCTCN2022085943-appb-000006
Figure PCTCN2022085943-appb-000007
结合上述表2和表3,U-SIG 405包括带宽(BW),位于U-SIG-1的B3-B5。U-SIG 405包括证实(Validate)比特,位于U-SIG-1的B25以及U-SIG-2的B2和B8。U-SIG 405包括不理会(Disregard)比特,位于U-SIG-1的B20-B24。可选的,本公开中比特位也可以称之为字段,在此不做限制。
示例性地,EHT-SIG 406可以包括空间复用,GI(GI:Guard Interval,保护间隔)+EHT-LTF尺寸,EHT-LTF符号数,等等。EHT-SIG 406还包括不理会(Disregard)比特或字段,位于EHT-SIG 406的B13-B16。
类似地,可以定义EHT+PPDU为802.11be之后的PPDU的总称。可理解,EHT+是对于802.11be之后可能出现的代号的总称,例如可能为802.11bx,802.11cx等,本公开中对此不作限定。其中,EHT+MU PPDU可以是EHT+PPDU的一种格式,也可以用于一个或多个AP 20与一个或多个STA 22之间的传输。示例性地,EHT+MU PPDU的格式可以如图5所示。
图5示出了本公开实施例提供的一种EHT+MU PPDU的格式500的示意图。如图5所示,格式500包括:传统短训练字段(Legacy-Short Training Field,L-STF)501、传统长训练字段(Legacy-Long Training Field,L-LTF)502、传统信令字段(Legacy-Signal,L-SIG)503、传统信令字段重复(repeated legacy-signal,RL-SIG)504、通用信令字段(Universal SIG,U-SIG)505、演进的极高吞吐率信令字段(EHT+-SIG)506、演进的极高吞吐率短训练字段(EHT+-STF)507、演进的极高吞吐率长训练字段(EHT+-LTF)508。在数据字段(Data)509后,还包括数据包分组扩展(Packet Extension,PE)510。
示例性地,图5中的501至510可以与图4中的401至410分别具有类似的含义,区别主要在于图4中是EHT,图5中是EHT+。为了简洁,这里不再重复。
具体而言,在物理层前导码中信令字段里的保留/未用比特(reserved bits)或者某个(子)字段的保留/未用的状态(条目)分为两种,分别为不理会(Disregard)和证实(Validate)。并且,一般地,对于证实(Validate)被预先设定有缺省值(或默认值)。在一些实施例中,该缺省值(或默认值)可以为1。
802.11be标准的第一个版本(Release 1,R1)中涉及一些基本特性,相应地,可以将支持第一个版本的设备称为实现了EHT基本特性的设备,可以利用管理信息库中的属性值进行标识,例如可以将仅点11EHT基线特征实现的(dot11EHTBaseLineFeaturesImplementedOnly) 标识为1来表示为实现了EHT基本特性的设备。可以将第一个版本的设备之后的其他设备称为非实现了EHT基本特性的设备,或者也可以称为实现了EHT进阶特性的设备,类似地也可以利用管理信息库中的属性值进行标识,例如可以将仅点11EHT基线特征实现的(dot11EHTBaseLineFeaturesImplementedOnly)标识为0来表示为非实现了EHT基本特性的设备。为了简化描述,本公开实施例中将实现了EHT基本特性的设备称为第一类设备,将非实现了EHT基本特性的设备称为第二类设备。
对于第一类设备(实现了EHT基本特性的设备)而言,如果其发现PPDU内的证实(Validate)比特未被设置为缺省值(或默认值)或者某些子字段的值被设置成证实(Validate)状态,则需要一直等到该PPDU结束(defer for the duration of the PPDU),把版本无关中的相关信息传递给媒体介入控制(Medium access Control,MAC)层,用来保证共存,并且终止该PPDU的接收。而对于不理会(Disregard)比特或者被设置成不理会状态的子字段,如果没有发现“证实(Validate)比特未被设置为缺省值(或默认值)或者某些子字段的值被设置成证实(Validate)状态”,则会忽略不理会比特或者忽略某个被设置成不理会状态的子字段,继续读取其他字段。
结合上述的描述,在U-SIG 405中存在5比特不理会和3比特证实,另外在EHT-SIG 406包括4比特不理会。在上/下行子字段和PPDU类型和压缩模式子字段的联合指示(参见表4)中,存在证实状态。当其中任意1个证实比特被设置成非缺省值时,则接收设备会等到该PPDU结束,把版本无关中的相关信息传递给MAC层,用来保证共存,终止该PPDU的接收。同样,当上下行子字段和PPDU类型和压缩模式子字段的联合指示为证实状态时,则接收设备同样会等到该PPDU结束,把版本无关中的相关信息传递给MAC层,用来保证共存,终止该PPDU的接收。而任意不理会比特无论被设置成什么值,如果该PPDU中不存在非缺省值的证实比特以及证实状态,则接收设备会忽略该不理会比特或者该不理会子字段,继续接收其他字段。
随着WLAN 802.11的演进,其允许传输的带宽也逐渐发生了变化。802.11a/g标准允许传输的带宽为20MHz,802.11n标准允许传输的带宽为20MHz或40MHz,802.11ax允许传输的带宽为20MHz,40MHz,80MHz或160MHz,802.11be标准支持的带宽被扩展到320MHz,从而能显著提升峰值吞吐率,进一步提升传输速率。
在WLAN中,信道通常分为主信道和从信道。在整个带宽范围内,AP 20会选取一个20MHz信道为主信道。包含该主信道的80MHz信道会被称之为主80MHz信道,其他80MHz信道为非主80Mhz信道。包含该主信道的160MHz信道被称之为主160MHz信道,另外一个160MHz信道为非主160MHz信道,或者次160MHz信道。示例性地,主80MHz信道(或者主160MHz信道)的位置可以是AP 20在建立基本服务集(BSS)时所选择的,AP 20可以通过信标帧以广播的形式进行发送,以通知所有的STA 22。
可见,随着所支持的带宽被进一步扩展,一般地,单个PPDU的带宽可能小于可用带宽,因此将多个PPDU进行聚合可以实现频域上带宽的充分利用。
图6示出了本公开实施例提供的一种带宽的信道划分600的示意图。具体的,图6中示出的是非授权国际信息基础设施(the Unlicensed National Information Infrastructure,U-NII)无线电频带(radio band)在6GHz频段中的信道划分。图6中示出了80MHz 610,160MHz 620,320MHz-1 630和320MHz-2 640。可理解的是,为了有效利用信道,被设计有两种320MHz 信道,分别是信道中心频率为31/95/159的320MHz-1和中心频率为63/127/191的320MHz-2,在图6中分别示出为630和640。
应注意,图6仅示出了在6GHz频段中的信道划分600,该示意图仅是作为一个示例,不是对本公开实施例的场景限定。尽管本公开一些实施例结合图6中所示的信道划分600,但是应理解,本公开实施例也可以结合不同于图6的其他的信道划分,此处不再赘述。
目前数据传输是通过PPDU进行的,并且一次只能传输一个PPDU。这样的传输方式效率过低。本公开实施例提供了一种信息传输的方法,该方法将至少两个PPDU聚合为A-PPDU再发送,这样能够充分地利用传输带宽,减少发送的次数,传输效率更高。下面将具体将结合图7至图15进行阐述。
图7示出了本公开实施例提供的一种数据传输的方法700的流程示意图。图7中的方法700涉及发送设备101和接收设备102。
在图7所示的方法700中,发送设备101可以基于至少两个PPDU而生成(710)A-PPDU,该A-PPDU包括第一PPDU。发送设备101向接收设备102发送(720)A-PPDU。接收设备102解析(730)A-PPDU中的第一PPDU。
在方法700中,发送设备101可以基于至少两个PPDU而生成710聚合的物理层协议数据单元(A-PPDU),该A-PPDU中第一PPDU包括以下至少一项:第一指示信息,用于指示第一PPDU的带宽;第二指示信息,用于指示A-PPDU的总带宽;或第三指示信息,用于指示A-PPDU的带宽组合。
具体而言,发送设备101可以在频域上将至少两个PPDU进行聚合,从而生成频域上聚合的物理层协议数据单元(Frequency Domain Aggregated PPDU,A-PPDU)。A-PPDU可以包括一个或多个第一PPDU。
在一些实施例中,也将A-PPDU所包括的第一PPDU称为第一子PPDU(sub PPDU),以此称呼来体现是A-PPDU的一部分。相应地,PPDU的带宽(Bandwidth,BW)也可以称为子带宽(sub-BW)。为了描述的方便,下文中不再区分PPDU与子PPDU,也就是说,在下文中第一PPDU和第一子PPDU可以表示相同的概念。
为了实现信息传输,可理解,A-PPDU的总带宽不大于总的可用带宽,在图6的场景下,可用带宽为320MHz。但是可理解,在其他场景下,可用带宽可以为其他值,例如在未来可能发展的演进的极高吞吐率中可能将可用带宽进一步扩展到更大,480MHz、640MHz或其他值等。
本公开实施例中,第一PPDU可以为EHT MU PPDU或EHT+MU PPDU。以第一PPDU是EHT MU PPDU为例,其可以具有如图4所示的格式400。以第一PPDU是EHT+MU PPDU为例,其可以具有如图5所示的格式500。可理解的是,EHT+是对于802.11be之后可能出现的代号的总称,例如可能为802.11bx,802.11cx等,本公开中对此不作限定。
本公开实施例中,A-PPDU还可以包括第二PPDU,其中第二PPDU的数量可以为零个、一个或多个。第二PPDU可以为HE MU PPDU、EHT MU PPDU或EHT+MU PPDU中的任一种。假如第二PPDU是HE MU PPDU,则其可以具有如图3所示的格式300。假如第二PPDU是EHT MU PPDU,则其可以具有如图4所示的格式400。假如第二PPDU是EHT+MU PPDU,则其可以具有如图5所示的格式500。
也就是说,A-PPDU可以包括第一PPDU和第二PPDU,第一PPDU的数量可以为一个 或多个,第二PPDU的数量可以为0个或1个或多个。可选地,第二PPDU的类型可以为HE MU PPDU。或者可选地,第二PPDU的类型可以为EHT MU PPDU或EHT+MU PPDU等,第二PPDU可以具有与第一PPDU不同的格式。举例来讲,第一PPDU包括第二指示信息,而第二PPDU不包括第二指示信息。再举例来讲,第一PPDU包括第三指示信息,而第二PPDU不包括第三指示信息。可理解,这里的举例仅是示意,只是为了解释第一PPDU和第二PPDU的格式区别,不应作为对本公开实施例的限制。
可理解,在710处,发送设备101可以将至少两个PPDU进行聚合,被聚合的PPDU的数量大于或等于2,例如可以假设将N个PPDU进行聚合以生成A-PPDU。并且,N个PPDU中至多有N-1个PPDU是HE MU PPDU。本公开中的第一PPDU可以是N个PPDU中除去HE MU PPDU之外的任意一个PPDU。也就是说,本公开实施例中的第一PPDU可以被理解为是A-PPDU中所包含的非HE MU PPDU的任一个,本公开中不再赘述。
以下将主要阐述第一PPDU包括指示信息的实施例,可理解的是,如果第二PPDU为EHT MU PPDU或EHT+MU PPDU,则第二PPDU也类似地包括指示信息。也就是说,在一些示例中,A-PPDU中全部或部分的PPDU可以包括指示信息,与第一PPDU类似。或者,在一些示例中,A-PPDU中每一个非HE的PPDU都可以包括指示信息,与第一PPDU类似。并且,下文的描述中以第一PPDU的类型是EHT MU PPDU为例进行阐述,可理解,第一PPDU的类型也可以是EHT+MU PPDU,EHT++MU PPDU,等等,本公开不再针对其他类型进行详细阐述。
在一种实现方式中,第一PPDU可以包括第一指示信息,第一指示信息可以用于指示第一PPDU的带宽。
第一指示信息可以被承载于第一PPDU的第一信令字段。示例性地,第一信令字段可以为U-SIG。具体的,第一指示信息可以被承载于第一PPDU的U-SIG的带宽字段(BW)。也就是说,第一指示信息可以被承载于第一PPDU的U-SIG字段的第一个符号(U-SIG-1)的第4个比特至第6个比特(B3-B5)中的至少一个比特。
举例来讲,可以使用B3-B4或B4-B5两个比特来承载第一指示信息,例如“0”代表20MHz,“1”代表40MHz,“2”代表80MHz,“3”代表160MHz,或者其他方式。再举例来讲,可以使用B3-B5三个比特来承载第一指示信息,例如“0”代表20MHz,“1”代表40MHz,“2”代表80MHz,“3”代表160MHz,“4”代表320MHz-1,“5”代表320MHz-2,或者其他方式。可理解,这些示例只是示意性的,不应解释为本公开实施例的限制。
在该实现方式中,还可以包括根据该第一指示信息生成长训练字段(Long Training Field,LTF)。具体的,可以基于第一PPDU的带宽生成第一PPDU的长训练字段。在第一指示信息被承载于U-SIG的BW字段的示例中,可以基于BW字段来生成EHT-LTF 408。
EHT-LTF 408主要用于信道估计,会携带预先规定(接收设备已知)的序列,用于接收设备102进行信道估计。
接收设备102接收到信号后,对于每个子载波,可以利用收到的信号除以已知的序列,从而获得信道值。由于OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号是由多个独立经过调制的子载波信号叠加而成的,当各个子载波相位相同或者相近时,叠加信号便会受到相同初始相位信号的调制,从而产生较大的瞬时功率峰值,由此进一步带来较高的峰均功率比(Peak-to-Average Power Ratio,PAPR)。由于一般的功率放大器的动态 范围都是有限的,所以PAPR比较大的信号极易进入功率放大器的非线性区域,导致信号产生非线性失真,造成明显的频谱扩展干扰以及带内信号畸变,导致整个系统性能严重下降。高PAPR已成为OFDM的一个主要技术阻碍。
本公开实施例中,根据PPDU带宽的不同,可以设计不同的EHT-LTF序列,用来在不同的带宽情况下去优化PAPR。此外,EHT-LTF 408字段的符号去除保护间隔一般具有三种尺寸(3.2微秒,6.4微秒,12.8微秒),分别被称作1x/2x/4x EHT-LTF。EHT-LTF序列是由1,-1,0组成的序列,具体的序列形式这里不再赘述。在一些示例中,第一指示信息为U-SIG-1的BW字段(B3-B5比特)的“0”-“5”,依次表示第一PPDU的带宽为20MHz,40MHz,80MHz,160MHz,320MHz-1,320MHz-2。相应地,根据带宽所生成的不同的EHT-LTF序列可以是:
(1)BW字段指示为4或者5(PPDU BW为320MHz-1或者320MHz-2)时,EHT-LTF序列可以是以下任一:EHTLTF 320MHz_1x,EHTLTF 320MHz_2x,EHTLTF 320MHz_4x
(2)BW字段指示为3(PPDU BW为160MHz)时,EHT-LTF序列可以是以下任一:EHTLTF 160MHz_1x,EHTLTF 160MHz_2x,EHTLTF 160MHz_4x
(3)BW字段指示为2(PPDU BW为80MHz)时,EHT-LTF序列可以是以下任一:EHTLTF 80MHz_1x,EHTLTF 80MHz_2x,EHTLTF 80MHz_4x
(4)BW字段指示为1(PPDU BW为40MHz)时,EHT-LTF序列可以是以下任一:EHTLTF 40MHz_1x,EHTLTF 40MHz_2x,EHTLTF 40MHz_4x
(5)BW字段指示为0(PPDU BW为20MHz)时,EHT-LTF序列可以是以下任一:EHTLTF 20MHz_1x,EHTLTF 20MHz_2x,EHTLTF 20MHz_4x
在某一带宽下,选取1x/2x/4x EHT-LTF尺寸,是对信道估计准确性和开销的一种权衡,取决于传输方式,信道环境等,本公开实施例对此不做限制。另外,应注意,上面是示例性而非穷举性列举,也可以包括其他的EHT-LTF序列,本公开不再一一罗列。
图8示出了本公开实施例提供的一种A-PPDU的格式800的示意图。在图8的格式800中,A-PPDU包括4个子PPDU,分别为PPDU 810,PPDU 820,PPDU 830,PPDU 840。格式800中,PPDU 810的类型为HE MU PPDU。PPDU 820,PPDU 830和PPDU 840的类型为EHT MU PPDU。
格式800中,PPDU 810的格式类似于上述图3中的格式300。PPDU 820,PPDU 830和PPDU 840的格式类似于上述图4中的格式400。PPDU 820,PPDU 830和PPDU 840中的每个的U-SIG字段,均通过“BW=80MHz”来指示其各自的带宽为80MHz。PPDU 820,PPDU 830和PPDU 840中的每个的EHT-LTF字段,均通过“EHTLTF 80MHz_4x”来指示对应的EHT-LTF序列。
应理解的是,图8仅是示意性的,例如可以包括更少数量的PPDU,如可以不包括PPDU 810,如可以包括PPDU 820,PPDU 830和PPDU 840中的一个或两个以及PPDU 810。另外,图8中的EHT MU PPDU类型可以被替换为EHT+MU PPDU或EHT++MU PPDU等。区别主要在于物理层版本不同,例如物理层版本1表示EHT+,2表示EHT++等;或其他形式。本公开对此不限定。
通过该实现方式,A-PPDU中的PPDU与单个的PPDU是一致的,从而对于接收设备而言,其接收到A-PPDU和接收到单个的PPDU也将是相同的,如此能够简化接收设备的处理,无需额外的操作时间,节省接收设备的功耗等。具体地,本实现方式中,通过U-SIG的BW 来指示第一PPDU的带宽,并基于第一PPDU的带宽生成EHT-LTF,这样针对A-PPDU和单个PPDU两种发送方式,实现了对于第一PPDU的接收流程(包括EHT-LTF序列选择)的统一。
在另一种实现方式中,第一PPDU包括第一指示信息和第二指示信息。第一指示信息用于指示第一PPDU的带宽,第二指示信息用于指示A-PPDU的总带宽。本公开实施例中,A-PPDU的总带宽也可以被称为聚合带宽(A-BW),本公开对此不限定。
在一些实施例中,第一PPDU包括第一指示信息和第二指示信息。第一指示信息可以承载于第一PPDU的第一信令字段,第二指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段。在一些示例中,第一信令字段可以为如图4中示出的U-SIG 405,第二信令字段可以为如图4中示出的EHT-SIG 406。
本公开的实施例中,第一指示信息承载于第一PPDU的第一信令字段可以指代:第一指示信息承载于第一PPDU的U-SIG的带宽字段(BW),也即是说,第一指示信息可以占用U-SIG的第一个符号(U-SIG-1)的第4个比特至第6个比特(B3-B5)中的至少一个比特。
示例性地,第一指示信息可以具有第一预设长度,可以表示为L1。
在一些示例中,假设进行聚合时的带宽的粒度为20MHz。在该示例中,第一预设长度可以为3比特。U-SIG-1的B3-B5比特(长度为3比特)可以采用“0”代表20MHz,“1”代表40MHz,“2”代表80MHz,“3”代表160MHz,“4”代表320MHz-1,“5”代表320MHz-2,其他值为证实。可以理解,“0”~“5”对应二进制的000~101,本公开中各示例中用法一致,不再赘述。也就是说,第一指示信息为U-SIG-1的带宽字段中的“0”-“5”,依次表示第一PPDU的带宽为20MHz,40MHz,80MHz,160MHz,320MHz-1,320MHz-2。
在一些示例中,假设进行聚合时的带宽的粒度为40MHz。在该示例中,第一预设长度可以为2比特或3比特。以2比特为例,U-SIG-1的B3-B5比特中的任意两个比特可以承载第一指示信息,在一例中,可以采用“0”代表40MHz,“1”代表80MHz,“2”代表160MHz,其他值为证实。也就是说,第一指示信息为U-SIG-1的带宽字段中的“0”-“2”,依次表示第一PPDU的带宽为40MHz,80MHz,160MHz。在另一例中,可以采用“1”代表40MHz,“2”代表80MHz,“3”代表160MHz,“0”和其他值为证实。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。在该示例中,第一预设长度可以为1比特或2比特。以1比特为例,U-SIG-1的B3-B5比特中的任一比特可以承载第一指示信息,可以采用“0”代表80MHz,“1”代表160MHz。也就是说,第一指示信息为U-SIG-1的带宽字段中的“0”-“1”,依次表示第一PPDU的带宽为80MHz,160MHz。以2比特为例,在一例中,可以采用“0”代表80MHz,“1”代表160MHz,其他值为证实。在另一例中,可以采用“2”代表80MHz,“3”代表160MHz,“0”、“1”和其他值为证实。
如此,通过这种方式来指示第一PPDU的带宽,针对A-PPDU和单个PPDU两种发送方式,实现了对于第一PPDU的接收流程(包括EHT-LTF序列选择)的统一。
但是可理解,这仅是一个示例,第一预设长度可以为其他值,或者,可以在U-SIG-1的带宽字段通过其他的方式来指示第一PPDU的带宽,等等,本公开对此不限定。或者,如果单个PPDU的带宽可以被扩展到320MHz、480MHz或640MHz或其他值,那么相应地聚合时的带宽的粒度也可以类似地扩展到320MHz、480MHz或640MHz或其他值,此时可以将第一预设长度设定为其他值,如4个比特等。在本公开的实施例中,带宽的粒度可以用于表 示单个PPDU的最小带宽。
本公开的实施例中,第二指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段。具体的,可以至少包括三种情形:(1)第二指示信息的全部承载于第一信令字段,(2)第二指示信息的全部承载于第二信令字段,(3)第二指示信息的一部分承载于第一信令字段,第二指示信息的另一部分承载于第二信令字段。
示例性地,第二指示信息可以承载于第一PPDU的U-SIG和/或EHT-SIG的不理会和/或证实比特。在一些示例中,第二指示信息可以位于以下的部分或全部:U-SIG字段的第一个符号(U-SIG-1)的第26个比特(B25),U-SIG字段的第二个符号(U-SIG-2)的第3个比特(B2),U-SIG-2的第9个比特(B8),U-SIG-1的第21个比特至第25个比特(B20-B24)以及EHT-SIG的U-SIG溢出部分(B13-B16)。
示例性地,第二指示信息可以具有第二预设长度,可以表示为L2。举例来说,可以从{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任意选择其中L2个比特定义为A-PPDU的总带宽。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。在该示例中,第二预设长度可以为1比特或2比特。应理解的是,在该示例中,第二预设长度可以为更大值,如3比特、4比特等等,本公开对此不限定。
以第二预设长度为1比特为例,可以采用“0”代表总带宽160MHz,“1”代表总带宽320MHz。以第二预设长度为2比特为例,可以采用“0”代表总带宽160MHz,“1”代表总带宽320MHz-1,“2”代表总带宽320MHz-2,其余为证实或不理会。
为了简化描述,下面以1比特为例阐述该示例。具体的,{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任一比特可以承载第二指示信息,可以采用“0”代表总带宽160MHz,“1”代表总带宽320MHz。
举例来说,可以使用{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中任一比特承载第二指示信息,也就是说,可以通过证实比特来承载第二指示信息。考虑到证实比特的特性,在该示例中,还可以从{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中未承载第二指示信息的位置选取其中至少一个比特,用于指示第一PPDU被聚合在A-PPDU中。
例如,U-SIG-1的B25可以被定义为是否是A-PPDU,U-SIG-1的B25为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-2的B2和/或U-SIG-2的B8来指示A-PPDU的总带宽。再例如,U-SIG-2的B2可以被定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-1的B25和/或U-SIG-2的B8来指示A-PPDU的总带宽。再例如,U-SIG-2的B8可以被定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-1的B25和/或U-SIG-2的B2来指示A-PPDU的总带宽。应注意,上面的例子不是穷举性,例如,可以使用两个比特来定义是否是A-PPDU,使用一个比特来承载第二指示信息,等等。本公开中不再罗列。
这样,通过至少一个比特(证实比特)来指示第一PPDU被聚合在A-PPDU中,对于第一类设备而言,第一类设备在接收到该A-PPDU时,由于证实比特不等于缺省值,可以及时停止接收该A-PPDU,从而节省了功耗,且保证了其他设备的正常接收。
再举例来说,可以使用{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任一比特承载第 二指示信息,也就是说,可以通过不理会比特来承载第二指示信息。
可选地,也可以从{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中未承载第二指示信息的位置选取其中至少一个比特,用于指示第一PPDU被聚合在A-PPDU中。
例如,可以将{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中至少一个比特(如1个)定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。这样,通过至少一个比特(证实比特)来指示第一PPDU被聚合在A-PPDU中,对于第一类设备而言,第一类设备在接收到该A-PPDU时,由于该至少一个比特(证实比特)不等于缺省值,可以及时停止接收该A-PPDU,从而节省了功耗,且保证了其他设备的正常接收。
再例如,可以将{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中未承载第二指示信息的至少一个比特(如1个)定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。这样,通过至少一个比特(不理会比特)来指示第一PPDU被聚合在A-PPDU中,A-PPDU可以同时发送给第一类设备和第二类设备,其中对于第一类设备而言,其会忽略该至少一个比特,即使第一类设备接收到A-PPDU,其也会按照单个PPDU的情况来处理。上面以第二预设长度为1比特进行了阐述,可理解,第二预设长度(L2比特)可以大于1比特。并且,在第二预设长度大于1比特的示例中,L2比特中的全部比特都是证实比特,或者,L2比特中的全部比特都是不理会比特,或者,L2比特中的一部分比特是证实比特而另一部分比特是不理会比特。应理解,这里所说的L2比特中的全部比特都是证实比特,意为L2比特中的全部比特承载的位置都为证实比特,本公开中相同的用法含义相同,不再赘述。
在一些示例中,假设进行聚合时的带宽的粒度为20MHz。在该示例中,第二预设长度可以为3比特或4比特。应理解的是,在该示例中,第二预设长度可以为其他值,如2比特、5比特等等,本公开对此不限定。
以第二预设长度为3比特为例,可以采用“0”代表总带宽40MHz,“1”代表总带宽80MHz,“2”代表总带宽120MHz,“3”代表总带宽160MHz,“4”代表总带宽320MHz。以第二预设长度为4比特为例,可以采用“0”代表总带宽20MHz,“1”代表总带宽40MHz,“2”代表总带宽60MHz,“3”代表总带宽80MHz,“4”代表总带宽100MHz,…,“15”代表总带宽320MHz。
与上面的示例类似,在粒度为20MHz的示例中,第二预设长度(L2比特)中的全部比特都是证实比特,或者,L2比特中的全部比特都是不理会比特,或者,L2比特中的一部分比特是证实比特而另一部分比特是不理会比特。另外,也可以通过至少一个比特(证实比特或不理会比特)来指示该第一PPDU是否被聚合在A-PPDU中。具体描述可以参见上述的示例,为避免重复,这里不再赘述。
可理解的是,本公开中进行聚合的粒度还可以是其他值,如40MHz等。如此,本公开实施例中,针对不同的粒度,可以定义不同的第二预设长度,这样第二指示信息能够被充分指示的同时避免占用过多的比特数,从而能够实现两者之间的权衡,保证了资源的优化利用。
图9示出了本公开实施例提供的一种A-PPDU的格式900的示意图。在图9的格式900中,A-PPDU包括3个子PPDU,分别为PPDU 910,PPDU 920,PPDU 930。格式900中,PPDU 910的类型为HE MU PPDU。PPDU 920和PPDU 930的类型为EHT MU PPDU。
格式900中,PPDU 910的格式类似于上述图3中的格式300。PPDU 920和PPDU 930 的格式类似于上述图4中的格式400,但与格式400不完全相同。PPDU 920的U-SIG字段,通过“BW=80MHz和A-BW=320MHz”来指示PPDU 920的带宽为80MHz,A-PPDU 900的带宽为320MHz。PPDU 930的U-SIG字段,通过“BW=160MHz和A-BW=320MHz”来指示PPDU 930的带宽为160MHz,A-PPDU 900的带宽为320MHz。可理解的是,PPDU 920和PPDU 930中的“A-BW=320MHz”可以被承载于{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中的部分或全部。
应理解的是,图9仅是示意性的,例如可以包括更少数量的PPDU,如可以包括PPDU 910,PPDU 920和PPDU 930中的任两个。另外,图9中的部分或者全部的EHT MU PPDU类型可以被替换为EHT+MU PPDU或EHT++MU PPDU等。本公开对此不限定。
在上面的实施例中,第二指示信息承载于U-SIG和/或EHT-SIG的不理会和/或证实比特。可选地,在另一些实施例中,第二指示信息还可以承载于第一PPDU的U-SIG和/或EHT-SIG的不理会和/或证实状态。在一些示例中,可以通过U-SIG的BW字段的证实状态来携带该第二指示信息。在另一些示例中,可以通过U-SIG的版本指示字段的证实状态来携带第二指示信息。此处不再详述。
通过该实施例,在第一PPDU中同时包括第一PPDU的带宽的第一指示信息以及A-PPDU的总带宽的第二指示信息,从而接收到该第一PPDU的设备(如接收设备或第三方设备)能够针对A-PPDU进行空间复用操作的优化,比如在整个A-PPDU带宽内进行空间复用传输。对于接收到该第一PPDU的第三方设备而言,其可以参考总带宽保持静默(不发送)或者进行空间复用传输,不对当前传输造成过大的干扰。另外,接收设备还可以根据A-PPDU的总带宽和第一PPDU带宽进行一些带外的干扰抑制等,从而增强其接收。
在另一些实施例中,第一PPDU包括第一指示信息和第二指示信息。第二指示信息可以承载于第一PPDU的第一信令字段,第一指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段。在一些示例中,第一信令字段可以为如图4中示出的U-SIG 405,第二信令字段可以为如图4中示出的EHT-SIG 406。
本公开的实施例中,第二指示信息承载于第一PPDU的第一信令字段可以指代:第二指示信息承载于第一PPDU的U-SIG的带宽字段(BW),也即是说,第二指示信息可以占用U-SIG的第一个符号(U-SIG-1)的第4个比特至第6个比特(B3-B5)中的至少一个比特,并且U-SIG-1的B3-B5字段用于指示A-PPDU的总带宽。
示例性地,第二指示信息可以具有第三预设长度,可以表示为L3。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。在该示例中,第三预设长度可以为1比特或2比特或3比特。以第三预设长度为1比特为例,可以采用“0”代表总带宽160MHz,“1”代表总带宽320MHz。以第三预设长度为2比特或3比特为例,可以采用“0”代表总带宽160MHz,“1”代表总带宽320MHz-1,“2”代表总带宽320MHz-2,其余为证实或不理会。
在另一些示例中,第三预设长度可以为3比特,位于U-SIG-1的B3-B5。示例性地,可以采用“3”代表总带宽160MHz,“4”代表总带宽320MHz-1,“5”代表总带宽320MHz-2,其余为证实或不理会。如此能够充分利用目前已有的对于U-SIG-1的B3-B5的规定,尽量减少对已有标准的改动。
可理解的是,聚合时的带宽的粒度也可以为其他值,例如20MHz或40MHz等。与上述 80MHz的粒度是类似的,此处不再展开描述。并且上面给出的仅是一个示例,第三预设长度可以为其他值,例如可以4个比特、或更大的比特等。
本公开的实施例中,第一指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段可以指代:第一指示信息的部分或全部可以承载于第一PPDU的第一信令字段或第二信令字段。具体的,可以至少包括三种情形:(1)第一指示信息的全部承载于第一信令字段,(2)第一指示信息的全部承载于第二信令字段,(3)第一指示信息的一部分承载于第一信令字段,第一指示信息的另一部分承载于第二信令字段。
示例性地,第一指示信息可以承载于第一PPDU的U-SIG和/或EHT-SIG的不理会和/或证实比特。在一些示例中,第一指示信息可以位于以下的部分或全部:U-SIG字段的第一个符号(U-SIG-1)的第26个比特(B25),U-SIG字段的第二个符号(U-SIG-2)的第3个比特(B2),U-SIG-2的第9个比特(B8),U-SIG-1的第21个比特至第25个比特(B20-B24)以及EHT-SIG的B13-B16。
示例性地,第一指示信息可以具有第四预设长度,可以表示为L4。举例来说,可以从{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任意选择其中L4个比特定义为第一PPDU的带宽。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。在该示例中,第四预设长度可以为1比特或2比特。应理解的是,在该示例中,第四预设长度可以为更大值,如3比特、4比特等等,本公开对此不限定。
以第四预设长度为1比特为例,可以采用“0”代表第一PPDU的带宽80MHz,“1”代表第一PPDU的带宽160MHz。
为了简化描述,下面以1比特为例阐述该示例。具体的,{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任一比特可以承载第一指示信息,可以采用“0”代表第一PPDU的带宽80MHz,“1”代表第一PPDU的带宽160MHz。
举例来说,可以使用{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中任一比特承载第一指示信息,也就是说,可以通过证实比特来承载第一指示信息。考虑到证实比特的特性,在该示例中,还可以从{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中未承载第一指示信息的位置选取其中至少一个比特,用于指示第一PPDU被聚合在A-PPDU中。
例如,U-SIG-1的B25可以被定义为是否是A-PPDU,U-SIG-1的B25为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-2的B2和/或U-SIG-2的B8来指示第一PPDU的带宽。再例如,U-SIG-2的B2可以被定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-1的B25和/或U-SIG-2的B8来指示第一PPDU的带宽。再例如,U-SIG-2的B8可以被定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-1的B25和/或U-SIG-2的B2来指示第一PPDU的带宽。应注意,上面的例子不是穷举性,例如,可以使用两个比特来定义是否是A-PPDU,使用一个比特来承载第一指示信息,等等。本公开中不再罗列。
这样,通过至少一个比特(证实比特)来指示第一PPDU被聚合在A-PPDU中,对于第一类设备而言,第一类设备在接收到该A-PPDU时,由于证实比特不等于缺省值,可以及时停止接收该A-PPDU,从而节省了功耗,且保证了其他设备的正常接收。
再举例来说,可以使用{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任一比特承载第一指示信息,也就是说,可以通过不理会比特来承载第一指示信息。
可选地,也可以从{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中未承载第一指示信息的位置选取其中至少一个比特,用于指示第一PPDU被聚合在A-PPDU中。
例如,可以将{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中至少一个比特(如1个)定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。这样,通过至少一个比特(证实比特)来指示第一PPDU被聚合在A-PPDU中,对于第一类设备而言,第一类设备在接收到该A-PPDU时,由于该至少一个比特(证实比特)不等于缺省值,可以及时停止接收该A-PPDU,从而节省了功耗,且保证了其他设备的正常接收。
再例如,可以将{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中未承载第一指示信息的至少一个比特(如1个)定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。这样,通过至少一个比特(不理会比特)来指示第一PPDU被聚合在A-PPDU中,A-PPDU可以同时发送给第一类设备和第二类设备,其中对于第一类设备而言,其会忽略该至少一个比特,即使第一类设备接收到A-PPDU,其也会按照单个PPDU的情况来处理。
上面以第四预设长度为1比特进行了阐述,可理解,第四预设长度(L4比特)可以大于1比特。并且,在第四预设长度大于1比特的示例中,L4比特中的全部比特都是证实比特,或者,L4比特中的全部比特都是不理会比特,或者,L4比特中的一部分比特是证实比特而另一部分比特是不理会比特。
在一些示例中,假设进行聚合时的带宽的粒度为20MHz。在该示例中,第四预设长度可以为2比特或3比特。以2比特为例,可以采用“0”代表20MHz,“1”代表40MHz,“2”代表80MHz,“3”代表160MHz。以3比特为例,可以采用“0”代表20MHz,“1”代表40MHz,“2”代表80MHz,“3”代表160MHz,其他值为证实。
与上面的示例类似,在粒度为20MHz的示例中,第四预设长度(L4比特)中的全部比特都是证实比特,或者,L4比特中的全部比特都是不理会比特,或者,L4比特中的一部分比特是证实比特而另一部分比特是不理会比特。另外,也可以通过至少一个比特(证实比特或不理会比特)来指示该第一PPDU是否被聚合在A-PPDU中。具体描述可以参见上述的示例,为避免重复,这里不再赘述。
可理解的是,本公开中进行聚合的粒度还可以是其他值,如40MHz等。如此,本公开实施例中,针对不同的粒度,可以定义不同的第四预设长度,这样第一指示信息能够被充分指示的同时避免占用过多的比特数,从而能够实现两者之间的权衡,保证了资源的优化利用。
图10示出了本公开实施例提供的一种A-PPDU的格式1000的示意图。在图10的格式1000中,A-PPDU包括3个子PPDU,分别为PPDU 1010,PPDU 1020,PPDU 1030。格式1000中,PPDU 1010的类型为HE MU PPDU。PPDU 1020和PPDU 1030的类型为EHT MU PPDU。
格式1000中,PPDU 1010的格式类似于上述图3中的格式300。PPDU 1020和PPDU 1030的格式类似于上述图4中的格式400,但与格式400不完全相同。PPDU 1020的U-SIG字段,通过“A-BW=320MHz和BW=80MHz”来指示PPDU 1020的带宽为80MHz,A-PPDU 1000的 带宽为320MHz。PPDU 1030的U-SIG字段,通过“A-BW=320MHz和BW=160MHz”来指示PPDU 1030的带宽为160MHz,A-PPDU 1000的带宽为320MHz。可理解的是,PPDU 1020的“A-BW=320MHz”可以被承载于PPDU 1020的U-SIG-1的B3-B5,以及“BW=80MHz”可以被承载于PPDU 1020的{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中的部分或全部。PPDU 1030中的“A-BW=320MHz”可以被承载于PPDU 1030的U-SIG-1的B3-B5,以及“BW=160MHz”可以被承载于PPDU 1030的{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中的部分或全部。
应理解的是,图10仅是示意性的,例如可以包括更少数量的PPDU,如可以包括PPDU 1010,PPDU 1020和PPDU 1030中的任两个。另外,图10中的EHT MU PPDU类型可以被替换为EHT+MU PPDU或EHT++MU PPDU等。本公开对此不限定。
在上面的实施例中,第一指示信息承载于U-SIG和/或EHT-SIG的不理会和/或证实比特。可选地,在另一些实施例中,第一指示信息还可以承载于第一PPDU的U-SIG和/或EHT-SIG的不理会和/或证实状态。在一些示例中,可以通过U-SIG的BW字段的证实状态来携带该第一指示信息。在另一些示例中,可以通过U-SIG的版本指示字段的证实状态来携带第一指示信息。此处不再详述。
通过该实施例,在第一PPDU中同时包括第一PPDU的带宽的第一指示信息以及A-PPDU的总带宽的第二指示信息,从而接收到该第一PPDU的设备(如接收设备或第三方设备)能够针对A-PPDU进行空间复用操作的优化,比如在整个A-PPDU带宽内进行空间复用传输。对于接收到该第一PPDU的第三方设备而言,其可以参考总带宽保持静默(不发送)或者进行空间复用传输,不对当前传输造成过大的干扰。另外,接收设备还可以根据A-PPDU的总带宽进行一些带外的干扰抑制等,从而增强其接收。
可选地,在本实现方式中,在710处还可以包括:生成第一PPDU中的长训练字段(Long Training Field,LTF)。可理解,在第一PPDU的类型为EHT MU PPDU的场景下,LTF可以为EHT-LTF。
具体地,可以根据第一PPDU的带宽和/或A-PPDU的总带宽来生成LTF。
在一些实施例中,可以基于第一PPDU的带宽来生成LTF。具体地,可以基于第一PPDU的带宽来构建LTF序列。举例来说,第一PPDU的带宽为20MHz时,对应的LTF可以为第一序列,如EHTLTF 20MHz_1x,EHTLTF 20MHz_2x,EHTLTF 20MHz_4x中任一。举例来说,第一PPDU的带宽为40MHz时,对应的LTF可以为第二序列,如EHTLTF 40MHz_1x,EHTLTF 40MHz_2x,EHTLTF 40MHz_4x中任一。举例来说,第一PPDU的带宽为80MHz时,对应的LTF可以为第三序列,如EHTLTF 80MHz_1x,EHTLTF 80MHz_2x,EHTLTF 80MHz_4x中任一。举例来说,第一PPDU的带宽为160MHz时,对应的LTF可以为第四序列,如EHTLTF 160MHz_1x,EHTLTF 160MHz_2x,EHTLTF 160MHz_4x中任一。举例来说,第一PPDU的带宽为320MHz时,对应的LTF可以为第五序列,如EHTLTF 320MHz_1x,EHTLTF 320MHz_2x,EHTLTF 320MHz_4x中任一。
这样,通过这样的实施例来生成LTF,能够实现对目前已有序列的充分利用,减少了改进的工作量。对于接收设备而言,该实施例的LTF与单个PPDU的接收情况是一致的,从而能够实现第二类设备(非实现了EHT基本特性的设备)接收LTF(信道估计)的统一。
在一些实施例中,可以基于第一PPDU的带宽来生成LTF。以粒度为80MHz为例,举例来说,第一PPDU的带宽为80MHz时,对应的LTF可以为第六序列,如EHTLTF 80MHz_1x, EHTLTF 80MHz_2x,EHTLTF 80MHz_4x中任一乘以+1或者-1的相位系数。举例来说,第一PPDU的带宽为160MHz时,对应的LTF可以为第七序列,如EHTLTF 160MHz_1x,EHTLTF 160MHz_2x,EHTLTF 160MHz_4x中任一乘以+1或者-1的相位系数。
这样,通过这样的实施例来生成LTF,一方面能够充分利用目前已有序列,另一方面对目前已有序列进行进一步优化设计,如乘以+1或者-1的相位系数,如此,对于接收设备而言,能够在进行信道估计等后续处理时,进一步优化PAPR。
在一些实施例中,可以基于A-PPDU的总带宽来生成LTF。具体地,可以基于A-PPDU的总带宽来构建LTF序列。举例来说,A-PPDU的总带宽为160MHz时,对应的LTF可以为第一总序列,如EHTLTF sub160MHz_1x,EHTLTF sub160MHz_2x,EHTLTF sub160MHz_4x中任一。举例来说,A-PPDU的总带宽为320MHz时,对应的LTF可以为第二总序列,如EHTLTF sub320MHz_1x,EHTLTF sub320MHz_2x,EHTLTF sub320MHz_4x中任一。
这样,通过这样的实施例来生成LTF,接收设备在接收到A-PPDU之后,在进行信道估计等操作时,可以针对聚合带宽(即A-PPDU的总带宽)优化PAPR。而且,结合上述第二指示信息承载于U-SIG-1的B3-B5中的实施例,能够实现对第一类设备(实现了EHT基本特性的设备)透明。也可以理解的是,在这种情况下,需要EHT-SIG中内容的传输也按照聚合带宽(即A-PPDU的总带宽)来设计,比如资源单元分配子字段的个数要按照聚合带宽来选取,具体形式在本公开中不再详细阐述。
在一些实施例中,可以基于A-PPDU的总带宽以及A-PPDU中各个PPDU的类型来生成LTF。如此,在生成LTF是进一步考虑各个PPDU的类型,能够优化LTF并进一步基于优化的LTF降低PAPR
以粒度为80MHz为例,举例来说,可以基于A-PPDU的总带宽以及每个80MHz内的PPDU的类型来生成LTF。
在一些示例中,可以预先规定每个80MHz内PPDU的类型。例如,可以规定A-PPDU中有且仅有一个HE MU PPDU,而且该HE MU PPDU必须位于主80MHz或者主160MHz信道上,那么可以直接基于该规定获知各个80MHz内的PPDU的类型。
在一些示例中,可以预先规定部分80MHz内PPDU的类型。例如,可以规定A-PPDU中最多仅有一个HE MU PPDU(0个或1个),而且该HE MU PPDU必须位于主80MHz或者主160MHz信道上,那么可以直接通过第一预设比特数来指示主80MHz或者主160MHz信道上是否是HE MU PPDU。
在一些示例中,可以预先规定一个或多个80MHz内PPDU的类型,通过第二预设比特数来指示其余80MHz内的PPDU的类型。作为一例,可以预先定义从160MHz内的PPDU类型为非HE,如为EHT,EHT+,EHT++等。进一步可以使用2比特(第二预设比特数),用于指示主160MHz内的两个80MHz内的PPDU的类型,每个比特可以为0或1,0表示PPDU的类型为HE(如HE MU PPDU),1表示PPDU的类型为EHT(如EHT MU PPDU)。
如此,在上面的示例中,如果被聚合发送的PPDU包括HE MU PPDU,那么可以在主80MHz(或主160MHz)信道上发送HE MU PPDU,在次80MHz(或次160MHz)信道上发送EHT MU PPDU,这样,能够更充分地利用频谱。
在一些示例中,可以通过第三预设长度比特数来指示每个80MHz内的PPDU的类型。作为一例,可以使用4比特(第三预设比特数),对应于4个80MHz,每个比特可以为0或1, 0表示PPDU的类型为HE(如HE MU PPDU),1表示PPDU的类型为EHT(如EHT MU PPDU)。
应注意的是,上述的LTF只是示意,LTF(如EHT-LTF)是由一系列的1,-1,0构成的。本公开实施例中对LTF的构建(construct)过程不作限定。
如此,本公开实施例中能够基于第一PPDU的带宽和/或A-PPDU的总带宽来生成LTF,实现了对于LTF的优化,从而接收设备能够基于此进一步降低PAPR。
通过上面所描述的实现方式,在第一PPDU中同时包括第一PPDU的带宽的第一指示信息以及A-PPDU的总带宽的第二指示信息,从而接收到该第一PPDU的设备(如接收设备或第三方设备)能够针对A-PPDU进行空间复用操作的优化,比如在整个A-PPDU带宽内进行空间复用传输。对于接收到该第一PPDU的第三方设备而言,其可以参考总带宽保持静默(不发送)或者进行空间复用传输,不对当前传输造成过大的干扰。另外,接收设备还可以根据A-PPDU的总带宽进行一些带外的干扰抑制等,从而增强其接收。进一步地,基于单个PPDU的带宽和/或A-PPDU的总带宽来生成LTF,实现了对于LTF的优化,从而接收设备能够基于此进一步降低PAPR。
在再一种实现方式中,第一PPDU包括第一指示信息和第三指示信息。第一指示信息用于指示第一PPDU的带宽,第三指示信息用于指示A-PPDU的带宽组合。
在本公开实施例中,带宽组合可以包括至少两个带宽值,与A-PPDU中的至少两个PPDU一一对应。举例来讲,假设A-PPDU包括N个PPDU,那么带宽组合可以包括N个带宽值。示例性地,带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
可理解,带宽组合中各个带宽之和即为A-PPDU的总带宽。换句话说,该实现方式中,第三指示信息隐式地指示了A-PPDU的总带宽。也就是说,第一PPDU包括第一PPDU的带宽和A-PPDU的总带宽,其中第一PPDU的带宽通过第一指示信息显示指示,以及其中A-PPDU的总带宽通过第三指示信息隐式指示。
在一些实施例中:
第一指示信息可以承载于第一PPDU的第一信令字段,第三指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段。在一些示例中,第一信令字段可以为如图4中示出的U-SIG 405,第二信令字段可以为如图4中示出的EHT-SIG 406。
本公开的实施例中,第一指示信息承载于第一PPDU的第一信令字段可以指代:第一指示信息承载于第一PPDU的U-SIG的带宽字段(BW),也即是说,第一指示信息可以占用U-SIG的第一个符号(U-SIG-1)的第4个比特至第6个比特(B3-B5)中的至少一个比特。
示例性地,第一指示信息可以具有第一预设长度,可以表示为L1。
在一些示例中,假设进行聚合时的带宽的粒度为20MHz。在该示例中,第一预设长度可以为3比特。U-SIG-1的B3-B5比特(长度为3比特)可以采用“0”代表20MHz,“1”代表40MHz,“2”代表80MHz,“3”代表160MHz,“4”代表320MHz-1,“5”代表320MHz-2,其他值为证实。也就是说,第一指示信息为U-SIG-1的带宽字段中的“0”-“5”,依次表示第一PPDU的带宽为20MHz,40MHz,80MHz,160MHz,320MHz-1,320MHz-2。
在一些示例中,假设进行聚合时的带宽的粒度为40MHz。在该示例中,第一预设长度可以为2比特或3比特。以2比特为例,U-SIG-1的B3-B5比特中的任意两个比特可以承载第一指示信息,可以采用“0”代表40MHz,“1”代表80MHz,“2”代表160MHz,其他值为证实。也就是说,第一指示信息为U-SIG-1的带宽字段中的“0”-“2”,依次表示第一PPDU的带宽为 40MHz,80MHz,160MHz。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。在该示例中,第一预设长度可以为1比特或2比特。以1比特为例,U-SIG-1的B3-B5比特中的任一比特可以承载第一指示信息,可以采用“0”代表80MHz,“1”代表160MHz。也就是说,第一指示信息为U-SIG-1的带宽字段中的“0”-“1”,依次表示第一PPDU的带宽为80MHz,160MHz。
如此,通过这种方式来指示第一PPDU的带宽,针对A-PPDU和单个PPDU两种发送方式,实现了对于第一PPDU的接收流程(包括EHT-LTF序列选择)的统一。
但是可理解,这仅是一个示例,第一预设长度可以为其他值,或者,可以在U-SIG-1的带宽字段通过其他的方式来指示第一PPDU的带宽,等等,本公开对此不限定。或者,如果单个PPDU的带宽可以被扩展到320MHz或640MHz或其他值,那么可以将第一预设长度设定为其他值,如4个比特等。
本公开的实施例中,第三指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段可以指代:第三指示信息的部分或全部可以承载于第一PPDU的第一信令字段或第二信令字段。具体的,可以至少包括三种情形:(1)第三指示信息的全部承载于第一信令字段,(2)第三指示信息的全部承载于第二信令字段,(3)第三指示信息的一部分承载于第一信令字段,第三指示信息的另一部分承载于第二信令字段。
示例性地,第三指示信息可以承载于第一PPDU的U-SIG和/或EHT-SIG的不理会和/或证实比特。在一些示例中,第三指示信息可以位于以下的部分或全部:U-SIG字段的第一个符号(U-SIG-1)的第26个比特(B25),U-SIG字段的第二个符号(U-SIG-2)的第3个比特(B2),U-SIG-2的第9个比特(B8),U-SIG-1的第21个比特至第25个比特(B20-B24)以及EHT-SIG的U-SIG溢出部分(B13-B16)。
示例性地,第三指示信息可以具有第五预设长度,可以表示为L5。第五预设长度可以为至少一个比特,例如可以为1比特或者可以大于1比特。举例来说,可以从{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任意选择其中L5个比特定义为A-PPDU的带宽组合。
在本公开实施例中,带宽组合可以包括至少两个带宽值,与A-PPDU中的至少两个PPDU一一对应。举例来讲,假设A-PPDU包括N个PPDU,那么带宽组合可以包括N个带宽值。示例性地,带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。以第五预设长度为3比特为例,可以采用“0”代表带宽组合80-80-80-80,“1”代表带宽组合80-80-160,“2”代表带宽组合160-80-80,“3”代表带宽组合160-160,“4”代表带宽组合80-80,其余值为证实或不理会,并且带宽组合中的各个带宽是按照频率从低到高排列的。在另一些示例中,进行聚合时的带宽的粒度可以为20MHz或40MHz,在该示例中,第五预设长度可以更大,如6比特等或其他值,如此能够对应更多的带宽组合。
举例来说,可以使用{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中至少一个比特承载第三指示信息,也就是说,可以通过证实比特来承载第三指示信息,即L5比特中的全部比特都是证实比特。考虑到证实比特的特性,在一些示例中,还可以从{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中未承载第三指示信息的位置选取其中至少一个比特,用于指示第一PPDU被聚合在A-PPDU中。在另一些示例中,也可以通过承载第三指示信息的至 少一个比特来指示第一PPDU被聚合在A-PPDU中。在该示例中,第三指示信息可以用于指示带宽组合,还用于指示第一PPDU的发送方式。例如,第三指示信息的第一部分比特用于指示带宽组合,第三指示信息的第二部分比特(至少一个比特)用于指示第一PPDU被聚合在A-PPDU中。再例如,用于承载第三指示信息的至少一个比特为缺省值来表示第一PPDU是单独PPDU,用于承载第三指示信息的至少一个比特为非缺省值来表示第三指示信息。也就是说,如果承载第三指示信息的至少一个比特为非缺省值,那么可以间接指示第一PPDU的发送方式是被聚合在A-PPDU中,同时该非缺省值表示带宽组合。
例如,U-SIG-1的B25可以被定义为是否是A-PPDU,U-SIG-1的B25为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-2的B2和/或U-SIG-2的B8来指示带宽组合。再例如,U-SIG-2的B2可以被定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-1的B25和/或U-SIG-2的B8来指示带宽组合。再例如,U-SIG-2的B8可以被定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-1的B25和/或U-SIG-2的B2来指示带宽组合。应注意,上面的例子不是穷举性,例如,可以使用两个比特来定义是否是A-PPDU,使用一个比特来承载第三指示信息,等等。本公开中不再罗列。
这样,通过至少一个比特(证实比特)来指示第一PPDU被聚合在A-PPDU中,对于第一类设备而言,第一类设备在接收到该A-PPDU时,由于证实比特不等于缺省值,可以及时停止接收该A-PPDU,从而节省了功耗,且保证了其他设备的正常接收。
再举例来说,可以使用{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中至少一个比特承载第三指示信息,也就是说,可以通过不理会比特来承载第三指示信息,即L5比特中的全部比特都是不理会比特。
可选地,也可以从{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中未承载第三指示信息的位置选取其中至少一个比特,用于指示第一PPDU被聚合在A-PPDU中。
例如,可以将{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中至少一个比特(如1个)定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。这样,通过至少一个比特(证实比特)来指示第一PPDU被聚合在A-PPDU中,对于第一类设备而言,第一类设备在接收到该A-PPDU时,由于该至少一个比特(证实比特)不等于缺省值,可以及时停止接收该A-PPDU,从而节省了功耗,且保证了其他设备的正常接收。
再例如,可以将{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中未承载第三指示信息的至少一个比特(如1个)定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。这样,通过至少一个比特(不理会比特)来指示第一PPDU被聚合在A-PPDU中,A-PPDU可以同时发送给第一类设备和第二类设备,其中对于第一类设备而言,其会忽略该至少一个比特,即使第一类设备接收到A-PPDU,其也会按照单个PPDU的情况来处理。
再举例来说,第五预设长度(L5)大于或等于2比特,在该示例中,第三指示信息的部分比特位于{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中,另外部分比特位于{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中。也就是说,L5比特中的一部分比特是证实比特而另一部分比特是不理会比特。
图11示出了本公开实施例提供的一种A-PPDU的格式1100的示意图。在图11的格式1100中,A-PPDU包括3个子PPDU,分别为PPDU 1110,PPDU 1120和PPDU 1130。格式1100中,PPDU 1110,PPDU 1120和PPDU 1130的类型均为EHT MU PPDU。
格式1100中,PPDU 1110,PPDU 1120和PPDU 1130的格式类似于上述图4中的格式400,但与格式400不完全相同。PPDU 1110的U-SIG字段,通过“BW=80MHz和80-80-160”来指示PPDU 1110的带宽为80MHz,A-PPDU 1100的带宽组合为80-80-160。PPDU 1120的U-SIG字段,通过“BW=80MHz和80-80-160”来指示PPDU 1120的带宽为80MHz,A-PPDU 1000的带宽组合为80-80-160。PPDU 1130的U-SIG字段,通过“BW=160MHz和80-80-160”来指示PPDU 1130的带宽为160MHz,A-PPDU 1100的带宽组合为80-80-160。
可理解的是,PPDU 1110中的“BW=80MHz”,PPDU 1120中的“BW=80MHz”和PPDU 1130中的“BW=160MHz”可以承载于U-SIG-1的B3-B5中的部分或全部。PPDU 1110,PPDU 1120和PPDU 1130中的“80-80-160”可以承载于{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24}中的部分或全部。
应理解的是,图11仅是示意性的,例如可以包括更少数量的PPDU,如可以包括PPDU 1110,PPDU 1120和PPDU 1130中的任两个。另外,图11中的EHT MU PPDU类型可以被替换为HE MU PPDU,EHT+MU PPDU或EHT++MU PPDU等。本公开对此不限定。
另外,应理解的是,图11中尽管示出了带宽组合“80-80-160”承载于U-SIG,但是本公开对此不限定,例如可以承载于EH-SIG;再例如可以部分承载于U-SIG,另部分承载于EH-SIG。
在上面的实施例中,第三指示信息承载于U-SIG和/或EHT-SIG的不理会和/或证实比特。可选地,在另一些实施例中,第三指示信息还可以承载于第一PPDU的U-SIG和/或EHT-SIG的不理会和/或证实状态。在一些示例中,可以通过U-SIG的BW字段的证实状态来携带该第三指示信息。在另一些示例中,可以通过U-SIG的版本指示字段的证实状态来携带第三指示信息。此处不再详述。
通过该实施例,在第一PPDU中同时包括第一PPDU的带宽的第一指示信息以及A-PPDU的带宽组合的第三指示信息,从而接收到该第一PPDU的设备(如接收设备或第三放设备)不仅能获知第一PPDU的带宽,还能够同时获知A-PPDU的总带宽以及A-PPDU中其他PPDU的带宽。进而接收设备能够更好地进行一些带外的干扰抑制等,从而增强其接收。并且该实施例中第一指示信息可以承载于U-SIG-1的B3-B5的全部或部分,能够充分利用已有的PPDU格式,简化修改。
在另一些实施例中:
第三指示信息可以承载于第一PPDU的第一信令字段,第一指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段。在一些示例中,第一信令字段可以为如图4中示出的U-SIG 405,第二信令字段可以为如图4中示出的EHT-SIG 406。
本公开的实施例中,第三指示信息承载于第一PPDU的第一信令字段可以指代:第三指示信息承载于第一PPDU的U-SIG的带宽字段(BW),也即是说,第三指示信息可以占用U-SIG的第一个符号(U-SIG-1)的第4个比特至第6个比特(B3-B5)中的至少一个比特。在该示例中,可以将U-SIG-1的B3-B5重新定义为A-PPDU的带宽组合。
示例性地,第三指示信息可以占用至少一个比特,例如可以为1比特或者可以大于1比特。举例来说,可以从U-SIG-1的B3-B5中任意选择其中至少一个比特承载第三指示信息, 用于指示A-PPDU的带宽组合。
在本公开实施例中,带宽组合可以包括至少两个带宽值,与A-PPDU中的至少两个PPDU一一对应。举例来讲,假设A-PPDU包括N个PPDU,那么带宽组合可以包括N个带宽值。示例性地,带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。以第三指示信息占用3比特(B3-B5)为例,可以采用“0”代表带宽组合80-80-80-80,“1”代表带宽组合80-80-160,“2”代表带宽组合160-80-80,“3”代表带宽组合160-160,“4”代表带宽组合80-80,其余值为证实或不理会,并且带宽组合中的各个带宽是按照频率从低到高排列的。
在另一些示例中,进行聚合时的带宽的粒度可以为20MHz或40MHz,在该示例中,第三指示信息可以占用更多数量的比特,如6比特等或其他值,如此能够对应更多的带宽组合。例如,第三指示信息可以占用U-SIG-1的B3-B5以及{-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8,U-SIG-1的B20-B24}中至少一个比特,本公开中不再一一罗列。
本公开的实施例中,第一指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段可以指代:第一指示信息的部分或全部可以承载于第一PPDU的第一信令字段或第二信令字段。具体的,可以至少包括三种情形:(1)第一指示信息的全部承载于第一信令字段,(2)第一指示信息的全部承载于第二信令字段,(3)第一指示信息的一部分承载于第一信令字段,第一指示信息的另一部分承载于第二信令字段。
示例性地,第一指示信息可以承载于第一PPDU的U-SIG和/或EHT-SIG的不理会和/或证实比特。在一些示例中,第一指示信息可以位于以下的部分或全部:U-SIG字段的第一个符号(U-SIG-1)的第26个比特(B25),U-SIG字段的第二个符号(U-SIG-2)的第3个比特(B2),U-SIG-2的第9个比特(B8),U-SIG-1的第21个比特至第25个比特(B20-B24)以及EHT-SIG的U-SIG溢出部分(B13-B16)。
示例性地,第一指示信息可以具有第四预设长度,可以表示为L4。举例来说,可以从{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任意选择其中L4个比特定义为第一PPDU的带宽。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。在该示例中,第四预设长度可以为1比特或2比特。应理解的是,在该示例中,第四预设长度可以为更大值,如3比特、4比特等等,本公开对此不限定。
以第四预设长度为1比特为例,可以采用“0”代表第一PPDU的带宽80MHz,“1”代表第一PPDU的带宽160MHz。
为了简化描述,下面以1比特为例阐述该示例。具体的,{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任一比特可以承载第一指示信息,可以采用“0”代表第一PPDU的带宽80MHz,“1”代表第一PPDU的带宽160MHz。
举例来说,可以使用{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中任一比特承载第一指示信息,也就是说,可以通过证实比特来承载第一指示信息。考虑到证实比特的特性,在该示例中,还可以从{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中未承载第一指示信息的位置选取其中至少一个比特,用于指示第一PPDU被聚合在A-PPDU中。
例如,U-SIG-1的B25可以被定义为是否是A-PPDU,U-SIG-1的B25为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-2的B2和/或U-SIG-2的 B8来指示第一PPDU的带宽。再例如,U-SIG-2的B2可以被定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-1的B25和/或U-SIG-2的B8来指示第一PPDU的带宽。再例如,U-SIG-2的B8可以被定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-1的B25和/或U-SIG-2的B2来指示第一PPDU的带宽。应注意,上面的例子不是穷举性,例如,可以使用两个比特来定义是否是A-PPDU,使用一个比特来承载第一指示信息,等等。本公开中不再罗列。
这样,通过至少一个比特(证实比特)来指示第一PPDU被聚合在A-PPDU中,对于第一类设备而言,第一类设备在接收到该A-PPDU时,由于证实比特不等于缺省值,可以及时停止接收该A-PPDU,从而节省了功耗,且保证了其他设备的正常接收。
再举例来说,可以使用{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任一比特承载第一指示信息,也就是说,可以通过不理会比特来承载第一指示信息。
可选地,也可以从{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中未承载第一指示信息的位置选取其中至少一个比特,用于指示第一PPDU被聚合在A-PPDU中。
例如,可以将{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中至少一个比特(如1个)定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。这样,通过至少一个比特(证实比特)来指示第一PPDU被聚合在A-PPDU中,对于第一类设备而言,第一类设备在接收到该A-PPDU时,由于该至少一个比特(证实比特)不等于缺省值,可以及时停止接收该A-PPDU,从而节省了功耗,且保证了其他设备的正常接收。
再例如,可以将{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中未承载第一指示信息的至少一个比特(如1个)定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。这样,对于第一类设备而言,其会忽略该至少一个比特,即使第一类设备接收到A-PPDU,其也会按照单个PPDU的情况来处理。
上面以第四预设长度为1比特进行了阐述,可理解,第四预设长度(L4比特)可以大于1比特。并且,在第四预设长度大于1比特的示例中,L4比特中的全部比特都是证实比特,或者,L4比特中的全部比特都是不理会比特,或者,L4比特中的一部分比特是证实比特而另一部分比特是不理会比特。
在一些示例中,假设进行聚合时的带宽的粒度为20MHz。在该示例中,第四预设长度可以为2比特或3比特。以2比特为例,可以采用“0”代表20MHz,“1”代表40MHz,“2”代表80MHz,“3”代表160MHz。以3比特为例,可以采用“0”代表20MHz,“1”代表40MHz,“2”代表80MHz,“3”代表160MHz,其他值为证实。
与上面的示例类似,在粒度为20MHz的示例中,第四预设长度(L4比特)中的全部比特都是证实比特,或者,L4比特中的全部比特都是不理会比特,或者,L4比特中的一部分比特是证实比特而另一部分比特是不理会比特。另外,也可以通过至少一个比特(证实比特或不理会比特)来指示该第一PPDU是否被聚合在A-PPDU中。具体描述可以参见上述的示例,为避免重复,这里不再赘述。
可理解的是,本公开中进行聚合的粒度还可以是其他值,如40MHz等。如此,本公开实施例中,针对不同的粒度,可以定义不同的第四预设长度,这样第一指示信息能够被充分 指示的同时避免占用过多的比特数,从而能够实现两者之间的权衡,保证了资源的优化利用。
通过该实施例,在第一PPDU中同时包括第一PPDU的带宽的第一指示信息以及A-PPDU的带宽组合的第三指示信息,从而接收到该第一PPDU的设备(如接收设备或第三放设备)不仅能获知第一PPDU的带宽,还能够同时获知A-PPDU的总带宽以及A-PPDU中其他PPDU的带宽。进而接收设备能够更好地进行一些带外的干扰抑制等,从而增强其接收。
可选地,在本实现方式中,在710处还可以包括:生成第一PPDU中的长训练字段(Long Training Field,LTF)。可理解,在第一DDPU的类型为EHT MU PPDU的场景下,LTF可以为EHT-LTF。
具体地,可以根据第一PPDU的带宽、A-PPDU的总带宽、A-PPDU的带宽组合中的至少一项(一项或多项)来生成LTF。在一些示例中,在生成LTF时还可以考虑A-PPDU中各个PPDU的类型。
在一些实施例中,可以基于第一PPDU的带宽来生成LTF。具体地,可以基于第一PPDU的带宽来构建LTF序列。举例来说,第一PPDU的带宽为20MHz时,对应的LTF可以为第一序列,如EHTLTF 20MHz_1x,EHTLTF 20MHz_2x,EHTLTF 20MHz_4x中任一。举例来说,第一PPDU的带宽为40MHz时,对应的LTF可以为第二序列,如EHTLTF 40MHz_1x,EHTLTF 40MHz_2x,EHTLTF 40MHz_4x中任一。举例来说,第一PPDU的带宽为80MHz时,对应的LTF可以为第三序列,如EHTLTF 80MHz_1x,EHTLTF 80MHz_2x,EHTLTF 80MHz_4x中任一。举例来说,第一PPDU的带宽为160MHz时,对应的LTF可以为第四序列,如EHTLTF 160MHz_1x,EHTLTF 160MHz_2x,EHTLTF 160MHz_4x中任一。举例来说,第一PPDU的带宽为320MHz时,对应的LTF可以为第五序列,如EHTLTF 320MHz_1x,EHTLTF 320MHz_2x,EHTLTF 320MHz_4x中任一。
这样,通过这样的实施例来生成LTF,能够实现对目前已有序列的充分利用,减少了改进的工作量。对于接收设备而言,该实施例的LTF与单个PPDU的接收情况是一致的,从而能够实现第二类设备(非实现了EHT基本特性的设备)接收LTF的统一。
在一些实施例中,可以基于第一PPDU的带宽来生成LTF。以粒度为80MHz为例,举例来说,第一PPDU的带宽为80MHz时,对应的LTF可以为第六序列,如EHTLTF 80MHz_1x,EHTLTF 80MHz_2x,EHTLTF 80MHz_4x中任一乘以+1或者-1的相位系数。举例来说,第一PPDU的带宽为160MHz时,对应的LTF可以为第七序列,如EHTLTF 160MHz_1x,EHTLTF 160MHz_2x,EHTLTF 160MHz_4x中任一乘以+1或者-1的相位系数。
这样,通过这样的实施例来生成LTF,一方面能够充分利用目前已有序列,另一方面对目前已有序列进行进一步优化设计,如乘以+1或者-1的相位系数,如此,对于接收设备而言,能够在进行信道估计等后续处理时,进一步优化PAPR。
在一些实施例中,可以基于A-PPDU的总带宽来生成LTF。可理解,由于第三指示信息指示了A-PPDU的带宽组合,带宽组合中包括各个PPDU的带宽,因此带宽组合中各个带宽之和即为A-PPDU的总带宽。具体地,可以基于A-PPDU的总带宽来构建LTF序列。举例来说,A-PPDU的总带宽为160MHz时,对应的LTF可以为第一总序列,如EHTLTF sub160MHz_1x,EHTLTF sub160MHz_2x,EHTLTF sub160MHz_4x中任一。举例来说,A-PPDU的总带宽为320MHz时,对应的LTF可以为第二总序列,如EHTLTF sub320MHz_1x,EHTLTF sub320MHz_2x,EHTLTF sub320MHz_4x中任一。
这样,通过这样的实施例来生成LTF,接收设备在接收到A-PPDU之后,在进行信道估 计等操作时,可以针对聚合带宽(即A-PPDU的总带宽)优化PAPR。
在一些实施例中,可以基于A-PPDU的总带宽以及A-PPDU中各个PPDU的类型来生成LTF。以粒度为80MHz为例,举例来说,可以基于A-PPDU的总带宽以及每个80MHz内的PPDU的类型来生成LTF。
在一些示例中,可以预先规定每个80MKHz内PPDU的类型。例如,可以规定A-PPDU中有且仅有一个HE MU PPDU,而且该HE MU PPDU必须位于主80MHz或者主160MHz信道上,那么可以直接基于该规定获知各个80MHz内的PPDU的类型。
在一些示例中,可以预先规定部分80MKHz内PPDU的类型。例如,可以规定A-PPDU中最多仅有一个HE MU PPDU(0个或1个),而且该HE MU PPDU必须位于主80MHz或者主160MHz信道上,那么可以直接通过第一预设比特数来指示主80MHz或者主160MHz信道上是否是HE MU PPDU。
在一些示例中,可以预先规定一个或多个80MHz内PPDU的类型,通过第二预设比特数来指示其余80MHz内的PPDU的类型。作为一例,可以预先定义从160MHz内的PPDU类型为非HE,如为EHT,EHT+,EHT++等。进一步可以使用2比特(第二预设比特数),用于指示主160MHz内的两个80MHz内的PPDU的类型,每个比特可以为0或1,0表示PPDU的类型为HE(如HE MU PPDU),1表示PPDU的类型为EHT(如EHT MU PPDU)。
在一些示例中,可以通过第三预设长度比特数来指示每个80MHz内的PPDU的类型。作为一例,可以使用4比特(第三预设比特数),对应于4个80MHz,每个比特可以为0或1,0表示PPDU的类型为HE(如HE MU PPDU),1表示PPDU的类型为EHT(如EHT MU PPDU)。
在一些实施例中,可以基于A-PPDU的带宽组合来生成LTF。举例来说,可以基于不同的带宽组合构建不同的LTF序列。例如,带宽组合C1对应LTF序列1,带宽组合C2对应LTF序列2,等等。举例来说,可以根据不同的带宽组合,乘以不同的+1或者-1的相位系数,来生成不同的LTF序列。这样,能够基于带宽组合来生成LTF,使得每种组合情况下的LTF序列最优,实现了LTF序列的优化选取,进一步能够降低PAPR。
在一些实施例中,可以基于A-PPDU的带宽组合以及A-PPDU中各个PPDU的类型来生成LTF。关于A-PPDU中各个PPDU的类型的指示方式可以参照上面的描述,为避免重复,这里不再赘述。
应注意的是,上述的LTF只是示意,LTF(如EHT-LTF)是由一系列的1,-1,0构成的。本公开实施例中对LTF的构建(construct)过程不作限定。
如此,本公开实施例中能够基于第一PPDU的带宽、A-PPDU的总带宽、A-PPDU的带宽组合中的至少一项(一项或多项)来生成LTF,实现了对于LTF的优化,从而接收设备能够基于此进一步降低PAPR。
通过上面所描述的实现方式,在第一PPDU中同时包括第一PPDU的带宽的第一指示信息以及A-PPDU的带宽组合的第三指示信息,从而接收到该第一PPDU的设备(如接收设备或第三方设备)不仅能获知第一PPDU的带宽,还能够同时获知A-PPDU的总带宽以及A-PPDU中其他PPDU的带宽。进而接收到该第一PPDU的设备能够针对A-PPDU进行空间复用操作的优化,比如在整个A-PPDU带宽内进行空间复用传输。对于接收到该第一PPDU的第三方设备而言,其可以参考总带宽保持静默(不发送)或者进行空间复用传输,不对当前传输造成过大的干扰。另外,接收设备还可以根据A-PPDU的总带宽和/或带宽组合进行一 些带外的干扰抑制等,从而增强其接收。进一步地,基于单个PPDU的带宽、A-PPDU的总带宽、A-PPDU的带宽组合中的至少一项(一项或多项)来生成LTF,实现了对于LTF的优化,从而接收设备能够基于此进一步降低PAPR。
在又一种实现方式中,第一PPDU可以包括第二指示信息和第三指示信息。第二指示信息用于指示A-PPDU的总带宽,第三指示信息用于指示A-PPDU的带宽组合。
在本公开实施例中,带宽组合可以包括至少两个带宽值,与A-PPDU中的至少两个PPDU一一对应。举例来讲,假设A-PPDU包括N个PPDU,那么带宽组合可以包括N个带宽值。示例性地,带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
在一些实施例中:
第二指示信息可以承载于第一PPDU的第一信令字段,第三指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段。在一些示例中,第一信令字段可以为如图4中示出的U-SIG 405,第二信令字段可以为如图4中示出的EHT-SIG 406。
本公开的实施例中,第二指示信息承载于第一PPDU的第一信令字段可以指代:第二指示信息承载于第一PPDU的U-SIG的带宽字段(BW),也即是说,第二指示信息可以占用U-SIG的第一个符号(U-SIG-1)的第4个比特至第6个比特(B3-B5)中的至少一个比特,并且U-SIG-1的B3-B5字段用于指示A-PPDU的总带宽。
示例性地,第二指示信息可以具有第三预设长度,可以表示为L3。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。在该示例中,第三预设长度可以为1比特或2比特或3比特。以第三预设长度为1比特为例,可以采用“0”代表总带宽160MHz,“1”代表总带宽320MHz。以第三预设长度为2比特或3比特为例,可以采用“0”代表总带宽160MHz,“1”代表总带宽240MHz,“2”代表总带宽320MHz,其余为证实或不理会。
在另一些示例中,第三预设长度可以为3比特,位于U-SIG-1的B3-B5。示例性地,可以采用“3”代表总带宽160MHz,“4”代表总带宽320MHz-1,“5”代表总带宽320MHz-2,其余为证实或不理会。如此能够充分利用目前已有的对于U-SIG-1的B3-B5的规定,尽量减少对已有标准的改动。
可理解的是,聚合时的带宽的粒度也可以为其他值,例如20MHz或40MHz等。与上述80MHz的粒度是类似的,此处不再展开描述。并且上面给出的仅是一个示例,第三预设长度可以为其他值,例如可以4个比特、或更大的比特等。
本公开的实施例中,第三指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段可以指代:第三指示信息的部分或全部可以承载于第一PPDU的第一信令字段或第二信令字段。具体的,可以至少包括三种情形:(1)第三指示信息的全部承载于第一信令字段,(2)第三指示信息的全部承载于第二信令字段,(3)第三指示信息的一部分承载于第一信令字段,第三指示信息的另一部分承载于第二信令字段。
示例性地,第三指示信息可以承载于第一PPDU的U-SIG和/或EHT-SIG的不理会和/或证实比特。在一些示例中,第三指示信息可以位于以下的部分或全部:U-SIG字段的第一个符号(U-SIG-1)的第26个比特(B25),U-SIG字段的第二个符号(U-SIG-2)的第3个比特(B2),U-SIG-2的第9个比特(B8),U-SIG-1的第21个比特至第25个比特(B20-B24)以及EHT-SIG的U-SIG溢出部分(B13-B16)。
示例性地,第三指示信息可以具有第五预设长度,可以表示为L5。第五预设长度可以 为至少一个比特,例如可以为1比特或者可以大于1比特。举例来说,可以从{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任意选择其中L5个比特定义为A-PPDU的带宽组合。
在本公开实施例中,带宽组合可以包括至少两个带宽值,与A-PPDU中的至少两个PPDU一一对应。举例来讲,假设A-PPDU包括N个PPDU,那么带宽组合可以包括N个带宽值。示例性地,带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。以第五预设长度为3比特为例,可以采用“0”代表带宽组合80-80-80-80,“1”代表带宽组合80-80-160,“2”代表带宽组合160-80-80,“3”代表带宽组合160-160,“4”代表带宽组合80-80,其余值为证实或不理会,并且带宽组合中的各个带宽是按照频率从低到高排列的。可以看出,“0”-“3”适用于总带宽为320MHz的情况,“4”适用于总带宽为160MHz的情况。可理解,这仅是示意,而不构成限制,例如可以也可以采用“0”或“1”代表带宽组合80-80,而不单独用“4”指示。在后一种情况下,由于已经通过第二指示信息指示了总带宽,那么对于接收设备而言,其可以基于总带宽来获知是哪一带宽组合。假如总带宽为160MHz,那么可以确定“0”代表带宽组合80-80而非80-80-80-80。假如总带宽为320MHz,那么可以确定“1”代表带宽组合80-80-160而非80-80。这样,能够进一步减少信令开销。
在一些示例中,关于带宽组合的第三指示信息可以与第二指示信息相结合。仍然假设进行聚合时的带宽的粒度为80MHz。举例来说,在第二指示信息指示总带宽为320MHz的情况下,可以采用“0”代表带宽组合80-80-80-80,“1”代表带宽组合80-80-160,“2”代表带宽组合160-80-80,“3”代表带宽组合160-160。在第二指示信息指示总带宽为160MHz的情况下,可以采用“0”代表带宽组合80-80。这样,对于接收到第一PPDU的接收设备而言,其可以基于总带宽来确定第三指示信息“0”到底是代表带宽组合80-80-80-80还是代表带宽组合80-80。这样,能够进一步减少信令开销。当然可理解,在第二指示信息指示总带宽为160MHz的情况下,也可以采用“1”-“3”中任一个代表带宽组合80-80,或者也可以采用“4”或其它指示代表带宽组合80-80。本公开实施例不再罗列。
在另一些示例中,进行聚合时的带宽的粒度可以为20MHz或40MHz,在该示例中,第五预设长度可以更大,如6比特等或其他值,如此能够对应更多的带宽组合。
举例来说,可以使用{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中至少一个比特承载第三指示信息,也就是说,可以通过证实比特来承载第三指示信息,即L5比特中的全部比特都是证实比特。考虑到证实比特的特性,在该示例中,还可以从{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中未承载第三指示信息的位置选取其中至少一个比特,用于指示第一PPDU被聚合在A-PPDU中。
例如,U-SIG-1的B25可以被定义为是否是A-PPDU,U-SIG-1的B25为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-2的B2和/或U-SIG-2的B8来指示带宽组合。再例如,U-SIG-2的B2可以被定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-1的B25和/或U-SIG-2的B8来指示带宽组合。再例如,U-SIG-2的B8可以被定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-1的B25和/或U-SIG-2的B2来指示带宽组合。应注意,上面的例子不是穷举性,例如,可以使用两个比特来定义 是否是A-PPDU,使用一个比特来承载第三指示信息,等等。本公开中不再罗列。
这样,通过至少一个比特(证实比特)来指示第一PPDU被聚合在A-PPDU中,对于第一类设备而言,第一类设备在接收到该A-PPDU时,由于证实比特不等于缺省值,可以及时停止接收该A-PPDU,从而节省了功耗,且保证了其他设备的正常接收。
再举例来说,可以使用{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中至少一个比特承载第三指示信息,也就是说,可以通过不理会比特来承载第三指示信息,即L5比特中的全部比特都是不理会比特。
可选地,也可以从{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中未承载第三指示信息的位置选取其中至少一个比特,用于指示第一PPDU被聚合在A-PPDU中。
例如,可以将{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中至少一个比特(如1个)定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。这样,通过至少一个比特(证实比特)来指示第一PPDU被聚合在A-PPDU中,对于第一类设备而言,第一类设备在接收到该A-PPDU时,由于该至少一个比特(证实比特)不等于缺省值,可以及时停止接收该A-PPDU,从而节省了功耗,且保证了其他设备的正常接收。
再例如,可以将{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中未承载第三指示信息的至少一个比特(如1个)定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。这样,对于第一类设备而言,其会忽略该至少一个比特,即使第一类设备接收到A-PPDU,其也会按照单个PPDU的情况来处理。
再举例来说,第五预设长度(L5)大于或等于2比特,在该示例中,第三指示信息的部分比特位于{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中,另外部分比特位于{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中。也就是说,L5比特中的一部分比特是证实比特而另一部分比特是不理会比特。
图12示出了本公开实施例提供的一种A-PPDU的格式1200的示意图。在图12的格式1200中,A-PPDU包括3个子PPDU,分别为PPDU 1210,PPDU 1220和PPDU 1230。格式1200中,PPDU 1210,PPDU 1220和PPDU 1230的类型均为EHT MU PPDU。
格式1200中,PPDU 1210,PPDU 1220和PPDU 1230的格式类似于上述图4中的格式400,但与格式400不完全相同。PPDU 1210,PPDU 1220和PPDU 1230的各个U-SIG字段,通过“A-BW=320MHz和80-80-160”来指示A-PPDU 1200的总带宽为320MHz,A-PPDU 1200的带宽组合为80-80-160。
可理解的是,PPDU 1210,PPDU 1220和PPDU 1230中的“A-BW=320MHz”可以承载于U-SIG-1的B3-B5中的部分或全部。PPDU 1210,PPDU 1220和PPDU 1230中的“80-80-160”可以承载于{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24}中的部分或全部。
应理解的是,图12仅是示意性的,例如可以包括更少数量的PPDU,如可以包括PPDU 1210,PPDU 1220和PPDU 1230中的任两个。另外,图12中的EHT MU PPDU类型可以被替换为HE MU PPDU,EHT+MU PPDU或EHT++MU PPDU等。本公开对此不限定。
另外,应理解的是,图12中尽管示出了带宽组合“80-80-160”承载于U-SIG,但是本公开对此不限定,例如可以承载于EH-SIG;再例如可以部分承载于U-SIG,另部分承载于EH-SIG。
通过该实施例,在第一PPDU中同时包括A-PPDU的总带宽的第二指示信息以及 A-PPDU的带宽组合的第三指示信息,从而接收到该第一PPDU的设备(如接收设备或第三放设备)不仅能获知A-PPDU的总带宽,同时能够获知A-PPDU中各个PPDU的带宽。进而接收设备能够更好地进行一些带外的干扰抑制等,从而增强其接收。并且该实施例中第二指示信息可以承载于U-SIG-1的B3-B5的全部或部分,能够充分利用已有的PPDU格式,简化修改。
在另一些实施例中:
第三指示信息可以承载于第一PPDU的第一信令字段,第二指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段。在一些示例中,第一信令字段可以为如图4中示出的U-SIG 405,第二信令字段可以为如图4中示出的EHT-SIG 406。
本公开的实施例中,第三指示信息承载于第一PPDU的第一信令字段可以指代:第三指示信息承载于第一PPDU的U-SIG的带宽字段(BW),也即是说,第三指示信息可以占用U-SIG的第一个符号(U-SIG-1)的第4个比特至第6个比特(B3-B5)中的至少一个比特。在该示例中,可以将U-SIG-1的B3-B5重新定义为A-PPDU的带宽组合。
示例性地,第三指示信息可以占用至少一个比特,例如可以为1比特或者可以大于1比特。举例来说,可以从U-SIG-1的B3-B5中任意选择其中至少一个比特承载第三指示信息,用于指示A-PPDU的带宽组合。
在本公开实施例中,带宽组合可以包括至少两个带宽值,与A-PPDU中的至少两个PPDU一一对应。举例来讲,假设A-PPDU包括N个PPDU,那么带宽组合可以包括N个带宽值。示例性地,带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。以第三指示信息占用3比特(B3-B5)为例,可以采用“0”代表带宽组合80-80-80-80,“1”代表带宽组合80-80-160,“2”代表带宽组合160-80-80,“3”代表带宽组合160-160,“4”代表带宽组合80-80,其余值为证实或不理会,并且带宽组合中的各个带宽是按照频率从低到高排列的。
在另一些示例中,进行聚合时的带宽的粒度可以为20MHz或40MHz,在该示例中,第三指示信息可以占用更多数量的比特,如6比特等或其他值,如此能够对应更多的带宽组合。例如,第三指示信息可以占用U-SIG-1的B3-B5以及{-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8,U-SIG-1的B20-B24}中至少一个比特,本公开中不再一一罗列。
本公开的实施例中,第二指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段可以指代:第二指示信息的部分或全部可以承载于第一PPDU的第一信令字段或第二信令字段。具体的,可以至少包括三种情形:(1)第二指示信息的全部承载于第一信令字段,(2)第二指示信息的全部承载于第二信令字段,(3)第二指示信息的一部分承载于第一信令字段,第二指示信息的另一部分承载于第二信令字段。
示例性地,第二指示信息可以承载于第一PPDU的U-SIG和/或EHT-SIG的不理会和/或证实比特。在一些示例中,第二指示信息可以位于以下的部分或全部:U-SIG字段的第一个符号(U-SIG-1)的第26个比特(B25),U-SIG字段的第二个符号(U-SIG-2)的第3个比特(B2),U-SIG-2的第9个比特(B8),U-SIG-1的第21个比特至第25个比特(B20-B24)以及EHT-SIG的U-SIG溢出部分(B13-B16)。
示例性地,第二指示信息可以具有第二预设长度,可以表示为L2。举例来说,可以从{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任意 选择其中L2个比特定义为A-PPDU的总带宽。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。在该示例中,第二预设长度可以为1比特或2比特。应理解的是,在该示例中,第二预设长度可以为更大值,如3比特、4比特等等,本公开对此不限定。
以第二预设长度为1比特为例,可以采用“0”代表总带宽160MHz,“1”代表总带宽320MHz。以第二预设长度为2比特为例,可以采用“0”代表总带宽160MHz,“1”代表总带宽240MHz,“2”代表总带宽320MHz,其余为证实或不理会。
为了简化描述,下面以1比特为例阐述该示例。具体的,{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任一比特可以承载第二指示信息,可以采用“0”代表总带宽160MHz,“1”代表总带宽320MHz。
举例来说,可以使用{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中任一比特承载第二指示信息,也就是说,可以通过证实比特来承载第二指示信息。考虑到证实比特的特性,在该示例中,还可以从{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中未承载第二指示信息的位置选取其中至少一个比特,用于指示第一PPDU被聚合在A-PPDU中。
例如,U-SIG-1的B25可以被定义为是否是A-PPDU,U-SIG-1的B25为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-2的B2和/或U-SIG-2的B8来指示A-PPDU的总带宽。再例如,U-SIG-2的B2可以被定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-1的B25和/或U-SIG-2的B8来指示A-PPDU的总带宽。再例如,U-SIG-2的B8可以被定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。进一步再通过U-SIG-1的B25和/或U-SIG-2的B2来指示A-PPDU的总带宽。应注意,上面的例子不是穷举性,例如,可以使用两个比特来定义是否是A-PPDU,使用一个比特来承载第二指示信息,等等。本公开中不再罗列。
这样,通过至少一个比特(证实比特)来指示第一PPDU被聚合在A-PPDU中,对于第一类设备而言,第一类设备在接收到该A-PPDU时,由于证实比特不等于缺省值,可以及时停止接收该A-PPDU,从而节省了功耗,且保证了其他设备的正常接收。
再举例来说,可以使用{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中任一比特承载第二指示信息,也就是说,可以通过不理会比特来承载第二指示信息。
可选地,也可以从{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中未承载第二指示信息的位置选取其中至少一个比特,用于指示第一PPDU被聚合在A-PPDU中。
例如,可以将{U-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8}中至少一个比特(如1个)定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。这样,通过至少一个比特(证实比特)来指示第一PPDU被聚合在A-PPDU中,对于第一类设备而言,第一类设备在接收到该A-PPDU时,由于该至少一个比特(证实比特)不等于缺省值,可以及时停止接收该A-PPDU,从而节省了功耗,且保证了其他设备的正常接收。
再例如,可以将{U-SIG-1的B20-B24,EHT-SIG的B13-B16}中未承载第二指示信息的至少一个比特(如1个)定义为是否是A-PPDU,其为非缺省值(如0)表示该第一PPDU是A-PPDU的一部分。这样,对于第一类设备而言,其会忽略该至少一个比特,即使第一类 设备接收到A-PPDU,其也会按照单个PPDU的情况来处理。
上面以第二预设长度为1比特进行了阐述,可理解,第二预设长度(L2比特)可以大于1比特。并且,在第二预设长度大于1比特的示例中,L2比特中的全部比特都是证实比特,或者,L2比特中的全部比特都是不理会比特,或者,L2比特中的一部分比特是证实比特而另一部分比特是不理会比特。
在一些示例中,假设进行聚合时的带宽的粒度为20MHz。在该示例中,第二预设长度可以为3比特或4比特。应理解的是,在该示例中,第二预设长度可以为其他值,如2比特、5比特等等,本公开对此不限定。
以第二预设长度为3比特为例,可以采用“0”代表总带宽40MHz,“1”代表总带宽80MHz,“2”代表总带宽120MHz,“3”代表总带宽160MHz,“4”代表总带宽320MHz。以第二预设长度为4比特为例,可以采用“0”代表总带宽20MHz,“1”代表总带宽40MHz,“2”代表总带宽60MHz,“3”代表总带宽80MHz,“4”代表总带宽100MHz,…,“15”代表总带宽320MHz。
与上面的示例类似,在粒度为20MHz的示例中,第二预设长度(L2比特)中的全部比特都是证实比特,或者,L2比特中的全部比特都是不理会比特,或者,L2比特中的一部分比特是证实比特而另一部分比特是不理会比特。另外,也可以通过至少一个比特(证实比特或不理会比特)来指示该第一PPDU是否被聚合在A-PPDU中。具体描述可以参见上述的示例,为避免重复,这里不再赘述。
可理解的是,本公开中进行聚合的粒度还可以是其他值,如40MHz等。如此,本公开实施例中,针对不同的粒度,可以定义不同的第二预设长度,这样第二指示信息能够被充分指示的同时避免占用过多的比特数,从而能够实现两者之间的权衡,保证了资源的优化利用。
通过该实施例,在第一PPDU中同时包括A-PPDU的总带宽的第二指示信息以及A-PPDU的带宽组合的第三指示信息,从而接收到该第一PPDU的设备(如接收设备或第三放设备)不仅能获知A-PPDU的总带宽,还能够同时获知A-PPDU中其他PPDU的带宽。进而接收设备能够更好地进行一些带外的干扰抑制等,从而增强其接收。
可选地,在本实现方式中,在710处还可以包括:生成第一PPDU中的长训练字段(Long Training Field,LTF)。可理解,在第一DDPU的类型为EHT MU PPDU的场景下,LTF可以为EHT LTF。
具体地,可以根据A-PPDU的总带宽和/或A-PPDU的带宽组合来生成LTF。在一些示例中,在生成LTF时还可以考虑A-PPDU中各个PPDU的类型。
在一些实施例中,可以基于A-PPDU的总带宽来生成LTF。具体地,可以基于A-PPDU的总带宽来构建LTF序列。举例来说,A-PPDU的总带宽为160MHz时,对应的LTF可以为第一总序列,如EHTLTF sub160MHz_1x,EHTLTF sub160MHz_2x,EHTLTF sub160MHz_4x中任一。举例来说,A-PPDU的总带宽为320MHz时,对应的LTF可以为第二总序列,如EHTLTF sub320MHz_1x,EHTLTF sub320MHz_2x,EHTLTF sub320MHz_4x中任一。
这样,通过这样的实施例来生成LTF,接收设备在接收到A-PPDU之后,在进行信道估计等操作时,可以针对聚合带宽(即A-PPDU的总带宽)优化PAPR。
在一些实施例中,可以基于A-PPDU的总带宽以及A-PPDU中各个PPDU的类型来生成LTF。以粒度为80MHz为例,举例来说,可以基于A-PPDU的总带宽以及每个80MHz内的PPDU的类型来生成LTF。
在一些示例中,可以预先规定每个80MKHz内PPDU的类型。例如,可以规定A-PPDU中有且仅有一个HE MU PPDU,而且该HE MU PPDU必须位于主80MHz或者主160MHz信道上,那么可以直接基于该规定获知各个80MHz内的PPDU的类型。
在一些示例中,可以预先规定部分80MKHz内PPDU的类型。例如,可以规定A-PPDU中最多仅有一个HE MU PPDU(0个或1个),而且该HE MU PPDU必须位于主80MHz或者主160MHz信道上,那么可以直接通过第一预设比特数来指示主80MHz或者主160MHz信道上是否是HE MU PPDU。
在一些示例中,可以预先规定一个或多个80MHz内PPDU的类型,通过第二预设比特数来指示其余80MHz内的PPDU的类型。作为一例,可以预先定义从160MHz内的PPDU类型为非HE,如为EHT,EHT+,EHT++等。进一步可以使用2比特(第二预设比特数),用于指示主160MHz内的两个80MHz内的PPDU的类型,每个比特可以为0或1,0表示PPDU的类型为HE(如HE MU PPDU),1表示PPDU的类型为EHT(如EHT MU PPDU)。
在一些示例中,可以通过第三预设长度比特数来指示每个80MHz内的PPDU的类型。作为一例,可以使用4比特(第三预设比特数),对应于4个80MHz,每个比特可以为0或1,0表示PPDU的类型为HE(如HE MU PPDU),1表示PPDU的类型为EHT(如EHT MU PPDU)。
在一些实施例中,可以基于A-PPDU的带宽组合来生成LTF。举例来说,可以基于不同的带宽组合构建不同的LTF序列。例如,带宽组合C1对应LTF序列1,带宽组合C2对应LTF序列2,等等。举例来说,可以根据不同的带宽组合,乘以不同的+1或者-1的相位系数,来生成不同的LTF序列。这样,能够基于带宽组合来生成LTF,使得每种组合情况下的LTF序列最优,实现了LTF序列的优化选取,进一步能够降低PAPR。
在一些实施例中,可以基于A-PPDU的带宽组合以及A-PPDU中各个PPDU的类型来生成LTF。关于A-PPDU中各个PPDU的类型的指示方式可以参照上面的描述,为避免重复,这里不再赘述。
应注意的是,上述的LTF只是示意,LTF(如EHT-LTF)是由一系列的1,-1,0构成的。本公开实施例中对LTF的构建(construct)过程不作限定。
如此,本公开实施例中能够基于A-PPDU的总带宽和/或A-PPDU的带宽组合来生成LTF,实现了对于LTF的优化,从而接收设备能够基于此进一步降低PAPR。
通过上面所描述的实现方式,在第一PPDU中同时包括A-PPDU的总带宽的第二指示信息以及A-PPDU的带宽组合的第三指示信息,从而接收到该第一PPDU的设备(如接收设备或第三方设备)不仅能获知A-PPDU的总带宽,还能够同时获知A-PPDU中其他PPDU的带宽。进而接收到该第一PPDU的设备能够针对A-PPDU进行空间复用操作的优化,比如在整个A-PPDU带宽内进行空间复用传输。对于接收到该第一PPDU的第三方设备而言,其可以参考总带宽保持静默(不发送)或者进行空间复用传输,不对当前传输造成过大的干扰。另外,接收设备还可以根据A-PPDU的总带宽和/或带宽组合进行一些带外的干扰抑制等,从而增强其接收。进一步地,基于A-PPDU的总带宽和/或A-PPDU的带宽组合来生成LTF,实现了对于LTF的优化,从而接收设备能够基于此进一步降低PAPR。
在另一种实现方式中,第一PPDU可以包括第三指示信息,该第三指示信息用于指示A-PPDU的带宽组合。
在本公开实施例中,带宽组合可以包括至少两个带宽值,与A-PPDU中的至少两个PPDU 一一对应。举例来讲,假设A-PPDU包括N个PPDU,那么带宽组合可以包括N个带宽值。示例性地,带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
可理解,带宽组合中各个带宽之和即为A-PPDU的总带宽。换句话说,该实现方式中,第三指示信息隐式地指示了A-PPDU的总带宽。也就是说,第一PPDU包括A-PPDU的总带宽,其中A-PPDU的总带宽通过第三指示信息隐式指示。
在一些实施例中,第三指示信息可以承载于第一PPDU的第一信令字段。在一些示例中,第一信令字段可以为如图4中示出的U-SIG 405。
示例性地,第三指示信息可以承载于U-SIG的第一个符号(U-SIG-1)的第4个比特至第6个比特(B3-B5)中的部分或全部。在该示例中,可以将U-SIG-1的B3-B5重新定义为A-PPDU的带宽组合。
示例性地,第三指示信息可以占用至少一个比特,例如可以为1比特或者可以大于1比特。举例来说,可以从U-SIG-1的B3-B5中任意选择其中至少一个比特承载第三指示信息,用于指示A-PPDU的带宽组合。
在一些示例中,假设进行聚合时的带宽的粒度为80MHz。以第三指示信息占用3比特(B3-B5)为例,可以采用“0”代表带宽组合80-80-80-80,“1”代表带宽组合80-80-160,“2”代表带宽组合160-80-80,“3”代表带宽组合160-160,“4”代表带宽组合80-80,其余值为证实或不理会,并且带宽组合中的各个带宽是按照频率从低到高排列的。
在另一些示例中,进行聚合时的带宽的粒度可以为20MHz或40MHz,在该示例中,第三指示信息可以占用更多数量的比特,如6比特等或其他值,如此能够对应更多的带宽组合。例如,第三指示信息可以占用U-SIG-1的B3-B5以及{-SIG-1的B25,U-SIG-2的B2,U-SIG-2的B8,U-SIG-1的B20-B24}中至少一个比特,本公开中不再一一罗列。
在一些实施例中,第三指示信息可以承载于第一PPDU的第一信令字段和/或第二信令字段。也就是说,第三指示信息的部分或全部可以承载于第一PPDU的第一信令字段或第二信令字段。具体的,可以至少包括三种情形:(1)第三指示信息的全部承载于第一信令字段,(2)第三指示信息的全部承载于第二信令字段,(3)第三指示信息的一部分承载于第一信令字段,第三指示信息的另一部分承载于第二信令字段。
示例性地,第三指示信息可以承载于第一PPDU的U-SIG和/或EHT-SIG的不理会和/或证实比特。在一些示例中,第三指示信息可以位于以下的部分或全部:U-SIG字段的第一个符号(U-SIG-1)的第26个比特(B25),U-SIG字段的第二个符号(U-SIG-2)的第3个比特(B2),U-SIG-2的第9个比特(B8),U-SIG-1的第21个比特至第25个比特(B20-B24)以及EHT-SIG的U-SIG溢出部分(B13-B16)。
关于第三指示信息承载于第一信令字段和/或第二信令字段的实施例,可以参照上面的实现方式中的相关描述,本实现方式中不再重复。
图13示出了本公开实施例提供的一种A-PPDU的格式1300的示意图。在图13的格式1300中,A-PPDU包括3个子PPDU,分别为PPDU 1310,PPDU 1320和PPDU 1330。格式1300中,PPDU 1310,PPDU 1320和PPDU 1330的类型均为EHT MU PPDU。
格式1300中,PPDU 1310,PPDU 1320和PPDU 1330的格式类似于上述图4中的格式400,但与格式400不完全相同。PPDU 1310,PPDU 1320和PPDU 1330的各个U-SIG字段,通过“80-80-160”来指示A-PPDU 1300的带宽组合为80-80-160。
可理解的是,PPDU 1310,PPDU 1320和PPDU 1330中的“80-80-160”可以承载于U-SIG-1的B3-B5中的部分或全部,或者可以承载于{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24}中的部分或全部。
应理解的是,图13仅是示意性的,例如可以包括更少数量的PPDU,如可以包括PPDU 1310,PPDU 1320和PPDU 1330中的任两个。另外,图13中的EHT MU PPDU类型可以被替换为HE MU PPDU,EHT+MU PPDU或EHT++MU PPDU等。本公开对此不限定。
另外,应理解的是,图13中尽管示出了带宽组合“80-80-160”承载于U-SIG,但是本公开对此不限定,例如可以承载于EH-SIG;再例如可以部分承载于U-SIG,另部分承载于EH-SIG。
通过该实施例,在第一PPDU中同时包括A-PPDU的带宽组合的第三指示信息,从而接收到该第一PPDU的设备(如接收设备或第三放设备)能够隐式地获知A-PPDU的总带宽,还能够同时获知A-PPDU中各个PPDU的带宽。进而能够更加综合地进行后续操作,避免对其他的接收设备造成过大的干扰。
可选地,在本实现方式中,在710处还可以包括:生成第一PPDU中的长训练字段(Long Training Field,LTF)。可理解,在第一DDPU的类型为EHT MU PPDU的场景下,LTF可以为EHT LTF。具体地,可以根据A-PPDU的总带宽和/或A-PPDU的带宽组合来生成LTF。
可理解,A-PPDU的总带宽可以通过将带宽组合中的各带宽求和得到。关于生成LTF的实施例可以参照上面的实现方式中的描述,本实现方式中不再重复。
通过本实现方式,在第一PPDU中包括A-PPDU的带宽组合的第三指示信息,从而接收到该第一PPDU的设备(如接收设备或第三方设备)能隐式地获知A-PPDU的总带宽,且获知A-PPDU中各个PPDU的带宽。进而接收到该第一PPDU的设备能够针对A-PPDU进行空间复用操作的优化,比如在整个A-PPDU带宽内进行空间复用传输。对于接收到该第一PPDU的第三方设备而言,其可以参考总带宽保持静默(不发送)或者进行空间复用传输,不对当前传输造成过大的干扰。另外,接收设备还可以根据A-PPDU的总带宽和/或带宽组合进行一些带外的干扰抑制等,从而增强其接收。进一步地,基于A-PPDU的总带宽和/或A-PPDU的带宽组合来生成LTF,实现了对于LTF的优化,从而接收设备能够基于此进一步降低PAPR。
在另一种实现方式中,第一PPDU可以包括第一指示信息、第二指示信息和第三指示信息。第一指示信息用于指示第一PPDU的带宽,第二指示信息用于指示A-PPDU的总带宽,第三指示信息用于指示A-PPDU的带宽组合。
在一些实施例中,第一指示信息承载于第一PPDU的第一信令字段,或承载于第一PPDU的第二信令字段,或部分承载于第一PPDU的第一信令字段且另部分承载于第一PPDU的第二信令字段。在一些示例中,第一指示信息可以占用至少一个比特,例如一个比特或多个比特。
在一些实施例中,第二指示信息承载于第一PPDU的第一信令字段,或承载于第一PPDU的第二信令字段,或部分承载于第一PPDU的第一信令字段且另部分承载于第一PPDU的第二信令字段。在一些示例中,第二指示信息可以占用至少一个比特,例如一个比特或多个比特。
在一些实施例中,第三指示信息承载于第一PPDU的第一信令字段,或承载于第一PPDU的第二信令字段,或部分承载于第一PPDU的第一信令字段且另部分承载于第一PPDU的第 二信令字段。在一些示例中,第三指示信息可以占用至少一个比特,例如一个比特或多个比特。
示例性地,第一信令字段可以包括U-SIG-1的B3-B5,和/或,第一信令字段可以包括{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24}中的至少一个。示例性地,第二信令字段可以包括EHT-SIG的B13-B16中的至少一个。
关于本实现方式中各种承载方式,可以参照上述实现方式中的相关的类似描述,为避免重复,本实现方式不再赘述。
图14示出了本公开实施例提供的一种A-PPDU的格式1400的示意图。在图14的格式1400中,A-PPDU包括3个子PPDU,分别为PPDU 1410,PPDU 1420和PPDU 1430。格式1400中,PPDU 1410,PPDU 1420和PPDU 1430的类型均为EHT MU PPDU。
格式1400中,PPDU 1410,PPDU 1420和PPDU 1430的格式类似于上述图4中的格式400,但与格式400不完全相同。PPDU 1410的U-SIG字段,通过“BW=80MHz,A-BW=320MHz和80-80-160”来指示PPDU 1410的带宽为80MHz,A-PPDU 1400的总带宽为320MHz,A-PPDU 1400的带宽组合为80-80-160。PPDU 1420的U-SIG字段,通过“BW=80MHz,A-BW=320MHz和80-80-160”来指示PPDU 1420的带宽为80MHz,A-PPDU 1400的总带宽为320MHz,A-PPDU 1400的带宽组合为80-80-160。PPDU 1430的U-SIG字段,通过“BW=160MHz,A-BW=320MHz和80-80-160”来指示PPDU 1430的带宽为160MHz,A-PPDU 1400的总带宽为320MHz,A-PPDU 1400的带宽组合为80-80-160。
应理解的是,图14仅是示意性的,例如可以包括更少数量的PPDU,如可以包括PPDU 1410,PPDU 1420和PPDU 1430中的任两个。另外,图14中的至少一个PPDU的类型EHT MU PPDU可以被替换为HE MU PPDU,EHT+MU PPDU或EHT++MU PPDU等。本公开对此不限定。
另外,应理解的是,图14中尽管示出了带宽、总带宽和带宽组合都承载于U-SIG,但是本公开对此不限定,例如带宽、总带宽和带宽组合的部分可以承载于EH-SIG。
可选地,在本实现方式中,在710处还可以包括:生成第一PPDU中的长训练字段(Long Training Field,LTF)。可理解,在第一DDPU的类型为EHT MU PPDU的场景下,LTF可以为EHT LTF。具体地,可以根据第一PPDU的带宽、A-PPDU的总带宽、A-PPDU的带宽组合中的至少一项(一项或多项)来生成LTF。关于生成LTF的实施例可以参照上面的实现方式中的描述,本实现方式中不再重复。
通过本实现方式,在第一PPDU中同时包括第一PPDU的带宽的第一指示信息,A-PPDU的总带宽的第二指示信息以及A-PPDU的带宽组合的第三指示信息,从而接收到该第一PPDU的设备(如接收设备或第三方设备)能够充分地直接获知各种带宽信息,不仅包括第一PPDU的带宽,还能同时直接获知A-PPDU的总带宽以及A-PPDU中各个PPDU的带宽。进而接收到该第一PPDU的设备能够针对A-PPDU进行空间复用操作的优化,比如在整个A-PPDU带宽内进行空间复用传输。对于接收到该第一PPDU的第三方设备而言,其可以参考总带宽保持静默(不发送)或者进行空间复用传输,不对当前传输造成过大的干扰。另外,接收设备还可以根据A-PPDU的总带宽和/或带宽组合进行一些带外的干扰抑制等,从而增强其接收。进一步地,基于第一PPDU的带宽,A-PPDU的总带宽和A-PPDU的带宽组合中的一项或多项来生成LTF,实现了对于LTF的优化,从而接收设备能够基于此进一步降低PAPR。可理 解,虽然此实现方式可能会存在信息冗余,但是该实现方式能够确保接收设备的接收,减少甚至避免重传等。
以上在图7的基础上,结合图8至图13描述了710的各种实现方式,但是应理解,上述的实现方式仅是示意,不应解释为对生成A-PPDU的限制。
依然参照图7,发送设备101向接收设备102发送720 A-PPDU。在一些实施例中,发送设备101可以发送数据帧,且该数据帧中包括A-PPDU。
如此,本公开实施例中,发送设备可以发送A-PPDU,而无需针对单个PPDU分别进行发送,能够充分利用传输带宽,减少发送次数。对于发送设备而言,更加节能高效。
进一步地,接收设备102可以接收720 A-PPDU中的第一PPDU。具体地,接收设备102可以基于其停靠(park)的频率,来接收与其停靠的频率所对应的第一PPDU。也就是说,接收设备102停靠的频率与第一PPDU的带宽相对应。在一些实施例中,接收设备102可以为第二类设备,即非实现了EHT基本特性的设备,或也称为实现了EHT进阶特性的设备。
进一步地,接收设备102可以进一步解析730该第一PPDU。
可理解,接收设备102接收到的第一PPDU包括第一指示信息、第二指示信息和第三指示信息中的一个或多个。第一指示信息用于指示第一PPDU的带宽,第二指示信息用于指示A-PPDU的总带宽,第三指示信息用于指示A-PPDU的带宽组合。
关于第一指示信息、第二指示信息和第三指示信息可以参见上述结合710所描述的各种实现方式,为避免重复,这里不再赘述。
在一些实施例中,如果第一PPDU包括第一指示信息,那么接收设备102可以通过解析得到第一PPDU的带宽。在一些实施例中,如果第一PPDU包括第二指示信息,那么接收设备102可以通过解析得到A-PPDU的总带宽。在一些实施例中,如果第一PPDU包括第三指示信息,那么接收设备102可以通过解析得到A-PPDU的带宽组合。
示例性地,如果第一PPDU包括第三指示信息,那么及时第一PPDU不包括第一指示信息和/或第二指示信息,第一PPDU也可以基于A-PPDU的带宽组合得到第一PPDU的带宽和A-PPDU的总带宽。在一些示例中,可以通过将A-PPDU的带宽组合中各个带宽相加(求和)得到A-PPDU的总带宽。在一些示例中,可以通过接收设备102停靠的频率从A-PPDU的带宽组合中确定哪一个是第一PPDU的带宽。
在一些实施例中,第一PPDU中还可以包括至少一个比特,用于指示该第一PPDU被聚合在A-PPDU中。如此,接收设备102可以基于该至少一个比特,获知该第一PPDU是单独被发送的,还是作为A-PPDU的一部分被发送的。示例性地,该至少一个比特可以是第一PPDU的{U-SIG-1的B25,U-SIG-2的B2和B8,U-SIG-1的B20-B24,EHT-SIG的B13-B16}中至少一个比特。
在一些实施例中,接收设备102还可以基于第一PPDU中的指示信息来确定LTF序列,并进一步进行信道估计等操作。接收设备102可以基于第一PPDU的带宽、A-PPDU的总带宽和A-PPDU的带宽组合中的一个或多个来确定LTF序列,如EHT-LTF。
可理解的是,接收设备102确定LTF的方式与发送设备101生成LTF的方式是一致的,因此这里对于接收设备102确定LTF的实现方式不再详细展开。
在另一些实施例中,接收设备102可以为第一类设备,即实现了EHT基本特性的设备。此时,接收设备102可以判断第一PPDU是否存在以下情形:证实比特不等于缺省值或存在 证实状态。如果是,则等到第一PPDU结束后,把版本无关中的相关信息传递给MAC层,并终止接收。如果否,则接收第一PPDU,此时接收设备102会将第一PPDU的U-SIG-1的B3-B5解析为第一PPDU的带宽。
图15示出了本公开实施例提供的另一种数据传输的方法1500的流程示意图。图15中的方法1500涉及AP 201,STA 221和STA 223。
在图15所示的方法1500中,AP 201可以基于至少两个PPDU而生成(1510)A-PPDU,该A-PPDU包括第一PPDU。AP 201发送(1520)A-PPDU。STA 221解析(1532)A-PPDU中的第一PPDU。STA 223解析(1534)A-PPDU中的第二PPDU。
在方法1500中,AP 201可以基于至少两个PPDU而生成1510 A-PPDU,该A-PPDU中第一PPDU包括以下至少一项:第一指示信息,用于指示第一PPDU的带宽;第二指示信息,用于指示A-PPDU的总带宽;或第三指示信息,用于指示A-PPDU的带宽组合。
在一些实施例中,第一PPDU是EHT MU PPDU。A-PPDU至少包括第一PPDU和第二PPDU,其中第二PPDU可以为HE MU PPDU或EHT MU PPDU。
具体地,关于1510,可以参照上述结合图7所述的710,这里不再赘述。
在方法1500中,AP 201可以发送1520 A-PPDU。
相应地,STA 221可以接收1520 A-PPDU中的第一PPDU,STA 223可以接收1520 A-PPDU中的第二PPDU。
具体地,STA 221可以基于STA 221停靠的频率,接收1520 A-PPDU中对应的第一PPDU。STA 223可以基于STA 223停靠的频率,接收1520 A-PPDU中对应的第二PPDU。
如此,不同的接收设备(STA)可以自身停靠的频率接收到对应的PPDU,而不会干扰其他接收设备的接收行为。
在方法1500中,STA 221还可以解析1532第一PPDU。也就是说,STA 221可以对其接收到的第一PPDU进行解析。
在方法1500中,STA 223还可以解析1534第二PPDU。也就是说,STA 223可以对其接收到的第二PPDU进行解析。
可理解,STA 221的解析1532和STA 223的解析1534是彼此独立的,也就是说,步骤1532和1534的执行顺序是不限定的,例如可以在不同的时间或者也可以同时执行。
可见,本公开实施例中发送设备通过将至少两个PPDU聚合为A-PPDU再发送,能够充分利用无线传输的带宽,降低信令开销。对于接收设备而言,能够基于自身停靠的频率接收到对应的PPDU,并且,由于接收设备接收到的PPDU中包括A-PPDU的信息(如第二指示信息和/或第二指示信息),接收设备还可以进行一些带外的干扰抑制等,增强其接收。
应理解,在本公开实施例中,“第一”,“第二”,“第三”等只是为了表示多个对象可能是不同的,但是同时不排除两个对象之间是相同的。“第一”,“第二”,“第三”等不应当解释为对本公开实施例的任何限制。
还应理解,本公开实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在符合逻辑的情况下,可以相互结合。
还应理解,上述内容只是为了帮助本领域技术人员更好地理解本公开实施例,而不是要限制本公开实施例的范围。本领域技术人员根据上述内容,可以进行各种修改或变化或组合 等。这样的修改、变化或组合后的方案也在本公开实施例的范围内。
还应理解,上述内容的描述着重于强调各个实施例之前的不同之处,相同或相似之处可以互相参考或借鉴,为了简洁,这里不再赘述。
图16示出了本公开实施例提供的一种数据传输的装置1600的示意图。装置1600可以被实现在发送设备101处,或者可以被实现为发送设备101中的芯片或芯片系统,本公开的范围在此方面不限制。
如图16所示,装置1600可以包括生成单元1610和发送单元1620。生成单元1610可以被配置为基于至少两个PPDU而生成A-PPDU,该A-PPDU中的第一PPDU包括以下至少一项:第一指示信息,用于指示第一PPDU的带宽,第二指示信息,用于指示A-PPDU的总带宽,或第三指示信息,用于指示A-PPDU的带宽组合。发送单元1620可以被配置为向接收设备发送生成单元1610所生成的A-PPDU。
在一些实施例中,第一PPDU包括第一指示信息和第二指示信息,第一指示信息承载于第一PPDU的第一信令字段,第二指示信息承载于第一PPDU的第一信令字段和/或第二信令字段。
在一些实施例中,第一PPDU包括第一指示信息和第二指示信息,第二指示信息承载于第一PPDU的第一信令字段,第一指示信息承载于第一PPDU的第一信令字段和/或第二信令字段。
在一些实施例中,第一PPDU包括第一指示信息和第三指示信息,第一指示信息承载于第一PPDU的第一信令字段,第三指示信息承载于第一PPDU的第一信令字段和/或第二信令字段。
在一些实施例中,第一PPDU包括第二指示信息和第三指示信息,第二指示信息承载于第一PPDU的第一信令字段,第三指示信息承载于第一PPDU的第一信令字段和/或第二信令字段。
在一些实施例中,第三指示信息所指示的带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
在一些实施例中,第一PPDU的第一信令字段或第二信令字段中的至少一个比特用于指示第一PPDU被聚合在A-PPDU中。
在一些实施例中,至少一个比特为证实比特和/或不理会比特。
在一些实施例中,第一PPDU为EHT MU PPDU,第一信令字段为U-SIG,第二信令字段为EHT-SIG。
在一些实施例中,A-PPDU中第二PPDU为HE MU PPDU或EHT MU PPDU。
在一些实施例中,生成单元1610还可以被配置为:基于第一PPDU的带宽、A-PPDU的总带宽和带宽组合中至少一项来生成第一PPDU中的LTF。
在一些实施例中,生成单元1610还可以被配置为:还基于A-PPDU中每个PPDU的类型来生成LTF。
示例性地,图16中的装置1600可以被实现为AP 20或STA 22,或者可以被实现为AP 20中的芯片或芯片系统,或者可以被实现为STA 22中的芯片或芯片系统,本公开实施例对此不限定。图16中的装置1600能够用于实现上述结合图7中发送设备101所述的各个过程,为了简洁,这里不再赘述。
图17示出了本公开实施例提供的另一种数据传输的装置1700的示意图。装置1700可以被实现在接收设备102处,或者可以被实现为接收设备102中的芯片或芯片系统,本公开的范围在此方面不限制。
如图17所示,装置1700可以包括接收单元1710和解析单元1720。接收单元1710可以被配置为接收来自发送设备的A-PPDU中的第一PPDU,第一PPDU包括以下至少一项:第一指示信息,用于指示第一PPDU的带宽,第二指示信息,用于指示A-PPDU的总带宽,或第三指示信息,用于指示A-PPDU的带宽组合。解析单元1720可以被配置为解析接收单元1710所接收到的第一PPDU。
在一些实施例中,第一PPDU包括第一指示信息和第二指示信息,第一指示信息承载于第一PPDU的第一信令字段,第二指示信息承载于第一PPDU的第一信令字段和/或第二信令字段。
在一些实施例中,第一PPDU包括第一指示信息和第二指示信息,第二指示信息承载于第一PPDU的第一信令字段,第一指示信息承载于第一PPDU的第一信令字段和/或第二信令字段。
在一些实施例中,第一PPDU包括第一指示信息和第三指示信息,第一指示信息承载于第一PPDU的第一信令字段,第三指示信息承载于第一PPDU的第一信令字段和/或第二信令字段。
在一些实施例中,第一PPDU包括第二指示信息和第三指示信息,第二指示信息承载于第一PPDU的第一信令字段,第三指示信息承载于第一PPDU的第一信令字段和/或第二信令字段。
在一些实施例中,第三指示信息所指示的带宽组合中的各个带宽可以对应于按照频率升序或降序排列的各个PPDU。
在一些实施例中,第一PPDU的第一信令字段或第二信令字段中的至少一个比特用于指示第一PPDU被聚合在A-PPDU中。
在一些实施例中,至少一个比特为证实比特和/或不理会比特。
在一些实施例中,第一PPDU为EHT MU PPDU,第一信令字段为U-SIG,第二信令字段为EHT-SIG。
在一些实施例中,A-PPDU中第二PPDU为HE MU PPDU或EHT MU PPDU。
在一些实施例中,装置1700还可以包括处理单元(图17中未示出),被配置为基于带宽、总带宽和带宽组合中的至少一项确定第一PPDU中的LTF;并基于LTF进行信道估计。
在一些实施例中,处理单元被配置为还基于A-PPDU中每个PPDU的类型来确定LTF。
示例性地,图17中的装置1700可以被实现为AP 20或STA 22,或者可以被实现为AP 20中的芯片或芯片系统,或者可以被实现为STA 22中的芯片或芯片系统,本公开实施例对此不限定。图17中的装置1700能够用于实现上述结合图7中接收设备102所述的各个过程,为了简洁,这里不再赘述。
图18示出了本公开实施例提供的另一种信息传输的装置1800的示意图。装置1800可以用于实现如图1所示的发送设备101和接收设备102。如图所示,装置1800包括一个或多个处理器1810,耦合到处理器1810的一个或多个存储器1820,以及耦合到处理器1810的通信模块1840。
通信模块1840可以用于双向通信。通信模块1840可以具有用于通信的至少一个通信接口。通信接口可以包括与其他设备通信所必需的任何接口。
处理器1810可以是适合于本地技术网络的任何类型,并且可以包括但不限于以下至少一种:通用计算机、专用计算机、微控制器、数字信号处理器(Digital Signal Processor,DSP)、或基于控制器的多核控制器架构中的一个或多个。装置1800可以具有多个处理器,例如专用集成电路芯片,其在时间上从属于与主处理器同步的时钟。
存储器1820可以包括一个或多个非易失性存储器和一个或多个易失性存储器。非易失性存储器的示例包括但不限于以下至少一种:只读存储器(Read-Only Memory,ROM)1824、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、硬盘、光盘(Compact Disc,CD)、数字视频盘(Digital Versatile Disc,DVD)或其他磁存储和/或光存储。易失性存储器的示例包括但不限于以下至少一种:随机存取存储器(Random Access Memory,RAM)1822、或不会在断电持续时间中持续的其他易失性存储器。
计算机程序1830包括由关联处理器1810执行的计算机可执行指令。程序1830可以存储在ROM 1820中。处理器1810可以通过将程序1830加载到RAM 1820中来执行任何合适的动作和处理。
可以借助于程序1830来实现本公开的实施例,使得装置1800可以执行如参考图7所讨论的任何过程。本公开的实施例还可以通过硬件或通过软件和硬件的组合来实现。
在一些实施例中,程序1830可以有形地包含在计算机可读介质中,该计算机可读介质可以包括在装置1800中(诸如在存储器1820中)或者可以由装置1800访问的其他存储设备。可以将程序1830从计算机可读介质加载到RAM 1822以供执行。计算机可读介质可以包括任何类型的有形非易失性存储器,例如ROM、EPROM、闪存、硬盘、CD、DVD等。
在一些实施例中,装置1800中的通信模块1840可以被实现为发送器和接收器(或收发器),其可以被配置为发送/接收分组结构,如PPDU或A-PPDU。另外,装置1800还可以进一步包括调度器、控制器、射频/天线中的一个或多个,本公开不再详细阐述。
示例性地,图18中的装置1800可以被实现为AP 20或STA 22,或者可以被实现为AP 20中的芯片或芯片系统,或者可以被实现为STA 22中的芯片或芯片系统,本公开实施例对此不限定。
本公开实施例还提供了一种芯片,该芯片可以包括输入接口、输出接口和一个或多个处理电路。本公开实施例中,可以由输入接口和输出接口完成上述信令或数据的交互,由处理电路完成信令或数据信息的生成以及处理。
本公开实施例还提供了一种芯片系统,包括处理器,用于支持AP或STA以实现上述任一实施例中所涉及的功能。在一种可能的设计中,芯片系统还可以包括存储器,用于存储必要的程序指令和数据,当处理器运行该程序指令时,使得安装该芯片系统的设备实现上述任一实施例中所涉及的方法。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本公开实施例还提供了一种处理器,用于与存储器耦合,存储器存储有指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及发送设备或接收设备(AP或STA)的方法和功能。
本公开实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及发送设备或接收设备(AP或STA)的方法和功能。
本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及发送设备或接收设备(AP或STA)的方法和功能。
本公开实施例还提供一种无线通信系统,该系统包括发送设备和接收设备。在一些示例中,该系统可以包括至少一个AP和至少一个STA。
通常,本公开的各种实施例可以以硬件或专用电路、软件、逻辑或其任何组合来实现。一些方面可以用硬件实现,而其他方面可以用固件或软件实现,其可以由控制器,微处理器或其他计算设备执行。虽然本公开的实施例的各个方面被示出并描述为框图,流程图或使用一些其他图示表示,但是应当理解,本文描述的框,装置、系统、技术或方法可以实现为,如非限制性示例,硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备,或其某种组合。
本公开还提供有形地存储在非暂时性计算机可读存储介质上的至少一个计算机程序产品。该计算机程序产品包括计算机可执行指令,例如包括在程序模块中的指令,其在目标的真实或虚拟处理器上的设备中执行,以执行如上参考图7至图15的过程/方法。通常,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、库、对象、类、组件、数据结构等。在各种实施例中,可以根据需要在程序模块之间组合或分割程序模块的功能。用于程序模块的机器可执行指令可以在本地或分布式设备内执行。在分布式设备中,程序模块可以位于本地和远程存储介质中。
用于实现本公开的方法的计算机程序代码可以用一种或多种编程语言编写。这些计算机程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本公开的上下文中,计算机程序代码或者相关数据可以由任意适当载体承载,以使得设备、装置或者处理器能够执行上文描述的各种处理和操作。载体的示例包括信号、计算机可读介质、等等。信号的示例可以包括电、光、无线电、声音或其它形式的传播信号,诸如载波、红外信号等。
计算机可读介质可以是包含或存储用于或有关于指令执行系统、装置或设备的程序的任何有形介质。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体系统、装置或设备,或其任意合适的组合。计算机可读存储介质的更详细示例包括带有一根或多根导线的电气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光存储设备、磁存储设备,或其任意合适的组合。
此外,尽管在附图中以特定顺序描述了本公开的方法的操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤组合为一个步骤执行,和/或将一个步骤分解为多个步骤执行。还应当注意,根据本公开的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
以上已经描述了本公开的各实现,上述说明是示例性的,并非穷尽的,并且也不限于所公开的各实现。在不偏离所说明的各实现的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在很好地解释各实现的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其他普通技术人员能理解本文公开的各个实现方式。

Claims (32)

  1. 一种信息传输的方法,包括:
    发送设备基于至少两个物理层协议数据单元PPDU而生成聚合的物理层协议数据单元A-PPDU,所述A-PPDU中的第一PPDU包括以下至少一项:
    第一指示信息,用于指示所述第一PPDU的带宽,
    第二指示信息,用于指示所述A-PPDU的总带宽,或
    第三指示信息,用于指示所述A-PPDU的带宽组合;以及
    所述发送设备向接收设备发送所述A-PPDU。
  2. 一种信息传输的方法,包括:
    接收设备接收来自发送设备的聚合的物理层协议数据单元A-PPDU中的第一PPDU,所述第一PPDU包括以下至少一项:
    第一指示信息,用于指示所述第一PPDU的带宽,
    第二指示信息,用于指示所述A-PPDU的总带宽,或
    第三指示信息,用于指示所述A-PPDU的带宽组合;以及
    所述接收设备解析所述第一PPDU。
  3. 根据权利要求1或2所述的方法,其中所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第二指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
  4. 根据权利要求1或2所述的方法,其中所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第一指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
  5. 根据权利要求1或2所述的方法,其中所述第一PPDU包括所述第一指示信息和所述第三指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
  6. 根据权利要求1或2所述的方法,其中所述第一PPDU包括所述第二指示信息和所述第三指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
  7. 根据权利要求1至6中任一项所述的方法,其中所述第一PPDU的第一信令字段和/或第二信令字段中的至少一个比特用于指示所述第一PPDU被聚合在所述A-PPDU中。
  8. 根据权利要求7所述的方法,其中所述至少一个比特为证实比特和/或不理会比特。
  9. 根据权利要求3至8中任一项所述的方法,其中所述第一PPDU为极高吞吐率EHT多用户MU PPDU,所述第一信令字段为通用信令字段U-SIG,所述第二信令字段为极高吞吐率信令字段EHT-SIG。
  10. 根据权利要求1至9中任一项所述的方法,其中所述A-PPDU还包括第二PPDU,所述第二PPDU为高效HE MU PPDU或EHT MU PPDU。
  11. 根据权利要求1或3至10中任一项所述的方法,其中生成所述A-PPDU包括:
    所述发送设备基于所述第一PPDU的带宽、所述A-PPDU的总带宽和所述带宽组合中至少一项来生成所述第一PPDU中的长训练字段LTF。
  12. 根据权利要求11所述的方法,其中生成所述LTF还包括:
    所述发送设备基于所述A-PPDU中每个PPDU的类型来生成所述LTF。
  13. 根据权利要求2至10中任一项所述的方法,还包括:
    所述接收设备基于所述带宽、所述总带宽和所述带宽组合中的至少一项确定所述第一PPDU中的长训练字段LTF;
    所述接收设备基于所述LTF进行信道估计。
  14. 根据权利要求13所述的方法,其中所述接收设备基于所述带宽、所述总带宽和所述带宽组合中的至少一项确定所述第一PPDU中的所述LTF还包括:
    所述接收设备基于所述A-PPDU中每个PPDU的类型来确定所述LTF。
  15. 一种信息传输的装置,包括:
    生成单元,被配置为基于至少两个物理层协议数据单元PPDU而生成聚合的物理层协议数据单元A-PPDU,所述A-PPDU中的第一PPDU包括以下至少一项:
    第一指示信息,用于指示所述第一PPDU的带宽,
    第二指示信息,用于指示所述A-PPDU的总带宽,或
    第三指示信息,用于指示所述A-PPDU的带宽组合;以及
    发送单元,被配置为向接收设备发送所述A-PPDU。
  16. 一种信息传输的装置,包括:
    接收单元,被配置为接收来自发送设备的聚合的物理层协议数据单元A-PPDU中的第一PPDU,所述第一PPDU包括以下至少一项:
    第一指示信息,用于指示所述第一PPDU的带宽,
    第二指示信息,用于指示所述A-PPDU的总带宽,或
    第三指示信息,用于指示所述A-PPDU的带宽组合;以及
    解析单元,被配置为解析所述第一PPDU。
  17. 根据权利要求15或16所述的装置,其中所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第二指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
  18. 根据权利要求15或16所述的装置,其中所述第一PPDU包括所述第一指示信息和所述第二指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第一指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
  19. 根据权利要求15或16所述的装置,其中所述第一PPDU包括所述第一指示信息和所述第三指示信息,所述第一指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
  20. 根据权利要求15或16所述的装置,其中所述第一PPDU包括所述第二指示信息和所述第三指示信息,所述第二指示信息承载于所述第一PPDU的第一信令字段,所述第三指示信息承载于所述第一PPDU的所述第一信令字段和/或第二信令字段。
  21. 根据权利要求12至20中任一项所述的装置,其中所述第一PPDU的第一信令字段和/或第二信令字段中的至少一个比特用于指示所述第一PPDU被聚合在所述A-PPDU中。
  22. 根据权利要求21所述的装置,其中所述至少一个比特为证实比特和/或不理会比特。
  23. 根据权利要求17至22中任一项所述的装置,其中所述第一PPDU为极高吞吐率EHT多用户MU PPDU,所述第一信令字段为通用信令字段U-SIG,所述第二信令字段为极高吞吐 率信令字段EHT-SIG。
  24. 根据权利要求15至23中任一项所述的装置,其中所述A-PPDU还包括第二PPDU,所述第二PPDU为高效HE MU PPDU或EHT MU PPDU。
  25. 根据权利要求15或17至24中任一项所述的装置,其中所述生成单元被配置为:
    基于所述第一PPDU的带宽、所述A-PPDU的总带宽和所述带宽组合中至少一项来生成所述第一PPDU中的长训练字段LTF。
  26. 根据权利要求25所述的装置,其中所述生成单元被配置为:
    还基于所述A-PPDU中每个PPDU的类型来生成所述LTF。
  27. 根据权利要求16至24中任一项所述的装置,还包括处理单元,被配置为:
    基于所述带宽、所述总带宽和所述带宽组合中的至少一项确定所述第一PPDU中的长训练字段LTF;
    基于所述LTF进行信道估计。
  28. 根据权利要求27所述的装置,其中所述处理单元,被配置为:
    还基于所述A-PPDU中每个PPDU的类型来确定所述LTF。
  29. 一种信息传输的装置,包括处理器以及存储器,所述存储器上存储有由所述处理器执行的指令,当所述指令被所述处理器执行时使得所述装置实现根据权利要求1至14中任一项所述的信息传输的方法。
  30. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现根据权利要求1至14中任一项所述的信息传输的方法。
  31. 一种计算机程序产品,所述计算机程序产品上存储有计算机程序,所述计算机程序被处理器执行时实现根据权利要求1至14中任一项所述的信息传输的方法。
  32. 一种芯片,其特征在于,所述芯片包括一个或多个处理电路,其中,所述一个或多个处理电路用于实现如权利要求1至14中任一项所述的信息传输的方法。
PCT/CN2022/085943 2021-04-22 2022-04-08 信息传输的方法、装置、计算机可读存储介质和芯片 WO2022222775A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112023021722A BR112023021722A2 (pt) 2021-04-22 2022-04-08 Método e aparelho de transmissão de informação, meio de armazenamento legível por computador e chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110437124.6A CN115243325A (zh) 2021-04-22 2021-04-22 信息传输的方法、装置、计算机可读存储介质和芯片
CN202110437124.6 2021-04-22

Publications (1)

Publication Number Publication Date
WO2022222775A1 true WO2022222775A1 (zh) 2022-10-27

Family

ID=83666907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085943 WO2022222775A1 (zh) 2021-04-22 2022-04-08 信息传输的方法、装置、计算机可读存储介质和芯片

Country Status (3)

Country Link
CN (1) CN115243325A (zh)
BR (1) BR112023021722A2 (zh)
WO (1) WO2022222775A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103416017A (zh) * 2010-11-12 2013-11-27 交互数字专利控股公司 用于执行信道聚合和媒介访问控制重传的方法和设备
WO2018044066A1 (ko) * 2016-08-30 2018-03-08 엘지전자 주식회사 무선랜 시스템에서의 신호 송수신 방법 및 이를 위한 장치
US10187497B1 (en) * 2015-12-15 2019-01-22 Marvell International Ltd. Systems and methods for performing data frame configuration on the physical layer for high-data rate wireless local area networks (WLANS)
US20190297674A1 (en) * 2018-06-06 2019-09-26 Alexander W. Min Methods for dynamic multi-band layer-1 aggregation in a wireless local area network (wlan) network
CN110913480A (zh) * 2018-09-17 2020-03-24 华为技术有限公司 通信方法及相关装置
US20200280399A1 (en) * 2017-11-21 2020-09-03 Lg Electronics Inc. Method for transmitting or receiving frame in wireless lan, and device therefor
WO2021045341A1 (ko) * 2019-09-03 2021-03-11 엘지전자 주식회사 무선랜 시스템에서의 a-ppdu를 송수신하는 방법 및 이를 위한 장치
CN112689968A (zh) * 2018-09-14 2021-04-20 华为技术有限公司 增强IEEE 802.11ax和以上版本的信道聚合和打孔

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103416017A (zh) * 2010-11-12 2013-11-27 交互数字专利控股公司 用于执行信道聚合和媒介访问控制重传的方法和设备
CN107104769A (zh) * 2010-11-12 2017-08-29 交互数字专利控股公司 用于节点执行信道聚合的方法和网络节点
US10187497B1 (en) * 2015-12-15 2019-01-22 Marvell International Ltd. Systems and methods for performing data frame configuration on the physical layer for high-data rate wireless local area networks (WLANS)
WO2018044066A1 (ko) * 2016-08-30 2018-03-08 엘지전자 주식회사 무선랜 시스템에서의 신호 송수신 방법 및 이를 위한 장치
US20200280399A1 (en) * 2017-11-21 2020-09-03 Lg Electronics Inc. Method for transmitting or receiving frame in wireless lan, and device therefor
US20190297674A1 (en) * 2018-06-06 2019-09-26 Alexander W. Min Methods for dynamic multi-band layer-1 aggregation in a wireless local area network (wlan) network
CN112689968A (zh) * 2018-09-14 2021-04-20 华为技术有限公司 增强IEEE 802.11ax和以上版本的信道聚合和打孔
CN110913480A (zh) * 2018-09-17 2020-03-24 华为技术有限公司 通信方法及相关装置
WO2021045341A1 (ko) * 2019-09-03 2021-03-11 엘지전자 주식회사 무선랜 시스템에서의 a-ppdu를 송수신하는 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
BR112023021722A2 (pt) 2023-12-19
CN115243325A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
US11153058B2 (en) Signaling method for multi-user transmission, and wireless communication terminal and wireless communication method using same
US9198125B2 (en) Method of performing power save multi-poll (PSMP) procedure wireless local access network system and station supporting the procedure
TWI785183B (zh) 用於允許無線通訊的方法和無線資料通訊系統
US10819478B2 (en) Extended range mode transmission method and apparatus
EP4013179A1 (en) Wireless communication method using enhanced distributed channel access, and wireless communication terminal using same
TW201628451A (zh) 用於在電信環境內窄頻通訊之關聯請求
CN107624236B (zh) 发送关于缓冲状态信息的无线通信方法和无线通信终端
KR20120130209A (ko) 컴포넌트 캐리어들의 할당
JP2020188468A (ja) IEEE 802.11axにおける低レートモードのためのダイバーシティ繰り返し
US20230076285A1 (en) Wireless communication method using multi-link and wireless communication terminal using same
US20230379114A1 (en) Communication method and apparatus
JP2016536880A (ja) 混合フォーマットを使用するワイヤレス通信のための方法および装置
US11743775B2 (en) Switch and backhaul capacity-based radio resource management
WO2017041590A1 (zh) 一种传输信道状态信息的方法和装置
JP2023549790A (ja) Ppdu内の空間再使用パラメータフィールドを決定する方法、および関連装置
TWI792824B (zh) 時間資源分配和接收方法及相關裝置
WO2022222775A1 (zh) 信息传输的方法、装置、计算机可读存储介质和芯片
JP2023553662A (ja) 空間再利用パラメータを指示し空間再利用パラメータフィールドを決定する方法および装置
TW202220406A (zh) Ppdu的上行頻寬指示方法及相關裝置
US20180176789A1 (en) Spatial reuse ppdu indication
WO2010110619A2 (en) Method and apparatus for scheduling wireless medium resource
WO2021093616A1 (zh) 一种信号传输方法及装置
WO2022228478A1 (zh) 信息传输方法、通信装置、计算机可读存储介质和芯片
WO2022222873A1 (zh) 一种带宽指示方法、装置及相关设备
TW202312704A (zh) 實體層協定資料單元傳輸方法及相關裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790884

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023021722

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023021722

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231019

122 Ep: pct application non-entry in european phase

Ref document number: 22790884

Country of ref document: EP

Kind code of ref document: A1