WO2022228478A1 - 信息传输方法、通信装置、计算机可读存储介质和芯片 - Google Patents

信息传输方法、通信装置、计算机可读存储介质和芯片 Download PDF

Info

Publication number
WO2022228478A1
WO2022228478A1 PCT/CN2022/089647 CN2022089647W WO2022228478A1 WO 2022228478 A1 WO2022228478 A1 WO 2022228478A1 CN 2022089647 W CN2022089647 W CN 2022089647W WO 2022228478 A1 WO2022228478 A1 WO 2022228478A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
resource block
160mhz
response
data frame
Prior art date
Application number
PCT/CN2022/089647
Other languages
English (en)
French (fr)
Inventor
郭宇宸
淦明
于健
狐梦实
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023544585A priority Critical patent/JP2024503916A/ja
Priority to MX2023009406A priority patent/MX2023009406A/es
Priority to CA3206475A priority patent/CA3206475A1/en
Priority to BR112023016289A priority patent/BR112023016289A2/pt
Priority to KR1020237024134A priority patent/KR20230117241A/ko
Priority to AU2022267563A priority patent/AU2022267563B2/en
Priority to EP22794948.4A priority patent/EP4247089A1/en
Publication of WO2022228478A1 publication Critical patent/WO2022228478A1/zh
Priority to US18/352,279 priority patent/US20230361941A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to the field of communication, and more particularly, to an information transmission method, a communication device, a computer-readable storage medium, and a chip.
  • the 802.11 standard versions of the Wireless Local Area Network (WLAN) system are constantly evolving, starting from 802.11a/b/g, going through 802.11n, 802.11ac, 802.11ax to 802.11be, of which the 802.11ax standard is called efficient ( High Efficient, HE), the 802.11be standard is called Extremely High Throughput (EHT), and the standard after 802.11be is represented by EHT+.
  • WLAN Wireless Local Area Network
  • the current access point When the current access point sends a data frame to a station, it will inform the station of the resource unit to be occupied to send an acknowledgment frame through resource unit allocation. However, with the expansion of the available channel bandwidth, the station cannot determine on which channel to send the acknowledgment in the current solution. frame, the program is not perfect.
  • Exemplary embodiments of the present disclosure provide a scheme in which a receiving device sends an acknowledgment frame correctly.
  • an information transmission method includes: a receiving device receives a data frame from a sending device, wherein the data frame occupies a sending resource block and the data frame includes RU allocation information; the receiving device, based on the sending resource block and the RU allocation information, determining a response resource block; and the receiving device sending an acknowledgement frame for the data frame to the sending device on the response resource block.
  • the embodiments of the present disclosure enable the receiving device to determine the response resource block for sending the acknowledgment frame based on the sending resource block and the RU allocation information, thereby enabling the receiving device to correctly send the acknowledgment frame, ensuring the efficiency of information transmission.
  • determining a response resource block based on the transmission resource block and the RU allocation information includes: if a bandwidth of the transmission resource block is greater than a bandwidth threshold, determining a response channel based on a preset rule; and The response resource block is determined based on the response channel and the RU allocation information.
  • the response channel includes at least one of the following: a master 160MHz channel, a slave 160MHz channel, a high-frequency 160MHz channel, a low-frequency 160MHz channel, or a channel where the transmission resource block is located with a large amount of data 160MHz channel.
  • the determining the response channel based on the preset rule includes: determining, based on the extremely high throughput signaling EHT-SIG field of the data frame, that the transmission mode of the data frame is multi-user multiple-input multiple-output MU-MIMO; based on the identification of the receiving device in the EHT-SIG field, determine the location of the receiving device in the MU-MIMO user group; determine the response based on the location channel.
  • the determining the response channel based on the location comprises: if the location is a predetermined location, determining the response channel to be a first 160 MHz channel; and if the location is If the position is not predetermined, it is determined that the response channel is a second 160MHz channel, wherein the second 160MHz channel is different from the first 160MHz channel.
  • the predetermined position is at least one of: an odd position, an even position, a first half position, or a second half position.
  • the first 160MHz channel is a master 160MHz channel or a slave 160MHz channel.
  • the first 160MHz channel is a high frequency 160MHz channel or a low frequency 160MHz channel.
  • the embodiment of the present disclosure can determine the response channel by the receiving device based on the preset rule. Also, different receiving devices at different locations belonging to the same MU-MIMO group can determine different response channels. Each channel of the total bandwidth can be fully utilized, the optimal utilization of resources is realized, and the transmission efficiency of the acknowledgment frame is guaranteed.
  • the transmit resource block is at least one of the following: 2 ⁇ 996+484-tone MRU, 3 ⁇ 996-tone MRU, 3 ⁇ 996+484-tone MRU, or 4 ⁇ 996-tone RU.
  • an information transmission method includes: a sending device sends a data frame to a receiving device, wherein the data frame occupies a sending resource block and the data frame includes RU allocation information; the sending device determines based on the sending resource block and the RU allocation information a response resource block; and the sending device receives an acknowledgement frame for the data frame from the receiving device on the response resource block.
  • determining a response resource block based on the transmit resource block and the RU allocation information comprises: if a bandwidth of the transmit resource block is greater than a bandwidth threshold, determining a response channel based on a preset rule; and The response resource block is determined based on the response channel and the RU allocation information.
  • the response channel includes at least one of the following: a primary 160MHz channel, a secondary 160MHz channel, a high-frequency 160MHz channel, a low-frequency 160MHz channel, or a channel where the transmission resource block is located with a large amount of data 160MHz channel.
  • the determining a response channel based on a preset rule includes: determining, based on an extremely high throughput signaling EHT-SIG field of the data frame, that the transmission mode of the data frame is multi-user multiple-input multiple-output MU-MIMO; based on the identification of the receiving device in the EHT-SIG field, determine the location of the receiving device in the MU-MIMO user group; determine the response based on the location channel.
  • determining the response channel based on the location comprises: if the location is a predetermined location, determining the response channel to be a first 160 MHz channel; and if the location is If the position is not predetermined, it is determined that the response channel is a second 160MHz channel, wherein the second 160MHz channel is different from the first 160MHz channel.
  • the predetermined position is at least one of: an odd position, an even position, a first half position, or a second half position.
  • the first 160MHz channel is a master 160MHz channel or a slave 160MHz channel.
  • the first 160MHz channel is a high frequency 160MHz channel or a low frequency 160MHz channel.
  • the transmit resource block is at least one of: 2 ⁇ 996+484-tone MRU, 3 ⁇ 996-tone MRU, 3 ⁇ 996+484-tone MRU, or 4 ⁇ 996-tone RU.
  • a communication device in a third aspect, includes: a receiving unit configured to receive a data frame from a sending device, wherein the data frame occupies a sending resource block and the data frame includes RU allocation information; a determining unit is configured to be based on the sending resource block and The RU allocation information determines a response resource block; and a sending unit is configured to send an acknowledgement frame for the data frame to the sending device on the response resource block.
  • the determining unit includes: a first determining subunit configured to determine a response channel based on a preset rule if the bandwidth of the transmission resource block is greater than a bandwidth threshold; and a second determining a subunit configured to determine the response resource block based on the response channel and the RU allocation information.
  • the response channel includes at least one of the following: a master 160MHz channel, a slave 160MHz channel, a high-frequency 160MHz channel, a low-frequency 160MHz channel, or a channel where the transmission resource block is located with a large amount of data 160MHz channel.
  • the first determining subunit is configured to: determine that the transmission mode of the data frame is multi-user based on the extremely high throughput signaling EHT-SIG field of the data frame MU multiple-input multiple-output MIMO; based on the identification of the receiving device in the EHT-SIG field, determine the location of the receiving device in the MU-MIMO user group; determine the response channel based on the location .
  • the first determining subunit is configured to: if the location is a predetermined location, determine that the response channel is the first 160 MHz channel; and if the location is not predetermined position, the response channel is determined to be a second 160MHz channel, wherein the second 160MHz channel is different from the first 160MHz channel.
  • the predetermined position is at least one of: an odd position, an even position, a first half position, or a second half position.
  • the first 160MHz channel is a master 160MHz channel or a slave 160MHz channel.
  • the first 160MHz channel is a high frequency 160MHz channel or a low frequency 160MHz channel.
  • the transmit resource block is at least one of: 2 ⁇ 996+484-tone MRU, 3 ⁇ 996-tone MRU, 3 ⁇ 996+484-tone MRU, or 4 ⁇ 996-tone RU.
  • a communication device in a fourth aspect, includes: a sending unit configured to send a data frame to a receiving device, wherein the data frame occupies a sending resource block and the data frame includes RU allocation information; a determining unit is configured to be based on the sending resource block and the The RU allocation information is used to determine a response resource block; and a receiving unit is configured to receive an acknowledgement frame for the data frame from the receiving device on the response resource block.
  • the determining unit includes: a first determining subunit configured to determine a response channel based on a preset rule if the bandwidth of the transmission resource block is greater than a bandwidth threshold; and a second determining a subunit configured to determine the response resource block based on the response channel and the RU allocation information.
  • the response channel includes at least one of the following: a master 160MHz channel, a slave 160MHz channel, a high-frequency 160MHz channel, a low-frequency 160MHz channel, or a channel where the transmission resource block is located with a large amount of data 160MHz channel.
  • the first determining subunit is configured to: determine, based on the extremely high throughput signaling EHT-SIG field of the data frame, that the transmission mode of the data frame is multi-user MU multiple-input multiple-output MIMO; based on the identification of the receiving device in the EHT-SIG field, determine the location of the receiving device in the MU-MIMO user group; determine the response channel based on the location .
  • the first determining subunit is configured to: if the location is a predetermined location, determine that the response channel is the first 160 MHz channel; and if the location is not predetermined position, the response channel is determined to be a second 160MHz channel, wherein the second 160MHz channel is different from the first 160MHz channel.
  • the predetermined position is at least one of: an odd position, an even position, a first half position, or a second half position.
  • the first 160MHz channel is a master 160MHz channel or a slave 160MHz channel.
  • the first 160MHz channel is a high frequency 160MHz channel or a low frequency 160MHz channel.
  • the transmit resource block is at least one of: 2 ⁇ 996+484-tone MRU, 3 ⁇ 996-tone MRU, 3 ⁇ 996+484-tone MRU, or 4 ⁇ 996-tone RU.
  • a communication device including a transceiver, a processor, and a memory, the memory storing instructions executed by the processor, which when executed by the processor cause the device to Implementing: receiving, via the transceiver, a data frame from a transmitting device, wherein the data frame occupies a transmit resource block and the data frame includes RU allocation information; determining a response resource block based on the transmit resource block and the RU allocation information and sending, via the transceiver, an acknowledgement frame for the data frame to the sending device on the response resource block.
  • the processor executes the instructions, causing the apparatus to implement: if the bandwidth of the transmit resource block is greater than a bandwidth threshold, determine a response channel based on a preset rule; and based on the The response resource block is determined by a response channel and the RU allocation information.
  • the response channel includes at least one of the following: a master 160MHz channel, a slave 160MHz channel, a high-frequency 160MHz channel, a low-frequency 160MHz channel, or a channel where the transmission resource block is located with a large amount of data 160MHz channel.
  • the processor executes the instructions, causing the apparatus to: determine the transmission of the data frame based on an extremely high throughput signaling EHT-SIG field of the data frame
  • the method is multi-user MU multiple-input multiple-output MIMO; based on the identification of the receiving device in the EHT-SIG field, determine the location of the receiving device in the MU-MIMO user group; determine based on the location the response channel.
  • the processor executes the instructions, causing the apparatus to: if the location is a predetermined location, determine that the response channel is the first 160 MHz channel; and if the location is a predetermined location If the location is a non-predetermined location, the response channel is determined to be a second 160MHz channel, wherein the second 160MHz channel is different from the first 160MHz channel.
  • the predetermined position is at least one of: an odd position, an even position, a first half position, or a second half position.
  • the first 160MHz channel is a master 160MHz channel or a slave 160MHz channel.
  • the first 160MHz channel is a high frequency 160MHz channel or a low frequency 160MHz channel.
  • the transmit resource block is at least one of the following: 2 ⁇ 996+484-tone MRU, 3 ⁇ 996-tone MRU, 3 ⁇ 996+484-tone MRU, or 4 ⁇ 996-tone RU.
  • a communication device comprising a transceiver, a processor, and a memory, the memory having instructions executed by the processor stored thereon, which when executed by the processor cause the device to Implementing: sending a data frame to a receiving device via the transceiver, wherein the data frame occupies a transmission resource block and the data frame includes RU allocation information; determining a response resource block based on the transmission resource block and the RU allocation information; and receiving, via the transceiver, an acknowledgment frame for the data frame from the receiving device on the response resource block.
  • the processor executes the instructions, causing the apparatus to implement: if the bandwidth of the transmit resource block is greater than a bandwidth threshold, determine a response channel based on a preset rule; and based on the The response resource block is determined by a response channel and the RU allocation information.
  • the response channel includes at least one of the following: a primary 160MHz channel, a secondary 160MHz channel, a high-frequency 160MHz channel, a low-frequency 160MHz channel, or a channel where the transmission resource block is located with a large amount of data 160MHz channel.
  • the processor executes the instructions, causing the apparatus to: determine the transmission of the data frame based on an extremely high throughput signaling EHT-SIG field of the data frame
  • the method is multi-user MU multiple-input multiple-output MIMO; based on the identification of the receiving device in the EHT-SIG field, determine the location of the receiving device in the MU-MIMO user group; determine based on the location the response channel.
  • the processor executes the instructions, causing the apparatus to: if the location is a predetermined location, determine that the response channel is the first 160 MHz channel; and if the location is a predetermined location If the location is a non-predetermined location, the response channel is determined to be a second 160MHz channel, wherein the second 160MHz channel is different from the first 160MHz channel.
  • the predetermined position is at least one of the following: an odd position, an even position, a first half position, or a second half position.
  • the first 160MHz channel is a master 160MHz channel or a slave 160MHz channel.
  • the first 160MHz channel is a high frequency 160MHz channel or a low frequency 160MHz channel.
  • the transmit resource block is at least one of the following: 2 ⁇ 996+484-tone MRU, 3 ⁇ 996-tone MRU, 3 ⁇ 996+484-tone MRU, or 4 ⁇ 996-tone RU.
  • an access point in a seventh aspect, is provided.
  • the access point (AP) includes an apparatus as described in any of the fourth or sixth aspects above, or any implementation thereof.
  • a site is provided.
  • the station (STA) includes an apparatus as described in any of the third or fifth aspects above, or any implementation thereof.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method according to any of the embodiments of the first aspect or the second aspect is implemented operation.
  • a tenth aspect provides a chip or a chip system.
  • the chip or system of chips includes processing circuitry configured to perform operations according to the method in any of the embodiments of the first or second aspect above.
  • a computer program or computer program product is provided.
  • the computer program or computer program product is tangibly stored on a computer-readable medium and includes computer-executable instructions that, when executed, cause an apparatus to implement any of the embodiments according to the first or second aspects above method of operation.
  • a twelfth aspect provides a wireless communication system.
  • the system includes a sending device and a receiving device.
  • the sending device may implement operations of the method for information transmission according to any embodiment of the first aspect
  • the receiving device may implement operations of the method for information transmission according to any embodiment of the second aspect.
  • a thirteenth aspect provides a wireless communication system including at least one AP and at least one STA. Any AP or any STA may implement the operation of the method for information transmission according to any one of the embodiments of the first aspect or the second aspect.
  • Figure 1 shows a schematic diagram of channel division 100 for a 320MHz bandwidth
  • FIG. 2 shows a schematic diagram of a communication system 200 in which embodiments of the present disclosure may be implemented
  • FIG. 3 shows another schematic diagram of a communication system 300 in which embodiments of the present disclosure may be implemented
  • FIG. 4 shows a schematic interaction diagram of an information transmission process 400 according to an embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of a physical layer format 500 of a data frame according to an embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of a MAC layer format 600 of a data frame according to an embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of a format 700 of TRS information according to an embodiment of the present disclosure
  • FIG. 8 shows a schematic flowchart of an information transmission method 800 according to an embodiment of the present disclosure
  • FIG. 9 shows another schematic flowchart of an information transmission method 900 according to an embodiment of the present disclosure.
  • FIG. 10 shows another schematic block diagram of a communication apparatus 1000 according to an embodiment of the present disclosure
  • FIG. 11 shows another schematic block diagram of a communication device 1100 according to an embodiment of the present disclosure
  • FIG. 12 shows a simplified block diagram of an example apparatus 1200 according to an embodiment of the present disclosure.
  • the term “comprising” and the like should be understood as open-ended inclusion, ie, “including but not limited to”.
  • the term “based on” should be understood as “based at least in part on”.
  • the terms “one embodiment” or “the embodiment” should be understood to mean “at least one embodiment”.
  • the terms “first”, “second”, etc. may refer to different or the same objects.
  • wireless communication system may be, for example, a wide area network system or a wireless local area network (WLAN) system.
  • the wireless communication system can support a variety of WLAN communication protocols, such as 802.11ac/802.11ax/802.11be in the Institute of Electrical and Electronics Engineers (IEEE) 802.11 series of protocols or any one of the future IEEE 802.11 series. protocol.
  • IEEE Institute of Electrical and Electronics Engineers
  • a WLAN may include multiple basic service sets (Basic Service Sets, BSSs).
  • the nodes of the basic service sets include access point-type sites and non-access point-type sites (Non Access Point Station, Non-AP STA).
  • Access Point may also be referred to as an access point-like site.
  • the AP can be a device with wireless transceiver function and can provide services for the site.
  • APs may also be referred to as wireless access points or hotspots or the like.
  • APs are access points for mobile users to access wired networks. They are mainly deployed in homes, buildings, and campuses, with a typical coverage radius ranging from tens of meters to hundreds of meters. Of course, they can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired network and wireless network. Its main function is to connect various STAs together, and then connect the wireless network to the wired network.
  • the AP may be a terminal device or a network device with a wireless fidelity (Wireless Fidelity, Wi-Fi) chip, for example, the AP may be a communication server, a router, a switch, or a network bridge.
  • the AP may be a device that supports the 802.11 standard under the current network system or the future network system.
  • the term "station (STA)" may be a wireless transceiving device that can access a wireless local area network based on an access point.
  • the STA may be a wireless communication chip, a wireless sensor or a wireless communication terminal.
  • a STA may also be referred to as a system, subscriber unit, access terminal, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, user device, or user equipment (user). equipment, UE).
  • the STA may be a wireless communication chip, a wireless sensor or a wireless communication terminal.
  • STA is a mobile phone that supports Wi-Fi communication, a tablet computer that supports Wi-Fi communication, a set-top box that supports Wi-Fi communication, a smart TV that supports Wi-Fi communication, and a smart TV that supports Wi-Fi communication.
  • Wearable devices in-vehicle communication devices that support Wi-Fi communication functions, and computers that support Wi-Fi communication functions, etc.
  • the STA may support devices of the 802.11 standard under the current network system or the future network system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • MIMO technology is a technology that can use multiple antennas to generate additional spatial degrees of freedom to multiply the throughput of the system and effectively increase the rate of the communication system.
  • the transmitting end can transmit data to multiple users through multiple spatial streams, so as to realize the parallel transmission of multiple-user (MU) data and improve the concurrency of data transmission, which may also be called MU-MIMO.
  • MU multiple-user
  • the 802.11 standard versions of the WLAN system are constantly evolving, starting from 802.11a/b/g, going through 802.11n, 802.11ac, 802.11ax to 802.11be.
  • 802.11n only Single User Single Input Single Output (SU-SISO) was supported, and 802.11n began to support Single User Multiple Input Multiple Output (SU-MIMO), and from 802.11ac and 802.11ax began to support MU-MIMO.
  • SU-SISO Single User Single Input Single Output
  • 802.11ac and 802.11ax began to support MU-MIMO.
  • the 802.11 standard supported OFDM transmission. Starting from 802.11ax, the OFDMA technology is introduced, and the entire bandwidth can be divided into one or more resource units (Resource Unit, RU).
  • the 802.11be currently under study supports MU-MIMO and OFDMA, which defines an extremely high throughput multi-user physical layer protocol data unit (Extremely High Throughput Multiple User Physical Protocol Data Unit,
  • 802.11a/g standard allows transmission bandwidth of 20MHz
  • 802.11n standard allows transmission bandwidth of 20MHz or 40MHz
  • 802.11ax allows transmission bandwidth of 20MHz, 40MHz, 80MHz or 160MHz
  • 802.11be standard supports the bandwidth to be extended to 320MHz, This can significantly increase peak throughput and further increase transfer rates.
  • Figure 1 shows a schematic diagram of channel partitioning 100 for a 320MHz bandwidth.
  • Figure 1 shows the 80MHz 110, 160MHz 120, 320MHz-1130 and 320MHz-2 140. It is understandable that, in order to effectively utilize the channel, two 320MHz channels are designed, namely 320MHz-1 with channel center frequencies of 31/95/159 and 320MHz-2 with center frequencies of 63/127/191, as shown in Figure 1. are shown as 130 and 140, respectively.
  • U-NII Unlicensed National Information Infrastructure
  • Figure 1 is aimed at the 320MHz bandwidth.
  • the bandwidth can be other values.
  • the bandwidth may be expanded to larger, such as 480MHz, 640MHz, in the future evolution of extremely high throughput. or other values etc.
  • channels are usually divided into master channels and slave channels. Within the entire bandwidth range (eg 320MHz), the AP will select a 20MHz channel as the main channel.
  • the 80MHz channel including the primary channel is called the primary 80MHz channel, and the other 80MHz channels are non-primary 80Mhz channels, or are called secondary 80Mhz channels or secondary 80Mhz channels.
  • the 160MHz channel including the primary channel is called the primary 160MHz channel, and the other 160MHz channels are non-primary 160MHz channels, or are called secondary 160MHz channels or secondary 160MHz channels.
  • the location of the primary 80MHz channel (or the primary 160MHz channel) may be selected by the AP when establishing a basic service set (BSS), and the AP may send a beacon frame in a broadcast form to notify all STAs.
  • BSS basic service set
  • the AP can carry the data of multiple STAs in the PPDU for transmission.
  • the STA may send an acknowledgement frame to the AP based on the Triggered Response Scheduling (TRS) information carried in the data frame.
  • TRS Triggered Response Scheduling
  • the bandwidth is greater than 160MHz (eg 320MHz)
  • the STA cannot determine which channel to transmit the acknowledgment frame on, so the current solution is not perfect.
  • Embodiments of the present disclosure provide an information transmission scheme. This solution can determine which RU or RUs on which channel are used to send the acknowledgement frame based on the transmission resource blocks occupied by the data frame and the RU allocation information in the data frame, thereby ensuring the correctness of transmission. Embodiments according to the present disclosure are described in more detail below with reference to FIGS. 2 to 12 .
  • FIG. 2 shows a schematic diagram of a communication system 200 in which embodiments of the present disclosure may be implemented.
  • the system 200 includes a sending device 201 and a receiving device 202, and the sending device 201 and the receiving device 202 can communicate through a wireless network.
  • the sending device 201 shown in FIG. 2 may be an AP or a STA, and the receiving device 202 may be an AP or a STA. And it can be understood that although only a single transmitting device 201 and a single receiving device 202 are shown in FIG. 2 , the present disclosure is not limited thereto.
  • the system 200 may include multiple receiving devices 202 , and the transmitting device 201 may be associated with multiple receiving devices 202 .
  • the receiving device 202 performs communication, or other scenarios, etc., which are not listed in this disclosure.
  • FIG. 3 shows another schematic diagram of a communication system 300 in which embodiments of the present disclosure may be implemented.
  • Figure 3 shows two APs, AP 301 and AP 302.
  • Figure 3 also shows three stations, namely STA 321, STA 322 and STA 323.
  • Wireless communication between APs and APs, APs and STAs, and STAs and STAs can be performed through various standards.
  • the embodiments of the present disclosure can be applied to communication between APs, communication between STAs and STAs, and communication between APs and STAs. For example, in conjunction with FIG.
  • FIG. 3 it may be communication between AP 301 and AP 302, may be communication between STA 322 and STA 323, may be communication between AP 301 and STA 321 or communication between AP 301 and STA 322 communication, etc. It should be noted that FIG. 3 is only schematic and should not be construed as limiting the embodiments of the present disclosure.
  • AP 301 and AP 302 are collectively referred to as AP 30 below, and STA 321, STA 322, and STA 323 are collectively referred to as STA 32 below.
  • FIGS. 2 and 3 are merely schematic diagrams of a communication system in which embodiments of the present disclosure may be implemented.
  • the communication system 200 and the communication system 300 may further include other network devices or terminal devices, for example, may also include wireless relay devices and wireless backhaul devices.
  • the embodiments of the present disclosure do not limit the number of sending devices 201 and receiving devices 202 included in the system 200, and the numbers of APs 30 and STAs 32 included in the system 300.
  • FIG. 4 shows a schematic interaction diagram of an information transmission process 400 according to an embodiment of the present disclosure.
  • Process 400 involves sending device 201 and receiving device 202 .
  • the communication process shown in FIG. 4 is only exemplary and not restrictive.
  • Embodiments of the present disclosure may include interactive signaling not shown in FIG. 4 , or omit some signaling shown in FIG. 4 .
  • sending device 201 may first send 410 a data frame to receiving device 202 .
  • the data frame in the embodiment of the present disclosure may occupy a transmission resource block, and the bandwidth of the transmission resource block may be greater than a bandwidth threshold.
  • the bandwidth of the data frame in the embodiment of the present disclosure is greater than the bandwidth threshold.
  • the data frame may include a single MUPPDU with a bandwidth greater than a bandwidth threshold.
  • the data frame may include multiple MUPPDUs, for example, may be an aggregated PPDU formed by aggregation of multiple MUPPDUs, and the bandwidth of the aggregated PPDU is greater than a bandwidth threshold.
  • the bandwidth threshold may be 160 MHz or may be 320 MHz or other values, which are not limited in the present disclosure.
  • the bandwidth of the data frame should not be greater than the total available bandwidth (referred to as the total bandwidth for short). Taking FIG. 1 as an example, the total bandwidth is 320 MHz. In other scenarios, the total bandwidth may also be other values, such as 480MHz, which is not limited in the present disclosure.
  • the data frame may implement independent OFDMA transmission, or may implement independent MU-MIMO transmission, or may implement hybrid transmission of OFDMA and MU-MIMO.
  • the type of transmission may be specified in a specific field of the physical layer format of the data frame, where the specific field may be, for example, an Extremely High Throughput Signal Field (EHT-SIG).
  • EHT-SIG Extremely High Throughput Signal Field
  • multiple different RU types can be defined, and the entire bandwidth can be divided in units of RU types, and the RU type can represent the bandwidth occupied by the RU type in the form of sub-carriers (tones).
  • the RU type can represent the bandwidth occupied by the RU type in the form of sub-carriers (tones).
  • RU types can include: 26-tone RU, 52-tone RU, 106-tone RU, 242-tone RU, 484-tone RU, 996-tone RU, 2 ⁇ 996-tone RU, 4 ⁇ 996-tone RU, etc.
  • the transmission resource block occupied by the data frame may be of one type or a combination of multiple types, that is, the transmission resource block occupied by the data frame may be an RU or a multi-RU (Multi-RU, MRU), where the MRU may be A combination of two or more RU types.
  • Multi-RU multi-RU
  • the bandwidth threshold is 160MHz, that is, the bandwidth occupied by the transmission resource block is greater than 160MHz, such as 320MHz or 480MHz or other situations.
  • the bandwidth occupied by the transmission resource block is 320MHz.
  • the transmission resource block may be any of the following: (a) 4 ⁇ 996-tone RU, (b) 2 ⁇ 996-tone+996-tone MRU (or 3 ⁇ 996-tone MRU), (c) 2 ⁇ 996-tone+484-tone MRU (or 2 ⁇ 996+484-tone MRU), (d) 2 ⁇ 996-tone+996 -tone+484-tone MRU (or 3 ⁇ 996+484-tone MRU), etc.
  • the bandwidth occupied by the sending resource block is 480MHz, and in this case, the sending resource block may be any of the following:
  • the physical layer format of the data frame may be as shown in FIG. 5 .
  • FIG. 5 shows a schematic diagram of a physical layer format 500 of a data frame according to an embodiment of the present disclosure.
  • the format 500 includes: a traditional short training field (Legacy-Short Training Field, L-STF) 501, a traditional long training field (Legacy-Long Training Field, L-LTF) 502, a traditional signaling field (Legacy-Signal, L-SIG) ) 503, the traditional signaling field is repeated (repeated legacy-signal, RL-SIG) 504, the universal signaling field (Universal SIG, U-SIG) 505, the extremely high throughput signaling field (Extremely High Throughput Signal Field, EHT- SIG) 506 , Extremely High Throughput Short Training Field (EHT-STF) 507 , Extremely High Throughput Long Training Field (EHT-LTF) 508 .
  • a packet extension Packet Extension, PE
  • PE Packet Extension
  • the L-STF 501 may be used for PPDU discovery, coarse synchronization, automatic gain control, and the like.
  • the L-LTF 502 can be used for fine synchronization, channel estimation, and the like.
  • the L-SIG 503 can be used to carry signaling information related to the length of the PPDU, to ensure coexistence, and the like.
  • RL-SIG 504 is used to represent a repetition of L-SIG 503.
  • U-SIG 505 is a general signaling field used since EHT.
  • the EHT-SIG 506 may be used to carry signaling for demodulating subsequent data, mainly including resource unit indication information and the like.
  • EHT-STF 507 can be used for automatic gain control of subsequent fields, etc.
  • EHT-LTF 508 may be used for channel estimation and the like.
  • Data 509 can be used to carry data information.
  • PE 510 can be used to help the receiving device get more processing time, etc.
  • the EHT-SIG 506 may include a Common Field 516 and a User Specific Field 526 .
  • the common field 516 may include an RU allocation subfield, and the RU allocation subfield may include the RU (or MRU) type and the number of users in the corresponding user group.
  • the user-specific field 526 may include identities of multiple users in the order of RU allocation in the RU allocation subfield.
  • the media access control (Media Access Control, MAC) layer format of the data frame may be as shown in FIG. 6 .
  • FIG. 6 shows a schematic diagram of a MAC layer format 600 of a data frame according to an embodiment of the present disclosure.
  • Format 600 includes Frame Control 601, Duration 602, Address 1 (Address 1) 603, Address 2 (Address 2) 604, Address 3 (Address 3) 605, Sequence Control (Sequence Control) 606, Address 4 (Address 4) 607, high throughput control (High Throughput Control, HT Control) 608, frame body (Frame Body) 609 and frame check sequence (Frame Check Sequence, FCS) 610.
  • the frame control 601 may include a plurality of subfields, which are respectively used to indicate protocol version, frame type, subtype, transmission direction, retransmission, power management, and the like.
  • the frame type subfield "10" can be used to indicate that the frame type is a data frame.
  • Duration 602 may be used to represent the length of time that the data frame and its acknowledgment frame will occupy the channel.
  • Address 1 603, address 2 604, address 3 605 and address 4 607 can be collectively referred to as address fields, which are used to indicate the receiving address, sending address, source address or destination address of the data frame.
  • Sequence control 606 may be used to filter duplicate frames.
  • the frame body 609 can be used to carry specific information.
  • the FCS 610 may be used for error detection, for example, the FCS 610 may include a 32-bit Cyclic Redundancy Check (CRC).
  • CRC Cyclic Redundancy Check
  • the HT control 608 may include an Aggregated Control (A-Control) 680 .
  • the aggregated control may include a control list (Control List) 682 and a padding (Padding) 684, wherein the control list 682 may include a control identification (Control Identification, Control ID) 6822, a control information (Control Information) 6824, and the like.
  • the sending device 201 when the sending device 201 sends 410 a data frame, the data frame may carry TRS information. Specifically, when the control flag 6822 is a preset value (eg, 0), the corresponding control information 6824 carries TRS information.
  • the control flag 6822 is a preset value (eg, 0)
  • the corresponding control information 6824 carries TRS information.
  • FIG. 7 shows a schematic diagram of a format 700 of TRS information according to an embodiment of the present disclosure.
  • the format 700 includes uplink data symbols (UPLink Data Symbols, UL Data Symbols) 701, resource unit allocation (RU Allocation) 702, AP transmit power (AP TX Power) 703, uplink target receive power (UL Target Receive Power) 704 , UL Modulation and Coding Set (UL Modulation and Coding Set, UL MCS) 705 , and Reserved (Reserved) 706 .
  • uplink data symbols UPLink Data Symbols, UL Data Symbols
  • RU Allocation resource unit allocation
  • AP transmit power AP TX Power
  • uplink target receive power UL Target Receive Power
  • UL Modulation and Coding Set UL Modulation and Coding Set
  • UL MCS Reserved
  • Reserved Reserved
  • the UL data symbol 701 may be used to indicate the length (number of symbols) of the data portion of the receiving device to send the acknowledgment frame.
  • AP transmit power 703 may be used to represent AP transmit power.
  • the UL target received power 704 may be used to represent the uplink received power expected by the AP.
  • UL MCS 705 may be used to indicate the MCS used by the receiving device to send the acknowledgment frame.
  • the reservation 706 may have a reservation length, eg, 1 bit.
  • the RU allocation 702 may carry RU allocation information, which is used to indicate a frequency position in a transmission channel that the receiving device can occupy for sending the acknowledgment frame, and the frequency position may be in the form of RU or MRU.
  • the RU allocation information may be used to indicate the RUs in the transmission channel occupied by the receiving device when sending the acknowledgment frame.
  • the transmission channel occupied by the receiving device when sending the acknowledgment frame may be referred to as a "response channel”
  • the RU or MRU in the transmission channel occupied by the receiving device when sending the acknowledgment frame may be referred to as a "response resource block”.
  • the RU allocation 702 field may be of a preset length, and is used to indicate the RUs that the receiving device may be within the channel of the preset bandwidth.
  • the preset bandwidth can be 160MHz. It can be seen that the RU allocation information can indicate the location of the response resource block in the 160MHz channel.
  • the RU allocation information may include first indication information and second indication information, wherein the first indication information has a first length, the second indication information has a second length, and the sum of the first length and the second length may be equal to or less than a preset length .
  • the first indication information may be used to indicate which 80MHz channel in the preset bandwidth channel, and the second indication information may be used to indicate a specific RU in the corresponding 80MHz channel.
  • the preset length may be 8 bits
  • the first length may be 1 bit
  • the second length may be 7 bits.
  • the first indication information may be at the position B0
  • the second indication information may be at the positions B1-B7.
  • a first value of B0 means master 80MHz and a second value of B0 means slave 80MHz.
  • the first value is 0 and the second value is 1; or alternatively, the first value is 1 and the second value is 0.
  • a first value of B0 indicates a low frequency of 80MHz
  • a second value of B0 indicates a high frequency of 80MHz.
  • the first value is 0 and the second value is 1; or alternatively, the first value is 1 and the second value is 0.
  • the receiving device 202 may determine 420 a response resource block based on the transmit resource block and the RU allocation information.
  • the receiving device 202 may first determine the response channel, and then determine the response resource block in the response channel.
  • the response channel may be determined based on preset rules.
  • the bandwidth of the transmission resource block is less than or equal to the bandwidth threshold, it may be determined that the channel on which the resource block is transmitted is a response channel. For example, assume that the bandwidth threshold is 160MHz, and the bandwidth of the transmit resource block is equal to 160MHz. Then, if the transmission resource block is in the main 160MHz channel, then it is determined that the response channel is also the main 160MHz channel. If the transmission resource block is in the slave 160MHz channel, then it is determined that the response channel is also the slave 160MHz channel.
  • the response channel may be determined based on a preset rule.
  • the preset rule may be at least one of the following: (1) primary 160MHz channel, (2) secondary 160MHz channel, (3) high frequency 160MHz channel, (4) low frequency 160MHz channel, (5) where the transmission resource block is located 160MHz channel, or (6) if the transmission mode is MU-MIMO, the 160MHz channel corresponding to the position in the user group.
  • the preset rules reference may be made to the specific embodiments in the following implementation manners.
  • the response channel may be determined based on a preset rule. The following description will be given by taking the bandwidth threshold of 160 MHz as an example.
  • the preset rule may be at least one of the following: (1) primary 160MHz channel, (2) secondary 160MHz channel, (3) high frequency 160MHz channel, (4) ) a low frequency 160MHz channel, or (5) a 160MHz channel with a large amount of data where the resource blocks are transmitted.
  • the primary 160MHz channel can be used as the response channel; alternatively, the slave 160MHz channel can be used as the response channel; alternatively, the high frequency 160MHz channel can be used as the response channel; or the low frequency 160MHz channel can be used as the response channel.
  • the main 160MHz channel may be a high frequency 160MHz channel or a low frequency 160MHz channel; correspondingly, the slave 160MHz channel may be a low frequency 160MHz channel or a high frequency 160MHz channel.
  • a 160 MHz channel with a large amount of data where the resource blocks are sent may be used as a response channel.
  • the sending resource block is an MRU of a specific size, for example, the sending resource block is one of the following MRUs: 3 ⁇ 996-tone MRU, 2 ⁇ 996+484-tone MRU, or 3 ⁇ 996+484-tone MRU MRU
  • the 160MHz channel where the 2 ⁇ 996-tone RU is located can be used as the response channel.
  • the 160MHz channel where the 2 ⁇ 996-tone RU is located may be a high frequency 160MHz channel or a low frequency 160MHz channel.
  • the 160MHz channel where the 2 ⁇ 996-tone RU is located may be the primary 160MHz channel or the secondary 160MHz channel.
  • the resource block of the reply response frame can be determined according to the indication information PS160 and the RU Allocation field in the TRS information, wherein the indication information PS160 is determined by the location of the 160MHz channel where the transmission resource block is located with a large amount of data and The size of the resource block indicated by the RU Allocation field in the TRS information is determined, for example, according to the second column in Input in the following table "The location of the 160MHz channel with a large amount of data where the resource block is sent" and the first column in Input " The resource block size indicated by the RU Allocation field in the TRS information" is used to determine the indication information PS160.
  • the indication information PS160 can be determined to be 0; if the 160MHz channel where the sending resource block is located with a large amount of data is a high-frequency 160MHz channel, then the PS160 indication information can be determined is 1. After determining the indication information PS160, the station can determine the location of the resource block used by the reply acknowledgment frame/block acknowledgment frame in combination with the RU Allocation field in the TRS information.
  • the resource block indicated by the RU Allocation field in the TRS information is a RU/MRU less than or equal to 2 ⁇ 996-tone: if the 160MHz channel with a large amount of data where the resource block is sent is the main 160MHz channel, then It is determined that the PS160 indication information is 0; if the 160MHz channel where the large amount of data of the transmission resource block is located is a secondary 160MHz channel, the PS160 indication information can be determined to be 1. It should be noted that when the resource block indicated by the RU Allocation field in the TRS information is RU/MRU less than or equal to 2 ⁇ 996-tone, the sending resource block can only be located in one 160MHz channel.
  • the method of indicating information can also be: if the 160MHz channel where the resource block is sent is the primary 160MHz channel, it can be determined that the PS160 indication information is 0; if the 160MHz channel where the resource block is sent is the secondary 160MHz channel, it can be determined that the PS160 indication information is 1 .
  • the PS160 indication information is 1 regardless of which 160MHz channel the 160MHz channel where the resource block is sent is with a large amount of data.
  • the station can determine the location of the resource block used by the reply acknowledgment frame/block acknowledgment frame in combination with the RU Allocation field in the TRS information.
  • the preset rule may be at least one of the following: (1) a primary 160MHz channel, (2) a secondary 160MHz channel with a higher frequency, (3) a secondary 160MHz channel with a higher frequency The low 160MHz channel, (4) the high frequency 160MHz channel, (5) the intermediate frequency 160MHz channel, (6) the low frequency 160MHz channel, and (7) the 160MHz channel with a large amount of data where the resource block is sent.
  • the three 160MHz channels may include one master 160MHz channel and two slave 160MHz channels, wherein one of the two slave 160MHz channels has a higher frequency and the other has a lower frequency.
  • the three 160MHz channels may include a high frequency 160MHz channel, an intermediate frequency 160MHz channel, and a low frequency 160MHz channel.
  • any of the above 160MHz channels can be used as the response channel.
  • a 160 MHz channel with a large amount of data where the resource blocks are sent may be used as a response channel.
  • the sending resource block is an MRU of a certain size
  • the 160MHz channel where the 2 ⁇ 996-tone RU is located can be used as the response channel. It is understandable that the 160MHz channel where the 2 ⁇ 996-tone RU is located may be a high frequency 160MHz channel, an intermediate frequency 160MHz channel, or a low frequency 160MHz channel.
  • a preset rule can be set in advance, thereby facilitating the receiving device to determine the response channel. It is understandable that different receiving devices may use different preset rules. For example, one receiving device may use the primary 160MHz channel as the response channel, while another receiving device may use the slave 160MHz channel as the response channel. It can be seen that, for SU-MIMO transmission, this implementation can fully utilize each channel of the total bandwidth, realize optimal utilization of resources, and ensure the transmission efficiency of confirmation frames.
  • the receiving device 202 determines the response channel based on a preset rule, which may include: determining, based on the EHT-SIG field of the data frame, that the transmission mode of the data frame is MU-MIMO; The identifier (Identifier, ID) of the receiving device 202 in the EHT-SIG field determines the location of the receiving device 202 in the MU-MIMO user group; the response channel is determined based on the location.
  • a preset rule may include: determining, based on the EHT-SIG field of the data frame, that the transmission mode of the data frame is MU-MIMO;
  • the identifier (Identifier, ID) of the receiving device 202 in the EHT-SIG field determines the location of the receiving device 202 in the MU-MIMO user group; the response channel is determined based on the location.
  • the physical layer format of the data frame includes the EHT-SIG 506, and the transmission mode of the data frame can be determined based on the common field 516 in the EHT-SIG 506.
  • the RU allocation subfield in the common field 516 may further indicate the number of users in the user group.
  • the number of MUs may be less than or equal to the number of spatial streams, which may represent a maximum value that the number of MUs can reach.
  • the physical layer format of the data frame includes the EHT-SIG 506, and the location can be determined based on the common field 516 and the user-specific field 526 in the EHT-SIG 506.
  • the order in which users appear in the user-specific field 526 is consistent with the order of RUs divided in the corresponding RU allocation subfield, and the user can identify whether the user-specific field 526 belongs to himself by reading the receiving device ID in the user-specific field 526 , combined with the location where the user field appears and the corresponding resource unit allocation subfield, the user can know his own RU allocation.
  • multiple different tone RUs are indicated in common field 516.
  • 2 ⁇ 996+484-tone MRU and 484-tone RU are included, and the number of users in the user group corresponding to 2 ⁇ 996+484-tone MRU is 8, and the number of users in the user group corresponding to 484-tone RU The number is also 8.
  • multiple receiving devices corresponding to the same RU may belong to the same MU-MIMO group, for example, the user group (8) corresponding to the 2 ⁇ 996+484-tone MRU is the first MU-MIMO group, The user group (8) corresponding to the 484-tone RU is the second MU-MIMO group.
  • the location of the receiving device 202 in the MU-MIMO user group may refer to the location of the receiving device 202 in the MU-MIMO group in which it is located.
  • the receiving device 202 may determine the first position in all orders (16) based on the user-specific field 526 . In one example, assuming that the first position in all sequences is less than or equal to 8, such as the 5th position, the RU allocation corresponding to the receiving device 202 is 2 ⁇ 996+484-tone MRU, and it is in the MU-tone MRU to which it belongs.
  • the position in the MIMO user group ie the first MU-MIMO group) is 5.
  • the response channel may be determined to be the first 160MHz channel; on the contrary, if the location is a non-predetermined location, the response channel may be determined to be the second 160MHz channel.
  • the response channel may be determined to be the first 160MHz channel.
  • the bandwidth of the transmission resource block is equal to 320MHz.
  • the first 160MHz channel may be a master 160MHz channel or a slave 160MHz channel.
  • the first 160MHz channel may be a high frequency 160MHz channel or a low frequency 160MHz channel.
  • the bandwidth of the transmission resource block is equal to 480MHz.
  • the first 160MHz channel may be a master 160MHz channel or a higher frequency slave 160MHz channel or a lower frequency slave 160MHz channel.
  • the first 160MHz channel may be a high frequency 160MHz channel, an intermediate frequency 160MHz channel, or a low frequency 160MHz channel.
  • the location of the receiving device 202 in the MU-MIMO group is not a predetermined location (ie, not a predetermined location)
  • it may be determined that the response channel is the second 160MHz channel, and the second 160MHz channel is different from the first 160MHz channel.
  • the predetermined position in the embodiment of the present disclosure may be at least one of the following: an odd-numbered position, an even-numbered position, a first-half position, or a second-half position.
  • the number of MUs of the MU-MIMO group is assumed to be N, and the position of the receiving device 202 is assumed to be the Pth position of the N. Then, if P mod 2 is equal to 0 (mod represents the remainder), ie, P is an even number, then the receiving device 202 is in an even position; otherwise, it is in an odd position.
  • the receiving device 202 if ( indicates rounding down), then the receiving device 202 is in the first half of the position; otherwise, it is in the second half of the position. In such an example, if the number of MUs (N) of the MU-MIMO group is an odd number, the receiving device in the middle belongs to the latter half of the positions. In other examples, if ( indicates rounding up), then the receiving device 202 is in the first half of the position; otherwise, it is in the second half of the position. In such an example, if the number of MUs (N) of the MU-MIMO group is an odd number, the receiving device in the middle belongs to the first half of the positions.
  • the receiving device 202 For example, assuming that the number of MUs in the MU-MIMO group is 8, and the receiving device 202 is in the 5th position, then it is in an odd-numbered position, which is in the second half position. For example, assuming that the number of MUs in the MU-MIMO group is 8, and the receiving device 202 is in the second position, then it is in an even position, which is in the first half position.
  • a preset rule may be set in advance, thereby facilitating the receiving device to determine the response channel.
  • different receiving devices belonging to the same MU-MIMO group can determine different response channels. For example, receivers in odd positions (1st, 3rd, 5th... (if present)) can use the main 160MHz channel as the response channel, while receivers in even positions (2nd, 4th) 1st, 6th... (if present)) can be the response channel from the 160MHz channel. It can be seen that, for MU-MIMO transmission, this implementation can fully utilize each channel of the total bandwidth, realize optimal utilization of resources, and ensure the transmission efficiency of confirmation frames.
  • the receiving device 202 may determine the response resource block based on the RU allocation information. Exemplarily, which 80MHz channel in the response channel may be determined based on the B0 bit in the RU allocation information, and a specific RU in the 80MHz channel may be further determined based on the B1-B7 bits in the RU allocation information.
  • the receiving device 202 may then send 430 an acknowledgment frame for the data frame to the sending device 201 on the response resource block.
  • the receiving device can determine the response channel based on the preset rule, so as to accurately determine the response resource block based on the RU allocation information.
  • the receiving device does not know on which channel the acknowledgement frame is sent, and the solution according to the embodiment of the present disclosure does not need to use extra bits for indication, avoids targeted modification of the format of the data frame, and has strong applicability.
  • FIG. 8 shows a schematic flowchart of an information transmission method 800 according to an embodiment of the present disclosure.
  • method 800 may be implemented at receiving device 202 shown in FIG. 2 .
  • the information transmission method 800 is described below by taking the receiving device 202 as an example, but this is only an example, and is not intended to limit the embodiments of the present disclosure.
  • Method 800 begins at block 810 .
  • the receiving device 202 receives the data frame from the transmitting device.
  • the data frame occupies a transmit resource block, and the data frame includes RU allocation information.
  • the transmit resource block may be 4x996-tone RU, 3x996-tone MRU, 2x996+484-tone MRU, 3x996+484-tone MRU, etc. It should be understood that the above examples about sending resource blocks are merely illustrative and not restrictive, and other suitable RUs or MRUs may also be used as sending resource blocks in embodiments according to the present disclosure.
  • the receiving device 202 determines a response resource block based on the transmit resource block and the RU allocation information.
  • a response channel when the bandwidth of the transmission resource block is greater than a bandwidth threshold (eg, 320 MHz, etc.), a response channel may be determined based on a preset rule, and then a response resource block may be determined based on the response channel and RU allocation information.
  • the response channel may be a response 160MHz channel.
  • the response channel may include at least one of the following: a master 160MHz channel, a slave 160MHz channel, a high frequency 160MHz channel, a low frequency 160MHz channel, or a 160MHz channel with a large amount of data where the transmission resource block is located.
  • the transmission mode of the data frame is MU-MIMO
  • the receiving device 202 is in the MU-MIMO user group position
  • the response channel is determined based on the position.
  • the location of the receiving device 202 in the MU-MIMO user group may be the location of the receiving device 2 in the MU-MIMO group. If the position is a predetermined position, the response channel is determined to be the first 160MHz channel; if the position is not a preset position (ie, a non-preset position), the response channel is determined to be the second 160MHz channel. Optionally, the first 160MHz channel is different from the second 160MHz channel.
  • the first 160MHz channel may be a master 160MHz channel or a slave 160MHz channel.
  • the first 160MHz channel may be a high frequency 160MHz channel or a low frequency 160MHz channel.
  • the first 160MHz channel is the master 160MHz channel and the second 160MHz channel is the slave 160MHz channel. In other examples, the first 160MHz channel is a high frequency 160MHz channel, and the second 160MHz channel is a low frequency 160MHz channel.
  • block 820 reference may be made to the detailed description of how the receiving device 202 determines 420 the response resource block in the process 400. For brevity, it is not repeated here.
  • the receiving device 202 sends an acknowledgement frame for the data frame to the sending device 201 on the response resource block.
  • the receiving device can determine the response channel based on the preset rule, and then can correctly send the acknowledgment frame, thereby ensuring the efficiency of information transmission.
  • the receiving device may send a block acknowledgment frame at 830, which will not be repeated here.
  • FIG. 9 shows a schematic flowchart of an information transmission method 900 according to an embodiment of the present disclosure.
  • the method 900 may be implemented at the sending device 201 shown in FIG. 2 .
  • the information transmission method 900 is described below by taking the sending device 201 as an example, but this is only an example, and is not intended to limit the embodiments of the present disclosure.
  • the transmitting device 201 transmits a data frame to the receiving device, wherein the data frame occupies a transmit resource block and the data frame includes RU allocation information.
  • the transmission resource block may be any of the following: 4 ⁇ 996-tone RU, 3 ⁇ 996-tone MRU, 2 ⁇ 996+484-tone MRU, 3 ⁇ 996+484-tone MRU, etc. .
  • the relevant description of the data frame from the sending device may be the specific embodiment described above in conjunction with 410, which is not repeated here for brevity.
  • the sending device 201 determines a response resource block based on the sending resource block and the RU allocation information.
  • a response channel when the bandwidth of the transmission resource block is greater than a bandwidth threshold (eg, 320 MHz, etc.), a response channel may be determined based on a preset rule, and then a response resource block may be determined based on the response channel and RU allocation information.
  • the response channel may be a response 160MHz channel.
  • the response channel may include at least one of the following: a master 160MHz channel, a slave 160MHz channel, a high frequency 160MHz channel, a low frequency 160MHz channel, or a 160MHz channel with a large amount of data where the transmission resource block is located.
  • the transmission mode of the data frame is MU-MIMO; based on the identifier of the receiving device in the EHT-SIG field, the position of the receiving device in the MU-MIMO user group is determined. ; Determine the response channel based on the location.
  • the location of the receiving device in the MU-MIMO user group may be the location of the receiving device in the MU-MIMO group. If the position is a predetermined position, the response channel is determined to be the first 160MHz channel; if the position is not a preset position (ie, a non-preset position), the response channel is determined to be the second 160MHz channel. Optionally, the first 160MHz channel is different from the second 160MHz channel.
  • the first 160MHz channel may be a master 160MHz channel or a slave 160MHz channel.
  • the first 160MHz channel may be a high frequency 160MHz channel or a low frequency 160MHz channel.
  • the first 160MHz channel is the master 160MHz channel and the second 160MHz channel is the slave 160MHz channel. In other examples, the first 160MHz channel is a high frequency 160MHz channel, and the second 160MHz channel is a low frequency 160MHz channel.
  • sending device 201 receives an acknowledgment frame for the data frame from receiving device 202 on a response resource block.
  • the sending device can determine the response channel based on the preset rule, and then can correctly receive the acknowledgment frame, thereby ensuring the efficiency of information transmission.
  • the sending device may receive a block acknowledgment frame at 930, which will not be repeated here.
  • FIG. 10 shows another schematic block diagram of a communication apparatus 1000 according to an embodiment of the present disclosure.
  • the apparatus 1000 may be implemented at the receiving device 202, or may be implemented as a chip or a system of chips in the receiving device 202, the scope of the present disclosure is not limited in this regard.
  • the apparatus 1000 may include a receiving unit 1010 , a determining unit 1020 and a sending unit 1030 .
  • the receiving unit 1010 may be configured to receive a data frame from a transmitting device, wherein the data frame occupies a transmission resource block and the data frame includes RU allocation information.
  • the determining unit 1020 may be configured to determine a response resource block based on the transmission resource block and the RU allocation information.
  • the sending unit 1030 may be configured to send an acknowledgement frame for the data frame to the sending device on the response resource block.
  • the transmit resource block is at least one of: 2 ⁇ 996+484-tone MRU, 3 ⁇ 996-tone MRU, 3 ⁇ 996+484-tone MRU, or 4 ⁇ 996-tone RU.
  • the determining unit 1020 includes a first determining subunit 1022 and a second determining subunit 1024 .
  • the first determination subunit 1022 is configured to determine a response channel based on a preset rule if the bandwidth of the transmission resource block is greater than the bandwidth threshold.
  • the second determination subunit 1024 is configured to determine the response resource block based on the response channel and the RU allocation information.
  • the response channel includes at least one of the following: a master 160MHz channel, a slave 160MHz channel, a high frequency 160MHz channel, a low frequency 160MHz channel, or a 160MHz channel where the transmission resource block is located with a large amount of data.
  • the first determining subunit 1022 is configured to determine, based on the EHT-SIG field of the data frame, that the transmission mode of the data frame is MU-MIMO; The identifier of the receiving device, and the position of the receiving device in the MU-MIMO user group is determined; the response channel is determined based on the position.
  • the first determining subunit 1022 is configured to, if the location is a predetermined location, determine that the response channel is the first 160MHz channel; and if the location is a non-predetermined location, determine the response The channel is a second 160MHz channel, wherein the second 160MHz channel is different from the first 160MHz channel.
  • the predetermined position is at least one of: an odd position, an even position, a first half position, or a second half position.
  • the first 160MHz channel is a master 160MHz channel or a slave 160MHz channel.
  • the first 160MHz channel is a high frequency 160MHz channel or a low frequency 160MHz channel.
  • the apparatus 1000 in FIG. 10 may be implemented as the receiving device 202 , or may be implemented as a chip or a chip system in the receiving device 202 , which is not limited by the embodiments of the present disclosure.
  • the receiving device 202 may be STA32.
  • the apparatus 1000 in FIG. 10 can be used to implement the various processes described above in conjunction with the receiving device 202 in FIG. 4 to FIG. 9 , which are not repeated here for brevity.
  • FIG. 11 shows another schematic block diagram of a communication device 1100 according to an embodiment of the present disclosure.
  • the apparatus 1100 may be implemented at the transmission device 201, or may be implemented as a chip or a system of chips in the transmission device 201, and the scope of the present disclosure is not limited in this regard.
  • the apparatus 1100 may include a sending unit 1110 , a determining unit 1120 and a receiving unit 1130 .
  • the sending unit 1110 may be configured to send a data frame to the receiving device, wherein the data frame occupies a sending resource block and the data frame includes RU allocation information.
  • the determining unit 1120 may be configured to determine a response resource block based on the transmission resource block and the RU allocation information.
  • the receiving unit 1130 may be configured to receive an acknowledgement frame for the data frame from the receiving device on the response resource block.
  • the transmit resource block is at least one of: 2 ⁇ 996+484-tone MRU, 3 ⁇ 996-tone MRU, 3 ⁇ 996+484-tone MRU, or 4 ⁇ 996-tone RU.
  • the determination unit 1120 includes a first determination subunit 1122 and a second determination subunit 1124 .
  • the first determination subunit 1122 is configured to determine a response channel based on a preset rule if the bandwidth of the transmission resource block is greater than the bandwidth threshold.
  • the second determination subunit 1124 is configured to determine the response resource block based on the response channel and the RU allocation information.
  • the response channel includes at least one of the following: a master 160MHz channel, a slave 160MHz channel, a high frequency 160MHz channel, a low frequency 160MHz channel, or a 160MHz channel where the transmission resource block is located with a large amount of data.
  • the first determining subunit 1122 is configured to determine, based on the EHT-SIG field of the data frame, that the transmission mode of the data frame is MU-MIMO; The identifier of the receiving device, and the position of the receiving device in the MU-MIMO user group is determined; the response channel is determined based on the position.
  • the first determining subunit 1122 is configured to, if the location is a predetermined location, determine that the response channel is the first 160MHz channel; and if the location is a non-predetermined location, determine the response The channel is a second 160MHz channel, wherein the second 160MHz channel is different from the first 160MHz channel.
  • the predetermined position is at least one of: an odd position, an even position, a first half position, or a second half position.
  • the first 160MHz channel is a master 160MHz channel or a slave 160MHz channel.
  • the first 160MHz channel is a high frequency 160MHz channel or a low frequency 160MHz channel.
  • the apparatus 1100 in FIG. 11 may be implemented as the sending device 201 , or may be implemented as a chip or a chip system in the sending device 201 , which is not limited by the embodiments of the present disclosure.
  • the sending device 201 may be the AP30.
  • the apparatus 1100 in FIG. 11 can be used to implement the various processes described above in conjunction with the sending device 201 in FIG. 4 to FIG. 9 , which are not repeated here for brevity.
  • the apparatus 1200 may be used to implement the sending device 201 and the receiving device 202 as shown in FIG. 2 .
  • the apparatus 1200 may be used to implement the AP 30 and the STA 32 as shown in FIG. 2 .
  • the apparatus 1200 includes one or more processors 1210 , one or more memories 1220 coupled to the processors 1210 , and a communication module 1240 coupled to the processors 1210 .
  • the communication module 1240 may be used for two-way communication.
  • the communication module 1240 may have at least one communication interface for communication.
  • Communication interfaces may include any interface necessary to communicate with other devices.
  • the processor 1210 may be of any type suitable for the local technical network, and may include, but is not limited to, at least one of the following: a general purpose computer, a special purpose computer, a microcontroller, a Digital Signal Processor (DSP), or a control-based One or more of the multi-core controller architectures of the server.
  • Apparatus 1200 may have multiple processors, such as application specific integrated circuit chips, that are temporally slaved to a clock synchronized with the main processor.
  • Memory 1220 may include one or more non-volatile memories and one or more volatile memories.
  • non-volatile memory include, but are not limited to, at least one of the following: Read-Only Memory (ROM) 1224, Erasable Programmable Read Only Memory (EPROM), flash memory, hard disk , Compact Disc (CD), Digital Versatile Disc (DVD) or other magnetic and/or optical storage.
  • volatile memory include, but are not limited to, at least one of the following: Random Access Memory (RAM) 1222, or other volatile memory that does not persist for the duration of a power outage.
  • RAM Random Access Memory
  • Computer program 1230 includes computer-executable instructions for execution by associated processor 1210 .
  • Program 1230 may be stored in ROM 1224.
  • Processor 1210 may perform any suitable actions and processes by loading program 1230 into RAM 1222.
  • Embodiments of the present disclosure may be implemented by means of program 1230 such that apparatus 1200 may perform any of the processes as discussed with reference to FIGS. 3-9 .
  • Embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • program 1230 may be tangibly embodied in a computer-readable medium, which may be included in apparatus 1200 (such as in memory 1220 ) or other storage device accessible by apparatus 1200 .
  • Program 1230 may be loaded into RAM 1222 from a computer-readable medium for execution.
  • Computer readable media may include any type of tangible non-volatile memory, such as ROM, EPROM, flash memory, hard disks, CDs, DVDs, and the like.
  • the communication module 1240 in the apparatus 1200 may be implemented as a transmitter and receiver (or transceiver), which may be configured to transmit/receive system information such as data frames, acknowledgement frames, and the like.
  • the apparatus 1200 may further include one or more of a scheduler, a controller, and a radio frequency/antenna, which will not be described in detail in the present disclosure.
  • the apparatus 1200 in FIG. 12 can be implemented as a transmitting device 201 or a receiving device 202 , or can be implemented as a chip or a chip system in the transmitting device 201 , or can be implemented as a chip or a chip in the receiving device 202 system, which is not limited by the embodiments of the present disclosure.
  • the apparatus 1200 in FIG. 12 may be implemented as an AP 30 or a STA 32, or may be implemented as a chip or a chip system in the AP 30, or may be implemented as a chip or a chip system in the STA 32, the present disclosure
  • the embodiments of this are not limited.
  • Embodiments of the present disclosure also provide a chip, which may include an input interface, an output interface, and a processing circuit.
  • the input interface and the output interface may complete the above-mentioned interaction of signaling or data
  • the processing circuit may complete the generation and processing of signaling or data information.
  • An embodiment of the present disclosure also provides a chip system, including a processor, for supporting the sending device 201 or the receiving device 202 to implement the functions involved in any of the foregoing embodiments.
  • the chip system may further include a memory for storing necessary program instructions and data.
  • the processor executes the program instructions, the device on which the chip system is installed can implement any of the above-mentioned embodiments.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Embodiments of the present disclosure also provide a processor for coupling with a memory, where the memory stores instructions, when the processor executes the instructions, the processor causes the processor to execute the sending device 201 or the receiving device involved in any of the foregoing embodiments 202 methods and functions.
  • Embodiments of the present disclosure also provide a computer program product containing instructions, which, when run on a computer, cause the computer to perform the methods and functions involved in the sending device 201 or the receiving device 202 in any of the foregoing embodiments.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which computer instructions are stored.
  • the processor executes the instructions, the processor causes the processor to execute the sending device 201 or the receiving device 202 involved in any of the foregoing embodiments. methods and functions.
  • Embodiments of the present disclosure also provide a wireless communication system, which includes a sending device and a receiving device.
  • the system may include at least one AP and at least one STA.
  • the various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device. Although various aspects of the embodiments of the present disclosure are shown and described as block diagrams, flowcharts, or using some other pictorial representation, it should be understood that the blocks, apparatuses, systems, techniques or methods described herein may be implemented, without limitation, as Illustrative examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controllers or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer-readable storage medium.
  • the computer program product includes computer-executable instructions, eg, instructions included in program modules, which are executed in a device on a target's real or virtual processor to perform the processes/methods as described above with reference to FIGS. 4-9 .
  • program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or divided among the program modules as desired.
  • Machine-executable instructions for program modules may be executed within local or distributed devices. In a distributed facility, program modules may be located in both local and remote storage media.
  • Computer program code for implementing the methods of the present disclosure may be written in one or more programming languages. Such computer program code may be provided to a processor of a general purpose computer, special purpose computer or other programmable data processing apparatus such that the program code, when executed by the computer or other programmable data processing apparatus, causes the flowchart and/or block diagrams The functions/operations specified in are implemented.
  • the program code may execute entirely on the computer, partly on the computer, as a stand-alone software package, partly on the computer and partly on a remote computer or entirely on the remote computer or server.
  • computer program code or related data may be carried by any suitable carrier to enable a device, apparatus or processor to perform the various processes and operations described above.
  • carriers include signals, computer-readable media, and the like.
  • signals may include electrical, optical, radio, acoustic, or other forms of propagated signals, such as carrier waves, infrared signals, and the like.
  • a computer-readable medium may be any tangible medium that contains or stores a program for or in connection with an instruction execution system, apparatus, or device.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • Computer-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any suitable combination thereof. More detailed examples of computer readable storage media include electrical connections with one or more wires, portable computer disks, hard disks, random memory access (RAM), read only memory (ROM), erasable programmable read only Memory (EPROM or flash memory), optical storage devices, magnetic storage devices, or any suitable combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本公开的实施例提供了一种信息传输方法、通信装置、计算机可读存储介质和芯片。在该方法中,接收设备接收来自发送设备的数据帧,其中所述数据帧占用发送资源块并且所述数据帧包括RU分配信息;基于所述发送资源块以及所述RU分配信息确定响应资源块;以及在所述响应资源块上向所述发送设备发送针对所述数据帧的确认帧。以此方式,本公开的实施例使接收设备基于发送资源块和RU分配信息来确定用于发送确认帧的响应资源块,进而使得接收设备能够正确地发送确认帧,保证了信息传输的效率。

Description

信息传输方法、通信装置、计算机可读存储介质和芯片 技术领域
本公开涉及通信领域,并且更具体地,涉及一种信息传输方法、通信装置、计算机可读存储介质和芯片。
背景技术
无线局域网(Wireless Local Area Network,WLAN)系统的802.11各个标准版本在不断演进,从802.11a/b/g开始,历经802.11n,802.11ac,802.11ax到802.11be,其中802.11ax标准称为高效(High Efficient,HE),802.11be标准称为极高吞吐量(Extremely High Throughput,EHT),802.11be以后的标准用EHT+来表示。
目前的接入点向站点发送数据帧时,会通过资源单元分配告知站点发送确认帧要占用的资源单元,但是随着可用信道的带宽扩展,目前的方案中站点无法确定在哪个信道上发送确认帧,该方案不够完善。
发明内容
本公开的示例实施例提供了接收设备正确地发送确认帧的方案。
第一方面,提供了一种信息传输方法。该方法包括:接收设备接收来自发送设备的数据帧,其中所述数据帧占用发送资源块并且所述数据帧包括RU分配信息;所述接收设备基于所述发送资源块以及所述RU分配信息,确定响应资源块;以及所述接收设备在所述响应资源块上向所述发送设备发送针对所述数据帧的确认帧。
如此,本公开的实施例使接收设备基于发送资源块和RU分配信息来确定用于发送确认帧的响应资源块,进而使得接收设备能够正确地发送确认帧,保证了信息传输的效率。
在第一方面的一些实施例中,其中基于所述发送资源块以及所述RU分配信息确定响应资源块包括:如果所述发送资源块的带宽大于带宽阈值,基于预设规则确定响应信道;以及基于所述响应信道和所述RU分配信息确定所述响应资源块。
在第一方面的一些实施例中,其中所述响应信道包括以下至少一项:主160MHz信道,从160MHz信道,高频160MHz信道,低频160MHz信道,或所述发送资源块所在的数据量大的160MHz信道。
在第一方面的一些实施例中,其中所述基于预设规则确定响应信道包括:基于所述数据帧的极高吞吐率信令EHT-SIG字段,确定所述数据帧的传输方式是多用户多输入多输出MU-MIMO;基于所述EHT-SIG字段中的所述接收设备的标识,确定所述接收设备在所述MU-MIMO的用户组中的位置;基于所述位置确定所述响应信道。
在第一方面的一些实施例中,其中所述基于所述位置确定所述响应信道包括:如果所述位置为预定位置,则确定所述响应信道为第一160MHz信道;以及如果所述位置为非预定位置,则确定所述响应信道为第二160MHz信道,其中所述第二160MHz信道不同于所述第一160MHz信道。
在第一方面的一些实施例中,其中所述预定位置为以下至少一项:奇数位置,偶数位置,前一半位置,或后一半位置。
在第一方面的一些实施例中,其中所述第一160MHz信道为主160MHz信道或从 160MHz信道。
在第一方面的一些实施例中,其中所述第一160MHz信道为高频160MHz信道或低频160MHz信道。
如此,本公开实施例能够由接收设备基于预设规则确定响应信道。并且,属于同一个MU-MIMO组的不同位置的不同接收设备可以确定不同的响应信道。能够使总带宽的各个信道都能被充分地利用,实现了资源优化利用,且保证了确认帧的传输效率。
在第一方面的一些实施例中,其中所述发送资源块为以下至少一项:2×996+484-tone MRU,3×996-tone MRU,3×996+484-tone MRU,或4×996-tone RU。
第二方面,提供了一种信息传输方法。该方法包括:发送设备向接收设备发送数据帧,其中所述数据帧占用发送资源块以及所述数据帧包括RU分配信息;所述发送设备基于所述发送资源块以及所述RU分配信息,确定响应资源块;以及所述发送设备在所述响应资源块上接收来自所述接收设备针对所述数据帧的确认帧。
在第二方面的一些实施例中,其中基于所述发送资源块以及所述RU分配信息确定响应资源块包括:如果所述发送资源块的带宽大于带宽阈值,基于预设规则确定响应信道;以及基于所述响应信道和所述RU分配信息确定所述响应资源块。
在第二方面的一些实施例中,其中所述响应信道包括以下至少一项:主160MHz信道,从160MHz信道,高频160MHz信道,低频160MHz信道,或所述发送资源块所在的数据量大的160MHz信道。
在第二方面的一些实施例中,其中所述基于预设规则确定响应信道包括:基于所述数据帧的极高吞吐率信令EHT-SIG字段,确定所述数据帧的传输方式是多用户多输入多输出MU-MIMO;基于所述EHT-SIG字段中的所述接收设备的标识,确定所述接收设备在所述MU-MIMO的用户组中的位置;基于所述位置确定所述响应信道。
在第二方面的一些实施例中,其中所述基于所述位置确定所述响应信道包括:如果所述位置为预定位置,则确定所述响应信道为第一160MHz信道;以及如果所述位置为非预定位置,则确定所述响应信道为第二160MHz信道,其中所述第二160MHz信道不同于所述第一160MHz信道。
在第二方面的一些实施例中,其中所述预定位置为以下至少一项:奇数位置,偶数位置,前一半位置,或后一半位置。
在第二方面的一些实施例中,其中所述第一160MHz信道为主160MHz信道或从160MHz信道。
在第二方面的一些实施例中,其中所述第一160MHz信道为高频160MHz信道或低频160MHz信道。
在第二方面的一些实施例中,其中所述发送资源块为以下至少一项:2×996+484-tone MRU,3×996-tone MRU,3×996+484-tone MRU,或4×996-tone RU。
第三方面,提供了一种通信装置。该装置包括:接收单元,被配置为接收来自发送设备的数据帧,其中所述数据帧占用发送资源块并且所述数据帧包括RU分配信息;确定单元,被配置为基于所述发送资源块以及所述RU分配信息确定响应资源块;以及发送单元,被配置为在所述响应资源块上向所述发送设备发送针对所述数据帧的确认帧。
在第三方面的一些实施例中,其中所述确定单元包括:第一确定子单元,被配置为如果所述发送资源块的带宽大于带宽阈值,基于预设规则确定响应信道;以及第二确定子单元, 被配置为基于所述响应信道和所述RU分配信息确定所述响应资源块。
在第三方面的一些实施例中,其中所述响应信道包括以下至少一项:主160MHz信道,从160MHz信道,高频160MHz信道,低频160MHz信道,或所述发送资源块所在的数据量大的160MHz信道。
在第三方面的一些实施例中,其中所述第一确定子单元被配置为:基于所述数据帧的极高吞吐率信令EHT-SIG字段,确定所述数据帧的传输方式是多用户MU多输入多输出MIMO;基于所述EHT-SIG字段中的所述接收设备的标识,确定所述接收设备在所述MU-MIMO的用户组中的位置;基于所述位置确定所述响应信道。
在第三方面的一些实施例中,其中所述第一确定子单元被配置为:如果所述位置为预定位置,则确定所述响应信道为第一160MHz信道;以及如果所述位置为非预定位置,则确定所述响应信道为第二160MHz信道,其中所述第二160MHz信道不同于所述第一160MHz信道。
在第三方面的一些实施例中,其中所述预定位置为以下至少一项:奇数位置,偶数位置,前一半位置,或后一半位置。
在第三方面的一些实施例中,其中所述第一160MHz信道为主160MHz信道或从160MHz信道。
在第三方面的一些实施例中,其中所述第一160MHz信道为高频160MHz信道或低频160MHz信道。
在第三方面的一些实施例中,其中所述发送资源块为以下至少一项:2×996+484-tone MRU,3×996-tone MRU,3×996+484-tone MRU,或4×996-tone RU。
第四方面,提供了一种通信装置。该装置包括:发送单元,被配置为向接收设备发送数据帧,其中所述数据帧占用发送资源块以及所述数据帧包括RU分配信息;确定单元,被配置为基于所述发送资源块以及所述RU分配信息,确定响应资源块;以及接收单元,被配置为在所述响应资源块上接收来自所述接收设备针对所述数据帧的确认帧。
在第四方面的一些实施例中,其中所述确定单元包括:第一确定子单元,被配置为如果所述发送资源块的带宽大于带宽阈值,基于预设规则确定响应信道;以及第二确定子单元,被配置为基于所述响应信道和所述RU分配信息确定所述响应资源块。
在第四方面的一些实施例中,其中所述响应信道包括以下至少一项:主160MHz信道,从160MHz信道,高频160MHz信道,低频160MHz信道,或所述发送资源块所在的数据量大的160MHz信道。
在第四方面的一些实施例中,其中所述第一确定子单元被配置为:基于所述数据帧的极高吞吐率信令EHT-SIG字段,确定所述数据帧的传输方式是多用户MU多输入多输出MIMO;基于所述EHT-SIG字段中的所述接收设备的标识,确定所述接收设备在所述MU-MIMO的用户组中的位置;基于所述位置确定所述响应信道。
在第四方面的一些实施例中,其中所述第一确定子单元被配置为:如果所述位置为预定位置,则确定所述响应信道为第一160MHz信道;以及如果所述位置为非预定位置,则确定所述响应信道为第二160MHz信道,其中所述第二160MHz信道不同于所述第一160MHz信道。
在第四方面的一些实施例中,其中所述预定位置为以下至少一项:奇数位置,偶数位置,前一半位置,或后一半位置。
在第四方面的一些实施例中,其中所述第一160MHz信道为主160MHz信道或从160MHz信道。
在第四方面的一些实施例中,其中所述第一160MHz信道为高频160MHz信道或低频160MHz信道。
在第四方面的一些实施例中,其中所述发送资源块为以下至少一项:2×996+484-tone MRU,3×996-tone MRU,3×996+484-tone MRU,或4×996-tone RU。
第五方面,提供了一种通信装置,包括收发器、处理器以及存储器,所述存储器上存储有由所述处理器执行的指令,当所述指令被所述处理器执行时使得所述装置实现:经由所述收发器接收来自发送设备的数据帧,其中所述数据帧占用发送资源块并且所述数据帧包括RU分配信息;基于所述发送资源块以及所述RU分配信息确定响应资源块;以及经由所述收发器在所述响应资源块上向所述发送设备发送针对所述数据帧的确认帧。
在第五方面的一些实施例中,其中所述处理器执行所述指令,使得所述装置实现:如果所述发送资源块的带宽大于带宽阈值,基于预设规则确定响应信道;以及基于所述响应信道和所述RU分配信息确定所述响应资源块。
在第五方面的一些实施例中,其中所述响应信道包括以下至少一项:主160MHz信道,从160MHz信道,高频160MHz信道,低频160MHz信道,或所述发送资源块所在的数据量大的160MHz信道。
在第五方面的一些实施例中,其中所述处理器执行所述指令,使得所述装置实现:基于所述数据帧的极高吞吐率信令EHT-SIG字段,确定所述数据帧的传输方式是多用户MU多输入多输出MIMO;基于所述EHT-SIG字段中的所述接收设备的标识,确定所述接收设备在所述MU-MIMO的用户组中的位置;基于所述位置确定所述响应信道。
在第五方面的一些实施例中,其中所述处理器执行所述指令,使得所述装置实现:如果所述位置为预定位置,则确定所述响应信道为第一160MHz信道;以及如果所述位置为非预定位置,则确定所述响应信道为第二160MHz信道,其中所述第二160MHz信道不同于所述第一160MHz信道。
在第五方面的一些实施例中,其中所述预定位置为以下至少一项:奇数位置,偶数位置,前一半位置,或后一半位置。
在第五方面的一些实施例中,其中所述第一160MHz信道为主160MHz信道或从160MHz信道。
在第五方面的一些实施例中,其中所述第一160MHz信道为高频160MHz信道或低频160MHz信道。
在第五方面的一些实施例中,其中所述发送资源块为以下至少一项:2×996+484-tone MRU,3×996-tone MRU,3×996+484-tone MRU,或4×996-tone RU。
第六方面,提供了一种通信装置,包括收发器、处理器以及存储器,所述存储器上存储有由所述处理器执行的指令,当所述指令被所述处理器执行时使得所述装置实现:经由所述收发器向接收设备发送数据帧,其中所述数据帧占用发送资源块以及所述数据帧包括RU分配信息;基于所述发送资源块以及所述RU分配信息确定响应资源块;以及经由所述收发器在所述响应资源块上接收来自所述接收设备针对所述数据帧的确认帧。
在第六方面的一些实施例中,其中所述处理器执行所述指令,使得所述装置实现:如果所述发送资源块的带宽大于带宽阈值,基于预设规则确定响应信道;以及基于所述响应信道 和所述RU分配信息确定所述响应资源块。
在第六方面的一些实施例中,其中所述响应信道包括以下至少一项:主160MHz信道,从160MHz信道,高频160MHz信道,低频160MHz信道,或所述发送资源块所在的数据量大的160MHz信道。
在第六方面的一些实施例中,其中所述处理器执行所述指令,使得所述装置实现:基于所述数据帧的极高吞吐率信令EHT-SIG字段,确定所述数据帧的传输方式是多用户MU多输入多输出MIMO;基于所述EHT-SIG字段中的所述接收设备的标识,确定所述接收设备在所述MU-MIMO的用户组中的位置;基于所述位置确定所述响应信道。
在第六方面的一些实施例中,其中所述处理器执行所述指令,使得所述装置实现:如果所述位置为预定位置,则确定所述响应信道为第一160MHz信道;以及如果所述位置为非预定位置,则确定所述响应信道为第二160MHz信道,其中所述第二160MHz信道不同于所述第一160MHz信道。
在第六方面的一些实施例中,其中所述预定位置为以下至少一项:奇数位置,偶数位置,前一半位置,或后一半位置。
在第六方面的一些实施例中,其中所述第一160MHz信道为主160MHz信道或从160MHz信道。
在第六方面的一些实施例中,其中所述第一160MHz信道为高频160MHz信道或低频160MHz信道。
在第六方面的一些实施例中,其中所述发送资源块为以下至少一项:2×996+484-tone MRU,3×996-tone MRU,3×996+484-tone MRU,或4×996-tone RU。
第七方面,提供了一种接入点。该接入点(AP)包括如上第四方面或第六方面任一方面或其任一实现方式所述的装置。
第八方面,提供了一种站点。该站点(STA)包括如上第三方面或第五方面任一方面或其任一实现方式所述的装置。
第九方面,提供了计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现根据上述第一方面或第二方面的任一实施例中的方法的操作。
第十方面,提供了一种芯片或芯片系统。该芯片或芯片系统包括处理电路,被配置为执行根据上述第一方面或第二方面的任一实施例中的方法的操作。
第十一方面,提供了一种计算机程序或计算机程序产品。该计算机程序或计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,计算机可执行指令在被执行时使设备实现根据上述第一方面或第二方面的任一实施例中的方法的操作。
第十二方面,提供了一种无线通信系统。该系统包括发送设备和接收设备。发送设备可以实现根据上述第一方面的任一实施例中的信息传输的方法的操作,接收设备可以实现根据上述第二方面的任一实施例中的信息传输的方法的操作。
第十三方面,提供了一种无线通信系统,该系统包括至少一个AP和至少一个STA。任一AP或任一STA可以实现根据上述第一方面或第二方面的任一实施例中的信息传输的方法的操作。
附图说明
结合附图并参考以下详细说明,本公开各实现方式的特征、优点及其他方面将变得更加明显。在此以示例性而非限制性的方式示出了本公开的若干实现方式,在附图中:
图1示出了针对320MHz带宽的信道划分100的示意图;
图2示出了本公开实施例可实现在其中的通信系统200的一个示意图;
图3示出了本公开实施例可实现在其中的通信系统300的另一个示意图;
图4示出了根据本公开的实施例的信息传输过程400的一个示意交互图;
图5示出了根据本公开的实施例的数据帧的物理层格式500的示意图;
图6示出了根据本公开的实施例的数据帧的MAC层格式600的示意图;
图7示出了根据本公开的实施例的TRS信息的格式700的示意图;
图8示出了根据本公开的实施例的信息传输方法800的一个示意流程图;
图9示出了根据本公开的实施例的信息传输方法900的另一个示意流程图;
图10示出了根据本公开的实施例的通信装置1000的另一个示意框图;
图11示出了根据本公开的实施例的通信装置1100的另一个示意框图;
图12示出了根据本公开的实施例的示例装置1200的简化框图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
在本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。
在本公开的上下文中,术语“无线通信系统”例如可以为广域网系统或者为无线局域网(WLAN)系统。该无线通信系统可以支持多种WLAN通信协议,例如电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11系列协议中的802.11ac/802.11ax/802.11be或者未来IEEE 802.11系列中任意一种协议。为描述方便,本公开实施例以WLAN为例进行说明。WLAN中可以包括多个基本服务集(Basic Service Set,BSS),基本服务集的节点包括接入点类的站点和非接入点类的站点(Non Access Point Station,Non-AP STA)。
术语“接入点(Access Point,AP)”也可以称为接入点类的站点。AP可以为具有无线收发功能的装置,可以为站点提供服务。AP也可称为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网络和无线网络的桥梁,其主要作用是将各个STA连接到一起,然后将无线网络接入有线网络。可选地,AP可以是带有无线保真(Wireless Fidelity,Wi-Fi)芯片的终端设备或者网络设备,例如,AP可以是通信服务器、路由器、交换机或网桥等。可选地,AP可以为支持当前网络系统或者未来网络系统下802.11制式的设备。
术语“站点(STA)”可以是具有无线收发功能的装置,其可以基于接入点接入无线局域网。STA可以是无线通信芯片、无线传感器或无线通信终端。例如,STA也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。STA可以为无线通信芯片、无线传感器或无线通信终端。例如STA为支持Wi-Fi通信功能的移动电话、支持Wi-Fi通信功能的平板电脑、支持Wi-Fi通信功能的机顶盒、支持Wi-Fi通信功能的智能电视、支持Wi-Fi通信功能的智能可穿戴设备、支持Wi-Fi通信功能的车载通信设备和支持Wi-Fi通信功能的计算机等。可选地,STA可以支持当前网络系统或者未来网络系统下802.11制式的设备。
术语“正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)”是当前无线通信的基本传输方式,其被广泛应用于各种无线通信系统。不仅如此,OFDM也进一步应用到固网传输,比如光纤、铜绞线、电缆等传输方式。OFDM的基本原理是利用子载波的正交性,在容许的范围内,将子载波间隔压缩到最小,这一方面能保证形成多路并行且互不干扰的通路,同时又能提升系统的频率利用效率。进一步的,由于OFDM具有以上特性,如果将OFDM的互不干扰的子载波分配给多个用户,就能利用OFDM来实现多用户的接入或者数据传输,这就是正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)。采用OFDMA可以实现多用户数据的并行传输,是提高数据传输并发性的有效方式。
术语“多输入多输出(Multiple Input Multiple Output,MIMO)技术”是如下技术,其可以利用多天线产生额外的空间自由度从而成倍地提高系统的吞吐量,有效地提高通信系统的速率。另外,发送端可以通过多个空间流向多个用户进行数据发送,从而实现多用户(Multiple-User,MU)数据的并行传输,提高数据传输的并发性,也可称为MU-MIMO。
WLAN系统的802.11各个标准版本在不断演进,从802.11a/b/g开始,历经802.11n,802.11ac,802.11ax到802.11be。在802.11n之前只支持单用户单输入单输出(Single User Single Input Single Output,SU-SISO),802.11n开始支持单用户多输入多输出(Single User Multiple Input Multiple Output,SU-MIMO),并且从802.11ac和802.11ax开始支持MU-MIMO。在802.11ax之前,802.11标准支持OFDM传输。从802.11ax开始,引入了OFDMA技术,整个带宽可以被分为一个或多个资源单元(Resource Unit,RU)。目前正在研究中的802.11be支持MU-MIMO和OFDMA,其中定义有极高吞吐量多用户物理层协议数据单元(Extremely High Throughput Multiple User Physical Protocol Data Unit,EHT MU PPDU)。
随着WLAN 802.11的演进,其允许传输的带宽也逐渐发生了变化。802.11a/g标准允许传输的带宽为20MHz,802.11n标准允许传输的带宽为20MHz或40MHz,802.11ax允许传输的带宽为20MHz,40MHz,80MHz或160MHz,802.11be标准支持的带宽被扩展到320MHz,从而能显著提升峰值吞吐量,进一步提升传输速率。
图1示出了针对320MHz带宽的信道划分100的示意图。具体地,图1中示出的是非授权国际信息基础设施(the Unlicensed National Information Infrastructure,U-NII)无线电频带(radio band)在6GHz频段中的信道划分。图1中示出了80MHz 110,160MHz 120,320MHz-1130和320MHz-2 140。可理解的是,为了有效利用信道,被设计有两种320MHz信道,分别是信道中心频率为31/95/159的320MHz-1和中心频率为63/127/191的320MHz-2,在图1中分别示出为130和140。
可理解的是,图1针对的是320MHz带宽,在其他场景下,该带宽可以为其他值,例如 在未来可能发展的演进的极高吞吐量中可能将带宽扩展到更大,如480MHz、640MHz或其他值等。
在WLAN中,信道通常分为主信道和从信道。在整个带宽范围(如320MHz)内,AP会选取一个20MHz信道为主信道。包含该主信道的80MHz信道会被称之为主80MHz信道,其他80MHz信道为非主80Mhz信道,或者称为从80Mhz信道或次80Mhz信道。包含该主信道的160MHz信道被称之为主160MHz信道,其他的160MHz信道为非主160MHz信道,或称为从160MHz信道或次160MHz信道。示例性地,主80MHz信道(或者主160MHz信道)的位置可以是AP在建立基本服务集(BSS)时所选择的,AP可以通过信标帧以广播的形式进行发送,以通知所有的STA。
在目前的多用户传输中,AP可以在PPDU中携带多个STA的数据进行发送。STA接收到数据之后,可以基于数据帧中携带的触发的响应调度(Triggered Response Scheduling,TRS)信息,向AP发送确认帧。但是当带宽大于160MHz(如320MHz)时,STA无法确定在哪个信道上传输确认帧,因此目前的方案不够完善。
本公开的实施例提供了一种信息传输方案。该方案能够基于数据帧占用的发送资源块以及数据帧中的RU分配信息来确定使用哪个信道上的哪个或哪些RU来发送确认帧,从而确保了传输的正确性。以下通过图2至图12更加详细地描述根据本公开的实施例。
图2示出了本公开实施例可实现在其中的通信系统200的一个示意图。如图2所示,该系统200包括发送设备201和接收设备202,发送设备201和接收设备202之间可以通过无线网络进行通信。
图2中所示的发送设备201可以为AP或STA,接收设备202可以为AP或STA。并且可理解,尽管图2中仅示出了单个发送设备201和单个接收设备202,但是本公开对此不限定,例如,系统200可以包括多个接收设备202,并且发送设备201可以与多个接收设备202进行通信,或其他场景等,本公开中不再罗列。
图3示出了本公开实施例可实现在其中的通信系统300的另一个示意图。图3示出了两个AP,即AP 301和AP 302。图3还示出了三个站点,即STA 321、STA 322和STA 323。AP与AP、AP与STA、STA与STA之间可以通过各种标准进行无线通信。本公开的实施例可以应用在AP与AP之间的通信、STA与STA之间的通信以及AP与STA之间的通信。例如,结合图3,可以是AP 301与AP 302之间的通信,可以是STA 322与STA 323之间的通信,可以是AP 301与STA 321之间的通信或者AP 301与STA 322之间的通信等。应注意,图3仅是示意性的,不应解释为对本公开实施例的限制。
为了便于描述,以下将AP 301和AP 302统称为AP 30,并且以下将STA 321、STA 322和STA 323统称为STA 32。
还应理解的是,图2和图3仅仅是本公开实施例可实现在其中的通信系统的示意图。通信系统200和通信系统300中还可以包括其它网络设备或者终端设备,如还可以包括无线中继设备和无线回传设备等。另外,本公开实施例对该系统200所包括的发送设备201和接收设备202的数量、系统300所包括的AP 30和STA 32的数量不作限定。
图4示出了根据本公开的实施例的信息传输过程400的一个示意交互图。过程400涉及发送设备201和接收设备202。可以理解,图4中示出的通信过程仅为示例性的,而非限制性的。本公开的实施例可以包括图4中未示出的交互信令,或者省略图4中示出的某些信令。
在过程400中,发送设备201可以首先向接收设备202发送410数据帧。
示例性地,本公开实施例中的数据帧可以占用发送资源块,且发送资源块的带宽可以大于带宽阈值。换句话说,本公开实施例中的数据帧的带宽大于带宽阈值。在一些示例中,数据帧中可以包括单个MU PPDU,该单个MU PPDU的带宽大于带宽阈值。在另一些示例中,数据帧中可以包括多个MU PPDU,例如可以是多个MU PPDU被聚合而成的聚合PPDU,且该聚合PPDU的带宽大于带宽阈值。举例来说,带宽阈值可以为160MHz或者可以为320MHz或者其他值,本公开对此不限定。
可理解的是,数据帧的带宽应当不大于总的可用带宽(简称为总带宽),以图1为例,总带宽为320MHz。在其他场景下,总带宽也可以为其他值,例如480MHz,本公开对此不限定。
在本公开的实施例中,数据帧可以实现单独的OFDMA传输,或者,可以实现单独的MU-MIMO传输,或者,可以实现OFDMA和MU-MIMO的混合传输。在一些实施例中,可以在数据帧的物理层格式的特定字段中指定该传输的类型,其中特定字段例如可以是极高吞吐量信令字段(Extremely High Throughput Signal Field,EHT-SIG)。
在本公开的实施例中,可以定义多个不同的RU类型,并可以将整个带宽以RU类型为单位进行划分,RU类型可以通过子载波(tone)的形式表示该RU类型所占用的带宽。一般地,20MHz带宽内有242个子载波,40MHz带宽内有484个子载波,80MHz带宽内有996个子载波。
RU类型可以包括:26-tone RU,52-tone RU,106-tone RU,242-tone RU,484-tone RU,996-tone RU,2×996-tone RU,4×996-tone RU等。
针对不同的RU类型,在各个带宽下所能支持的最大数量是不同的,如下表1所示。在下面的表1中虽然未示出4×996-tone RU,但是可理解,4×996-tone RU对应的是320MHz。
表1
RU类型 20MHz带宽 40MHz带宽 80MHz带宽 80+80/160MHz带宽
26-tone RU 9 18 37 74
52-tone RU 4 8 16 32
106-tone RU 2 4 8 16
242-tone RU 1 2 4 8
484-tone RU 不适用(N/A) 1 2 4
996-tone RU N/A N/A 1 2
2×996-tone RU N/A N/A N/A 1
数据帧所占用的发送资源块可以具有一种类型或者多种类型的组合,也就是说,数据帧占用的发送资源块可以是RU或多RU(Multi-RU,MRU),其中,MRU可以是两种以上RU类型的组合。
在一些示例中,可以假设带宽阈值为160MHz,也就是说,发送资源块占用的带宽大于160MHz,例如可以是320MHz或480MHz或其他情形等。
在一些实施例中,发送资源块占用的带宽为320MHz,此时,发送资源块可以为以下任一种:(a)4×996-tone RU,(b)2×996-tone+996-tone MRU(或者记为3×996-tone MRU),(c)2×996-tone+484-tone MRU(或者记为2×996+484-tone MRU),(d)2×996-tone+996-tone+484-tone MRU(或者记为3×996+484-tone MRU)等。
在一些实施例中,发送资源块占用的带宽为480MHz,此时,发送资源块可以为以下任一种:
(a)4×996-tone+996-tone MRU(或者记为5×996-tone MRU),(b)4×996-tone+484-tone MRU(或者记为4×996+484-tone MRU),(c)4×996-tone RU;(d)2×996-tone+996-tone+484-tone MRU(或者记为3×996+484-tone MRU),(e)2×996-tone+996-tone MRU(或者记为3×996-tone MRU),(f)2×996-tone+484-tone MRU(或者记为2×996+484-tone MRU)等。
应注意的是,上述列举仅是示意,不能解释成对本公开的实施例的限制,也可能存在未列出的其他的RU或MRU。
在一些实施例中,数据帧的物理层格式可以如图5所示。
图5示出了根据本公开的实施例的数据帧的物理层格式500的示意图。格式500包括:传统短训练字段(Legacy-Short Training Field,L-STF)501、传统长训练字段(Legacy-Long Training Field,L-LTF)502、传统信令字段(Legacy-Signal,L-SIG)503、传统信令字段重复(repeated legacy-signal,RL-SIG)504、通用信令字段(Universal SIG,U-SIG)505、极高吞吐率信令字段(Extremely High Throughput Signal Field,EHT-SIG)506、极高吞吐率短训练字段(Extremely High Throughput Short Training Field,EHT-STF)507、极高吞吐率长训练字段(Extremely High Throughput Long Training Field,EHT-LTF)508。在数据字段(Data)509后,还包括数据包分组扩展(Packet Extension,PE)510。
示例性地,L-STF 501可以用于PPDU的发现,粗同步,自动增益控制等。L-LTF 502可以用于精同步,信道估计等。L-SIG 503可以用于携带PPDU长度相关的信令信息,保证共存等。RL-SIG 504用于表示对L-SIG 503的重复。U-SIG 505是从EHT开始所采用的通用的信令字段。EHT-SIG 506可以用于携带用于解调后续数据的信令,主要包含资源单元指示信息等。EHT-STF 507可以用于后续字段的自动增益控制等。EHT-LTF 508可以用于信道估计等。Data 509可以用于承载数据信息。PE 510可以用于帮助接收设备获得更多处理时间等。
如图5所示,EHT-SIG 506可以包括公共字段(Common Field)516和用户特定字段(User Specific Field)526。
示例性地,公共字段516中可以包括RU分配子字段,该RU分配子字段可以包括RU(或MRU)类型以及对应的用户组中的用户数量。
示例性地,用户特定字段526中可以包括按照RU分配子字段中的RU分配的顺序的多个用户的标识。
在一些实施例中,数据帧的媒体接入控制(Media Access Control,MAC)层格式可以如图6所示。
图6示出了根据本公开的实施例的数据帧的MAC层格式600的示意图。格式600包括帧控制(Frame Control)601,时长(Duration)602,地址1(Address 1)603,地址2(Address 2)604,地址3(Address 3)605,序列控制(Sequence Control)606,地址4(Address 4)607,高吞吐量控制(High Throughput Control,HT Control)608,帧体(Frame Body)609以及帧校验序列(Frame Check Sequence,FCS)610。
示例性地,帧控制601可以包括多个子字段,分别用于表示协议版本、帧类型、子类型、发送方向、重传、电源管理等。举例来说,对于帧类型子字段,可以通过“10”表示帧类型为数据帧。时长602可以用于表示该数据帧与其确认帧将会占用信道的时间长度。地址1 603, 地址2 604,地址3 605和地址4 607可以统称为地址域,用于表示该数据帧的接收地址、发送地址、源地址或目的地址等。序列控制606可以用于过滤重复帧。帧体609可以用于承载具体的信息。FCS 610可以用于检错,例如FCS 610可以包括32位的循环冗余校验(Cyclic Redundancy Check,CRC)。
示例性地,如图6所示,HT控制608可以包括聚合控制(Aggregated Control,A-Control)680。该聚合控制可以包括控制列表(Control List)682以及填充(Padding)684,其中控制列表682可以包括控制标识(Control Identification,Control ID)6822、控制信息(Control Information)6824等等。
在本公开一些实施例中,发送设备201发送410数据帧时,该数据帧中可以携带TRS信息。具体地,当控制标识6822为预设值(例如为0)时,相应的控制信息6824中携带的是TRS信息。
图7示出了根据本公开的实施例的TRS信息的格式700的示意图。格式700包括上行链路数据符号(UPLink Data Symbols,UL Data Symbols)701,资源单元分配(RU Allocation)702,AP发射功率(AP TX Power)703,上行链路目标接收功率(UL Target Receive Power)704,UL调制编码集合(UL Modulation and Coding Set,UL MCS)705,以及预留(Reserved)706。
示例性地,UL数据符号701可以用于指示接收设备发送确认帧的数据部分的长度(符号数)。AP传输功率703可以用于表示AP发送功率。UL目标接收功率704可以用于表示AP所期待的上行接收功率。UL MCS 705可以用于表示接收设备发送确认帧所才用的MCS。预留706可以具有预留长度,例如1比特(bit)。
示例性地,RU分配702可以携带有RU分配信息,用于表示接收设备发送确认帧可以占用的发送信道中的频率位置,该频率位置可以是RU或MRU的形式。具体地,RU分配信息可以用于指示接收设备发送确认帧时所占用的发送信道中的RU。本公开中可以将接收设备发送确认帧时所占用的发送信道称为“响应信道”,将接收设备发送确认帧时所占用的发送信道中的RU或MRU称为“响应资源块”。
在本公开一些实施例中,RU分配702字段可以为预设长度,用于指示接收设备可以在预设带宽的信道内的RU。预设带宽可以为160MHz。可见,RU分配信息可以指示在160MHz信道中的响应资源块的位置。
RU分配信息可以包括第一指示信息和第二指示信息,其中第一指示信息具有第一长度,第二指示信息具有第二长度,第一长度与第二长度之和可以等于或小于预设长度。第一指示信息可以用于指示预设带宽信道中的哪个80MHz信道,第二指示信息可以用于指示在对应的80MHz信道中的具体RU。
在一些实现方式中,预设长度可以为8比特,第一长度可以为1比特,第二长度可以为7比特。第一指示信息可以在B0位置,第二指示信息可以在B1-B7位置。
在一些示例中,如果响应信道为主160MHz信道,那么B0为第一值表示主80MHz,B0为第二值表示从80MHz。可选地,第一值为0,第二值为1;或者可选地,第一值为1,第二值为0。在另一些示例中,如果响应信道是从160MHz信道,那么B0为第一值表示低频80MHz,B0为第二值表示高频80MHz。可选地,第一值为0,第二值为1;或者可选地,第一值为1,第二值为0。
可理解,该实现方式仅是示意性而非限制性的,本公开的实施例不排除未示出的其他实 现方式。
继续回到过程400,接收设备202可以基于发送资源块以及RU分配信息确定420响应资源块。
具体地,在确定420响应资源块时,接收设备202可以先确定响应信道,然后再确定响应信道中的响应资源块。示例性地,可以基于预设规则来确定响应信道。
在一些实现方式中,如果发送资源块的带宽小于或等于带宽阈值,那么可以确定发送资源块所在的信道为响应信道。举例来说,假设带宽阈值为160MHz,且发送资源块的带宽等于160MHz。那么如果发送资源块在主160MHz信道,那么确定响应信道也为主160MHz信道。如果发送资源块在从160MHz信道,那么确定响应信道也为从160MHz信道。
在另一些实现方式中,如果发送资源块的带宽小于或等于带宽阈值,那么可以基于预设规则确定响应信道。可选地,预设规则可以为以下至少一项:(1)主160MHz信道,(2)从160MHz信道,(3)高频160MHz信道,(4)低频160MHz信道,(5)发送资源块所在的160MHz信道,或(6)若传输方式是MU-MIMO,则与在用户组中位置所对应的160MHz信道。关于预设规则的描述可以参见下面的实现方式中的具体实施例。
在另一些实现方式中,如果发送资源块的带宽大于带宽阈值,那么可以基于预设规则确定响应信道。下面将以带宽阈值为160MHz为例进行阐述。
在一些实施例中,假设发送资源块的带宽等于320MHz,那么预设规则可以为以下至少一项:(1)主160MHz信道,(2)从160MHz信道,(3)高频160MHz信道,(4)低频160MHz信道,或(5)发送资源块所在的数据量大的160MHz信道。
可选地,可以将主160MHz信道作为响应信道;或者,可以将从160MHz信道作为响应信道;或者,可以将高频160MHz信道作为响应信道;或者,可以将低频160MHz信道作为响应信道。可理解的是,主160MHz信道可能是高频160MHz信道,也可能是低频160MHz信道;相应地,从160MHz信道可能是低频160MHz信道,也可能是高频160MHz信道。
可选地,可以将发送资源块所在的数据量大的160MHz信道作为响应信道。示例性地,当发送资源块为特定大小的MRU时,例如发送资源块为如下的MRU之一:3×996-tone MRU,2×996+484-tone MRU,或3×996+484-tone MRU,此时可以将2×996-tone RU所在的160MHz信道作为响应信道。可理解的是,2×996-tone RU所在的160MHz信道可能是高频160MHz信道,也可能是低频160MHz信道。2×996-tone RU所在的160MHz信道可能是主160MHz信道,也可能是从160MHz信道。
在另一种实施方式中,可以根据指示信息PS160以及TRS信息中的RU Allocation字段来确定回复响应帧的资源块,其中,指示信息PS160由发送资源块所在的数据量大的160MHz信道的位置以及TRS信息中的RU Allocation字段所指示的资源块大小来确定,例如,根据下表中Input中的第二列“发送资源块所在的数据量大的160MHz信道的位置”和Input中第一列“TRS信息中的RU Allocation字段所指示的资源块大小”来确定指示信息PS160。
Figure PCTCN2022089647-appb-000001
Figure PCTCN2022089647-appb-000002
例如,当TRS信息中的RU Allocation字段所指示的资源块大小为2×996+484-tone时:
若发送资源块所在的数据量大的160MHz信道为低频160MHz信道,则可以确定指示信息PS160为0;若发送资源块所在的数据量大的160MHz信道为高频160MHz信道,则可以确定PS160指示信息为1。站点在确定指示信息PS160之后,再结合TRS信息中的RU Allocation字段,就可以确定回复确认帧/块确认帧所使用的资源块的位置。再例如,当TRS信息中的RU Allocation字段所指示的资源块为小于或等于2×996-tone的RU/MRU时:若发送资源块所在的数据量大的160MHz信道为主160MHz信道,则可以确定PS160指示信息为0;若发送资源块所在的数据量大的160MHz信道为从160MHz信道,则可以确定PS160指示信息为1。需要说明的是,当TRS信息中的RU Allocation字段所指示的资源块为小于或等于2×996-tone的RU/MRU时,所述发送资源块只会位于一个160MHz信道中,因此,确定PS160指示信息的方法也可以是:若发送资源块所在的160MHz信道为主160MHz信道,则可以确定PS160指示信息为0;若发送资源块所在160MHz信道为从160MHz信道,则可以确定PS160指示信息为1。再例如,当TRS信息中的RU Allocation字段所指示的资源块为4×996-tone的RU时,无论发送资源块所在的数据量大的160MHz信道是哪个160MHz信道,PS160指示信息都为1。站点在确定指示信息PS160之后,再结合TRS信息中的RU Allocation字段,就可以确定回复确认帧/块确认帧所使用的资源块的位置。在另一些实施例中,假设发送资源块的带宽等于480MHz,那么预设规则可以为以下至少一项:(1)主160MHz信道,(2)频率较高的从160MHz信道,(3)频率较低的从160MHz信道,(4)高频160MHz信道,(5)中频160MHz信道,(6)低频160MHz信道,(7)发送资源块所在的数据量大的160MHz信道。
可理解,对于480MHz,可以将其分为3个160MHz信道。在一例中,3个160MHz信道可以包括1个主160MHz信道以及2个从160MHz信道,其中,2个从160MHz信道中之一频率较高,另一频率较低。在另一例中,3个160MHz信道可以包括高频160MHz信道,中频160MHz信道,和低频160MHz信道。可选地,可以将上述任一160MHz信道作为响应信道。
可选地,可以将发送资源块所在的数据量大的160MHz信道作为响应信道。示例性地,当发送资源块为特定大小的MRU时,类似地可以将2×996-tone RU所在的160MHz信道作为响应信道。可理解的是,2×996-tone RU所在的160MHz信道可能是高频160MHz信道,也可能是中频160MHz信道,也可能是低频160MHz信道。
如此,在该实现方式中,可以预先设定预设规则,从而便于接收设备确定响应信道。可理解,不同的接收设备可以使用不同的预设规则,举例来说,一个接收设备可以将主160MHz信道作为响应信道,而另一接收设备可以将从160MHz信道作为响应信道。可见,该实现方式对于SU-MIMO传输来说,能够使总带宽的各个信道都能被充分地利用,实现了资源优化利用,且保证了确认帧的传输效率。
在另一实现方式中,对于MU-MIMO传输来说,接收设备202基于预设规则确定响应信道,可以包括:基于数据帧的EHT-SIG字段,确定数据帧的传输方式是MU-MIMO;基于EHT-SIG字段中的接收设备202的标识(Identifier,ID),确定接收设备202在MU-MIMO的用户组中的位置;基于该位置确定响应信道。
具体地,如图5所示,数据帧的物理层格式包括EHT-SIG 506,可以基于EHT-SIG 506中的公共字段516确定数据帧的传输方式。示例性地,公共字段516中的RU分配子字段还可以进一步指示用户组中用户的数量。在一些示例中,MU的数量可以小于或等于空间流的数量,空间流的数量可以表示MU的数量可以达到的最大值。
示例性地,数据帧的物理层格式包括EHT-SIG 506,可以基于EHT-SIG 506中的公共字段516和用户特定字段526确定位置。
用户特定字段526中用户出现的顺序与对应的RU分配子字段中划分出的RU顺序相一致,用户可以通过读取用户特定字段526中的接收设备ID来识别出该用户特定字段526是否属于自己,结合用户字段出现的位置与对应的资源单元分配子字段,用户可以知晓自己的RU分配情况。
举例来讲,假设公共字段516中指示多个不同的tone RU。作为一例,可以假设包括2×996+484-tone MRU和484-tone RU,并且2×996+484-tone MRU对应的用户组中用户的数量为8,484-tone RU对应的用户组中用户的数量也为8。可选地,可以将同一RU(或MRU)对应的多接收设备属于同一个MU-MIMO组,例如2×996+484-tone MRU对应的用户组(8个)是第一MU-MIMO组,484-tone RU对应的用户组(8个)是第二MU-MIMO组。在本公开的实施例中,接收设备202在MU-MIMO的用户组中的位置可以是指,该接收设备202在其所在的MU-MIMO组中的位置。
接收设备202可以基于用户特定字段526确定在所有顺序(16个)中的第一位置。在一例中,假设在所有顺序中的第一位置小于或等于8,例如第5位,那么该接收设备202对应的RU分配情况是2×996+484-tone MRU,并且其在所属的MU-MIMO的用户组(即第一MU-MIMO组)中的位置是5。假设在所有顺序中的第一位置大于8,例如第12位,那么该接收设备202对应的RU分配情况是484-tone RU,并且其在所属的MU-MIMO的用户组(即第二MU-MIMO组)中的位置是12-8=4。
示例性地,如果该位置为预定位置,则可以确定响应信道为第一160MHz信道;相反,如果位置为非预定位置,则确定响应信道为第二160MHz信道。
在接收设备202在MU-MIMO组中的位置是预定位置的情况下,那么可以确定响应信道为第一160MHz信道。
在一些实施例中,假设发送资源块的带宽等于320MHz。可选地,第一160MHz信道可以为主160MHz信道或从160MHz信道。或者,可选地,第一160MHz信道可以为高频160MHz信道或低频160MHz信道。
在一些实施例中,假设发送资源块的带宽等于480MHz。可选地,第一160MHz信道可 以为主160MHz信道或频率较高的从160MHz信道或频率较低的从160MHz信道。或者,可选地,第一160MHz信道可以为高频160MHz信道或中频160MHz信道或低频160MHz信道。
在接收设备202在MU-MIMO组中的位置不是预定位置(即非预定位置)的情况下,可以确定响应信道为第二160MHz信道,且第二160MHz信道不同于第一160MHz信道。
示例性地,在本公开的实施例中的预定位置可以是以下至少一项:奇数位置,偶数位置,前一半位置,或后一半位置。
示例性地,MU-MIMO组的MU数量假设为N,并且假设接收设备202的位置是N个中的第P位。那么,如果P mod 2等于0(mod表示余数),即P是偶数,那么接收设备202位于偶数位置;否则位于奇数位置。
在一些示例中,如果
Figure PCTCN2022089647-appb-000003
(
Figure PCTCN2022089647-appb-000004
表示下取整),那么接收设备202位于前一半位置;否则位于后一半位置。在这样的示例中,如果MU-MIMO组的MU数量(N)为奇数,那么位于中间的接收设备属于后一半位置。在另一些示例中,如果
Figure PCTCN2022089647-appb-000005
(
Figure PCTCN2022089647-appb-000006
表示上取整),那么接收设备202位于前一半位置;否则位于后一半位置。在这样的示例中,如果MU-MIMO组的MU数量(N)为奇数,那么位于中间的接收设备属于前一半位置。
举例来讲,假设MU-MIMO组的MU数量为8,接收设备202位于第5位,那么其处于奇数位置,处于后一半位置。举例来讲,假设MU-MIMO组的MU数量为8,接收设备202位于第2位,那么其处于偶数位置,处于前一半位置。
如此,在本实现方式中,可以预先设定预设规则,从而便于接收设备确定响应信道。并且,属于同一个MU-MIMO组的不同的接收设备可以确定不同的响应信道。举例来说,奇数位置的接收设备(第1个,第3个,第5个…(如果存在的话))可以将主160MHz信道作为响应信道,而偶数位置的接收设备(第2个,第4个,第6个…(如果存在的话))可以将从160MHz信道作为响应信道。可见,该实现方式对于MU-MIMO传输来说,能够使总带宽的各个信道都能被充分地利用,实现了资源优化利用,且保证了确认帧的传输效率。
可理解,在确定420响应信道之后,接收设备202可以基于RU分配信息来确定响应资源块。示例性地,可以基于RU分配信息中的B0位确定是响应信道中的哪个80MHz信道,进一步地基于RU分配信息中的B1-B7位确定该80MHz信道中具体RU。
然后,接收设备202可以在响应资源块上向发送设备201发送430针对数据帧的确认帧。
以此方式,在数据帧的发送资源块大于带宽阈值的情况下,接收设备能够基于预设规则确定响应信道,从而能够准确地基于RU分配信息确定响应资源块,该方案更加完善,不会出现接收设备不知道在哪个信道发送确认帧的情形,并且根据本公开的实施例的方案不需要使用额外比特进行指示,避免对数据帧的格式进行针对性的修改,适用性强。
图8示出了根据本公开的实施例的信息传输方法800的一个示意流程图。作为示例,方法800可以实现在图2所示的接收设备202处。为了便于理解,以下以接收设备202为例对信息传输方法800进行描述,但这仅仅是示例性的,无意对本公开的实施例进行任何限制。
方法800开始于框810。在810处,接收设备202接收来自发送设备的数据帧。该数据帧占用发送资源块,并且数据帧包括RU分配信息。
在一些实施例中,发送资源块可以是4×996-tone RU、3×996-tone MRU、2×996+484-tone MRU、3×996+484-tone MRU等。应当理解,上述关于发送资源块的示例仅仅是说明性而非限制性的,在根据本公开的实施例中也可以使用其他适当的RU或MRU来作为发送资源块。
示例性地,关于来自发送设备的数据帧的相关描述,可以上面结合410所描述的具体实 施例,为了简洁,这里不再赘述。
在820处,接收设备202基于发送资源块以及RU分配信息,确定响应资源块。
在一些实施例中,当发送资源块的带宽大于带宽阈值(如320MHz等)时,可以基于预设规则确定响应信道,然后再基于响应信道和RU分配信息确定响应资源块。在本公开的实施例中,响应信道可以是响应160MHz信道。
可选地,响应信道可以包括以下至少一项:主160MHz信道,从160MHz信道,高频160MHz信道,低频160MHz信道,或发送资源块所在的数据量大的160MHz信道。
可选地,可以基于数据帧的EHT-SIG字段,确定数据帧的传输方式是MU-MIMO;基于EHT-SIG字段中的接收设备202的标识,确定接收设备202在MU-MIMO的用户组中的位置;基于位置确定响应信道。
示例性地,接收设备202在MU-MIMO的用户组中的位置可以是接收设备2在MU-MIMO组中的位置。如果该位置为预定位置,则确定响应信道为第一160MHz信道;如果该位置不是预设位置(即非预设位置),则确定响应信道为第二160MHz信道。可选地,第一160MHz信道不同于第二160MHz信道。
可选地,第一160MHz信道可以为主160MHz信道或从160MHz信道。可选地,第一160MHz信道可以为高频160MHz信道或低频160MHz信道。
在一些示例中,第一160MHz信道为主160MHz信道,第二160MHz信道为从160MHz信道。在另一些示例中,第一160MHz信道为高频160MHz信道,第二160MHz信道为低频160MHz信道。
可理解,关于框820的具体实现方式可以参照过程400中接收设备202如何确定420响应资源块的详细描述。为了简洁,这里不再重复。
在830处,接收设备202在响应资源块上向发送设备201发送针对数据帧的确认帧。
如此,接收设备能够基于预设规则确定响应信道,进而能够正确地发送确认帧,确保了信息传输的效率。在本公开的一些实施例中,接收设备在830处可以发送块确认帧,此处不再赘述。
图9示出了根据本公开的实施例的信息传输方法900的一个示意流程图。作为示例,方法900可以实现在图2所示的发送设备201处。为了便于理解,以下以发送设备201为例对信息传输方法900进行描述,但这仅仅是示例性的,无意对本公开的实施例进行任何限制。
在910处,发送设备201向接收设备发送数据帧,其中数据帧占用发送资源块以及数据帧包括RU分配信息。
在本公开的实施例中,发送资源块可以为以下任一种:4×996-tone RU,3×996-tone MRU,2×996+484-tone MRU,3×996+484-tone MRU等。
示例性地,关于来自发送设备的数据帧的相关描述,可以上面结合410所描述的具体实施例,为了简洁,这里不再重复。
在920处,发送设备201基于发送资源块以及RU分配信息,确定响应资源块。
在一些实施例中,当发送资源块的带宽大于带宽阈值(如320MHz等)时,可以基于预设规则确定响应信道,然后再基于响应信道和RU分配信息确定响应资源块。在本公开的实施例中,响应信道可以是响应160MHz信道。
可选地,响应信道可以包括以下至少一项:主160MHz信道,从160MHz信道,高频160MHz信道,低频160MHz信道,或发送资源块所在的数据量大的160MHz信道。
可选地,可以基于数据帧的EHT-SIG字段,确定数据帧的传输方式是MU-MIMO;基于EHT-SIG字段中的接收设备的标识,确定接收设备在MU-MIMO的用户组中的位置;基于位置确定响应信道。
示例性地,接收设备在MU-MIMO的用户组中的位置可以是接收设备在MU-MIMO组中的位置。如果该位置为预定位置,则确定响应信道为第一160MHz信道;如果该位置不是预设位置(即非预设位置),则确定响应信道为第二160MHz信道。可选地,第一160MHz信道不同于第二160MHz信道。
可选地,第一160MHz信道可以为主160MHz信道或从160MHz信道。可选地,第一160MHz信道可以为高频160MHz信道或低频160MHz信道。
在一些示例中,第一160MHz信道为主160MHz信道,第二160MHz信道为从160MHz信道。在另一些示例中,第一160MHz信道为高频160MHz信道,第二160MHz信道为低频160MHz信道。
可理解,关于920的具体实现方式可以类似地参照上面结合420的详细描述,也就是说,发送设备201和接收设备202可以采用类似的方式来确定响应信道,进一步确定响应资源块。这样能够确保接收端和发送端的一致性。为了简洁,这里不再重复。
在930处,发送设备201在响应资源块上接收来自接收设备202针对数据帧的确认帧。
如此,发送设备能够基于预设规则确定响应信道,进而能够正确地接收确认帧,确保了信息传输的效率。在本公开的一些实施例中,发送设备在930处可以接收块确认帧,此处不再赘述。
应理解,在本公开的实施例中,“第一”,“第二”,“第三”等只是为了表示多个对象可能是不同的,但是同时不排除两个对象之间是相同的。“第一”,“第二”,“第三”等不应当解释为对本公开实施例的任何限制。
还应理解,本公开的实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在符合逻辑的情况下,可以相互结合。
还应理解,上述内容只是为了帮助本领域技术人员更好地理解本公开的实施例,而不是要限制本公开的实施例的范围。本领域技术人员根据上述内容,可以进行各种修改或变化或组合等。这样的修改、变化或组合后的方案也在本公开的实施例的范围内。
还应理解,上述内容的描述着重于强调各个实施例之前的不同之处,相同或相似之处可以互相参考或借鉴,为了简洁,这里不再赘述。
图10示出了根据本公开的实施例的通信装置1000的另一个示意框图。装置1000可以被实现在接收设备202处,或者可以被实现为接收设备202中的芯片或芯片系统,本公开的范围在此方面不限制。
如图10所示,装置1000可以包括接收单元1010、确定单元1020和发送单元1030。接收单元1010可以被配置为接收来自发送设备的数据帧,其中所述数据帧占用发送资源块并且所述数据帧包括RU分配信息。确定单元1020可以被配置为基于所述发送资源块以及所述RU分配信息确定响应资源块。发送单元1030可以被配置为在所述响应资源块上向所述发送设备发送针对所述数据帧的确认帧。
在一些实施例中,发送资源块为以下至少一项:2×996+484-tone MRU,3×996-tone MRU,3×996+484-tone MRU,或4×996-tone RU。
在一些实施例中,确定单元1020包括第一确定子单元1022和第二确定子单元1024。第一确定子单元1022被配置为如果所述发送资源块的带宽大于带宽阈值,基于预设规则确定响应信道。第二确定子单元1024被配置为基于所述响应信道和所述RU分配信息确定所述响应资源块。
在一些实施例中,其中所述响应信道包括以下至少一项:主160MHz信道,从160MHz信道,高频160MHz信道,低频160MHz信道,或所述发送资源块所在的数据量大的160MHz信道。
在一些实施例中,第一确定子单元1022被配置为基于所述数据帧的EHT-SIG字段,确定所述数据帧的传输方式是MU-MIMO;基于所述EHT-SIG字段中的所述接收设备的标识,确定所述接收设备在所述MU-MIMO的用户组中的位置;基于所述位置确定所述响应信道。
在一些实施例中,第一确定子单元1022被配置为如果所述位置为预定位置,则确定所述响应信道为第一160MHz信道;以及如果所述位置为非预定位置,则确定所述响应信道为第二160MHz信道,其中所述第二160MHz信道不同于所述第一160MHz信道。
在一些实施例中,其中所述预定位置为以下至少一项:奇数位置,偶数位置,前一半位置,或后一半位置。
在一些实施例中,其中所述第一160MHz信道为主160MHz信道或从160MHz信道。
在一些实施例中,其中所述第一160MHz信道为高频160MHz信道或低频160MHz信道。
示例性地,图10中的装置1000可以被实现为接收设备202,或者可以被实现为接收设备202中的芯片或芯片系统,本公开的实施例对此不限定。可选地,接收设备202可以为STA32。图10中的装置1000能够用于实现上述结合图4至图9中接收设备202所述的各个过程,为了简洁,这里不再赘述。
图11示出了根据本公开的实施例的通信装置1100的另一个示意框图。装置1100可以被实现在发送设备201处,或者可以被实现为发送设备201中的芯片或芯片系统,本公开的范围在此方面不限制。
如图11所示,装置1100可以包括发送单元1110、确定单元1120和接收单元1130。发送单元1110可以被配置为向接收设备发送数据帧,其中所述数据帧占用发送资源块以及所述数据帧包括RU分配信息。确定单元1120可以被配置为基于所述发送资源块以及所述RU分配信息确定响应资源块。接收单元1130可以被配置为在所述响应资源块上接收来自所述接收设备针对所述数据帧的确认帧。
在一些实施例中,发送资源块为以下至少一项:2×996+484-tone MRU,3×996-tone MRU,3×996+484-tone MRU,或4×996-tone RU。
在一些实施例中,确定单元1120包括第一确定子单元1122和第二确定子单元1124。第一确定子单元1122被配置为如果所述发送资源块的带宽大于带宽阈值,基于预设规则确定响应信道。第二确定子单元1124被配置为基于所述响应信道和所述RU分配信息确定所述响应资源块。
在一些实施例中,其中所述响应信道包括以下至少一项:主160MHz信道,从160MHz信道,高频160MHz信道,低频160MHz信道,或所述发送资源块所在的数据量大的160MHz信道。
在一些实施例中,第一确定子单元1122被配置为基于所述数据帧的EHT-SIG字段,确 定所述数据帧的传输方式是MU-MIMO;基于所述EHT-SIG字段中的所述接收设备的标识,确定所述接收设备在所述MU-MIMO的用户组中的位置;基于所述位置确定所述响应信道。
在一些实施例中,第一确定子单元1122被配置为如果所述位置为预定位置,则确定所述响应信道为第一160MHz信道;以及如果所述位置为非预定位置,则确定所述响应信道为第二160MHz信道,其中所述第二160MHz信道不同于所述第一160MHz信道。
在一些实施例中,其中所述预定位置为以下至少一项:奇数位置,偶数位置,前一半位置,或后一半位置。
在一些实施例中,其中所述第一160MHz信道为主160MHz信道或从160MHz信道。
在一些实施例中,其中所述第一160MHz信道为高频160MHz信道或低频160MHz信道。
示例性地,图11中的装置1100可以被实现为发送设备201,或者可以被实现为发送设备201中的芯片或芯片系统,本公开的实施例对此不限定。可选地,发送设备201可以为AP30。图11中的装置1100能够用于实现上述结合图4至图9中发送设备201所述的各个过程,为了简洁,这里不再赘述。
图12示出了根据本公开的实施例的示例装置1200的简化框图。装置1200可以用于实现如图2所示的发送设备201和接收设备202。装置1200可以用于实现如图2所示的AP 30和STA 32。如图所示,装置1200包括一个或多个处理器1210,耦合到处理器1210的一个或多个存储器1220,以及耦合到处理器1210的通信模块1240。
通信模块1240可以用于双向通信。通信模块1240可以具有用于通信的至少一个通信接口。通信接口可以包括与其他设备通信所必需的任何接口。
处理器1210可以是适合于本地技术网络的任何类型,并且可以包括但不限于以下至少一种:通用计算机、专用计算机、微控制器、数字信号处理器(Digital Signal Processor,DSP)、或基于控制器的多核控制器架构中的一个或多个。装置1200可以具有多个处理器,例如专用集成电路芯片,其在时间上从属于与主处理器同步的时钟。
存储器1220可以包括一个或多个非易失性存储器和一个或多个易失性存储器。非易失性存储器的示例包括但不限于以下至少一种:只读存储器(Read-Only Memory,ROM)1224、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、硬盘、光盘(Compact Disc,CD)、数字视频盘(Digital Versatile Disc,DVD)或其他磁存储和/或光存储。易失性存储器的示例包括但不限于以下至少一种:随机存取存储器(Random Access Memory,RAM)1222、或不会在断电持续时间中持续的其他易失性存储器。
计算机程序1230包括由关联处理器1210执行的计算机可执行指令。程序1230可以存储在ROM 1224中。处理器1210可以通过将程序1230加载到RAM 1222中来执行任何合适的动作和处理。
可以借助于程序1230来实现本公开的实施例,使得装置1200可以执行如参考图3至图9所讨论的任何过程。本公开的实施例还可以通过硬件或通过软件和硬件的组合来实现。
在一些实施例中,程序1230可以有形地包含在计算机可读介质中,该计算机可读介质可以包括在装置1200中(诸如在存储器1220中)或者可以由装置1200访问的其他存储设备。可以将程序1230从计算机可读介质加载到RAM 1222以供执行。计算机可读介质可以包括任何类型的有形非易失性存储器,例如ROM、EPROM、闪存、硬盘、CD、DVD等。
在一些实施例中,装置1200中的通信模块1240可以被实现为发送器和接收器(或收发 器),其可以被配置为发送/接收系统信息,如数据帧、确认帧等。另外,装置1200还可以进一步包括调度器、控制器、射频/天线中的一个或多个,本公开不再详细阐述。
示例性地,图12中的装置1200可以被实现为发送设备201或接收设备202,或者可以被实现为发送设备201中的芯片或芯片系统,或者可以被实现为接收设备202中的芯片或芯片系统,本公开的实施例对此不限定。
示例性地,图12中的装置1200可以被实现为AP 30或STA 32,或者可以被实现为AP 30中的芯片或芯片系统,或者可以被实现为STA 32中的芯片或芯片系统,本公开的实施例对此不限定。
本公开的实施例还提供了一种芯片,该芯片可以包括输入接口、输出接口和处理电路。在本公开的实施例中,可以由输入接口和输出接口完成上述信令或数据的交互,由处理电路完成信令或数据信息的生成以及处理。
本公开的实施例还提供了一种芯片系统,包括处理器,用于支持发送设备201或接收设备202以实现上述任一实施例中所涉及的功能。在一种可能的设计中,芯片系统还可以包括存储器,用于存储必要的程序指令和数据,当处理器运行该程序指令时,使得安装该芯片系统的设备实现上述任一实施例中所涉及的方法。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本公开的实施例还提供了一种处理器,用于与存储器耦合,存储器存储有指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及发送设备201或接收设备202的方法和功能。
本公开的实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及发送设备201或接收设备202的方法和功能。
本公开的实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及发送设备201或接收设备202的方法和功能。
本公开实施例还提供一种无线通信系统,该系统包括发送设备和接收设备。在一些示例中,该系统可以包括至少一个AP和至少一个STA。
通常,本公开的各种实施例可以以硬件或专用电路、软件、逻辑或其任何组合来实现。一些方面可以用硬件实现,而其他方面可以用固件或软件实现,其可以由控制器,微处理器或其他计算设备执行。虽然本公开的实施例的各个方面被示出并描述为框图,流程图或使用一些其他图示表示,但是应当理解,本文描述的框,装置、系统、技术或方法可以实现为,如非限制性示例,硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备,或其某种组合。
本公开还提供有形地存储在非暂时性计算机可读存储介质上的至少一个计算机程序产品。该计算机程序产品包括计算机可执行指令,例如包括在程序模块中的指令,其在目标的真实或虚拟处理器上的设备中执行,以执行如上参考图4至图9的过程/方法。通常,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、库、对象、类、组件、数据结构等。在各种实施例中,可以根据需要在程序模块之间组合或分割程序模块的功能。用于程序模块的机器可执行指令可以在本地或分布式设备内执行。在分布式设备中,程序模块可以位于本地和远程存储介质中。
用于实现本公开的方法的计算机程序代码可以用一种或多种编程语言编写。这些计算机 程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本公开的上下文中,计算机程序代码或者相关数据可以由任意适当载体承载,以使得设备、装置或者处理器能够执行上文描述的各种处理和操作。载体的示例包括信号、计算机可读介质、等等。信号的示例可以包括电、光、无线电、声音或其它形式的传播信号,诸如载波、红外信号等。
计算机可读介质可以是包含或存储用于或有关于指令执行系统、装置或设备的程序的任何有形介质。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体系统、装置或设备,或其任意合适的组合。计算机可读存储介质的更详细示例包括带有一根或多根导线的电气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光存储设备、磁存储设备,或其任意合适的组合。
此外,尽管在附图中以特定顺序描述了本公开的方法的操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤组合为一个步骤执行,和/或将一个步骤分解为多个步骤执行。还应当注意,根据本公开的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
以上已经描述了本公开的各实现,上述说明是示例性的,并非穷尽的,并且也不限于所公开的各实现。在不偏离所说明的各实现的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在很好地解释各实现的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其他普通技术人员能理解本文公开的各个实现方式。

Claims (22)

  1. 一种信息传输方法,包括:
    接收设备接收来自发送设备的数据帧,其中所述数据帧占用发送资源块并且所述数据帧包括资源单元RU分配信息;
    所述接收设备基于所述发送资源块以及所述RU分配信息,确定响应资源块;以及
    所述接收设备在所述响应资源块上向所述发送设备发送针对所述数据帧的确认帧。
  2. 一种信息传输方法,包括:
    发送设备向接收设备发送数据帧,其中所述数据帧占用发送资源块以及所述数据帧包括资源单元RU分配信息;
    所述发送设备基于所述发送资源块以及所述RU分配信息,确定响应资源块;以及
    所述发送设备在所述响应资源块上接收来自所述接收设备针对所述数据帧的确认帧。
  3. 根据权利要求1或2所述的方法,其中基于所述发送资源块以及所述RU分配信息确定响应资源块包括:
    如果所述发送资源块的带宽大于带宽阈值,基于预设规则确定响应信道;以及
    基于所述响应信道和所述RU分配信息确定所述响应资源块。
  4. 根据权利要求3所述的方法,其中所述响应信道包括以下至少一项:
    主160MHz信道,从160MHz信道,高频160MHz信道,低频160MHz信道,或所述发送资源块所在的数据量大的160MHz信道。
  5. 根据权利要求3所述的方法,其中所述基于预设规则确定响应信道包括:
    基于所述数据帧的极高吞吐率信令EHT-SIG字段,确定所述数据帧的传输方式是多用户多输入多输出MU-MIMO;
    基于所述EHT-SIG字段中的所述接收设备的标识,确定所述接收设备在所述MU-MIMO的用户组中的位置;
    基于所述位置确定所述响应信道。
  6. 根据权利要求5所述的方法,其中所述基于所述位置确定所述响应信道包括:
    如果所述位置为预定位置,则确定所述响应信道为第一160MHz信道;以及
    如果所述位置为非预定位置,则确定所述响应信道为第二160MHz信道,其中所述第二160MHz信道不同于所述第一160MHz信道。
  7. 根据权利要求6所述的方法,其中所述预定位置为以下至少一项:奇数位置,偶数位置,前一半位置,或后一半位置。
  8. 根据权利要求6或7所述的方法,其中所述第一160MHz信道为主160MHz信道或从160MHz信道。
  9. 根据权利要求6或7所述的方法,其中所述第一160MHz信道为高频160MHz信道或低频160MHz信道。
  10. 根据权利要求1至9中任一项所述的方法,其中所述发送资源块为以下至少一项:2×996+484-子载波MRU,3×996-子载波MRU,3×996+484-子载波MRU,或4×996-子载波RU。
  11. 一种通信装置,包括:
    接收单元,被配置为接收来自发送设备的数据帧,其中所述数据帧占用发送资源块并且所述数据帧包括资源单元RU分配信息;
    确定单元,被配置为基于所述发送资源块以及所述RU分配信息,确定响应资源块;以及
    发送单元,被配置为在所述响应资源块上向所述发送设备发送针对所述数据帧的确认帧。
  12. 一种通信装置,包括:
    发送单元,被配置为向接收设备发送数据帧,其中所述数据帧占用发送资源块以及所述数据帧包括资源单元RU分配信息;
    确定单元,被配置为基于所述发送资源块以及所述RU分配信息,确定响应资源块;以及
    接收单元,被配置为在所述响应资源块上接收来自所述接收设备针对所述数据帧的确认帧。
  13. 根据权利要求11或12所述的装置,其中所述确定单元包括:
    第一确定子单元,被配置为如果所述发送资源块的带宽大于带宽阈值,基于预设规则确定响应信道;以及
    第二确定子单元,被配置为基于所述响应信道和所述RU分配信息确定所述响应资源块。
  14. 根据权利要求13所述的装置,其中所述响应信道包括以下至少一项:
    主160MHz信道,从160MHz信道,高频160MHz信道,低频160MHz信道,或所述发送资源块所在的数据量大的160MHz信道。
  15. 根据权利要求13所述的装置,其中所述第一确定子单元被配置为:
    基于所述数据帧的极高吞吐率信令EHT-SIG字段,确定所述数据帧的传输方式是多用户MU多输入多输出MIMO;
    基于所述EHT-SIG字段中的所述接收设备的标识,确定所述接收设备在所述MU-MIMO的用户组中的位置;
    基于所述位置确定所述响应信道。
  16. 根据权利要求15所述的装置,其中所述第一确定子单元被配置为:
    如果所述位置为预定位置,则确定所述响应信道为第一160MHz信道;以及
    如果所述位置为非预定位置,则确定所述响应信道为第二160MHz信道,其中所述第二160MHz信道不同于所述第一160MHz信道。
  17. 根据权利要求16所述的装置,其中所述预定位置为以下至少一项:奇数位置,偶数位置,前一半位置,或后一半位置。
  18. 根据权利要求16或17所述的装置,其中所述第一160MHz信道为主160MHz信道或从160MHz信道。
  19. 根据权利要求16或17所述的装置,其中所述第一160MHz信道为高频160MHz信道或低频160MHz信道。
  20. 根据权利要求11至19中任一项所述的装置,其中所述发送资源块为以下至少一项:2×996+484-子载波MRU,3×996-子载波MRU,3×996+484-子载波MRU,或4×996-子载波RU。
  21. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现根据权利要求1至10中任一项所述的方法。
  22. 一种芯片,包括处理电路,被配置为执行根据权利要求1至10中任一项所述的方法。
PCT/CN2022/089647 2021-04-29 2022-04-27 信息传输方法、通信装置、计算机可读存储介质和芯片 WO2022228478A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2023544585A JP2024503916A (ja) 2021-04-29 2022-04-27 情報伝送方法、通信装置、コンピュータ可読記憶媒体およびチップ
MX2023009406A MX2023009406A (es) 2021-04-29 2022-04-27 Metodo de transmision de informacion, aparato de comunicacion, medio de almacenamiento legible por computadora y chip.
CA3206475A CA3206475A1 (en) 2021-04-29 2022-04-27 Information transmission method, communication apparatus, computer-readable storage medium, and chip
BR112023016289A BR112023016289A2 (pt) 2021-04-29 2022-04-27 Método de transmissão de informações, aparelho de comunicação, meio de armazenamento legível por computador, e chip
KR1020237024134A KR20230117241A (ko) 2021-04-29 2022-04-27 정보 전송 방법, 통신 장치, 컴퓨터가 판독 가능한저장 매체 및 칩
AU2022267563A AU2022267563B2 (en) 2021-04-29 2022-04-27 Information transmission method, communication apparatus, computer-readable storage medium, and chip
EP22794948.4A EP4247089A1 (en) 2021-04-29 2022-04-27 Information transmission method, communication apparatus, computer-readable storage medium, and chip
US18/352,279 US20230361941A1 (en) 2021-04-29 2023-07-14 Information transmission method, communication apparatus, computer-readable storage medium, and chip

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110475032.7 2021-04-29
CN202110475032 2021-04-29
CN202110528169.4A CN115278889A (zh) 2021-04-29 2021-05-14 信息传输方法、通信装置、计算机可读存储介质和芯片
CN202110528169.4 2021-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/352,279 Continuation US20230361941A1 (en) 2021-04-29 2023-07-14 Information transmission method, communication apparatus, computer-readable storage medium, and chip

Publications (1)

Publication Number Publication Date
WO2022228478A1 true WO2022228478A1 (zh) 2022-11-03

Family

ID=83745559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089647 WO2022228478A1 (zh) 2021-04-29 2022-04-27 信息传输方法、通信装置、计算机可读存储介质和芯片

Country Status (9)

Country Link
US (1) US20230361941A1 (zh)
EP (1) EP4247089A1 (zh)
JP (1) JP2024503916A (zh)
KR (1) KR20230117241A (zh)
CN (2) CN115604838A (zh)
BR (1) BR112023016289A2 (zh)
CA (1) CA3206475A1 (zh)
MX (1) MX2023009406A (zh)
WO (1) WO2022228478A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567481A (en) * 2017-10-13 2019-04-17 Canon Kk Improved acknowledgment of grouped multi-user downlink transmissions in an 802.11ax network
US20190159245A1 (en) * 2016-04-18 2019-05-23 Lg Electronics Inc. Method for frame transmitted on basis of random access in wireless lan system and wireless terminal using same
WO2020182057A1 (zh) * 2019-03-08 2020-09-17 华为技术有限公司 一种数据传输方法及相关设备
GB2588835A (en) * 2019-11-08 2021-05-12 Canon Kk Method and apparatus for choosing transmission parameters values in a multi-user transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190159245A1 (en) * 2016-04-18 2019-05-23 Lg Electronics Inc. Method for frame transmitted on basis of random access in wireless lan system and wireless terminal using same
GB2567481A (en) * 2017-10-13 2019-04-17 Canon Kk Improved acknowledgment of grouped multi-user downlink transmissions in an 802.11ax network
WO2020182057A1 (zh) * 2019-03-08 2020-09-17 华为技术有限公司 一种数据传输方法及相关设备
GB2588835A (en) * 2019-11-08 2021-05-12 Canon Kk Method and apparatus for choosing transmission parameters values in a multi-user transmission

Also Published As

Publication number Publication date
BR112023016289A2 (pt) 2023-11-14
EP4247089A1 (en) 2023-09-20
KR20230117241A (ko) 2023-08-07
CN115604838A (zh) 2023-01-13
US20230361941A1 (en) 2023-11-09
MX2023009406A (es) 2023-08-23
AU2022267563A1 (en) 2023-07-06
JP2024503916A (ja) 2024-01-29
CA3206475A1 (en) 2022-11-03
CN115278889A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
US10405301B2 (en) Method and apparatus for allocating transmission channel in wireless local area network system
WO2020200114A1 (zh) Dmrs端口的指示方法及装置
US11387965B2 (en) Method for replying with acknowledgement frame, apparatus, and data transmission system
CN116208460A (zh) 一种数据处理方法和装置
WO2022068177A1 (zh) 用于资源调度的通信方法及装置
WO2020048481A1 (zh) 通信方法及装置
WO2017041590A1 (zh) 一种传输信道状态信息的方法和装置
CN116134738A (zh) 用于基于多接入点的空数据分组反馈报告的通信装置和通信方法
JP7477094B2 (ja) 通信方法、通信装置、通信システム、コンピュータ可読記憶媒体、コンピュータプログラムおよびチップ
US20230354383A1 (en) Groupcast feedback method, apparatus, and system
US20180176789A1 (en) Spatial reuse ppdu indication
US10149296B1 (en) Signal field encoding and decoding
WO2022222775A1 (zh) 信息传输的方法、装置、计算机可读存储介质和芯片
WO2022228478A1 (zh) 信息传输方法、通信装置、计算机可读存储介质和芯片
CN116405912B (zh) 时间资源分配方法及相关装置
AU2022267563B2 (en) Information transmission method, communication apparatus, computer-readable storage medium, and chip
TWI817661B (zh) 實體層協定資料單元傳輸方法及相關裝置
US20240106589A1 (en) Method for transmitting physical layer protocol data unit, method for transmitting trigger frame, and apparatus
WO2023051173A1 (zh) 数据传输方法及相关装置
WO2021032167A1 (zh) 传输块大小确定方法及装置
WO2024008096A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
JP2023055501A (ja) 通信装置、制御方法、及び、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022794948

Country of ref document: EP

Effective date: 20230616

ENP Entry into the national phase

Ref document number: 3206475

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022267563

Country of ref document: AU

Date of ref document: 20220427

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237024134

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023544585

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/009406

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023016289

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023016289

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230814

NENP Non-entry into the national phase

Ref country code: DE