WO2024008096A1 - 通信方法与装置、终端设备、网络设备和芯片 - Google Patents

通信方法与装置、终端设备、网络设备和芯片 Download PDF

Info

Publication number
WO2024008096A1
WO2024008096A1 PCT/CN2023/105758 CN2023105758W WO2024008096A1 WO 2024008096 A1 WO2024008096 A1 WO 2024008096A1 CN 2023105758 W CN2023105758 W CN 2023105758W WO 2024008096 A1 WO2024008096 A1 WO 2024008096A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
value
information
scheduled cell
scheduled
Prior art date
Application number
PCT/CN2023/105758
Other languages
English (en)
French (fr)
Inventor
周欢
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2024008096A1 publication Critical patent/WO2024008096A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device, terminal equipment, network equipment and chips.
  • the standard protocol developed by the 3rd generation partnership project (3GPP) introduces the Carrier Aggregation (CA) mechanism.
  • CA Carrier Aggregation
  • a cell either only supports self-carrier scheduling (self-carrier scheduling) or only supports cross-carrier scheduling (cross-carrier shedding).
  • the downlink control information (DCI) carried by the Physical Downlink Control Channel (PDCCH) sent on a cell can only schedule one cell (one carrier or one component carrier (CC)) ).
  • one DCI can only schedule data transmission in one cell, in a carrier aggregation scenario, especially when the number of aggregated cells is large and the traffic volume is large, this will cause the terminal device to spend a lot of power to monitor ( Blind detection) PDCCH of each cell.
  • Blind detection blind detection
  • the terminal equipment needs to monitor each cell separately.
  • a total of 16 PDCCHs need to be monitored (one PDCCH carries one DCI), which causes the terminal equipment to consume a lot of power in monitoring PDCCHs.
  • further research is needed on how to reduce the monitoring complexity of PDCCH to save power consumption.
  • This application provides a communication method and device, terminal equipment, network equipment and chips, in order to achieve PDCCH monitoring while reducing the complexity of PDCCH monitoring to save power consumption.
  • the first aspect is a communication method of this application, including:
  • Monitor the physical downlink control channel PDCCH which is determined based on at least one of the number of PDCCH candidates, the number of non-overlapping channel control elements CCE, and the size of downlink control information DCI.
  • the number of PDCCH candidates, the non-overlapping At least one of the CCE and the DCI size is determined based on the value of the first information;
  • a value of the first information is used to indicate a group of co-scheduled cell combinations, where the co-scheduled cell combination is at least one cell that is scheduled simultaneously within a carrier aggregation cell.
  • this application introduces first information, and uses a value of the first information to indicate a group of co-scheduled cell combinations, and a group of co-scheduled cell combinations is at least one cell that is scheduled simultaneously within a carrier aggregation cell. Then, by determining at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes for each value of the first information, PDCCH monitoring is performed. In this way, when the PDCCH is subsequently monitored to obtain the value of a certain first information, a certain group of co-scheduled cell combinations is indicated from the carrier aggregation cells through the value of the certain first information, thereby realizing a certain group of co-scheduled cell combinations. The cells in the co-scheduling cell combination are scheduled simultaneously, thereby realizing multi-cell scheduling, so as to reduce the PDCCH monitoring complexity and save power consumption through multi-cell scheduling.
  • the second aspect is a communication method of the present application, including:
  • the PDCCH is determined based on at least one of the number of PDCCH candidates, the non-overlapping channel control element CCE, and the size of the downlink control information DCI, the number of PDCCH candidates, the non-overlapping At least one of the CCE and the DCI size is determined based on the value of the first information;
  • a value of the first information is used to indicate a group of co-scheduled cell combinations, where the co-scheduled cell combination is at least one cell that is scheduled simultaneously within a carrier aggregation cell.
  • the third aspect is a communication device of the present application, including:
  • a monitoring unit configured to monitor the physical downlink control channel PDCCH.
  • the PDCCH is determined based on at least one of the number of PDCCH candidates, the number of non-overlapping channel control elements CCE, and the size of downlink control information DCI.
  • the number of PDCCH candidates is , at least one of the non-overlapping CCEs and the number of DCI sizes is determined based on the value of the first information;
  • a value of the first information is used to indicate a group of co-scheduled cell combinations, where the co-scheduled cell combination is at least one cell that is scheduled simultaneously within a carrier aggregation cell.
  • the fourth aspect is a communication device of the present application, including:
  • a sending unit configured to send a physical downlink control channel PDCCH, where the PDCCH is determined based on at least one of the number of PDCCH candidates, the number of non-overlapping channel control elements CCE, and the size of downlink control information DCI.
  • the number of PDCCH candidates is , at least one of the non-overlapping CCEs and the number of DCI sizes is determined based on the value of the first information;
  • a value of the first information is used to indicate a group of co-scheduled cell combinations, and the co-scheduled cell combinations are in carrier aggregation. At least one cell within the cell is scheduled simultaneously.
  • the steps in the method designed in the first aspect are applied to terminal equipment or terminal equipment.
  • the steps in the method designed in the second aspect are applied to network equipment or network equipment.
  • the seventh aspect is a terminal device of the present application, including a processor, a memory, and a computer program or instructions stored on the memory, wherein the processor executes the computer program or instructions to implement the first aspect. Steps in the designed method.
  • the eighth aspect is a network device of the present application, including a processor, a memory, and a computer program or instructions stored on the memory, wherein the processor executes the computer program or instructions to implement the second aspect. Steps in the designed method.
  • a ninth aspect is a chip of the present application, including a processor, wherein the processor executes the steps in the method designed in the first aspect or the second aspect.
  • a tenth aspect is a chip module of the present application, including a transceiver component and a chip.
  • the chip includes a processor, wherein the processor executes the steps in the method designed in the first aspect or the second aspect.
  • the eleventh aspect is a computer-readable storage medium of the present application, wherein it stores a computer program or instructions, and when the computer program or instructions are executed, the method designed in the first aspect or the second aspect is implemented. A step of.
  • a twelfth aspect is a computer program product of the present application, including a computer program or instructions, wherein when the computer program or instructions are executed, the steps in the method designed in the first aspect or the second aspect are implemented.
  • a thirteenth aspect is a communication system of the present application, including the terminal device in the seventh aspect and the network device in the eighth aspect.
  • Figure 1 is an architectural schematic diagram of a communication system according to an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a carrier aggregation cell according to an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of yet another carrier aggregation cell according to an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of yet another carrier aggregation cell according to an embodiment of the present application.
  • Figure 5 is a schematic flow chart of a communication method according to an embodiment of the present application.
  • Figure 6 is a functional unit block diagram of a communication device according to an embodiment of the present application.
  • Figure 7 is a functional unit block diagram of yet another communication device according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • a and/or B in the embodiment of this application describes the association relationship of associated objects, indicating that three relationships can exist.
  • a and/or B can represent the following three situations: A exists alone; A and B exist simultaneously; B exists alone. Among them, A and B can be singular or plural.
  • the symbol “/" can indicate that the related objects are an “or” relationship.
  • the symbol “/” can also represent the division sign, that is, performing division operations.
  • A/B can mean A divided by B.
  • At least one item (item) refers to any combination of these items, including any combination of single item (items) or plural items (items), and refers to one or more, Multiple means two or more.
  • at least one of a, b or c can represent the following seven situations: a, b, c, a and b, a and c, b and c, a, b and c.
  • each of a, b, and c can be an element or a set containing one or more elements.
  • Equal in the embodiments of this application can be used in conjunction with greater than, and is applicable to the technical solutions used when greater than, and can also be used in conjunction with less than, The technical solutions used when applicable to and less than. When equal is used with greater than, do not use it with less than; when equal to is used with less than, do not use it with greater than.
  • Connection in the embodiments of this application refers to various connection methods such as direct connection or indirect connection to realize communication between devices, and there is no limitation on this.
  • the “network” in the embodiment of this application can be expressed as the same concept as the "system", and the communication system is the communication network.
  • Size in the embodiment of the present application can be expressed as the same concept as “length”.
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • Advanced Long Term Evolution Advanced Long Term Evolution
  • LTE-A New Radio
  • NR New Radio
  • evolution system of NR system LTE (LTE-based Access to Unlicensed Spectrum, LTE-U) system on unlicensed spectrum, NR on unlicensed spectrum (NR-based Access to Unlicensed Spectrum, NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks, WLAN), Wireless Fidelity (Wi-Fi), 6th-Generation (6G) communication system or other communication systems, etc.
  • communication systems can not only support traditional communication systems, but also support device-to-device (D2D) communication, machine-to-machine (M2M) communication, and machine-type communication.
  • D2D device-to-device
  • M2M machine-to-machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • NB-IoT narrowband internet of things
  • the spectrum used for communication between the terminal device and the network device, or the spectrum used for communication between the terminal device and the terminal device may be a licensed spectrum or an unlicensed spectrum, which is not limited.
  • unlicensed spectrum can be understood as shared spectrum
  • licensed spectrum can be understood as unshared spectrum.
  • Terminal equipment can be a device with sending and receiving functions, and can also be called terminal, user equipment (UE), remote terminal equipment (remote UE), relay equipment (relay UE), access terminal equipment, Subscriber unit, subscriber station, mobile station, mobile station, remote station, mobile equipment, user terminal equipment, intelligent terminal equipment, wireless communication equipment, user agent or user device.
  • a relay device is a terminal device that can provide relay and forwarding services for other terminal devices (including remote terminal devices).
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial control ( Wireless terminal equipment in industrial control, wireless terminal equipment in unmanned autonomous driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, and transportation safety Wireless terminal equipment, wireless terminal equipment in smart city (smart city) or wireless terminal equipment in smart home (smart home), etc.
  • a mobile phone mobile phone
  • a tablet computer Pad
  • a computer with wireless transceiver functions a virtual reality (VR) terminal device
  • AR augmented reality
  • an industrial control Wireless terminal equipment in industrial control, wireless terminal equipment in unmanned autonomous driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, and transportation safety Wireless terminal equipment, wireless terminal equipment in smart city (smart city) or wireless terminal equipment in smart home (smart home), etc.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), Handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in next-generation communication systems (such as NR communication systems, 6G communication systems) or public utilities in future evolutions Terminal equipment in the land mobile communication network (public land mobile network, PLMN), etc., are not specifically limited.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • terminal devices in next-generation communication systems such as NR communication systems, 6G communication systems
  • public utilities in future evolutions Terminal equipment in the land mobile communication network (public land mobile network, PLMN), etc.
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; can be deployed on water (such as ships, etc.); can be deployed in the air (such as aircraft, balloons, satellites, etc.) .
  • the terminal device may include a device with a wireless communication function, such as a chip system, a chip, and a chip module.
  • a device with a wireless communication function such as a chip system, a chip, and a chip module.
  • the chip system may include a chip and may also include other discrete devices.
  • a network device can be a device with transceiver functions and is used to communicate with terminal devices.
  • network equipment can be responsible for radio resource management (RRM), quality of service (QoS) management, data compression and encryption, data sending and receiving, etc. on the air interface side.
  • RRM radio resource management
  • QoS quality of service
  • data compression and encryption data sending and receiving, etc. on the air interface side.
  • the network device may be a base station (BS) in the communication system or a device deployed in a radio access network (RAN) to provide wireless communication functions.
  • BS base station
  • RAN radio access network
  • the network device may be an evolved node B (eNB or eNodeB) in the LTE communication system, a next generation evolved node B (ng-eNB) in the NR communication system, NR The next generation node B (gNB) in the communication system, the master node (MN) in the dual connection architecture, the second node or secondary node (SN) in the dual connection architecture, etc., There are no specific restrictions on this.
  • eNB evolved node B
  • ng-eNB next generation evolved node B
  • gNB next generation node B
  • MN master node
  • SN secondary node
  • the network equipment can also be equipment in the core network (core network, CN), such as access and mobility management function (AMF), user plane function (UPF) ), etc.; it can also be access point (AP), relay station in WLAN, communication equipment in the future evolved PLMN network, communication equipment in NTN network, etc.
  • core network CN
  • AMF access and mobility management function
  • UPF user plane function
  • AP access point
  • WLAN wireless local area network
  • communication equipment in the future evolved PLMN network communication equipment in NTN network, etc.
  • the network device may include a device that provides wireless communication functions for terminal devices, such as a chip system, a chip, and a chip module.
  • the chip system may include a chip, or may include other discrete devices.
  • network devices can communicate with Internet Protocol (IP) networks.
  • IP Internet Protocol
  • the Internet can be any Internet Protocol (IP) network.
  • private IP network can be any IP network.
  • the network device may be an independent node to implement the functions of the above-mentioned base station, or the network device may include two or more independent nodes to implement the functions of the above-mentioned base station.
  • network equipment includes centralized units (CU) and distributed units (DU), such as gNB-CU and gNB-DU.
  • DU distributed units
  • the network device may also include an active antenna unit (active antenna unit, AAU).
  • CU implements part of the functions of network equipment
  • DU implements another part of the functions of network equipment.
  • CU is responsible for processing non-real-time protocols and services, implementing the radio resource control (RRC) layer, service data adaptation protocol (SDAP) layer, and packet data convergence protocol (PDCP) layer function.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the wireless link control (radio link control, RLC) layer, the media access control (medium access control, MAC) layer and the physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • AAU can realize some physical layer processing functions, radio frequency processing and active antenna related functions.
  • the network device may include at least one of CU, DU, and AAU.
  • the CU may be divided into network devices in the RAN, or the CU may be divided into network devices in the core network, without specific limitations.
  • the network device can be any site in a multi-site that performs coherent joint transmission (CJT) with the terminal device, or other sites outside the multi-site, or other sites that are related to the terminal device.
  • CJT coherent joint transmission
  • Network equipment for network communication there are no specific restrictions on this.
  • multi-site coherent cooperative transmission can be joint coherent transmission for multiple sites, or different data belonging to the same physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) is sent from different sites to the terminal equipment, or multiple sites are virtualized.
  • PDSCH Physical Downlink Shared Channel
  • names with the same meaning specified in other standards are also applicable to this application, that is, this application does not limit the names of these parameters.
  • the sites in multi-site coherent cooperative transmission can be radio frequency remote heads (Remote Radio Head, RRH), transmission and reception points (transmission and reception point, TRP), network equipment, etc., and there are no specific restrictions on this.
  • the network device may be any one of the multiple sites that perform non-coherent cooperative transmission with the terminal device, or other sites outside the multi-site, or other network devices that perform network communication with the terminal device. , there is no specific restriction on this.
  • multi-site non-coherent cooperative transmission can be multiple sites joint non-coherent transmission, or different data belonging to the same PDSCH is sent from different sites to the terminal equipment, or different data belonging to the same PDSCH is sent from different sites to the terminal Equipment, names with the same meaning specified in other standards are also applicable to this application, that is, this application does not limit the names of these parameters.
  • the stations in multi-site non-coherent cooperative transmission can be RRH, TRP, network equipment, etc., and there is no specific limitation on this.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (HEO) ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment in the cell can communicate with the network equipment through transmission resources (such as spectrum resources).
  • the cell can be a macro cell, a small cell, a metro cell, a micro cell, a pico cell, a femto cell, etc.
  • the communication system 10 may include a network device 110 and a terminal device 120 .
  • the terminal device 120 may communicate with the network device 110 wirelessly.
  • FIG. 1 is only an illustration of the network architecture of a communication system, and does not limit the network architecture of the communication system in the embodiment of the present application.
  • the communication system may also include a server or other devices.
  • the communication system may include multiple network devices and/or multiple terminal devices.
  • the payload carried on the PDCCH is called downlink control information (DCI). That is to say, the PDCCH carries DCI.
  • DCI downlink control information
  • a carrier can have multiple control resource sets (control-resource set, CORESET).
  • CORESET will map resource units to control channel elements (Control Channel Element, CCE).
  • One or more CCEs are aggregated together to carry PDCCH, and the terminal The device can perform a blind check on the search space to determine whether the network has a PDCCH sent to it.
  • CCE is the basic resource unit that constitutes PDCCH.
  • PDCCH can use 1, 2, 4, 8, or 16 CCEs. Among them, the number of CCEs used can be called aggregation level (aggregation level, AL). In other words, one PDCCH can be aggregated from several CCEs.
  • AL aggregation level
  • a CCE can include 6 resource element groups (Resource Element Group, REG), and each REG can include one or more resource blocks (Resource Block, RB) on an OFDM symbol.
  • REG resource element Group
  • RB resource blocks
  • CORESET is a new concept of time-frequency domain resource set proposed by 5G NR. This is because in 5G NR, the transmission bandwidth of the communication system is relatively large, and the support capabilities of terminal devices are different. In order to adapt to different bandwidths and reduce the blind detection complexity of PDCCH at the same time, CORESET is used to constrain the time-frequency domain resource scheduling of PDCCH.
  • CORESET can have multiple search spaces, and a search space is a set of candidate control channels composed of CCEs with the same aggregation level. Since CCE has multiple aggregation levels, one terminal device can correspond to multiple search spaces.
  • CC Component Carrier
  • PCell Primary Cell
  • SCell Secondary Cell
  • carrier aggregation multiple carriers can be aggregated together to serve one terminal device at the same time. In this way, terminal equipment can obtain greater service bandwidth and greater transmission rate through carrier aggregation.
  • carrier aggregation does not require all carriers to be continuous in the frequency domain, or even limited to the same frequency band.
  • the carrier aggregation of the NR standard can support the aggregation of up to 16 carriers. These carriers can have different carrier bandwidths or different duplex modes.
  • the aggregated carriers may also be called component carriers.
  • carrier aggregation has five carriers, and the five carriers are component carrier 0 (CC0), component carrier 1 (CC1), component carrier 2 (CC2), component carrier 3 (CC3), and component carrier 4 (CC4).
  • CC0 component carrier 0
  • CC1 component carrier 1
  • CC2 component carrier 2
  • CC3 component carrier 3
  • CC4 component carrier 4
  • terminal equipment that supports carrier aggregation can send and receive data on multiple component carriers at the same time; terminal equipment that does not support carrier aggregation can send and receive data on one component carrier.
  • a carrier or component carrier
  • aggregated carriers can also be understood as aggregated cells.
  • a terminal device that supports carrier aggregation can send and receive data on multiple carriers (or component carriers) at the same time. That is to say, a terminal device that supports carrier aggregation can send and receive data in multiple cells at the same time.
  • carrier aggregation has five carriers, and the five carriers are CC0, CC1, CC2, CC3, and CC4 respectively.
  • CC0 is cell 0, or CC0 corresponds to cell 0 (cell 0 corresponds to CC0).
  • CC1 is cell 1
  • CC2 is cell 2
  • CC3 is cell 3
  • CC4 is cell 4.
  • the primary cell may be a cell used by the terminal device to access the network
  • the secondary cell may be configured by the network after the terminal device enters the connected state.
  • the network can quickly activate or deactivate secondary cells to meet changes in service requirements. Different terminal devices can configure different cells as primary cells.
  • a cell either only supports self-carrier scheduling or only supports cross-carrier scheduling.
  • self-carrier scheduling can be expressed as: the cell's scheduling authorization and transmission data are sent on the same carrier.
  • the terminal device can monitor the PDCCH of cell 0 on the CC0 corresponding to cell 0, and obtain the relevant scheduling through the DCI carried by the PDCCH Authorization. Finally, the terminal device is authorized to send transmission data on CC0 through the scheduling. It can be seen that the scheduling authorization and transmission data of cell 0 are sent on CC0 deliver.
  • cross-carrier scheduling can be expressed as the scheduling authorization and transmission data of the cell are sent on different carriers.
  • the other cell can be said to support cross-carrier scheduling.
  • the terminal device can only monitor the PDCCH on CC0 corresponding to cell 0, and obtain the scheduling authorization of cell 1 through the DCI carried by the PDCCH (or in other words, the DCI can only schedule Data transmission within the CC1 corresponding to cell 1), and the terminal device cannot monitor the PDCCH on the CC1 corresponding to cell 1 to obtain its own scheduling authorization. Finally, the terminal device is authorized to send transmission data on CC1 through the scheduling. It can be seen that the scheduling authorization of cell 0 is sent on CC0, while the transmission data of cell 1 is sent on CC1. At this time, the embodiment of the present application can say that cell 1 supports cross-carrier scheduling (or cell 1 is configured for cross-carrier scheduling).
  • DCI can include CIF.
  • Higher layer signaling can indicate whether to configure cross-carrier scheduling.
  • the network can configure cross-carrier scheduling of a certain cell through high-level parameters (such as the cross-carrier scheduling configuration CrossCarrierSchedulingConfig in RRCConnectionReconfiguration).
  • high-level parameters such as the cross-carrier scheduling configuration CrossCarrierSchedulingConfig in RRCConnectionReconfiguration.
  • the value of CIF is 0 or the cif-InSchedulingCell value in CrossCarrierSchedulingConfig.
  • the value of CIF is 0, it means that the serving cell is self-carrier scheduled.
  • the value of CIF is other values, it means that the serving cell is scheduled for cross-carrier scheduling.
  • the terminal equipment monitors a set of PDCCH candidates in one or more CORESETs on each activated serving cell configured with PDCCH monitoring according to the corresponding search space set.
  • monitoring or blind detection
  • monitoring can be understood as receiving each PDCCH candidate and decoding it according to the monitored DCI format.
  • PDCCH candidate of this application may also be called PDCCH blind decoding (BD).
  • BD PDCCH blind decoding
  • the monitoring capability of PDCCH is an important consideration when designing the PDCCH protocol.
  • CIF n CI corresponds to the CCE index group of the PDCCH candidate (i.e. a group of CCEs)
  • the time slot for activating DL BWP of the serving cell corresponding to CIF value n CI PDCCH candidates of the search space set (search space set)s of CORESET p in PDCCH candidate The CCE index of the corresponding aggregation level L is given by:
  • p CORESRT index
  • s represents the search space set index
  • N CCE,p is the number of CCEs.
  • the number of CCEs is numbered from 0 to N CCE,p -1 in CORESET p;
  • the value of a CIF can correspond to the CCE index group of the PDCCH candidate, and the CCE index can be determined for monitoring.
  • the location of the PDCCH can correspond to the CCE index group of the PDCCH candidate, and the CCE index can be determined for monitoring.
  • the PDCCH candidate is counted for monitoring; that is, PDCCH candidates or PDCCH candidate Candidate with PDCCH are not candidates for the same PDCCH.
  • the terminal equipment is expected to monitor PDCCH candidates of up to 4 DCI formats (DCI format), including up to 3 DCI formats, where the CRC is scrambled by the C-RNTI of each serving cell.
  • the terminal equipment calculates the number of DCI formats for each serving cell based on the number of PDCCH candidates configured in the corresponding activated DL BWP search space set.
  • the number of DCI format sizes can also be called the number of DCI sizes.
  • DCI can be sent in CSS and USS.
  • DCI formats are defined in the Rel-15NR system.
  • DCI format includes DCI format 0_0 (the length of the public search space and the UE search space are different), DCI format 0_1, and DCI format1_0 (the length of the public search space and the UE search space are different).
  • the number of DCI sizes that the terminal device needs to blindly detect within a time-frequency resource exceeds the DCI size budget (DCI size budget).
  • DCI size budget For example: The requirement for Rel-15 is that the DCI size budget is 4 and the DCI size budget scrambled with C-RNTI is 3. If 5 sizes of DCI are configured in a slot, that is, the DCI size budget is exceeded, the solution is to align the DCI format 0_0/0_1size in the CSS with the DCI format 0_0/0_1size in the USS. Among them, size alignment can be to add padding bits to the DCI format with a smaller size to make the two sizes the same.
  • monitoringCapabilityConfig monitoringCapabilityConfig
  • the terminal equipment defines the maximum number of PDCCH candidates for the serving cell in each time slot. It should be noted that the maximum number of PDCCH candidates can also be said to be the maximum value of PDCCH candidates, and there is no specific limit on this.
  • the maximum number of PDCCH candidates As shown in Table 1.
  • the maximum number of non-overlapping CCEs can also be said to be the maximum value of non-overlapping CCEs, and there is no specific limit on this.
  • these CCEs are non-overlapping, that is, non-overlapping CCEs.
  • the maximum number of non-overlapping CCEs number As shown in table 2.
  • a cell either only supports self-carrier scheduling or only supports cross-carrier scheduling.
  • the DCI carried by the PDCCH sent on a cell can only schedule data transmission within one cell (one CC or one carrier). This will cause problems in carrier aggregation scenarios, especially when the number of aggregated cells is large and the traffic volume is high.
  • the terminal equipment needs to consume a lot of power to monitor (blindly detect) the PDCCH of each cell.
  • this application introduces a DCI that can support simultaneous scheduling of at least one cell from a carrier aggregation cell, that is, multi-cell scheduling (multi-cell scheduling), thereby reducing PDCCH through multi-cell scheduling. monitoring complexity to save power consumption.
  • the terminal device when there are 16 cells aggregated and the downlink traffic volume is large, if downlink data needs to be scheduled on the 16 cells, and one DCI can schedule data transmission in the 16 cells, the terminal device only needs to monitor 1 PDCCH (1 PDCCH carries one DCI). Compared with one DCI that can schedule data transmission in one cell, this application can schedule data transmission in 16 cells through one DCI, which can reduce the monitoring complexity of PDCCH, thereby reducing the amount of time spent by terminal equipment in monitoring PDCCH. Power consumption, that is, reducing the complexity of PDCCH monitoring to save power consumption.
  • this application introduces first information and configuration information, and uses a value of the first information to indicate a group of co-scheduled cell combinations (co-scheduled cell combination).
  • a group of co-scheduled cell combinations are on the carrier.
  • At least one cell in the aggregated cell is scheduled simultaneously, and the association relationship between the value of each first information and each group of co-scheduled cell combinations is configured through configuration information.
  • this application also needs to determine at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes for the value of the first information, in order to perform PDCCH monitoring.
  • a certain group of co-scheduled cell combinations is indicated from the carrier aggregation cells through the value of the certain first information, thereby realizing a certain group of co-scheduled cell combinations.
  • the cells in the co-scheduling cell combination are scheduled simultaneously, thereby realizing multi-cell scheduling.
  • multi-cell scheduling can mean that one DCI can schedule data transmission in multiple cells at the same time.
  • one DCI can only schedule data transmission within one cell.
  • multi-cell scheduling may also be called multi-carrier scheduling.
  • the other cells can be said to support multi-cell scheduling.
  • cell 0 can multi-cell schedule cell 1 (CC1) and cell 2 (CC2), then cell 1 (CC1) and cell 2 (CC2) can support multi-cell scheduling.
  • a cell can support multi-cell scheduling, can support multi-cell scheduling and self-carrier scheduling at the same time, and can support multi-cell scheduling and cross-carrier scheduling at the same time.
  • Carrier aggregation in the embodiment of this application, a cell can be called or regarded as a carrier or a CC, and a terminal device that supports carrier aggregation can send and receive data in multiple cells at the same time.
  • a cell for carrier aggregation may be multiple cells, or multiple carriers, etc.
  • a cell can multi-carrier schedule another cell, then the one cell can be called or regarded as a "scheduling cell”, and the other cell can be called or regarded as a "scheduled cell". In other words, the scheduled cell supports multi-cell scheduling.
  • cell 0 (CC0) multi-cell schedules cell 1 (CC1)
  • cell 0 (CC0) is the scheduling cell
  • cell 1 (CC1) is the scheduled cell.
  • the configuration information may be used to configure the association between the value of each first information and each group of co-scheduled cell combinations.
  • the configuration information can also be described using other terms, and there is no specific limitation on this.
  • the configuration information can be carried by high-level signaling.
  • the high-level signaling can be one of RRC signaling, system information, terminal equipment specific (UE specific) signaling, etc.
  • the high-level signaling may be transmitted during cell search, cell camping, cell access, initial access, random access, etc.
  • a value of the first information may be used to indicate a group of co-scheduled cell combinations.
  • the first information can also be described using other terms, and there is no specific limitation on this.
  • the co-scheduled cell combination may be at least one cell that is scheduled simultaneously within the carrier aggregation cell.
  • the combination of co-scheduled cells can also be described using other terms, and there is no specific restriction on this.
  • this application can realize simultaneous scheduling of at least one cell through the first information, that is, realize multi-cell scheduling through the first information.
  • the first information of this application may be carried by DCI.
  • the terminal device blindly detects the DCI carrying the first information, a set of co-scheduled cell combinations supported by the DCI can be determined based on the value of the first information, thereby enabling the DCI to support simultaneous scheduling of multiple cells.
  • the first information in this application may be one field or two subfields in the DCI.
  • the first information is a subsection in DCI
  • this field may be used to indicate a group of the co-scheduled cell combinations, and the value of this field corresponds to the CCE index group of the PDCCH candidate.
  • this field can be a CIF or a newly defined field, and there is no specific restriction on this.
  • this application can use the CIF in DCI to indicate the co-scheduling cell combination in the following two ways:
  • the CIF is expanded so that the expanded CIF can be used to indicate co-scheduled cell combinations. That is to say, the expanded CIF can be used to indicate either single-cell scheduling or multi-cell scheduling.
  • the CIF value is from small to large, the small CIF value is used to indicate single-cell scheduling, and the large CIF value is used to indicate multi-cell scheduling.
  • this application can appropriately increase the number of bits of the CIF, or increase the value of the CIF. For example, increase the number of bits of CIF from 3bit to 4bit or 5bit, etc.
  • the network device configures the association between the value of each CIF and each co-scheduled cell combination to the terminal device through configuration information.
  • the carrier aggregation cells include CC0 (cell 0), CC1 ( Cell 1), CC2 (Cell 2) and CC3 (Cell 3). in,
  • the co-scheduling cell combination is CC0;
  • this application can separate the CIF used to indicate single-cell scheduling and the CIF used to indicate multi-cell scheduling. Specifically, it can be distinguished by the DCI format carrying CIF.
  • the CIF carried by the existing DCI format is used to indicate single-cell scheduling; if the DCI format is newly defined, For example, if the newly defined DCI format is DCI 1_X/0_X, etc., the CIF carried by the newly defined DCI format is used to indicate multi-cell scheduling.
  • the network device configures the association between the value of each CIF and each co-scheduled cell combination to the terminal device through configuration information.
  • the carrier aggregation cells include CC0 (cell 0), CC1 ( Cell 1), CC2 (Cell 2) and CC3 (Cell 3). in,
  • CIF co-scheduled cell combinations
  • This field is a newly defined field
  • this application can add a new definition field to the DCI.
  • the new definition field is used to indicate a co-scheduled cell combination, that is, the definition field is used to indicate multi-cell scheduling. At this time, it is similar to the above-mentioned "Method B" and will not be described again.
  • co-scheduled cell combination indication field For example, taking the newly defined field as the co-scheduled cell combination indication field (co-scheduled cell combination indication field), replace the value of the CIF in Table 4 with the value of the co-scheduled cell combination indication field.
  • the first information is two fields in DCI
  • the value of the first field among the two fields in the DCI can be used for Indicates multiple groups of co-scheduled cell combinations, and the value of the first field may correspond to the CCE index group of the PDCCH candidate.
  • the value of the second field among the two fields in the DCI (in order to facilitate the distinction and description, the second field is used to represent the other of the two fields) can be used for co-scheduling of multiple groups indicated by the first field.
  • a group of co-scheduled cell combinations is indicated in the cell combination.
  • the first field may be a CIF or a newly defined field
  • the second field may be a newly defined field, without specific limitations.
  • the second field may be similar to the above-mentioned “Method B", which will not be described again.
  • the value of the first field may correspond to the values of multiple second fields.
  • DCI carries CIF and co-scheduled cell combination indication field
  • carrier The aggregated cells include CC0, CC1, CC2 and CC3. in,
  • a group of co-scheduled cell combinations are CC0 and CC3;
  • the value is 1, which is used to indicate a group of co-scheduled cell combinations.
  • the group of co-scheduled cell combinations are CC1 and CC3;
  • the value of CIF n CI corresponds to the CCE index group of the PDCCH candidate
  • the value of a CIF can correspond to the CCE index group of the PDCCH candidate. Since one CIF value can be used to indicate multiple groups of co-scheduled cell combinations, the multiple groups of co-scheduled cell combinations can share the same CCE index group.
  • the value of the first information corresponds to the CCE index of the PDCCH candidate.
  • n CI of the CIF corresponds to the CCE index group of the PDCCH candidate
  • the value of the first information in this application can correspond to the CCE index group of the PDCCH candidate.
  • a value of the first information may correspond to a CCE index group of the PDCCH candidate, and the CCE index may determine a location for monitoring the PDCCH.
  • the value of the first information corresponds to the CCE index group of the PDCCH candidate, and may be the PDCCH candidate of the first information in the search space. If the values of the first information are different, the indexes of the search space may also be different.
  • the network device may configure a search space for the carrier aggregation cell.
  • the search space for scheduling the PDCCH of the co-scheduled cell combination may be configured on one or more cells in the carrier aggregation cells. That is to say, there are cells configured with search spaces in the co-scheduled cell combination.
  • the terminal equipment can only count the number of PDCCH candidates/the number of non-overlapping CCEs/the number of DCI sizes in the cell configured with the search space.
  • the network device may configure the value of the first information to the carrier aggregation cell.
  • the value of the first information used for scheduling the co-scheduled cell combination may be configured on one or more cells in the carrier aggregation cells. That is to say, there may be cells configured with the value of the first information in the co-scheduled cell combination.
  • the terminal equipment can only perform blind detection on the PDCCH candidate with the value of the first information to determine whether the network has a PDCCH corresponding to the co-scheduled cell combination sent to it.
  • the network device will configure CORESET, search space set, CCE of a certain aggregation level, the correlation between the value of each first information and each group of co-scheduled cell combinations and other related information to the terminal device.
  • the terminal device may blindly detect the PDCCH on the PDCCH candidates with the value of the first information in the search space until the DCI carrying the first information is blindly detected.
  • the terminal equipment of the present application can determine at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes of the value of the first information to perform PDCCH monitoring. That is to say, the number of PDCCH candidates/the number of non-overlapping CCEs/the number of DCI sizes is determined based on the value of the first information.
  • the number of PDCCH candidates/number of non-overlapping CCEs/number of DCI sizes may be for a group of co-scheduled cell combinations.
  • the search space of each cell in the cell may be determined for the search space of a certain cell in a group of co-scheduled cell combinations, or may be determined for the search space of some cells in a group of co-scheduled cell combinations. definite.
  • the network device can provide a set of co-scheduled cell combinations (for convenience of description, the set of co-scheduled cell combinations) indicated by the first information value X (X is a certain value).
  • Each cell in the first co-scheduled cell combination is configured with the same index search space, and each cell is configured with the same first information value.
  • each cell in the first co-scheduled cell combination counts the number of PDCCH candidates/the number of non-overlapping CCEs/the number of DCI sizes in the search space of its own cell whose first information value is X.
  • the number of PDCCH candidates/the number of non-overlapping CCEs/the number of DCI sizes in the search space of each cell in the first co-scheduled cell combination is determined according to the value X of the first information.
  • carrier aggregation cells include CC0, CC1, CC2 and CC3.
  • the number of PDCCH candidates/number of CCEs in the search space of each cell only needs to be calculated once. It can be understood that for the value X of the first information, there is PDCCH candidates with the same set of aggregation level CCEs, the same scrambling code and the same DCI format size are regarded as one PDCCH candidate.
  • this application may adopt the following method:
  • the terminal equipment determines the maximum value among the number of PDCCH candidates in the search space of each cell, and performs PDCCH monitoring according to the maximum value.
  • the carrier aggregation cells include CC0, CC1, CC2 and CC3.
  • Table 6 they exist as follows:
  • the terminal equipment determines the maximum value among the number of PDCCH candidates in the search space of each cell, and then averages the maximum values to obtain an average value, and then performs PDCCH monitoring based on the average value.
  • the carrier aggregation cells include CC0, CC1, CC2 and CC3.
  • Table 7 the following exists:
  • the terminal equipment determines an arbitrary value among the number of PDCCH candidates in the search space of each cell, and performs PDCCH monitoring according to the arbitrary value.
  • this application may adopt the following method:
  • the terminal equipment determines the maximum value of the number of non-overlapping CCEs in the search space of each cell, and performs PDCCH monitoring according to the maximum value.
  • the terminal equipment determines the maximum value among the number of non-overlapping CCEs in the search space of each cell, and then averages the maximum values to obtain an average value, and then performs PDCCH monitoring based on the average value.
  • the terminal equipment determines an arbitrary value among the number of non-overlapping CCEs in the search space of each cell, and performs PDCCH monitoring according to the arbitrary value.
  • the terminal device can determine the number of DCI sizes of the search space of each cell in the first co-scheduled cell combination, as The number of types of DCI formats used for scheduling the first co-scheduled cell combination.
  • the network device can provide a set of co-scheduled cell combinations indicated by the first information value X (X is a certain value) (for convenience of description, the set of co-scheduled cell combinations are A certain cell in the "first co-scheduled cell combination" (for convenience of description, this cell is the "first cell”) configures a search space, and configures the value of the first information to the first cell.
  • this application only needs the number of PDCCH candidates/the number of non-overlapping CCEs/the number of DCI sizes in the search space of the own cell whose first information of the first number of cells has the value X.
  • the number of PDCCH candidates/number of non-overlapping CCEs/number of DCI sizes in the search space of the first cell is determined according to the value X of the first information.
  • carrier aggregation cells include CC0, CC1, CC2 and CC3.
  • the terminal device can determine the number of DCI sizes in the search space of the first cell, which is used to schedule the first co-scheduled cell. The number of combined DCI format types.
  • the network device can provide a set of co-scheduled cell combinations indicated by the value of the first information being Some cells in the first co-scheduled cell combination") are configured with the same index search space, and the same value of the first information is configured with the partial cells. Some of the cells may be multiple cells in the first co-scheduled cell combination.
  • some cells in the first co-scheduled cell combination must count the number of PDCCH candidates/the number of non-overlapping CCEs/the number of DCI sizes in the search space of the own cell whose first information value is X.
  • the number of PDCCH candidates/the number of non-overlapping CCEs/the number of DCI sizes in the search spaces of some cells in the first co-scheduled cell combination are determined according to the value X of the first information.
  • carrier aggregation cells include CC0, CC1, CC2 and CC3.
  • the number of non-overlapping CCEs/the number of DCI sizes, and the number of PDCCH candidates/the number of non-overlapping CCEs/the number of DCI sizes that determine the search space 1 of CC2 with CIF 6.
  • the number of PDCCH candidates/number of CCEs in the search space of some cells can be calculated only once.
  • PDCCH candidates are included in monitoring" above, the number of PDCCH candidates/number of CCEs in the search space of some cells only needs to be calculated once, which can be understood as the search space for the value X of the first information , PDCCH candidates with the same set of aggregation level CCEs, the same scrambling code and the same DCI format size are regarded as one PDCCH candidate.
  • this application may adopt the following method:
  • the terminal equipment determines the maximum value among the number of PDCCH candidates in the search space of some cells, and performs PDCCH monitoring according to the maximum value.
  • the terminal equipment determines the maximum value among the number of PDCCH candidates in the search space of some cells, and then averages the maximum values to obtain an average value, and then performs PDCCH monitoring based on the average value.
  • the terminal equipment determines an arbitrary value among the number of PDCCH candidates in the search space of some cells, and performs PDCCH monitoring according to the arbitrary value.
  • this application may adopt the following method:
  • the terminal equipment determines the maximum value among the number of non-overlapping CCEs in the search space of some cells, and performs PDCCH monitoring according to the maximum value.
  • the terminal equipment determines the maximum value among the number of non-overlapping CCEs in the search space of some cells, and then averages the maximum values to obtain an average value, and then performs PDCCH monitoring based on the average value.
  • the terminal equipment determines an arbitrary value among the number of non-overlapping CCEs in the search space of some cells, and performs PDCCH monitoring according to the arbitrary value.
  • the terminal device can determine the number of DCI sizes in the search space of some cells, which is used to schedule the first co-scheduled cell combination.
  • the number of DCI format types can be determined.
  • the network device may be a chip, a chip module, a communication module, etc.
  • the terminal device may be a chip, a chip module, a communication module, etc. That is to say, this method is applied to network equipment or terminal equipment, and there is no specific restriction on this.
  • FIG. 5 it is a schematic flow chart of a communication method according to the embodiment of the present application, which specifically includes the following steps:
  • the network device sends the physical downlink control channel PDCCH.
  • the PDCCH is determined based on at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes, and at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes is based on the first information The value of is determined;
  • a value of the first information is used to indicate a group of co-scheduled cell combinations, and the co-scheduled cell combination is at least one cell that is scheduled simultaneously within the carrier aggregation cell.
  • the association between the value of each first information and each group of co-scheduled cell combinations is configured by the configuration information.
  • the terminal equipment monitors the PDCCH.
  • PDCCH monitoring may be performed by determining at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes in the search space of the co-scheduled cell combination based on the value of the first information. of.
  • configuration information means configuration information, “first information”, “co-scheduling cell combination”, “value of first information”, “number of PDCCH candidates”, “number of non-overlapping CCEs” and “DCI size” “Number”, etc., please refer to the above content for details and will not be repeated here.
  • this application introduces first information, and uses a value of the first information to indicate a group of co-scheduled cell combinations, and a group of co-scheduled cell combinations is at least one cell that is scheduled simultaneously within a carrier aggregation cell. Then, by determining at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes for each value of the first information, PDCCH monitoring is performed.
  • a certain group of co-scheduled cell combinations is indicated from the carrier aggregation cells through the value of the certain first information, thereby realizing a certain group of co-scheduled cell combinations.
  • the cells in the co-scheduling cell combination are scheduled simultaneously, thereby realizing multi-cell scheduling, so as to reduce the PDCCH monitoring complexity and save power consumption through multi-cell scheduling.
  • each group of co-scheduled cell combinations includes cells configured with search spaces and/or values of the first information.
  • the terminal device can only perform blind detection on the cell configured with the search space and/or the value of the first information to determine whether the network device has a PDCCH sent to it.
  • each cell in the first co-scheduled cell combination is configured with a search space of the same index, and each cell is configured with the same value of the first information
  • the first co-scheduled cell combination is a group of co-scheduled cell combinations.
  • the network device can send a request to a group of co-scheduled cell combinations (i.e., the first co-scheduled cell) indicated by the value of the first information being X (X is a certain value).
  • a group of co-scheduled cell combinations i.e., the first co-scheduled cell indicated by the value of the first information being X (X is a certain value).
  • Each cell in the combination is configured with the same index search space, and each cell is configured with the same value of the first information.
  • this application can calculate the number of PDCCH candidates/the number of non-overlapping CCEs/the number of DCI sizes for each cell.
  • At least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes in the search space of each cell is determined based on the value of the first information configured in each cell. It can be determined based on the value of the first information configured in each cell.
  • the number of PDCCH candidates in the search space of each cell is the maximum number of PDCCH candidates in the search space of each cell; or, it is the number of PDCCH candidates in the search space of each cell.
  • the maximum value in and then find the average of the maximum value;
  • the number of non-overlapping CCEs in the search space of each cell is the maximum number of non-overlapping CCEs in the search space of each cell; or, it is the number of non-overlapping CCEs in each cell at each aggregation level. The maximum value, and then find the average of the maximum value.
  • this application can perform PDCCH monitoring based on the maximum or average number of PDCCH candidates in the search space of each cell to avoid monitoring the search space of each cell. Monitor the number of PDCCH candidates to improve monitoring efficiency.
  • this application can monitor the PDCCH according to the maximum or average value of the number of non-overlapping CCEs in the search space of each cell, avoiding monitoring the number of non-overlapping CCEs in the search space of each cell and improving monitoring efficiency. .
  • the number of DCI sizes in the search space of each cell is the number of types of DCI formats used for scheduling the first co-scheduled cell combination.
  • this application can determine the number of DCI sizes of the search space of each cell in the first co-scheduled cell combination by scheduling the number of DCI format types of the first co-scheduled cell combination.
  • only one first cell in the first co-scheduled cell combination is configured with a search space, and the first cell is configured with a value of the first information
  • the first co-scheduled cell combination is a group of co-scheduled cell combinations.
  • the network device can send a request to a group of co-scheduled cell combinations (i.e., the first co-scheduled cell) indicated by the value of the first information being X (X is a certain value).
  • a certain cell ie, the first cell in the combination
  • this application can only calculate the number of PDCCH candidates/the number of non-overlapping CCEs/the number of DCI sizes for one cell, thereby reducing the computational complexity.
  • At least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes in the search space of the first cell may be a value according to the first information configured in the first cell. definite.
  • the number of DCI sizes in the search space of the first cell is the number of types of DCI formats used for scheduling the first co-scheduled cell combination.
  • this application can determine the number of DCI sizes of the search space of the first cell by scheduling the number of DCI format types of the first co-scheduled cell combination.
  • some cells in the first co-scheduled cell combination are configured with search spaces of the same index, and some cells are configured with the same first information value;
  • the first co-scheduled cell combination is a group Co-scheduling cell combination;
  • Some of the cells are multiple cells in the first co-scheduled cell combination.
  • the network device can send a request to a group of co-scheduled cell combinations (i.e., the first co-scheduled cell) indicated by the value of the first information being X (X is a certain value).
  • a group of co-scheduled cell combinations i.e., the first co-scheduled cell indicated by the value of the first information being X (X is a certain value).
  • Part of the cells in the combination are configured with the same index search space, and the part of the cells are configured with the same value of the first information.
  • this application can only calculate the number of PDCCH candidates/the number of non-overlapping CCEs/the number of DCI sizes for some cells, thereby reducing the computational complexity.
  • At least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes in the search space of the partial cell may be determined based on the value of the first information configured in the partial cell.
  • this application can realize that some cells in the first co-scheduled cell combination all count the number of PDCCH candidates in the search space of their own cells with the value X of the first information. /Number of non-overlapping CCEs/Number of DCI sizes.
  • the number of PDCCH candidates in the search space of some cells is the maximum number of PDCCH candidates in the search space of some cells; or, it is the maximum number of PDCCH candidates in the search space of some cells. value, and then find the average of the maximum value.
  • the number of non-overlapping CCEs in the search space of some cells is the maximum value of the number of non-overlapping CCEs in the search space of some cells; or, it is the maximum value of the number of non-overlapping CCEs in the search space of some cells, and then find The average of the maximum values.
  • this application can perform PDCCH monitoring based on the maximum or average number of PDCCH candidates in the search space of some cells, so as to avoid affecting the search space of each cell. Monitor the number of PDCCH candidates to improve monitoring efficiency.
  • this application can perform PDCCH monitoring based on the maximum or average number of non-overlapping CCEs in the search space of some cells, avoiding monitoring the number of non-overlapping CCEs in the search space of each cell and improving monitoring efficiency.
  • the number of DCI sizes in the search spaces of some cells is the number of types of DCI formats used for scheduling the first co-scheduled cell combination.
  • this application can determine the number of DCI sizes of the search spaces of some cells in the first co-scheduled cell combination by scheduling the number of DCI format types of the first co-scheduled cell combination.
  • the first information includes one or two fields in the DCI.
  • this application can implement DCI to carry the first information, and implement it through one field or two fields in the DCI Indicates the co-scheduled cell combination.
  • the value of this field can be used to indicate a group of co-scheduled cell combinations, and the value of this field corresponds to the CCE index group of the PDCCH candidate.
  • the value of the first field in the two fields can be used to indicate multiple groups of co-scheduled cell combinations, and the value of the first field The CCE index group corresponding to the PDCCH candidate; the value of the second field among the two fields is used to indicate a group of co-scheduled cell combinations from the multiple groups of co-scheduled cell combinations indicated by the first field.
  • this application corresponds the value of one first field to the value of multiple second fields, and a third field.
  • the value of the second field is used to indicate a group of co-scheduled cell combinations.
  • the value of a first field can be used to indicate multiple groups of co-scheduled cell combinations.
  • the terminal device or network device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functionality for each specific application, but such implementations should not be considered to be beyond the scope of this application.
  • Embodiments of the present application can divide the terminal device or network device into functional units according to the above method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one processing unit.
  • the above integrated units can be implemented in the form of hardware or software program modules. It should be noted that the division of units in the embodiment of the present application is schematic and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 6 is a functional unit block diagram of a monitoring device according to an embodiment of the present application.
  • the communication device 600 includes: a listening unit 601.
  • the listening unit 601 may be a module unit used to process signals, data, information, etc., and there is no specific limitation on this.
  • the communication device 600 may further include a storage unit for storing computer program codes or instructions executed by the communication device 600 .
  • the storage unit may be a memory.
  • the communication device 600 may be a chip or a chip module.
  • the listening unit 601 may be integrated in other units.
  • the listening unit 601 can be integrated in the communication unit.
  • the listening unit 601 can be integrated in the processing unit.
  • the communication unit may be a communication interface, a transceiver, a transceiver circuit, etc.
  • the processing unit may be a processor or a controller, such as a baseband processor, a baseband chip, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), or an application-specific integrated circuit. (application-specific integrated circuit, ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • the processing unit may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
  • the listening unit 601 is used to perform any step performed by the terminal device/chip/chip module, etc. in the above method embodiment, such as sending or receiving data, etc. Detailed explanation below.
  • the listening unit 601 is used to perform any step in the above method embodiments, and when performing actions such as sending, it can optionally call other units to complete corresponding operations. Detailed explanation below.
  • the monitoring unit 601 is configured to monitor the PDCCH.
  • the PDCCH is determined based on at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes.
  • the PDCCH is determined based on at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes.
  • One item is determined based on the value of the first information;
  • a value of the first information is used to indicate a group of co-scheduled cell combinations, and the co-scheduled cell combination is at least one cell that is scheduled simultaneously within the carrier aggregation cell.
  • this application introduces the first information and the correlation between the value of each first information and each group of co-scheduled cell combinations, and uses the value of one first information to indicate a group of co-scheduled cell combinations.
  • a co-scheduled cell combination is at least one cell that is scheduled simultaneously within a carrier aggregation cell. Then, by determining at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes for each value of the first information, PDCCH monitoring is performed.
  • a certain group of co-scheduled cell combinations is indicated from the carrier aggregation cells through the value of the certain first information, thereby realizing a certain group of co-scheduled cell combinations.
  • the cells in the co-scheduling cell combination are scheduled simultaneously, thereby realizing multi-cell scheduling.
  • each cell in the first co-scheduled cell combination is configured with a search space of the same index, and each cell is configured with the same value of the first information
  • the first co-scheduled cell combination is a group of co-scheduled cell combinations.
  • At least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes in the search space of each cell may be a value based on the first information configured in each cell. definite.
  • the number of PDCCH candidates in the search space of each cell is the maximum number of PDCCH candidates in the search space of each cell; or, it is the number of PDCCH candidates in the search space of each cell.
  • the maximum value in and then find the average of the maximum value;
  • the number of non-overlapping CCEs in the search space of each cell is the maximum number of non-overlapping CCEs in the search space of each cell; or, it is the number of non-overlapping CCEs in each cell at each aggregation level. The maximum value, and then find the average of the maximum value.
  • the number of DCI sizes in the search space of each cell is the number of types of DCI formats used for scheduling the first co-scheduled cell combination.
  • only one first cell in the first co-scheduled cell combination is configured with a search space, and the first cell is configured with a value of the first information
  • the first co-scheduled cell combination is a group of co-scheduled cell combinations.
  • At least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes in the search space of the first cell may be determined based on the value of the first information configured in the first cell. It is determined based on the value of the first information configured in the first cell.
  • the number of DCI sizes in the search space of the first cell is the number of types of DCI formats used for scheduling the first co-scheduled cell combination.
  • some cells in the first co-scheduled cell combination are configured with search spaces of the same index, and some cells are configured with the same first information value;
  • the first co-scheduled cell combination is a group Co-scheduling cell combination;
  • Some of the cells are multiple cells in the first co-scheduled cell combination.
  • At least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes in the search space of the partial cell may be determined based on the value of the first information configured in the partial cell.
  • the number of PDCCH candidates in the search space of some cells is the maximum number of PDCCH candidates in the search space of some cells; or, it is the maximum number of PDCCH candidates in the search space of some cells. value, and then find the average of the maximum value;
  • the number of non-overlapping CCEs in the search space of some cells is the maximum value of the number of non-overlapping CCEs in the search space of some cells; or, it is the maximum value of the number of non-overlapping CCEs in the search space of some cells, and then find The average of the maximum values.
  • the number of DCI sizes in the search spaces of some cells is the number of types of DCI formats used for scheduling the first co-scheduled cell combination.
  • the first information includes one or two fields in the DCI.
  • the value of this field can be used to indicate a group of co-scheduled cell combinations, and the value of this field corresponds to the CCE index group of the PDCCH candidate.
  • the value of the first field in the two fields can be used to indicate multiple groups of co-scheduled cell combinations, and the value of the first field The CCE index group corresponding to the PDCCH candidate; the value of the second field among the two fields is used to indicate a group of co-scheduled cell combinations from the multiple groups of co-scheduled cell combinations indicated by the first field.
  • FIG. 7 is a functional unit block diagram of yet another communication device according to an embodiment of the present application.
  • the communication device 700 includes: a sending unit 701.
  • the sending unit 701 may be a module unit used to process signals, data, information, etc., which is not specifically limited.
  • the communication device 700 may also include a storage unit for storing computer program codes or instructions executed by the communication device 700 .
  • the storage unit may be a memory.
  • the communication device 700 may be a chip or a chip module.
  • the sending unit 701 may be integrated in other units.
  • the sending unit 701 can be integrated in the communication unit.
  • the communication unit may be a communication interface, a transceiver, a transceiver circuit, etc.
  • the sending unit 701 may be integrated in the processing unit.
  • the processing unit may be a processor or a controller, such as a baseband processor, a baseband chip, a CPU, a DSP, an ASIC, an FPGA, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • the processing unit may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
  • the sending unit 701 is used to perform any step performed by the network device/chip/chip module, etc. in the above method embodiment, such as sending or receiving data transmission. Detailed explanation below.
  • the sending unit 701 is used to perform any step in the above method embodiments, and when performing actions such as receiving, it can optionally call other units to complete corresponding operations. Detailed explanation below.
  • the sending unit 701 is configured to send the PDCCH.
  • the PDCCH is determined based on at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes.
  • the PDCCH is determined based on at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes.
  • One item is determined based on the value of the first information;
  • a value of the first information is used to indicate a group of co-scheduled cell combinations, and the co-scheduled cell combination is at least one cell that is scheduled simultaneously within the carrier aggregation cell.
  • this application introduces the first information and the correlation between the value of each first information and each group of co-scheduled cell combinations.
  • a value of the first information is used to indicate a group of co-scheduled cell combinations.
  • the group of co-scheduled cell combinations is at least one cell that is scheduled simultaneously in the carrier aggregation cell.
  • the frequency domain starting position of the first PUSCH resource is the same as the first PUSCH resource.
  • the frequency domain starting positions of the two PUSCH resources are located in the same or different available frequency domain resources.
  • a certain group of co-scheduled cell combinations is indicated from the carrier aggregation cells through the value of the certain first information, thereby realizing a certain group of co-scheduled cell combinations.
  • the cells in the co-scheduling cell combination are scheduled simultaneously, thereby realizing multi-cell scheduling.
  • each cell in the first co-scheduled cell combination is configured with a search space of the same index, and each cell is configured with the same value of the first information
  • the first co-scheduled cell combination is a group of co-scheduled cell combinations.
  • only one first cell in the first co-scheduled cell combination is configured with a search space, and the first cell is configured with a value of the first information
  • the first co-scheduled cell combination is a group of co-scheduled cell combinations.
  • some cells in the first co-scheduled cell combination are configured with search spaces of the same index, and some cells are configured with the same first information value;
  • the first co-scheduled cell combination is a group Co-scheduling cell combination;
  • Some of the cells are multiple cells in the first co-scheduled cell combination.
  • the first information includes one field or two fields in the DCI.
  • the value of this field can be used to indicate a group of co-scheduled cell combinations, and the value of this field corresponds to the CCE index group of the PDCCH candidate.
  • the value of the first field in the two fields can be used to indicate multiple groups of co-scheduled cell combinations, and the value of the first field The CCE index group corresponding to the PDCCH candidate; the value of the second field among the two fields is used to indicate a group of co-scheduled cell combinations from the multiple groups of co-scheduled cell combinations indicated by the first field.
  • the terminal device 800 includes a processor 810, a memory 820, and a communication bus used to connect the processor 810 and the memory 820.
  • memory 820 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read -only memory, EPROM) or portable read-only memory (compact disc read-only memory, CD-ROM), the memory 820 is used to store program codes executed by the terminal device 800 and transmitted data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read -only memory
  • CD-ROM compact disc read-only memory
  • the terminal device 800 also includes a communication interface for receiving and sending data.
  • the processor 810 may be one or more central processing units (CPUs).
  • the central processing unit (CPU) may be a single core.
  • Central processing unit (CPU) which can also be a multi-core central processing unit (CPU).
  • the processor 810 may be a baseband chip, a chip, a central processing unit (CPU), a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the processor 810 in the terminal device 800 is used to execute the computer program or instructions 821 stored in the memory 820 to perform the following operations:
  • the PDCCH is determined based on at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes. At least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes is determined based on the first The value of the information is determined;
  • a value of the first information is used to indicate a group of co-scheduled cell combinations, and the co-scheduled cell combination is at least one cell that is scheduled simultaneously within the carrier aggregation cell.
  • this application introduces the first information and the correlation between the value of each first information and each group of co-scheduled cell combinations, and uses the value of one first information to indicate a group of co-scheduled cell combinations.
  • a co-scheduled cell combination is at least one cell that is scheduled simultaneously within a carrier aggregation cell. Then, by determining at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes for each value of the first information, PDCCH monitoring is performed.
  • a certain group of co-scheduled cell combinations is indicated from the carrier aggregation cells through the value of the certain first information, thereby realizing a certain group of co-scheduled cell combinations.
  • the cells in the co-scheduling cell combination are scheduled simultaneously, thereby realizing multi-cell scheduling.
  • Figure 9 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 900 includes a processor 910, a memory 920, and a communication bus used to connect the processor 910 and the memory 920.
  • the memory 920 includes but is not limited to RAM, ROM, EPROM or CD-ROM, and the memory 920 is used to store related instructions and data.
  • network device 900 also includes a communication interface for receiving and sending data.
  • the processor 910 may be one or more central processing units (CPUs).
  • the central processing unit (CPU) may be a single core.
  • Central processing unit (CPU) which can also be a multi-core central processing unit (CPU).
  • the processor 910 may be a baseband chip, a chip, a central processing unit (CPU), a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the processor 910 in the network device 900 is configured to execute the computer program or instructions 921 stored in the memory 920 to perform the following operations:
  • the PDCCH is determined based on at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes, and at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes is determined based on the first The value of the information is determined;
  • a value of the first information is used to indicate a group of co-scheduled cell combinations, and the co-scheduled cell combination is at least one cell that is scheduled simultaneously within the carrier aggregation cell.
  • this application introduces the first information and the correlation between the value of each first information and each group of co-scheduled cell combinations, and uses the value of one first information to indicate a group of co-scheduled cell combinations.
  • a co-scheduled cell combination is at least one cell that is scheduled simultaneously within a carrier aggregation cell. Then, by determining at least one of the number of PDCCH candidates, the number of non-overlapping CCEs, and the number of DCI sizes for each value of the first information, PDCCH monitoring is performed.
  • a certain group of co-scheduled cell combinations is indicated from the carrier aggregation cells through the value of the certain first information, thereby realizing a certain group of co-scheduled cell combinations.
  • the cells in the co-scheduling cell combination are scheduled simultaneously to achieve multi-cell scheduling, so as to reduce the PDCCH monitoring complexity and save power consumption through multi-cell scheduling.
  • the above method embodiments may be applied to or in terminal devices. That is to say, the execution subject of the above method embodiment can be a terminal device, a chip, a chip module or a module, etc., and there is no specific limitation on this.
  • the above method embodiments may be applied to or among network devices. That is to say, the execution subject of the above method embodiment can be a network device, a chip, a chip module or a module, etc., and there is no specific limitation on this.
  • An embodiment of the present application also provides a chip, including a processor, a memory, and a computer program or instructions stored on the memory, wherein the processor executes the computer program or instructions to implement the steps described in the above method embodiments.
  • Embodiments of the present application also provide a chip module, including a transceiver component and a chip.
  • the chip includes a processor, a memory, and a computer program or instructions stored on the memory.
  • the processor executes the computer program or instructions to Implement the steps described in the above method embodiment.
  • Embodiments of the present application also provide a computer-readable storage medium that stores computer programs or instructions. When the computer program or instructions are executed, the steps described in the above method embodiments are implemented.
  • Embodiments of the present application also provide a computer program product, which includes a computer program or instructions. When the computer program or instructions are executed, the steps described in the above method embodiments are implemented.
  • An embodiment of the present application also provides a communication system, including the above-mentioned terminal device and network device.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in hardware, or may be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules.
  • Software modules can be stored in RAM, flash memory, ROM, EPROM, electrically erasable programmable read-only memory (EPROM, EEPROM), registers, hard disks, removable hard disks, and read-only disks ( CD-ROM) or any other form of storage media well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the terminal device or management device.
  • the processor and the storage medium may also exist as discrete components in the terminal device or management device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part through software, hardware, firmware, or any combination thereof. When implemented using software, it can be calculated in whole or in part Implemented in the form of machine program products.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means Transmission to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)) wait.
  • Each module/unit included in each device and product described in the above embodiments may be a software module/unit or a hardware module/unit, or may be partly a software module/unit and partly a hardware module/unit.
  • each module/unit included therein can be implemented in the form of hardware such as circuits, or at least some of the modules/units can be implemented in the form of a software program.
  • the software program Running on the processor integrated inside the chip, the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for various devices and products applied to or integrated into the chip module, each module/unit included in it can They are all implemented in the form of hardware such as circuits.
  • Different modules/units can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components. Alternatively, at least some modules/units can be implemented in the form of software programs. The software program runs on the processor integrated inside the chip module, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for each device and product that is applied or integrated into the terminal equipment, the various modules/units it contains Modules/units can all be implemented in the form of hardware such as circuits. Different modules/units can be located in the same component (for example, chip, circuit module, etc.) or in different components within the terminal device, or at least some of the modules/units can use software programs. This software program runs on the processor integrated inside the terminal device, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了通信方法与装置、终端设备、网络设备和芯片,涉及通信技术领域;该方法包括:网络设备发送物理下行控制信道PDCCH,该PDCCH是基于PDCCH候选个数、非重叠信道控制元素CCE、下行控制信息DCI大小个数中的至少之一项确定,该PDCCH候选个数、该非重叠CCE、该DCI大小个数中的至少之一项是基于第一信息的取值确定的;对应的,终端设备监听该PDCCH。本申请引入第一信息以及每个第一信息的取值与每组共调度小区组合之间的关联关系,使得在后续监听PDCCH以得到某个第一信息的取值时,通过该某个第一信息的取值来从载波聚合的小区中指示出某一组共调度小区组合,实现多小区调度。

Description

通信方法与装置、终端设备、网络设备和芯片 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法与装置、终端设备、网络设备和芯片。
背景技术
第三代合作伙伴计划(3rd generation partnership project,3GPP)所制定的标准协议引入了载波聚合(Carrier Aggregation,CA)机制。其中,在载波聚合机制中,一个小区要么只支持自载波调度(self-carrier scheduling),要么只支持跨载波调度(cross-carrier sheduling)。
目前,一个小区上发送的物理下行控制信道(Physical Downlink Control Channel,PDCCH)所承载的下行控制信息(Downlink Control Information,DCI)只能调度一个小区(一个载波或一个分量载波(Component Carrier,CC))内的数据传输。
由于一个DCI只能调度一个小区内的数据传输,因此在载波聚合场景下,尤其是聚合的小区个数较多且业务量较大时,这将导致终端设备需要花费大量的功耗去监听(盲检)各小区的PDCCH。例如,当聚合有16个小区且下行业务量较大时,若需要在该16个小区上调度下行数据,且一个DCI只能调度一个小区内的数据传输,则终端设备需要分别去监听各个小区的PDCCH,总共需要监听16个PDCCH(1个PDCCH承载一个DCI),从而导致终端设备在监听PDCCH上花费大量的功耗。对此,对于如何降低PDCCH的监听复杂度以节省功耗,还需要进一步研究。
发明内容
本申请提供了一种通信方法与装置、终端设备、网络设备和芯片,以期望解决在降低PDCCH的监听复杂度以节省功耗的情况下实现PDCCH监听。
第一方面,为本申请的一种通信方法,包括:
监听物理下行控制信道PDCCH,所述PDCCH是基于PDCCH候选个数、非重叠信道控制元素CCE、下行控制信息DCI大小个数中的至少之一项确定,所述PDCCH候选个数、所述非重叠CCE、所述DCI大小个数中的至少之一项是基于第一信息的取值确定的;
其中,一个所述第一信息的取值用于指示一组共调度小区组合,所述共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。
可见,本申请引入了第一信息,通过一个第一信息的取值来指示一组共调度小区组合,一组共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。然后,通过确定每个第一信息的取值的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项,以便进行PDCCH监听。这样,在后续监听PDCCH以得到某个第一信息的取值时,通过该某个第一信息的取值来从载波聚合的小区中指示出某一组共调度小区组合,实现对某一组共调度小区组合中的小区进行同时调度,进而实现多小区调度,以便通过多小区调度降低PDCCH的监听复杂度以节省功耗。
第二方面,为本申请的一种通信方法,包括:
发送物理下行控制信道PDCCH,所述PDCCH是基于PDCCH候选个数、非重叠信道控制元素CCE、下行控制信息DCI大小个数中的至少之一项确定,所述PDCCH候选个数、所述非重叠CCE、所述DCI大小个数中的至少之一项是基于第一信息的取值确定的;
其中,一个所述第一信息的取值用于指示一组共调度小区组合,所述共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。
第三方面,为本申请的一种通信装置,包括:
监听单元,用于监听物理下行控制信道PDCCH,所述PDCCH是基于PDCCH候选个数、非重叠信道控制元素CCE、下行控制信息DCI大小个数中的至少之一项确定,所述PDCCH候选个数、所述非重叠CCE、所述DCI大小个数中的至少之一项是基于第一信息的取值确定的;
其中,一个所述第一信息的取值用于指示一组共调度小区组合,所述共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。
第四方面,为本申请的一种通信装置,包括:
发送单元,用于发送物理下行控制信道PDCCH,所述PDCCH是基于PDCCH候选个数、非重叠信道控制元素CCE、下行控制信息DCI大小个数中的至少之一项确定,所述PDCCH候选个数、所述非重叠CCE、所述DCI大小个数中的至少之一项是基于第一信息的取值确定的;
其中,一个所述第一信息的取值用于指示一组共调度小区组合,所述共调度小区组合为在载波聚合 的小区内被同时调度的至少一个小区。
第五方面,上述第一方面所设计的方法中的步骤应用于终端设备或者终端设备之中。
第六方面,上述第二方面所设计的方法中的步骤应用于网络设备或者网络设备之中。
第七方面,为本申请的一种终端设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其中,所述处理器执行所述计算机程序或指令以实现上述第一方面所设计的方法中的步骤。
第八方面,为本申请的一种网络设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其中,所述处理器执行所述计算机程序或指令以实现上述第二方面所设计的方法中的步骤。
第九方面,为本申请的一种芯片,包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。
第十方面,为本申请的一种芯片模组,包括收发组件和芯片,所述芯片包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。
第十一方面,为本申请的一种计算机可读存储介质,其中,其存储有计算机程序或指示,所述计算机程序或指令被执行时实现上述第一方面或第二方面所设计的方法中的步骤。
第十二方面,为本申请的一种计算机程序产品,包括计算机程序或指令,其中,该计算机程序或指令被执行时实现上述第一方面或第二方面所设计的方法中的步骤。
第十三方面,为本申请的一种通信系统,包括第七方面中的终端设备和第八方面中的网络设备。
第二方面至第十三方面的技术方案所带来的有益效果可以参见第一方面的技术方案所带来的技术效果,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本申请实施例的一种通信系统的架构示意图;
图2是本申请实施例的一种载波聚合小区的结构示意图;
图3是本申请实施例的又一种载波聚合小区的结构示意图;
图4是本申请实施例的又一种载波聚合小区的结构示意图;
图5是本申请实施例的一种通信方法的流程示意图;
图6是本申请实施例的一种通信装置的功能单元组成框图;
图7是本申请实施例的又一种通信装置的功能单元组成框图;
图8是本申请实施例的一种终端设备的结构示意图;
图9是本申请实施例的一种网络设备的结构示意图。
具体实施方式
应理解,本申请实施例中涉及的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是还包括没有列出的步骤或单元,或还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
本申请实施例中涉及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示如下三种情况:单独存在A;同时存在A和B;单独存在B。其中,A、B可以是单数或者复数。
本申请实施例中,符号“/”可以表示前后关联对象是一种“或”的关系。另外,符号“/”也可以表示除号,即执行除法运算。例如,A/B,可以表示A除以B。
本申请实施例中的“至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合,是指一个或多个,多个指的是两个或两个以上。例如,a、b或c中的至少一项(个),可以表示如下七种情况:a,b,c,a和b,a和c,b和c,a、b和c。其中,a、b、c中的每一个可以是元素,也可以是包含一个或多个元素的集合。
本申请实施例中的“等于”可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用, 适用于与小于时所采用的技术方案。当等于与大于连用时,不与小于连用;当等于与小于连用时,不与大于连用。
本申请实施例中涉及“的(of)”、“相应的(corresponding/relevant)”、“对应的(corresponding)”、“指示的(indicated)”有时可以混用。应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,对此不做任何限定。
本申请实施例中的“网络”可以与“系统”表达为同一概念,通信系统即为通信网络。
本申请实施例中的“大小(size)”可以与“长度(length)”等表达为同一概念。
下面对本申请实施例所涉及的相关内容、概念、含义、技术问题、技术方案、有益效果等进行说明。
一、通信系统、终端设备和网络设备
1、通信系统
本申请实施例的技术方案可以应用于各种通信系统,例如:通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced Long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based Access to Unlicensed Spectrum,LTE-U)系统、非授权频谱上的NR(NR-based Access to Unlicensed Spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,Wi-Fi)、第6代(6th-Generation,6G)通信系统或者其他通信系统等。
需要说明的是,传统的通信系统所支持的连接数有限,且易于实现。然而,随着通信技术的发展,通信系统不仅可以支持传统的通信系统,还可以支持如设备到设备(device to device,D2D)通信、机器到机器(machine to machine,M2M)通信、机器类型通信(machine type communication,MTC)、车辆间(vehicle to vehicle,V2V)通信、车联网(vehicle to everything,V2X)通信、窄带物联网(narrow band internet of things,NB-IoT)通信等,因此本申请实施例的技术方案也可以应用于上述通信系统。
此外,本申请实施例的技术方案可以应用于波束赋形(beamforming)、载波聚合(carrier aggregation,CA)、双连接(dual connectivity,DC)或者独立(standalone,SA)部署场景等。
本申请实施例中,终端设备和网络设备之间通信所使用的频谱,或者终端设备和终端设备之间通信所使用的频谱可以为授权频谱,也可以为非授权频谱,对此不做限定。另外,非授权频谱可以理解为共享频谱,授权频谱可以理解为非共享频谱。
由于本申请实施例结合终端设备和网络设备描述了各个实施例,因此下面将对涉及的终端设备和网络设备进行具体描述。
2、终端设备
终端设备,可以为一种具有收发功能的设备,又可以称之为终端、用户设备(user equipment,UE)、远程终端设备(remote UE)、中继设备(relay UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、移动设备、用户终端设备、智能终端设备、无线通信设备、用户代理或用户装置。需要说明的是,中继设备是能够为其他终端设备(包括远程终端设备)提供中继转发服务的终端设备。
例如,终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人自动驾驶中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或者智慧家庭(smart home)中的无线终端设备等。
又例如,终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统(例如NR通信系统、6G通信系统)中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,对此不作具体限定。
在一些可能的实现中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;可以部署在水面上(如轮船等);可以部署在空中(如飞机、气球和卫星等)。
在一些可能的实现中,终端设备可以包括无线通信功能的装置,例如芯片系统、芯片、芯片模组。示例的,该芯片系统可以包括芯片,还可以包括其它分立器件。
3、网络设备
网络设备,可以为一种具有收发功能的设备,用于与终端设备之间进行通信。
在一些可能的实现中,网络设备可以负责空口侧的无线资源管理(radio resource management,RRM)、服务质量(quality of service,QoS)管理、数据压缩和加密、数据收发等。
在一些可能的实现中,网络设备可以是通信系统中的基站(base station,BS)或者部署于无线接入网(radio access network,RAN)用于提供无线通信功能的设备。
例如,网络设备可以是LTE通信系统中的演进型节点B(evolutional node B,eNB或eNodeB)、NR通信系统中的下一代演进型的节点B(next generation evolved node B,ng-eNB)、NR通信系统中的下一代节点B(next generation node B,gNB)、双连接架构中的主节点(master node,MN)、双连接架构中的第二节点或辅节点(secondary node,SN)等,对此不作具体限制。
在一些可能的实现中,网络设备还可以是核心网(core network,CN)中的设备,如访问和移动性管理功能(access and mobility management function,AMF)、用户面功能(user plane function,UPF)等;还可以是WLAN中的接入点(access point,AP)、中继站、未来演进的PLMN网络中的通信设备、NTN网络中的通信设备等。
在一些可能的实现中,网络设备可以包括具有为终端设备提供无线通信功能的装置,例如芯片系统、芯片、芯片模组。示例的,该芯片系统可以包括芯片,或者,可以包括其它分立器件。
在一些可能的实现中,网络设备可以与互联网协议(Internet Protocol,IP)网络进行通信。例如,因特网(internet)、私有的IP网或者其他数据网等。
在一些可能的实现中,网络设备可以是一个独立的节点以实现上述基站的功能或者,网络设备可以包括两个或多个独立的节点以实现上述基站的功能。例如,网络设备包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),如gNB-CU和gNB-DU。进一步的,在本申请的另一些实施例中,网络设备还可以包括有源天线单元(active antenna unit,AAU)。其中,CU实现网络设备的一部分功能,DU实现网络设备的另一部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC)层、服务数据适配(service data adaptation protocol,SDAP)层、分组数据汇聚(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。另外,AAU可以实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者由PHY层的信息转变而来,因此,在该网络部署下,高层信令(如RRC信令)可以认为是由DU发送的,或者由DU和AAU共同发送的。可以理解的是,网络设备可以包括CU、DU、AAU中的至少一个。另外,可以将CU划分为RAN中的网络设备,或者,也可以将CU划分为核心网中的网络设备,对此不做具体限定。
在一些可能的实现中,网络设备可以是与终端设备进行相干协作传输(coherent joint transmission,CJT)的多站点中的任一站点,或者是该多站点外的其他站点,或者是其他与终端设备进行网络通信的网络设备,对此不作具体限制。其中,多站点相干协作传输可以为多个站点联合相干传输,或者属于同一个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的不同数据从不同的站点发送到终端设备,或者多个站点虚拟成一个站点进行传输,其他标准中规定相同含义的名称也同样适用于本申请,即本申请并不限制这些参数的名称。多站点相干协作传输中的站点可以为射频拉远头(Remote Radio Head,RRH)、传输接收点(transmission and reception point,TRP)、网络设备等,对此不作具体限定。
在一些可能的实现中,网络设备可以是与终端设备进行非相干协作传输的多站点中的任一站点,或者是该多站点外的其他站点,或者是其他与终端设备进行网络通信的网络设备,对此不作具体限制。其中,多站点非相干协作传输可以为多个站点联合非相干传输,或者属于同一个PDSCH的不同数据从不同的站点发送到终端设备,或者属于同一个PDSCH的不同数据从不同的站点发送到终端设备,其他标准中规定相同含义的名称也同样适用于本申请,即本申请并不限制这些参数的名称。多站点非相干协作传输中的站点可以为RRH、TRP、网络设备等,对此不作具体限定。
在一些可能的实现中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(high elliptical orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在一些可能的实现中,网络设备可以为小区提供服务,而该小区中的终端设备可以通过传输资源(如频谱资源)与网络设备进行通信。其中,该小区可以为宏小区(macro cell)、小小区(small cell)、城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)和毫微微小区(femto cell)等。
4、示例说明
下面对本申请实施例的通信系统做一个示例性说明。
示例性的,本申请实施例的一种通信系统的网络架构,可以参阅图1。如图1所示,通信系统10可以包括网络设备110和终端设备120。终端设备120可以通过无线方式与网络设备110进行通信。
图1仅为一种通信系统的网络架构的举例说明,对本申请实施例的通信系统的网络架构并不构成限定。例如,本申请实施例中,通信系统中还可以包括服务器或其它设备。再例如,本申请实施例中,通信系统中可以包括多个网络设备和/或多个终端设备。
二、PDCCH
PDCCH上承载的净荷(payload)称为下行控制信息(downlink control information,DCI),也就是说,PDCCH承载DCI。
一个载波可以有多个控制资源集(control-resource set,CORESET),CORESET会将资源单元映射到控制信道单元(Control Channel Element,CCE),一个或多个CCE聚合在一起来承载PDCCH,而终端设备可以在搜索空间(search space)上进行盲检以确定网络是否有PDCCH发送给自己。
CCE是构成PDCCH的基本资源单元。一个PDCCH可以使用1、2、4、8、16个CCE。其中,使用的CCE的个数可以称为聚合等级(aggregation level,AL)。也就是说,一个PDCCH可以由若干个CCE聚合而成。
一个CCE可以包括6个资源单元组(Resource Element Group,REG),每个REG可以包括一个OFDM符号上的一个或多个资源块(Resource Block,RB)。
CORESET是5G NR新提出的一个时频域资源集的概念。这是因为在5G NR中,通信系统的传输带宽比较大,而终端设备的支持能力不尽相同。为了适配不同的带宽,同时降低PDCCH的盲检复杂度,从而通过CORESET约束PDCCH的时频域资源调度。
CORESET可以有多个搜索空间,而一个搜索空间是一组具有相同聚合等级的CCE所构成的候选控制信道。由于CCE有多个聚合等级,因此一个终端设备可以对应多个搜索空间。
三、载波聚合
1、分量载波(Component Carrier,CC)、主小区(Primary Cell,PCell)、辅小区(Secondary Cell,SCell)
在载波聚合中,多个载波可以聚合在一起,同时为一个终端设备服务。如此,终端设备通过载波聚合可以获得更大的服务带宽,以及获得更大的传输速率。其中,载波聚合不需要所有载波在频域上连续,甚至无需限制在同一个频段内。
NR标准的载波聚合可以支持最多16个载波的聚合。这些载波可以是不同的载波带宽,也可以是不同的双工方式。
另外,聚合的载波也可以称为分量载波。
例如,载波聚合有5个载波,该5个载波分别为分量载波0(CC0)、分量载波1(CC1)、分量载波2(CC2)、分量载波3(CC3)、分量载波4(CC4)。
对于终端设备,支持载波聚合的终端设备可以同时在多个分量载波上收发数据;不支持载波聚合的终端设备可以在一个分量载波上收发数据。
在NR标准对载波聚合的描述中,经常使用小区的概念。本申请实施例可以将一个载波(或分量载波)称为或看作一个小区。因此,聚合的载波,也可以理解为聚合的小区。同理,支持载波聚合的终端设备可以同时在多个载波(或分量载波)上收发数据,也就是说,支持载波聚合的终端设备可以同时在多个小区内收发数据。
例如,载波聚合有5个载波,该5个载波分别为CC0、CC1、CC2、CC3、CC4。其中,CC0为小区0,或者说CC0对应小区0(小区0对应CC0)。同理,CC1为小区1,CC2为小区2,CC3为小区3,CC4为小区4。
对于这些聚合的小区中,只有一个小区称为主小区,而其他小区则称为辅小区。其中,主小区可以是终端设备接入网络所使用的小区,而辅小区可以是终端设备进入连接态后由网络配置的。网络可以快速地激活或者去激活辅小区来满足业务需求的变化。不同的终端设备可以配置不同的小区作为主小区。
2、自载波调度(self-carrier scheduling)
目前,在载波聚合场景中,一个小区要么只支持自载波调度,要么只支持跨载波调度。
在本申请实施例中,自载波调度,可以表示为,小区的调度授权和传输数据在同一个载波上发送。
例如,若小区0支持自载波调度(或者小区0配置为自载波调度),则终端设备可以在小区0对应的CC0上监听小区0的PDCCH,并通过该PDCCH所承载的DCI来获取相关的调度授权。最后,终端设备通过该调度授权在CC0上进行传输数据的发送。可见,小区0的调度授权和传输数据在CC0上发 送。
3、跨载波调度(cross-carrier sheduling)
在本申请实施例中,跨载波调度,可以表示为,小区的调度授权和传输数据在不同的载波上发送。
需要说明的是,一个小区多载波调度另一个小区,则该另一个小区可以说是支持跨载波调度。
例如,若小区0可以跨载波调度小区1,则终端设备只能在小区0对应的CC0上监听PDCCH,并通过PDCCH所承载的DCI来获取小区1的调度授权(或者说,该DCI只能调度小区1对应的CC1内的数据传输),而终端设备不能在小区1对应的CC1上监听PDCCH来获取自身的调度授权。最后,终端设备通过该调度授权在CC1上进行传输数据的发送。可见,小区0的调度授权在CC0上发送,而小区1的传输数据在CC1上发送。此时,本申请实施例可以说,小区1支持跨载波调度(或者小区1配置为跨载波调度)。
4、载波指示字段(carrier indicator field,CIF)
需要说明的是,DCI可以包含CIF。高层信令可以指示是否配置跨载波调度。
例如,网络可以通过高层参数(如RRC连接重配置RRCConnectionReconfiguration中的跨载波调度配置CrossCarrierSchedulingConfig)来配置某个小区的跨载波调度。当跨载波调度被配置时,需要通过CIF来指示携带该CIF的DCI是针对哪个分量载波。
另外,若一个服务小区上的终端设备配置了CrossCarrierSchedulingConfig,则CIF的取值为0或CrossCarrierSchedulingConfig内的cif-InSchedulingCell值。当CIF的取值为0时,则说明该服务小区为自载波调度。当CIF的取值为其它值时,意味着该服务小区为跨载波调度。
四、PDCCH的监听能力(盲检能力)
终端设备根据相应的搜索空间集在配置有PDCCH监听的每个激活的服务小区上的一个或多个CORESET中监听一组PDCCH候选(candidate)。其中,监听(或盲检),可以理解为,接收每个PDCCH候选并根据监听的DCI格式进行解码。
需要说明的是,本申请的PDCCH候选也可以称为PDCCH盲解码(blind decoding,BD)。
由于终端设备的硬件计算资源、时延和功耗的约束,以及调度灵活度的考量,因此PDCCH的监听能力是在进行PDCCH协议设计时的一个重要考量因素。
1、CIF的取值nCI对应PDCCH候选的CCE索引组(即一组CCE)
对应于CIF的取值nCI的服务小区的激活DL BWP的时隙中的CORESET p的搜索空间集(search space set)s的PDCCH候选PDCCH候选对应的聚合等级(aggregation level)L的CCE索引由下式给出:
其中,表示PDCCH候选索引;
p表示CORESRT索引;
s表示搜索空间集索引;
对于任意公共搜索空间(common search space,CSS),
对于一个终端设备专用搜索空间(UE specific search space,USS),Yp,-1=nRNTI≠0,在pmod3=0的情况下Ap=39827,在pmod3=1的情况下Ap=39829,在pmod3=2的情况下Ap=39839,D=65537;
i=0,…,L-1;
NCCE,p是CCE的个数,该CCE的个数在CORESET p中编号从0到NCCE,p-1;
nCI是CIF的取值,如果终端设备通过跨载波调度配置(CrossCarrierSchedulingConfig)为监听PDCCH的服务小区配置有CFI;否则,对于任意CSS,nCI=0;
其中,是终端设备被配置为监听与nCI对应的服务小区的搜索空间集合s的聚合等级L的PDCCH候选的个数;
对于任意CSS,
对于一个USS,是搜索空间集的s的聚合等级L的所有配置的nCI的最大值。
综上所述,一个CIF的取值可以对应PDCCH候选的CCE索引组,而CCE索引可以确定用于监听 PDCCH的位置。
2、PDCCH候选是否计入监听
对应于nCI的服务小区的激活DL BWP上的CORESET p中使用一组聚合等级L的CCE的搜索空间集sj的PDCCH候选如果存在一个PDCCH候选或者一个PDCCH候选 且PDCCH候选或PDCCH候选与PDCCH候选具有相同的一组聚合等级L的CCE、相同的扰码和相同的DCI格式大小(DCI format size),则PDCCH候选不计入监听(is not counted for monitoring);也就是说,PDCCH候选或PDCCH候选与PDCCH候选为同一个PDCCH候选,或者说,PDCCH候选或PDCCH候选与PDCCH候选只需计算一次。
否则,PDCCH候选计入监听(is counted for monitoring);也就是说,PDCCH候选或PDCCH候选与PDCCH候选不为同一个PDCCH候选。
3、DCI大小个数(DCI size个数)
终端设备期望监听多达4种DCI格式(DCI format)的PDCCH候选,其中包括多达3种DCI格式,其中CRC由每个服务小区的C-RNTI加扰。终端设备根据在相应的激活DL BWP的搜索空间集中配置的PDCCH候选的数量来计算每个服务小区的DCI format的大小(size)个数。
需要说明的是,DCI format的大小个数也可以称为DCI大小个数。
另外,DCI可以在CSS和USS中发送。另外,在Rel-15NR系统中定义了多种DCI format,例如DCI format包括DCI format 0_0(公共搜索空间及UE搜索空间长度不同)、DCI format 0_1、DCI format1_0(公共搜索空间及UE搜索空间长度不同)、DCI format 1_1、DCI format 2_0、DCI format 2_1、DCI format 2_2和DCI format2_3等。
这样,由于DCI format较多,从而导致在一个时频资源(如一个时隙)内终端设备需要盲检的DCI size个数超过DCI大小个数预算(DCI size budget)。例如:Rel-15的要求是DCI size budget为4且用C-RNTI加扰的DCI size budget为3。若一个slot内配置了5种size的DCI,即超过了DCI size budget,则解决方式是将CSS内DCI format 0_0/0_1size与USS内的DCI formt 0_0/0_1size对齐(alignment)。其中,size对齐,可以是将size较小的DCI格式加填充比特,使两者size相同。
4、时隙(slot)
若向终端设备提供了针对一个服务小区的监听能力配置参数(monitoringCapabilityConfig),且monitoringCapabilityConfig=r15monitoringcapability,则终端设备可以获得一个指示(indication),并通过该指示确定在每个时隙(slot)内对于服务小区的PDCCH候选的最大个数或非重叠CCE的最大个数。
5、PDCCH候选的最大个数
在3GPP所规定的标准协议中,终端设备在每个时隙内对于服务小区的PDCCH候选的最大个数进行定义。需要说明的是,PDCCH候选的最大个数,也可以说成,PDCCH候选的最大值,对此不作具体限制。
示例性的,在不同的子载波间隔(subcarrier space,SCS)时,对于一个具有子载波间隔配置(SCS configuration)μ∈{0,1,2,3}的DL BWP上的每个时隙内的服务小区,PDCCH候选的最大个数如表1所示。
表1
其中,若μ=0,则若μ=1,则其余依次可知。
6、非重叠CCE的最大个数
需要说明的是,非重叠CCE的最大个数,也可以说成,非重叠CCE的最大值,对此不作具体限制。
若PDCCH候选的一个或多个CCE对应不同的CORESET索引,则这些CCE是非重叠的,即非重叠的CCE。
若PDCCH候选的一个或多个CCE对应的用于接收各个PDCCH候选的起始符号是不同的,则这些CCE是不重叠的,即非重叠的CCE。
示例性的,在不同的子载波间隔时,对于一个具有子载波间隔配置μ∈{0,1,2,3}的DL BWP上的每个时隙内的服务小区,非重叠CCE的最大个数如表2所示。
表2
其中,若μ=0,则若μ=1,则其余依次可知。
五、一种通信方法
结合上述可知,在载波聚合场景中,一个小区要么只支持自载波调度,要么只支持跨载波调度。目前,一个小区上发送的PDCCH所承载的DCI只能调度一个小区(一个CC或一个载波)内的数据传输,这将导致在载波聚合场景下,尤其是聚合的小区个数较多且业务量较大时,终端设备需要花费大量的功耗去监听(盲检)各小区的PDCCH。
为了降低PDCCH监听的复杂度以节省功耗,本申请引入一个DCI可以支持从载波聚合的小区内同时调度至少一个小区,即多小区调度(multi-cell scheduling),从而通过多小区调度实现降低PDCCH的监听复杂度以节省功耗。
例如,当聚合有16个小区,且下行业务量较大时,若需要在该16个小区上调度下行数据,且一个DCI能够调度该16个小区内的数据传输,则终端设备只需要监听1个PDCCH(1个PDCCH承载一个DCI)。相比于一个DCI能够调度一个小区内的数据传输,本申请通过一个DCI能够调度该16个小区内的数据传输,可以降低PDCCH的监听复杂度,从而减小终端设备在监听PDCCH上花费大量的功耗,即降低PDCCH监听的复杂度以节省功耗。
为了实现多小区调度,本申请引入了第一信息和配置信息,通过一个第一信息的取值来指示一组共调度小区组合(co-scheduled cell combination),一组共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区,以及通过配置信息来配置每个第一信息的取值与每组共调度小区组合之间的关联关系。
为了实现PDCCH监听,本申请还需要确定第一信息的取值的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项,以便进行PDCCH监听。
这样,在后续监听PDCCH以得到某个第一信息的取值时,通过该某个第一信息的取值来从载波聚合的小区中指示出某一组共调度小区组合,实现对某一组共调度小区组合中的小区进行同时调度,进而实现多小区调度。
下面对本申请实施例所涉及的技术方案、有益效果、概念等进行说明。
1、多小区调度
在本申请实施例中,多小区调度,可以表示,一个DCI可以同时调度多个小区内的数据传输。然而,在跨载波调度和自载波调度中,一个DCI只能调度一个小区内的数据传输。
需要说明的是,多小区调度也可以称为多载波调度。
另外,一个小区多载波调度另一些小区,则该另一些小区可以说是支持多小区调度。
例如,小区0(CC0)可以多小区调度小区1(CC1)和小区2(CC2),则小区1(CC1)和小区2(CC2)可以支持多小区调度。
另外,结合上述“三、载波聚合”中的内容,在本申请实施例中,一个小区可以支持多小区调度,可以同时支持多小区调度和自载波调度,可以同时支持多小区调度和跨载波调度。
2、载波聚合的小区、调度小区、被调度小区
结合上述“三、载波聚合”中的内容,本申请实施例可以将一个小区称为或看作一个载波或一个CC,而支持载波聚合的终端设备可以同时在多个小区内收发数据。
需要说明的是,载波聚合的小区可以为多个小区,或者说多个载波等。
另外,若一个小区可以多载波调度另一个小区,则该一个小区可以称为或看作“调度小区”,而该另一个小区称为或看作“被调度小区”。也就是说,被调度小区支持多小区调度。
例如,小区0(CC0)多小区调度小区1(CC1),则小区0(CC0)为调度小区,小区1(CC1)为被调度小区。
3、配置信息、第一信息、共调度小区组合
1)配置信息
本申请实施例中,配置信息,可以用于配置每个第一信息的取值与每组共调度小区组合之间的关联关系。当然,配置信息也可以采用其他术语描述,对此不作具体限制。
在一些可能的实现中,配置信息可以由高层信令携带,例如高层信令可以是RRC信令、系统信息、终端设备专属(UE specific)信令中的之一项等。
需要说明的是,该高层信令可以是在小区搜索、小区驻留、小区接入、初始接入、随机接入等过程中传输的。
2)第一信息、共调度小区组合
在本申请实施例中,一个第一信息的取值,可以用于指示一组共调度小区组合。当然,第一信息也可以采用其他术语描述,对此不作具体限制。
共调度小区组合,可以为在载波聚合的小区内被同时调度的至少一个小区。当然,共调度小区组合也可以采用其他术语描述,对此不作具体限制。
可见,本申请可以通过第一信息来实现同时调度至少一个小区,即通过第一信息来实现多小区调度。
需要说明的是,本申请的第一信息可以由DCI来携带。这样,当终端设备盲检到携带有该第一信息的DCI时,通过第一信息的取值可以确定由该DCI支持调度的一组共调度小区组合,从而实现DCI支持同时调度多个小区。
为了实现DCI来携带第一信息,本申请的第一信息可以为DCI中的一个字段或者两个子字段。
下面分别进行具体说明。
3)第一信息为DCI中的一个子段
需要说明的是,该一个字段的取值可以用于指示一组所述共调度小区组合,且该一个字段的取值对应PDCCH候选的CCE索引组。
在一些可能的实现中,该一个字段可以为CIF,可以为新定义字段,对此不作具体限制。
a)该一个字段为CIF
下面本申请以该一个字段为CIF为例进行具体说明。
示例性的,本申请通过DCI中的CIF来指示共调度小区组合可以有如下两种方式:
●方式A:
在现有CIF的基础上,对CIF进行拓展,使得拓展后的CIF可以用于指示共调度小区组合。也就是说,拓展后的CIF既可以用于指示单小区调度,也可以用于指示多小区调度。其中,在CIF的取值从小到大的情况下,小的CIF的取值用于指示单小区调度,大的CIF的取值用于指示多小区调度。
为了保证通过CIF来指示共调度小区组合,本申请可以适当增加CIF的比特个数,或者说增加CIF的取值。例如,将CIF的比特数从3bit增加到4bit或5bit等。
针对拓展后的CIF,下面以每个CIF的取值与每个共调度小区组合之间的关联关系为例,进行具体说明。
例如,网络设备通过配置信息向终端设备配置了每个CIF的取值与每个共调度小区组合之间的关联关系,如表3所示,载波聚合的小区包括CC0(小区0)、CC1(小区1)、CC2(小区2)和CC3(小区3)。其中,
若CIF=0,即CIF的取值为0,则携带该CIF的DCI支持调度CC0,且CC0为自载波调度;也就是说,CIF=0用于指示一组共调度小区组合,该一组共调度小区组合为CC0;
若CIF=1,则携带该CIF的DCI支持调度CC1,且CC1为跨载波调度;也就是说,CIF=1用于指示一组共调度小区组合,该一组共调度小区组合为CC1;
若CIF=2,则携带该CIF的DCI支持调度CC2,且CC2为跨载波调度;也就是说,CIF=2用于指示一组共调度小区组合,该一组共调度小区组合为CC2;
若CIF=3,则携带该CIF的DCI支持调度CC3,且CC3为跨载波调度;也就是说,CIF=3用于指 示一组共调度小区组合,该一组共调度小区组合为CC3;
若CIF=4,则携带该CIF的DCI支持同时调度CC0和CC1;也就是说,CIF=4用于指示一组共调度小区组合,该一组共调度小区组合为CC0和CC1;
若CIF=5,则携带该CIF的DCI支持同时调度CC1和CC2;也就是说,CIF=5用于指示一组共调度小区组合,该一组共调度小区组合为CC1和CC2;
若CIF=6,则携带该CIF的DCI支持同时调度CC0、CC1、CC2和CC3;也就是说,CIF=6用于指示一组共调度小区组合,该一组共调度小区组合为CC0、CC1、CC2和CC3;
若CIF=7,则携带该CIF的DCI支持同时调度CC2和CC3;也就是说,CIF=7用于指示一组共调度小区组合,该一组共调度小区组合为CC2和CC3。
表3
●方式B:
与上述方式中的CIF既可以用于指示单小区调度,又可以用于指示多小区调度,本申请可以将用于指示单小区调度的CIF与用于指示多小区调度的CIF进行分开。具体可以通过携带CIF的DCI格式来区分。
例如,若DCI格式为现有的,现有的DCI格式有DCI 1_1/1_2/0_1/0_2等,则现有的DCI格式携带的CIF用于指示单小区调度;若DCI格式为新定义的,如新定义的DCI格式为DCI 1_X/0_X等,则新定义的DCI格式携带的CIF用于指示多小区调度。
针对新定义的DCI格式携带的CIF,下面以每个CIF的取值与每个共调度小区组合之间的关联关系为例,进行具体说明。
例如,网络设备通过配置信息向终端设备配置了每个CIF的取值与每个共调度小区组合之间的关联关系,如表4所示,载波聚合的小区包括CC0(小区0)、CC1(小区1)、CC2(小区2)和CC3(小区3)。其中,
若新定义的DCI格式携带的CIF的取值为0,即CIF=0,则该DCI支持同时调度CC0和CC3;也就是说,CIF=0用于指示一组共调度小区组合,该一组共调度小区组合为CC0和CCC3;
其余依次类推,对此不再赘述。
表4
b)该一个字段为新定义字段
需要说明的是,与上述不同的是,本申请可以在DCI中添加一个新定义字段,该新定义字段用于指示共调度小区组合,即该定义字段用于指示多小区调度。此时,与上述“方式B”中的类似,对此不再赘述。
例如,以新定义字段为共调度小区组合指示字段(co-scheduled cell combination indication field)为例,将表4中的CIF的取值替换为共调度小区组合指示字段的取值。
4)第一信息为DCI中的两个字段
需要说明的是,在这种方式中,DCI中的两个字段中的第一字段(为了便于区分描述,采用第一字段来表示该两个字段中的某一个字段)的取值可以用于指示多组共调度小区组合,且第一字段的取值可以对应PDCCH候选的CCE索引组。
DCI中的两个字段中的第二字段(为了便于区分描述,采用第二字段来表示该两个字段中的另一个字段)的取值可以用于从第一字段所指示的多组共调度小区组合中指示出一组共调度小区组合。
在一些可能的实现中,第一字段可以为CIF或者新定义字段,第二字段可以为新定义字段,对此不作具体限制。
需要说明的是,第二字段可以与上述“方式B”中的类似,对此不再赘述。
在一些可能的实现中,第一字段的取值可以对应多个第二字段的取值。
例如,以第一字段为CIF,且第二字段为共调度小区组合指示字段(co-scheduled cell combination indication field)为例,如表5所示,DCI携带CIF和共调度小区组合指示字段,载波聚合的小区包括CC0、CC1、CC2和CC3。其中,
若DCI中的CIF=1,且共调度小区组合指示字段的取值为0(000),则该DCI支持同时调度CC0和CC3;也就是说,CIF=1且共调度小区组合指示字段的取值为0,用于指示一组共调度小区组合,该 一组共调度小区组合为CC0和CC3;
若DCI中的CIF=1,且共调度小区组合指示字段的取值为1(001),则该DCI支持同时调度CC1和CC3;也就是说,CIF=1且共调度小区组合指示字段的取值为1,用于指示一组共调度小区组合,该一组共调度小区组合为CC1和CC3;
其余依次类推,对此不再赘述。
表5
结合上述“1、CIF的取值nCI对应PDCCH候选的CCE索引组”中的内容,一个CIF的取值可以对应PDCCH候选的CCE索引组。由于一个CIF的取值可以用于指示多组共调度小区组合,因此该多组共调度小区组合可以共享相同的CCE索引组。
4、第一信息的取值对应PDCCH候选的CCE索引
结合上述“1、CIF的取值nCI对应PDCCH候选的CCE索引组”中的可知,本申请的第一信息的取值可以对应PDCCH候选的CCE索引组。其中,一个第一信息的取值可以对应PDCCH候选的CCE索引组,而CCE索引可以确定用于监听PDCCH的位置。
另外,第一信息的取值对应PDCCH候选的CCE索引组,可以为搜索空间的第一信息的PDCCH候选。若第一信息的取值不同,则搜索空间的索引也可能不同。
5、共调度小区组合中存在配置有搜索空间的小区
需要说明的是,为了保证PDCCH监听,网络设备可能会向载波聚合的小区配置搜索空间。对此,用于调度共调度小区组合的PDCCH的搜索空间,可以配置在载波聚合的小区中的一个或多个小区上。也就是说,共调度小区组合中存在配置有搜索空间的小区。这样,终端设备可以只需在配置有搜索空间的小区来对应统计PDCCH候选个数/非重叠CCE个数/DCI大小个数。
6、共调度小区组合中存在配置有第一信息的取值的小区
需要说明的是,为了保证PDCCH监听,网络设备可能会向载波聚合的小区配置第一信息的取值。对此,用于调度共调度小区组合的第一信息的取值,可以配置在载波聚合的小区中的一个或多个小区上。也就是说,共调度小区组合中可能存在配置有第一信息的取值的小区。这样,终端设备可以只需在第一信息的取值的PDCCH候选上进行盲检以确定网络是否有对应共调度小区组合的PDCCH发送给自己。
7、PDCCH监听
为了保证PDCCH监听,网络设备会向终端设备配置CORESET、搜索空间集、一定聚合等级的CCE、每个第一信息的取值与每组共调度小区组合之间的关联关系等相关的信息。对此,终端设备可以在搜索空间的第一信息的取值的PDCCH候选上盲检PDCCH,直到盲检到携带有第一信息的DCI。
具体实现时,本申请的终端设备可以确定第一信息的取值的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项以进行PDCCH监听。也就是说,PDCCH候选个数/非重叠CCE个数/DCI大小个数是根据第一信息的取值确定的。
例如,在表4中,终端设备需要分别确定CIF=0到7的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项以进行PDCCH监听。之后,若终端设备在CIF=4的搜索空口的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项检测到DCI,则该DCI会携带CIF=4的CIF,从而该DCI调度CIF=4所指示的那组共调度小区组合,即该DCI同时调度了CC0、CC1和CC2。
需要说明的是,在对PDCCH候选个数/非重叠CCE个数/DCI大小个数进行确定时,PDCCH候选个数/非重叠CCE个数/DCI大小个数可以是针对一组共调度小区组合中的每个小区的搜索空间进行确定的,可以是针对一组共调度小区组合中的某一个小区的搜索空间进行确定的,可以是针对一组共调度小区组合中的部分小区的搜索空间进行确定的。
下面分情形进行具体说明。
情形1:
1)配置搜索空间和第一信息的取值
在“情形1”中,网络设备可以向第一信息的取值为X(X为某个值)所指示的一组共调度小区组合(为了便于区分描述,该一组共调度小区组合为“第一共调度小区组合”)中的每个小区均配置相同的索引的搜索空间,以及向该每个小区均配置相同的第一信息的取值。
2)确定PDCCH候选个数/非重叠CCE个数/DCI大小个数
对此,第一共调度小区组合中的每个小区都要数第一信息的取值为X的自身小区的搜索空间的PDCCH候选个数/非重叠CCE个数/DCI大小个数。
也就是说,根据第一信息的取值X确定第一共调度小区组合中的每个小区的搜索空间的PDCCH候选个数/非重叠CCE个数/DCI大小个数。
例如,结合表3所示,载波聚合的小区包括CC0、CC1、CC2和CC3,在图2中,网络设备向CIF=6所指示的一组共调度小区组合中的每个小区配置有搜索空间1和CIF=6。因此,CC0配置有搜索空间1和CIF=6,CC1配置有搜索空间1和CIF=6,CC2配置有搜索空间1和CIF=6,CC3配置有搜索空间1和CIF=6。对此,终端设备需要分别确定CIF=6的CC0的搜索空间1的PDCCH候选个数/非重叠CCE个数/DCI大小个数,确定CIF=6的CC1的搜索空间1的PDCCH候选个数/非重叠CCE个数/DCI大小个数,确定CIF=6的CC2的搜索空间1的PDCCH候选个数/非重叠CCE个数/DCI大小个数,以及确定CIF=6的CC3的搜索空间1的PDCCH候选个数/非重叠CCE个数/DCI大小个数。
3)PDCCH候选个数/CCE个数
结合上述“2、PDCCH候选是否计入监听”中的内容,每个小区的搜索空间的PDCCH候选个数/CCE个数只需计算一次,可以理解为,对于第一信息的取值X,具有相同的一组聚合等级的CCE、相同的扰码和相同的DCI格式大小的PDCCH候选看作一个PDCCH候选。
4)第一共调度小区组合中的每个小区的搜索空间的PDCCH候选个数
为了避免终端设备对第一共调度小区组合中的每个小区的搜索空间的PDCCH候选个数进行监听,本申请可以采用如下方式:
方式1:
终端设备确定每个小区的搜索空间的PDCCH候选个数中的最大值,并按照该最大值来进行PDCCH监听。
例如,结合表3所示,载波聚合的小区包括CC0、CC1、CC2和CC3,在表6中,存在如下:
CC0的聚合等级为2(AL=2)的CCE的搜索空间的PDCCH候选个数为1;
CC0的聚合等级为4(AL=4)的CCE的搜索空间的PDCCH候选个数为2;
CC0的聚合等级为8(AL=8)的CCE的搜索空间的PDCCH候选个数为3;
CC0的聚合等级为16(AL=16)的CCE的搜索空间的PDCCH候选个数为2;
CC1的聚合等级为2(AL=2)的CCE的搜索空间的PDCCH候选个数为2;
CC1的聚合等级为4(AL=4)的CCE的搜索空间的PDCCH候选个数为3;
其余同理可知,对此不再赘述;
因此,当CIF=4时,CIF=4所指示的一组共调度小区组合中每个小区(CC0和CC1)的聚合等级为2的CCE的搜索空间的PDCCH候选个数中的最大值为2(max(CC0,CC1)=2);
当CIF=4时,CIF=4所指示的一组共调度小区组合中每个小区(CC0和CC1)的聚合等级为4的CCE的搜索空间的PDCCH候选个数中的最大值为3(max(CC0,CC1)=3);
当CIF=4时,CIF=4所指示的一组共调度小区组合中每个小区(CC0和CC1)的聚合等级为8的CCE的搜索空间的PDCCH候选个数中的最大值为3(max(CC0,CC1)=3);
当CIF=4时,CIF=4所指示的一组共调度小区组合中每个小区(CC0和CC1)的聚合等级为16的CCE的搜索空间的PDCCH候选个数中的最大值为2(max(CC0,CC1)=2);
当CIF=5时,CIF=5所指示的一组共调度小区组合中每个小区(CC1和CC2)的聚合等级为2的CCE的搜索空间的PDCCH候选个数中的最大值为2(max(CC1,CC2)=2);
其余同理可知,对此不再赘述。
表6
方式2:
终端设备确定每个小区的搜索空间的PDCCH候选个数中的最大值,再求该最大值的平均,得到平均值,从而按照该平均值来进行PDCCH监听。
例如,结合表3所示,载波聚合的小区包括CC0、CC1、CC2和CC3,在表7中,存在如下:
CC0的聚合等级为2(AL=2)的CCE的搜索空间的PDCCH候选个数为1;
其余同理可知,对此不再赘述;
因此,当CIF=4时,CIF=4所指示的一组共调度小区组合中每个小区(CC0和CC1)的聚合等级为2的CCE的搜索空间的PDCCH候选个数中的最大值的平均为1(max(CC0,CC1)/2=1);
当CIF=4时,CIF=4所指示的一组共调度小区组合中每个小区(CC0和CC1)的聚合等级为4的CCE的搜索空间的PDCCH候选个数中的最大值的平均为1.5(max(CC0,CC1)/2=1.5);
其余同理可知,对此不再赘述。
表7
方式3:
终端设备确定每个小区的搜索空间的PDCCH候选个数中的一个任意值,并按照该任意值来进行PDCCH监听。
5)第一共调度小区组合中的每个小区的搜索空间的非重叠CCE个数
为了避免终端设备对第一共调度小区组合中的每个小区的搜索空间的非重叠CCE个数进行监听,本申请可以采用如下方式:
方式1:
终端设备确定每个小区的搜索空间的非重叠CCE个数中的最大值,并按照该最大值来进行PDCCH监听。
方式2:
终端设备确定每个小区的搜索空间的非重叠CCE个数中的最大值,再求该最大值的平均,得到平均值,从而按照该平均值来进行PDCCH监听。
方式3:
终端设备确定每个小区的搜索空间的非重叠CCE个数中的一个任意值,并按照该任意值来进行PDCCH监听。
6)丢弃(drop)PDCCH候选个数
需要说明的是,若第一共调度小区组合中的每个小区的搜索空间的PDCCH候选个数超过PDCCH候选的最大个数限制,则本申请需要将超过的那部分PDCCH候选个数进行丢弃。
7)丢弃非重叠CCE个数
需要说明的是,若第一共调度小区组合中的每个小区的搜索空间的非重叠CCE个数超过非重叠CCE的最大个数限制,则本申请需要将超过的那部分非重叠CCE个数进行丢弃。
8)第一共调度小区组合中的每个小区的搜索空间的DCI大小个数
需要说明的是,结合上述“3、DCI大小个数(DCI size个数)”中的内容,终端设备可以确定第一共调度小区组合中的每个小区的搜索空间的DCI大小个数,为用于调度第一共调度小区组合的DCI格式的种类数。
情形2:
1)配置搜索空间和第一信息的取值
在“情形2”中,网络设备可以向第一信息的取值为X(X为某个值)所指示的一组共调度小区组合(为了便于区分描述,该一组共调度小区组合为“第一共调度小区组合”)中的某一个小区(为了便于区分描述,该一个小区为“第一小区”)配置搜索空间,以及向该第一小区配置第一信息的取值。
2)确定PDCCH候选个数/非重叠CCE个数/DCI大小个数
对此,本申请只需对第一小区数第一信息的取值X的自身小区的搜索空间的PDCCH候选个数/非重叠CCE个数/DCI大小个数。
也就是说,根据第一信息的取值X确定第一小区的搜索空间的PDCCH候选个数/非重叠CCE个数/DCI大小个数。
例如,结合表3所示,载波聚合的小区包括CC0、CC1、CC2和CC3,在图3中,网络设备向CIF=6所指示的一组共调度小区组合中的CC0配置有搜索空间1和CIF=6,而其他小区未配置有搜索空间和CIF的取值。对此,终端设备需要确定CIF=6的CC0的搜索空间1的PDCCH候选个数/非重叠CCE个数/DCI大小个数。
3)丢弃PDCCH候选个数
需要说明的是,若第一小区的搜索空间的PDCCH候选个数超过PDCCH候选的最大个数限制,则本申请需要将超过的那部分PDCCH候选个数进行丢弃。
4)丢弃非重叠CCE个数
需要说明的是,若第一小区的搜索空间的非重叠CCE个数超过非重叠CCE的最大个数限制,则本申请需要将超过的那部分非重叠CCE个数进行丢弃。
5)第一共调度小区组合中的每个小区的搜索空间的DCI大小个数
需要说明的是,结合上述“3、DCI大小个数(DCI size个数)”中的内容,终端设备可以确定第一小区的搜索空间的DCI大小个数,为用于调度第一共调度小区组合的DCI格式的种类数。
情形3:
1)配置搜索空间和第一信息的取值
在“情形3”中,网络设备可以向第一信息的取值为X(X为某个值)所指示的一组共调度小区组合(为了便于区分描述,该一组共调度小区组合为“第一共调度小区组合”)中的部分小区均配置相同的索引的搜索空间,以及向该部分小区均配置相同的第一信息的取值。其中,部分小区可以为第一共调度小区组合中的多个小区。
2)确定PDCCH候选个数/非重叠CCE个数/DCI大小个数
对此,第一共调度小区组合中的部分小区都要数第一信息的取值为X的自身小区的搜索空间的PDCCH候选个数/非重叠CCE个数/DCI大小个数。
也就是说,根据第一信息的取值X确定第一共调度小区组合中的部分小区的搜索空间的PDCCH候选个数/非重叠CCE个数/DCI大小个数。
例如,结合表3所示,载波聚合的小区包括CC0、CC1、CC2和CC3,在图4中,网络设备向CIF=6所指示的一组共调度小区组合中的部分小区配置有搜索空间1和CIF=6。其中,CC0配置有搜索空间1和CIF=6,CC1配置有搜索空间1和CIF=6,CC2配置有搜索空间1和CIF=6。对此,终端设备需要分别确定CIF=6的CC0的搜索空间1的PDCCH候选个数/非重叠CCE个数/DCI大小个数,确定CIF=6的CC1的搜索空间1的PDCCH候选个数/非重叠CCE个数/DCI大小个数,以及确定CIF=6的CC2的搜索空间1的PDCCH候选个数/非重叠CCE个数/DCI大小个数。
3)PDCCH候选个数/CCE个数只需计算一次
由于第一共调度小区组合中的部分小区配置有相同的索引的搜索空间以及相同的第一信息的取值, 因此在确定部分小区的搜索空间的PDCCH候选个数/CCE个数时,部分小区的搜索空间的PDCCH候选个数/CCE个数可以只需计算一次。
结合上述“2、PDCCH候选是否计入监听”中的内容,部分小区的搜索空间的PDCCH候选个数/CCE个数只需计算一次,可以理解为,对于第一信息的取值X的搜索空间,具有相同的一组聚合等级的CCE、相同的扰码和相同的DCI格式大小的PDCCH候选看作一个PDCCH候选。
4)第一共调度小区组合中的部分小区的搜索空间的PDCCH候选个数
为了避免终端设备对第一共调度小区组合中的每个小区的搜索空间的PDCCH候选个数进行监听,本申请可以采用如下方式:
方式1:
终端设备确定部分小区的搜索空间的PDCCH候选个数中的最大值,并按照该最大值来进行PDCCH监听。
方式2:
终端设备确定部分小区的搜索空间的PDCCH候选个数中的最大值,再求该最大值的平均,得到平均值,从而按照该平均值来进行PDCCH监听。
方式3:
终端设备确定部分小区的搜索空间的PDCCH候选个数中的一个任意值,并按照该任意值来进行PDCCH监听。
5)第一共调度小区组合中的部分小区的搜索空间的非重叠CCE个数
为了避免终端设备对第一共调度小区组合中的部分小区的搜索空间的非重叠CCE个数进行监听,本申请可以采用如下方式:
方式1:
终端设备确定部分小区的搜索空间的非重叠CCE个数中的最大值,并按照该最大值来进行PDCCH监听。
方式2:
终端设备确定部分小区的搜索空间的非重叠CCE个数中的最大值,再求该最大值的平均,得到平均值,从而按照该平均值来进行PDCCH监听。
方式3:
终端设备确定部分小区的搜索空间的非重叠CCE个数中的一个任意值,并按照该任意值来进行PDCCH监听。
6)丢弃(drop)PDCCH候选个数
需要说明的是,若部分小区的搜索空间的PDCCH候选个数超过PDCCH候选的最大个数限制,则本申请需要将超过的那部分PDCCH候选个数进行丢弃。
7)丢弃非重叠CCE个数
需要说明的是,若部分小区的搜索空间的非重叠CCE个数超过非重叠CCE的最大个数限制,则本申请需要将超过的那部分非重叠CCE个数进行丢弃。
8)第一共调度小区组合中的部分小区的搜索空间的DCI大小个数
需要说明的是,结合上述“3、DCI大小个数(DCI size个数)”中的内容,终端设备可以确定部分小区的搜索空间的DCI大小个数,为用于调度第一共调度小区组合的DCI格式的种类数。
8、一种通信方法的示例说明
结合上述内容,下面以网络设备与终端设备之间的交互为例,对本申请实施例的一种通信方法进行示例介绍。需要说明的是,网络设备可以是芯片、芯片模组或通信模块等,终端设备可以是芯片、芯片模组或通信模块等。也就是说,该方法应用于网络设备或者终端设备之中,对此不作具体限制。
如图5所示,为本申请实施例的一种通信方法的流程示意图,具体包括如下步骤:
S510、网络设备发送物理下行控制信道PDCCH。
其中,PDCCH是基于PDCCH候选个数、非重叠CCE、DCI大小个数中的至少之一项确定,PDCCH候选个数、非重叠CCE、DCI大小个数中的至少之一项是基于第一信息的取值确定的;
其中,一个第一信息的取值用于指示一组共调度小区组合,共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。
在一些可能的实现中,每个第一信息的取值与每组共调度小区组合之间具有关联关系。
在一些可能的实现中,每个第一信息的取值与每组共调度小区组合之间的关联关系是由配置信息所配置的。
对应的,终端设备监听该PDCCH。
在一些可能的实现中,PDCCH监听可以是根据第一信息的取值确定共调度小区组合的搜索空间的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项以进行的。
需要说明的是,“配置信息”、“第一信息”、“共调度小区组合”、“第一信息的取值”、“PDCCH候选个数”、“非重叠CCE个数”和“DCI大小个数”等,详见上述中的内容,对此不再赘述。
可见,本申请引入了第一信息,通过一个第一信息的取值来指示一组共调度小区组合,一组共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。然后,通过确定每个第一信息的取值的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项,以便进行PDCCH监听。
这样,在后续监听PDCCH以得到某个第一信息的取值时,通过该某个第一信息的取值来从载波聚合的小区中指示出某一组共调度小区组合,实现对某一组共调度小区组合中的小区进行同时调度,进而实现多小区调度,以便通过多小区调度降低PDCCH的监听复杂度以节省功耗。
在一些可能的实现中,共调度小区组合中存在配置有搜索空间和/或第一信息的取值的小区。
需要说明的是,结合上述“6、每组共调度小区组合中存在配置有搜索空间的小区”和“7、每组共调度小区组合中存在配置有第一信息的取值的小区”中的内容,为了保证PDCCH监听,网络设备可能会向向载波聚合的小区配置搜索空间和/或第一信息的取值。对此,每组共调度小区组合中存在配置有搜索空间和/或第一信息的取值的小区。
这样,终端设备可以只需在配置有搜索空间和/或第一信息的取值的小区上进行盲检以确定网络设备是否有PDCCH发送给自己。
在一些可能的实现中,第一共调度小区组合中的每个小区均配置有相同索引的搜索空间,以及每个小区均配置有相同的第一信息的取值;
第一共调度小区组合为一组共调度小区组合。
需要说明的是,结合上述“情形1”中的内容,网络设备可以向第一信息的取值为X(X为某个值)所指示的一组共调度小区组合(即第一共调度小区组合)中的每个小区均配置相同的索引的搜索空间,以及向该每个小区均配置相同的第一信息的取值。这样,本申请可以针对每个小区计算PDCCH候选个数/非重叠CCE个数/DCI大小个数。
在一些可能的实现中,根据每个小区所配置的第一信息的取值确定每个小区的搜索空间的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项是可以根据每个小区所配置的第一信息的取值确定的。
需要说明的是,结合上述“情形1”中的内容,本申请可以实现第一共调度小区组合中的每个小区都要数第一信息的取值X的自身小区的搜索空间的PDCCH候选个数/非重叠CCE个数/DCI大小个数。
在一些可能的实现中,每个小区的搜索空间的PDCCH候选个数,为每个小区的搜索空间的PDCCH候选个数中的最大值;或者,为每个小区的搜索空间的PDCCH候选个数中的最大值,再求最大值的平均;
每个小区的搜索空间的非重叠CCE个数,为每个小区的搜索空间的非重叠CCE个数中的最大值;或者,为每个小区在每个聚合等级下的非重叠CCE个数中的最大值,再求最大值的平均。
需要说明的是,结合上述“情形1”中的内容,本申请可以按照每个小区的搜索空间的PDCCH候选个数中的最大值或者平均值来进行PDCCH监听,避免对每个小区的搜索空间的PDCCH候选个数进行监听,提高监听效率。
同样,本申请可以按照每个小区的搜索空间的非重叠CCE个数中的最大值或者平均值来进行PDCCH监听,避免对每个小区的搜索空间的非重叠CCE个数进行监听,提高监听效率。
在一些可能的实现中,每个小区的搜索空间的DCI大小个数,为用于调度第一共调度小区组合的DCI格式的种类数。
可见,本申请可以通过调度第一共调度小区组合的DCI格式的种类数来实现确定第一共调度小区组合中的每个小区的搜索空间的DCI大小个数。
在一些可能的实现中,第一共调度小区组合中只有一个第一小区配置有搜索空间,以及第一小区配置有一个第一信息的取值;
第一共调度小区组合为一组共调度小区组合。
需要说明的是,结合上述“情形2”中的内容,网络设备可以向第一信息的取值为X(X为某个值)所指示的一组共调度小区组合(即第一共调度小区组合)中的某一个小区(即第一小区)配置搜索空间,以及向第一小区配置第一信息的取值。这样,本申请可以只需对一个小区计算PDCCH候选个数/非重叠CCE个数/DCI大小个数,从而减小计算复杂度。
在一些可能的实现中,第一小区的搜索空间的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项可以是根据第一小区所配置的第一信息的取值确定的。
需要说明的是,结合上述“情形2”中的内容,本申请可以实现只需对第一小区数第一信息的取值X的自身小区的搜索空间的PDCCH候选个数/非重叠CCE个数/DCI大小个数。
在一些可能的实现中,第一小区的搜索空间的的DCI大小个数,为用于调度第一共调度小区组合的DCI格式的种类数。
可见,本申请可以通过调度第一共调度小区组合的DCI格式的种类数来实现确定第一小区的搜索空间的DCI大小个数。
在一些可能的实现中,第一共调度小区组合中的部分小区均配置有相同索引的搜索空间,以及部分小区均配置有相同的第一信息的取值;第一共调度小区组合为一组共调度小区组合;
部分小区为第一共调度小区组合中的多个小区。
需要说明的是,结合上述“情形3”中的内容,网络设备可以向第一信息的取值为X(X为某个值)所指示的一组共调度小区组合(即第一共调度小区组合)中的部分小区均配置相同的索引的搜索空间,以及向该部分小区均配置相同的第一信息的取值。这样,本申请可以只需针对部分小区计算PDCCH候选个数/非重叠CCE个数/DCI大小个数,从而减小计算复杂度。
在一些可能的实现中,部分小区的搜索空间的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项可以是根据部分小区所配置的第一信息的取值确定。
需要说明的是,结合上述“情形3”中的内容,本申请可以实现第一共调度小区组合中的部分小区都要数第一信息的取值X的自身小区的搜索空间的PDCCH候选个数/非重叠CCE个数/DCI大小个数。
在一些可能的实现中,部分小区的搜索空间的PDCCH候选个数,为部分小区的搜索空间的PDCCH候选个数中的最大值;或者,为部分小区的搜索空间的PDCCH候选个数中的最大值,再求最大值的平均。
部分小区的搜索空间的非重叠CCE个数,为部分小区的搜索空间的非重叠CCE个数中的最大值;或者,为部分小区的搜索空间的非重叠CCE个数中的最大值,再求最大值的平均。
需要说明的是,结合上述“情形3”中的内容,本申请可以按照部分小区的搜索空间的PDCCH候选个数中的最大值或者平均值来进行PDCCH监听,避免对每个小区的搜索空间的PDCCH候选个数进行监听,提高监听效率。
同样,本申请可以按照部分小区的搜索空间的非重叠CCE个数中的最大值或者平均值来进行PDCCH监听,避免对每个小区的搜索空间的非重叠CCE个数进行监听,提高监听效率。
在一些可能的实现中,部分小区的搜索空间的DCI大小个数,为用于调度第一共调度小区组合的DCI格式的种类数。
可见,本申请可以通过调度第一共调度小区组合的DCI格式的种类数来实现确定第一共调度小区组合中的部分小区的搜索空间的DCI大小个数。
在一些可能的实现中,第一信息,包括DCI中的一个字段或者两个字段。
需要说明的是,结合上述“3、配置信息、第一信息、共调度小区组合”中的内容,本申请可以实现DCI来携带第一信息,并通过DCI中的一个字段或者两个字段来实现指示共调度小区组合。
在一些可能的实现中,若第一信息为DCI中的一个字段,则该一个字段的取值可以用于指示一组共调度小区组合,且该一个字段的取值对应PDCCH候选的CCE索引组。
在一些可能的实现中,若第一信息为DCI中的两个字段,则该两个字段中的第一字段的取值可以用于指示多组共调度小区组合,且第一字段的取值对应PDCCH候选的CCE索引组;该两个字段中的第二字段的取值用于从第一字段所指示的多组共调度小区组合中指示出一组共调度小区组合。
需要说明的是,结合上述“3、配置信息、第一信息、共调度小区组合”中的内容,本申请通过将一个第一字段的取值对应多个第二字段的取值,并且一个第二字段的取值用于指示一组共调度小区组合。这样,一个第一字段的取值可以用于指示多组共调度小区组合。
六、一种通信装置的示例说明
上述主要从方法侧的角度对本申请实施例的方案进行了介绍。可以理解的是,终端设备或网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件与计算机软件的结合形式来实现。某个功能究竟以硬件或计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备或网络设备进行功能单元的划分。例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,只是一种逻辑功能划分,而实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图6是本申请实施例的一种监听装置的功能单元组成框图。通信装置600包括:监听单元601。
在一些可能的实现中,监听单元601可以是一种用于对信号、数据、信息等进行处理的模块单元,对此不作具体限制。
在一些可能的实现中,通信装置600还可以包括存储单元,用于存储通信装置600所执行的计算机程序代码或者指令。存储单元可以是存储器。
在一些可能的实现中,通信装置600可以是芯片或者芯片模组。
在一些可能的实现中,监听单元601可以集成在其他单元中。
例如,监听单元601可以集成在通信单元中。
又例如,接监听单元601可以集成在处理单元中。
需要说明的是,通信单元可以是通信接口、收发器、收发电路等。
处理单元可以是处理器或控制器,例如可以是基带处理器、基带芯片、中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在一些可能的实现中,监听单元601用于执行如上述方法实施例中由终端设备/芯片/芯片模组等执行的任一步骤,如发送或接收数据等。下面进行详细说明。
具体实现时,监听单元601用于执行如上述方法实施例中的任一步骤,且在执行诸如发送等动作时,可选择的调用其他单元来完成相应操作。下面进行详细说明。
监听单元601,用于监听PDCCH,PDCCH是基于PDCCH候选个数、非重叠CCE、DCI大小个数中的至少之一项确定,PDCCH候选个数、非重叠CCE、DCI大小个数中的至少之一项是基于第一信息的取值确定的;
其中,一个第一信息的取值用于指示一组共调度小区组合,共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。
可见,本申请引入了第一信息以及每个第一信息的取值与每组共调度小区组合之间的关联关系,通过一个第一信息的取值来指示一组共调度小区组合,一组共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。然后,通过确定每个第一信息的取值的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项,以便进行PDCCH监听。这样,在后续监听PDCCH以得到某个第一信息的取值时,通过该某个第一信息的取值来从载波聚合的小区中指示出某一组共调度小区组合,实现对某一组共调度小区组合中的小区进行同时调度,进而实现多小区调度。
在一些可能的实现中,共调度小区组合中存在配置有搜索空间和/或第一信息的取值的小区。
在一些可能的实现中,第一共调度小区组合中的每个小区均配置有相同索引的搜索空间,以及每个小区均配置有相同的第一信息的取值;
第一共调度小区组合为一组共调度小区组合。
在一些可能的实现中,每个小区的搜索空间的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项可以是根据每个小区所配置的第一信息的取值确定的。
在一些可能的实现中,每个小区的搜索空间的PDCCH候选个数,为每个小区的搜索空间的PDCCH候选个数中的最大值;或者,为每个小区的搜索空间的PDCCH候选个数中的最大值,再求最大值的平均;
每个小区的搜索空间的非重叠CCE个数,为每个小区的搜索空间的非重叠CCE个数中的最大值;或者,为每个小区在每个聚合等级下的非重叠CCE个数中的最大值,再求最大值的平均。
在一些可能的实现中,每个小区的搜索空间的DCI大小个数,为用于调度第一共调度小区组合的DCI格式的种类数。
在一些可能的实现中,第一共调度小区组合中只有一个第一小区配置有搜索空间,以及第一小区配置有一个第一信息的取值;
第一共调度小区组合为一组共调度小区组合。
在一些可能的实现中,根据第一小区所配置的第一信息的取值确定第一小区的搜索空间的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项可以是根据第一小区所配置的第一信息的取值确定的。
在一些可能的实现中,第一小区的搜索空间的的DCI大小个数,为用于调度第一共调度小区组合的DCI格式的种类数。
在一些可能的实现中,第一共调度小区组合中的部分小区均配置有相同索引的搜索空间,以及部分小区均配置有相同的第一信息的取值;第一共调度小区组合为一组共调度小区组合;
部分小区为第一共调度小区组合中的多个小区。
在一些可能的实现中,部分小区的搜索空间的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项可以是根据部分小区所配置的第一信息的取值确定。
在一些可能的实现中,部分小区的搜索空间的PDCCH候选个数,为部分小区的搜索空间的PDCCH候选个数中的最大值;或者,为部分小区的搜索空间的PDCCH候选个数中的最大值,再求最大值的平均;
部分小区的搜索空间的非重叠CCE个数,为部分小区的搜索空间的非重叠CCE个数中的最大值;或者,为部分小区的搜索空间的非重叠CCE个数中的最大值,再求最大值的平均。
在一些可能的实现中,部分小区的搜索空间的DCI大小个数,为用于调度第一共调度小区组合的DCI格式的种类数。
在一些可能的实现中,第一信息,包括DCI中的一个字段或者两个字段。
在一些可能的实现中,若第一信息为DCI中的一个字段,则该一个字段的取值可以用于指示一组共调度小区组合,且该一个字段的取值对应PDCCH候选的CCE索引组。
在一些可能的实现中,若第一信息为DCI中的两个字段,则该两个字段中的第一字段的取值可以用于指示多组共调度小区组合,且第一字段的取值对应PDCCH候选的CCE索引组;该两个字段中的第二字段的取值用于从第一字段所指示的多组共调度小区组合中指示出一组共调度小区组合。
七、又一种通信装置的示例说明
在采用集成的单元的情况下,图7是本申请实施例的又一种通信装置的功能单元组成框图。通信装置700包括:发送单元701。
在一些可能的实现中,发送单元701可以是一种用于对信号、数据、信息等进行处理的模块单元,对此不作具体限制。
在一些可能的实现中,通信装置700还可以包括存储单元,用于存储通信装置700所执行的计算机程序代码或者指令。存储单元可以是存储器。
在一些可能的实现中,通信装置700可以是芯片或者芯片模组。
在一些可能的实现中,发送单元701可以集成在其他单元中。
例如,发送单元701可以集成在通信单元中。其中,通信单元可以是通信接口、收发器、收发电路等。
又例如,发送单元701可以集成在处理单元中。其中,处理单元可以是处理器或控制器,例如可以是基带处理器、基带芯片、CPU、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在一些可能的实现中,发送单元701用于执行如上述方法实施例中由网络设备/芯片/芯片模组等执行的任一步骤,如发送或接收等数据传输。下面进行详细说明。
具体实现时,发送单元701用于执行如上述方法实施例中的任一步骤,且在执行诸如接收等动作时,可选择的调用其他单元来完成相应操作。下面进行详细说明。
发送单元701,用于发送PDCCH,PDCCH是基于PDCCH候选个数、非重叠CCE、DCI大小个数中的至少之一项确定,PDCCH候选个数、非重叠CCE、DCI大小个数中的至少之一项是基于第一信息的取值确定的;
其中,一个第一信息的取值用于指示一组共调度小区组合,共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。
可见,本申请引入了第一信息以及每个第一信息的取值与每组共调度小区组合之间的关联关系,通 过一个第一信息的取值来指示一组共调度小区组合,一组共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区,第一PUSCH资源的频域起始位置与第二PUSCH资源的频域起始位置位于相同或不同的可用频域资源内。这样,在后续监听PDCCH以得到某个第一信息的取值时,通过该某个第一信息的取值来从载波聚合的小区中指示出某一组共调度小区组合,实现对某一组共调度小区组合中的小区进行同时调度,进而实现多小区调度。
在一些可能的实现中,共调度小区组合中存在配置有搜索空间和/或第一信息的取值的小区。
在一些可能的实现中,第一共调度小区组合中的每个小区均配置有相同索引的搜索空间,以及每个小区均配置有相同的第一信息的取值;
第一共调度小区组合为一组共调度小区组合。
在一些可能的实现中,第一共调度小区组合中只有一个第一小区配置有搜索空间,以及第一小区配置有一个第一信息的取值;
第一共调度小区组合为一组共调度小区组合。
在一些可能的实现中,第一共调度小区组合中的部分小区均配置有相同索引的搜索空间,以及部分小区均配置有相同的第一信息的取值;第一共调度小区组合为一组共调度小区组合;
部分小区为第一共调度小区组合中的多个小区。
在一些可能的实现中,第一信息,包括DCI中的一个字段或两个字段。
在一些可能的实现中,若第一信息为DCI中的一个字段,则该一个字段的取值可以用于指示一组共调度小区组合,且该一个字段的取值对应PDCCH候选的CCE索引组。
在一些可能的实现中,若第一信息为DCI中的两个字段,则该两个字段中的第一字段的取值可以用于指示多组共调度小区组合,且第一字段的取值对应PDCCH候选的CCE索引组;该两个字段中的第二字段的取值用于从第一字段所指示的多组共调度小区组合中指示出一组共调度小区组合。
八、一种终端设备的示例说明
请参阅图8,图8是本申请实施例的一种终端设备的结构示意图。其中,终端设备800包括处理器810、存储器820以及用于连接处理器810和存储器820的通信总线。
在一些可能的实现中,存储器820包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器820用于存储终端设备800所执行的程序代码和所传输的数据。
在一些可能的实现中,终端设备800还包括通信接口,其用于接收和发送数据。
在一些可能的实现中,处理器810可以是一个或多个中央处理器(CPU),在处理器810是一个中央处理器(CPU)的情况下,该中央处理器(CPU)可以是单核中央处理器(CPU),也可以是多核中央处理器(CPU)。
在一些可能的实现中,处理器810可以为基带芯片、芯片、中央处理器(CPU)、通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。
具体实现时,终端设备800中的处理器810用于执行存储器820中存储的计算机程序或指令821,执行以下操作:
监听PDCCH,PDCCH是基于PDCCH候选个数、非重叠CCE、DCI大小个数中的至少之一项确定,PDCCH候选个数、非重叠CCE、DCI大小个数中的至少之一项是基于第一信息的取值确定的;
其中,一个第一信息的取值用于指示一组共调度小区组合,共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。
可见,本申请引入了第一信息以及每个第一信息的取值与每组共调度小区组合之间的关联关系,通过一个第一信息的取值来指示一组共调度小区组合,一组共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。然后,通过确定每个第一信息的取值的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项,以便进行PDCCH监听。这样,在后续监听PDCCH以得到某个第一信息的取值时,通过该某个第一信息的取值来从载波聚合的小区中指示出某一组共调度小区组合,实现对某一组共调度小区组合中的小区进行同时调度,进而实现多小区调度。
九、一种网络设备的示例说明
请参阅图9,图9是本申请实施例提供的一种网络设备的结构示意图。其中,网络设备900包括处理器910、存储器920以及用于连接处理器910、存储器920的通信总线。
在一些可能的实现中,存储器920包括但不限于是RAM、ROM、EPROM或CD-ROM,该存储器920用于存储相关指令及数据。
在一些可能的实现中,网络设备900还包括通信接口,其用于接收和发送数据。
在一些可能的实现中,处理器910可以是一个或多个中央处理器(CPU),在处理器910是一个中央处理器(CPU)的情况下,该中央处理器(CPU)可以是单核中央处理器(CPU),也可以是多核中央处理器(CPU)。
在一些可能的实现中,处理器910可以为基带芯片、芯片、中央处理器(CPU)、通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。
在一些可能的实现中,网络设备900中的处理器910用于执行存储器920中存储的计算机程序或指令921,执行以下操作:
发送PDCCH,PDCCH是基于PDCCH候选个数、非重叠CCE、DCI大小个数中的至少之一项确定,PDCCH候选个数、非重叠CCE、DCI大小个数中的至少之一项是基于第一信息的取值确定的;
其中,一个第一信息的取值用于指示一组共调度小区组合,共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。
可见,本申请引入了第一信息以及每个第一信息的取值与每组共调度小区组合之间的关联关系,通过一个第一信息的取值来指示一组共调度小区组合,一组共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。然后,通过确定每个第一信息的取值的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项,以便进行PDCCH监听。这样,在后续监听PDCCH以得到某个第一信息的取值时,通过该某个第一信息的取值来从载波聚合的小区中指示出某一组共调度小区组合,实现对某一组共调度小区组合中的小区进行同时调度,进而实现多小区调度,以便通过多小区调度降低PDCCH的监听复杂度以节省功耗
需要说明的是,各个操作的具体实现可以采用上述所示的方法实施例的相应描述,网络设备900可以用于执行本申请上述方法实施例,对此不再赘述。
十、其他相关的示例说明
在一些可能的实现中,上述方法实施例可以应用于终端设备或应用于终端设备之中。也就是说,上述方法实施例的执行主体,可以是终端设备,可以是芯片、芯片模组或模块等,对此不作具体限制。
在一些可能的实现中,上述方法实施例可以应用于网络设备或应用于网络设备之中。也就是说,上述方法实施例的执行主体,可以是网络设备,可以是芯片、芯片模组或模块等,对此不作具体限制。
本申请实施例还提供了一种芯片,包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种芯片模组,包括收发组件和芯片,该芯片包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机可读存储介质,其存储有计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机程序产品,包括计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种通信系统,包括上述的终端设备和网络设备。
需要说明的是,对于上述的各个实施例,为了简单描述,将其都表述为一系列的动作组合。本领域技术人员应该知悉,本申请不受所描述的动作顺序的限制,因为本申请实施例中的某些步骤可以采用其他顺序或者同时进行。另外,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作、步骤、模块或单元等并不一定是本申请实施例所必须的。
在上述实施例中,本申请实施例对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备或管理设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备或管理设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算 机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端设备的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端设备内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端设备内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (32)

  1. 一种通信方法,其特征在于,包括:
    监听物理下行控制信道PDCCH,所述PDCCH是基于PDCCH候选个数、非重叠信道控制元素CCE、下行控制信息DCI大小个数中的至少之一项确定,所述PDCCH候选个数、所述非重叠CCE、所述DCI大小个数中的至少之一项是基于第一信息的取值确定的;
    其中,所述第一信息的取值用于指示一组共调度小区组合,所述共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。
  2. 根据权利要求1所述的方法,其特征在于,用于调度所述共调度小区组合的PDCCH的搜索空间配置在所述载波聚合的小区中的一个或多个小区上;和/或,
    用于调度所述共调度小区组合的所述第一信息的取值配置在所述载波聚合的小区中的一个或多个小区上。
  3. 根据权利要求2所述的方法,其特征在于,第一共调度小区组合中只有一个第一小区配置有搜索空间,以及所述第一小区配置有一个所述第一信息的取值;
    所述第一共调度小区组合为一组所述共调度小区组合。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一小区的所述搜索空间的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项是根据所述第一小区所配置的所述第一信息的取值确定的。
  5. 根据权利要求4所述的方法,其特征在于,所述第一小区的搜索空间的的DCI大小个数,为用于调度所述第一共调度小区组合的DCI格式的种类数。
  6. 根据权利要求2所述的方法,其特征在于,第一共调度小区组合中的部分小区均配置有相同索引的搜索空间,以及所述部分小区均配置有相同的所述第一信息的取值;所述第一共调度小区组合为一组所述共调度小区组合;
    所述部分小区为所述第一共调度小区组合中的多个小区。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一信息,包括DCI中的一个字段或者两个字段。
  8. 根据权利要求7所述的方法,其特征在于,若所述第一信息为DCI中的一个字段,则所述一个字段的取值用于指示一组所述共调度小区组合,且所述一个字段的取值对应PDCCH候选的CCE索引组;或者,
    若所述第一信息为DCI中的两个字段,则所述两个字段中的第一字段的取值用于指示多组所述共调度小区组合,且所述第一字段的取值对应PDCCH候选的CCE索引组;所述两个字段中的第二字段的取值用于从所述第一字段所指示的多组所述共调度小区组合中指示出一组所述共调度小区组合。
  9. 一种通信方法,其特征在于,包括:
    发送物理下行控制信道PDCCH,所述PDCCH是基于PDCCH候选个数、非重叠信道控制元素CCE、下行控制信息DCI大小个数中的至少之一项确定,所述PDCCH候选个数、所述非重叠CCE、所述DCI大小个数中的至少之一项是基于第一信息的取值确定的;
    其中,所述第一信息的取值用于指示一组共调度小区组合,所述共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。
  10. 根据权利要求9所述的方法,其特征在于,用于调度所述共调度小区组合的PDCCH的搜索空间配置在所述载波聚合的小区中的一个或多个小区上;和/或,
    用于调度所述共调度小区组合的所述第一信息的取值配置在所述载波聚合的小区中的一个或多个小区上。
  11. 根据权利要求10所述的方法,其特征在于,第一共调度小区组合中只有一个第一小区配置有搜索空间,以及所述第一小区配置有一个所述第一信息的取值;
    所述第一共调度小区组合为一组所述共调度小区组合。
  12. 根据权利要求10所述的方法,其特征在于,第一共调度小区组合中的部分小区均配置有相同索引的搜索空间,以及所述部分小区均配置有相同的所述第一信息的取值;所述第一共调度小区组合为一组所述共调度小区组合;
    所述部分小区为所述第一共调度小区组合中的多个小区。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述第一信息,为DCI中的一个字段或者两个字段。
  14. 根据权利要求13所述的方法,其特征在于,若所述第一信息为DCI中的一个字段,则所述一 个字段的取值用于指示一组所述共调度小区组合,且所述一个字段的取值对应PDCCH候选的CCE索引组;或者,
    若所述第一信息为DCI中的两个字段,则所述两个字段中的第一字段的取值用于指示多组所述共调度小区组合,且所述第一字段的取值对应PDCCH候选的CCE索引组;所述两个字段中的第二字段的取值用于从所述第一字段所指示的多组所述共调度小区组合中指示出一组所述共调度小区组合。
  15. 一种通信装置,其特征在于,包括:
    监听单元,用于监听物理下行控制信道PDCCH,所述PDCCH是基于PDCCH候选个数、非重叠信道控制元素CCE、下行控制信息DCI大小个数中的至少之一项确定,所述PDCCH候选个数、所述非重叠CCE、所述DCI大小个数中的至少之一项是基于第一信息的取值确定的;
    其中,所述第一信息的取值用于指示一组共调度小区组合,所述共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。
  16. 根据权利要求15所述的装置,其特征在于,用于调度所述共调度小区组合的PDCCH的搜索空间配置在所述载波聚合的小区中的一个或多个小区上;和/或,
    用于调度所述共调度小区组合的所述第一信息的取值配置在所述载波聚合的小区中的一个或多个小区上。
  17. 根据权利要求16所述的装置,其特征在于,第一共调度小区组合中只有一个第一小区配置有搜索空间,以及所述第一小区配置有一个所述第一信息的取值;
    所述第一共调度小区组合为一组所述共调度小区组合。
  18. 根据权利要求17所述的装置,其特征在于,
    所述第一小区的所述搜索空间的PDCCH候选个数、非重叠CCE个数、DCI大小个数中的至少之一项是根据所述第一小区所配置的所述第一信息的取值确定的。
  19. 根据权利要求18所述的装置,其特征在于,所述第一小区的搜索空间的的DCI大小个数,为用于调度所述第一共调度小区组合的DCI格式的种类数。
  20. 根据权利要求16所述的装置,其特征在于,第一共调度小区组合中的部分小区均配置有相同索引的搜索空间,以及所述部分小区均配置有相同的所述第一信息的取值;所述第一共调度小区组合为一组所述共调度小区组合;
    所述部分小区为所述第一共调度小区组合中的多个小区。
  21. 根据权利要求15-20任一项所述的装置,其特征在于,所述第一信息,包括DCI中的一个字段或者两个字段。
  22. 根据权利要求21所述的装置,其特征在于,若所述第一信息为DCI中的一个字段,则所述一个字段的取值用于指示一组所述共调度小区组合,且所述一个字段的取值对应PDCCH候选的CCE索引组;或者,
    若所述第一信息为DCI中的两个字段,则所述两个字段中的第一字段的取值用于指示多组所述共调度小区组合,且所述第一字段的取值对应PDCCH候选的CCE索引组;所述两个字段中的第二字段的取值用于从所述第一字段所指示的多组所述共调度小区组合中指示出一组所述共调度小区组合。
  23. 一种通信装置,其特征在于,包括:
    发送单元,用于发送物理下行控制信道PDCCH,所述PDCCH是基于PDCCH候选个数、非重叠信道控制元素CCE、下行控制信息DCI大小个数中的至少之一项确定,所述PDCCH候选个数、所述非重叠CCE、所述DCI大小个数中的至少之一项是基于第一信息的取值确定的;
    其中,所述第一信息的取值用于指示一组共调度小区组合,所述共调度小区组合为在载波聚合的小区内被同时调度的至少一个小区。
  24. 根据权利要求23所述的装置,其特征在于,用于调度所述共调度小区组合的PDCCH的搜索空间配置在所述载波聚合的小区中的一个或多个小区上;和/或,
    用于调度所述共调度小区组合的所述第一信息的取值配置在所述载波聚合的小区中的一个或多个小区上。
  25. 根据权利要求24所述的装置,其特征在于,第一共调度小区组合中只有一个第一小区配置有搜索空间,以及所述第一小区配置有一个所述第一信息的取值;
    所述第一共调度小区组合为一组所述共调度小区组合。
  26. 根据权利要求24所述的装置,其特征在于,第一共调度小区组合中的部分小区均配置有相同索引的搜索空间,以及所述部分小区均配置有相同的所述第一信息的取值;所述第一共调度小区组合为一组所述共调度小区组合;
    所述部分小区为所述第一共调度小区组合中的多个小区。
  27. 根据权利要求23-26任一项所述的装置,其特征在于,所述第一信息,为DCI中的一个字段或者两个字段。
  28. 根据权利要求27所述的装置,其特征在于,若所述第一信息为DCI中的一个字段,则所述一个字段的取值用于指示一组所述共调度小区组合,且所述一个字段的取值对应PDCCH候选的CCE索引组;或者,
    若所述第一信息为DCI中的两个字段,则所述两个字段中的第一字段的取值用于指示多组所述共调度小区组合,且所述第一字段的取值对应PDCCH候选的CCE索引组;所述两个字段中的第二字段的取值用于从所述第一字段所指示的多组所述共调度小区组合中指示出一组所述共调度小区组合。
  29. 一种终端设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求1-8中任一项所述方法的步骤。
  30. 一种网络设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求9-14中任一项所述方法的步骤。
  31. 一种芯片,包括处理器,其特征在于,所述处理器执行权利要求1-8或9-14中任一项所述方法的步骤。
  32. 一种计算机可读存储介质,其特征在于,其存储有计算机程序或指令,所述计算机程序或指令被执行时实现权利要求1-8或9-14中任一项所述方法的步骤。
PCT/CN2023/105758 2022-07-04 2023-07-04 通信方法与装置、终端设备、网络设备和芯片 WO2024008096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210779762.0A CN117411597A (zh) 2022-07-04 2022-07-04 通信方法与装置、终端设备、网络设备和芯片
CN202210779762.0 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024008096A1 true WO2024008096A1 (zh) 2024-01-11

Family

ID=89454424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105758 WO2024008096A1 (zh) 2022-07-04 2023-07-04 通信方法与装置、终端设备、网络设备和芯片

Country Status (2)

Country Link
CN (1) CN117411597A (zh)
WO (1) WO2024008096A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200351921A1 (en) * 2019-05-03 2020-11-05 Qualcomm Incorporated Downlink control indicator distribution for cross carrier scheduling
US20210076445A1 (en) * 2017-09-08 2021-03-11 Convida Wireless, Llc Multiple trps and panels transmission with dynamic bandwidth for nr
WO2021142704A1 (en) * 2020-01-16 2021-07-22 Qualcomm Incorporated Monitoring for a combination downlink control information (dci) for scheduling transmissions in multiple cells
CN113225751A (zh) * 2020-02-06 2021-08-06 维沃移动通信有限公司 搜索空间的监听方法和设备
CN113473611A (zh) * 2020-03-31 2021-10-01 维沃移动通信有限公司 资源调度方法、装置及ue
CN114175810A (zh) * 2019-08-01 2022-03-11 高通股份有限公司 由无线设备管理跨载波调度

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210076445A1 (en) * 2017-09-08 2021-03-11 Convida Wireless, Llc Multiple trps and panels transmission with dynamic bandwidth for nr
US20200351921A1 (en) * 2019-05-03 2020-11-05 Qualcomm Incorporated Downlink control indicator distribution for cross carrier scheduling
CN114175810A (zh) * 2019-08-01 2022-03-11 高通股份有限公司 由无线设备管理跨载波调度
WO2021142704A1 (en) * 2020-01-16 2021-07-22 Qualcomm Incorporated Monitoring for a combination downlink control information (dci) for scheduling transmissions in multiple cells
CN113225751A (zh) * 2020-02-06 2021-08-06 维沃移动通信有限公司 搜索空间的监听方法和设备
CN113473611A (zh) * 2020-03-31 2021-10-01 维沃移动通信有限公司 资源调度方法、装置及ue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LANGBO: "Discussions on multi-cell PUSCH/PDSCH scheduling with a single DCI", 3GPP TSG RAN WG1 #109-E, R1-2203842, 29 April 2022 (2022-04-29), XP052153221 *

Also Published As

Publication number Publication date
CN117411597A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US20240107549A1 (en) Methods for physical downlink control channel (pdcch) candidate determination
WO2019242776A1 (zh) 无线通信方法及装置
WO2019015590A1 (zh) 一种传输方法及其装置
WO2018228500A1 (zh) 一种调度信息传输方法及装置
WO2019233398A1 (zh) 数据传输方法、通信装置及存储介质
KR20120130209A (ko) 컴포넌트 캐리어들의 할당
WO2021032021A1 (zh) 一种通信方法及装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
US20220312459A1 (en) Enhanced Configured Grants
WO2019213978A1 (zh) 一种信息传输方法和终端设备以及网络设备
US20220322288A1 (en) Multimedia Broadcast and Multicast Service (MBMS) Transmission and Reception in Connected State during Wireless Communications
US20220304011A1 (en) Control Signaling for Physical Control Channel Reliability Enhancement
WO2021159497A1 (zh) 载波调度的方法及装置
WO2024008096A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
US20220303073A1 (en) Technologies for Reliable Physical Data Channel Reception in Wireless Communications
US20220304042A1 (en) Enhanced Configured Grants
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
WO2021226794A1 (zh) 数据传输方法及相关装置
WO2019023912A1 (zh) 一种应答反馈方法、终端及网络设备
WO2023165612A1 (zh) 物理下行控制信道监听方法与装置、终端设备和网络设备
CN113939019A (zh) 通信方法及通信设备
WO2022213653A1 (zh) 频域资源位置确定方法与装置、终端和网络设备
WO2023232038A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
WO2022237763A1 (zh) 信道监听方法与装置、终端和网络设备
WO2023207837A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834863

Country of ref document: EP

Kind code of ref document: A1