WO2023232038A1 - 通信方法与装置、终端设备、网络设备和芯片 - Google Patents

通信方法与装置、终端设备、网络设备和芯片 Download PDF

Info

Publication number
WO2023232038A1
WO2023232038A1 PCT/CN2023/097169 CN2023097169W WO2023232038A1 WO 2023232038 A1 WO2023232038 A1 WO 2023232038A1 CN 2023097169 W CN2023097169 W CN 2023097169W WO 2023232038 A1 WO2023232038 A1 WO 2023232038A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
resource
starting position
pusch
available
Prior art date
Application number
PCT/CN2023/097169
Other languages
English (en)
French (fr)
Inventor
周欢
张仲丹
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2023232038A1 publication Critical patent/WO2023232038A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device, terminal equipment, network equipment and chips.
  • PUSCH frequency hopping can be understood as the PUSCH sent by the terminal device occupies a frequency band in a certain time period, but jumps to another frequency band in the next time period.
  • PUSCH performs frequency hopping on the active uplink bandwidth part (Uplink Bandwidth Part, UL BWP), and UL BWP is only regarded as a frequency domain resource that supports uplink transmission, that is, an uplink frequency domain resource.
  • UL BWP Uplink Bandwidth Part
  • new frequency domain resource allocation methods may be introduced. Under this new frequency domain resource allocation method, how to perform PUSCH frequency hopping requires further research.
  • This application provides a communication method and device, terminal equipment, network equipment and chips, in order to solve the problem of how to perform PUSCH frequency hopping under new frequency domain resource allocation, thereby ensuring PUSCH transmission.
  • the first aspect is a communication method of this application, including:
  • Send PUSCH on a second PUSCH resource where the second PUSCH resource is a resource after frequency hopping of the first PUSCH resource;
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within the available frequency domain resources, and one of the available frequency domain resources in one time unit is within the time unit.
  • An uplink frequency domain resource among a plurality of frequency domain resources in the frequency domain, the plurality of frequency domain resources include at least one of the uplink frequency domain resources and at least one downlink frequency domain resource, and the uplink frequency domain resource is continuous in the frequency domain.
  • the downlink frequency domain resources are continuous in the frequency domain.
  • the embodiment of the present application introduces a new frequency domain resource allocation method, that is, allocating multiple frequency domain resources within a time unit.
  • the multiple frequency domain resources include at least one uplink frequency domain resource and at least one downlink frequency domain resource.
  • domain resources, and in order to avoid that the second PUSCH resource may exceed the available frequency domain resources (an available frequency domain resource is an uplink frequency domain resource allocated to itself among multiple frequency domain resources), and is located in the unavailable frequency domain resources (unavailable frequency domain resources).
  • the frequency domain resources are used within the downlink frequency domain resources among the multiple frequency domain resources and the uplink frequency domain resources allocated to other terminal equipment), which may cause the terminal equipment to be unable to use the first PUSCH resource and/or the second PUSCH resource.
  • the embodiment of the present application can make the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource be located in available frequency domain resources. Since the frequency domain starting position of the second PUSCH resource is located in the available frequency domain resources, that is, the frequency domain resource range of PUSCH frequency hopping is limited on the multiple frequency domain resources, so that the second PUSCH resource can be used for communication normally, solving the problem This solves the problem of how to perform PUSCH frequency hopping under the new frequency domain resource allocation, thereby ensuring PUSCH transmission.
  • the second aspect is a communication method of the present application, including:
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within the available frequency domain resources, and one of the available frequency domain resources in one time unit is within the One uplink frequency domain resource among multiple frequency domain resources within a time unit.
  • the multiple frequency domain resources include at least one of the uplink frequency domain resources and at least one downlink frequency domain resource.
  • the uplink frequency domain resource is a frequency domain resource. Continuous, the downlink frequency domain resources are continuous in the frequency domain.
  • the third aspect is a communication device of the present application, including:
  • a sending unit configured to send PUSCH on the first physical uplink shared channel PUSCH resource
  • the sending unit is further configured to send the PUSCH on a second PUSCH resource, where the second PUSCH resource is a resource after frequency hopping of the first PUSCH resource;
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within the available frequency domain resources, and one of the available frequency domain resources in one time unit is within the One uplink frequency domain resource among multiple frequency domain resources within a time unit.
  • the multiple frequency domain resources include at least one of the uplink frequency domain resources and at least one downlink frequency domain resource.
  • the uplink frequency domain resource The resources are continuous in the frequency domain, and the downlink frequency domain resources are continuous in the frequency domain.
  • the fourth aspect is a communication device of the present application, including:
  • a receiving unit configured to receive PUSCH on the first physical uplink shared channel PUSCH resource
  • the receiving unit is further configured to receive the PUSCH on a second PUSCH resource, where the second PUSCH resource is a resource after frequency hopping of the first PUSCH resource;
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within the available frequency domain resources, and one of the available frequency domain resources in one time unit is within the One uplink frequency domain resource among multiple frequency domain resources within a time unit.
  • the multiple frequency domain resources include at least one of the uplink frequency domain resources and at least one downlink frequency domain resource.
  • the uplink frequency domain resource is a frequency domain resource. Continuous, the downlink frequency domain resources are continuous in the frequency domain.
  • the steps in the method designed in the first aspect are applied to terminal equipment or terminal equipment.
  • the steps in the method designed in the second aspect are applied to network equipment or network equipment.
  • the seventh aspect is a terminal device of the present application, including a processor, a memory, and a computer program or instructions stored on the memory, wherein the processor executes the computer program or instructions to implement the first aspect. Steps in the designed method.
  • the eighth aspect is a network device of the present application, including a processor, a memory, and a computer program or instructions stored on the memory, wherein the processor executes the computer program or instructions to implement the second aspect. Steps in the designed method.
  • a ninth aspect is a chip of the present application, including a processor, wherein the processor executes the steps in the method designed in the first aspect or the second aspect.
  • a tenth aspect is a chip module of the present application, including a transceiver component and a chip.
  • the chip includes a processor, wherein the processor executes the steps in the method designed in the first aspect or the second aspect.
  • the eleventh aspect is a computer-readable storage medium of the present application, wherein it stores a computer program or instructions, and when the computer program or instructions are executed, the method designed in the first aspect or the second aspect is implemented. A step of.
  • a twelfth aspect is a computer program product of the present application, including a computer program or instructions, wherein when the computer program or instructions are executed, the steps in the method designed in the first aspect or the second aspect are implemented.
  • a thirteenth aspect is a communication system of the present application, including the terminal device in the seventh aspect and the network device in the eighth aspect.
  • Figure 1 is an architectural schematic diagram of a communication system according to an embodiment of the present application
  • Figure 2 is a schematic structural diagram of multiple frequency domain resources within one time unit according to an embodiment of the present application
  • Figure 3 is a schematic structural diagram of a frequency domain resource of PUSCH frequency hopping according to an embodiment of the present application
  • Figure 4 is a schematic structural diagram of PUSCH frequency hopping within multiple frequency domain resources according to an embodiment of the present application
  • Figure 5 is another structural schematic diagram of PUSCH frequency hopping in multiple frequency domain resources according to the embodiment of the present application.
  • Figure 6 is a schematic structural diagram of yet another PUSCH frequency hopping in multiple frequency domain resources according to the embodiment of the present application.
  • Figure 7 is another structural schematic diagram of PUSCH frequency hopping in multiple frequency domain resources according to the embodiment of the present application.
  • Figure 8 is another structural schematic diagram of PUSCH frequency hopping in multiple frequency domain resources according to the embodiment of the present application.
  • Figure 9 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • Figure 10 is a functional unit block diagram of a communication device according to an embodiment of the present application.
  • Figure 11 is a functional unit block diagram of yet another communication device according to an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • a and/or B in the embodiment of this application describes the association relationship of associated objects, indicating that three relationships can exist.
  • a and/or B can represent the following three situations: A exists alone; A and B exist simultaneously; B exists alone. Among them, A and B can be singular or plural.
  • the symbol “/" can indicate that the related objects are an “or” relationship.
  • the symbol “/” can also represent the division sign, that is, performing division operations.
  • A/B can mean A divided by B.
  • At least one item (item) refers to any combination of these items, including any combination of single item (items) or plural items (items), and refers to one or more, Multiple means two or more.
  • at least one of a, b or c can represent the following seven situations: a, b, c, a and b, a and c, b and c, a, b and c.
  • each of a, b, and c can be an element or a set containing one or more elements.
  • Equal in the embodiments of this application can be used in conjunction with greater than, and is applicable to the technical solution adopted when it is greater than, and can also be used in conjunction with less than, and is applicable to the technical solution adopted when it is less than. When equal is used with greater than, do not use it with less than; when equal to is used with less than, do not use it with greater than.
  • Connection in the embodiments of this application refers to various connection methods such as direct connection or indirect connection to realize communication between devices, and there is no limitation on this.
  • the “network” in the embodiment of this application can be expressed as the same concept as the "system", and the communication system is the communication network.
  • Size in the embodiment of the present application can be expressed as the same concept as “length”.
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • Advanced Long Term Evolution Advanced Long Term Evolution
  • LTE-A New Radio
  • NR New Radio
  • evolution system of NR system LTE (LTE-based Access to Unlicensed Spectrum, LTE-U) system on unlicensed spectrum, NR on unlicensed spectrum (NR-based Access to Unlicensed Spectrum, NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks, WLAN), Wireless Fidelity (Wi-Fi), 6th-Generation (6G) communication system or other communication systems, etc.
  • communication systems can not only support traditional communication systems, but also support device-to-device (D2D) communication, machine-to-machine (M2M) communication, and machine-type communication.
  • D2D device-to-device
  • M2M machine-to-machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • NB-IoT narrowband internet of things
  • the spectrum used for communication between the terminal device and the network device, or the spectrum used for communication between the terminal device and the terminal device may be a licensed spectrum or an unlicensed spectrum, which is not limited.
  • unlicensed spectrum can be understood as shared spectrum
  • licensed spectrum can be understood as unshared spectrum.
  • the terminal device may be a device with a transceiver function, and may also be called a terminal, user equipment (UE), remote terminal equipment (remote UE), relay equipment (relay UE), Access terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote station, mobile equipment, user terminal equipment, intelligent terminal equipment, wireless communication equipment, user agent or user device.
  • a relay device is a terminal device that can provide relay and forwarding services for other terminal devices (including remote terminal devices).
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; can be deployed on water (such as ships, etc.); can be deployed in the air (such as aircraft, balloons, satellites, etc.) .
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in unmanned autonomous driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation safety Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • a virtual reality (VR) terminal device augmented reality (AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in unmanned autonomous driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • transportation safety Wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in next-generation communication systems (such as NR communication systems, 6G communication systems) or public land in future evolutions Terminal equipment in the mobile communication network (public land mobile network, PLMN), etc., are not specifically limited.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device may include a device with a wireless communication function, such as a chip system, a chip, and a chip module.
  • a device with a wireless communication function such as a chip system, a chip, and a chip module.
  • the chip system may include a chip and may also include other discrete devices.
  • the network device may be a device with a transceiver function and is used to communicate with the terminal device.
  • network equipment can be responsible for radio resource management (RRM), quality of service (QoS) management, data compression and encryption, data sending and receiving, etc. on the air interface side.
  • the network device can be a base station (BS) in the communication system or a device deployed in a radio access network (RAN) to provide wireless communication functions.
  • BS base station
  • RAN radio access network
  • the next generation node B (next generation node B, gNB), the master node (MN) in the dual-connection architecture, the second node or secondary node (SN) in the dual-connection architecture, etc. are not specified. limit.
  • the network equipment can also be equipment in the core network (core network, CN), such as access and mobility management function (AMF), user plane function (UPF) ), etc.; it can also be access point (AP), relay station in WLAN, communication equipment in the future evolved PLMN network, communication equipment in NTN network, etc.
  • core network CN
  • AMF access and mobility management function
  • UPF user plane function
  • AP access point
  • WLAN wireless local area network
  • communication equipment in the future evolved PLMN network communication equipment in NTN network, etc.
  • the network device may include a device that provides wireless communication functions for terminal devices, such as a chip system, a chip, and a chip module.
  • the chip system may include a chip, or may include other discrete devices.
  • network devices can communicate with Internet Protocol (IP) networks.
  • IP Internet Protocol
  • the Internet can be any Internet Protocol (IP) network.
  • private IP network can be any IP network.
  • the network device may be an independent node to implement the functions of the above-mentioned base station, or the network device may include two or more independent nodes to implement the functions of the above-mentioned base station.
  • network equipment includes centralized units (CU) and distributed units (DU), such as gNB-CU and gNB-DU.
  • DU distributed units
  • the network device may also include an active antenna unit (active antenna unit, AAU).
  • CU implements part of the functions of network equipment
  • DU implements another part of the functions of network equipment.
  • CU is responsible for processing non-real-time protocols and services, implementing the radio resource control (RRC) layer, service data adaptation protocol (SDAP) layer, and packet data convergence protocol (PDCP) layer function.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the wireless link control (radio link control, RLC) layer, the media access control (medium access control, MAC) layer and the physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • AAU can realize some physical layer processing functions, radio frequency processing and active antenna related functions.
  • the network device may include at least one of CU, DU, and AAU.
  • the CU may be divided into network devices in the RAN, or the CU may be divided into network devices in the core network, without specific limitations.
  • the network device may be any one of the multiple sites that perform coherent cooperative transmission with the terminal device, or other sites outside the multi-site, or other network devices that communicate with the terminal device.
  • multi-site coherent joint transmission can be joint coherent transmission for multiple sites, or different data belonging to the same physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) is sent from different sites to the terminal equipment, or multiple sites are virtualized.
  • PDSCH Physical Downlink Shared Channel
  • names with the same meaning specified in other standards are also applicable to this application, that is, this application does not limit the names of these parameters.
  • the sites in multi-site coherent joint transmission can be radio frequency remote heads (Remote Radio Head, RRH), transmission and reception points (transmission and reception point, TRP), network equipment, etc., and there are no specific restrictions on this.
  • the network device may be any one of the multiple stations that performs non-coherent cooperative transmission with the terminal device, or Or it may be other sites outside the multi-site, or other network equipment that communicates with the terminal device, and there is no specific restriction on this.
  • multi-site non-coherent joint transmission can be joint non-coherent transmission for multiple sites, or different data belonging to the same PDSCH is sent from different sites to the terminal equipment, or different data belonging to the same PDSCH is sent from different sites to the terminal Equipment, names with the same meaning specified in other standards are also applicable to this application, that is, this application does not limit the names of these parameters.
  • the sites in multi-site non-coherent joint transmission can be RRH, TRP, network equipment, etc., and there is no specific limitation on this.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (HEO) ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment in the cell can communicate with the network equipment through transmission resources (such as spectrum resources).
  • the cell can be a macro cell, a small cell, a metro cell, a micro cell, a pico cell, a femto cell, etc.
  • the communication system 10 may include a network device 110 and a terminal device 120 .
  • the terminal device 120 may communicate with the network device 110 wirelessly.
  • FIG. 1 is only an illustration of the network architecture of a communication system, and does not limit the network architecture of the communication system in the embodiment of the present application.
  • the communication system may also include a server or other devices.
  • the communication system may include multiple network devices and/or multiple terminal devices.
  • PUSCH Physical Uplink Shared Channel
  • the terminal equipment can determine the resource allocation of PUSCH in the frequency domain through resource indication information (such as higher layer signaling or downlink control information (DCI), etc.).
  • resource indication information such as higher layer signaling or downlink control information (DCI), etc.
  • the terminal equipment can use the frequency domain resource assignment (FDRA) field in the DCI carried by the Physical Downlink Shared Channel (PDCCH). Determine the resource allocation of PUSCH in the frequency domain.
  • FDRA frequency domain resource assignment
  • the terminal device can determine the resource allocation in the frequency domain of PUSCH configured grant type 1 (configured grant Type 1, CG Type 1) through high-level signaling (such as the high-level parameter ConfiguredGrantConfig) .
  • the frequency domain resource allocation of PUSCH supports three frequency domain allocation types: Type 0 (Type0), Type 1 and Type 2.
  • Type 1 multiple consecutive resource blocks (RBs) are bundled into a resource block group (RBG), and only the RBG is used as a unit to allocate PUSCH frequency domain resources.
  • RBG resource block group
  • DCI uses a bitmap to indicate the RBG in the frequency domain resource of PUSCH allocated to the terminal equipment.
  • the RBGs shall be numbered in order of increasing frequency of the BWP starting from the lowest frequency. Due to the use of bitmaps, different RBGs allocated are not necessarily consecutive.
  • type 0 does not support PUSCH frequency hopping.
  • Type 1 the frequency domain resource allocation of PUSCH does not depend on the bitmap, but is determined by the starting position (such as RB start ) and the size represented by continuous RBs. Therefore, unlike Type 0, Type 1 does not support any type of RB allocation, but only supports continuous allocation of frequency domain resources, which can reduce the signaling overhead of frequency domain resource allocation.
  • Type 1 supports PUSCH frequency hopping.
  • Type 0 and Type 1 are applicable to licensed spectrum, while Type 2 is applicable to unlicensed spectrum.
  • type 2 does not support PUSCH frequency hopping.
  • PUSCH frequency hopping can be understood as the PUSCH sent by the terminal device occupies a frequency band at a certain moment, but jumps to another frequency band at the next moment.
  • frequency domain resource allocation type 1 if the corresponding detected DCI format or random access response UL grant If the frequency hopping field in (random access response UL grant, RAR UL grant) is set to 1, the terminal device can perform PUSCH frequency hopping; or, if for PUSCH transmission with configuration grant type 1, provide high-level parameters (such as frequencyHoppingOffset) ; Otherwise, the terminal device does not perform PUSCH frequency hopping.
  • the frequency hopping mode can include intra-slot frequency hopping (intra-slot frequency hopping) and inter-slot frequency hopping (inter-slot frequency hopping), and the frequency hopping mode can be configured through high-level signaling. For example, it is configured through frequency Hopping in the higher layer information pushch-Config (PUSCH configuration).
  • PUSCH is transmitted on two hops in the same time slot, which are the first hop and the second hop.
  • the two hops have a certain frequency domain starting position interval in the frequency domain, which is called frequency offset; the two hops contain different consecutive OFDM symbols in the time domain.
  • Intra-slot frequency hopping can improve the frequency diversity and interference suppression of a PUSCH transmission, and can be applied to single slot PUSCH transmission and multi-slot PUSCH transmission.
  • one time slot in the time domain can be regarded as one hop, so PUSCH is transmitted on different time slots.
  • PUSCHs transmitted on different hops also have frequency offsets.
  • the inter-slot offset can be applied to multi-slot PUSCH transmissions, thereby improving frequency diversity and interference suppression between two PUSCH transmissions.
  • the starting position in the frequency domain that appears in the embodiment of this application may be a starting RB (starting RB), a starting subcarrier, a starting resource element (Resource Element, RE), etc.
  • the RB appearing in the embodiment of this application can be a physical resource block (PRB) or a virtual resource block (Virtual RB, VRB), and there is no specific limitation on this.
  • PRB physical resource block
  • VRB virtual resource block
  • the starting position in the frequency domain is the starting RB as an example for description. The same applies to other situations.
  • the starting RB of each hop of PUSCH within the activated UL BWP can be obtained by the following formula:
  • RB start can be obtained according to the RIV value contained in the FDRA field
  • RB offset represents the frequency offset between the two hops
  • the number of OFDM symbols contained in the first hop is The number of OFDM symbols included in the second hop is Indicates the size of OFDM symbols used for PUSCH transmission in a time slot, expresses right Round down.
  • the number in a radio frame is In the time slot, the starting RB of each hop can be obtained by the following formula:
  • the frequency domain resource allocation type is type 1
  • N UL_hop bits in the FDRA domain of the DCI for scheduling PUSCH, and the N UL_hop bits are used to indicate the frequency offset.
  • the network device can determine the frequency hopping range of PUSCH by configuring the frequency domain offset, and multiple frequency offsets can be configured by high-layer information, and then one of the multiple frequency offsets is indicated by N UL_hop bits in the DCI.
  • the frequency offset is configured by the high-level parameter frequencyHoppingOffsetLists (frequency offset list) in the high-level information push-Config, and 2 or 4 frequency offsets are configured, and then indicated by DCI from the 2 or 4 frequency offsets. Out of 1. Among them, the value range of each frequency offset is from 1 to
  • the frequency offset can be configured by the high-level parameter frequencyHoppingOffsetLists (frequency hopping offset list) in the high-level information pushch-Config. , and then indicate one from the plurality through N UL_hop bits in DCI.
  • frequencyHoppingOffsetLists frequency hopping offset list
  • the frequency offset can be determined by the high-level parameter frequencyHoppingOffsetListsDCI-0-2 in the high-level signaling push-Config (frequency hopping offset list DCI-0 -2) Configure multiple, and then indicate one from the multiple through N UL_hop bits in DCI.
  • the frequency offset is configured by the high-layer parameter frequencyHoppingOffset (frequency hopping offset) in the high-layer information rrc-ConfiguredUplinkGrant (media access control-configured uplink grant).
  • a frequency offset is indicated by N UL_hop bits in the DCI.
  • TDD Time Division Duplexing
  • the network device can only perform downlink communication on time slot 0 and time slot 1, but cannot perform uplink communication;
  • the network device can only perform uplink communication on time slot 2, but cannot perform downlink communication.
  • this results in the terminal equipment being unable to transmit uplink data to the network device in time slot 0 and time slot 1, and must wait until time slot 2 before uplink communication can be performed.
  • uplink and downlink communication can be carried out simultaneously between network equipment and terminal equipment.
  • the embodiment of the present application introduces a new frequency domain resource allocation method, that is, using the frequency domain resources within a time unit as the granularity to configure the transmission direction, so that Different transmission methods can be configured simultaneously for different frequency domain resources within a time unit. That is to say, within a time unit, there are both frequency domain resources that support uplink transmission (uplink communication direction) (i.e., uplink frequency domain resources) and frequency domain resources that support downlink transmission (i.e., downlink communication direction) (i.e., downlink frequency domain resources). ), so that multiple frequency domains within a time unit include at least one uplink frequency domain resource and at least one downlink frequency domain resource.
  • the uplink frequency domain resource is continuous in the frequency domain
  • the downlink frequency domain resource is continuous in the frequency domain.
  • one time slot in the TDD system can only support uplink transmission or downlink transmission direction, but in the embodiment of the present application, one time slot can support uplink at the same time. transmission direction and downstream transmission direction.
  • multiple frequency domain resources are configured in a time unit.
  • the multiple frequency domain resources are continuous in the frequency domain, and the multiple frequency domain resources include downlink frequency domain resources 210, uplink frequency domain resources 210, and uplink frequency domain resources.
  • the downlink frequency domain resource 210 is continuous in the frequency domain
  • the uplink frequency domain resource 220 is continuous in the frequency domain
  • the downlink frequency domain resource 230 is continuous in the frequency domain
  • the uplink frequency domain resource 240 is continuous in the frequency domain.
  • the embodiment of the present application can configure the frequency domain starting position and size of each frequency domain resource within a time unit through network configuration or preconfiguration, so that the frequency domain starting position and size of each frequency domain resource can be configured.
  • the size of each frequency domain resource enables the configuration of multiple frequency domain resources within a time unit.
  • Network equipment can configure the transmission direction at the granularity of frequency domain resources within a time unit. That is to say, multiple frequency domain resources can be configured in one time unit, and the transmission directions of different frequency domain resource configurations can be different. Therefore, for network equipment, there may be both frequency domain resources for uplink transmission (uplink communication direction) and frequency domain resources for downlink transmission (downlink communication direction) in the same time unit.
  • the network equipment can simultaneously perform uplink transmission (uplink communication) and downlink transmission (downlink communication) with different terminal equipment in different frequency domain resources, which is conducive to meeting different needs. communication needs of terminal equipment. That is to say, different terminal devices under the management of the network device can perform uplink transmission and downlink transmission at the same time, so the network device seems to be able to perform uplink and downlink communication at the same time, or the network device can be full-duplex.
  • the terminal equipment can only perform uplink transmission or downlink transmission on the frequency domain resources within a time unit, but cannot perform uplink and downlink transmission at the same time. That is, the end device can be half-duplex.
  • Different terminal devices can determine the frequency domain resources that they can use (ie, available frequency domain resources) according to the resource indication information sent by the network device, and use their respective available frequency domain resources to communicate with the network device. Since the transmission direction is configured with the frequency domain resource within a time unit as the granularity, different terminal devices can perform uplink communication or downlink communication with the network device on different frequency domain resources at the same time.
  • frequency domain resources for uplink transmission are configured in the current time unit, there is no need to follow the existing technology solution and wait until the next time unit configured for uplink transmission. Instead, it can be used in the current time unit.
  • the frequency domain resources configured by the network device for uplink transmission are used to transmit data within the time unit, so the uplink service transmission can be completed faster.
  • the terminal equipment can use frequency domain resources to perform uplink services faster, greatly improving the flexibility of the communication method of the TDD communication system.
  • the advantage of using the frequency domain resources within a time unit as the granularity to configure the transmission direction in the embodiment of the present application is that the network device can perform uplink transmission or downlink transmission with different terminal devices in the same time unit. This has It is beneficial to meet the communication needs of different terminal equipment; for terminal equipment with uplink service requirements, the terminal equipment can use frequency domain resources to perform uplink services faster, greatly improving the flexibility of the communication method of the TDD communication system.
  • the time unit can be understood as the communication granularity in the time domain.
  • the time unit may be a subframe, a time slot, a symbol, a mini-slot, etc., and there is no specific limitation on this.
  • a time unit in this embodiment of the present application may be at least one subframe, at least one time slot, at least one symbol, or at least one mini-slot, etc., and there is no specific limitation on this.
  • the PUSCH frequency hopping in the embodiment of the present application can be intra-time slot frequency hopping or inter-time slot frequency hopping
  • a time unit can is a time slot
  • PUSCH frequency hopping is inter-time slot frequency hopping
  • one time unit can be multiple time slots, and there is no specific restriction on this.
  • frequency domain resources support configuring different transmission directions. That is to say, the frequency domain resources can be configured to support transmission in the uplink direction (uplink transmission), or the frequency domain resources can be configured to support transmission in the downlink direction (downlink transmission).
  • the frequency domain resource may be a subband or a continuous resource block set (Resource Block set, RB set).
  • each subband supports either uplink transmission only or downlink transmission only.
  • subbands can be configured on the BWP or on the carrier.
  • multiple frequency domain resources within one time unit may be multiple subbands within one time unit.
  • each frequency domain resource within a time unit can be a continuous RB set.
  • the network device can configure the transmission direction at the granularity of frequency domain resources within a time unit.
  • some uplink frequency domain resources are configured for a certain terminal device, while other uplink frequency domain resources are configured for another terminal device.
  • the uplink frequency domain resources configured for itself are called "available frequency domain resources".
  • available frequency domain resources For downlink resources and uplink frequency domain resources configured for other terminal devices, these frequency domain resources are non-available to the terminal device.
  • the network device is configured with multiple frequency domain resources within a time unit.
  • the multiple frequency domain resources are continuous in the frequency domain, and the multiple frequency domain resources include downlink frequency domain resources 210, uplink frequency domain resources 210, and uplink frequency domain resources.
  • the uplink frequency domain resource 220 is configured for the terminal device 1
  • the uplink frequency domain resource 240 is configured for the terminal device 2. Therefore, for the terminal device 1, the terminal device 1 knows the existence of the uplink frequency domain resource 220, but does not know the existence of the uplink frequency domain resource 240.
  • the uplink frequency domain resource 220 is an available frequency domain resource for the terminal device 1, and the uplink frequency domain resource 220 is an available frequency domain resource for the terminal device 1.
  • Frequency domain resource 240, downlink frequency domain resource 210 and downlink frequency domain resource 230 are unavailable frequency domain resources for terminal device 1; for terminal device 2, terminal device 2 knows the existence of uplink frequency domain resource 240, but does not know about the uplink frequency domain resource 240.
  • the uplink frequency domain resource 220, downlink frequency domain resource 210 and downlink frequency domain resource 230 are unavailable frequency domain for the terminal device 2 resource.
  • the uplink frequency domain resources configured for the terminal device are available frequency domain resources for the terminal device, and other frequency domain resources (including Downlink frequency domain resources and uplink frequency domain resources configured for other terminal devices) are unavailable frequency domain resources for the terminal device.
  • PUSCH can perform frequency hopping on the activated UL BWP.
  • PUSCH resource 310 is the first hop of PUSCH frequency hopping
  • position B is the frequency domain starting position of PUSCH resource 310
  • PUSCH resource 320 is the second hop of PUSCH frequency hopping
  • position C is the PUSCH resource.
  • position B and position C are numbered with Point A as the reference point.
  • the embodiment of the present application configures the transmission direction with the frequency domain resources within a time unit as the granularity, and there are both uplink frequency domain resources and downlink frequency domain resources within a time unit, the second hop of PUSCH frequency hopping may exceed the available If frequency domain resources are unavailable, PUSCH transmission may not be possible. Therefore, the range of frequency domain resources for PUSCH frequency hopping needs to be limited.
  • multiple frequency domain resources are configured in a time unit, and the multiple frequency domain resources are in the frequency domain.
  • the plurality of frequency domain resources include downlink frequency domain resources 410, uplink frequency domain resources 420, and downlink frequency domain resources 430.
  • the downlink frequency domain resources 410 are continuous in the frequency domain
  • the uplink frequency domain resources 420 are continuous in the frequency domain
  • the downlink frequency domain resources 430 are continuous in the frequency domain.
  • the uplink frequency domain resource 420 is the available frequency domain resource of the terminal equipment, and the terminal equipment determines that there are PUSCH resources 440 and PUSCH resources 450.
  • the PUSCH resource 440 is the first hop of PUSCH frequency hopping, and the PUSCH resource 450 is the first hop of PUSCH frequency hopping. Second jump. Since the PUSCH resource 440 is in the uplink frequency domain resource 420 and the PUSCH resource 450 is in the downlink frequency domain resource 430, and the downlink frequency domain resource 430 only supports downlink transmission, the terminal device cannot send PUSCH on the PUSCH resource 450.
  • the embodiment of this application introduces multiple frequency domain resources within a time unit.
  • the multiple frequency domain resources include at least one uplink frequency domain resource and at least one downlink frequency domain resource.
  • the second hop may exceed the available frequency domain resources (an available frequency domain resource is an uplink frequency domain resource allocated to itself among multiple frequency domain resources) to be located in unavailable frequency domain resources (the unavailable frequency domain resource is (downlink frequency domain resources among multiple frequency domain resources and uplink frequency domain resources allocated to other terminal devices), which may cause the terminal device to be unable to use the first hop and/or the second hop of PUSCH frequency hopping to transmit PUSCH.
  • embodiments of the present application can make the frequency domain starting positions of the two hops of PUSCH frequency hopping located within the available frequency domain resources. Since the frequency domain starting position of the second hop of PUSCH frequency hopping is located in available frequency domain resources, that is, the frequency domain resource range of PUSCH frequency hopping is limited on these multiple frequency domain resources, so that the second PUSCH resource can be used normally Communication solves the problem of how to perform PUSCH frequency hopping under the new frequency domain resource allocation, thereby ensuring PUSCH transmission.
  • the embodiment of the present application involves two hops of PUSCH frequency hopping.
  • the first PUSCH resource may be the first hop of PUSCH frequency hopping.
  • the second PUSCH resource may be the second hop of PUSCH frequency hopping. That is to say, the second PUSCH resource is a resource after frequency hopping of the first PUSCH resource.
  • the first PUSCH resource and the second PUSCH resource may be PUSCH frequency hopping within a time slot, or may be PUSCH frequency hopping between time slots. .
  • the embodiment of the present application can configure the frequency domain starting position of the first PUSCH resource and the size of the first PUSCH resource through network configuration or preconfiguration, so that the terminal device can configure the frequency domain starting position of the first PUSCH resource according to the frequency of the first PUSCH resource.
  • the domain starting position and the size of the first PUSCH resource determine the first PUSCH resource.
  • the network device can indicate the first PUSCH to the terminal device through the resource indication value (RIV) determined by the FDRA field in the DCI carried by the PDCCH.
  • RIV resource indication value
  • the frequency offset can be configured through network configuration or pre-configuration.
  • the frequency offset is the starting position interval in the frequency domain between the first PUSCH resource and the second PUSCH resource. Therefore, the terminal equipment determines the frequency domain starting position of the second PUSCH resource according to the frequency domain starting position and frequency offset of the first PUSCH resource.
  • the terminal equipment can determine the frequency domain starting position of the second PUSCH resource by itself without using frequency offset, as long as the frequency domain starting position of the second PUSCH resource is within the uplink frequency domain resource.
  • the network device can indicate the frequency offset through the value of N UL_hop bits in the FDRA domain of the DCI carried by the PDCCH, or the network device can indicate the frequency offset through RRC signaling.
  • the size of the first PUSCH resource can be used, or it can be configured or pre-configured through the network. method to configure the size of the second PUSCH resource. Therefore, the terminal equipment may determine the second PUSCH resource based on the size of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource, or may determine the second PUSCH resource based on the size of the second PUSCH resource and the frequency domain starting position of the second PUSCH resource.
  • the second PUSCH resource has no specific restrictions on this.
  • the starting position of the first PUSCH resource in the frequency domain may represent the starting position of the first PUSCH resource in the frequency domain.
  • the frequency domain starting position of the first PUSCH resource may be the starting RB of the first PUSCH resource, may be the starting subcarrier of the first PUSCH resource, may be the starting RE of the first PUSCH resource, etc., and will not be specified. limit.
  • the following embodiments of the present application take the starting RB of the first PUSCH resource as an example for description, and the same applies to other situations.
  • the starting position of the second PUSCH resource in the frequency domain may indicate the starting position of the second PUSCH resource in the frequency domain.
  • the frequency domain starting position of the second PUSCH resource may be the starting RB of the second PUSCH resource, the starting subcarrier of the second PUSCH resource, or the starting RE of the second PUSCH resource, etc., for There is no specific limit to this.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are numbered with Point A as the reference point.
  • Point A serves as a common reference point of a resource block grid (resource block grids)
  • the frequency domain starting position of the first PUSCH resource defined in the embodiment of this application and the second The frequency domain starting position of PUSCH resources is based on Point A as the reference point.
  • the number of the frequency domain starting position of the first PUSCH resource may be smaller than the number of the frequency domain starting position of the second PUSCH resource, or may be greater than the number of the frequency domain starting position of the second PUSCH resource.
  • the first PUSCH resource is PUSCH resource 440
  • the second PUSCH resource is PUSCH resource 450.
  • the number of the frequency domain starting position of the PUSCH resource 440 is smaller than the number of the frequency domain starting position of the PUSCH resource 450 .
  • the size of the first PUSCH resource can be understood as the resource length or resource bandwidth occupied by the first PUSCH resource in the frequency domain.
  • the size of the first PUSCH resource may be the total number of RBs in the first PUSCH resource, the total number of subcarriers in the first PUSCH resource, the total number of REs in the first PUSCH resource, etc., and is not specifically limited.
  • RB can be PRB or VRB.
  • the size of the second PUSCH resource can be understood as the resource length or resource bandwidth occupied by the second PUSCH resource in the frequency domain.
  • the size of the second PUSCH resource may be the total number of RBs in the second PUSCH resource, the total number of subcarriers in the second PUSCH resource, the total number of REs in the second PUSCH resource, etc., and is not specifically limited.
  • Each frequency domain resource in the plurality of frequency domain resources is either an uplink frequency domain resource or a downlink frequency domain resource.
  • the multiple frequency domain resources can be configured within a time unit through network configuration or pre-configuration. That is to say, the uplink frequency domain resources and downlink frequency domain resources among the multiple frequency domain resources are configured or preconfigured through the network.
  • high-level information can be used to configure the frequency domain starting position and frequency domain starting position of each frequency domain resource (ie, uplink frequency domain resource or downlink frequency domain resource) in the multiple frequency domain resources.
  • the size of resources ie, uplink frequency domain resources or downlink frequency domain resources.
  • a RIV can be used to indicate the frequency domain starting position and size of the frequency domain resource, or one indication information can indicate the frequency domain starting position of the frequency domain resource, and another indication information can indicate the frequency domain starting position and size of the frequency domain resource. Indicates the size of this frequency domain resource.
  • the size of the frequency domain resource may be the total number of RBs, the total number of subcarriers, the total number of REs, etc. in the frequency domain resource.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are located in the same available frequency domain resource.
  • embodiments of the present application can flexibly configure the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource to be within the same available frequency domain resource, and the available frequency domain resource is Uplink frequency domain resources enable PUSCH to perform frequency hopping within the same available frequency domain resource, preventing the second hop of PUSCH on multiple frequency domain resources within a time unit from exceeding the available frequency domain resources, and realizing PUSCH frequency hopping. The possibility of limiting the range of frequency domain resources.
  • multiple frequency domain resources are configured in a time unit, the multiple frequency domain resources are continuous in the frequency domain, and the multiple frequency domain resources include downlink frequency domain resources 510, uplink frequency domain resources 510, and uplink frequency domain resources 510.
  • the uplink frequency domain resource 520 is an available frequency domain resource of the terminal device, and the uplink frequency domain resource 540 is an unavailable frequency domain resource of the terminal device.
  • the terminal device determines that PUSCH resource 550 is the first PUSCH resource, and PUSCH resource 560 is the second PUSCH resource.
  • the frequency domain starting position of PUSCH resource 550 and the frequency domain starting position of PUSCH resource 560 are both within the uplink frequency domain resource 520, and the frequency domain starting position of PUSCH resource 550 is smaller than the frequency domain starting position of PUSCH resource 560.
  • multiple frequency domain resources are configured in a time unit, the multiple frequency domain resources are continuous in the frequency domain, and the multiple frequency domain resources include downlink frequency domain resources 610, uplink frequency domain resources 610, and uplink frequency domain resources 610.
  • the uplink frequency domain resource 620 is the available frequency domain resource of the terminal device.
  • the terminal device determines that PUSCH resource 650 is the first PUSCH resource and PUSCH resource 660 is the second PUSCH resource.
  • the frequency domain starting position of PUSCH resource 650 and the frequency domain starting position of PUSCH resource 660 are both within the uplink frequency domain resource 620, and the frequency domain starting position of PUSCH resource 650 is greater than the frequency domain starting position of PUSCH resource 660.
  • the capability of the terminal device only supports one uplink frequency domain resource, or the network device is configured with only one uplink frequency domain resource for the terminal device (that is, the one uplink frequency domain resource is an available frequency domain resource for the terminal device itself) , then by configuring the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource in the one uplink frequency domain resource, the capability of the terminal equipment can be adapted, so that the terminal equipment can operate on the first PUSCH resource. and transmit PUSCH on the second PUSCH resource.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are located within one available frequency domain resource.
  • this embodiment of the present application may refer to the one available frequency domain resource as the "first available frequency domain resource". That is to say, the first available frequency domain resource may be an available frequency domain resource. Similar to the description in "(5) Multiple frequency domain resources within one time unit" above, the embodiment of the present application can configure the frequency domain starting position and the frequency domain starting position of the first available frequency domain resource through network configuration or preconfiguration.
  • the size of available frequency domain resources. The size of the first available frequency domain resource can be understood as the resource length or resource bandwidth occupied by the first available frequency domain resource in the frequency domain.
  • the size of the first available frequency domain resource may be the total number of RBs, the total number of subcarriers, the total number of REs, etc. in the first available frequency domain resource.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are located in different available frequency domain resources.
  • the embodiments of the present application can flexibly configure the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource to be located in different available frequency domain resources, so that PUSCH can be implemented in different Frequency hopping is performed within the available frequency domain resources to prevent the second hop of PUSCH frequency hopping from exceeding the available frequency domain resources and realize the possibility of limiting the frequency domain resource range of PUSCH frequency hopping.
  • multiple frequency domain resources are configured in a time unit, the multiple frequency domain resources are continuous in the frequency domain, and the multiple frequency domain resources include downlink frequency domain resources 710, uplink frequency domain resources 710, and uplink frequency domain resources 710.
  • the uplink frequency domain resource 720 is an available frequency domain resource of the terminal device, and the uplink frequency domain resource 740 is another available frequency domain resource of the terminal device.
  • the terminal device determines that PUSCH resource 750 is the first PUSCH resource and PUSCH resource 760 is the second PUSCH resource.
  • the frequency domain starting position of the PUSCH resource 750 is within the uplink frequency domain resource 720
  • the frequency domain starting position of the PUSCH resource 760 is within the uplink frequency domain resource 740
  • the frequency domain starting position of the PUSCH resource 750 is smaller than the PUSCH resource 760. Frequency domain starting position.
  • multiple frequency domain resources are configured in a time unit, the multiple frequency domain resources are continuous in the frequency domain, and the multiple frequency domain resources include downlink frequency domain resources 810, uplink frequency domain resources 810, and uplink frequency domain resources 810.
  • domain resources 820, downlink frequency domain resources 830, and uplink frequency domain resources 840 are an available frequency domain resource of the terminal device, and the uplink frequency domain resource 840 is another available frequency domain resource of the terminal device.
  • the terminal device determines that PUSCH resource 850 is the first PUSCH resource and PUSCH resource 860 is the second PUSCH resource.
  • the frequency domain starting position of PUSCH resource 850 is within the uplink frequency domain resource 840
  • the frequency domain starting position of PUSCH resource 860 is within the uplink frequency domain resource 820
  • the frequency domain starting position of PUSCH resource 850 is greater than that of PUSCH resource 860. Frequency domain starting position.
  • the capability of the terminal device supports multiple uplink frequency domain resources, or the network device configures multiple uplink frequency domain resources for the terminal device (that is, the multiple uplink frequency domain resources are multiple available frequency domains for the terminal device itself) resources), by configuring the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource in different frequency domain resources, the capabilities of the terminal equipment can be adapted, so that the terminal equipment can PUSCH is sent on the resource and the second PUSCH resource.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource may be located in the same or different available frequency domain resources.
  • the embodiment of the present application may refer to the available frequency domain resource where the frequency domain starting position of the first PUSCH resource is located as the "second available frequency domain resource”, and refer to the frequency domain starting position of the second PUSCH resource as "second available frequency domain resource".
  • the available frequency domain resource where the starting position is located is called the "third available frequency domain resource”.
  • the second available frequency domain resource and the third available frequency domain resource may be two different available frequency domain resources or the same available frequency domain resource.
  • the second available frequency domain resource and the third available frequency domain resource are the same available frequency domain resource; if the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource If they are located in different available frequency domain resources, then the second available frequency domain resource and the third available frequency domain resource are two different available frequency domain resources.
  • the size of the third available frequency domain resource may be the largest item among the sizes of other available frequency domain resources except the second available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource ie, the second hop of PUSCH frequency hopping
  • the frequency domain starting position of the second PUSCH resource ie, the second hop of PUSCH frequency hopping
  • the third available frequency domain resource can be any one of the other uplink frequency domain resources except the second available frequency domain resource, so that the frequency domain resource range of the second PUSCH resource can be flexibly configured. .
  • the frequency domain starting position of the second PUSCH resource is determined in two situations below.
  • the network device configures an available frequency domain resource to the terminal device.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are within the first available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource may be determined by network configuration, preconfiguration or protocol-specified information (such as frequency offset, etc.).
  • the frequency domain starting position of the second PUSCH resource can be determined independently by the terminal equipment; or,
  • the frequency domain starting position of the second PUSCH resource can be determined by the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the first available frequency domain resource, the frequency offset, and the size of the first available frequency domain resource. At least one of the items is determined.
  • the terminal equipment can independently determine the frequency domain starting position of the second PUSCH resource; or,
  • the terminal equipment may determine the second PUSCH resource based on at least one of a frequency domain starting position of the first PUSCH resource, a frequency domain starting position of the first available frequency domain resource, a frequency offset, and a size of the first available frequency domain resource.
  • the frequency domain starting position of the PUSCH resource may be determined based on at least one of a frequency domain starting position of the first PUSCH resource, a frequency domain starting position of the first available frequency domain resource, a frequency offset, and a size of the first available frequency domain resource.
  • the PUSCH frequency hopping in the embodiment of the present application can be frequency hopping within a time slot or frequency hopping between time slots, the following describes the case of frequency hopping within a time slot and the case of frequency hopping between time slots respectively. How to determine the frequency domain starting position of the second PUSCH resource based on the above information will be described with an example.
  • the frequency domain starting position of the second PUSCH resource can be:
  • one time unit is a time slot, Indicates the frequency domain starting position of PUSCH resource 560, Indicates the frequency domain starting position of PUSCH resource 550, Indicates the frequency domain starting position of the uplink frequency domain resource 520, Indicates the frequency domain starting position interval between PUSCH resource 550 and PUSCH resource 560, Indicates the size of the uplink frequency domain resource 520.
  • the frequency domain starting position of the second PUSCH resource can be:
  • the frequency domain starting position of the second PUSCH resource within Indicates the frequency domain starting position of the first PUSCH resource, Indicates the frequency domain starting position of the first available frequency domain resource, represents the frequency offset, Indicates the size of the first available frequency domain resource, and mod indicates the remainder operation.
  • the value range of can be from 1 to
  • the value range of is from 1 to can make exist within. So, adding After that, it is helpful to make Located within the first available frequency domain resource, it is possible to limit the frequency domain resource range of PUSCH frequency hopping and to realize the possibility of using PUSCH frequency hopping to transmit PUSCH.
  • the embodiment of this application can be based on Sure make exist within. So, adding After that, it is helpful to make Located within the first available frequency domain resource, it is possible to limit the frequency domain resource range of PUSCH frequency hopping, and to implement PUSCH frequency hopping on multiple frequency domain resources within a time unit to ensure PUSCH transmission.
  • M is a rational number.
  • M is a positive rational number, it means that the frequency domain starting position of the first PUSCH resource is smaller than the frequency domain starting position of the second PUSCH resource, as shown in Figure 5; if M is a negative rational number, it means that the frequency domain starting position of the first PUSCH resource is smaller than the frequency domain starting position of the second PUSCH resource.
  • the frequency domain starting position of one PUSCH resource is greater than the frequency domain starting position of the second PUSCH resource, as shown in Figure 6.
  • M can be one-half (i.e. ), which can be a quarter of (i.e. ), which can be One-eighth of (i.e. )wait.
  • taking M as a negative integer can be negative one-half (i.e. ), which can be negative quarter of (i.e. ), which can be negative one-eighth (i.e. )wait.
  • candidate frequency offsets configured by high-level information may be determined by the size relationship between the size of the first available frequency domain resource and the total size of multiple frequency domain resources within a time unit.
  • Table 1 gives the candidates
  • N UL_hop bits For PUSCH configured with grant type 2, there are N UL_hop bits in the FDRA field of the DCI that activates PUSCH.
  • the N UL_hop bits are used to select from multiple candidates configured by higher layer information.
  • the middle indicates one.
  • the network device configures multiple available frequency domain resources to the terminal device.
  • the frequency domain starting position of the first PUSCH resource is located in the second available frequency domain resource
  • the frequency domain starting position of the second PUSCH resource is located in the third available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource may be determined independently by network configuration information, preconfigured information, protocol-specified information, or by the terminal device.
  • the frequency domain starting position of the second PUSCH resource can be determined independently by the terminal equipment; or,
  • the frequency domain starting position of the second PUSCH resource may be the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the second available frequency domain resource, the frequency offset, and the frequency domain of the third available frequency domain resource. At least one of the starting position and the size of the third available frequency domain resource is determined.
  • the terminal device can independently determine the frequency domain starting position of the second PUSCH resource, or the terminal device can determine the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the second available frequency domain resource, At least one of the frequency offset, the frequency domain starting position of the third available frequency domain resource, and the size of the third available frequency domain resource is determined.
  • the PUSCH frequency hopping in the embodiment of the present application can be frequency hopping within a time slot or frequency hopping between time slots, the following describes the case of frequency hopping within a time slot and the case of frequency hopping between time slots respectively. How to determine the frequency domain starting position of the second PUSCH resource based on the above information will be described with an example.
  • the frequency domain starting position of the second PUSCH resource can be:
  • one time unit is a time slot, Indicates the frequency domain starting position of PUSCH resource 760, Indicates the frequency domain starting position of PUSCH resource 750, Indicates the frequency domain starting position of the uplink frequency domain resource 720, Indicates the frequency domain starting position interval between PUSCH resource 750 and PUSCH resource 760, Indicates the frequency domain starting position of the uplink frequency domain resource 740, Indicates the size of the uplink frequency domain resource 740.
  • the frequency domain starting position of the second PUSCH resource can be:
  • the frequency domain starting position of the second PUSCH resource within Indicates the frequency domain starting position of the first PUSCH resource, Indicates the frequency domain starting position of the second available frequency domain resource, represents the frequency offset, Indicates the frequency domain starting position of the third available frequency domain resource, Indicates the size of the third available frequency domain resource.
  • the value range of can be from arrive
  • N is a rational number, and more than the
  • N is a positive rational number, it means that the frequency domain starting position of the first PUSCH resource is smaller than the frequency domain starting position of the second PUSCH resource, as shown in Figure 7; if N is a negative rational number, it means that the frequency domain starting position of the first PUSCH resource is smaller than the frequency domain starting position of the second PUSCH resource.
  • the frequency domain starting position of one PUSCH resource is greater than the frequency domain starting position of the second PUSCH resource, as shown in Figure 8.
  • N can be one-half (i.e. can be a quarter of (i.e. ), which can be One-eighth of (i.e. )wait.
  • N can be negative one-half (i.e. ), which can be negative quarter of (i.e. ), which can be negative one-eighth (i.e. )wait.
  • N UL_hop bits For PUSCH configured with grant type 2, there are N UL_hop bits in the FDRA field of the DCI that activates PUSCH.
  • the N UL_hop bits are used to select from multiple candidates configured by higher layer information.
  • the middle indicates one.
  • the network device may be a chip, a chip module, a communication module, etc.
  • the terminal device may be a chip, a chip module, a communication module, etc. That is to say, this method is applied to network equipment or terminal equipment, and there is no specific restriction on this.
  • FIG. 9 it is a schematic flow chart of a communication method according to an embodiment of the present application, which specifically includes the following steps:
  • the terminal device sends PUSCH on the first PUSCH resource.
  • the network device receives PUSCH on the first PUSCH resource.
  • the terminal device sends PUSCH on the second PUSCH resource.
  • the second PUSCH resource is the resource after frequency hopping of the first PUSCH resource; wherein, the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are The starting positions are all located within the available frequency domain resources.
  • An available frequency domain resource on a time unit is an uplink frequency domain resource among multiple frequency domain resources in the time unit.
  • the multiple frequency domain resources include at least one uplink frequency domain resource. domain resources and at least one downlink frequency domain resource, the uplink frequency domain resources are continuous in the frequency domain, and the downlink frequency domain resources are continuous in the frequency domain.
  • the network device receives PUSCH on the second PUSCH resource.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within an available frequency domain resource. This may mean that the frequency domain starting position of the first PUSCH resource is located in an available frequency domain resource. , the frequency domain starting position of the second PUSCH resource is also located in an available frequency domain resource.
  • the two available frequency domain resources may be the same or different, and this application does not limit it.
  • the first PUSCH resource “the second PUSCH resource”, “the frequency domain starting position of the first PUSCH resource”, “the frequency domain starting position of the second PUSCH resource”, “multiple frequency domain Resource” and "a time unit”, etc.
  • the content in the above “5. Limiting the frequency domain resource range of PUSCH frequency hopping” and other related content, which will not be described again.
  • the embodiment of the present application introduces a new frequency domain resource allocation method, that is, allocating multiple frequency domain resources within a time unit.
  • the multiple frequency domain resources include at least one uplink frequency domain resource and at least one downlink frequency domain resource.
  • domain resources, and in order to avoid that the second PUSCH resource may exceed the available frequency domain resources (an available frequency domain resource is an uplink frequency domain resource among multiple frequency domain resources), to be located in the unavailable frequency domain resources (unavailable frequency domain resources)
  • the resources are within the downlink frequency domain resources among the multiple frequency domain resources and the uplink frequency domain resources allocated to other terminal equipment), which may cause the terminal equipment to be unable to use the first PUSCH resource and/or the second PUSCH resource to transmit PUSCH, That is, PUSCH frequency hopping cannot be used to transmit PUSCH.
  • embodiments of the present application can make the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource both located in available frequency domain resources. Since the frequency domain starting position of the second PUSCH resource is located in the available frequency domain resources, that is, the frequency domain resource range of PUSCH frequency hopping is limited on the multiple frequency domain resources, so that the second PUSCH resource can be used for communication normally, solving the problem This solves the problem of how to perform PUSCH frequency hopping under the new frequency domain resource allocation, thereby ensuring PUSCH transmission.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are located in the same or different available frequency domain resources.
  • the embodiments of this application can flexibly configure the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource according to different scenario requirements, the capabilities of different terminal equipment, etc. Located within the same available frequency domain resource, this prevents the second hop of PUSCH on multiple frequency domain resources within a time unit from exceeding the available frequency domain resources, so as to realize the possibility of limiting the frequency domain resource range of PUSCH frequency hopping.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within the first available frequency domain resource.
  • the first available frequency domain resource is an available frequency domain resource.
  • the embodiment of the present application can make the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource be located in the same available frequency domain resource, so as to meet specific scenarios. Depending on the requirements or the capabilities of the terminal equipment, it is possible to limit the frequency domain resource range of PUSCH frequency hopping.
  • the frequency domain starting position of the second PUSCH resource is determined by the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the first available frequency domain resource, frequency offset, and the first available frequency domain starting position. At least one of the sizes of the frequency domain resources is determined; the frequency offset is the frequency domain starting position interval between the first PUSCH resource and the second PUSCH resource within the first available frequency domain resource.
  • the terminal device can determine the frequency domain starting position of the first PUSCH resource according to the frequency domain starting position of the first available frequency domain resource. At least one of the frequency domain starting position, the frequency offset, and the size of the first available frequency domain resource determines the frequency domain starting position of the second PUSCH resource, thereby limiting the frequency domain resource range of PUSCH frequency hopping.
  • the frequency domain starting position of the second PUSCH resource is determined by the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the first available frequency domain resource, frequency offset, and the first available frequency domain starting position. At least one of the sizes of frequency domain resources is determined, which may include:
  • the step of calculating the frequency domain starting position of the second PUSCH resource is: subtracting the frequency domain starting position of the first available frequency domain resource from the frequency domain starting position of the first PUSCH resource to obtain the first calculation result, and then The first calculation result is added to the frequency offset to obtain the second calculation result, and finally a remainder operation is performed on the second calculation result and the size of the first available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource can be:
  • the frequency offset ranges from 1 to the size of the first available frequency domain resource minus 1.
  • the frequency offset may be determined by the size of the first available frequency domain resource.
  • the embodiment of the present application can determine the frequency offset according to the size of the first available frequency domain resource, so that the frequency offset moved within the size of the first available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource may be located within the first available frequency domain resource, thereby realizing the possibility of limiting the frequency domain resource range of PUSCH frequency hopping.
  • the frequency offset determined by the size of the first available frequency domain resource, may include:
  • Frequency offset can be one of the following:
  • this application implements Embodiments may directly determine/configure/indicate the frequency offset as one-half, one-fourth, or one-eighth of the size of the first available frequency domain resource, to achieve determination based on the size of the first available frequency domain resource.
  • the frequency offset is such that the frequency offset is within the size of the first available frequency domain resource. In this way, after adding the frequency offset, it is advantageous that the frequency domain starting position of the second PUSCH resource may be located within the first available frequency domain resource, thereby realizing the possibility of limiting the frequency domain resource range of PUSCH frequency hopping.
  • the frequency offset may be indicated by higher layer information or DCI.
  • the embodiment of the present application can indicate the frequency offset through high-layer information or DCI to realize the network configuration frequency offset.
  • the frequency domain starting position of the first PUSCH resource is within the second available frequency domain resource, and the frequency domain starting position of the second PUSCH resource is within the third available frequency domain resource;
  • the second available frequency domain resource and the third available frequency domain resource are two different available frequency domain resources.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are located in different "Within the available frequency domain resources”
  • embodiments of the present application can make the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource different within the available frequency domain resources, so as to meet specific scenarios.
  • the size of the third available frequency domain resource is the largest item among the sizes of other available frequency domain resources except the second available frequency domain resource.
  • the size of the third available frequency domain resource is the largest item except the second available frequency domain resource, it can be ensured that the frequency domain starting position of the second PUSCH resource (i.e., the second hop of PUSCH frequency hopping) is within a larger uplink frequency domain resource, which is conducive to avoiding the frequency domain resource range of the second PUSCH resource from exceeding This larger uplink frequency domain resource.
  • the terminal device or network device includes corresponding hardware structures and/or software modules for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functionality for each specific application, but such implementations should not be considered to be beyond the scope of this application.
  • Embodiments of the present application can divide the terminal device or network device into functional units according to the above method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one processing unit.
  • the above integrated units can be implemented in the form of hardware or software program modules. It should be noted that the division of units in the embodiment of the present application is schematic and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 10 is a functional unit block diagram of a communication device according to an embodiment of the present application.
  • the communication device 1000 includes: a sending unit 1001.
  • the sending unit 1001 may be a module unit used to process signals, data, information, etc., which is not specifically limited.
  • the communication device 1000 may further include a storage unit for storing computer program codes or instructions executed by the communication device 1000 .
  • the storage unit may be a memory.
  • the communication device 1000 may be a chip or a chip module.
  • the sending unit 1001 may be integrated in other units.
  • the sending unit 1001 can be integrated in the communication unit.
  • the communication unit may be a communication interface, a transceiver, a transceiver circuit, etc.
  • the sending unit 1001 may be integrated in the processing unit.
  • the processing unit may be a processor or a controller, such as a baseband processor, a baseband chip, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), a dedicated Integrated circuit (application-specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • the processing unit may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
  • the sending unit 1001 is used to perform any step performed by the terminal device/chip/chip module, etc. in the above method embodiment, such as sending or receiving data, etc. Detailed explanation below.
  • the sending unit 1001 is used to perform any step in the above method embodiment, and when performing actions such as sending , you can optionally call other units to complete the corresponding operations. Detailed explanation below.
  • Sending unit 1001 configured to send PUSCH on the first PUSCH resource
  • the sending unit 1001 is also configured to send PUSCH on the second PUSCH resource, where the second PUSCH resource is the resource after frequency hopping of the first PUSCH resource;
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within the available frequency domain resources, and one of the available frequency domain resources in one time unit is within the time unit.
  • the multiple frequency domain resources include at least one uplink frequency domain resource and at least one downlink frequency domain resource.
  • the uplink frequency domain resource is continuous in the frequency domain, and the downlink frequency domain resource is frequency domain. continuously.
  • the embodiment of the present application introduces a new frequency domain resource allocation method, that is, allocating multiple frequency domain resources within a time unit.
  • the multiple frequency domain resources include at least one uplink frequency domain resource and at least one downlink frequency domain resource.
  • domain resources, and in order to avoid that the second PUSCH resource may exceed the available frequency domain resources (an available frequency domain resource is an uplink frequency domain resource allocated to itself among multiple frequency domain resources), and is located in the unavailable frequency domain resources (unavailable frequency domain resources).
  • the frequency domain resources are used within the downlink frequency domain resources among the multiple frequency domain resources and the uplink frequency domain resources allocated to other terminal equipment), which may cause the terminal equipment to be unable to use the first PUSCH resource and/or the second PUSCH resource.
  • the embodiment of the present application can make the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource be located in available frequency domain resources. Since the frequency domain starting position of the second PUSCH resource is located in the available frequency domain resources, that is, the frequency domain resource range of PUSCH frequency hopping is limited on the multiple frequency domain resources, so that the second PUSCH resource can be used for communication normally, solving the problem This solves the problem of how to perform PUSCH frequency hopping under the new frequency domain resource allocation, thereby ensuring PUSCH transmission.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are located in the same or different available frequency domain resources.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within the first available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource is determined by the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the first available frequency domain resource, frequency offset, and the first available frequency domain starting position. At least one of the sizes of frequency domain resources is determined;
  • the frequency offset is the frequency domain starting position interval between the first PUSCH resource and the second PUSCH resource within the first available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource is determined by the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the first available frequency domain resource, frequency offset, and the first available frequency domain starting position. At least one of the sizes of frequency domain resources is determined, including:
  • the step of calculating the frequency domain starting position of the second PUSCH resource is: subtracting the frequency domain starting position of the first available frequency domain resource from the frequency domain starting position of the first PUSCH resource to obtain the first calculation result, and then The first calculation result is added to the frequency offset to obtain the second calculation result, and finally a remainder operation is performed on the second calculation result and the size of the first available frequency domain resource.
  • the frequency offset ranges from 1 to the size of the first available frequency domain resource minus 1.
  • the frequency offset is determined by the size of the first available frequency domain resource.
  • the frequency offset, determined by the size of the first available frequency domain resource includes:
  • Frequency offset is one of the following:
  • the frequency offset is indicated by high-layer information or downlink control information DCI.
  • the frequency domain starting position of the first PUSCH resource is located in the second available frequency domain resource, and the frequency domain starting position of the second PUSCH resource is located in the third available frequency domain resource;
  • the second available frequency domain resource and the third available frequency domain resource are two different available frequency domain resources or the same available frequency domain resource.
  • the size of the third available frequency domain resource is the largest item among the sizes of other available frequency domain resources except the second available frequency domain resource.
  • FIG. 11 is a functional unit block diagram of yet another communication device according to an embodiment of the present application.
  • the communication device 1100 includes: a receiving unit 1101.
  • the receiving unit 1101 may be a module unit used to process signals, data, information, etc., which is not specifically limited.
  • the communication device 1100 may also include a storage unit for storing calculations performed by the communication device 1100 machine program code or instructions.
  • the storage unit may be a memory.
  • the communication device 1100 may be a chip or a chip module.
  • the receiving unit 1101 may be integrated in other units.
  • the receiving unit 1101 may be integrated in the communication unit.
  • the communication unit may be a communication interface, a transceiver, a transceiver circuit, etc.
  • the receiving unit 1101 may be integrated in the processing unit.
  • the processing unit may be a processor or a controller, such as a baseband processor, a baseband chip, a CPU, a DSP, an ASIC, an FPGA, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules, and circuits described in connection with this disclosure.
  • the processing unit may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
  • the receiving unit 1101 is configured to perform any step performed by the network device/chip/chip module, etc. in the above method embodiment, such as sending or receiving data transmission. Detailed explanation below.
  • the receiving unit 1101 is used to perform any step in the above method embodiments, and when performing actions such as receiving, it can optionally call other units to complete corresponding operations. Detailed explanation below.
  • Receiving unit 1101 configured to receive PUSCH on the first PUSCH resource
  • the receiving unit 1101 is also configured to receive PUSCH on the second PUSCH resource, where the second PUSCH resource is the resource after frequency hopping of the first PUSCH resource;
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within the available frequency domain resources, and one of the available frequency domain resources in one time unit is within the time unit.
  • the multiple frequency domain resources include at least one uplink frequency domain resource and at least one downlink frequency domain resource.
  • the uplink frequency domain resource is continuous in the frequency domain, and the downlink frequency domain resource is frequency domain. continuously.
  • the embodiment of the present application introduces a new frequency domain resource allocation method, that is, allocating multiple frequency domain resources within a time unit.
  • the multiple frequency domain resources include at least one uplink frequency domain resource and at least one downlink frequency domain resource.
  • domain resources, and in order to avoid that the second PUSCH resource may exceed the available frequency domain resources (an available frequency domain resource is an uplink frequency domain resource allocated to itself among multiple frequency domain resources), and is located in the unavailable frequency domain resources (unavailable frequency domain resources).
  • the frequency domain resources are used within the downlink frequency domain resources among the multiple frequency domain resources and the uplink frequency domain resources allocated to other terminal equipment), which may cause the terminal equipment to be unable to use the first PUSCH resource and/or the second PUSCH resource.
  • the embodiment of the present application can make the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource be located in available frequency domain resources. Since the frequency domain starting position of the second PUSCH resource is located in the available frequency domain resources, that is, the frequency domain resource range of PUSCH frequency hopping is limited on the multiple frequency domain resources, so that the second PUSCH resource can be used for communication normally, solving the problem This solves the problem of how to perform PUSCH frequency hopping under the new frequency domain resource allocation, thereby ensuring PUSCH transmission. It should be noted that the specific implementation of each operation in the embodiment shown in Figure 11 can be found in the description of the method embodiment shown above, and will not be described in detail here.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are located in the same or different available frequency domain resources.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within the first available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource is determined by the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the first available frequency domain resource, frequency offset, and the first available frequency domain starting position. At least one of the sizes of frequency domain resources is determined;
  • the frequency offset is the frequency domain starting position interval between the first PUSCH resource and the second PUSCH resource within the first available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource is determined by the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the first available frequency domain resource, frequency offset, and the first available frequency domain starting position. At least one of the sizes of frequency domain resources is determined, including:
  • the step of calculating the frequency domain starting position of the second PUSCH resource is: subtracting the frequency domain starting position of the first available frequency domain resource from the frequency domain starting position of the first PUSCH resource to obtain the first calculation result, and then The first calculation result is added to the frequency offset to obtain the second calculation result, and finally a remainder operation is performed on the second calculation result and the size of the first available frequency domain resource.
  • the frequency offset ranges from 1 to the size of the first available frequency domain resource minus 1.
  • the frequency offset is determined by the size of the first available frequency domain resource.
  • the frequency offset, determined by the size of the first available frequency domain resource includes:
  • Frequency offset is one of the following:
  • the frequency offset is indicated by high-layer information or downlink control information DCI.
  • the frequency domain starting position of the first PUSCH resource is located in the second available frequency domain resource, and the frequency domain starting position of the second PUSCH resource is located in the third available frequency domain resource;
  • the second available frequency domain resource and the third available frequency domain resource are two different available frequency domain resources or the same available frequency domain resource.
  • the size of the third available frequency domain resource is the largest item among the sizes of other available frequency domain resources except the second available frequency domain resource.
  • the terminal device 1200 includes a processor 1210, a memory 1220, and a communication bus used to connect the processor 1210 and the memory 1220.
  • memory 1220 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read -only memory (EPROM) or portable read-only memory (compact disc read-only memory, CD-ROM).
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read -only memory
  • CD-ROM compact disc read-only memory
  • the terminal device 1200 also includes a communication interface for receiving and sending data.
  • the processor 1210 may be one or more central processing units (CPUs).
  • the central processing unit (CPU) may be a single core.
  • Central processing unit (CPU) which can also be a multi-core central processing unit (CPU).
  • the processor 1210 can be a baseband chip, a chip, a central processing unit (CPU), a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the processor 1210 in the terminal device 1200 is used to execute the computer program or instructions 1221 stored in the memory 1220 to perform the following operations:
  • Send PUSCH on the second PUSCH resource, and the second PUSCH resource is the resource after frequency hopping of the first PUSCH resource;
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within at least one uplink frequency domain resource among multiple frequency domain resources, and the multiple frequency domain resources are within one time unit.
  • the plurality of frequency domain resources include at least one uplink frequency domain resource and at least one downlink frequency domain resource, the uplink frequency domain resource is continuous in the frequency domain, and the downlink frequency domain resource is continuous in the frequency domain.
  • the embodiment of the present application introduces a new frequency domain resource allocation method, that is, allocating multiple frequency domain resources within a time unit.
  • the multiple frequency domain resources include at least one uplink frequency domain resource and at least one downlink frequency domain resource.
  • domain resources, and in order to avoid that the second PUSCH resource may exceed the available frequency domain resources (an available frequency domain resource is an uplink frequency domain resource allocated to itself among multiple frequency domain resources), and is located in the unavailable frequency domain resources (unavailable frequency domain resources).
  • the frequency domain resources are used within the downlink frequency domain resources among the multiple frequency domain resources and the uplink frequency domain resources allocated to other terminal equipment), which may cause the terminal equipment to be unable to use the first PUSCH resource and/or the second PUSCH resource.
  • the embodiment of the present application can make the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource be located in available frequency domain resources. Since the frequency domain starting position of the second PUSCH resource is located in the available frequency domain resources, that is, the frequency domain resource range of PUSCH frequency hopping is limited on the multiple frequency domain resources, so that the second PUSCH resource can be used for communication normally, solving the problem This solves the problem of how to perform PUSCH frequency hopping under the new frequency domain resource allocation, thereby ensuring PUSCH transmission. It should be noted that the specific implementation of each operation can adopt the corresponding description of the method embodiment shown above, and the terminal device 1200 can be used to execute the above method embodiment of the present application, which will not be described again.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are located in the same or different available frequency domain resources.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within the first available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource is determined by the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the first available frequency domain resource, frequency offset, and the first available frequency domain starting position. At least one of the sizes of frequency domain resources is determined;
  • the frequency offset is the frequency domain starting position interval between the first PUSCH resource and the second PUSCH resource within the first available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource is determined by the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the first available frequency domain resource, frequency offset, and the first available frequency domain starting position. At least one of the sizes of frequency domain resources is determined, including:
  • the step of calculating the frequency domain starting position of the second PUSCH resource is: subtracting the frequency domain starting position of the first available frequency domain resource from the frequency domain starting position of the first PUSCH resource to obtain the first calculation result, and then The first calculation result is added to the frequency offset to obtain the second calculation result, and finally a remainder operation is performed on the second calculation result and the size of the first available frequency domain resource.
  • the frequency offset ranges from 1 to the size of the first available frequency domain resource minus 1.
  • the frequency offset is determined by the size of the first available frequency domain resource.
  • the frequency offset, determined by the size of the first available frequency domain resource includes:
  • Frequency offset is one of the following:
  • the frequency offset is indicated by high-layer information or downlink control information DCI.
  • the frequency domain starting position of the first PUSCH resource is located in the second available frequency domain resource, and the frequency domain starting position of the second PUSCH resource is located in the third available frequency domain resource;
  • the second available frequency domain resource and the third available frequency domain resource are two different available frequency domain resources or the same available frequency domain resource.
  • the size of the third available frequency domain resource is the largest item among the sizes of other available frequency domain resources except the second available frequency domain resource.
  • Figure 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 1300 includes a processor 1310, a memory 1320, and a communication bus used to connect the processor 1310 and the memory 1320.
  • the memory 1320 includes but is not limited to RAM, ROM, EPROM or CD-ROM, and the memory 1320 is used to store related instructions and data.
  • network device 1300 also includes a communication interface for receiving and sending data.
  • the processor 1310 may be one or more central processing units (CPUs).
  • the central processing unit (CPU) may be a single core.
  • Central processing unit (CPU) which can also be a multi-core central processing unit (CPU).
  • the processor 1310 may be a baseband chip, a chip, a central processing unit (CPU), a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the processor 1310 in the network device 1300 is configured to execute the computer program or instructions 1321 stored in the memory 1320 to perform the following operations:
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within at least one uplink frequency domain resource among multiple frequency domain resources, and the multiple frequency domain resources are within one time unit.
  • the plurality of frequency domain resources include at least one uplink frequency domain resource and at least one downlink frequency domain resource, the uplink frequency domain resource is continuous in the frequency domain, and the downlink frequency domain resource is continuous in the frequency domain.
  • the embodiment of the present application introduces a new frequency domain resource allocation method, that is, allocating multiple frequency domain resources within a time unit.
  • the multiple frequency domain resources include at least one uplink frequency domain resource and at least one downlink frequency domain resource.
  • domain resources, and in order to avoid that the second PUSCH resource may exceed the available frequency domain resources (an available frequency domain resource is an uplink frequency domain resource allocated to itself among multiple frequency domain resources), and is located in the unavailable frequency domain resources (unavailable frequency domain resources).
  • the frequency domain resources are used within the downlink frequency domain resources among the multiple frequency domain resources and the uplink frequency domain resources allocated to other terminal equipment), which may cause the terminal equipment to be unable to use the first PUSCH resource and/or the second PUSCH resource.
  • the embodiment of the present application can make the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource be located in available frequency domain resources. Since the frequency domain starting position of the second PUSCH resource is located in the available frequency domain resources, that is, the frequency domain resource range of PUSCH frequency hopping is limited on the multiple frequency domain resources, so that the second PUSCH resource can be used for communication normally, solving the problem This solves the problem of how to perform PUSCH frequency hopping under the new frequency domain resource allocation, thereby ensuring PUSCH transmission. It should be noted that the specific implementation of each operation can adopt the corresponding description of the method embodiment shown above, and the network device 1300 can be used to execute the above method embodiment of the present application, which will not be described again.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are located in the same or different available frequency domain resources.
  • the frequency domain starting position of the first PUSCH resource and the frequency domain starting position of the second PUSCH resource are both located within the first available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource is determined by the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the first available frequency domain resource, frequency offset, and the first available frequency domain starting position. At least one of the sizes of frequency domain resources is determined;
  • the frequency offset is the frequency domain starting position interval between the first PUSCH resource and the second PUSCH resource within the first available frequency domain resource.
  • the frequency domain starting position of the second PUSCH resource is determined by the frequency domain starting position of the first PUSCH resource, the frequency domain starting position of the first available frequency domain resource, frequency offset, and the first available frequency domain starting position. At least one of the sizes of frequency domain resources is determined, including:
  • the calculation step of the frequency domain starting position of the second PUSCH resource is: subtracting the frequency domain starting position of the first PUSCH resource from the first PUSCH resource.
  • the frequency domain starting position of an available frequency domain resource is used to obtain the first calculation result, the first calculation result is added to the frequency offset to obtain the second calculation result, and finally the second calculation result is combined with the frequency domain starting position of the first available frequency domain resource. Perform remainder calculation on the size.
  • the frequency offset ranges from 1 to the size of the first available frequency domain resource minus 1.
  • the frequency offset is determined by the size of the first available frequency domain resource.
  • the frequency offset, determined by the size of the first available frequency domain resource includes:
  • Frequency offset is one of the following:
  • the frequency offset is indicated by high-layer information or downlink control information DCI.
  • the frequency domain starting position of the first PUSCH resource is located in the second available frequency domain resource, and the frequency domain starting position of the second PUSCH resource is located in the third available frequency domain resource;
  • the second available frequency domain resource and the third available frequency domain resource are two different available frequency domain resources or the same available frequency domain resource.
  • the size of the third available frequency domain resource is the largest item among the sizes of other available frequency domain resources except the second available frequency domain resource.
  • the above method embodiments may be applied to or in terminal devices. That is to say, the execution subject of the above method embodiment can be a terminal device, a chip, a chip module or a module, etc., and there is no specific limitation on this.
  • the above method embodiments may be applied to or among network devices. That is to say, the execution subject of the above method embodiment can be a network device, a chip, a chip module or a module, etc., and there is no specific limitation on this.
  • An embodiment of the present application also provides a chip, including a processor, a memory, and a computer program or instructions stored on the memory, wherein the processor executes the computer program or instructions to implement the steps described in the above method embodiments.
  • Embodiments of the present application also provide a chip module, including a transceiver component and a chip.
  • the chip includes a processor, a memory, and a computer program or instructions stored on the memory.
  • the processor executes the computer program or instructions to Implement the steps described in the above method embodiment.
  • Embodiments of the present application also provide a computer-readable storage medium that stores computer programs or instructions. When the computer program or instructions are executed, the steps described in the above method embodiments are implemented.
  • Embodiments of the present application also provide a computer program product, which includes a computer program or instructions. When the computer program or instructions are executed, the steps described in the above method embodiments are implemented.
  • An embodiment of the present application also provides a communication system, including the above-mentioned terminal device and network device.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in hardware, or may be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules.
  • Software modules can be stored in RAM, flash memory, ROM, EPROM, electrically erasable programmable read-only memory (EPROM, EEPROM), registers, hard disks, removable hard disks, and read-only disks ( CD-ROM) or any other form of storage media well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the terminal device or management device.
  • the processor and the storage medium may also exist as discrete components in the terminal device or management device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part through software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means Transmission to another website, computer, server or data center.
  • the computer-readable storage medium can be any available media that can be accessed by the computer or include one or more sets of available media. Complete servers, data centers and other data storage equipment.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)) wait.
  • Each module/unit included in each device and product described in the above embodiments may be a software module/unit or a hardware module/unit, or may be partly a software module/unit and partly a hardware module/unit.
  • each module/unit included therein can be implemented in the form of hardware such as circuits, or at least some of the modules/units can be implemented in the form of a software program.
  • the software program Running on the processor integrated inside the chip, the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for various devices and products applied to or integrated into the chip module, each module/unit included in it can They are all implemented in the form of hardware such as circuits.
  • Different modules/units can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components. Alternatively, at least some modules/units can be implemented in the form of software programs. The software program runs on the processor integrated inside the chip module, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for each device and product that is applied or integrated into the terminal equipment, the various modules/units it contains Modules/units can all be implemented in the form of hardware such as circuits. Different modules/units can be located in the same component (for example, chip, circuit module, etc.) or in different components within the terminal device, or at least some of the modules/units can use software programs. This software program runs on the processor integrated inside the terminal device, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了通信方法与装置、终端设备、网络设备和芯片,涉及通信技术领域;该方法包括:在第一PUSCH资源上发送PUSCH;在第二PUSCH资源上发送PUSCH,第二PUSCH资源为第一PUSCH资源经过跳频后的资源;其中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于可用频域资源内,一个可用频域资源为多个频域资源中的一个上行频域资源,多个频域资源包括至少一个上行频域资源和至少一个下行频域资源。本申请在引入了一个时间单位内的多个频域资源的情况下,通过在该多个频域资源上对PUSCH跳频的频域资源范围进行限制,以便在该多个频域资源上实现PUSCH跳频以保证PUSCH传输。

Description

通信方法与装置、终端设备、网络设备和芯片 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法与装置、终端设备、网络设备和芯片。
背景技术
第三代合作伙伴计划组织(3rd Generation Partnership Project,3GPP)所规定的标准协议引入了物理上行共享信道(physical uplink shared channel,PUSCH)跳频(frequency hopping)。其中,PUSCH跳频,可以理解为,终端设备所发送的PUSCH在某一时间段占用一段频段,但在下一时间段跳转到另一个频段。
目前,现有协议只规定PUSCH在激活的(active)上行带宽部分(Uplink Bandwidth Part,UL BWP)上进行跳频,而UL BWP只看作是支持上行传输的频域资源,即上行频域资源。然而,随着标准协议和通信场景的演变,可能会引入新的频域资源分配方式,在该新的频域资源分配方式下,如何进行PUSCH的跳频,还需要进一步研究。
发明内容
本申请提供了一种通信方法与装置、终端设备、网络设备和芯片,以期望解决在新的频域资源分配下如何进行PUSCH的跳频的问题,从而保证PUSCH传输。
第一方面,为本申请的一种通信方法,包括:
在第一物理上行共享信道PUSCH资源上发送PUSCH;
在第二PUSCH资源上发送PUSCH,所述第二PUSCH资源为所述第一PUSCH资源经过跳频后的资源;
其中,所述第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于可用频域资源内,一个时间单元上的一个所述可用频域资源为在该时间单元内的多个频域资源中的一个上行频域资源,所述多个频域资源包括至少一个所述上行频域资源和至少一个下行频域资源,所述上行频域资源为频域连续的,所述下行频域资源为频域连续的。
可见,由于本申请实施例引入了一种新的频域资源分配方式,即在一个时间单位内分配多个频域资源,该多个频域资源包括至少一个上行频域资源和至少一个下行频域资源,而为了避免第二PUSCH资源可能超出可用频域资源(一个可用频域资源为该多个频域资源中分配给自己的一个上行频域资源),以位于不可用频域资源(不可用频域资源为该多个频域资源中的下行频域资源以及分配给其他终端设备的上行频域资源)内,从而可能导致终端设备无法使用第一PUSCH资源和/或第二PUSCH资源来传输PUSCH,即无法使用PUSCH跳频来传输PUSCH,因此本申请实施例可以使得第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于可用频域资源。由于第二PUSCH资源的频域起始位置位于可用频域资源,即在该多个频域资源上对PUSCH跳频的频域资源范围进行限制,使得第二PUSCH资源可以正常用于通信,解决了在新的频域资源分配下如何进行PUSCH的跳频的问题,从而保证PUSCH传输。
第二方面,为本申请的一种通信方法,包括:
在第一物理上行共享信道PUSCH资源上接收PUSCH;
在第二PUSCH资源上接收所述PUSCH,所述第二PUSCH资源为所述第一PUSCH资源经过跳频后的资源;
其中,所述第一PUSCH资源的频域起始位置和所述第二PUSCH资源的频域起始位置均位于可用频域资源内,一个时间单元上的一个所述可用频域资源为在该时间单元内的多个频域资源中的一个上行频域资源,所述多个频域资源包括至少一个所述上行频域资源和至少一个下行频域资源,所述上行频域资源为频域连续的,所述下行频域资源为频域连续的。
第三方面,为本申请的一种通信装置,包括:
发送单元,用于在第一物理上行共享信道PUSCH资源上发送PUSCH;
所述发送单元,还用于在第二PUSCH资源上发送所述PUSCH,所述第二PUSCH资源为所述第一PUSCH资源经过跳频后的资源;
其中,所述第一PUSCH资源的频域起始位置和所述第二PUSCH资源的频域起始位置均位于可用频域资源内,一个时间单元上的一个所述可用频域资源为在该时间单元内的多个频域资源中的一个上行频域资源,所述多个频域资源包括至少一个所述上行频域资源和至少一个下行频域资源,所述上行频域 资源为频域连续的,所述下行频域资源为频域连续的。
第四方面,为本申请的一种通信装置,包括:
接收单元,用于在第一物理上行共享信道PUSCH资源上接收PUSCH;
所述接收单元,还用于在第二PUSCH资源上接收所述PUSCH,所述第二PUSCH资源为所述第一PUSCH资源经过跳频后的资源;
其中,所述第一PUSCH资源的频域起始位置和所述第二PUSCH资源的频域起始位置均位于可用频域资源内,一个时间单元上的一个所述可用频域资源为在该时间单元内的多个频域资源中的一个上行频域资源,所述多个频域资源包括至少一个所述上行频域资源和至少一个下行频域资源,所述上行频域资源为频域连续的,所述下行频域资源为频域连续的。
第五方面,上述第一方面所设计的方法中的步骤应用于终端设备或者终端设备之中。
第六方面,上述第二方面所设计的方法中的步骤应用于网络设备或者网络设备之中。
第七方面,为本申请的一种终端设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其中,所述处理器执行所述计算机程序或指令以实现上述第一方面所设计的方法中的步骤。
第八方面,为本申请的一种网络设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其中,所述处理器执行所述计算机程序或指令以实现上述第二方面所设计的方法中的步骤。
第九方面,为本申请的一种芯片,包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。
第十方面,为本申请的一种芯片模组,包括收发组件和芯片,所述芯片包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。
第十一方面,为本申请的一种计算机可读存储介质,其中,其存储有计算机程序或指示,所述计算机程序或指令被执行时实现上述第一方面或第二方面所设计的方法中的步骤。
第十二方面,为本申请的一种计算机程序产品,包括计算机程序或指令,其中,该计算机程序或指令被执行时实现上述第一方面或第二方面所设计的方法中的步骤。
第十三方面,为本申请的一种通信系统,包括第七方面中的终端设备和第八方面中的网络设备。
第二方面至第十三方面的技术方案所带来的有益效果可以参见第一方面的技术方案所带来的技术效果,此处不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本申请实施例的一种通信系统的架构示意图;
图2是本申请实施例的一种一个时间单位内的多个频域资源的结构示意图;
图3是本申请实施例的一种PUSCH跳频的频域资源的结构示意图;
图4是本申请实施例的一种在多种频域资源内进行PUSCH跳频的结构示意图;
图5是本申请实施例的又一种在多种频域资源内进行PUSCH跳频的结构示意图;
图6是本申请实施例的又一种在多种频域资源内进行PUSCH跳频的结构示意图;
图7是本申请实施例的又一种在多种频域资源内进行PUSCH跳频的结构示意图;
图8是本申请实施例的又一种在多种频域资源内进行PUSCH跳频的结构示意图;
图9是本申请实施例的一种通信方法的流程示意图;
图10是本申请实施例的一种通信装置的功能单元组成框图;
图11是本申请实施例的又一种通信装置的功能单元组成框图;
图12是本申请实施例的一种终端设备的结构示意图;
图13是本申请实施例的一种网络设备的结构示意图。
具体实施方式
应理解,本申请实施例中涉及的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是还包括没有列出的步骤或单元,或还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
本申请实施例中涉及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其 它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示如下三种情况:单独存在A;同时存在A和B;单独存在B。其中,A、B可以是单数或者复数。
本申请实施例中,符号“/”可以表示前后关联对象是一种“或”的关系。另外,符号“/”也可以表示除号,即执行除法运算。例如,A/B,可以表示A除以B。
本申请实施例中的“至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合,是指一个或多个,多个指的是两个或两个以上。例如,a、b或c中的至少一项(个),可以表示如下七种情况:a,b,c,a和b,a和c,b和c,a、b和c。其中,a、b、c中的每一个可以是元素,也可以是包含一个或多个元素的集合。
本申请实施例中的“等于”可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于与小于时所采用的技术方案。当等于与大于连用时,不与小于连用;当等于与小于连用时,不与大于连用。
本申请实施例中涉及“的(of)”、“相应的(corresponding/relevant)”、“对应的(corresponding)”、“指示的(indicated)”有时可以混用。应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,对此不做任何限定。
本申请实施例中的“网络”可以与“系统”表达为同一概念,通信系统即为通信网络。
本申请实施例中的“大小(size)”可以与“长度(length)”等表达为同一概念。
下面对本申请实施例所涉及的相关内容、概念、含义、技术问题、技术方案、有益效果等进行说明。
一、通信系统、终端设备和网络设备
1、通信系统
本申请实施例的技术方案可以应用于各种通信系统,例如:通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced Long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based Access to Unlicensed Spectrum,LTE-U)系统、非授权频谱上的NR(NR-based Access to Unlicensed Spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,Wi-Fi)、第6代(6th-Generation,6G)通信系统或者其他通信系统等。
需要说明的是,传统的通信系统所支持的连接数有限,且易于实现。然而,随着通信技术的发展,通信系统不仅可以支持传统的通信系统,还可以支持如设备到设备(device to device,D2D)通信、机器到机器(machine to machine,M2M)通信、机器类型通信(machine type communication,MTC)、车辆间(vehicle to vehicle,V2V)通信、车联网(vehicle to everything,V2X)通信、窄带物联网(narrow band internet of things,NB-IoT)通信等,因此本申请实施例的技术方案也可以应用于上述通信系统。
此外,本申请实施例的技术方案可以应用于波束赋形(beamforming)、载波聚合(carrier aggregation,CA)、双连接(dual connectivity,DC)或者独立(standalone,SA)部署场景等。
本申请实施例中,终端设备和网络设备之间通信所使用的频谱,或者终端设备和终端设备之间通信所使用的频谱可以为授权频谱,也可以为非授权频谱,对此不做限定。另外,非授权频谱可以理解为共享频谱,授权频谱可以理解为非共享频谱。
由于本申请实施例结合终端设备和网络设备描述了各个实施例,因此下面将对涉及的终端设备和网络设备进行具体描述。
2、终端设备
本申请实施例中,终端设备可以为一种具有收发功能的设备,又可以称之为终端、用户设备(user equipment,UE)、远程终端设备(remote UE)、中继设备(relay UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、移动设备、用户终端设备、智能终端设备、无线通信设备、用户代理或用户装置。需要说明的是,中继设备是能够为其他终端设备(包括远程终端设备)提供中继转发服务的终端设备。
在一些可能的实现中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;可以部署在水面上(如轮船等);可以部署在空中(如飞机、气球和卫星等)。
在一些可能的实现中,终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人自动驾驶中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或者智慧家庭(smart home)中的无线终端设备等。
另外,终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统(例如NR通信系统、6G通信系统)中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,对此不作具体限定。
在一些可能的实现中,终端设备可以包括无线通信功能的装置,例如芯片系统、芯片、芯片模组。示例的,该芯片系统可以包括芯片,还可以包括其它分立器件。
3、网络设备
本申请实施例中,网络设备可以为一种具有收发功能的设备,用于与终端设备之间进行通信。例如,网络设备可以负责空口侧的无线资源管理(radio resource management,RRM)、服务质量(quality of service,QoS)管理、数据压缩和加密、数据收发等。其中,网络设备可以是通信系统中的基站(base station,BS)或者部署于无线接入网(radio access network,RAN)用于提供无线通信功能的设备。例如,LTE通信系统中的演进型节点B(evolutional node B,eNB或eNodeB)、NR通信系统中的下一代演进型的节点B(next generation evolved node B,ng-eNB)、NR通信系统中的下一代节点B(next generation node B,gNB)、双连接架构中的主节点(master node,MN)、双连接架构中的第二节点或辅节点(secondary node,SN)等,对此不作具体限制。
在一些可能的实现中,网络设备还可以是核心网(core network,CN)中的设备,如访问和移动性管理功能(access and mobility management function,AMF)、用户面功能(user plane function,UPF)等;还可以是WLAN中的接入点(access point,AP)、中继站、未来演进的PLMN网络中的通信设备、NTN网络中的通信设备等。
在一些可能的实现中,网络设备可以包括具有为终端设备提供无线通信功能的装置,例如芯片系统、芯片、芯片模组。示例的,该芯片系统可以包括芯片,或者,可以包括其它分立器件。
在一些可能的实现中,网络设备可以与互联网协议(Internet Protocol,IP)网络进行通信。例如,因特网(internet)、私有的IP网或者其他数据网等。
在一些可能的实现中,网络设备可以是一个独立的节点以实现上述基站的功能或者,网络设备可以包括两个或多个独立的节点以实现上述基站的功能。例如,网络设备包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),如gNB-CU和gNB-DU。进一步的,在本申请的另一些实施例中,网络设备还可以包括有源天线单元(active antenna unit,AAU)。其中,CU实现网络设备的一部分功能,DU实现网络设备的另一部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC)层、服务数据适配(service data adaptation protocol,SDAP)层、分组数据汇聚(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。另外,AAU可以实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者由PHY层的信息转变而来,因此,在该网络部署下,高层信令(如RRC信令)可以认为是由DU发送的,或者由DU和AAU共同发送的。可以理解的是,网络设备可以包括CU、DU、AAU中的至少一个。另外,可以将CU划分为RAN中的网络设备,或者,也可以将CU划分为核心网中的网络设备,对此不做具体限定。
在一些可能的实现中,网络设备可以是与终端设备进行相干协作传输的多站点中的任一站点,或者是该多站点外的其他站点,或者是其他与终端设备进行网络通信的网络设备,对此不作具体限制。其中,多站点相干联合传输可以为多个站点联合相干传输,或者属于同一个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的不同数据从不同的站点发送到终端设备,或者多个站点虚拟成一个站点进行传输,其他标准中规定相同含义的名称也同样适用于本申请,即本申请并不限制这些参数的名称。多站点相干联合传输中的站点可以为射频拉远头(Remote Radio Head,RRH)、传输接收点(transmission and reception point,TRP)、网络设备等,对此不作具体限定。
在一些可能的实现中,网络设备可以是与终端设备进行非相干协作传输的多站点中的任一站点,或 者是该多站点外的其他站点,或者是其他与终端设备进行网络通信的网络设备,对此不作具体限制。其中,多站点非相干联合传输可以为多个站点联合非相干传输,或者属于同一个PDSCH的不同数据从不同的站点发送到终端设备,或者属于同一个PDSCH的不同数据从不同的站点发送到终端设备,其他标准中规定相同含义的名称也同样适用于本申请,即本申请并不限制这些参数的名称。多站点非相干联合传输中的站点可以为RRH、TRP、网络设备等,对此不作具体限定。
在一些可能的实现中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(high elliptical orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在一些可能的实现中,网络设备可以为小区提供服务,而该小区中的终端设备可以通过传输资源(如频谱资源)与网络设备进行通信。其中,该小区可以为宏小区(macro cell)、小小区(small cell)、城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)和毫微微小区(femto cell)等。
4、示例说明
下面对本申请实施例的通信系统做一个示例性说明。
示例性的,本申请实施例的一种通信系统的网络架构,可以参阅图1。如图1所示,通信系统10可以包括网络设备110和终端设备120。终端设备120可以通过无线方式与网络设备110进行通信。
图1仅为一种通信系统的网络架构的举例说明,对本申请实施例的通信系统的网络架构并不构成限定。例如,本申请实施例中,通信系统中还可以包括服务器或其它设备。再例如,本申请实施例中,通信系统中可以包括多个网络设备和/或多个终端设备。
二、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)
在本申请实施例中,终端设备可以通过资源指示信息(如高层信令或下行控制信息(Downlink Control Information,DCI)等)来确定PUSCH在频域上的资源分配。
例如,对于调度(或触发)的PUSCH,终端设备可以通过物理下行控制信道(Physical Downlink Shared Channel,PDCCH)所携带的DCI中的频域资源分配(frequency domain resource assignment,FDRA)字段(field)来确定PUSCH在频域上的资源分配。
又例如,对于配置授权(configured grant)的PUSCH,终端设备可以通过高层信令(如高层参数ConfiguredGrantConfig)来确定配置授权类型1(configured grant Type 1,CG Type1)的PUSCH在频域上的资源分配。
PUSCH的频域资源分配支持3种频域分配类型:类型0(Type0)、类型1和类型2。
1、类型0
在类型0中,将多个连续的资源块(resource block,RB)捆绑到一个资源块集(resource block group,RBG)中,并且仅以RBG为单元来分配PUSCH的频域资源。
在类型0中,DCI通过位图(bitmap)的方式来指示为终端设备分配PUSCH的频域资源中的RBG。RBG应按BWP的频率递增的顺序从最低频率开始进行编号。由于采用位图,因此被分配的不同RBG之间不一定是连续的。
另外,类型0不支持PUSCH跳频(frequency hopping)。
2、类型1
在类型1中,PUSCH的频域资源分配不依赖于位图,而是通过起始位置(如RBstart)和以连续的RB所表示的大小来确定。因此,不同于类型0,类型1不支持任意类型的RB分配,而只支持频域资源连续的分配方式,这样就可以减小频域资源分配的信令开销。
另外,类型1支持PUSCH跳频。
3、类型2
需要说明的是,类型0和类型1适用于授权(licensed)频谱,而类型2适用于非授权(unlicensed)频谱。
另外,类型2不支持PUSCH跳频。
三、PUSCH跳频过程
1、PUSCH跳频
PUSCH跳频,可以理解为,终端设备所发送的PUSCH在某一时刻占用一段频段,但在下一时刻跳转到另一个频段。
在频域资源分配类型1的情况下,如果相应检测到的DCI格式(format)或随机接入响应UL授权 (random access response UL grant,RAR UL grant)中的跳频字段设置为1,则终端设备可以执行PUSCH跳频;或者,如果对于具有配置授权类型1的PUSCH传输,则提供高层参数(如frequencyHoppingOffset);否则,终端设备不执行PUSCH跳频。
2、跳频模式
通过PUSCH跳频可以实现足够的频率选择性增益和干扰随机化效果。其中,跳频模式可以包括时隙内跳频(intra-slot frequency hopping)和时隙间跳频(inter-slot frequency hopping),而跳频模式可以通过高层信令配置。例如,通过高层信息pusch-Config(PUSCH配置)中的frequencyHopping(跳频)来配置。
●时隙内跳频
对于时隙内跳频,PUSCH在同一个时隙内的两跳(hop)上传输,该两跳分别为第一跳(first hop)和第二跳(second hop)。其中,该两跳在频域上具有一定的频域起始位置间隔,称为频率偏移(frequency offset);该两跳在时域上包含不同的连续个OFDM符号。
时隙内跳频可以改善一次PUSCH传输的频率分集和干扰抑制,可以适用于单时隙(single slot)的PUSCH传输和多时隙(multi-slot)的PUSCH传输。
●时隙间跳频
对于时隙间跳频,时域上一个时隙可以看作一跳,因此PUSCH在不同时隙上传输。不同跳上传输的PUSCH同样有频率偏移。
时隙间偏移可以适用于多时隙的PUSCH传输,从而改善两次PUSCH传输之间的频率分集和干扰抑制。
3、PUSCH在激活的UL BWP内的每跳的频域起始位置
需要说明的是,本申请实施例所出现的频域起始位置可以是起始RB(starting RB),可以是起始子载波,可以是起始资源元素(Resource Element,RE)等。其中,本申请实施例所出现的RB可以是物理资源块(physical resource block,PRB)或者虚拟资源块(Virtual RB,VRB),对此不作具体限制。下面本申请实施例以频域起始位置是起始RB为例进行说明,其他情况同理可知。
对于时隙内跳频,PUSCH在激活的UL BWP内的每跳的起始RB可以由下面公式得到:
其中,i=0表示第一跳;i=1表示第二跳;RBstart可以根据FDRA字段中包含的RIV值获取;RBoffset表示两跳之间的频率偏移;表示UL BWP的大小。对于不进行重复传输的PUSCH,在时隙内跳频中,第一跳所包含的OFDM符号数为第二跳所包含的OFDM符号数为 表示在一个时隙中PUSCH传输所使用的OFDM符号的大小,表示对进行向下取整。
对于时隙间跳频,在一个无线帧(radio frame)中编号为的时隙中,每跳的起始RB可以由下面公式得到:
其中,表示编号为偶数的时隙,即第一跳;表示编号为奇数的时隙,即第二跳;RBoffset表示两跳之间的频率偏移;表示激活的UL BWP的大小。
4、两跳之间的频率偏移
1)动态调度PUSCH
对于动态调度PUSCH,且频域资源分配类型为类型1,若配置了PUSCH跳频,则调度PUSCH的DCI的FDRA域中有NUL_hop个比特,该NUL_hop个比特用于指示频率偏移。
网络设备可以通过配置该频域偏移来确定PUSCH的跳频范围,并且频率偏移可以由高层信息配置多个,再通过DCI中的NUL_hop个比特从该多个中指示出一个。
例如,频率偏移由高层信息pusch-Config中的高层参数frequencyHoppingOffsetLists(频率偏移列表)配置,并配置2个或者4个频率偏移,再通过DCI从该2个或者4个频率偏移中指示出1个。其中,每个频率偏移的取值范围为从1到
2)配置授权类型2的PUSCH
对于由DCI格式0_0/0_1激活的配置授权类型2的PUSCH,且频域资源分配类型为类型1,频率偏移可以由高层信息pusch-Config中的高层参数frequencyHoppingOffsetLists(跳频偏移列表)配置多个,再通过DCI中的NUL_hop个比特从该多个中指示出一个。
对于由DCI格式0_2激活的配置授权类型2的PUSCH的频域资源分配类型1,频率偏移可以由高层信令pusch-Config中的高层参数frequencyHoppingOffsetListsDCI-0-2(跳频偏移列表DCI-0-2)配置多个,再通过DCI中的NUL_hop个比特从该多个中指示出一个。
3)配置授权类型1的PUSCH
对于配置授权类型1的PUSCH,频率偏移由高层信息rrc-ConfiguredUplinkGrant(媒体接入控制-配置上行授权)中的高层参数frequencyHoppingOffset(跳频偏移)配置。
4)RAR UL授权调度的PUSCH或者临时小区无线网络临时标识(Temporary Cell Radio Network Temporary Identity,TC-RNTI)加扰的DCI 0-0调度的PUSCH
对于由RAR UL授权调度的具有跳频的PUSCH传输,或者对于TC-RNTI加扰的DCI 0-0调度的PUSCH,通过DCI中的NUL_hop个比特指示出一个频率偏移。
四、新的频域资源配置方式
1、新的频域资源分配方式
随着用户对上行业务需求的快速增长,对网络中的终端设备的上行覆盖率、速率和时延都提出了更高的需求。
在现有的时分双工(Time Division Duplexing,TDD)系统中,网络设备在同一个时域资源上的传输方向是相同的。通常,TDD系统中网络设备是以时隙为粒度配置传输方向的。
例如,以时隙0和时隙1配置为下行传输方向,而时隙2配置为上行传输方向为例,网络设备在时隙0和时隙1上只能进行下行通信,无法进行上行通信;网络设备在时隙2上只能进行上行通信,无法进行下行通信。对于具有上行业务需求的终端设备而言,这就导致终端设备无法在时隙0和时隙1向网络设备传输上行数据,而必须等到时隙2才能进行上行通信。
在现有的全双工(Full Duplex)系统中,网络设备和终端设备之间可以同时进行上下行通信。
与现有的时分双工系统和全双工系统不同的是,本申请实施例引入了一种新的频域资源分配方式,即以一个时间单元内的频域资源为粒度配置传输方向,使得在一个时间单元内可以针对不同的频域资源同时配置不同的传输方式。也就是说,一个时间单元内既存在支持上行传输(上行通信方向)的频域资源(即上行频域资源),又存在支持下行传输(下行通信方向)的频域资源(即下行频域资源),从而一个时间单元内的多个频域包括至少一个上行频域资源和至少一个下行频域资源,上行频域资源为频域连续的,下行频域资源为频域连续的。
需要说明的是,当一个时间单元为1个时隙时,与TDD系统中的1个时隙只能支持上行传输或下行传输方向,而本申请实施例的1个时隙内可以同时支持上行传输方向和下行传输方向。
例如,如图2所示,在一个时间单元内配置有多个频域资源,该多个频域资源在频域上连续,并且该多个频域资源包括下行频域资源210、上行频域资源220、下行频域资源230、上行频域资源240。其中,下行频域资源210为频域连续的,上行频域资源220为频域连续的,下行频域资源230为频域连续的,上行频域资源240为频域连续的。
另外,本申请实施例可以通过网络配置或预配置的方式来配置一个时间单元内的每个频域资源的频域起始位置和大小,以便通过每个频域资源的频域起始位置和每个频域资源的大小,实现配置一个时间单元内的多个频域资源。
下面本申请实施例分别以网络设备和终端设备的角度来说明的该新的频域资源分配方式。
●对于网络设备
网络设备能够以一个时间单元内的频域资源为粒度配置传输方向。也就是说,一个时间单元内可以配置多个频域资源,且不同频域资源配置的传输方向可以不同。由此,对于网络设备而言,在同一个时间单元可以既存在上行传输(上行通信方向)的频域资源,又可以存在下行传输(下行通信方向)的频域资源。
通过将基于前述配置方式配置的频域资源指示给终端设备,网络设备可以同时与不同的终端设备在不同频域资源进行上行传输(上行通信)和下行传输(下行通信),这有利于满足不同的终端设备的通信需求。也就是说,在网络设备管理下的不同的终端设备可以同时进行上行传输和下行传输,因此网络设备看起来可以同时进行上下行通信,或者说网络设备可以是全双工的。
●对于终端设备
终端设备在一个时间单元内的频域资源上只能进行上行传输或下行传输,无法同时进行上下行传输。也就是说,终端设备可以是半双工的。
不同的终端设备可以根据网络设备发送的资源指示信息确定各自可以使用的频域资源(即可用频域资源),并分别使用各自的可用频域资源与网络设备进行通信。由于是以一个时间单元内的频域资源为粒度配置传输方向,因而不同的终端设备可以同时在不同的频域资源上与网络设备进行上行通信或下行通信。
对于具有上行业务需求的终端设备,如果当前时间单元内配置了用于上行传输的频域资源,则无需遵循现有技术的方案等待到下一个配置为上行传输的时间单元,而是可以在当前时间单元内使用网络设备所配置的用于上行传输的频域资源来传输数据,因而能够更快地完成上行业务传输。也就是说,对于具有上行业务需求的终端设备,终端设备可以利用频域资源更快地进行上行业务,极大地提高TDD通信系统的通信方式的灵活性。
综上所述,本申请实施例以一个时间单元内的频域资源为粒度配置传输方向的好处是:网络设备可以在同一个时间单元内与不同的终端设备进行上行传输或者下行传输,这有利于满足不同终端设备的通信需求;对于具有上行业务需求的终端设备而言,终端设备可以利用频域资源以更快地进行上行业务,极大地提高TDD通信系统的通信方式的灵活性。
2、时间单元
在本申请实施例中,时间单元,可以理解为,在时域上的通信粒度。例如,时间单元可以为子帧、时隙、符号或者迷你时隙等,对此不作具体限制。
另外,本申请实施例的一个时间单元可以为至少一个子帧、至少一个时隙、至少一个符号或者至少一个迷你时隙等,对此不作具体限制。
对于一个时间单元的理解,由于本申请实施例的PUSCH跳频可以为时隙内跳频,也可以为时隙间跳频,因此当PUSCH跳频为时隙内跳频时,一个时间单元可以为一个时隙;当PUSCH跳频为时隙间跳频时,一个时间单元可以为多个时隙,对此不作具体限制。
3、频域资源
在本申请实施例中,频域资源是支持配置不同传输方向的。也就是说,可以将频域资源配置为支持上行方向传输(上行传输),也可以将频域资源配置为支持下行方向传输(下行传输)。
在本申请实施例中,频域资源可以为子带,可以为连续的资源块集(Resource Block set,RB set)。
需要说明的是,本申请实施例所述的子带,可以理解为,从一段带宽中划分出来的一部分子频带。其中,该带宽可以为BWP。每个子带要么只支持上行传输,要么只支持下行传输。
在一些可能的实现,子带可以配置在BWP上,也可以配置在载波上。
当频域资源为子带时,一个时间单元内的多个频域资源,可以为一个时间单元内的多个子带。
本申请实施例所述的连续的RB集,可以理解为,一个时间单元内的每个频域资源可以是连续的RB集。
4、可用频域资源、不可用频域资源
需要说明的是,网络设备能够以一个时间单元内的频域资源为粒度配置传输方向。在一个时间单元内所配置的多个频域资源中,有一些上行频域资源是配置给某一个终端设备,而另外一些上行频域资源是配置给另外一个终端设备。为此,对于一个终端设备来说,只有配置给自己的上行频域资源,该上行频域资源对终端设备来说才是可用的(available)。为了便于描述,配置给自己的上行频域资源,称为“可用频域资源”。对于下行资源以及配置给其他终端设备的上行频域资源,这些频域资源对该终端设备来说是不可用的(non-available)。
例如,在图2中,网络设备在一个时间单元内配置有多个频域资源,该多个频域资源在频域上连续,并且该多个频域资源包括下行频域资源210、上行频域资源220、下行频域资源230、上行频域资源240。其中,上行频域资源220是配置给终端设备1的,上行频域资源240是配置给终端设备2的。因此,对于终端设备1而言,终端设备1知道上行频域资源220的存在,但不知道上行频域资源240的存在,对此上行频域资源220对于终端设备1是可用频域资源,上行频域资源240、下行频域资源210和下行频域资源230对于终端设备1是不可用频域资源;对于终端设备2而言,终端设备2知道上行频域资源240的存在,但不知道上行频域资源220的存在,对此上行频域资源240对于终端设备2是可用频域资源,上行频域资源220、下行频域资源210和下行频域资源230对于终端设备2是不可用频域资源。
综上所述,在本申请实施例中,对于一个终端设备而言,只有配置给该终端设备的上行频域资源对该终端设备而言才是可用频域资源,其他的频域资源(包括下行频域资源和配置给其他终端设备的上行频域资源)对该终端设备而言都是不可用频域资源。
5、PUSCH跳频的频域资源范围
结合上述“三、PUSCH跳频过程”中的内容,PUSCH可以在激活的UL BWP上进行跳频。例如,如图3所示,PUSCH资源310为PUSCH跳频的第一跳,位置B为PUSCH资源310的频域起始位置;PUSCH资源320为PUSCH跳频的第二跳,位置C为PUSCH资源320的频域起始位置。其中,位置B和位置C是以Point A(点A)为参考点进行编号。
由于本申请实施例是以一个时间单元内的频域资源为粒度配置传输方向,且一个时间单元内同时存在上行频域资源和下行频域资源,使得PUSCH跳频的第二跳可能会超出可用频域资源,而处于不可用频域资源,导致可能无法进行PUSCH传输,因此需要对PUSCH跳频的频域资源范围进行限制。
例如,不同于图3中PUSCH跳频的第二跳不会超出UL BWP的情况,在图4中,在一个时间单元内配置有多个频域资源,该多个频域资源在频域上连续,并且该多个频域资源包括下行频域资源410、上行频域资源420、下行频域资源430。下行频域资源410为频域连续的,上行频域资源420为频域连续的,下行频域资源430为频域连续的。其中,上行频域资源420为终端设备的可用频域资源,并且该终端设备确定有PUSCH资源440和PUSCH资源450,PUSCH资源440为PUSCH跳频的第一跳,PUSCH资源450为PUSCH跳频的第二跳。由于PUSCH资源440在上行频域资源420内,PUSCH资源450在下行频域资源430内,而下行频域资源430只支持下行传输,因此导致终端设备无法在PUSCH资源450上发送PUSCH。
五、限制PUSCH跳频的频域资源范围
不同于UL BWP,本申请实施例引入了在一个时间单位内的多个频域资源,该多个频域资源包括至少一个上行频域资源和至少一个下行频域资源,而为了避免PUSCH跳频的第二跳可能超出可用频域资源(一个可用频域资源为该多个频域资源中分配给自己的一个上行频域资源),以位于不可用频域资源(不可用频域资源为该多个频域资源中的下行频域资源以及分配给其他终端设备的上行频域资源)内,从而可能导致终端设备无法使用PUSCH跳频的第一跳和/或第二跳来传输PUSCH。为了解决新的频域资源配置方式下可能无法使用PUSCH跳频来传输PUSCH的问题,本申请实施例可以使得PUSCH跳频的两跳的频域起始位置均位于可用频域资源内。由于PUSCH跳频的第二跳的频域起始位置位于可用频域资源,即在该多个频域资源上对PUSCH跳频的频域资源范围进行限制,使得第二PUSCH资源可以正常用于通信,解决了在新的频域资源分配下如何进行PUSCH的跳频的问题,从而保证PUSCH传输。
下面对本申请实施例所涉及的技术方案、有益效果、概念等进行说明。
1、第一PUSCH资源、第二PUSCH资源
(1)概念
本申请实施例涉及PUSCH跳频的两跳,为了便于描述清楚,第一PUSCH资源,可以为PUSCH跳频的第一跳。
第二PUSCH资源,可以为PUSCH跳频的第二跳。也就是说,第二PUSCH资源为第一PUSCH资源经过跳频后的资源。
另外,由于本申请实施例可以涉及时隙内跳频和时隙间跳频,因此第一PUSCH资源和第二PUSCH资源可以是时隙内的PUSCH跳频,可以是时隙间的PUSCH跳频。
(2)如何确定第一PUSCH资源和第二PUSCH资源
在本申请实施例中,本申请实施例可以通过网络配置或预配置的方式来配置第一PUSCH资源的频域起始位置和第一PUSCH资源的大小,从而终端设备根据第一PUSCH资源的频域起始位置和第一PUSCH资源的大小确定第一PUSCH资源。
例如,以网络配置为例,对于调度(或触发)的PUSCH,网络设备可以通过PDCCH所携带的DCI中的FDRA字段所确定的资源指示值(resource indication value,RIV)向终端设备指示第一PUSCH资源的频域起始位置和第一PUSCH资源的大小。
在本申请实施例中,本申请实施例可以通过网络配置或预配置的方式来配置频率偏移,该频率偏移为第一PUSCH资源与第二PUSCH资源之间的频域起始位置间隔,从而终端设备根据第一PUSCH资源的频域起始位置和频率偏移确定第二PUSCH资源的频域起始位置。或者,终端设备可以自行确定第二PUSCH资源的频域起始位置,而无需用到频率偏移,只要使得第二PUSCH资源的频域起始位置在上行频域资源内即可。
例如,以网络配置为例,网络设备可以通过PDCCH所携带的DCI的FDRA域中的NUL_hop个比特的值来指示该频率偏移,或者网络设备可以通过RRC信令来指示该频率偏移。
对于第二PUSCH资源的大小,可以沿用第一PUSCH资源的大小,也可以通过网络配置或预配置 的方式来配置出第二PUSCH资源的大小。因此,终端设备可以根据第一PUSCH资源的大小和第二PUSCH资源的频域起始位置确定第二PUSCH资源,也可以根据第二PUSCH资源的大小和第二PUSCH资源的频域起始位置确定第二PUSCH资源,对此不作具体限制。
(3)第一PUSCH资源的频域起始位置、第二PUSCH资源的频域起始位置
在本申请实施例中,第一PUSCH资源的频域起始位置,可以表示第一PUSCH资源在频域上的起始位置。第一PUSCH资源的频域起始位置,可以是第一PUSCH资源的起始RB,可以是第一PUSCH资源的起始子载波,可以是第一PUSCH资源的起始RE等,对此不作具体限制。下面本申请实施例以第一PUSCH资源的起始RB为例进行说明,其他情况同理可知。
第二PUSCH资源的频域起始位置,可以表示第二PUSCH资源在频域上的起始位置。同理,第二PUSCH资源的频域起始位置,可以是第二PUSCH资源的起始RB,可以是第二PUSCH资源的起始子载波,可以是第二PUSCH资源的起始RE等,对此不作具体限制。
下面本申请实施例以第二PUSCH资源的起始RB为例进行说明,其他情况同理可知。
在一些可能的实现中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均以Point A为参考点进行编号。
需要说明的是,由于Point A作为一个资源块网格(resource block grids)的公共参考点(common reference point),因此本申请实施例所定义的第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均以Point A为参考点。
在一些可能的实现中,第一PUSCH资源的频域起始位置的编号可以小于第二PUSCH资源的频域起始位置的编号,也可以大于第二PUSCH资源的频域起始位置的编号。
例如,在图4中,第一PUSCH资源为PUSCH资源440,第二PUSCH资源为PUSCH资源450。其中,PUSCH资源440的频域起始位置的编号小于PUSCH资源450的频域起始位置的编号。
(4)第一PUSCH资源的大小、第二PUSCH资源的大小
在本申请实施例中,第一PUSCH资源的大小,可以理解为,第一PUSCH资源在频域上所占用的资源长度或资源带宽等。
例如,第一PUSCH资源的大小,可以为第一PUSCH资源中的RB总数,可以为第一PUSCH资源中的子载波总数,可以为第一PUSCH资源中的RE总数等,对此不作具体限制。其中,RB可以是PRB或者VRB。
第二PUSCH资源的大小,可以理解为,第二PUSCH资源在频域上所占用的资源长度或资源带宽等。
例如,第二PUSCH资源的大小,可以为第二PUSCH资源中的RB总数,可以为第二PUSCH资源中的子载波总数,可以为第二PUSCH资源中的RE总数等,对此不作具体限制。
(5)一个时间单元内的多个频域资源
对于一个时间单元内的多个频域资源,可以详见“四、新的频域资源配置方式”中的内容。其中,该多个频域资源中的每个频域资源要么是上行频域资源,要么是下行频域资源。
需要说明的是,本申请实施例可以通过网络配置或预配置方式来实现在一个时间单元内配置该多个频域资源。也就是说,多个频域资源中的上行频域资源和下行频域资源是通过网络配置或预配置的。
例如,以网络配置为例,高层信息可以用于配置该多个频域资源中的每个频域资源(即上行频域资源或下行频域资源)的频域起始位置和每个频域资源(即上行频域资源或下行频域资源)的大小。示例性的,针对一个频域资源,可以通过一个RIV去指示该频域资源的频域起始位置和大小,也可以一个指示信息指示该频域资源的频域起始位置,另一个指示信息指示该频域资源的大小。其中,该频域资源的大小可以为该频域资源中的RB总数、子载波总数、RE总数等。
(6)第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置(即PUSCH跳频的两跳的频域起始位置)位于同一个可用频域资源内
在一些可能的实现中,本申请实施例可以灵活配置第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置位于相同的可用频域资源内,且可用频域资源为上行频域资源,从而可以实现PUSCH在同一个可用频域资源内进行跳频,避免PUSCH在一个时间单元内的多个频域资源上的第二跳超出可用频域资源,实现对PUSCH跳频的频域资源范围进行限制的可能性。
例如,如图5所示,在一个时间单元内配置有多个频域资源,该多个频域资源在频域上连续,并且该多个频域资源包括下行频域资源510、上行频域资源520、下行频域资源530、上行频域资源540。其中,上行频域资源520为终端设备的可用频域资源,上行频域资源540为终端设备的不可用频域资源。终端设备确定出PUSCH资源550为第一PUSCH资源,以及PUSCH资源560为第二PUSCH资源。其 中,PUSCH资源550的频域起始位置和PUSCH资源560的频域起始位置均在上行频域资源520内,PUSCH资源550的频域起始位置小于PUSCH资源560的频域起始位置。
又例如,如图6所示,在一个时间单元内配置有多个频域资源,该多个频域资源在频域上连续,并且该多个频域资源包括下行频域资源610、上行频域资源620、下行频域资源630、上行频域资源640。其中,上行频域资源620为终端设备的可用频域资源。终端设备确定出PUSCH资源650为第一PUSCH资源,以及PUSCH资源660为第二PUSCH资源。其中,PUSCH资源650的频域起始位置和PUSCH资源660的频域起始位置均在上行频域资源620内,PUSCH资源650的频域起始位置大于PUSCH资源660的频域起始位置。
另外,若终端设备的能力只支持一个上行频域资源,或者网络设备只为终端设备配置有一个上行频域资源(即该一个上行频域资源对终端设备自身而言是一个可用频域资源),则通过将第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置配置在该一个上行频域资源内可以适应终端设备的能力,使得终端设备可以在第一PUSCH资源和第二PUSCH资源上发送PUSCH。
(7)第一可用频域资源、第一可用频域资源的频域起始位置、第一可用频域资源的大小
若网络设备只向终端设备配置一个可用频域资源,则第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置位于一个可用频域资源内。
为了便于描述,本申请实施例可以将该一个可用频域资源称为“第一可用频域资源”。也就是说,第一可用频域资源,可以为一个可用频域资源。与上述“(5)一个时间单元内的多个频域资源”中的描述类似,本申请实施例可以通过网络配置或预配置方式来配置第一可用频域资源的频域起始位置和第一可用频域资源的大小。其中,第一可用频域资源的大小,可以理解为,第一可用频域资源在频域上所占用的资源长度或资源带宽等。
例如,第一可用频域资源的大小可以为第一可用频域资源中的RB总数、子载波总数、RE总数等。
(8)第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置(即PUSCH跳频的两跳的频域起始位置)位于不同的可用频域资源内
在一些可能的实现中,本申请实施例可以灵活配置第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置位于不同的可用频域资源内,从而可以实现PUSCH在不同的可用频域资源内进行跳频,避免PUSCH跳频的第二跳超出可用频域资源,实现对PUSCH跳频的频域资源范围进行限制的可能性。
例如,如图7所示,在一个时间单元内配置有多个频域资源,该多个频域资源在频域上连续,并且该多个频域资源包括下行频域资源710、上行频域资源720、下行频域资源730、上行频域资源740。其中,上行频域资源720为终端设备的一个可用频域资源,上行频域资源740为终端设备的另一个可用频域资源。终端设备确定出PUSCH资源750为第一PUSCH资源,以及PUSCH资源760为第二PUSCH资源。其中,PUSCH资源750的频域起始位置在上行频域资源720内,PUSCH资源760的频域起始位置在上行频域资源740内,PUSCH资源750的频域起始位置小于PUSCH资源760的频域起始位置。
又例如,如图8所示,在一个时间单元内配置有多个频域资源,该多个频域资源在频域上连续,并且该多个频域资源包括下行频域资源810、上行频域资源820、下行频域资源830、上行频域资源840。其中,上行频域资源820为终端设备的一个可用频域资源,上行频域资源840为终端设备的另一个可用频域资源。终端设备确定出PUSCH资源850为第一PUSCH资源,以及PUSCH资源860为第二PUSCH资源。其中,PUSCH资源850的频域起始位置在上行频域资源840内,PUSCH资源860的频域起始位置在上行频域资源820内,PUSCH资源850的频域起始位置大于PUSCH资源860的频域起始位置。
另外,若终端设备的能力支持多个上行频域资源,或者网络设备向终端设备配置有多个上行频域资源(即该多个上行频域资源对终端设备自身而言是多个可用频域资源),则通过将第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置配置在不同的频域资源内可以适应终端设备的能力,使得终端设备可以在第一PUSCH资源和第二PUSCH资源上发送PUSCH。
(9)第二可用频域资源、第三可用频域资源
若网络设备向终端设备配置多个可用频域资源,则第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置可以位于相同的或者不同的可用频域资源内。
为了便于区分和描述,本申请实施例可以将第一PUSCH资源的频域起始位置所位于的可用频域资源称为“第二可用频域资源”,以及将第二PUSCH资源的频域起始位置所位于的可用频域资源称为“第三可用频域资源”。其中,第二可用频域资源和第三可用频域资源,可以为不同的两个可用频域资源或者同一个可用频域资源。
也就是说,若第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置位于相同的可 用频域资源内,则第二可用频域资源和第三可用频域资源为同一个可用频域资源;若第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置位于不相同的可用频域资源内,则第二可用频域资源和第三可用频域资源为不同的两个可用频域资源。
在一些可能的实现中,第三可用频域资源的大小,可以为除第二可用频域资源之外的其他可用频域资源的大小中的最大项。
需要说明的是,由于第三可用频域资源的大小为除第二可用频域资源之外的最大项,则可以保证第二PUSCH资源的频域起始位置(即PUSCH跳频的第二跳)在较大的上行频域资源内,这样有利于尽可能避免第二PUSCH资源的频域资源范围超出该较大的上行频域资源。
在一些可能的实现中,第三可用频域资源,可以为除第二可用频域资源之外的其他上行频域资源中的任意一项,从而可以灵活配置第二PUSCH资源的频域资源范围。
(10)如何确定第二PUSCH资源的频域起始位置
结合上述描述,由于网络设备可以向终端设备配置一个或者多个可用频域资源,因此下面具体分两种情形来确定第二PUSCH资源的频域起始位置。
情形1:
a)如何确定第二PUSCH资源的频域起始位置
在“情形1”中,网络设备向终端设备配置一个可用频域资源。对此,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置在第一可用频域资源内。其中,第二PUSCH资源的频域起始位置可以由网络配置、预配置或协议规定的信息(如频率偏移等)确定。
具体实现时,第二PUSCH资源的频域起始位置,可以由终端设备自主确定;或者,
第二PUSCH资源的频域起始位置,可以由第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项确定。
可以理解的是,终端设备可以自主确定第二PUSCH资源的频域起始位置;或者,
终端设备可以根据第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项,确定第二PUSCH资源的频域起始位置。
另外,由于本申请实施例的PUSCH跳频可以为时隙内跳频,也可以为时隙间跳频,因此下面以在时隙内跳频的情况和在时隙间跳频的情况分别对如何根据上述信息确定第二PUSCH资源的频域起始位置进行示例说明。
示例1:
对于时隙内跳频,第二PUSCH资源的频域起始位置可以为:
其中,表示第二PUSCH资源的频域起始位置,表示第一PUSCH资源的频域起始位置,表示第一可用频域资源的频域起始位置,表示频率偏移,表示第一可用频域资源的大小,mod表示求余运算。
以图5为例,一个时间单元为一个时隙,表示PUSCH资源560的频域起始位置,表示PUSCH资源550的频域起始位置,表示上行频域资源520的频域起始位置,表示PUSCH资源550与PUSCH资源560之间的频域起始位置间隔,表示上行频域资源520的大小。
需要说明的是,由于均以Point A为参考点,因此通过可以将参考点从Point A变为再以为参考点,加上再求的余,从而计算得到使得可以位于第一可用频域资源内,实现对PUSCH跳频的频域资源范围进行限制的可能性,以及在一个时间单元内的多个频域资源上实现PUSCH跳频以保证PUSCH传输的可能性。
示例2:
对于时隙间跳频,第二PUSCH资源的频域起始位置可以为:
其中,或者表示在时隙内的第二PUSCH资源的频域起始位置,表示第一PUSCH资源的频域起始位置,表示第一可用频域资源的频域起始位置,表示频率偏移,表示第一可用频域资源的大小,mod表示求余运算。
b)
在一些可能的实现中,的取值范围可以为从1到
需要说明的是,通过限制的取值范围为从1到可以使得之内。如此,在加上之后,有利于使得位于第一可用频域资源内,实现对PUSCH跳频的频域资源范围进行限制的可能性,以及实现使用PUSCH跳频来传输PUSCH的可能性。
在一些可能的实现中,可以由确定。
可见,本申请实施例可以根据确定使得之内。如此,在加上之后,有利于使得位于第一可用频域资源内,实现对PUSCH跳频的频域资源范围进行限制的可能性,以及在一个时间单元内的多个频域资源上实现PUSCH跳频以保证PUSCH传输的可能性。
具体实现时,可以为的M分之一,M为有理数。
需要说明的是,若M为正有理数,则说明第一PUSCH资源的频域起始位置小于第二PUSCH资源的频域起始位置,如图5所示;若M为负有理数,则说明第一PUSCH资源的频域起始位置大于第二PUSCH资源的频域起始位置,如图6所示。
例如,以M为正整数为例,可以为的二分之一(即),可以为的四分之一(即),可以为的八分之一(即)等。
又例如,以M为负整数为例,可以为的负二分之一(即),可以为的负四分之一(即),可以为的负八分之一(即)等。
在一些可能的实现中,可以网络配置、预配置或者协议规定。
需要说明的是,结合上述“4、两跳之间的频率偏移”中的内容,在网络配置的情况下,对于动态调度PUSCH的频域资源分配类型1,调度PUSCH的DCI的FDRA域中有NUL_hop个比特,该NUL_hop个比特用于从由高层信息所配置的多个候选中指示出一个。
例如,通过DCI从等中指示出一个。
在一些可能的实现中,高层信息所配置的候选频率偏移(如候选)的个数可以由第一可用频域资源的大小与一个时间单元内的多个频域资源的总大小之间的大小关系确定。
例如,若小于则NUL_hop=1,且高层参数(如frequencyHoppingOffsetLists)配置有1个或2个候选大于或等于则NUL_hop=2,且高层参数(如frequencyHoppingOffsetLists)包含2个或4个候选其中,表示一个时间单元内的多个频域资源的总大小;K为大于1的整数,如K可以为2、3、4或8等。
又例如,表1给出了候选
对于配置授权类型2的PUSCH,激活PUSCH的DCI的FDRA域中有NUL_hop个比特,该NUL_hop个比特用于从由高层信息所配置的多个候选中指示出一个。
对于配置授权类型1的PUSCH,通过高层信息指示一个例如,通过RRC信令从等中指示出一个。
对于RAR UL授权调度的PUSCH或者TC-RNTI加扰的DCI 0-0调度的PUSCH,通过DCI中的NUL_hop个比特指示出一个
综上所述,可以由高层信息或者DCI指示。
表1
情形2:
a)如何确定第二PUSCH资源的频域起始位置
在“情形2”中,网络设备向终端设备配置多个可用频域资源。对此,第一PUSCH资源的频域起始位置位于第二可用频域资源内,第二PUSCH资源的频域起始位置位于第三可用频域资源内。其中,第二PUSCH资源的频域起始位置可以由网络配置的信息、预配置的信息、协议规定的信息或者终端设备自主确定。
具体实现时,第二PUSCH资源的频域起始位置,可以由终端设备自主确定;或者,
第二PUSCH资源的频域起始位置,可以由第一PUSCH资源的频域起始位置、第二可用频域资源的频域起始位置、频率偏移、第三可用频域资源的频域起始位置、第三可用频域资源的大小中的至少之一项确定。
可以理解的是,终端设备可以自主确定第二PUSCH资源的频域起始位置,或者终端设备可以根据第一PUSCH资源的频域起始位置、第二可用频域资源的频域起始位置、频率偏移、第三可用频域资源的频域起始位置、第三可用频域资源的大小中的至少之一项确定。
另外,由于本申请实施例的PUSCH跳频可以为时隙内跳频,也可以为时隙间跳频,因此下面以在时隙内跳频的情况和在时隙间跳频的情况分别对如何根据上述信息确定第二PUSCH资源的频域起始位置进行示例说明。
示例1:
对于时隙内跳频,第二PUSCH资源的频域起始位置可以为:
其中,表示第二PUSCH资源的频域起始位置,表示第一PUSCH资源的频域起始位置,表示第二可用频域资源的频域起始位置,表示频率偏移,表示第三可用频域资源的频域起始位置,表示第三可用频域资源的大小。
以图7为例,一个时间单元为一个时隙,表示PUSCH资源760的频域起始位置,表示PUSCH资源750的频域起始位置,表示上行频域资源720的频域起始位置,表示PUSCH资源750与PUSCH资源760之间的频域起始位置间隔,表示上行频域资源740的频域起始位置,表示上行频域资源740的大小。
需要说明的是,由于均以Point A为参考点,因此通过可以将参考点从Point A变为再以为参考点,加上再求 的余,从而计算得到使得位于第三可用频域资源内,实现对PUSCH跳频的频域资源范围进行限制的可能性,以及一个时间单元内的多个频域资源上实现在PUSCH跳频以保证PUSCH传输的可能性。
示例2:
对于时隙间跳频,第二PUSCH资源的频域起始位置可以为:
其中,或者表示在时隙内的第二PUSCH资源的频域起始位置,表示第一PUSCH资源的频域起始位置,表示第二可用频域资源的频域起始位置,表示频率偏移,表示第三可用频域资源的频域起始位置,表示第三可用频域资源的大小。
b)
在一些可能的实现中,的取值范围可以为从
需要说明的是,通过限制的取值范围为从 可以使得 之内。如此,在加上之后,有利于使得位于第三可用频域资源内,实现对PUSCH跳频的频域资源范围进行限制的可能性,以及一个时间单元内的多个频域资源上实现PUSCH跳频以保证PUSCH传输的可能性。
在一些可能的实现中,可以由确定。
具体实现时,可以为N为有理数,且大于
需要说明的是,若N为正有理数,则说明第一PUSCH资源的频域起始位置小于第二PUSCH资源的频域起始位置,如图7所示;若N为负有理数,则说明第一PUSCH资源的频域起始位置大于第二PUSCH资源的频域起始位置,如图8所示。
例如,以N为正整数为例,可以为的二分之一(即可以为的四分之一(即),可以为的八分之一(即)等。
又例如,以N为负整数为例,可以为的负二分之一(即),可以为的负四分之一(即),可以为 的负八分之一(即)等。
在一些可能的实现中,可以网络配置、预配置或者协议规定。
需要说明的是,结合上述“4、两跳之间的频率偏移”中的内容,在网络配置的情况下,对于动态调度PUSCH的频域资源分配类型1,调度PUSCH的DCI的FDRA域中有NUL_hop个比特,该NUL_hop个比特用于从由高层信息所配置的多个候选中指示出一个。例如,通过DCI从 )等中指示出一个。
对于配置授权类型2的PUSCH,激活PUSCH的DCI的FDRA域中有NUL_hop个比特,该NUL_hop个比特用于从由高层信息所配置的多个候选中指示出一个。
对于配置授权类型1的PUSCH,通过高层信息指示一个例如,通过RRC信令从)等中指示出一个。
对于RAR UL授权调度的PUSCH或者TC-RNTI加扰的DCI 0-0调度的PUSCH,通过DCI中的NUL_hop个比特指示出一个
综上所述,可以由高层信息或者DCI指示。
六、一种通信方法的示例说明
结合上述内容,下面以网络设备与终端设备之间的交互为例,对本申请实施例的一种通信方法进行示例介绍。需要说明的是,网络设备可以是芯片、芯片模组或通信模块等,终端设备可以是芯片、芯片模组或通信模块等。也就是说,该方法应用于网络设备或者终端设备之中,对此不作具体限制。
如图9所示,为本申请实施例的一种通信方法的流程示意图,具体包括如下步骤:
S910、终端设备在第一PUSCH资源上发送PUSCH。
对应的,网络设备在第一PUSCH资源上接收PUSCH。
S920、终端设备在第二PUSCH资源上发送PUSCH,第二PUSCH资源为第一PUSCH资源经过跳频后的资源;其中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于可用频域资源内,一个时间单元上的一个可用频域资源为在该时间单元内的多个频域资源中的一个上行频域资源,多个频域资源包括至少一个上行频域资源和至少一个下行频域资源,上行频域资源为频域连续的,下行频域资源为频域连续的。
对应的,网络设备在第二PUSCH资源上接收PUSCH。
其中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于可用频域资源内可以是指:第一PUSCH资源的频域起始位置位于一个可用频域资源内,第二PUSCH资源的频域起始位置也位于一个可用频域资源,这两个可用频域资源可以为同一个,也可以为不同的,本申请不作限制。
需要说明的是,“第一PUSCH资源”、“第二PUSCH资源”、“第一PUSCH资源的频域起始位置”、“第二PUSCH资源的频域起始位置”、“多个频域资源”和“一个时间单元”等,详见上述“五、限制PUSCH跳频的频域资源范围”中的内容以及其他相关内容,对此不再赘述。
可见,由于本申请实施例引入了一种新的频域资源分配方式,即在一个时间单位内分配多个频域资源,该多个频域资源包括至少一个上行频域资源和至少一个下行频域资源,而为了避免第二PUSCH资源可能超出可用频域资源(一个可用频域资源为该多个频域资源中的一个上行频域资源),以位于不可用频域资源(不可用频域资源为该多个频域资源中的下行频域资源以及分配给其他终端设备的上行频域资源)内,从而可能导致终端设备无法使用第一PUSCH资源和/或第二PUSCH资源来传输PUSCH,即无法使用PUSCH跳频来传输PUSCH,因此本申请实施例可以使得第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于可用频域资源。由于第二PUSCH资源的频域起始位置位于可用频域资源,即在该多个频域资源上对PUSCH跳频的频域资源范围进行限制,使得第二PUSCH资源可以正常用于通信,解决了在新的频域资源分配下如何进行PUSCH的跳频的问题,从而保证PUSCH传输。
在一些可能的实现中,第一PUSCH资源的频域起始位置与第二PUSCH资源的频域起始位置位于相同或不同的所述可用频域资源内。
需要说明的是,结合上述“(6)第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置(即PUSCH跳频的两跳的频域起始位置)位于同一个可用频域资源”中的内容,本申请实施例可以根据不同场景需求、不同终端设备的能力等来灵活配置第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置是否位于同一个可用频域资源内,避免PUSCH在一个时间单元内的多个频域资源上的第二跳超出可用频域资源,以便实现对PUSCH跳频的频域资源范围进行限制的可能性。
在一些可能的实现中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于第一可用频域资源内。
其中,第一可用频域资源为一个可用频域资源。
需要说明的是,结合上述“(6)第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置(即PUSCH跳频的两跳的频域起始位置)位于同一个可用频域资源”中的内容,本申请实施例可以使得第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置位于同一个可用频域资源内,以便满足特定的场景需求或终端设备的能力,实现对PUSCH跳频的频域资源范围进行限制的可能性。
在一些可能的实现中,第二PUSCH资源的频域起始位置,由第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项确定;频率偏移,为在第一可用频域资源内第一PUSCH资源与第二PUSCH资源之间的频域起始位置间隔。
需要说明的是,结合上述“(10)如何确定第二PUSCH资源的频域起始位置”中的内容,终端设备可以根据第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项,确定第二PUSCH资源的频域起始位置,从而实现对PUSCH跳频的频域资源范围进行限制的可能性,以及实现使用PUSCH跳频来传输PUSCH的可能性。
在一些可能的实现中,第二PUSCH资源的频域起始位置,由第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项确定,可以包括:
第二PUSCH资源的频域起始位置的计算步骤为:将第一PUSCH资源的频域起始位置减去所述第一可用频域资源的频域起始位置以得到第一计算结果,再将第一计算结果加上频率偏移以得到第二计算结果,最后将第二计算结果与第一可用频域资源的大小进行求余运算。
也就是说,第二PUSCH资源的频域起始位置可以为:
其中,表示第二PUSCH资源的频域起始位置,表示第一PUSCH资源的频域起始位置,表示第一可用频域资源的频域起始位置,表示频率偏移,表示第一可用频域资源的大小,mod表示求余运算。
需要说明的是,结合上述“(10)如何确定第二PUSCH资源的频域起始位置”中的内容,由于 均以Point A为参考点,因此通过可以将参考点从Point A变为再以为参考点,加上再求的余,从而计算得到使得位于第一可用频域资源内,实现对PUSCH跳频的频域资源范围进行限制的可能性,以及实现使用PUSCH跳频来传输PUSCH的可能性。
在一些可能的实现中,频率偏移的取值范围,为从1到第一可用频域资源的大小减去1。
需要说明的是,结合上述“(10)如何确定第二PUSCH资源的频域起始位置”中的内容,通过限制频率偏移的取值范围为从1到第一可用频域资源的大小减去1,可以使得频率偏移在第一可用频域资源的大小之内。如此,在加上频率偏移之后,有利于使得第二PUSCH资源的频域起始位置可能位于第一可用频域资源内,实现对PUSCH跳频的频域资源范围进行限制的可能性,以及实现使用PUSCH跳频来传输PUSCH的可能性。
在一些可能的实现中,频率偏移,可以由第一可用频域资源的大小确定。
需要说明的是,结合上述“(10)如何确定第二PUSCH资源的频域起始位置”中的内容,本申请实施例可以根据第一可用频域资源的大小确定频率偏移,使得频率偏移在第一可用频域资源的大小之内。如此,在加上频率偏移之后,有利于使得第二PUSCH资源的频域起始位置可能位于第一可用频域资源内,实现对PUSCH跳频的频域资源范围进行限制的可能性。
示例性的,频率偏移,由第一可用频域资源的大小确定,可以包括:
频率偏移可以为以下之一项:
第一可用频域资源的大小的二分之一、第一可用频域资源的大小的四分之一、第一可用频域资源的大小的八分之一。
需要说明的是,结合上述“(10)如何确定第二PUSCH资源的频域起始位置”中的内容,本申请实 施例可以直接将频率偏移确定/配置/指示为第一可用频域资源的大小的二分之一、四分之一或八分之一等,实现根据第一可用频域资源的大小确定频率偏移,使得频率偏移在第一可用频域资源的大小之内。如此,在加上频率偏移之后,有利于使得第二PUSCH资源的频域起始位置可能位于第一可用频域资源内,实现对PUSCH跳频的频域资源范围进行限制的可能性。
在一些可能的实现中,频率偏移,可以由高层信息或者DCI指示。
需要说明的是,结合上述“(10)如何确定第二PUSCH资源的频域起始位置”中的内容,本申请实施例可以通过高层信息或DCI来指示频率偏移,实现网络配置频率偏移。
在一些可能的实现中,第一PUSCH资源的频域起始位置在第二可用频域资源内,第二PUSCH资源的频域起始位置在第三可用频域资源内;
第二可用频域资源和第三可用频域资源,为不同的两个可用频域资源。
需要说明的是,结合上述“(8)第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置(即PUSCH跳频的两跳的频域起始位置)位于不同的可用频域资源内”中的内容,本申请实施例可以使得第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置不同的可用频域资源内,以便满足特定的场景需求或终端设备的能力,实现对PUSCH跳频的频域资源范围进行限制的可能性。
在一些可能的实现中,第三可用频域资源的大小,为内除第二可用频域资源之外的其他可用频域资源的大小中的最大项。
需要说明的是,结合上述“(9)第二可用频域资源、第三可用频域资源”中内容,由于第三可用频域资源的大小为除第二可用频域资源之外的最大项,则可以保证第二PUSCH资源的频域起始位置(即PUSCH跳频的第二跳)在较大的上行频域资源内,这样有利于尽可能避免第二PUSCH资源的频域资源范围超出该较大的上行频域资源。
七、一种通信装置的示例说明
上述主要从方法侧的角度对本申请实施例的方案进行了介绍。可以理解的是,终端设备或网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件与计算机软件的结合形式来实现。某个功能究竟以硬件或计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备或网络设备进行功能单元的划分。例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,只是一种逻辑功能划分,而实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图10是本申请实施例的一种通信装置的功能单元组成框图。通信装置1000包括:发送单元1001。
在一些可能的实现中,发送单元1001可以是一种用于对信号、数据、信息等进行处理的模块单元,对此不作具体限制。
在一些可能的实现中,通信装置1000还可以包括存储单元,用于存储通信装置1000所执行的计算机程序代码或者指令。存储单元可以是存储器。
在一些可能的实现中,通信装置1000可以是芯片或者芯片模组。
在一些可能的实现中,发送单元1001可以集成在其他单元中。
例如,发送单元1001可以集成在通信单元中。其中,通信单元可以是通信接口、收发器、收发电路等。
又例如,发送单元1001可以集成在处理单元中。其中,处理单元可以是处理器或控制器,例如可以是基带处理器、基带芯片、中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在一些可能的实现中,发送单元1001用于执行如上述方法实施例中由终端设备/芯片/芯片模组等执行的任一步骤,如发送或接收数据等。下面进行详细说明。
具体实现时,发送单元1001用于执行如上述方法实施例中的任一步骤,且在执行诸如发送等动作 时,可选择的调用其他单元来完成相应操作。下面进行详细说明。
发送单元1001,用于在第一PUSCH资源上发送PUSCH;
发送单元1001,还用于在第二PUSCH资源上发送PUSCH,第二PUSCH资源为第一PUSCH资源经过跳频后的资源;
其中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于可用频域资源内,一个时间单元上的一个所述可用频域资源为在该时间单元内的多个频域资源中的一个上行频域资源,多个频域资源包括至少一个上行频域资源和至少一个下行频域资源,上行频域资源为频域连续的,下行频域资源为频域连续的。
可见,由于本申请实施例引入了一种新的频域资源分配方式,即在一个时间单位内分配多个频域资源,该多个频域资源包括至少一个上行频域资源和至少一个下行频域资源,而为了避免第二PUSCH资源可能超出可用频域资源(一个可用频域资源为该多个频域资源中分配给自己的一个上行频域资源),以位于不可用频域资源(不可用频域资源为该多个频域资源中的下行频域资源以及分配给其他终端设备的上行频域资源)内,从而可能导致终端设备无法使用第一PUSCH资源和/或第二PUSCH资源来传输PUSCH,即无法使用PUSCH跳频来传输PUSCH,因此本申请实施例可以使得第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于可用频域资源。由于第二PUSCH资源的频域起始位置位于可用频域资源,即在该多个频域资源上对PUSCH跳频的频域资源范围进行限制,使得第二PUSCH资源可以正常用于通信,解决了在新的频域资源分配下如何进行PUSCH的跳频的问题,从而保证PUSCH传输。
需要说明的是,图10所述实施例中各个操作的具体实现可以详见上述所示的方法实施例中的描述,在此不再具体赘述。
在一些可能的实现中,第一PUSCH资源的频域起始位置与第二PUSCH资源的频域起始位置位于相同或不同的可用频域资源内。
在一些可能的实现中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于第一可用频域资源内。
在一些可能的实现中,第二PUSCH资源的频域起始位置,由第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项确定;
频率偏移,为在第一可用频域资源内第一PUSCH资源与第二PUSCH资源之间的频域起始位置间隔。
在一些可能的实现中,第二PUSCH资源的频域起始位置,由第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项确定,包括:
第二PUSCH资源的频域起始位置的计算步骤为:将第一PUSCH资源的频域起始位置减去所述第一可用频域资源的频域起始位置以得到第一计算结果,再将第一计算结果加上频率偏移以得到第二计算结果,最后将第二计算结果与第一可用频域资源的大小进行求余运算。
在一些可能的实现中,频率偏移的取值范围,为从1到第一可用频域资源的大小减去1。
在一些可能的实现中,频率偏移,由第一可用频域资源的大小确定。
在一些可能的实现中,频率偏移,由第一可用频域资源的大小确定,包括:
频率偏移为以下之一项:
第一可用频域资源的大小的二分之一、第一可用频域资源的大小的四分之一、第一可用频域资源的大小的八分之一。
在一些可能的实现中,频率偏移,由高层信息或者下行控制信息DCI指示。
在一些可能的实现中,第一PUSCH资源的频域起始位置位于第二可用频域资源内,第二PUSCH资源的频域起始位置位于第三可用频域资源内;
第二可用频域资源和第三可用频域资源,为不同的两个可用频域资源或者同一个可用频域资源。
在一些可能的实现中,第三可用频域资源的大小,为除第二可用频域资源之外的其他可用频域资源的大小中的最大项。
八、又一种通信装置的示例说明
在采用集成的单元的情况下,图11是本申请实施例的又一种通信装置的功能单元组成框图。通信装置1100包括:接收单元1101。
在一些可能的实现中,接收单元1101可以是一种用于对信号、数据、信息等进行处理的模块单元,对此不作具体限制。
在一些可能的实现中,通信装置1100还可以包括存储单元,用于存储通信装置1100所执行的计算 机程序代码或者指令。存储单元可以是存储器。
在一些可能的实现中,通信装置1100可以是芯片或者芯片模组。
在一些可能的实现中,接收单元1101可以集成在其他单元中。
例如,接收单元1101可以集成在通信单元中。其中,通信单元可以是通信接口、收发器、收发电路等。
又例如,接收单元1101可以集成在处理单元中。其中,处理单元可以是处理器或控制器,例如可以是基带处理器、基带芯片、CPU、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在一些可能的实现中,接收单元1101用于执行如上述方法实施例中由网络设备/芯片/芯片模组等执行的任一步骤,如发送或接收等数据传输。下面进行详细说明。
具体实现时,接收单元1101用于执行如上述方法实施例中的任一步骤,且在执行诸如接收等动作时,可选择的调用其他单元来完成相应操作。下面进行详细说明。
接收单元1101,用于在第一PUSCH资源上接收PUSCH;
接收单元1101,还用于在第二PUSCH资源上接收PUSCH,第二PUSCH资源为第一PUSCH资源经过跳频后的资源;
其中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于可用频域资源内,一个时间单元上的一个所述可用频域资源为在该时间单元内的多个频域资源中的一个上行频域资源,多个频域资源包括至少一个上行频域资源和至少一个下行频域资源,上行频域资源为频域连续的,下行频域资源为频域连续的。
可见,由于本申请实施例引入了一种新的频域资源分配方式,即在一个时间单位内分配多个频域资源,该多个频域资源包括至少一个上行频域资源和至少一个下行频域资源,而为了避免第二PUSCH资源可能超出可用频域资源(一个可用频域资源为该多个频域资源中分配给自己的一个上行频域资源),以位于不可用频域资源(不可用频域资源为该多个频域资源中的下行频域资源以及分配给其他终端设备的上行频域资源)内,从而可能导致终端设备无法使用第一PUSCH资源和/或第二PUSCH资源来传输PUSCH,即无法使用PUSCH跳频来传输PUSCH,因此本申请实施例可以使得第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于可用频域资源。由于第二PUSCH资源的频域起始位置位于可用频域资源,即在该多个频域资源上对PUSCH跳频的频域资源范围进行限制,使得第二PUSCH资源可以正常用于通信,解决了在新的频域资源分配下如何进行PUSCH的跳频的问题,从而保证PUSCH传输。需要说明的是,图11所述实施例中各个操作的具体实现可以详见上述所示的方法实施例中的描述,在此不再具体赘述。
在一些可能的实现中,第一PUSCH资源的频域起始位置与第二PUSCH资源的频域起始位置位于相同或不同的可用频域资源内。
在一些可能的实现中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于第一可用频域资源内。
在一些可能的实现中,第二PUSCH资源的频域起始位置,由第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项确定;
频率偏移,为在第一可用频域资源内第一PUSCH资源与第二PUSCH资源之间的频域起始位置间隔。
在一些可能的实现中,第二PUSCH资源的频域起始位置,由第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项确定,包括:
第二PUSCH资源的频域起始位置的计算步骤为:将第一PUSCH资源的频域起始位置减去所述第一可用频域资源的频域起始位置以得到第一计算结果,再将第一计算结果加上频率偏移以得到第二计算结果,最后将第二计算结果与第一可用频域资源的大小进行求余运算。
在一些可能的实现中,频率偏移的取值范围,为从1到第一可用频域资源的大小减去1。
在一些可能的实现中,频率偏移,由第一可用频域资源的大小确定。
在一些可能的实现中,频率偏移,由第一可用频域资源的大小确定,包括:
频率偏移为以下之一项:
第一可用频域资源的大小的二分之一、第一可用频域资源的大小的四分之一、第一可用频域资源的大小的八分之一。
在一些可能的实现中,频率偏移,由高层信息或者下行控制信息DCI指示。
在一些可能的实现中,第一PUSCH资源的频域起始位置位于第二可用频域资源内,第二PUSCH资源的频域起始位置位于第三可用频域资源内;
第二可用频域资源和第三可用频域资源,为不同的两个可用频域资源或者同一个可用频域资源。
在一些可能的实现中,第三可用频域资源的大小,为除第二可用频域资源之外的其他可用频域资源的大小中的最大项。
九、一种终端设备的示例说明
请参阅图12,图12是本申请实施例的一种终端设备的结构示意图。其中,终端设备1200包括处理器1210、存储器1220以及用于连接处理器1210和存储器1220的通信总线。
在一些可能的实现中,存储器1220包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1220用于存储终端设备1200所执行的程序代码和所传输的数据。
在一些可能的实现中,终端设备1200还包括通信接口,其用于接收和发送数据。
在一些可能的实现中,处理器1210可以是一个或多个中央处理器(CPU),在处理器1210是一个中央处理器(CPU)的情况下,该中央处理器(CPU)可以是单核中央处理器(CPU),也可以是多核中央处理器(CPU)。
在一些可能的实现中,处理器1210可以为基带芯片、芯片、中央处理器(CPU)、通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。
具体实现时,终端设备1200中的处理器1210用于执行存储器1220中存储的计算机程序或指令1221,执行以下操作:
在第一PUSCH资源上发送PUSCH;
在第二PUSCH资源上发送PUSCH,第二PUSCH资源为第一PUSCH资源经过跳频后的资源;
其中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于多个频域资源中的至少一个上行频域资源内,多个频域资源在一个时间单元内,多个频域资源包括至少一个上行频域资源和至少一个下行频域资源,上行频域资源为频域连续的,下行频域资源为频域连续的。
可见,由于本申请实施例引入了一种新的频域资源分配方式,即在一个时间单位内分配多个频域资源,该多个频域资源包括至少一个上行频域资源和至少一个下行频域资源,而为了避免第二PUSCH资源可能超出可用频域资源(一个可用频域资源为该多个频域资源中分配给自身的一个上行频域资源),以位于不可用频域资源(不可用频域资源为该多个频域资源中的下行频域资源以及分配给其他终端设备的上行频域资源)内,从而可能导致终端设备无法使用第一PUSCH资源和/或第二PUSCH资源来传输PUSCH,即无法使用PUSCH跳频来传输PUSCH,因此本申请实施例可以使得第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于可用频域资源。由于第二PUSCH资源的频域起始位置位于可用频域资源,即在该多个频域资源上对PUSCH跳频的频域资源范围进行限制,使得第二PUSCH资源可以正常用于通信,解决了在新的频域资源分配下如何进行PUSCH的跳频的问题,从而保证PUSCH传输。需要说明的是,各个操作的具体实现可以采用上述所示的方法实施例的相应描述,终端设备1200可以用于执行本申请上述方法实施例,对此不再赘述。
在一些可能的实现中,第一PUSCH资源的频域起始位置与第二PUSCH资源的频域起始位置位于相同或不同的可用频域资源内。
在一些可能的实现中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于第一可用频域资源内。
在一些可能的实现中,第二PUSCH资源的频域起始位置,由第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项确定;
频率偏移,为在第一可用频域资源内第一PUSCH资源与第二PUSCH资源之间的频域起始位置间隔。
在一些可能的实现中,第二PUSCH资源的频域起始位置,由第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项确定,包括:
第二PUSCH资源的频域起始位置的计算步骤为:将第一PUSCH资源的频域起始位置减去所述第一可用频域资源的频域起始位置以得到第一计算结果,再将第一计算结果加上频率偏移以得到第二计算结果,最后将第二计算结果与第一可用频域资源的大小进行求余运算。
在一些可能的实现中,频率偏移的取值范围,为从1到第一可用频域资源的大小减去1。
在一些可能的实现中,频率偏移,由第一可用频域资源的大小确定。
在一些可能的实现中,频率偏移,由第一可用频域资源的大小确定,包括:
频率偏移为以下之一项:
第一可用频域资源的大小的二分之一、第一可用频域资源的大小的四分之一、第一可用频域资源的大小的八分之一。
在一些可能的实现中,频率偏移,由高层信息或者下行控制信息DCI指示。
在一些可能的实现中,第一PUSCH资源的频域起始位置位于第二可用频域资源内,第二PUSCH资源的频域起始位置位于第三可用频域资源内;
第二可用频域资源和第三可用频域资源,为不同的两个可用频域资源或者同一个可用频域资源。
在一些可能的实现中,第三可用频域资源的大小,为除第二可用频域资源之外的其他可用频域资源的大小中的最大项。
十、一种网络设备的示例说明
请参阅图13,图13是本申请实施例提供的一种网络设备的结构示意图。其中,网络设备1300包括处理器1310、存储器1320以及用于连接处理器1310、存储器1320的通信总线。
在一些可能的实现中,存储器1320包括但不限于是RAM、ROM、EPROM或CD-ROM,该存储器1320用于存储相关指令及数据。
在一些可能的实现中,网络设备1300还包括通信接口,其用于接收和发送数据。
在一些可能的实现中,处理器1310可以是一个或多个中央处理器(CPU),在处理器1310是一个中央处理器(CPU)的情况下,该中央处理器(CPU)可以是单核中央处理器(CPU),也可以是多核中央处理器(CPU)。
在一些可能的实现中,处理器1310可以为基带芯片、芯片、中央处理器(CPU)、通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。
在一些可能的实现中,网络设备1300中的处理器1310用于执行存储器1320中存储的计算机程序或指令1321,执行以下操作:
在第一PUSCH资源上接收PUSCH;
在第二PUSCH资源上接收PUSCH,第二PUSCH资源为第一PUSCH资源经过跳频后的资源;
其中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于多个频域资源中的至少一个上行频域资源内,多个频域资源在一个时间单元内,多个频域资源包括至少一个上行频域资源和至少一个下行频域资源,上行频域资源为频域连续的,下行频域资源为频域连续的。
可见,由于本申请实施例引入了一种新的频域资源分配方式,即在一个时间单位内分配多个频域资源,该多个频域资源包括至少一个上行频域资源和至少一个下行频域资源,而为了避免第二PUSCH资源可能超出可用频域资源(一个可用频域资源为该多个频域资源中分配给自己的一个上行频域资源),以位于不可用频域资源(不可用频域资源为该多个频域资源中的下行频域资源以及分配给其他终端设备的上行频域资源)内,从而可能导致终端设备无法使用第一PUSCH资源和/或第二PUSCH资源来传输PUSCH,即无法使用PUSCH跳频来传输PUSCH,因此本申请实施例可以使得第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于可用频域资源。由于第二PUSCH资源的频域起始位置位于可用频域资源,即在该多个频域资源上对PUSCH跳频的频域资源范围进行限制,使得第二PUSCH资源可以正常用于通信,解决了在新的频域资源分配下如何进行PUSCH的跳频的问题,从而保证PUSCH传输。需要说明的是,各个操作的具体实现可以采用上述所示的方法实施例的相应描述,网络设备1300可以用于执行本申请上述方法实施例,对此不再赘述。
在一些可能的实现中,第一PUSCH资源的频域起始位置与第二PUSCH资源的频域起始位置位于相同或不同的可用频域资源内。
在一些可能的实现中,第一PUSCH资源的频域起始位置和第二PUSCH资源的频域起始位置均位于第一可用频域资源内。
在一些可能的实现中,第二PUSCH资源的频域起始位置,由第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项确定;
频率偏移,为在第一可用频域资源内第一PUSCH资源与第二PUSCH资源之间的频域起始位置间隔。
在一些可能的实现中,第二PUSCH资源的频域起始位置,由第一PUSCH资源的频域起始位置、第一可用频域资源的频域起始位置、频率偏移、第一可用频域资源的大小中的至少之一项确定,包括:
第二PUSCH资源的频域起始位置的计算步骤为:将第一PUSCH资源的频域起始位置减去所述第 一可用频域资源的频域起始位置以得到第一计算结果,再将第一计算结果加上频率偏移以得到第二计算结果,最后将第二计算结果与第一可用频域资源的大小进行求余运算。
在一些可能的实现中,频率偏移的取值范围,为从1到第一可用频域资源的大小减去1。
在一些可能的实现中,频率偏移,由第一可用频域资源的大小确定。
在一些可能的实现中,频率偏移,由第一可用频域资源的大小确定,包括:
频率偏移为以下之一项:
第一可用频域资源的大小的二分之一、第一可用频域资源的大小的四分之一、第一可用频域资源的大小的八分之一。
在一些可能的实现中,频率偏移,由高层信息或者下行控制信息DCI指示。
在一些可能的实现中,第一PUSCH资源的频域起始位置位于第二可用频域资源内,第二PUSCH资源的频域起始位置位于第三可用频域资源内;
第二可用频域资源和第三可用频域资源,为不同的两个可用频域资源或者同一个可用频域资源。
在一些可能的实现中,第三可用频域资源的大小,为除第二可用频域资源之外的其他可用频域资源的大小中的最大项。
十一、其他相关的示例说明
在一些可能的实现中,上述方法实施例可以应用于终端设备或应用于终端设备之中。也就是说,上述方法实施例的执行主体,可以是终端设备,可以是芯片、芯片模组或模块等,对此不作具体限制。
在一些可能的实现中,上述方法实施例可以应用于网络设备或应用于网络设备之中。也就是说,上述方法实施例的执行主体,可以是网络设备,可以是芯片、芯片模组或模块等,对此不作具体限制。
本申请实施例还提供了一种芯片,包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种芯片模组,包括收发组件和芯片,该芯片包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机可读存储介质,其存储有计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机程序产品,包括计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种通信系统,包括上述的终端设备和网络设备。
需要说明的是,对于上述的各个实施例,为了简单描述,将其都表述为一系列的动作组合。本领域技术人员应该知悉,本申请不受所描述的动作顺序的限制,因为本申请实施例中的某些步骤可以采用其他顺序或者同时进行。另外,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作、步骤、模块或单元等并不一定是本申请实施例所必须的。
在上述实施例中,本申请实施例对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、EPROM、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备或管理设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备或管理设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集 成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端设备的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端设备内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端设备内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (48)

  1. 一种通信方法,其特征在于,包括:
    在第一物理上行共享信道PUSCH资源上发送PUSCH;
    在第二PUSCH资源上发送所述PUSCH,所述第二PUSCH资源为所述第一PUSCH资源经过跳频后的资源;
    其中,所述第一PUSCH资源的频域起始位置和所述第二PUSCH资源的频域起始位置均位于可用频域资源内,一个时间单元上的一个所述可用频域资源为在该时间单元内的多个频域资源中的一个上行频域资源,所述多个频域资源包括至少一个所述上行频域资源和至少一个下行频域资源,所述上行频域资源为频域连续的,所述下行频域资源为频域连续的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一PUSCH资源的频域起始位置与所述第二PUSCH资源的频域起始位置位于相同或不同的所述可用频域资源内。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一PUSCH资源的频域起始位置和所述第二PUSCH资源的频域起始位置均位于第一可用频域资源内。
  4. 根据权利要求3所述的方法,其特征在于,所述第二PUSCH资源的频域起始位置,由所述第一PUSCH资源的频域起始位置、所述第一可用频域资源的频域起始位置、频率偏移、所述第一可用频域资源的大小中的至少之一项确定;
    所述频率偏移,为在所述第一可用频域资源内所述第一PUSCH资源与所述第二PUSCH资源之间的频域起始位置间隔。
  5. 根据权利要求4所述的方法,其特征在于,所述第二PUSCH资源的频域起始位置,由所述第一PUSCH资源的频域起始位置、所述第一可用频域资源的频域起始位置、频率偏移、所述第一可用频域资源的大小中的至少之一项确定,包括:
    所述第二PUSCH资源的频域起始位置的计算步骤为:将所述第一PUSCH资源的频域起始位置减去所述第一可用频域资源的频域起始位置以得到第一计算结果,再将所述第一计算结果加上所述频率偏移以得到第二计算结果,最后将所述第二计算结果与所述第一可用频域资源的大小进行求余运算。
  6. 根据权利要求4或5所述的方法,其特征在于,所述频率偏移的取值范围,为从1到所述第一可用频域资源的大小减去1。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,所述频率偏移,由所述第一可用频域资源的大小确定。
  8. 根据权利要求7所述的方法,其特征在于,所述频率偏移,由所述第一可用频域资源的大小确定,包括:
    所述频率偏移为以下之一项:
    所述第一可用频域资源的大小的二分之一、所述第一可用频域资源的大小的四分之一、所述第一可用频域资源的大小的八分之一。
  9. 根据权利要求4-8任一项所述的方法,其特征在于,所述频率偏移,由高层信息或者下行控制信息DCI指示。
  10. 根据权利要求1或2所述的方法,其特征在于,所述第一PUSCH资源的频域起始位置位于第二可用频域资源内,所述第二PUSCH资源的频域起始位置位于第三可用频域资源内;
    所述第二可用频域资源和所述第三可用频域资源,为不同的两个所述可用频域资源或者同一个所述可用频域资源。
  11. 根据权利要求10所述的方法,其特征在于,所述第三可用频域资源的大小,为除所述第二可用频域资源之外的其他所述可用频域资源的大小中的最大项。
  12. 一种通信方法,其特征在于,包括:
    在第一物理上行共享信道PUSCH资源上接收PUSCH;
    在第二PUSCH资源上接收所述PUSCH,所述第二PUSCH资源为所述第一PUSCH资源经过跳频后的资源;
    其中,所述第一PUSCH资源的频域起始位置和所述第二PUSCH资源的频域起始位置均位于可用频域资源内,一个时间单元上的一个所述可用频域资源为在该时间单元内的多个频域资源中的一个上行频域资源,所述多个频域资源包括至少一个所述上行频域资源和至少一个下行频域资源,所述上行频域资源为频域连续的,所述下行频域资源为频域连续的。
  13. 根据权利要求12所述的方法,其特征在于,所述第一PUSCH资源的频域起始位置与所述第二PUSCH资源的频域起始位置位于相同或不同的所述可用频域资源内。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一PUSCH资源的频域起始位置和所述第二PUSCH资源的频域起始位置均位于第一可用频域资源内。
  15. 根据权利要求14所述的方法,其特征在于,所述第二PUSCH资源的频域起始位置,由所述第一PUSCH资源的频域起始位置、所述第一可用频域资源的频域起始位置、频率偏移、所述第一可用频域资源的大小中的至少之一项确定;
    所述频率偏移,为在所述第一可用频域资源内所述第一PUSCH资源与所述第二PUSCH资源之间的频域起始位置间隔。
  16. 根据权利要求15所述的方法,其特征在于,所述第二PUSCH资源的频域起始位置,由所述第一PUSCH资源的频域起始位置、所述第一可用频域资源的频域起始位置、频率偏移、所述第一可用频域资源的大小中的至少之一项确定,包括:
    所述第二PUSCH资源的频域起始位置的计算步骤为:将所述第一PUSCH资源的频域起始位置减去所述第一可用频域资源的频域起始位置以得到第一计算结果,再将所述第一计算结果加上所述频率偏移以得到第二计算结果,最后将所述第二计算结果与所述第一可用频域资源的大小进行求余运算。
  17. 根据权利要求15或16所述的方法,其特征在于,所述频率偏移的取值范围,为从1到所述第一可用频域资源的大小减去1。
  18. 根据权利要求15-17任一项所述的方法,其特征在于,所述频率偏移,由所述第一可用频域资源的大小确定。
  19. 根据权利要求18所述的方法,其特征在于,所述频率偏移,由所述第一可用频域资源的大小确定,包括:
    所述频率偏移为以下之一项:
    所述第一可用频域资源的大小的二分之一、所述第一可用频域资源的大小的四分之一、所述第一可用频域资源的大小的八分之一。
  20. 根据权利要求15-19任一项所述的方法,其特征在于,所述第一频率偏移,由高层信息或者下行控制信息DCI指示。
  21. 根据权利要求12或13所述的方法,其特征在于,所述第一PUSCH资源的频域起始位置位于第二可用频域资源内,所述第二PUSCH资源的频域起始位置位于第三可用频域资源内;
    所述第二可用频域资源和所述第三可用频域资源,为不同的两个所述可用频域资源或者同一个所述可用频域资源。
  22. 根据权利要求21所述的方法,其特征在于,所述第三可用频域资源的大小,为除所述第二可用频域资源之外的其他所述可用频域资源的大小中的最大项。
  23. 一种通信装置,其特征在于,包括:
    发送单元,用于在第一物理上行共享信道PUSCH资源上发送PUSCH;
    所述发送单元,还用于在第二PUSCH资源上发送所述PUSCH,所述第二PUSCH资源为所述第一PUSCH资源经过跳频后的资源;
    其中,所述第一PUSCH资源的频域起始位置和所述第二资源的频域起始位置均位于可用频域资源内,一个时间单元上的一个所述可用频域资源为在该时间单元内的多个频域资源中的一个上行频域资源,所述多个频域资源包括至少一个所述上行频域资源和至少一个下行频域资源,所述上行频域资源为频域连续的,所述下行频域资源为频域连续的。
  24. 根据权利要求23所述的装置,其特征在于,所述第一PUSCH资源的频域起始位置与所述第二PUSCH资源的频域起始位置位于相同或不同的所述可用频域资源内。
  25. 根据权利要求23或24所述的装置,其特征在于,所述第一PUSCH资源的频域起始位置和所述第二PUSCH资源的频域起始位置均位于第一可用频域资源内。
  26. 根据权利要求25所述的装置,其特征在于,所述第二PUSCH资源的频域起始位置,由所述第一PUSCH资源的频域起始位置、所述第一可用频域资源的频域起始位置、频率偏移、所述第一可用频域资源的大小中的至少之一项确定;
    所述频率偏移,为在所述第一可用频域资源内所述第一PUSCH资源与所述第二PUSCH资源之间的频域起始位置间隔。
  27. 根据权利要求26所述的装置,其特征在于,所述第二PUSCH资源的频域起始位置,由所述第一PUSCH资源的频域起始位置、所述第一可用频域资源的频域起始位置、频率偏移、所述第一可用频域资源的大小中的至少之一项确定,包括:
    所述第二PUSCH资源的频域起始位置的计算步骤为:将所述第一PUSCH资源的频域起始位置减 去所述第一可用频域资源的频域起始位置以得到第一计算结果,再将所述第一计算结果加上所述频率偏移以得到第二计算结果,最后将所述第二计算结果与所述第一可用频域资源的大小进行求余运算。
  28. 根据权利要求26或27所述的装置,其特征在于,所述频率偏移的取值范围,为从1到所述第一可用频域资源的大小减去1。
  29. 根据权利要求26-28任一项所述的装置,其特征在于,所述频率偏移,由所述第一可用频域资源的大小确定。
  30. 根据权利要求29所述的装置,其特征在于,所述频率偏移,由所述第一可用频域资源的大小确定,包括:
    所述频率偏移为以下之一项:
    所述第一可用频域资源的大小的二分之一、所述第一可用频域资源的大小的四分之一、所述第一可用频域资源的大小的八分之一。
  31. 根据权利要求26-30任一项所述的装置,其特征在于,所述频率偏移,由高层信息或者下行控制信息DCI指示。
  32. 根据权利要求23或24所述的装置,其特征在于,所述第一PUSCH资源的频域起始位置位于第二可用频域资源内,所述第二PUSCH资源的频域起始位置位于第三可用频域资源内;
    所述第二可用频域资源和所述第三可用频域资源,为不同的两个所述可用频域资源或者同一个所述可用频域资源。
  33. 根据权利要求32所述的装置,其特征在于,所述第三可用频域资源的大小,为除所述第二可用频域资源之外的其他所述可用频域资源的大小中的最大项。
  34. 一种通信装置,其特征在于,包括:
    接收单元,用于在第一物理上行共享信道PUSCH资源上接收PUSCH;
    所述接收单元,还用于在第二PUSCH资源上接收所述PUSCH,所述第二PUSCH资源为所述第一PUSCH资源经过跳频后的资源;
    其中,所述第一PUSCH资源的频域起始位置和所述第二资源的频域起始位置均位于可用频域资源内,一个时间单元上的一个所述可用频域资源为在该时间单元内的多个频域资源中的一个上行频域资源,所述多个频域资源包括至少一个所述上行频域资源和至少一个下行频域资源,所述上行频域资源为频域连续的,所述下行频域资源为频域连续的。
  35. 根据权利要求34所述的装置,其特征在于,所述第一PUSCH资源的频域起始位置与所述第二PUSCH资源的频域起始位置位于相同或不同的所述可用频域资源内。
  36. 根据权利要求34或35所述的装置,其特征在于,所述第一PUSCH资源的频域起始位置和所述第二PUSCH资源的频域起始位置均位于第一可用频域资源内。
  37. 根据权利要求36所述的装置,其特征在于,所述第二PUSCH资源的频域起始位置,由所述第一PUSCH资源的频域起始位置、所述第一可用频域资源的频域起始位置、频率偏移、所述第一可用频域资源的大小中的至少之一项确定;
    所述频率偏移,为在所述第一可用频域资源内所述第一PUSCH资源与所述第二PUSCH资源之间的频域起始位置间隔。
  38. 根据权利要求37所述的装置,其特征在于,所述第二PUSCH资源的频域起始位置,由所述第一PUSCH资源的频域起始位置、所述第一可用频域资源的频域起始位置、频率偏移、所述第一可用频域资源的大小中的至少之一项确定,包括:
    所述第二PUSCH资源的频域起始位置的计算步骤为:将所述第一PUSCH资源的频域起始位置减去所述第一可用频域资源的频域起始位置以得到第一计算结果,再将所述第一计算结果加上所述频率偏移以得到第二计算结果,最后将所述第二计算结果与所述第一可用频域资源的大小进行求余运算。
  39. 根据权利要求37或38所述的装置,其特征在于,所述频率偏移的取值范围,为从1到所述第一可用频域资源的大小减去1。
  40. 根据权利要求37-39任一项所述的装置,其特征在于,所述频率偏移,由所述第一可用频域资源的大小确定。
  41. 根据权利要求40所述的装置,其特征在于,所述频率偏移,由所述第一可用频域资源的大小确定,包括:
    所述频率偏移为以下之一项:
    所述第一可用频域资源的大小的二分之一、所述第一可用频域资源的大小的四分之一、所述第一可用频域资源的大小的八分之一。
  42. 根据权利要求37-41任一项所述的装置,其特征在于,所述第一频率偏移,由高层信息或者下行控制信息DCI指示。
  43. 根据权利要求34或35所述的装置,其特征在于,所述第一PUSCH资源的频域起始位置位于第二可用频域资源内,所述第二PUSCH资源的频域起始位置位于第三可用频域资源内;
    所述第二可用频域资源和所述第三可用频域资源,为不同的两个所述可用频域资源或者同一个所述可用频域资源。
  44. 根据权利要求43所述的方法,其特征在于,所述第三可用频域资源的大小,为除所述第二可用频域资源之外的其他所述可用频域资源的大小中的最大项。
  45. 一种终端设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求1-11中任一项所述方法的步骤。
  46. 一种网络设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求12-22中任一项所述方法的步骤。
  47. 一种芯片,包括处理器,其特征在于,所述处理器执行权利要求1-11或12-22中任一项所述方法的步骤。
  48. 一种计算机可读存储介质,其特征在于,其存储有计算机程序或指令,所述计算机程序或指令被执行时实现权利要求1-11或12-22中任一项所述方法的步骤。
PCT/CN2023/097169 2022-05-31 2023-05-30 通信方法与装置、终端设备、网络设备和芯片 WO2023232038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210611815.8 2022-05-31
CN202210611815.8A CN117220843A (zh) 2022-05-31 2022-05-31 通信方法与装置、终端设备、网络设备和芯片

Publications (1)

Publication Number Publication Date
WO2023232038A1 true WO2023232038A1 (zh) 2023-12-07

Family

ID=89026951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097169 WO2023232038A1 (zh) 2022-05-31 2023-05-30 通信方法与装置、终端设备、网络设备和芯片

Country Status (2)

Country Link
CN (1) CN117220843A (zh)
WO (1) WO2023232038A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600211A (zh) * 2017-09-30 2019-04-09 中兴通讯股份有限公司 随机接入前导的跳频处理方法和装置、及终端和存储介质
CN112020144A (zh) * 2019-05-30 2020-12-01 华为技术有限公司 确定异步物理上行共享信道的资源的方法及设备
US20210029731A1 (en) * 2019-10-15 2021-01-28 Intel Corporation Resource allocation for physical uplink control channel during initial access in new radio unlicensed
CN112449419A (zh) * 2019-08-15 2021-03-05 大唐移动通信设备有限公司 一种跳频方法、装置及设备
CN113632572A (zh) * 2021-07-08 2021-11-09 北京小米移动软件有限公司 一种跳频方法、装置、用户设备、基站及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600211A (zh) * 2017-09-30 2019-04-09 中兴通讯股份有限公司 随机接入前导的跳频处理方法和装置、及终端和存储介质
CN112020144A (zh) * 2019-05-30 2020-12-01 华为技术有限公司 确定异步物理上行共享信道的资源的方法及设备
CN112449419A (zh) * 2019-08-15 2021-03-05 大唐移动通信设备有限公司 一种跳频方法、装置及设备
US20210029731A1 (en) * 2019-10-15 2021-01-28 Intel Corporation Resource allocation for physical uplink control channel during initial access in new radio unlicensed
CN113632572A (zh) * 2021-07-08 2021-11-09 北京小米移动软件有限公司 一种跳频方法、装置、用户设备、基站及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Text proposal for UL transmission procedure", 3GPP DRAFT; R1-1800513 TEXT PROPOSAL FOR UL TRANSMISSION PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 12 January 2018 (2018-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051384372 *

Also Published As

Publication number Publication date
CN117220843A (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2021232382A1 (zh) 侧行反馈资源配置方法、终端设备和网络设备
WO2022027308A1 (en) Enhanced configured grants
WO2021062811A1 (zh) 数据传输方法及相关设备
WO2022067802A1 (zh) 探测参考信号配置方法与装置、终端和网络设备
WO2020221011A1 (zh) 数据传输的方法和装置
CN114449675B (zh) 信息传输方法及相关产品
CN112423393A (zh) 数据传输方法及装置
WO2023232038A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
WO2022027294A1 (en) Mobile devices and methods for implementing enhanced configured grants
WO2022021008A1 (zh) 确定侧行链路配置授权资源的方法和终端设备
WO2021087886A1 (zh) 定时器设置方法及相关设备
CN116349259A (zh) 通信方法及装置
WO2024017233A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
WO2024032731A1 (zh) 信道占用时间共享方法与装置、终端设备和芯片
CN115189851B (zh) 频域资源位置确定方法与装置、终端和网络设备
WO2024083029A1 (zh) 多播广播业务传输方法与装置、终端设备和网络设备
WO2023208198A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
WO2024012561A1 (zh) 解调参考信号端口确定方法与装置、终端设备和网络设备
WO2024008096A1 (zh) 通信方法与装置、终端设备、网络设备和芯片
WO2023066202A1 (zh) 参考信号的资源映射方法与装置、终端和网络设备
WO2022061790A1 (zh) 资源集合的传输方法和终端
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备
WO2024060187A1 (zh) 用于侧行通信方法以及终端设备
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815217

Country of ref document: EP

Kind code of ref document: A1