WO2023066202A1 - 参考信号的资源映射方法与装置、终端和网络设备 - Google Patents

参考信号的资源映射方法与装置、终端和网络设备 Download PDF

Info

Publication number
WO2023066202A1
WO2023066202A1 PCT/CN2022/125699 CN2022125699W WO2023066202A1 WO 2023066202 A1 WO2023066202 A1 WO 2023066202A1 CN 2022125699 W CN2022125699 W CN 2022125699W WO 2023066202 A1 WO2023066202 A1 WO 2023066202A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna ports
srs antenna
srs
index numbers
port index
Prior art date
Application number
PCT/CN2022/125699
Other languages
English (en)
French (fr)
Inventor
王化磊
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2023066202A1 publication Critical patent/WO2023066202A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular to a method and device for resource mapping of reference signals, a terminal and a network device.
  • the terminal can send a sounding reference signal (sounding reference signal, SRS) to the network device, so that the network device can perform resource allocation according to the SRS.
  • SRS sounding reference signal
  • the number of SRS antenna ports included in SRS resources is 1, 2, and 4, that is, the maximum number of SRS antenna ports included in SRS resources is 4.
  • the existing standard protocol has no specific solution for determining the SRS resource mapping and the SRS resource pattern (pattern).
  • This application provides a reference signal resource mapping method and device, terminal and network equipment, in order to configure the transmission comb offsets corresponding to each of the L (L>4) SRS antenna ports of SRS resources through the network, that is, the first A transmission comb offset, so as to determine the corresponding frequency-domain starting positions of the L SRS antenna ports through the first transmission comb offset to implement SRS resource mapping and SRS resource patterns.
  • the first aspect is a reference signal resource mapping method according to an embodiment of the present application, including:
  • the value of L is an integer greater than 4 for the corresponding starting position in the frequency domain.
  • the second aspect is a reference signal resource mapping method according to an embodiment of the present application, including:
  • the configuration information is used to determine the first transmission comb offset corresponding to each of the L SRS antenna ports of the sounding reference signal SRS resource, and the first transmission comb offset is used to determine the L
  • the starting position in the frequency domain corresponding to each of the SRS antenna ports, the value of L is an integer greater than 4.
  • the terminal can determine the transmission comb offset corresponding to each of the L (L>4) SRS antenna ports of the SRS resource according to the configuration information, that is, The first transmission comb offset, so as to determine the frequency-domain starting positions corresponding to the L SRS antenna ports through the first transmission comb offset, so as to realize SRS resource mapping and SRS resource pattern.
  • the third aspect is an apparatus for resource mapping of a reference signal according to an embodiment of the present application, including:
  • an acquisition unit configured to acquire configuration information
  • a determining unit configured to determine a first transmission comb offset corresponding to each of the L SRS antenna ports of the sounding reference signal SRS resource, and the first transmission comb offset is used to determine the respective L SRS antenna ports.
  • the value of L is an integer greater than 4 for the corresponding starting position in the frequency domain.
  • the fourth aspect is an apparatus for resource mapping of a reference signal according to an embodiment of the present application, including:
  • a sending unit configured to send configuration information, where the configuration information is used to determine a first transmission comb offset corresponding to each of the L SRS antenna ports of the sounding reference signal SRS resource, and the first transmission comb offset is used for Determine the frequency-domain starting positions corresponding to the L SRS antenna ports, where the value of L is an integer greater than 4.
  • the steps in the method designed in the above-mentioned first aspect are applied to the terminal.
  • the steps in the method designed in the above-mentioned second aspect are applied to a network device.
  • the seventh aspect is a terminal according to an embodiment of the present application, including a processor, a memory, and a computer program or instruction stored in the memory, wherein the processor executes the computer program or instruction to implement the above-mentioned first Steps in the method for which the aspect is designed.
  • the eighth aspect is a network device according to an embodiment of the present application, including a processor, a memory, and computer programs or instructions stored in the memory, wherein the processor executes the computer program or instructions to implement the above-mentioned first Steps in the method designed in two aspects.
  • a ninth aspect is a chip of the present application, including a processor, wherein the processor executes the steps in the method designed in the first aspect or the second aspect.
  • the tenth aspect is a chip module of the present application, including a transceiver component and a chip, and the chip includes a processor, wherein the processor executes the steps in the method designed in the first aspect or the second aspect.
  • the eleventh aspect is a computer-readable storage medium of the present application, wherein it stores computer programs or instructions, and when the computer programs or instructions are executed, implement the method designed in the first aspect or the second aspect above A step of.
  • the twelfth aspect is a computer program product of the present application, including computer programs or instructions, wherein, when the computer programs or instructions are executed, the steps in the method designed in the first aspect or the second aspect above are realized.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a resource mapping method for a reference signal according to an embodiment of the present application
  • FIG. 3 is a block diagram of functional units of a reference signal resource mapping device according to an embodiment of the present application.
  • FIG. 4 is a block diagram of functional units of another reference signal resource mapping device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • connection in the embodiments of the present application refers to various connection methods such as direct connection or indirect connection to realize communication between devices, and there is no limitation on this.
  • Network and “system” in the embodiments of the present application express the same concept, and the communication system is the communication network.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NR system evolution system LTE (LTE-based Access to Unlicensed Spectrum, LTE-U) system on unlicensed spectrum
  • NR NR-based Access to Unlicensed Spectrum, LTE-U) system on unlicensed spectrum to Unlicensed Spectrum (NR-U) system
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunications System
  • WLAN Wireless Local Area Networks
  • WiFi 6th-Generation
  • the wireless communication system can not only support the traditional wireless communication system, but also support such as device to device (device to device, D2D) communication, machine to machine (machine to machine, M2M) communication, machine Type communication (machine type communication, MTC), inter-vehicle (vehicle to vehicle, V2V) communication, vehicle networking (vehicle to everything, V2X) communication, narrowband Internet of things (narrow band internet of things, NB-IoT) communication, etc., so
  • D2D device to device
  • M2M machine to machine
  • MTC machine Type communication
  • inter-vehicle vehicle to vehicle
  • V2V vehicle networking
  • narrowband Internet of things narrowband internet of things
  • NB-IoT narrowband Internet of things
  • the wireless communication system in this embodiment of the present application may be applied to beamforming (beamforming), carrier aggregation (carrier aggregation, CA), dual connectivity (dual connectivity, DC) or independent (standalone, SA) deployment scenarios and the like.
  • the wireless communication system in this embodiment of the present application may be applied to an unlicensed spectrum.
  • the unlicensed spectrum can also be regarded as a shared spectrum.
  • the wireless communication system in this embodiment may also be applied to licensed spectrum.
  • the licensed spectrum can also be regarded as a non-shared spectrum.
  • the terminal may be user equipment (user equipment, UE), remote/remote terminal (remote UE), relay equipment (relay UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, mobile device, user terminal, intelligent terminal, wireless communication device, user agent or user device.
  • the relay device is a terminal capable of providing relay and forwarding services for other terminals (including remote terminals).
  • the terminal can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a wireless Handheld devices with communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in next-generation communication systems (such as NR communication systems) or future evolution of public land mobile communication networks (public land mobile network, PLMN) terminals, etc., which are not specifically limited.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile communication networks
  • the terminal can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons and satellites, etc.).
  • the terminal may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, an industrial control ( Wireless terminal equipment in industrial control, wireless terminal equipment in unmanned automatic driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation safety Wireless terminal devices in smart cities, wireless terminal devices in smart cities, or wireless terminal devices in smart homes.
  • a virtual reality (virtual reality, VR) terminal device an augmented reality (augmented reality, AR) terminal device
  • an industrial control Wireless terminal equipment in industrial control, wireless terminal equipment in unmanned automatic driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, transportation safety Wireless terminal devices in smart cities, wireless terminal devices in smart cities, or wireless terminal devices in smart homes.
  • the terminal may include a device having a sending and receiving function, such as a chip system.
  • the chip system may include a chip, and may also include other discrete devices.
  • the network device may be a device for communicating with the terminal, which is responsible for radio resource management (radio resource management, RRM), service quality (quality of service, QoS) management, data compression and encryption, Data sending and receiving, etc.
  • the network device may be a base station (base station, BS) in a communication system or a device deployed in a radio access network (radio access network, RAN) to provide a wireless communication function.
  • base transceiver station in GSM or CDMA communication system
  • node B node B (node B, NB) in WCDMA communication system
  • evolved node B evolutional node B, eNB or eNodeB
  • the next generation evolved node B ng-eNB
  • the next generation node B ng-eNB
  • the next generation node B gNB
  • the master node in the dual link architecture master node, MN
  • second node or secondary node secondary node, SN
  • the network device may also be other devices in the core network (core network, CN), such as access and mobility management function (access and mobility management function, AMF), user plan function (user plan function, UPF), etc.; It may also be an access point (access point, AP) in a wireless local area network (wireless local area network, WLAN), a relay station, a communication device in a future evolved PLMN network, a communication device in an NTN network, and the like.
  • core network core network, CN
  • AMF access and mobility management function
  • UPF user plan function
  • AP access point
  • WLAN wireless local area network
  • WLAN wireless local area network
  • relay station a communication device in a future evolved PLMN network
  • communication device in an NTN network and the like.
  • the network device may include an apparatus having a wireless communication function for the terminal, such as a chip system.
  • the system-on-a-chip may include a chip, and may also include other discrete devices.
  • the network device can communicate with an Internet Protocol (Internet Protocol, IP) network.
  • Internet Protocol Internet Protocol
  • IP Internet Protocol
  • the Internet Internet
  • private IP network private IP network or other data networks and the like.
  • the network device may be an independent node to implement all the functions of the above-mentioned base station, which may include a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU), Such as gNB-CU and gNB-DU; can also include active antenna unit (active antenna unit, AAU).
  • the CU can realize some functions of the network equipment, and the DU can also realize some functions of the network equipment.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (radio resource control, RRC) layer, service data adaptation protocol (service data adaptation protocol, SDAP) layer, packet data convergence (packet data convergence protocol, PDCP) layer function.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, medium access control (medium access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU can implement some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this network deployment, high-level signaling (such as RRC layer signaling) can be considered to be sent by the DU, Or sent jointly by DU and AAU.
  • the network device may include at least one of CU, DU, and AAU.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network, which is not specifically limited.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (high elliptical orbit, HEO) satellite.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device can provide services for the cell, and the terminals in the cell can communicate with the network device through transmission resources (such as spectrum resources).
  • the cell may include a macro cell, a small cell, a metro cell, a micro cell, a pico cell, a femto cell, and the like.
  • the wireless communication system 10 may include a terminal 110 and a network device 120 , and the network device 120 may be a device that performs communication with the terminal 110 . Meanwhile, the network device 120 may provide communication coverage for a specific geographical area, and may communicate with the terminal 110 located within the coverage area.
  • the wireless communication system 10 may also include multiple network devices, and a certain number of terminals may be included within the coverage of each network device, which is not specifically limited.
  • the wireless communication system 10 may also include other network entities such as a network controller and a mobility management entity, which is not specifically limited.
  • the communication between the network device and the terminal in the wireless communication system 10 may be wireless communication or wired communication, which is not specifically limited.
  • the terminal can send a sounding reference signal (SRS) to the network device, so that the network device can perform resource scheduling, link adaptation, beam management and power control according to the SRS.
  • SRS sounding reference signal
  • the number of SRS antenna ports included in SRS resources is 1, 2, and 4, that is, the maximum number of SRS antenna ports included in SRS resources is 4.
  • the existing standard protocol has no specific solution for determining the SRS resource mapping and the SRS resource pattern (pattern).
  • the embodiment of the present application expects to send configuration information to the terminal through the network device, so that the terminal can according to
  • the configuration information determines the transmission comb offsets (transmission comb offsets) corresponding to the L (L>4) SRS antenna ports of the SRS resource, that is, the first transmission comb offsets, so that through the first transmission comb offsets Shift and determine the corresponding frequency-domain starting positions of the L SRS antenna ports to implement SRS resource mapping and SRS resource patterns.
  • SRS is an important uplink reference signal in the 5G/NR system and is widely used in various functions in the NR system, such as:
  • codebook-based uplink transmission such as frequency domain scheduling and Rank/precoding matrix indicator (precoding matrix indicator, PMI)/modulation coding scheme (modulation coding scheme, MCS) determination;
  • PMI precoding matrix indicator
  • MCS modulation coding scheme
  • SRS can support three different transmission methods: periodic (periodic), semi-persistent (semi-persistent) and aperiodic (aperiodic), as follows:
  • Periodic SRS refers to SRS transmitted periodically, and its period and slot offset (slot offset) are configured by RRC signaling. If the terminal receives related configuration information configured by the RRC signaling, the terminal sends SRS at a certain period according to the related information until the related configuration information becomes invalid.
  • the spatial relation information (spatial relation information) of the periodic SRS is also configured by RRC signaling.
  • the spatial correlation information is used to indicate the transmitted beam in an implicit manner, and the spatial correlation information may indicate a channel state information reference signal (channel state information, CSI-RS), synchronization signal block (synchronization signal and PBCH block, SSB) or SRS. Therefore, the terminal may determine the transmission beam of the SRS resource according to the reception beam of the CSI-RS/SSB indicated by the spatial correlation information, or determine the transmission beam of the SRS according to the transmission beam of the reference SRS.
  • channel state information reference signal channel state information, CSI-RS
  • synchronization signal block synchronization signal and PBCH block, SSB
  • the period and time slot offset of the semi-persistent SRS are configured by RRC signaling, but the activation signaling and deactivation signaling are carried by the control element (media access control control element, MAC CE) of the media access control layer.
  • the terminal starts to transmit the SRS periodically after receiving the activation signaling until it receives the deactivation signaling.
  • the space-related information of the semi-persistent SRS is carried by the MAC CE that activates the SRS.
  • the terminal After receiving the period and time slot offset configured by RRC signaling, the terminal determines the time slot that can be used to transmit SRS according to the following formula:
  • n f represents the system frame index number (system frame number, SFN)
  • T offset indicates the time slot offset configured by RRC signaling
  • T SRS indicates the period configured by RRC signaling.
  • Aperiodic SRS refers to SRS transmitted aperiodically.
  • the network device can trigger the terminal to transmit the SRS aperiodically through downlink control information (DCI).
  • the trigger signaling used to trigger aperiodic SRS transmission can be used to schedule a physical uplink shared channel (physical uplink shared channel, PUSCH) or a physical downlink shared channel (physical downlink shared channel, PDSCH) in the UE-specific search space.
  • the DCI bearer can also be carried by DCI format 2_3 (DCI format 2_3) in the public search space.
  • DCI format 2_3 can not only be used to trigger aperiodic SRS transmission, but also can be used to configure the TPC command of SRS on a group of UEs or a group of carriers.
  • DCI carries a 2-bit SRS request to trigger aperiodic transmission of SRS.
  • the terminal After receiving the aperiodic SRS trigger signaling (such as DCI), the terminal performs aperiodic SRS transmission based on the SRS resource set indicated by the trigger signaling.
  • the time slot offset between the trigger signaling and the aperiodic SRS transmission is configured by high layer signaling (such as RRC signaling).
  • the network device instructs the terminal in advance the configuration parameters of each SRS resource set, including time-frequency resources, etc., through high-level signaling.
  • the terminal can also determine the transmission beam used to transmit the SRS corresponding to the SRS resource through the spatial correlation information of the SRS resource, and the spatial correlation information can be configured to the per SRS resource.
  • the terminal device can obtain the configuration information issued by the network device during the process of cell search, cell access, cell camping, initial access, random access, uplink and downlink resource scheduling, etc., and there is no specific limitation on this .
  • the configuration information may include an information element (information element, IE) SRS-Config, etc.
  • IE SRS-Config can define a list of high-level parameter SRS resources (such as SRS-Resources) and a list of high-level parameter SRS resource sets (such as SRS-ResourceSets), and each SRS resource set can define a set of high-level parameter SRS-Resource.
  • the network device can trigger the transmission of the SRS resource set by using the configured aperiodic high-level parameters (such as aperiodicSRS-ResourceTrigger or aperiodicSRS-ResourceTriggerList).
  • aperiodic high-level parameters such as aperiodicSRS-ResourceTrigger or aperiodicSRS-ResourceTriggerList.
  • the configuration information may include at least one of the following: the number of transmission combs K TC , the second transmission comb offset Number of cyclic shifts Maximum number of cyclic displacements Wherein, how the configuration information includes these parameters and the meanings of these parameters will appear in subsequent descriptions.
  • the terminal may be configured with one or more SRS resource sets according to the instruction of the high layer parameters (such as SRS-ResourceSet or SRS-PosResourceSet). For each SRS resource set configured by the SRS-ResourceSet, K (K ⁇ 1) SRS resources may be configured (as configured by the high layer parameter SRS-Resource), where the maximum value of K may be determined by the terminal capability.
  • the high layer parameters such as SRS-ResourceSet or SRS-PosResourceSet.
  • the applicability of the SRS resource set is configured by the parameter usage in the SRS-ResourceSet.
  • An SRS resource can be configured by high-level parameters (such as SRS-Resource or SRS-PosResource), including:
  • L may be 5, 6, 7 or 8, etc., which is not specifically limited.
  • the port index number of the SRS antenna port 3 is 1003, and the port index number of the SRS antenna port 4 is 1004.
  • the field startPosition in resourceMapping is configured with l 0 .
  • the SRS sequence of the SRS resource is generated according to the following formula:
  • K TC is expressed as the transmission comb number (transmission comb number), and is configured by high-level parameters; for example, transmissionComb configures K TC ;
  • m SRS,b represents the number of physical resource blocks (physical resource blocks, PRB) transmitted by the SRS, which is determined by the high-layer parameter C SRS and the high-layer parameter B SRS configured by high-layer signaling, as shown in Table 1.
  • b B SRS
  • B SRS ⁇ 0,1,2,3 ⁇ is given by the field b-SRS in the high-level parameter freqHopping
  • C SRS ⁇ 0,1,...,63 ⁇ is given by Given by the field c-SRS in the high-level parameter freqHopping
  • b hop ⁇ ⁇ 0,1,2,3 ⁇ is given by the field b-hop contained in the high-level parameter freqHopping
  • m SRS,0 can represent the total bandwidth of SRS frequency hopping .
  • K TC in addition to the value range of K TC being ⁇ 2,4,8 ⁇ (that is, K TC ⁇ 2,4,8 ⁇ ), the embodiment of this application can also be A new value range of K TC is defined, without specific limitation.
  • the value range of K TC is ⁇ 2, 4, 8, 12 ⁇ and so on.
  • low peak-to-average ratio pseudo-random sequences (low-PAPR pseudo-random sequences), which can be defined as:
  • is expressed as cyclic shift (cyclic shift);
  • u ⁇ 0,1,...,29 ⁇ is represented as a group number
  • v is expressed as the base serial number within the group
  • ⁇ i is denoted as the cyclic displacement of SRS antenna port i(p i ), which can be defined as:
  • K TC can represent the number of SRS antenna ports with the possibility of frequency domain orthogonality, and It can indicate the number of SRS antenna ports with the possibility of code division orthogonality in the code domain. Due to the need to ensure orthogonality between different SRS antenna ports or different terminals, and (like ) indicates how many orthogonals can be accommodated in total.
  • the parameter transmissionComb in NR R16 contains the following information:
  • the SRS sequence of the SRS resource The amplitude scaling factor (amplitude scaling factor) ⁇ SRS should be multiplied to meet a certain transmit power.
  • Each of the SRS antenna ports is mapped to the same OFDM symbol.
  • each of the 4 SRS antenna ports is mapped to the first OFDM symbol, and each of the 4 SRS antenna ports is mapped to the second OFDM symbol.
  • transmission comb offset transmission comb offset
  • SRS antenna port i transmission comb offset
  • transmission comb offset that is, the "second transmission comb offset" in the embodiment of the present application, and is configured by a high-level parameter.
  • the parameter transmissionComb configuration in SRS-Resource or SRS-PosResource is expressed as a transmission comb offset, that is, the "second transmission comb offset" in the embodiment of the present application, and is configured by a high-level parameter.
  • the first transmission comb tooth offsets corresponding to all the SRS antenna ports whose port index numbers are odd numbers are the same.
  • the first transmission comb tooth offsets corresponding to all the SRS antenna ports whose port index numbers are even numbers are the same.
  • n shift is expressed as a frequency domain shift value (frequency domain shift value), which is used to adjust SRS allocation relative to a reference point grid (reference point grid), and is configured by a high-layer parameter.
  • frequency domain shift value frequency domain shift value
  • the parameter freqDomainShift in SRS-Resource or SRS-PosResource configures n shift
  • the reference point is subcarrier 0 in common resource block 0, that is, the reference point is point A; otherwise, the reference point is the smallest subcarrier in the BWP.
  • n b represents a frequency domain index (frequency position index).
  • the 5G NR communication system supports frequency hopping during SRS transmission. If b hop ⁇ B SRS is satisfied, the SRS frequency hopping transmission is enabled (enable), and the terminal transmits the SRS in the form of frequency hopping. If b hop ⁇ B SRS is satisfied, SRS frequency hopping transmission is disabled (disabled), and the terminal does not transmit SRS in the form of frequency hopping.
  • n b 1When b hop ⁇ B SRS , enable SRS frequency hopping, n b can be defined as:
  • m SRS, b and N b are determined from Table 1;
  • F b (n SRS ) is determined by the following formula:
  • n SRS indicates the number of SRS frequency hopping (SRS transmission).
  • the number of SRS frequency hopping is determined by the following formula:
  • repetitionFactor repetitionFactor
  • the number of SRS frequency hopping is determined by the following formula:
  • n f represents the system frame index number (system frame number, SFN)
  • T offset indicates the time slot offset configured by RRC signaling
  • T SRS indicates the period configured by RRC signaling.
  • ⁇ f represents the subcarrier spacing
  • T slot indicates the length of the time slot.
  • n b When b hop ⁇ B SRS , disable the SRS frequency hopping function, n b can be defined as:
  • m SRS, b and N b are determined from Table 1;
  • Each of the SRS antenna ports is mapped to the same OFDM symbol.
  • each of the 6 SRS antenna ports is mapped to the first OFDM symbol, and each of the 6 SRS antenna ports is mapped to the second OFDM symbol.
  • Each SRS antenna port is mapped to one of the two OFDM symbols in one unit.
  • the SRS antenna port i(p i ) is mapped to the first OFDM symbol among the 4 OFDM symbols
  • the SRS antenna port i(p i ) is mapped to the third OFDM symbol in the 4 OFDM symbols
  • the SRS antenna ports with the first S (S ⁇ L) port index numbers are respectively mapped to the same first OFDM symbol, and other ports except the SRS antenna ports of the first S port index numbers
  • the SRS antenna ports of the index numbers are respectively mapped to the same second OFDM symbol;
  • the value of S is any positive integer smaller than L.
  • the value of S may be L/2.
  • the value of S may be configured by the network or pre-configured, and may be independently determined by the terminal, which is not specifically limited.
  • Each SRS antenna port is mapped to one of the two OFDM symbols in one unit.
  • the SRS antenna port i(p i ) is mapped to the second OFDM symbol among the 4 OFDM symbols
  • the SRS antenna port i(p i ) is mapped to the fourth OFDM symbol in the 4 OFDM symbols
  • the SRS antenna ports with the first S (S ⁇ L) port index numbers are respectively mapped to the same first OFDM symbol, and other ports except the SRS antenna ports of the first S port index numbers
  • the SRS antenna ports of the index numbers are respectively mapped to the same second OFDM symbol;
  • the SRS antenna port i(p i ) is mapped to the first OFDM symbol among the 4 OFDM symbols
  • the SRS antenna port i(p i ) is mapped to the second OFDM symbol in the 4 OFDM symbols
  • the SRS antenna ports with the first S (S ⁇ L) port index numbers are respectively mapped to the same first OFDM symbol, and other ports except the SRS antenna ports of the first S port index numbers
  • the SRS antenna ports of the index numbers are respectively mapped to the same second OFDM symbol;
  • the SRS antenna port i(p i ) is mapped to the third OFDM symbol in the 4 OFDM symbols
  • the SRS antenna port i(p i ) is mapped to the fourth OFDM symbol in the 4 OFDM symbols
  • the SRS antenna ports with the first S (R ⁇ L) port index numbers are respectively mapped to the same first OFDM symbol, and other ports except the SRS antenna ports of the first S port index numbers
  • the SRS antenna ports of the index numbers are respectively mapped to the same second OFDM symbol;
  • the SRS resource contains In an OFDM symbol, two consecutive/adjacent/non-consecutive/non-adjacent OFDM symbols need to be transmitted/mapped/carried in sequence An SRS antenna port.
  • a random selection method may be adopted.
  • the network device may be randomly selected and then configured to the terminal, or the terminal may directly select randomly.
  • the SRS antenna ports with the first S (S ⁇ L) port index numbers are respectively mapped to the same first OFDM symbol, and other ports except the SRS antenna ports of the first S port index numbers
  • the SRS antenna ports of the index numbers are respectively mapped to the same second OFDM symbol;
  • transmission comb offset transmission comb offset
  • the terminal may shift the number of transmission combs (K TC ) and/or the second transmission comb in the configuration information Determine the first transmission comb offset corresponding to each of the L SRS antenna ports; or,
  • the terminal can according to the number of transmission comb teeth (K TC ) in the configuration information, the second transmission comb tooth offset Number of cyclic shifts and the maximum number of cyclic displacements Determine the first transmission comb tooth offset corresponding to each of the L SRS antenna ports.
  • transmission comb offset that is, the "second transmission comb offset" in the embodiment of the present application, which is configured by a high-level parameter.
  • the parameter transmissionComb configuration in the high-level parameter SRS-Resource or SRS-PosResource is the parameter transmissionComb configuration in the high-level parameter SRS-Resource or SRS-PosResource
  • the value of can be a positive rational number less than 1, a positive rational number greater than 1, or 0, which is not specifically limited.
  • the value of can be 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1, 3/2, 2, etc.
  • SRS antenna ports correspond to The values of can be the same or different.
  • All SRS antenna ports correspond to The value of is the same value (that is, the same);
  • All SRS antenna ports whose port index numbers are even numbers correspond to The value of is the same value (that is, the same), and all SRS antenna ports whose port index numbers are odd numbers correspond to The value of is another same value (that is, the same);
  • the SRS antenna ports with the first M port index numbers correspond to each The value of is the same value (that is, the same), and the SRS antenna ports of the first N port index numbers other than the SRS antenna ports of the first M port index numbers correspond to each is another same value (that is, the same), and so on, M is a positive integer, N is a positive integer, M+N ⁇ L;
  • the SRS antenna ports with the first P port index numbers correspond to each The value of is the same value (that is, the same), and the SRS antenna ports of the first T port index numbers other than the SRS antenna ports of the first P port index numbers correspond to each The value of is another same value (that is, the same), and so on, P is a positive integer, T is a positive integer, P+T ⁇ L; wherein, P can be equal to M, and T can be equal to N.
  • SRS antenna port 0 1000
  • the corresponding transmission comb offset i.e. the first transmission comb offset
  • the first transmission comb offsets corresponding to all SRS antenna ports whose port index numbers are odd numbers are the same, and all SRS antenna ports whose port index numbers are even numbers
  • the corresponding first transmission comb offsets are the same.
  • SRS antenna port 0 1000
  • the corresponding transmission comb offset i.e. the first transmission comb offset
  • the first transmission comb offsets corresponding to all SRS antenna ports whose port index numbers are odd numbers are the same, and all SRS antenna ports whose port index numbers are even numbers
  • the corresponding first transmission comb offsets are the same.
  • Example 1 it can be seen that among the L SRS antenna ports, the first transmission comb offsets corresponding to all the SRS antenna ports whose port index numbers are odd numbers are the same, and the first transmission comb offsets that belong to all SRS antenna ports whose port index numbers are even numbers The first transmission comb offsets corresponding to all the SRS antenna ports are the same.
  • Example 1 it can be seen that among the L SRS antenna ports, the first transmission comb offsets corresponding to all the SRS antenna ports whose port index numbers are odd numbers are the same, and the first transmission comb offsets that belong to all SRS antenna ports whose port index numbers are even numbers The first transmission comb offsets corresponding to all the SRS antenna ports are the same.
  • SRS antenna port 0 1000
  • the value of M is 2.
  • the first transmission comb offsets corresponding to the SRS antenna ports with the first M port index numbers are the same, and
  • the first transmission corresponding to the SRS antenna ports of the first N port index numbers except the SRS antenna ports of the first M port index numbers Comb offset is the same.
  • the first transmission comb offsets corresponding to the SRS antenna ports with the first P port index numbers are the same, and
  • the first transmission corresponding to the SRS antenna ports of the first T port index numbers except the SRS antenna ports of the first P port index numbers Comb offset is the same.
  • Example 5" may only be applicable to the case where the transmission comb value K TC is 8 or 12.
  • the first transmission corresponding to the SRS antenna ports of the first N port index numbers except the SRS antenna ports of the first M port index numbers Comb offset is the same.
  • the first transmission comb offsets corresponding to the SRS antenna ports with the first P port index numbers are the same, and
  • the first transmission corresponding to the SRS antenna ports of the first T port index numbers except the SRS antenna ports of the first P port index numbers Comb offset is the same.
  • Example 6 may only be applicable when the value of the transmission comb value K TC is 8 or 12.
  • the first transmission corresponding to the SRS antenna ports of the first N port index numbers except the SRS antenna ports of the first M port index numbers Comb offset is the same.
  • the first transmission comb offsets corresponding to the SRS antenna ports with the first P port index numbers are the same, and
  • the first transmission corresponding to the SRS antenna ports of the first T port index numbers except the SRS antenna ports of the first P port index numbers Comb offset is the same.
  • Example 7 may only be applicable to the case where the transmission comb value K TC is 8 or 12.
  • the first transmission corresponding to the SRS antenna ports of the first N port index numbers except the SRS antenna ports of the first M port index numbers Comb offset is the same.
  • the first transmission comb offsets corresponding to the SRS antenna ports with the first P port index numbers are the same, and
  • the first transmission corresponding to the SRS antenna ports of the first T port index numbers except the SRS antenna ports of the first P port index numbers Comb offset is the same.
  • Example 8 may only be applicable when the value of the transmission comb value K TC is 8 or 12.
  • the first transmission comb tooth offsets corresponding to all the SRS antenna ports among the L SRS antenna ports are the same.
  • transmission comb offset that is, the "second transmission comb offset" in the embodiment of the present application, and is configured by a high-level parameter.
  • the parameter transmissionComb configuration in the high-level parameter SRS-Resource or SRS-PosResource is the parameter transmissionComb configuration in the high-level parameter SRS-Resource or SRS-PosResource
  • the first transmission comb tooth offsets corresponding to all the SRS antenna ports among the L SRS antenna ports are the same.
  • the value of can be a positive integer greater than 1, which is not specifically limited.
  • the value of can be 2, 3, 4, 5, 6, 7 or 8, etc.
  • SRS antenna ports correspond to The values of can be the same or different.
  • All SRS antenna ports correspond to The value of is the same value (that is, the same);
  • All SRS antenna ports whose port index numbers are even numbers correspond to The value of is the same value (that is, the same), and all SRS antenna ports whose port index numbers are odd numbers correspond to The value of is another same value (that is, the same);
  • the SRS antenna ports with the first M port index numbers correspond to each
  • the values of are the same value (that is, the same), and the SRS antenna ports of the first N port index numbers other than the SRS antenna ports of the first M port index numbers correspond to each is another same value (that is, the same), and so on, M is a positive integer, N is a positive integer, M+N ⁇ L;
  • the SRS antenna ports with the first P port index numbers correspond to each The value of is the same value (that is, the same), and the SRS antenna ports of the first T port index numbers other than the SRS antenna ports of the first P port index numbers correspond to each The value of is another same value (that is, the same), and so on, P is a positive integer, T is a positive integer, P+T ⁇ L; wherein, P can be equal to M, and T can be equal to N.
  • SRS antenna port 0 1000
  • the first transmission comb offsets corresponding to all the SRS antenna ports whose port index numbers are odd are the same;
  • the first transmission comb offsets corresponding to all the SRS antenna ports are the same;
  • the first transmission comb tooth offsets corresponding to all the SRS antenna ports whose port index numbers are even are the same.
  • SRS antenna port 1 1001
  • the corresponding transmission comb offset (that is, the first transmission comb offset) is At this time, the value of T is 1.
  • the transmission comb offset (ie, the first transmission comb offset) corresponding to all the SRS antenna ports is
  • the first transmission comb offsets corresponding to the SRS antenna ports with the first M port index numbers are the same, and except for the first The first transmission comb tooth offsets corresponding to the SRS antenna ports of the first N port index numbers other than the SRS antenna ports of the M port index numbers are the same.
  • the first transmission comb offsets corresponding to the SRS antenna ports with the first P port index numbers are the same, and except for the first The first transmission comb tooth offsets corresponding to the SRS antenna ports of the first T port index numbers other than the SRS antenna ports of the P port index numbers are the same.
  • the first transmission comb offsets corresponding to all the SRS antenna ports are the same.
  • Example 2 may only be applicable when the value of the transmission comb value K TC is 8 or 12.
  • n b is consistent with the description in the above "case 1", and will not be repeated here.
  • a network device sends configuration information to a terminal to determine an SRS resource pattern for SRS resource mapping to introduce a reference signal resource mapping method according to an embodiment of the present application.
  • FIG. 2 it is a schematic flowchart of a method for resource mapping of a reference signal according to an embodiment of the present application, which specifically includes the following steps:
  • the network device sends configuration information.
  • the terminal obtains the configuration information.
  • the configuration information can be used to determine the first transmission comb offset corresponding to each of the L SRS antenna ports of the sounding reference signal SRS resource, and the first transmission comb offset can be used to determine the L SRS antenna ports
  • the value of L is an integer greater than 4.
  • the terminal determines the first transmission comb-tooth offset corresponding to each of the L SRS antenna ports of the sounding reference signal SRS resource according to the configuration information, and the first transmission comb-tooth offset is used to determine each of the L SRS antenna ports. The corresponding starting position in the frequency domain.
  • the terminal can determine the transmission comb offset ( transmission comb offset), that is, the first transmission comb offset, so as to determine the corresponding frequency domain starting positions of the L SRS antenna ports through the first transmission comb offset to realize SRS resource mapping and SRS resource pattern.
  • transmission comb offset transmission comb offset
  • the terminal or network device includes corresponding hardware structures and/or software modules for performing various functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software in combination with the units and algorithm steps of each example described in the embodiments disclosed herein. Whether a certain function is executed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may implement the described functionality using different methods for each particular application, but such implementation should not be considered as exceeding the scope of the present application.
  • the terminal or network device may be divided into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units can be implemented not only in the form of hardware, but also in the form of software program modules. It should be noted that the division of units in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner in actual implementation.
  • FIG. 3 is a block diagram of functional units of an apparatus for resource mapping of reference signals according to an embodiment of the present application.
  • the reference signal resource mapping apparatus 300 includes: an acquiring unit 301 and a determining unit 302 .
  • the acquiring unit 301 may be a modular unit for sending and receiving signals, data, information, and the like.
  • the determining unit 302 may be a modular unit for processing signals, data, information, etc., and there is no specific limitation on this.
  • the reference signal resource mapping apparatus 300 may further include a storage unit for storing computer program codes or instructions executed by the reference signal resource mapping apparatus 300 .
  • the storage unit may be a memory.
  • the reference signal resource mapping apparatus 300 may be a chip or a chip module.
  • the acquiring unit 301 and the determining unit 302 may be integrated into one unit.
  • the acquiring unit 301 and the determining unit 302 may be integrated in a processing unit.
  • the processing unit may be a processor or a controller, such as a central processing unit (central processing unit, CPU), a general purpose processor, a digital signal processor (digital signal processor, DSP), an application-specific integrated circuit (application-specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processing unit may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and the like.
  • the acquiring unit 301 and the determining unit 302 may be separate units.
  • the acquiring unit 301 may be a communication unit.
  • the communication unit may be a communication interface, a transceiver, a transceiver circuit, and the like.
  • the determining unit 302 is configured to perform any step performed by the terminal in the above method embodiments, and when performing data transmission such as sending, the obtaining unit 301 may be optionally called to complete corresponding operations. Detailed description will be given below.
  • An acquisition unit 301 configured to acquire configuration information
  • the determining unit 302 is configured to determine a first transmission comb offset corresponding to each of the L SRS antenna ports of the sounding reference signal SRS resource according to the configuration information, and the first transmission comb offset is used to determine the L SRS antenna
  • the starting position of the frequency domain corresponding to each port, and the value of L is an integer greater than 4.
  • the first transmission comb offsets corresponding to all the SRS antenna ports whose port index numbers are odd are the same;
  • the first transmission comb tooth offsets corresponding to all the SRS antenna ports whose port index numbers are even are the same.
  • the first transmission comb tooth offsets corresponding to all the SRS antenna ports among the L SRS antenna ports are the same.
  • the first transmission comb offsets corresponding to the SRS antenna ports with the first M port index numbers are the same, and
  • the first transmission combs corresponding to the SRS antenna ports of the first N port index numbers except the SRS antenna ports of the first M port index numbers The tooth offsets are the same, M is a positive integer, N is a positive integer, M+N ⁇ L.
  • the first transmission comb offsets corresponding to the SRS antenna ports with the first P port index numbers are the same, and
  • the first transmission combs corresponding to the SRS antenna ports of the first T port index numbers except the SRS antenna ports of the first P port index numbers The tooth offsets are the same, P is a positive integer, T is a positive integer, P+T ⁇ L.
  • each of the L SRS antenna ports is mapped to the same OFDM symbol.
  • the SRS antenna ports with the first S port index numbers are respectively mapped to the same first OFDM symbol.
  • the SRS antenna ports of other port index numbers except the SRS antenna ports of the first S port index numbers are respectively mapped to the same second OFDM symbol, and S is a positive integer, S ⁇ L.
  • the configuration information includes at least one of the following: the number of transmission combs, the second transmission comb offset, the number of cyclic shifts, and the maximum number of cyclic shifts.
  • the determining unit 302 is specifically configured to:
  • the first transmission comb offset corresponding to each of the L SRS antenna ports is determined according to the number of transmission combs and/or the second transmission comb offset.
  • the determining unit 302 is specifically configured to:
  • the first transmission comb offsets corresponding to the L SRS antenna ports are determined according to the first formula, and the first formula is:
  • K TC is expressed as the number of transmission combs, Denoted as the second transmission comb offset, is a positive rational number or 0.
  • the determining unit 302 is specifically configured to:
  • the determining unit 302 is specifically configured to:
  • the first transmission comb offset corresponding to each of the L SRS antenna ports is determined according to the number of transmission combs, the second transmission comb offset, the number of cyclic shifts, and the maximum number of cyclic shifts.
  • the determining unit 302 is specifically used to :
  • K TC is expressed as the number of transmission combs, Denoted as the second transmission comb offset, Expressed as the number of cyclic shifts, Expressed as the maximum number of cyclic displacements, is a positive rational number or 0, is a positive integer.
  • FIG. 4 is a block diagram of functional units of another apparatus for resource mapping of reference signals according to an embodiment of the present application.
  • the reference signal resource mapping apparatus 400 includes: a sending unit 401 .
  • the sending unit 401 may be a modular unit for sending and receiving signals, data, information, etc., which is not specifically limited.
  • the reference signal resource mapping apparatus 400 may further include a storage unit for storing computer program codes or instructions executed by the reference signal resource mapping apparatus 400 .
  • the storage unit may be a memory.
  • the reference signal resource mapping apparatus 400 may be a chip or a chip module.
  • the reference signal resource mapping apparatus 400 may further include a processing unit, and the processing unit may be a processor or a controller, such as a central processing unit (central processing unit, CPU), a general purpose processor, or a digital signal processor (digital signal processor, DSP), application-specific integrated circuit (application-specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processing unit may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and the like.
  • the sending unit 401 may be a communication unit.
  • the communication unit may be a communication interface, a transceiver, a transceiver circuit, and the like.
  • the sending unit 401 is configured to perform any step performed by the network device in the foregoing method embodiments. Detailed description will be given below.
  • the sending unit 401 is configured to send configuration information, the configuration information is used to determine the first transmission comb offset corresponding to each of the L SRS antenna ports of the sounding reference signal SRS resource, and the first transmission comb offset is used to determine The starting positions in the frequency domain corresponding to the L SRS antenna ports, the value of L is an integer greater than 4.
  • the first transmission comb offsets corresponding to all the SRS antenna ports whose port index numbers are odd are the same;
  • the first transmission comb tooth offsets corresponding to all the SRS antenna ports whose port index numbers are even are the same.
  • the first transmission comb tooth offsets corresponding to all the SRS antenna ports among the L SRS antenna ports are the same.
  • the first transmission comb offsets corresponding to the SRS antenna ports with the first M port index numbers are the same, and
  • the first transmission combs corresponding to the SRS antenna ports of the first N port index numbers except the SRS antenna ports of the first M port index numbers The tooth offsets are the same, M is a positive integer, N is a positive integer, M+N ⁇ L.
  • the first transmission comb offsets corresponding to the SRS antenna ports with the first P port index numbers are the same, and
  • the first transmission combs corresponding to the SRS antenna ports of the first T port index numbers except the SRS antenna ports of the first P port index numbers The tooth offsets are the same, P is a positive integer, T is a positive integer, P+T ⁇ L.
  • each of the L SRS antenna ports is mapped to the same OFDM symbol.
  • the SRS antenna ports with the first R port index numbers are respectively mapped to the same first OFDM symbol.
  • the SRS antenna ports of other port index numbers except the SRS antenna ports of the first R port index numbers are respectively mapped to the same second OFDM symbol, and R is a positive integer, R ⁇ L.
  • the configuration information includes at least one of the following:
  • the number of transmission combs, the offset of the second transmission comb, the number of cyclic displacements, and the maximum number of cyclic displacements are the number of transmission combs, the offset of the second transmission comb, the number of cyclic displacements, and the maximum number of cyclic displacements.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal 500 includes a processor 510 , a memory 520 and a communication bus for connecting the processor 510 and the memory 520 .
  • Memory 520 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read-only memory, EPROM) or A portable read-only memory (compact disc read-only memory, CD-ROM), the memory 520 is used to store program codes executed by the terminal 500 and transmitted data.
  • random access memory random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • a portable read-only memory compact disc read-only memory, CD-ROM
  • Terminal 500 may also include a communication interface, which may be used to receive and transmit data.
  • the processor 510 may be one or more CPUs. In the case where the processor 510 is one CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 510 in the terminal 500 is configured to execute the computer program or the instruction 521 stored in the memory 520, and perform the following operations: obtain configuration information; determine the first corresponding to each of the L SRS antenna ports of the sounding reference signal SRS resource according to the configuration information A transmission comb offset, the first transmission comb offset is used to determine the frequency domain start positions corresponding to the L SRS antenna ports, and the value of L is an integer greater than 4.
  • each operation can use the corresponding descriptions of the above-mentioned method embodiments, and the terminal 500 can be used to execute the method on the terminal side of the above-mentioned method embodiments of the present application, which will not be described in detail here.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device 600 includes a processor 610 , a memory 620 and a communication bus for connecting the processor 610 and the memory 620 .
  • Memory 620 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read-only memory, EPROM) or A portable read-only memory (compact disc read-only memory, CD-ROM), the memory 620 is used to store program codes executed by the network device 600 and transmitted data.
  • random access memory random access memory
  • ROM read-only memory
  • erasable programmable read-only memory erasable programmable read-only memory, EPROM
  • a portable read-only memory compact disc read-only memory, CD-ROM
  • Network device 600 may also include a communication interface, which may be used to receive and transmit data.
  • the processor 610 may be one or more CPUs. In the case where the processor 610 is one CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 610 in the network device 600 is configured to execute the computer program or instruction 621 stored in the memory 620, and perform the following operations: send configuration information, and the configuration information is used to determine the L SRS antenna ports corresponding to the sounding reference signal SRS resource
  • the first transmission comb offset is used to determine the frequency-domain starting positions corresponding to the L SRS antenna ports, and the value of L is an integer greater than 4.
  • each operation can use the corresponding descriptions of the above-mentioned method embodiments, and the network device 600 can be used to execute the method on the network device side of the above-mentioned method embodiments of the present application, which will not be described in detail here.
  • An embodiment of the present application also provides a chip, including a processor, a memory, and a computer program or instruction stored on the memory, wherein the processor executes the computer program or instruction to implement the steps described in the above method embodiments.
  • the embodiment of the present application also provides a chip module, including a transceiver component and a chip, the chip includes a processor, a memory, and a computer program or instruction stored on the memory, wherein the processor executes the computer program or instruction to The steps described in the above method embodiments are implemented.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores a computer program or instruction, and when the computer program or instruction is executed, implements the steps described in the above method embodiments.
  • the embodiment of the present application also provides a computer program product, including a computer program or an instruction.
  • a computer program product including a computer program or an instruction.
  • the steps of the methods or algorithms described in the embodiments of the present application may be implemented in the form of hardware, or may be implemented in the form of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (erasable programmable ROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disc read-only (CD-ROM), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the terminal or management device. Certainly, the processor and the storage medium may also exist in the terminal or the management device as discrete components.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in, or transmitted from, one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be sent from a website site, computer, server, or data center via wired (e.g., coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) Transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • each module/unit contained in each device and product described in the above embodiments may be software modules/units, hardware modules/units, or partly software modules/units and partly hardware modules/units.
  • each module/unit contained therein may be realized by hardware such as a circuit, or at least some modules/units may be realized by a software program, and the software program Running on the integrated processor inside the chip, the remaining (if any) modules/units can be realized by means of hardware such as circuits; They are all realized by means of hardware such as circuits, and different modules/units can be located in the same component (such as chips, circuit modules, etc.) or different components of the chip module, or at least some modules/units can be realized by means of software programs,
  • the software program runs on the processor integrated in the chip module, and the remaining (if any) modules/units can be realized by hardware such as circuits; /Units can be realized by means of hardware such as circuits, and different modules/units can be located in

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了参考信号的资源映射方法与装置、终端和网络设备;该方法包括:网络设备发送配置信息;终端获取该配置信息;终端根据该配置信息确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,该第一传输梳齿偏移用于确定该L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。由于网络设备可以向终端发送配置信息,使得终端可以根据该配置信息确定SRS资源的L(L>4)个SRS天线端口各自所对应的传输梳齿偏移,即第一传输梳齿偏移,从而通过该第一传输梳齿偏移确定L个SRS天线端口各自所对应的频域起始位置以实现SRS资源映射和SRS资源图案。

Description

参考信号的资源映射方法与装置、终端和网络设备 技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号的资源映射方法与装置、终端和网络设备。
背景技术
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的新无线电(new radio,NR)中,终端可以向网络设备发送探测参考信号(sounding reference signal,SRS),以便网络设备根据SRS进行资源调度、链路自适应、波束管理和功率控制等。
目前,在NR R15/R16/R17中,SRS资源所包含的SRS天线端口的数目为1、2、4,即SRS资源所包含的SRS天线端口的最大数量为4。然而,当SRS资源所包含的SRS天线端口的最大数量超过4时,现有标准协议对此尚无具体方案来确定SRS资源映射以及SRS资源的图案(pattern)。
发明内容
本申请提供了一种参考信号的资源映射方法与装置、终端和网络设备,以期望通过网络配置SRS资源的L(L>4)个SRS天线端口各自所对应的传输梳齿偏移,即第一传输梳齿偏移,从而通过该第一传输梳齿偏移确定L个SRS天线端口各自所对应的频域起始位置以实现SRS资源映射和SRS资源图案。
第一方面,为本申请实施例的一种参考信号的资源映射方法,包括:
获取配置信息;
根据所述配置信息确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第一传输梳齿偏移用于确定所述L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
第二方面,为本申请实施例的一种参考信号的资源映射方法,包括:
发送配置信息,所述配置信息用于确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第一传输梳齿偏移用于确定所述L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
可见,本申请实施例中,由于网络设备可以向终端发送配置信息,使得终端可以根据该配置信息确定SRS资源的L(L>4)个SRS天线端口各自所对应的传输梳齿偏移,即第一传输梳齿偏移,从而通过该第一传输梳齿偏移确定L个SRS天线端口各自所对应的频域起始位置以实现SRS资源映射和SRS资源图案。
第三方面,为本申请实施例的一种参考信号的资源映射装置,包括:
获取单元,用于获取配置信息;
确定单元,用于确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第一传输梳齿偏移用于确定所述L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
第四方面,为本申请实施例的一种参考信号的资源映射装置,包括:
发送单元,用于发送配置信息,所述配置信息用于确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第一传输梳齿偏移用于确定所述L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
第五方面,上述第一方面所设计的方法中的步骤应用于终端中。
第六方面,上述第二方面所设计的方法中的步骤应用于网络设备中。
第七方面,为本申请实施例的一种终端,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其中,所述处理器执行所述计算机程序或指令以实现上述第一方面所设计的方法中的步骤。
第八方面,为本申请实施例的一种网络设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其中,所述处理器执行所述计算机程序或指令以实现上述第二方面所设计的方法中的步骤。
第九方面,为本申请的一种芯片,包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。
第十方面,为本申请的一种芯片模组,包括收发组件和芯片,所述芯片包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。
第十一方面,为本申请的一种计算机可读存储介质,其中,其存储有计算机程序或指示,所述计算 机程序或指令被执行时实现上述第一方面或第二方面所设计的方法中的步骤。
第十二方面,为本申请的一种计算机程序产品,包括计算机程序或指令,其中,该计算机程序或指令被执行时实现上述第一方面或第二方面所设计的方法中的步骤。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍。
图1是本申请实施例的一种无线通信系统的架构示意图;
图2是本申请实施例的一种参考信号的资源映射方法的流程示意图;
图3是本申请实施例的一种参考信号的资源映射装置的功能单元组成框图;
图4是本申请实施例的又一种参考信号的资源映射装置的功能单元组成框图;
图5是本申请实施例的一种终端的结构示意图;
图6是本申请实施例的一种网络设备的结构示意图。
具体实施方式
为了本技术领域人员更好理解本申请的技术方案,下面结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。显然所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是还包括没有列出的步骤或单元,或还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
需要说明的是,本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,对此不做任何限定。本申请实施例中出现的“网络”与“系统”表达的是同一概念,通信系统即为通信网络。
本申请实施例的技术方案可以应用于各种无线通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced Long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based Access to Unlicensed Spectrum,LTE-U)系统、非授权频谱上的NR(NR-based Access to Unlicensed Spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第6代通信(6th-Generation,6G)系统或者其他通信系统等。
需要说明的是,传统的无线通信系统所支持的连接数有限,且易于实现。然而,随着通信技术的发展,无线通信系统不仅可以支持传统的无线通信系统,还可以支持如设备到设备(device to device,D2D)通信、机器到机器(machine to machine,M2M)通信、机器类型通信(machine type communication,MTC)、车辆间(vehicle to vehicle,V2V)通信、车联网(vehicle to everything,V2X)通信、窄带物联网(narrow band internet of things,NB-IoT)通信等,因此本申请实施例的技术方案也可以应用于上述无线通信系统。
可选地,本申请实施例的无线通信系统可以应用于波束赋形(beamforming)、载波聚合(carrier aggregation,CA)、双连接(dual connectivity,DC)或者独立(standalone,SA)部署场景等。
可选地,本申请实施例的无线通信系统可以应用于非授权频谱。其中,非授权频谱也可以认为是共享频谱。或者,本实施例中的无线通信系统也可以应用于授权频谱。其中,授权频谱也可以认为是非共享频谱。
由于本申请实施例可能结合终端、网络设备描述各个实施例,因此下面将对涉及的终端、网络设备进行具体描述。
具体的,终端可以是用户设备(user equipment,UE)、远程/远端终端(remote UE)、中继设备(relay UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、移动设备、用户终端、智能终端、无线通信设备、用户代理或用户装置。需要说明的是,中继设备是能够为其他终端(包括远程终端)提供中继转发服务的终端。另外,终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统(例如NR通信系统)中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,对此不作具体限定。
进一步的,终端可以部署在陆地上,包括室内或室外、手持、穿戴或车载;可以部署在水面上(如轮船等);还可以部署在空中(如飞机、气球和卫星等)。
进一步的,终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人自动驾驶中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或者智慧家庭(smart home)中的无线终端设备等。
进一步的,终端可以包括具有收发功能的装置,例如芯片系统。其中,芯片系统可以包括芯片,还可以包括其它分立器件。
具体的,网络设备可以是用于与终端之间进行通信的设备,其负责空口侧的无线资源管理(radio resource management,RRM)、服务质量(quality of service,QoS)管理、数据压缩和加密、数据收发等。其中,网络设备可以是通信系统中的基站(base station,BS)或者部署于无线接入网(radio access network,RAN)以用于提供无线通信功能的设备。例如,GSM或CDMA通信系统中的基站(base transceiver station,BTS)、WCDMA通信系统中的节点B(node B,NB)、LTE通信系统中的演进型节点B(evolutional node B,eNB或eNodeB)、NR通信系统中的下一代演进型的节点B(next generation evolved node B,ng-eNB)、NR通信系统中的下一代节点B(next generation node B,gNB)、双链接架构中的主节点(master node,MN)、双链接架构中的第二节点或辅节点(secondary node,SN)等,对此不作具体限制。
进一步的,网络设备还可以是核心网(core network,CN)中的其他设备,如访问和移动性管理功能(access and mobility management function,AMF)、用户计划功能(user plan function,UPF)等;还可以是无线局域网(wireless local area network,WLAN)中的接入点(access point,AP)、中继站、未来演进的PLMN网络中的通信设备、NTN网络中的通信设备等。
进一步的,网络设备可以包括具有为终端提供无线通信功能的装置,例如芯片系统。示例的,芯片系统可以包括芯片,还可以包括其它分立器件。
进一步的,网络设备可以与互联网协议(Internet Protocol,IP)网络进行通信。例如,因特网(internet)、私有的IP网或者其他数据网等。
需要说明的是,在一些网络部署中,网络设备可以是一个独立的节点以实现上述基站的所有功能,其可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),如gNB-CU和gNB-DU;还可以包括有源天线单元(active antenna unit,AAU)。其中,CU可以实现网络设备的部分功能,而DU也可以实现网络设备的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC)层、服务数据适配(service data adaptation protocol,SDAP)层、分组数据汇聚(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。另外,AAU可以实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者由PHY层的信息转变而来,因此,在该网络部署下,高层信令(如RRC层信令)可以认为是由DU发送的,或者由DU和AAU共同发送的。可以理解的是,网络设备可以包括CU、DU、AAU中的至少一个。另外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网中的网络设备,对此不做具体限定。
进一步的,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(high elliptical orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
进一步的,网络设备可以为小区提供服务,而该小区内的终端可以通过传输资源(如频谱资源)与网络设备进行通信。其中,该小区可以包括宏小区(macro cell)、小小区(small cell)、城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)和毫微微小区(femto cell)等。
结合上述描述,下面对本申请实施例的无线通信系统做一个示例性说明。
示例性的,本申请实施例的无线通信系统,请参阅图1。无线通信系统10可以包括终端110和网络设备120,而网络设备120可以是与终端110执行通信的设备。同时,网络设备120可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端110进行通信。
可选地,无线通信系统10还可以包括多个网络设备,并且每个网络设备的覆盖范围内可以包括一定数量的终端,对此不作具体限定。
可选地,无线通信系统10还可以包括网络控制器、移动管理实体等其他网络实体,对此不作具体限定。
可选地,无线通信系统10中的网络设备与终端之间的通信可以为无线通信或者有线通信,对此不作具体限制。
在3GPP的NR中,终端可以向网络设备发送探测参考信号(sounding reference signal,SRS),以便网络设备根据SRS进行资源调度、链路自适应、波束管理和功率控制等。目前,在NR R15/R16/R17中,SRS资源所包含的SRS天线端口的数量为1、2、4,即SRS资源所包含的SRS天线端口的最大数目为4。然而,当SRS资源所包含的SRS天线端口的最大数量超过4时,现有标准协议对此尚无具体方案来确定SRS资源映射以及SRS资源图案(pattern)。
综上所述,当SRS资源所包含的SRS天线端口的最大数量超过4时,为了确定SRS资源映射以及SRS资源的图案,本申请实施例期望通过网络设备向终端发送配置信息,使得终端可以根据该配置信息确定SRS资源的L(L>4)个SRS天线端口各自所对应的传输梳齿偏移(transmission comb offset),即第一传输梳齿偏移,从而通过该第一传输梳齿偏移确定L个SRS天线端口各自所对应的频域起始位置以实现SRS资源映射和SRS资源图案。
为了实现上述的技术方案,下面对其可能涉及的其他内容、概念和含义做进一步解释说明。
1、SRS
SRS是5G/NR系统中重要的上行参考信号,广泛用于NR系统中的各种功能中,例如:
(1)用于下行链路的信道状态信息(channel state information,CSI)获取的终端探测过程;
(2)用于上行波束管理;
(3)用于定位功能;
(4)配合基于码本(codebook-based)的上行传输,如频域调度和Rank/预编码矩阵指示(precoding matrix indicator,PMI)/调制编码方式(modulation coding scheme,MCS)的确定;
(5)配合基于非码本(non-codebook based)的上行传输,如频域调度和SRS资源指示(sounding reference signal resource indicator,SRI)/MCS的确定;
等等。
另外,SRS可以支持三种不同的传输方式:周期性(periodic)、半持续(semi-persistent)和非周期(aperiodic),具体如下:
(1)周期性SRS和半持续性SRS
周期性SRS是指周期性传输的SRS,其周期和时隙偏移(slot offset)由RRC信令配置。如果终端接收到由该RRC信令配置的相关配置信息,则终端根据该相关信息以一定的周期发送SRS,直到该相关配置信息失效。此外,周期性SRS的空间相关信息(spatial relation information)也由RRC信令配。其中,该空间相关信息用于通过隐式的方式来指示发送的波束,并且该空间相关信息可以指示一个信道状态信息参考信号(channel state information,CSI-RS)、同步信号块(synchronization signal and PBCH block,SSB)或者SRS。因此,终端可以根据由该空间相关信息指示的CSI-RS/SSB的接收波束确定SRS资源的发送波束,或者根据参考SRS的发送波束确定SRS的发送波束。
半持续性SRS的周期和时隙偏移由RRC信令配置,但其激活信令和去激活信令是通过媒体接入控制层的控制单元(media access control control element,MAC CE)承载的。其中,终端在接收到激活信令后开始周期性传输SRS,直到接收到去激活信令为止。同时,半持续SRS的空间相关信息通过激活SRS的MAC CE一起承载。
终端接收到RRC信令配置的周期和时隙偏移后,根据以下公式确定能够用于传输SRS的时隙:
Figure PCTCN2022125699-appb-000001
其中,
Figure PCTCN2022125699-appb-000002
表示子载波配置为μ时的每个无线帧内的时隙的数目,n f表示系统帧索引号(system frame number,SFN),
Figure PCTCN2022125699-appb-000003
表示子载波配置为μ时的一个无线帧内的时隙索引号,T offset表示由RRC信令配置的时隙偏移,T SRS表示由RRC信令配置的周期。
(2)非周期性SRS
非周期性SRS是指非周期性传输的SRS。网络设备可以通过下行控制信息(downlink control information,DCI)触发终端非周期性的传输SRS。此外,用于触发非周期SRS传输的触发信令既可以通过UE专属搜索空间中用于调度物理上行共享信道(physical uplink shared channel,PUSCH)或者物理下行共享信道(physical downlink shared channel,PDSCH)的DCI承载,也可以通过公共搜索空间中的DCI格式2_3(DCI format 2_3)来承载。其中,DCI format 2_3不仅可以用于触发非周期SRS传输,也可以同时用于配置一组UE或一组载波上的SRS的TPC命令。同时,DCI携带有2比特的SRS request来触发非周期性传输SRS。
当终端接收到非周期SRS触发信令(如DCI)后,基于触发信令所指示的SRS资源集合进行非周期性SRS传输。其中,触发信令与非周期性SRS传输之间的时隙偏移由高层信令(如RRC信令)配置。同时,网络设备预先通过高层信令指示终端每个SRS资源集合的配置参数,包括时频资源等。另外,对于触发的SRS资源集合中的每个SRS资源,终端还可以通过该SRS资源的空间相关信息确定传输该SRS资源相应的SRS所用的发送波束,而该空间相关信息可通过RRC信息配置给每个SRS资源。
2、配置信息
需要说明的是,终端设备可以在小区搜索、小区接入、小区驻留、初始接入、随机接入、上下行资源调度等过程中获取网络设备下发的该配置信息,对此不作具体限制。
在本申请实施例中,该配置信息可以包括信元(information element,IE)SRS-Config等,而IE SRS-Config可以用于配置SRS传输。其中,IE SRS-Config可以定义一个高层参数SRS资源(如SRS-Resources)列表和一个高层参数SRS资源集(如SRS-ResourceSets)列表,每个SRS资源集可以定义一组高层参数SRS-Resource。
另外,网络设备可以使用配置的非周期性的高层参数(如aperiodicSRS-ResourceTrigger或者aperiodicSRS-ResourceTriggerList)触发SRS资源集的传输。
在一些实施例中,该配置信息可以包括以下至少之一:传输梳齿数K TC、第二传输梳齿偏移
Figure PCTCN2022125699-appb-000004
循环位移次数
Figure PCTCN2022125699-appb-000005
最大循环位移次数
Figure PCTCN2022125699-appb-000006
其中,该配置信息如何包含这些参数,以及这些参数的含义将在后续描述中出现。
3、SRS资源、L的取值、L个SRS端口中各SRS端口的端口索引号
终端根据高层参数(如SRS-ResourceSet或SRS-PosResourceSet)的指示,可以配置有一个或者多个SRS资源集。对于由SRS-ResourceSet所配置的每个SRS资源集,可以被配置有K(K≥1)个SRS资源(如高层参数SRS-Resource所配置),其中K的最大值可以由终端能力确定。
SRS资源集的适用性(applicability)由SRS-ResourceSet中的参数用法(usage)所配置。
一个SRS资源可以由高层参数(如SRS-Resource或SRS-PosResource)配置,包括:
1)
Figure PCTCN2022125699-appb-000007
个SRS天线端口,该
Figure PCTCN2022125699-appb-000008
个SRS天线端口中的SRS天线端口
Figure PCTCN2022125699-appb-000009
的端口索引号表示为
Figure PCTCN2022125699-appb-000010
SRS资源所包含的SRS天线端口的最大数量(即
Figure PCTCN2022125699-appb-000011
的取值)可以由高层参数(如nrofSRS-Ports)配置。若未配置该高层参数,则
Figure PCTCN2022125699-appb-000012
另外,当SRS资源位于高层参数(如usage)未设置为'非码本(nonCodebook)'的SRS资源集中时,或当SRS资源位于高层参数(如usage)设置为“nonCodebook”时,p i=1000+i。
需要说明的是,在申请实施例中,
Figure PCTCN2022125699-appb-000013
的取值即为L的取值。也就是说,高层参数(如nrofSRS-Ports)配置SRS资源所包含的SRS天线端口的最大数量为L个,且L个SRS天线端口中的SRS天线端口i(i∈{0,1,...,L-1})的端口索引号表示为
Figure PCTCN2022125699-appb-000014
p i=1000+i。
另外,L的取值可以为5、6、7或8等,对此不作具体限制。
例如,当L的取值为5时,对于5个SRS天线端口,SRS天线端口0的端口索引号为p 0=1000,SRS天线端口1的端口索引号为p 1=1001,SRS天线端口2的端口索引号为1002,SRS天线端口3的端口索引号为1003,SRS天线端口4的端口索引号为1004。
2)
Figure PCTCN2022125699-appb-000015
个连续的OFDM符号。其中,
Figure PCTCN2022125699-appb-000016
的取值由高层参数配置。
例如,resourceMapping中的字段nrofSymbols配置
Figure PCTCN2022125699-appb-000017
3)SRS的时域起始位置(time-domain starting position)l 0。其中,
Figure PCTCN2022125699-appb-000018
偏移l offset∈{0,1,...,13}从时隙末尾向后计数OFDM符号(symbol),并由高层参数给出,且
Figure PCTCN2022125699-appb-000019
例如,resourceMapping中的字段startPosition配置l 0
4)SRS的频域起始位置(frequency-domain starting position)k 0
4、SRS资源的序列生成、K TC的取值、
Figure PCTCN2022125699-appb-000020
的取值
对于OFDM符号l′和SRS天线端口i的SRS资源,该SRS资源的SRS序列按照以下公式生成:
Figure PCTCN2022125699-appb-000021
Figure PCTCN2022125699-appb-000022
Figure PCTCN2022125699-appb-000023
下面对上述公式中的各参数的含义分别进行说明。
1)
Figure PCTCN2022125699-appb-000024
的含义
Figure PCTCN2022125699-appb-000025
表示为SRS序列的长度,其可以定义为:
Figure PCTCN2022125699-appb-000026
其中,
Figure PCTCN2022125699-appb-000027
表示1个RB包含的子载波的个数;
K TC表示为传输梳齿数(transmission comb number),且由高层参数配置;例如,transmissionComb配置K TC
m SRS,b表示SRS传输的物理资源块(physical resource block,PRB)个数,由高层信令配置的高层参数C SRS和高层参数B SRS确定,如表1所示。其中,b=B SRS,B SRS∈{0,1,2,3}由高层参数freqHopping中的域(field)b-SRS给定;C SRS∈{0,1,...,63}由高层参数freqHopping中的域c-SRS给定,b hop∈{0,1,2,3} 由高层参数freqHopping中包含的域b-hop给定;m SRS,0可以表示SRS跳频的总带宽。
表1
Figure PCTCN2022125699-appb-000028
需要说明的是,在本申请实施例中,K TC的取值范围除了可以为{2,4,8}(即K TC∈{2,4,8})之外,本申请实施例还可以定义K TC的新取值范围,对此不作具体限制。
例如,K TC的取值范围为{2,4,8,12}等。
2)
Figure PCTCN2022125699-appb-000029
的含义
Figure PCTCN2022125699-appb-000030
表示为低峰均比伪随机序列(low-PAPR pseudo-random sequences),其可以定义为:
Figure PCTCN2022125699-appb-000031
其中,
Figure PCTCN2022125699-appb-000032
表示为
Figure PCTCN2022125699-appb-000033
的长度;
α表示为循环位移(cyclic shift);
Figure PCTCN2022125699-appb-000034
表示一个基本序列;
u∈{0,1,...,29}表示为组号(group number);
v表示为
Figure PCTCN2022125699-appb-000035
在组内的基本序列号;
δ=log 2(K TC)。
3)α i的含义
α i表示为SRS天线端口i(p i)的循环位移,其可以定义为:
Figure PCTCN2022125699-appb-000036
Figure PCTCN2022125699-appb-000037
其中,
Figure PCTCN2022125699-appb-000038
表示为循环位移次数,且由高层参数配置;例如,transmissionComb配置
Figure PCTCN2022125699-appb-000039
Figure PCTCN2022125699-appb-000040
表示为最大循环位移次数,且
Figure PCTCN2022125699-appb-000041
的取值可以由K TC的取值确定。
例如,当K TC的取值范围为{2,4,8}时,
Figure PCTCN2022125699-appb-000042
的取值由表2给出。
表2
Figure PCTCN2022125699-appb-000043
例如,当K TC的取值范围为{2,4,8,12}时,
Figure PCTCN2022125699-appb-000044
的取值由表3给出。
表3
Figure PCTCN2022125699-appb-000045
需要说明的是,K TC可以表示具有频域正交的可能性的SRS天线端口有多少个,而
Figure PCTCN2022125699-appb-000046
可以表示码域上具有码分正交的可能性的SRS天线端口有多少个。由于不同SRS天线端口或不同终端之间需要保证正交性,而
Figure PCTCN2022125699-appb-000047
(如
Figure PCTCN2022125699-appb-000048
)表示总的可以容纳的正交是多少个。
示例性的,NR R16中的参数transmissionComb包含如下信息:
Figure PCTCN2022125699-appb-000049
Figure PCTCN2022125699-appb-000050
其中,n2-r16用于配置K TC=2;combOffset-n2-r16用于配置
Figure PCTCN2022125699-appb-000051
的取值;cyclicShift-n2-r16用于配置
Figure PCTCN2022125699-appb-000052
的取值;其余同理可知。
4、SRS资源映射、第一传输梳齿偏移
当在给定的SRS资源上传输SRS时,对于OFDM符号l′和SRS天线端口i的SRS资源,该SRS资源的SRS序列
Figure PCTCN2022125699-appb-000053
应乘以幅度缩放因子(amplitude scaling factor)β SRS以满足一定的发射功率。
在本申请实施例中,由于SRS资源所包含的SRS天线端口的最大数量将超过4,即L>4,因此L的取值不同,SRS资源映射方式也将会不同。下面先介绍L=4时的SRS资源映射方式,再以此介绍L>4时的SRS资源映射方式进行具体说明。
情形一:L=4(即
Figure PCTCN2022125699-appb-000054
)
Figure PCTCN2022125699-appb-000055
时,按照如下公式将SRS天线端口i(i∈{0,1,2,3})所对应的SRS序列从
Figure PCTCN2022125699-appb-000056
开始按顺序映射到某个时隙中的资源元素(k,l):
Figure PCTCN2022125699-appb-000057
下面对上述公式中的各参数的含义进行分别说明。
1、l′的含义
需要说明的是,由于
Figure PCTCN2022125699-appb-000058
则说明在SRS资源所包含的
Figure PCTCN2022125699-appb-000059
个OFDM符号中的每个OFDM符号都要传输/映射/承载所有的
Figure PCTCN2022125699-appb-000060
个SRS天线端口。
也就是说,在
Figure PCTCN2022125699-appb-000061
个OFDM符号中,以一个OFDM符号作为一个单元(unit),得到
Figure PCTCN2022125699-appb-000062
个单元,并以一个单元来传输/映射/承载所有的
Figure PCTCN2022125699-appb-000063
个SRS天线端口,而各单元之间可以进行重复 或者跳频。
或者说,
Figure PCTCN2022125699-appb-000064
个SRS天线端口各自映射到同一个OFDM符号上。
例如,当L=4,且
Figure PCTCN2022125699-appb-000065
时,在该2个OFDM符号中,由第一个OFDM符号传输/映射/承载所有的4个SRS天线端口,由第二个OFDM符号传输/映射/承载所有的4个SRS天线端口。或者说,该4个SRS天线端口各自映射到第一个OFDM符号,以及该4个SRS天线端口各自映射到第二个OFDM符号。
2、
Figure PCTCN2022125699-appb-000066
的含义
Figure PCTCN2022125699-appb-000067
表示为SRS天线端口i(p i)所对应的频域起始位置,其可以定义如下:
Figure PCTCN2022125699-appb-000068
其中,
Figure PCTCN2022125699-appb-000069
可以定义为如下:
Figure PCTCN2022125699-appb-000070
1)
Figure PCTCN2022125699-appb-000071
的含义
Figure PCTCN2022125699-appb-000072
表示为SRS天线端口i所对应的传输梳齿偏移(transmission comb offset),即本申请实施例的“第一传输梳齿偏移”,其可以定义如下:
Figure PCTCN2022125699-appb-000073
其中,
Figure PCTCN2022125699-appb-000074
表示为传输梳齿偏移,即本申请实施例的“第二传输梳齿偏移”,并且由高层参数配置。例如,SRS-Resource或者SRS-PosResource中的参数transmissionComb配置
Figure PCTCN2022125699-appb-000075
通过上述公式可知,当L=4时,具体存在如下:
①若
Figure PCTCN2022125699-appb-000076
则在该4个SRS端口中,SRS端口1(即p 1=1001)所对应的传输梳齿偏移
Figure PCTCN2022125699-appb-000077
和SRS端口3(即p 1=1003)所对应的传输梳齿偏移
Figure PCTCN2022125699-appb-000078
是相同的,即
Figure PCTCN2022125699-appb-000079
也就是说,若
Figure PCTCN2022125699-appb-000080
则在该4个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
②在该4个SRS端口中,SRS端口0(即p 1=1000)所对应的传输梳齿偏移
Figure PCTCN2022125699-appb-000081
和SRS端口 2(即p 2=1002)所对应的传输梳齿偏移
Figure PCTCN2022125699-appb-000082
是相同的,即
Figure PCTCN2022125699-appb-000083
也就是说,在该4个SRS天线端口中,属于端口索引号为偶数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
③若
Figure PCTCN2022125699-appb-000084
则在1/2/4个SRS天线端口(由于L的取值表示为SRS资源所包含的SRS天线端口的最大数量,因此实际可能存在1/2/4个SRS天线端口)中,所有SRS端口各自所对应的传输梳齿偏移是相同的,即
Figure PCTCN2022125699-appb-000085
3、n shift的含义
n shift表示为频域偏移值(frequency domain shift value),用于相对于参考点网格(reference point grid)调整SRS分配,并且由高层参数配置。例如,SRS-Resource或者SRS-PosResource中的参数freqDomainShift配置n shift
当BWP起始位置
Figure PCTCN2022125699-appb-000086
时,参考点是公共资源块0中的子载波0,即参考点为point A;否则,参考点是BWP中的最小子载波。
4、
Figure PCTCN2022125699-appb-000087
的含义
如果SRS由高层参数SRS-PosResource配置,则数量(quantity)
Figure PCTCN2022125699-appb-000088
由K TC
Figure PCTCN2022125699-appb-000089
确定;否则,
Figure PCTCN2022125699-appb-000090
例如,当K TC的取值范围为{2,4,8}时,
Figure PCTCN2022125699-appb-000091
由表4给出。
表4
Figure PCTCN2022125699-appb-000092
5、n b的含义
n b表示为一个频域索引(frequency position index)。
需要说明的是,5G NR通信系统支持SRS传输时执行跳频。若在满足b hop<B SRS的情况下,则SRS跳频传输使能(enable),终端以跳频的形式传输SRS。若在满足b hop≥B SRS的情况下,则SRS跳频传输去使能(disable),终端不以跳频的形式传输SRS。
①当b hop<B SRS时,使能SRS跳频,n b可以定义为:
Figure PCTCN2022125699-appb-000093
其中,m SRS,b和N b由表1确定;
n RRC表示为数量(quantity),且可以由高层参数(如freqDomainPosition)配置;若未有高层参数配置,则n RRC=0;
运算符
Figure PCTCN2022125699-appb-000094
表示向下取整;
F b(n SRS)由如下公式确定:
Figure PCTCN2022125699-appb-000095
其中,无论N b的取值多少,
Figure PCTCN2022125699-appb-000096
n SRS表示SRS跳频(SRS传输)的次数。
对于非周期性SRS,SRS跳频的次数由以下公式确定:
Figure PCTCN2022125699-appb-000097
其中,
Figure PCTCN2022125699-appb-000098
R为重复因子(repetitionFactor),其由高层信令配置,并且R用于指示SRS跳频的重复OFDM符号个数。例如,当R=1时,以1个OFDM符号为单位跳频;当R=2时,以2个OFDM符号为单位跳频。
对于周期性SRS或者半周期性SRS,SRS跳频的次数由以下公式确定:
Figure PCTCN2022125699-appb-000099
其中,
Figure PCTCN2022125699-appb-000100
表示子载波配置为μ时的每个无线帧内的时隙的数目,n f表示系统帧索引号(system frame number,SFN),
Figure PCTCN2022125699-appb-000101
表示子载波配置为μ时的一个无线帧内的时隙索引号,T offset表示由RRC信令配置的时隙偏移,T SRS表示由RRC信令配置的周期。其中,
Figure PCTCN2022125699-appb-000102
由表5确定。
表5
Figure PCTCN2022125699-appb-000103
其中,在表5中,Δf表示子载波间隔,
Figure PCTCN2022125699-appb-000104
表示每个时隙(slot)包含的OFDM符号个数,
Figure PCTCN2022125699-appb-000105
表示每个子帧包含的时隙数,T slot表示时隙长度。
②当b hop≥B SRS时,去使能SRS跳频功能,n b可以定义为:
Figure PCTCN2022125699-appb-000106
其中,m SRS,b和N b由表1确定;
n RRC表示为数量(quantity),且可以由高层参数(如freqDomainPosition)配置;若未有高层参数配置,则n RRC=0。
情形二:L>4(即
Figure PCTCN2022125699-appb-000107
)
Figure PCTCN2022125699-appb-000108
时,按照如下公式将SRS天线端口i(i∈{0,1,2,3,...})所对应的SRS序列从
Figure PCTCN2022125699-appb-000109
开始按顺序映射到某个时隙中的资源元素(k,l):
Figure PCTCN2022125699-appb-000110
其中,
Figure PCTCN2022125699-appb-000111
下面对上述公式中的各参数的含义进行分别说明。
1、
Figure PCTCN2022125699-appb-000112
的含义
Figure PCTCN2022125699-appb-000113
可以存在如下方式:
1)
Figure PCTCN2022125699-appb-000114
需要说明的是,与上述“情形一”中的一致,由于
Figure PCTCN2022125699-appb-000115
则说明在SRS资源所包含的
Figure PCTCN2022125699-appb-000116
个OFDM符号中的每个OFDM符号都要传输/映射/承载所有的
Figure PCTCN2022125699-appb-000117
个SRS天线端口。
也就是说,在
Figure PCTCN2022125699-appb-000118
个OFDM符号中,以一个OFDM符号作为一个单元(unit),得到
Figure PCTCN2022125699-appb-000119
个单元,并以一个单元来传输/映射/承载所有的
Figure PCTCN2022125699-appb-000120
个SRS天线端口,而各单元之间可以进行重复或者跳频。
或者说,
Figure PCTCN2022125699-appb-000121
个SRS天线端口各自映射到同一个OFDM符号上。
例如,当L=6,且
Figure PCTCN2022125699-appb-000122
时,在该2个OFDM符号中,由第一个OFDM符号传输/映射/承载所有的6个SRS天线端口,由第二个OFDM符号传输/映射/承载所有的6个SRS天线端口。或者说,该6个SRS天线端口各自映射到第一个OFDM符号,以及该6个SRS天线端口各自映射到第二个OFDM符号。
2)
Figure PCTCN2022125699-appb-000123
需要说明的是,不同于上述“L=4”中的
Figure PCTCN2022125699-appb-000124
即以一个OFDM符号为单元来传/映射/承载
Figure PCTCN2022125699-appb-000125
个SRS天线端口,由于
Figure PCTCN2022125699-appb-000126
Figure PCTCN2022125699-appb-000127
则说明在SRS资源所包含的
Figure PCTCN2022125699-appb-000128
个OFDM符号中,需要依次由两个连续的(相邻的)OFDM符号来传输/映射/承载
Figure PCTCN2022125699-appb-000129
个SRS天线端口。
也就是说,在
Figure PCTCN2022125699-appb-000130
个OFDM符号中,依次以两个连续的(相邻的)OFDM符号作为一个单元(unit),得到
Figure PCTCN2022125699-appb-000131
个单元,并以一个单元来传输/映射/承载
Figure PCTCN2022125699-appb-000132
个SRS天线端口,而各单元之间可以进行重复或者跳频。
或者说,
Figure PCTCN2022125699-appb-000133
个SRS天线端口分别映射到一个单元内的两个OFDM符号中的一个。
①两个连续的(相邻的)OFDM符号如何作为一个单元
对于两个连续的(相邻的)OFDM符号如何作为一个单元,可以采用如下方式:
第一个OFDM符号(l′=0)和第二个OFDM符号(l′=1)作为一个单元,第三个OFDM符号(l′=2)和第四个OFDM符号(l′=3)依次一个单元,依次类推。
由于
Figure PCTCN2022125699-appb-000134
因此SRS天线端口i(p i)将分别映射到第一个OFDM符号(l′=0)、第三个OFDM符号(l′=2)、第五个OFDM符号(l′=4),依次类推。
例如,若
Figure PCTCN2022125699-appb-000135
Figure PCTCN2022125699-appb-000136
说明SRS天线端口i(p i)映射到4个OFDM符号中的第一个OFDM符号
Figure PCTCN2022125699-appb-000137
以及SRS天线端口i(p i)映射到该4个OFDM符号中的第三个OFDM符号
Figure PCTCN2022125699-appb-000138
②L
Figure PCTCN2022125699-appb-000139
个SRS天线端口中的哪些SRS天线端口映射到一个单元内的两个OFDM符号中的同一个OFDM符号
需要说明的是,本申请实施例将一个单元内的两个OFDM符号分别看作成“第一OFDM符号”和“第二OFDM符号”。因此,对于
Figure PCTCN2022125699-appb-000140
个SRS天线端口中的哪些SRS天线端口映射到同一个OFDM符号,可以采用如下方式:
·在
Figure PCTCN2022125699-appb-000141
个SRS天线端口中,具有前S(S<L)个端口索引号的SRS天线端口各自映射到同一个第一OFDM符号上,以及除该前S个端口索引号的SRS天线端口外的其他端口索引号的SRS天线端口各自映射到同一个第二OFDM符号上;
·在
Figure PCTCN2022125699-appb-000142
个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自映射到同一个第一OFDM符号上,以及属于端口索引号为偶数的所有SRS天线端口各自映射到同一个第二OFDM符号上。
需要说明的是,S的取值为小于L的任一个正整数。例如,S的取值可以为L/2。
另外,S的取值可以是网络配置或者预配置的,可以是由终端自主决定的,对此不作具体限制。
3)
Figure PCTCN2022125699-appb-000143
需要说明的是,与上述类同理,由于
Figure PCTCN2022125699-appb-000144
Figure PCTCN2022125699-appb-000145
则说明在SRS资源所包含的
Figure PCTCN2022125699-appb-000146
个OFDM符号中,需要依次由两个连续的(相邻的)OFDM符号来传输/映射/承载
Figure PCTCN2022125699-appb-000147
个SRS天线端口。
也就是说,在
Figure PCTCN2022125699-appb-000148
个OFDM符号中,依次以两个连续的(相邻的)OFDM符号作为一个单元(unit),得到
Figure PCTCN2022125699-appb-000149
个单元,并以一个单元来传输/映射/承载
Figure PCTCN2022125699-appb-000150
个SRS天线端口,而各单元之间可以进行重复或者跳频。
或者说,
Figure PCTCN2022125699-appb-000151
个SRS天线端口分别映射到一个单元内的两个OFDM符号中的一个。
①两个连续的(相邻的)OFDM符号如何作为一个单元
对于两个连续的(相邻的)OFDM符号如何作为一个单元,可以采用如下方式:
第一个OFDM符号(l′=0)和第二个OFDM符号(l′=1)作为一个单元,第三个OFDM符号(l′=2)和第四个OFDM符号(l′=3)依次一个单元,依次类推。
此时,由于
Figure PCTCN2022125699-appb-000152
因此SRS天线端口i(p i)将分别映射到第二个OFDM符号(l′=1)、第四个OFDM符号(l′=3)、第六个OFDM符号(l′=5),依次类推。
例如,若
Figure PCTCN2022125699-appb-000153
Figure PCTCN2022125699-appb-000154
说明SRS天线端口i(p i)映射到4个OFDM符号中的第二个OFDM符号
Figure PCTCN2022125699-appb-000155
以及SRS天线端口i(p i)映射到该4个OFDM符号中的第四个OFDM符号
Figure PCTCN2022125699-appb-000156
②L
Figure PCTCN2022125699-appb-000157
个SRS天线端口中的哪些SRS天线端口映射到一个单元内的两个OFDM符号中的同一个OFDM符号
需要说明的是,对于
Figure PCTCN2022125699-appb-000158
个SRS天线端口中的哪些SRS天线端口映射到同一个OFDM符号,可以采用上述一样的方式:
·在
Figure PCTCN2022125699-appb-000159
个SRS天线端口中,具有前S(S<L)个端口索引号的SRS天线端口各自映射到同一个第一OFDM符号上,以及除该前S个端口索引号的SRS天线端口外的其他端口索引号的SRS天线端口各自映射到同一个第二OFDM符号上;
·在
Figure PCTCN2022125699-appb-000160
个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自映射到同一个第一OFDM符号上,以及属于端口索引号为偶数的所有SRS天线端口各自映射到同一个第二OFDM符号上。
4)
Figure PCTCN2022125699-appb-000161
需要说明的是,与上述同理,由于
Figure PCTCN2022125699-appb-000162
则说明在SRS资源所包含的
Figure PCTCN2022125699-appb-000163
个OFDM符号中,需要依次由两个非连续的(非相邻的)OFDM符号来传输/映射/承载
Figure PCTCN2022125699-appb-000164
个SRS天线端口。
也就是说,在
Figure PCTCN2022125699-appb-000165
个OFDM符号中,依次以两个非连续的(非相邻的)OFDM符号作为一个单元(unit),得到
Figure PCTCN2022125699-appb-000166
个单元,并以一个单元来传输/映射/承载
Figure PCTCN2022125699-appb-000167
个SRS天线端口,而各单元之间可以进行重复或者跳频。或者说,
Figure PCTCN2022125699-appb-000168
个SRS天线端口分别映射到一个单元内的两个OFDM符号中的一个。
①两个非连续的(非相邻的)OFDM符号如何作为一个单元
对于两个非连续的(非相邻的)OFDM符号如何作为一个单元,可以采用如下方式:
第一个OFDM符号(l′=0)和第
Figure PCTCN2022125699-appb-000169
个OFDM符号
Figure PCTCN2022125699-appb-000170
作为一个单元,第二个OFDM符号(l′=1)和第四个OFDM符号
Figure PCTCN2022125699-appb-000171
依次一个单元,依次类推。
此时,由于
Figure PCTCN2022125699-appb-000172
因此SRS天线端口i(p i)将分别映射到第一个OFDM符号
Figure PCTCN2022125699-appb-000173
第二个OFDM符号
Figure PCTCN2022125699-appb-000174
第三个OFDM符号
Figure PCTCN2022125699-appb-000175
依次类推。
例如,若
Figure PCTCN2022125699-appb-000176
Figure PCTCN2022125699-appb-000177
说明SRS天线端口i(p i)映射到4个OFDM符号中的第一个OFDM符号
Figure PCTCN2022125699-appb-000178
以及SRS天线端口i(p i)映射到该4个OFDM符号中的第二个OFDM符号
Figure PCTCN2022125699-appb-000179
②L
Figure PCTCN2022125699-appb-000180
个SRS天线端口中的哪些SRS天线端口映射到一个单元内的两个OFDM符号中的同一个OFDM符号
需要说明的是,对于
Figure PCTCN2022125699-appb-000181
个SRS天线端口中的哪些SRS天线端口映射到同一个OFDM符号,可以采用上述一样的方式:
·在
Figure PCTCN2022125699-appb-000182
个SRS天线端口中,具有前S(S<L)个端口索引号的SRS天线端口各自映射到同一个第一OFDM符号上,以及除该前S个端口索引号的SRS天线端口外的其他端口索引号的SRS天线端口各自映射到同一个第二OFDM符号上;
·在
Figure PCTCN2022125699-appb-000183
个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自映射到同一个第一OFDM符号上,以及属于端口索引号为偶数的所有SRS天线端口各自映射到同一个第二OFDM符号上。
5)
Figure PCTCN2022125699-appb-000184
需要说明的是,与上述同理,由于
Figure PCTCN2022125699-appb-000185
则说明在SRS资源所包含的
Figure PCTCN2022125699-appb-000186
个OFDM符号中,需要依次由两个非连续的(非相邻的)OFDM符号来传输/映射/承载
Figure PCTCN2022125699-appb-000187
个SRS天线端口。
也就是说,在
Figure PCTCN2022125699-appb-000188
个OFDM符号中,依次以两个非连续的(非相邻的)OFDM符号作为一个单元(unit),得到
Figure PCTCN2022125699-appb-000189
个单元,并以一个单元来传输/映射/承载
Figure PCTCN2022125699-appb-000190
个SRS天线端口,而各单元之间可以进行重复或者跳频。或者说,
Figure PCTCN2022125699-appb-000191
个SRS天线端口分别映射到一个单元内的两个OFDM符号中的一个。
①两个非连续的(非相邻的)OFDM符号如何作为一个单元
对于两个非连续的(非相邻的)OFDM符号如何作为一个单元,可以采用如下方式:
第一个OFDM符号(l′=0)和第
Figure PCTCN2022125699-appb-000192
个OFDM符号
Figure PCTCN2022125699-appb-000193
作为一个单元,第二个OFDM符号(l′=1)和第四个OFDM符号
Figure PCTCN2022125699-appb-000194
依次一个单元,依次类推。
此时,由于
Figure PCTCN2022125699-appb-000195
因此SRS天线端口i(p i)将分别映射到第一个OFDM符号
Figure PCTCN2022125699-appb-000196
第二个OFDM符号
Figure PCTCN2022125699-appb-000197
第三个OFDM符号
Figure PCTCN2022125699-appb-000198
依次类推。
例如,若
Figure PCTCN2022125699-appb-000199
Figure PCTCN2022125699-appb-000200
说明SRS天线端口i(p i)映射到4个OFDM符号中的第三个OFDM符号
Figure PCTCN2022125699-appb-000201
以及SRS天线端口i(p i)映射到该4个OFDM符号中的第四个OFDM符号
Figure PCTCN2022125699-appb-000202
②L
Figure PCTCN2022125699-appb-000203
个SRS天线端口中的哪些SRS天线端口映射到一个单元内的两个OFDM符号中的同一个OFDM符号
需要说明的是,对于
Figure PCTCN2022125699-appb-000204
个SRS天线端口中的哪些SRS天线端口映射到同一个OFDM符号,可以采用上述一样的方式:
·在
Figure PCTCN2022125699-appb-000205
个SRS天线端口中,具有前S(R<L)个端口索引号的SRS天线端口各自映射到同一个第一OFDM符号上,以及除该前S个端口索引号的SRS天线端口外的其他端口索引号的SRS天线端口各自映射到同一个第二OFDM符号上;
·在
Figure PCTCN2022125699-appb-000206
个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自映射到同一个第一OFDM符号上,以及属于端口索引号为偶数的所有SRS天线端口各自映射到同一个第二OFDM符号上。
6)
Figure PCTCN2022125699-appb-000207
的取值为
Figure PCTCN2022125699-appb-000208
中的任意
Figure PCTCN2022125699-appb-000209
个元素。
需要说明的是,与上述同理,由于
Figure PCTCN2022125699-appb-000210
的取值为
Figure PCTCN2022125699-appb-000211
中的任意
Figure PCTCN2022125699-appb-000212
个元素,则说明在SRS资源所包含的
Figure PCTCN2022125699-appb-000213
个OFDM符号中,需要依次由两个连续的/相邻的/非连续的/非相邻的OFDM符号来传输/映射/承载
Figure PCTCN2022125699-appb-000214
个SRS天线端口。
也就是说,在
Figure PCTCN2022125699-appb-000215
个OFDM符号中,依次以两个连续的/相邻的/非连续的/非相邻的OFDM符号作为一个单元(unit),得到
Figure PCTCN2022125699-appb-000216
个单元,并以一个单元来传输/映射/承载
Figure PCTCN2022125699-appb-000217
个SRS天线端口,而各单元之间可以进行重复或者跳频。或者说,
Figure PCTCN2022125699-appb-000218
个SRS天线端口分别映射到一个单元内的两个OFDM符号中的一个。
①两个连续的/相邻的/非连续的/非相邻的OFDM符号如何作为一个单元
对于两个连续的/相邻的/非连续的/非相邻的OFDM符号如何作为一个单元,可以采用随机选择的方式。其中,网络设备可以随机选择之后再配置给终端,或者终端直接进行随机选择。
②L
Figure PCTCN2022125699-appb-000219
个SRS天线端口中的哪些SRS天线端口映射到一个单元内的两个OFDM符号中的同一个OFDM符号
需要说明的是,对于
Figure PCTCN2022125699-appb-000220
个SRS天线端口中的哪些SRS天线端口映射到同一个OFDM符号,可以采用上述一样的方式:
·在
Figure PCTCN2022125699-appb-000221
个SRS天线端口中,具有前S(S<L)个端口索引号的SRS天线端口各自映射到同一个第一OFDM符号上,以及除该前S个端口索引号的SRS天线端口外的其他端口索引号的SRS天线端口各自映射到同一个第二OFDM符号上;
·在
Figure PCTCN2022125699-appb-000222
个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自映射到同一个第一OFDM符号上,以及属于端口索引号为偶数的所有SRS天线端口各自映射到同一个第二OFDM符号上。
2、
Figure PCTCN2022125699-appb-000223
的含义
Figure PCTCN2022125699-appb-000224
表示为SRS天线端口i(p i)所对应的频域起始位置,其可以定义如下:
Figure PCTCN2022125699-appb-000225
其中,
Figure PCTCN2022125699-appb-000226
可以定义为如下:
Figure PCTCN2022125699-appb-000227
1)
Figure PCTCN2022125699-appb-000228
的含义
Figure PCTCN2022125699-appb-000229
表示为SRS天线端口i所对应的传输梳齿偏移(transmission comb offset),即本申请实施例的“第一传输梳齿偏移”。
在“情形二”中,当
Figure PCTCN2022125699-appb-000230
时,L的取值不同将导致
Figure PCTCN2022125699-appb-000231
的取值具有不同的方式。对于如何确定L个SRS端口各自所对应的
Figure PCTCN2022125699-appb-000232
本申请实施例可以采用如下方式:
终端可以根据配置信息中的传输梳齿数(K TC)和/或第二传输梳齿偏移
Figure PCTCN2022125699-appb-000233
确定L个SRS天线端口各自所对应的第一传输梳齿偏移;或者,
终端可以根据配置信息中的传输梳齿数(K TC)、第二传输梳齿偏移
Figure PCTCN2022125699-appb-000234
循环位移次数
Figure PCTCN2022125699-appb-000235
和最大循环位移次数
Figure PCTCN2022125699-appb-000236
确定L个SRS天线端口各自所对应的第一传输梳齿偏移。
下面对此进行具体说明。
方式1:
Figure PCTCN2022125699-appb-000237
时,
Figure PCTCN2022125699-appb-000238
可以由K TC
Figure PCTCN2022125699-appb-000239
确定。
例如,
Figure PCTCN2022125699-appb-000240
可以满足(表示/取值)如下:
Figure PCTCN2022125699-appb-000241
下面对上述表达式中的不同参数的含义进行具体说明。
1)
Figure PCTCN2022125699-appb-000242
的含义
Figure PCTCN2022125699-appb-000243
表示为传输梳齿偏移,即本申请实施例的“第二传输梳齿偏移”,其由高层参数配置。
例如,高层参数SRS-Resource或者SRS-PosResource中的参数transmissionComb配置
Figure PCTCN2022125699-appb-000244
2)
Figure PCTCN2022125699-appb-000245
的含义
Figure PCTCN2022125699-appb-000246
表示为SRS天线端口i(p i)所对应的一个正有理数或0。其中,
Figure PCTCN2022125699-appb-000247
的取值可以是网络配置的、预配置的、协议定义的等,对此不作具体限制。
Figure PCTCN2022125699-appb-000248
的取值可以是小于1的正有理数,可以大于1的正有理数,也可以为0,对此不作具体限制。
例如,
Figure PCTCN2022125699-appb-000249
的取值可以为0、1/8、1/4、3/8、1/2、5/8、3/4、7/8、1、3/2、2等。
另外,不同的SRS天线端口所对应的
Figure PCTCN2022125699-appb-000250
的取值可以是相同的,也可以是不同的。
也就是说,在
Figure PCTCN2022125699-appb-000251
个SRS天线端口中,存在如下:
·所有SRS天线端口所对应的
Figure PCTCN2022125699-appb-000252
的取值是同一个值(即相同的);
·属于端口索引号为偶数的所有SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000253
的取值是同一个值(即相同的),而属于端口索引号为奇数的所有SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000254
的取值是另外的同一个值(即相同的);
·在属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000255
的取值是同一个值(即相同的),以及除该前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000256
是另外的同一个值(即相同的),依次类推,M为正整数,N为正整数,M+N<L;
·在属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000257
的取值是同一个值(即相同的),以及除该前P个端口索引号的SRS天线端口外的前T个端口索引号的SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000258
的取值是另外的同一个值(即相同的),依次类推,P为正整数,T为正整数,P+T<L;其中,P可以等于M,T可以等于N。
由于不同的SRS天线端口所对应的
Figure PCTCN2022125699-appb-000259
的取值可以是相同的,也可以是不同的,以及M的取值、N的取值、P的取值、T的取值等不同,也将导致
Figure PCTCN2022125699-appb-000260
具有不同的取值,因此为了便于理解,下面以几个示例对
Figure PCTCN2022125699-appb-000261
的可能取值做举例说明,而本领域技术人员可以概括出其他示例,对此不再赘述。
举例1:
Figure PCTCN2022125699-appb-000262
可以理解的是,在5个SRS天线端口中,SRS天线端口0(即p 0=1000)、SRS天线端口2(即p 2=1002)和SRS天线端口4(即p 4=1004)各自所对应的传输梳齿偏移(即第一传输梳齿偏移)是相同的,即
Figure PCTCN2022125699-appb-000263
且i为偶数。
同理,在该5个SRS天线端口中,SRS天线端口1(即p 1=1001)和SRS天线端口3(即p 3=1003)各自所对应的
Figure PCTCN2022125699-appb-000264
为同一个值,即
Figure PCTCN2022125699-appb-000265
从而各自所对应的传输梳齿偏移(即第一传输梳齿偏移)是相同的,即
Figure PCTCN2022125699-appb-000266
且i为奇数。
也就是说,在L个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及属于端口索引号为偶数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
举例2:
Figure PCTCN2022125699-appb-000267
可以理解的是,在6个SRS天线端口中,SRS天线端口0(即p 0=1000)、SRS天线端口2(即p 2=1002)和SRS天线端口4(即p 4=1004)各自所对应的传输梳齿偏移(即第一传输梳齿偏移)是相同的,即
Figure PCTCN2022125699-appb-000268
且i为偶数。
同理,在该6个SRS天线端口中,SRS天线端口1(即p 1=1001)、SRS天线端口3(即p 3=1003)和SRS天线端口5(即p 5=1005)各自所对应的
Figure PCTCN2022125699-appb-000269
为同一个值,即
Figure PCTCN2022125699-appb-000270
从而各自所对应的传输梳齿偏移(即第一传输梳齿偏移)是相同的,即
Figure PCTCN2022125699-appb-000271
且i为奇数。
也就是说,在L个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及属于端口索引号为偶数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
举例3:
Figure PCTCN2022125699-appb-000272
结合上述“举例1”可知,在L个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及属于端口索引号为偶数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
举例4:
Figure PCTCN2022125699-appb-000273
结合上述“举例1”可知,在L个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及属于端口索引号为偶数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
举例5:
Figure PCTCN2022125699-appb-000274
可以理解的是,在5个SRS天线端口中,SRS天线端口0(即p 0=1000)和SRS天线端口2(即 p 2=1002)各自所对应的
Figure PCTCN2022125699-appb-000275
为同一个值,即
Figure PCTCN2022125699-appb-000276
从而各自所对应的传输梳齿偏移(即第一传输梳齿偏移)是相同的,即
Figure PCTCN2022125699-appb-000277
此时,P的取值为2。
同理,在该5个SRS天线端口中,SRS天线端口1(即p 1=1001)和SRS天线端口3(即p 3=1003)各自所对应的
Figure PCTCN2022125699-appb-000278
为同一个值,即
Figure PCTCN2022125699-appb-000279
从而各自所对应的传输梳齿偏移(即第一传输梳齿偏移)是相同的,即
Figure PCTCN2022125699-appb-000280
且i为奇数。此时,M的取值为2。
同理,在该5个SRS天线端口中,SRS天线端口4(即p 4=1004)所对应的
Figure PCTCN2022125699-appb-000281
从而其所对应的传输梳齿偏移(即第一传输梳齿偏移)为
Figure PCTCN2022125699-appb-000282
此时,T的取值为1。
也就是说,在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及
在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,除该前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
同理,在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及
在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,除该前P个端口索引号的SRS天线端口外的前T个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
需要说明的是,“举例5”中的
Figure PCTCN2022125699-appb-000283
的取值也可以为其他值,对此不作具体限制。
可选地,“举例5”可以仅适用于传输梳齿值K TC的取值为8或者12的情况。
举例6:
Figure PCTCN2022125699-appb-000284
结合上述“举例5”可知,在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及
在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,除该前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
同理,在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及
在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,除该前P个端口索引号的SRS 天线端口外的前T个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
需要说明的是,“举例6”中的
Figure PCTCN2022125699-appb-000285
的取值也可以为其他值,对此不作具体限制。
可选地,“举例6”可以仅适用于传输梳齿值K TC的取值为8或者12的情况。
举例7:
Figure PCTCN2022125699-appb-000286
结合上述“举例5”可知,在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及
在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,除该前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
同理,在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及
在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,除该前P个端口索引号的SRS天线端口外的前T个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
需要说明的是,“举例7”中的
Figure PCTCN2022125699-appb-000287
的取值也可以为其他值,对此不作具体限制。
可选地,“举例7”可以仅适用于传输梳齿值K TC的取值为8或者12的情况。
举例8:
Figure PCTCN2022125699-appb-000288
结合上述“举例5”可知,在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及
在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,除该前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
同理,在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及
在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,除该前P个端口索引号的SRS天线端口外的前T个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
需要说明的是,“举例8”中的
Figure PCTCN2022125699-appb-000289
的取值也可以为其他值,对此不作具体限制。
可选地,“举例8”可以仅适用于传输梳齿值K TC的取值为8或者12的情况。
举例9:
Figure PCTCN2022125699-appb-000290
可以理解的是,在6个SRS天线端口中,所有SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000291
为同一个值,即
Figure PCTCN2022125699-appb-000292
从而各自所对应的传输梳齿偏移(即第一传输梳齿偏移)是相同的。
也就是说,在L个SRS天线端口中的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
需要说明的是,“举例9”也可以适配到L=5、7或8等情况,对此不再赘述。
方式2:
Figure PCTCN2022125699-appb-000293
时,
Figure PCTCN2022125699-appb-000294
可以由
Figure PCTCN2022125699-appb-000295
确定。
例如,
Figure PCTCN2022125699-appb-000296
可以满足(表示/取值)如下:
Figure PCTCN2022125699-appb-000297
其中,
Figure PCTCN2022125699-appb-000298
表示为传输梳齿偏移,即本申请实施例的“第二传输梳齿偏移”,并且由高层参数配置。
例如,高层参数SRS-Resource或者SRS-PosResource中的参数transmissionComb配置
Figure PCTCN2022125699-appb-000299
此时,在L个SRS天线端口中的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
方式3:
Figure PCTCN2022125699-appb-000300
时,
Figure PCTCN2022125699-appb-000301
可以由K TC
Figure PCTCN2022125699-appb-000302
Figure PCTCN2022125699-appb-000303
确定。
例如,
Figure PCTCN2022125699-appb-000304
可以满足(表示/取值)如下:
Figure PCTCN2022125699-appb-000305
需要说明的是,与上述方式1的不同的是,方式3需要额外考虑
Figure PCTCN2022125699-appb-000306
的取值范围所带来的条件限制。
下面对上述表达式中的不同参数的含义进行具体说明。
1)
Figure PCTCN2022125699-appb-000307
的含义
需要说明的是,
Figure PCTCN2022125699-appb-000308
的含义与上述“方式1”中的描述一致,对此不再赘述。
2)
Figure PCTCN2022125699-appb-000309
的含义
需要说明的是,
Figure PCTCN2022125699-appb-000310
的含义与上述“方式1”中的描述一致,对此不再赘述。
3)
Figure PCTCN2022125699-appb-000311
的含义
Figure PCTCN2022125699-appb-000312
表示为SRS天线端口i(p i)所对应的一个正整数值。其中,
Figure PCTCN2022125699-appb-000313
的取值可以是网络配置的、预配置的或协议定义的等,对此不作具体限制。
Figure PCTCN2022125699-appb-000314
的取值可以是大于1的正整数,对此不作具体限制。
例如,
Figure PCTCN2022125699-appb-000315
的取值可以为2、3、4、5、6、7或8等。
另外,不同的SRS天线端口所对应的
Figure PCTCN2022125699-appb-000316
的取值可以是相同的,也可以是不同的。
也就是说,在
Figure PCTCN2022125699-appb-000317
个SRS天线端口中,存在如下:
·所有SRS天线端口所对应的
Figure PCTCN2022125699-appb-000318
的取值是同一个值(即相同的);
·属于端口索引号为偶数的所有SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000319
的取值是同一个值(即相同的),而属于端口索引号为奇数的所有SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000320
的取值是另外的同一个值(即相同的);
·在属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000321
的取值是同一个值(即相同的),以及除该前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000322
是另外的同一个值(即相同的),依次类推,M为正整数,N为正整数,M+N<L;
·在属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000323
的取值是同一个值(即相同的),以及除该前P个端口索引号的SRS天线端口外的前T个端口索引号的SRS天线端口各自所对应的
Figure PCTCN2022125699-appb-000324
的取值是另外的同一个值(即相同的),依次类推,P为正整数,T为正整数,P+T<L;其中,P可以等于M,T可以等于N。
由于不同的SRS天线端口所对应的
Figure PCTCN2022125699-appb-000325
Figure PCTCN2022125699-appb-000326
的取值可以是相同的,也可以是不同的,以及M的取值、N的取值、P的取值、T的取值等不同,也将导致
Figure PCTCN2022125699-appb-000327
具有不同的取值,因此为了便于理解,下面以L=6为例对
Figure PCTCN2022125699-appb-000328
的可能取值做举例说明,而本领域技术人员可以概括出L=5、7或8等时的其他示例,对此不再赘述。
举例1:
Figure PCTCN2022125699-appb-000329
可以理解的是,若
Figure PCTCN2022125699-appb-000330
则在6个SRS天线端口中,SRS天线端口1(即p 1=1001)和SRS天线端口3(即p 3=1003)各自所对应的
Figure PCTCN2022125699-appb-000331
Figure PCTCN2022125699-appb-000332
为同一个值,即
Figure PCTCN2022125699-appb-000333
从而各自所对应的传输梳齿偏移(即第一传输梳齿偏移)是相同的,即
Figure PCTCN2022125699-appb-000334
且i为奇数。
同理,若
Figure PCTCN2022125699-appb-000335
在6个SRS天线端口中,SRS天线端口1(即p 1=1001)和SRS天线端口3(即p 3=1003)各自所对应的
Figure PCTCN2022125699-appb-000336
同一个值,即
Figure PCTCN2022125699-appb-000337
从而各自所对应的传输梳齿偏移(即第一传输梳齿偏移)是相同的,即
Figure PCTCN2022125699-appb-000338
且i为奇数。
同理,在该6个SRS天线端口中,SRS天线端口0(即p 0=1000)、SRS天线端口2(即p 2=1002) 和SRS天线端口4(即p 4=1004)各自所对应的
Figure PCTCN2022125699-appb-000339
可以为任意值,从而各自所对应的传输梳齿偏移(即第一传输梳齿偏移)是相同的,即
Figure PCTCN2022125699-appb-000340
且i为偶数。
也就是说,若
Figure PCTCN2022125699-appb-000341
则在L个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的;
Figure PCTCN2022125699-appb-000342
则在L个SRS天线端口中,所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的;
在L个SRS天线端口中,属于端口索引号为偶数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
举例2:
Figure PCTCN2022125699-appb-000343
可以理解的是,若
Figure PCTCN2022125699-appb-000344
则在6个SRS天线端口中,SRS天线端口0(即p 0=1000)和SRS天线端口2(即p 2=1002)各自所对应的
Figure PCTCN2022125699-appb-000345
Figure PCTCN2022125699-appb-000346
为同一个值,即
Figure PCTCN2022125699-appb-000347
从而各自所对应的传输梳齿偏移(即第一传输梳齿偏移)是相同的,即
Figure PCTCN2022125699-appb-000348
此时,P的取值为2。
同理,若
Figure PCTCN2022125699-appb-000349
则在该6个SRS天线端口中,SRS天线端口1(即p 1=1001)和SRS天线端口3(即p 3=1003)各自所对应的
Figure PCTCN2022125699-appb-000350
Figure PCTCN2022125699-appb-000351
为同一个值,即
Figure PCTCN2022125699-appb-000352
从而各自所对应的传输梳齿偏移(即第一传输梳齿偏移)是相同的,即
Figure PCTCN2022125699-appb-000353
且i为奇数。此时,M的取值为2。
同理,若
Figure PCTCN2022125699-appb-000354
则在该6个SRS天线端口中,SRS天线端口4(即 p 4=1004)所对应的
Figure PCTCN2022125699-appb-000355
从而其所对应的传输梳齿偏移(即第一传输梳齿偏移)为
Figure PCTCN2022125699-appb-000356
此时,T的取值为1。
同理,若
Figure PCTCN2022125699-appb-000357
则在该6个SRS天线端口中,所有SRS天线端口所对应的传输梳齿偏移(即第一传输梳齿偏移)为
Figure PCTCN2022125699-appb-000358
也就是说,若
Figure PCTCN2022125699-appb-000359
则在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及除该前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
同理,若
Figure PCTCN2022125699-appb-000360
则在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及除该前P个端口索引号的SRS天线端口外的前T个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
同理,若
Figure PCTCN2022125699-appb-000361
则在L个SRS天线端口中,所有SRS天线端口所对应的第一传输梳齿偏移是相同的。
需要说明的是,“举例2”中的
Figure PCTCN2022125699-appb-000362
的取值也可以为其他值,对此不作具体限制。
可选地,“举例2”可以仅适用于传输梳齿值K TC的取值为8或者12的情况。
3、n shift的含义
需要说明的是,n shift的含义与上述“情形一”中的描述一致,对此不再赘述。
4、
Figure PCTCN2022125699-appb-000363
的含义
需要说明的是,
Figure PCTCN2022125699-appb-000364
的含义与上述“情形一”中的描述一致,对此不再赘述。
5、n b的含义
需要说明的是,n b的含义与上述“情形一”中的描述一致,对此不再赘述。
另外,需要说明的是,本领域技术人员可以将上述“方式1”、“方式2”和“方式3”进行组合而非排它,且组合之后所得到的方案也属于本申请实施例所保护的范围,对此不再赘述。
综上所述,下面以网络设备向终端发送配置信息以确定SRS资源映射依据SRS资源图案为例,对本申请实施例的一种参考信号的资源映射方法进行示例介绍。
如图2所示,为本申请实施例的一种参考信号的资源映射方法的流程示意图,具体包括如下步骤:
S210、网络设备发送配置信息。
对应的,终端获取该配置信息。
其中,该配置信息可以用于确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,该第一传输梳齿偏移可以用于确定该L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
需要说明的是,对于“配置信息如何用于确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移”,具体详见上述“情形一”或“情形二”的“
Figure PCTCN2022125699-appb-000365
的含义”中的内容,对此不再赘述。
对于“第一传输梳齿偏移如何用于确定该L个SRS天线端口各自所对应的频域起始位置”,具体详见上述“情形一”或“情形二”的“
Figure PCTCN2022125699-appb-000366
的含义”中的内容,对此不再赘述。
S220、终端根据该配置信息确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,该第一传输梳齿偏移用于确定所述L个SRS天线端口各自所对应的频域起始位置。
需要说明的是,对于“终端如何根据配置信息确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移”,具体详见上述“情形一”或“情形二”的“
Figure PCTCN2022125699-appb-000367
的含义”中的内容,对此不再赘述。
可见,在本申请实施例中,由于网络设备可以向终端发送配置信息,使得终端可以根据该配置信息确定SRS资源的L(L>4)个SRS天线端口各自所对应的传输梳齿偏移(transmission comb offset),即第一传输梳齿偏移,从而通过该第一传输梳齿偏移确定L个SRS天线端口各自所对应的频域起始位置以实现SRS资源映射和SRS资源图案。
上述主要从方法侧的角度对本申请实施例的方案进行了介绍。可以理解的是,终端或网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件与计算机软件的结合形式来实现。某个功能究竟以硬件或计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端或网络设备进行功能单元的划分。例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,只是一种逻辑功能划分,而实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图3是本申请实施例的一种参考信号的资源映射装置的功能单元组成框图。参考信号的资源映射装置300包括:获取单元301和确定单元302。
需要说明的是,获取单元301可以是一种用于收发信号、数据、信息等的模块单元。确定单元302可以是一种用于对信号、数据、信息等进行处理的模块单元,对此不作具体限制。
参考信号的资源映射装置300还可以包括存储单元,用于存储参考信号的资源映射装置300所执行的计算机程序代码或者指令。存储单元可以是存储器。
另外,需要说明的是,参考信号的资源映射装置300可以是芯片或者芯片模组。
获取单元301和确定单元302可以集成在一个单元中。例如,获取单元301和确定单元302可以集 成在处理单元中。处理单元可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等等。
获取单元301和确定单元302可以是分离的单元。例如,获取单元301可以为通信单元。通信单元可以是通信接口、收发器、收发电路等。
具体实现时,确定单元302用于执行如上述方法实施例中由终端执行的任一步骤,且在执行诸如发送等数据传输时,可选择的调用获取单元301来完成相应操作。下面进行详细说明。
获取单元301,用于获取配置信息;
确定单元302,用于根据该配置信息确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,该第一传输梳齿偏移用于确定该L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
需要说明的是,图3所述实施例中各个操作的具体实现可以详见上述所示的方法实施例中的描述,在此不再赘述。
具体的,在L个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的;
在L个SRS天线端口中,属于端口索引号为偶数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
具体的,在L个SRS天线端口中的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
具体的,在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及
在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,除前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,M为正整数,N为正整数,M+N<L。
具体的,在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及
在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,除前P个端口索引号的SRS天线端口外的前T个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,P为正整数,T为正整数,P+T<L。
具体的,L个SRS天线端口各自映射到同一个正交频分复用符号上。
具体的,在L个SRS天线端口中,具有前S个端口索引号的SRS天线端口各自映射到同一个第一正交频分复用符号上,以及
在L个SRS天线端口中,除前S个端口索引号的SRS天线端口外的其他端口索引号的SRS天线端口各自映射到同一个第二正交频分复用符号上,S为正整数,S<L。
具体的,配置信息包括以下至少之一:传输梳齿数、第二传输梳齿偏移、循环位移次数、最大循环位移次数。
具体的,在根据配置信息确定L个探测参考信号SRS天线端口各自所对应的第一传输梳齿偏移方面,确定单元302具体用于:
根据传输梳齿数和/或第二传输梳齿偏移确定L个SRS天线端口各自所对应的第一传输梳齿偏移。
具体的,在根据传输梳齿数和/或第二传输梳齿偏移确定L个SRS天线端口各自所对应的第一传输梳齿偏移方面,确定单元302具体用于:
根据第一公式确定L个SRS天线端口各自所对应的第一传输梳齿偏移,第一公式为:
Figure PCTCN2022125699-appb-000368
其中,
Figure PCTCN2022125699-appb-000369
表示为第一传输梳齿偏移,K TC表示为传输梳齿数,
Figure PCTCN2022125699-appb-000370
表示为第二传输梳齿偏移,
Figure PCTCN2022125699-appb-000371
为正有理数或0。
具体的,在根据传输梳齿数和/或第二传输梳齿偏移确定L个SRS天线端口各自所对应的第一传输梳齿偏移方面,确定单元302具体用于:
根据第二公式确定L个SRS天线端口各自所对应的第一传输梳齿偏移,第二公式为:
Figure PCTCN2022125699-appb-000372
其中,
Figure PCTCN2022125699-appb-000373
表示为第一传输梳齿偏移,
Figure PCTCN2022125699-appb-000374
表示为第二传输梳齿偏移。
具体的,在根据配置信息确定L个探测参考信号SRS天线端口各自所对应的第一传输梳齿偏移方面,确定单元302具体用于:
根据传输梳齿数、第二传输梳齿偏移、循环位移次数和最大循环位移次数确定L个SRS天线端口各自所对应的第一传输梳齿偏移。
具体的,在根据传输梳齿数、第二传输梳齿偏移、循环位移次数和最大循环位移次数确定L个SRS天线端口各自所对应的第一传输梳齿偏移方面,确定单元302具体用于:
根据第三公式确定L个SRS天线端口各自所对应的第一传输梳齿偏移,第三公式为:
Figure PCTCN2022125699-appb-000375
其中,
Figure PCTCN2022125699-appb-000376
表示为第一传输梳齿偏移,K TC表示为传输梳齿数,
Figure PCTCN2022125699-appb-000377
表示为第二传输梳齿偏移,
Figure PCTCN2022125699-appb-000378
表示为循环位移次数,
Figure PCTCN2022125699-appb-000379
表示为最大循环位移次数,
Figure PCTCN2022125699-appb-000380
为正有理数或0,
Figure PCTCN2022125699-appb-000381
为正整数。
在采用集成的单元的情况下,图4是本申请实施例的又一种参考信号的资源映射装置的功能单元组成框图。参考信号的资源映射装置400包括:发送单元401。
需要说明的是,发送单元401可以是一种用于收发信号、数据、信息等的模块单元,对此不作具体限制。
参考信号的资源映射装置400还可以包括存储单元,用于存储参考信号的资源映射装置400所执行的计算机程序代码或者指令。存储单元可以是存储器。
另外,需要说明的是,参考信号的资源映射装置400可以是芯片或者芯片模组。
参考信号的资源映射装置400还可以包括处理单元,处理单元可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU)、通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框、模块和电路。处理单元也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等等。
发送单元401可以为通信单元。通信单元可以是通信接口、收发器、收发电路等。
具体实现时,发送单元401用于执行如上述方法实施例中由网络设备执行的任一步骤。下面进行详细说明。
发送单元401,用于发送配置信息,该配置信息用于确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,该第一传输梳齿偏移用于确定该L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
需要说明的是,图4所述实施例中各个操作的具体实现可以详见上述所示的方法实施例中的描述,在此不再赘述。
具体的,在L个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的;
在L个SRS天线端口中,属于端口索引号为偶数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
具体的,在L个SRS天线端口中的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
具体的,在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及
在L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,除前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,M为正整数,N为正整数,M+N<L。
具体的,在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,以及
在L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,除前P个端口索引号的SRS天线端口外的前T个端口索引号的SRS天线端口各自所对应的第一传输梳齿偏移是相同的,P为正整数,T为正整数,P+T<L。
具体的,L个SRS天线端口各自映射到同一个正交频分复用符号上。
具体的,在L个SRS天线端口中,具有前R个端口索引号的SRS天线端口各自映射到同一个第一正交频分复用符号上,以及
在L个SRS天线端口中,除前R个端口索引号的SRS天线端口外的其他端口索引号的SRS天线端口各自映射到同一个第二正交频分复用符号上,R为正整数,R<L。
具体的,配置信息包括以下至少之一:
传输梳齿数、第二传输梳齿偏移、循环位移次数、最大循环位移次数。
请参阅图5,图5是本申请实施例的一种终端的结构示意图。其中,终端500包括处理器510、存储器520以及用于连接处理器510、存储器520的通信总线。
存储器520包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器520用于存储终端500所执行的程序代码和所传输的数据。
终端500还可以包括通信接口,其可以用于接收和发送数据。
处理器510可以是一个或多个CPU,在处理器510是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
终端500中的处理器510用于执行存储器520中存储的计算机程序或指令521,执行以下操作:获取配置信息;根据该配置信息确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,该第一传输梳齿偏移用于确定该L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
需要说明的是,各个操作的具体实现可以采用上述所示的方法实施例的相应描述,终端500可以用于执行本申请上述方法实施例的终端侧的方法,在此不再具体赘述。
请参阅图6,图6是本申请实施例的一种网络设备的结构示意图。其中,网络设备600包括处理器610、存储器620以及用于连接处理器610、存储器620的通信总线。
存储器620包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器620用于存储网络设备600所执行的程序代码和所传输的数据。
网络设备600还可以包括通信接口,其可以用于接收和发送数据。
处理器610可以是一个或多个CPU,在处理器610是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
网络设备600中的处理器610用于执行存储器620中存储的计算机程序或指令621,执行以下操作:发送配置信息,该配置信息用于确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,该第一传输梳齿偏移用于确定该L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
需要说明的是,各个操作的具体实现可以采用上述所示的方法实施例的相应描述,网络设备600可以用于执行本申请上述方法实施例的网络设备侧的方法,在此不再具体赘述。
本申请实施例还提供了一种芯片,包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种芯片模组,包括收发组件和芯片,该芯片包括处理器、存储器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机可读存储介质,其存储有计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机程序产品,包括计算机程序或指令,该计算机程序或指令被执行时实现上述方法实施例所描述的步骤。
在上述实施例中,本申请实施例对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端或管理设备中。当然,处理器和存储介质也可以作为分立组件存在于终端或管理设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件 中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (46)

  1. 一种参考信号的资源映射方法,其特征在于,包括:
    获取配置信息;
    根据所述配置信息确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第一传输梳齿偏移用于确定所述L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
  2. 根据权利要求1所述的方法,其特征在于,在所述L个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的;
    在所述L个SRS天线端口中,属于端口索引号为偶数的所有SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的。
  3. 根据权利要求1所述的方法,其特征在于,在所述L个SRS天线端口中的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
  4. 根据权利要求1所述的方法,其特征在于,在所述L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,以及
    在所述L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,除所述前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,M为正整数,N为正整数,M+N<L。
  5. 根据权利要求1所述的方法,其特征在于,在所述L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,以及
    在所述L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,除所述前P个端口索引号的SRS天线端口外的前T个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,P为正整数,T为正整数,P+T<L。
  6. 根据权利要求1所述的方法,其特征在于,所述L个SRS天线端口各自映射到同一个正交频分复用符号上。
  7. 根据权利要求1所述的方法,其特征在于,在所述L个SRS天线端口中,具有前S个端口索引号的SRS天线端口各自映射到同一个第一正交频分复用符号上,以及
    在所述L个SRS天线端口中,除所述前S个端口索引号的SRS天线端口外的其他端口索引号的SRS天线端口各自映射到同一个第二正交频分复用符号上,S为正整数,S<L。
  8. 根据权利要求1所述的方法,其特征在于,所述配置信息包括以下至少之一:
    传输梳齿数、第二传输梳齿偏移、循环位移次数、最大循环位移次数。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述配置信息确定L个探测参考信号SRS天线端口各自所对应的第一传输梳齿偏移,包括:
    根据所述传输梳齿数和/或所述第二传输梳齿偏移确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述传输梳齿数和/或所述第二传输梳齿偏移确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移,包括:
    根据第一公式确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第一公式为:
    Figure PCTCN2022125699-appb-100001
    其中,
    Figure PCTCN2022125699-appb-100002
    表示为所述第一传输梳齿偏移,K TC表示为所述传输梳齿数,
    Figure PCTCN2022125699-appb-100003
    表示为所述第二传输梳齿偏移,
    Figure PCTCN2022125699-appb-100004
    为正有理数或0。
  11. 根据权利要求9所述的方法,其特征在于,所述根据所述传输梳齿数和/或所述第二传输梳齿偏移确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移,包括:
    根据第二公式确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第二公式为:
    Figure PCTCN2022125699-appb-100005
    其中,
    Figure PCTCN2022125699-appb-100006
    表示为所述第一传输梳齿偏移,
    Figure PCTCN2022125699-appb-100007
    表示为所述第二传输梳齿偏移。
  12. 根据权利要求8所述的方法,其特征在于,所述根据所述配置信息确定L个探测参考信号SRS天线端口各自所对应的第一传输梳齿偏移,包括:
    根据所述传输梳齿数、所述第二传输梳齿偏移、所述循环位移次数和所述最大循环位移次数确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述传输梳齿数、所述第二传输梳齿偏移、所述循环位移次数和所述最大循环位移次数确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移,包括:
    根据第三公式确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第三公式为:
    Figure PCTCN2022125699-appb-100008
    Figure PCTCN2022125699-appb-100009
    其中,
    Figure PCTCN2022125699-appb-100010
    表示为所述第一传输梳齿偏移,K TC表示为所述传输梳齿数,
    Figure PCTCN2022125699-appb-100011
    表示为所述第二传输梳齿偏移,
    Figure PCTCN2022125699-appb-100012
    表示为所述循环位移次数,
    Figure PCTCN2022125699-appb-100013
    表示为所述最大循环位移次数,
    Figure PCTCN2022125699-appb-100014
    为正有理数或0,
    Figure PCTCN2022125699-appb-100015
    为正整数。
  14. 一种参考信号的资源映射方法,其特征在于,包括:
    发送配置信息,所述配置信息用于确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第一传输梳齿偏移用于确定所述L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
  15. 根据权利要求14所述的方法,其特征在于,在所述L个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的;
    在所述L个SRS天线端口中,属于端口索引号为偶数的所有SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的。
  16. 根据权利要求14所述的方法,其特征在于,在所述L个SRS天线端口中的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
  17. 根据权利要求14所述的方法,其特征在于,在所述L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,以及
    在所述L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,除所述前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,M为正整数,N为正整数,M+N<L。
  18. 根据权利要求14所述的方法,其特征在于,在所述L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,以及
    在所述L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,除所述前P个端口索引号的SRS天线端口外的前T个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,P为正整数,T为正整数,P+T<L。
  19. 根据权利要求14所述的方法,其特征在于,所述L个SRS天线端口各自映射到同一个正交频分复用符号上。
  20. 根据权利要求14所述的方法,其特征在于,在所述L个SRS天线端口中,具有前R个端口索引号的SRS天线端口各自映射到同一个第一正交频分复用符号上,以及
    在所述L个SRS天线端口中,除所述前R个端口索引号的SRS天线端口外的其他端口索引号的SRS天线端口各自映射到同一个第二正交频分复用符号上,R为正整数,R<L。
  21. 根据权利要求14所述的方法,其特征在于,所述配置信息包括以下至少之一:
    传输梳齿数、第二传输梳齿偏移、循环位移次数、最大循环位移次数。
  22. 一种参考信号的资源映射装置,其特征在于,包括:
    获取单元,用于通过所述通信单元获取配置信息;
    确定单元,用于确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第一传输梳齿偏移用于确定所述L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
  23. 根据权利要求22所述的装置,其特征在于,在所述L个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的;
    在所述L个SRS天线端口中,属于端口索引号为偶数的所有SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的。
  24. 根据权利要求22所述的装置,其特征在于,在所述L个SRS天线端口中的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
  25. 根据权利要求22所述的装置,其特征在于,在所述L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,以及
    在所述L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,除所述前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同 的,M为正整数,N为正整数,M+N<L。
  26. 根据权利要求22所述的装置,其特征在于,在所述L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,以及
    在所述L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,除所述前P个端口索引号的SRS天线端口外的前T个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,P为正整数,T为正整数,P+T<L。
  27. 根据权利要求22所述的装置,其特征在于,所述L个SRS天线端口各自映射到同一个正交频分复用符号上。
  28. 根据权利要求22所述的装置,其特征在于,在所述L个SRS天线端口中,具有前S个端口索引号的SRS天线端口各自映射到同一个第一正交频分复用符号上,以及
    在所述L个SRS天线端口中,除所述前S个端口索引号的SRS天线端口外的其他端口索引号的SRS天线端口各自映射到同一个第二正交频分复用符号上,S为正整数,S<L。
  29. 根据权利要求22所述的装置,其特征在于,所述配置信息包括以下至少之一:
    传输梳齿数、第二传输梳齿偏移、循环位移次数、最大循环位移次数。
  30. 根据权利要求29所述的装置,其特征在于,在所述根据所述配置信息确定L个探测参考信号SRS天线端口各自所对应的第一传输梳齿偏移方面,所述确定单元用于:
    根据所述传输梳齿数和/或所述第二传输梳齿偏移确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移。
  31. 根据权利要求30所述的装置,其特征在于,在所述根据所述传输梳齿数和/或所述第二传输梳齿偏移确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移方面,所述确定单元用于:
    根据第一公式确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第一公式为:
    Figure PCTCN2022125699-appb-100016
    其中,
    Figure PCTCN2022125699-appb-100017
    表示为所述第一传输梳齿偏移,K TC表示为所述传输梳齿数,
    Figure PCTCN2022125699-appb-100018
    表示为所述第二传输梳齿偏移,
    Figure PCTCN2022125699-appb-100019
    为正有理数或0。
  32. 根据权利要求30所述的装置,其特征在于,在所述根据所述传输梳齿数和/或所述第二传输梳齿偏移确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移方面,所述确定单元用于:
    根据第二公式确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第二公式为:
    Figure PCTCN2022125699-appb-100020
    其中,
    Figure PCTCN2022125699-appb-100021
    表示为所述第一传输梳齿偏移,
    Figure PCTCN2022125699-appb-100022
    表示为所述第二传输梳齿偏移。
  33. 根据权利要求29所述的装置,其特征在于,在所述根据所述配置信息确定L个探测参考信号SRS天线端口各自所对应的第一传输梳齿偏移方面,所述确定单元用于:
    根据所述传输梳齿数、所述第二传输梳齿偏移、所述循环位移次数和所述最大循环位移次数确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移。
  34. 根据权利要求33所述的装置,其特征在于,在所述根据所述传输梳齿数、所述第二传输梳齿 偏移、所述循环位移次数和所述最大循环位移次数确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移方面,所述确定单元用于:
    根据第三公式确定所述L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第三公式为:
    Figure PCTCN2022125699-appb-100023
    Figure PCTCN2022125699-appb-100024
    其中,
    Figure PCTCN2022125699-appb-100025
    表示为所述第一传输梳齿偏移,K TC表示为所述传输梳齿数,
    Figure PCTCN2022125699-appb-100026
    表示为所述第二传输梳齿偏移,
    Figure PCTCN2022125699-appb-100027
    表示为所述循环位移次数,
    Figure PCTCN2022125699-appb-100028
    表示为所述最大循环位移次数,
    Figure PCTCN2022125699-appb-100029
    为正有理数或0,
    Figure PCTCN2022125699-appb-100030
    为正整数。
  35. 一种参考信号的资源映射装置,其特征在于,包括:
    发送单元,用于发送配置信息,所述配置信息用于确定探测参考信号SRS资源的L个SRS天线端口各自所对应的第一传输梳齿偏移,所述第一传输梳齿偏移用于确定所述L个SRS天线端口各自所对应的频域起始位置,L的取值为大于4的整数。
  36. 根据权利要求35所述的装置,其特征在于,在所述L个SRS天线端口中,属于端口索引号为奇数的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的;
    在所述L个SRS天线端口中,属于端口索引号为偶数的所有SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的。
  37. 根据权利要求35所述的装置,其特征在于,在所述L个SRS天线端口中的所有SRS天线端口各自所对应的第一传输梳齿偏移是相同的。
  38. 根据权利要求35所述的装置,其特征在于,在所述L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,具有前M个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,以及
    在所述L个SRS天线端口中属于端口索引号为奇数的SRS天线端口中,除所述前M个端口索引号的SRS天线端口外的前N个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,M为正整数,N为正整数,M+N<L。
  39. 根据权利要求35所述的装置,其特征在于,在所述L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,具有前P个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,以及
    在所述L个SRS天线端口中属于端口索引号为偶数的SRS天线端口中,除所述前P个端口索引号的SRS天线端口外的前T个端口索引号的SRS天线端口各自所对应的所述第一传输梳齿偏移是相同的,P为正整数,T为正整数,P+T<L。
  40. 根据权利要求35所述的装置,其特征在于,所述L个SRS天线端口各自映射到同一个正交频分复用符号上。
  41. 根据权利要求35所述的装置,其特征在于,在所述L个SRS天线端口中,具有前R个端口索引号的SRS天线端口各自映射到同一个第一正交频分复用符号上,以及
    在所述L个SRS天线端口中,除所述前R个端口索引号的SRS天线端口外的其他端口索引号的 SRS天线端口各自映射到同一个第二正交频分复用符号上,R为正整数,R<L。
  42. 根据权利要求35所述的装置,其特征在于,所述配置信息包括以下至少之一:
    传输梳齿数、第二传输梳齿偏移、循环位移次数、最大循环位移次数。
  43. 一种终端,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求1-13中任一项所述方法的步骤。
  44. 一种网络设备,包括处理器、存储器及存储在所述存储器上的计算机程序或指令,其特征在于,所述处理器执行所述计算机程序或指令以实现权利要求14-22中任一项所述方法的步骤。
  45. 一种计算机可读存储介质,其特征在于,其存储有计算机程序或指令,所述计算机程序或指令被执行时实现权利要求1-13或14-22中任一项所述方法的步骤。
  46. 一种芯片,包括处理器,其特征在于,所述处理器执行权利要求1-13或14-22中任一项所述方法的步骤。
PCT/CN2022/125699 2021-10-22 2022-10-17 参考信号的资源映射方法与装置、终端和网络设备 WO2023066202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111237648.7A CN116015576A (zh) 2021-10-22 2021-10-22 参考信号的资源映射方法与装置、终端和网络设备
CN202111237648.7 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023066202A1 true WO2023066202A1 (zh) 2023-04-27

Family

ID=86034141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125699 WO2023066202A1 (zh) 2021-10-22 2022-10-17 参考信号的资源映射方法与装置、终端和网络设备

Country Status (2)

Country Link
CN (1) CN116015576A (zh)
WO (1) WO2023066202A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865524A (zh) * 2019-04-29 2020-10-30 华为技术有限公司 传输探测参考信号srs的方法和装置
WO2021089732A1 (en) * 2019-11-07 2021-05-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ambiguity/aliasing cancellation or reduction for staggered reference signals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865524A (zh) * 2019-04-29 2020-10-30 华为技术有限公司 传输探测参考信号srs的方法和装置
WO2021089732A1 (en) * 2019-11-07 2021-05-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ambiguity/aliasing cancellation or reduction for staggered reference signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on SRS enhancement", 3GPP DRAFT; R1-2005368, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917393 *
VIVO: "Discussion on UL RS for NR positioning", 3GPP DRAFT; R1-1908175, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20190826 - 20190830, 17 August 2019 (2019-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051764794 *

Also Published As

Publication number Publication date
CN116015576A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
EP3711410B1 (en) Method performed by a user equipment, method performed by a base station and corresponding apparatuses
CN110891312B (zh) 一种信息发送方法,信息接收的方法和装置
WO2020025040A1 (zh) 资源配置的方法和终端设备
WO2019052334A1 (zh) 一种通信方法及设备
WO2018027982A1 (zh) 发送参考信号的方法和装置及接收参考信号的方法和装置
WO2018228417A1 (zh) 用于确定传输方向的方法和设备
KR102466982B1 (ko) 자원 할당 방법, 단말 장치와 네트워크 장치
WO2022027308A1 (en) Enhanced configured grants
WO2020164156A1 (zh) 传输带宽的确定方法、设备及存储介质
WO2022126637A1 (zh) 资源确定方法、终端设备和网络设备
WO2022067802A1 (zh) 探测参考信号配置方法与装置、终端和网络设备
WO2022061544A1 (zh) 无线通信方法、终端设备和网络设备
KR20230006834A (ko) 물리적 제어 채널 신뢰성 향상을 위한 제어 시그널링
WO2022027294A1 (en) Mobile devices and methods for implementing enhanced configured grants
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
WO2023066202A1 (zh) 参考信号的资源映射方法与装置、终端和网络设备
WO2022077352A1 (en) Technologies for reliable physical data channel reception in wireless communications
CN112055996B (zh) 一种信息传输的方法和设备
WO2022213653A1 (zh) 频域资源位置确定方法与装置、终端和网络设备
KR20230008182A (ko) 사이드링크 물리적 계층 절차들
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2023133702A1 (zh) 信息处理方法、终端设备、网络设备、芯片和存储介质
WO2024011553A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备
WO2023232038A1 (zh) 通信方法与装置、终端设备、网络设备和芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022882808

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022882808

Country of ref document: EP

Effective date: 20240522