WO2024065196A1 - 数据传输方法及装置 - Google Patents

数据传输方法及装置 Download PDF

Info

Publication number
WO2024065196A1
WO2024065196A1 PCT/CN2022/121811 CN2022121811W WO2024065196A1 WO 2024065196 A1 WO2024065196 A1 WO 2024065196A1 CN 2022121811 W CN2022121811 W CN 2022121811W WO 2024065196 A1 WO2024065196 A1 WO 2024065196A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
data
reference signal
frequency resource
codeword
Prior art date
Application number
PCT/CN2022/121811
Other languages
English (en)
French (fr)
Inventor
胡远洲
王磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/121811 priority Critical patent/WO2024065196A1/zh
Publication of WO2024065196A1 publication Critical patent/WO2024065196A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and in particular to a data transmission method and device.
  • the codewords in the codebook correspond to reference signals.
  • the terminal can use the codewords in the codebook to perform spreading processing on the data, and send the spread data and the reference signal corresponding to the codeword used in the spreading processing to the base station.
  • the base station can detect the received reference signal to determine the corresponding codeword, and perform despreading processing on the received data based on the determined codeword; the base station also performs channel estimation based on the received reference signal.
  • the codeword capacity that is, the number of codewords contained in the codebook
  • the codeword capacity that is, the number of codewords contained in the codebook
  • the probability that different terminals use the same codeword to process data is high, so the probability that different terminals send the same reference signal, that is, the probability of reference signal collision, is high.
  • the method of making one reference signal correspond to multiple codewords in the codebook can increase the codeword capacity, but in this method, even if different terminals use different codewords for expansion processing, the codewords used may correspond to the same reference signal, resulting in reference signal collision. Reference signal collision will affect the channel estimation performance, and then affect the demodulation performance.
  • the embodiments of the present application provide a data transmission method and device, which can reduce the probability of reference signal collision and improve demodulation performance.
  • the present application provides a data transmission method, and the execution subject of the method can be a terminal device or a chip used in the terminal device.
  • the following description is taken as an example that the execution subject is a terminal device.
  • the method includes: the terminal device determines a codebook from a first codebook and a second codebook according to a first parameter. Among them, each codeword in the first codebook has a corresponding reference signal; each codeword in the second codebook does not have a corresponding reference signal.
  • the terminal device sends first data and a first reference signal, and the determined codebook is the first codebook; the first data is determined using the codeword in the first codebook; the first reference signal corresponds to the codeword used to determine the first data.
  • the terminal device sends second data, and the determined codebook is the second codebook; the second data is determined using the codeword in the second codebook.
  • the data sent by the terminal device is determined based on the codewords in the first codebook or the second codebook, wherein the codewords in the first codebook correspond to the reference signal, and the codewords in the second codebook do not correspond to the reference signal.
  • the codeword capacity is increased when the number of reference signals is limited, which can reduce the probability that the terminal device and other terminal devices select the same codeword, and reduce the probability that the terminal device and other terminal devices send the same reference signal, that is, reduce the probability of reference signal collision, thereby improving the channel estimation performance, and then improving the demodulation performance and spectrum efficiency.
  • the terminal device may not send a reference signal, and the reference signal overhead and the resource overhead for sending the reference signal are reduced, so that more time-frequency resources can be used to transmit data, which can improve the demodulation performance.
  • the second data is determined by using the codewords in the second codebook and the modulation mode corresponding to the second codebook; the modulation mode corresponding to the second codebook is differential modulation or chaotic modulation. Since the network device can perform channel estimation without using the reference signal to obtain the channel response when receiving the data generated by differential modulation or chaotic modulation, it can perform corresponding equalization and demodulation operations to obtain the data sent by the terminal device. Therefore, when the second codebook corresponds to differential modulation or chaotic modulation, the codewords in the second codebook may not correspond to the reference signal. Then, when a codebook determined by the terminal device is the second codebook, the terminal device may not send the reference signal, thereby saving the reference signal overhead.
  • the method further includes: the terminal device determines the first range and the second range. If the first parameter belongs to the first range, the determined codebook is the first codebook; if the first parameter belongs to the second range, the determined codebook is the second codebook.
  • This implementation enables the terminal device to determine a codebook from the first codebook and the second codebook, wherein the design of the first codebook and the second codebook can increase the codeword capacity, which is conducive to reducing the probability of reference signal collision, improving channel estimation performance, and thus improving demodulation performance and spectrum efficiency.
  • the first parameter includes one or more of the following: transmission block size, code rate, reference signal reception power, reference signal strength indication, reference signal reception quality, modulation and coding strategy, and a count value of a synchronization timer.
  • any two of the multiple codewords included in the first codebook are different, and/or any two of the multiple codewords included in the second codebook are different; any codeword included in the first codebook is different from any codeword included in the second codebook. It can be seen that the codewords in the first codebook and the second codebook are different from each other, which increases the codeword capacity, helps to reduce the probability of reference signal collision, improves channel estimation performance, and further improves demodulation performance and spectrum efficiency.
  • the method further includes: the terminal device sends first indication information, the first indication information being used to indicate a determined codebook. It can be seen that the terminal device can inform the network device through the first indication information that the codebook determined by the terminal device is conducive to the network device being able to process the received first data or second data based on the codebook indicated by the first indication information.
  • the first time-frequency resource is used to send the first data and the first reference signal; the second time-frequency resource is used to send the second data; the first time-frequency resource and the second time-frequency resource are different.
  • This implementation is conducive to enabling the network device to determine the codebook used by the terminal device to process the data based on the time-frequency resource used for receiving the data, and then process the received data based on the codebook.
  • the third time-frequency resource is used to send the first data
  • the fourth time-frequency resource is used to send the first reference signal; or, both the third time-frequency resource and the fourth time-frequency resource are used to send the second data; the mapping method of the first data in the third time-frequency resource is the same as the mapping method of the second data in the third time-frequency resource; the third time-frequency resource and the fourth time-frequency resource are different.
  • the first data and the second data are mapped in the same manner in the third time-frequency resource, which is beneficial for reducing the interference between the first data and the second data in the process of the network device performing despreading processing and interference elimination on the received data when there are both terminal devices sending the first data and other terminal devices sending the second data, thereby improving the demodulation performance and spectrum efficiency.
  • the present application provides a data transmission method, and the execution subject of the method can be a network device or a chip used in the network device.
  • the following description is taken as an example that the execution subject is a network device.
  • the method includes: the network device receives first data and a first reference signal; the first data is determined by a codeword in a first codebook; the first reference signal corresponds to the codeword used to determine the first data.
  • the network device receives second data, and the second data is determined by a codeword in a second codebook.
  • Each codeword in the first codebook has a corresponding reference signal; each codeword in the second codebook does not have a corresponding reference signal.
  • the data received by the network device is determined based on the codewords in the first codebook or the second codebook, wherein the codewords in the first codebook correspond to the reference signal, and the codewords in the second codebook do not correspond to the reference signal.
  • the codeword capacity is increased when the number of reference signals is limited, which can reduce the probability that the terminal device and other terminal devices select the same codeword, and reduce the probability that different terminal devices send the same reference signal, that is, reduce the probability of reference signal collision, thereby improving the channel estimation performance, and then improving the demodulation performance and spectrum efficiency.
  • the codewords in the second codebook do not correspond to the reference signal, which is conducive to the terminal device not sending the reference signal when processing data using the second codebook, saving the reference signal overhead and the resource overhead for receiving the reference signal, so that more time-frequency resources can be used to transmit data, which can improve the demodulation performance.
  • the second data is determined by using the codewords in the second codebook and the modulation mode corresponding to the second codebook; the modulation mode corresponding to the second codebook is differential modulation or chaotic modulation. Since the network device can perform channel estimation without using the reference signal to obtain the channel response when receiving the data generated by differential modulation or chaotic modulation, and can perform corresponding equalization and demodulation operations to obtain the data sent by the terminal device, when the second codebook corresponds to differential modulation or chaotic modulation, the codewords in the second codebook may not correspond to the reference signal, which is beneficial for the terminal device to not send the reference signal when processing data using the second codebook, thereby saving the reference signal overhead.
  • the first parameter includes one or more of the following: transmission block size, code rate, reference signal reception power, reference signal strength indication, reference signal reception quality, modulation and coding strategy, and a count value of a synchronization timer.
  • any two of the multiple codewords included in the first codebook are different, and/or any two of the multiple codewords included in the second codebook are different; any codeword included in the first codebook is different from any codeword included in the second codebook. It can be seen that the codewords in the first codebook and the second codebook are different from each other, which increases the codeword capacity, helps to reduce the probability of reference signal collision, improves channel estimation performance, and further improves demodulation performance and spectrum efficiency.
  • the method further includes: the network device receives first indication information, the first indication information being used to determine a codebook used to process the first data or the second data. It can be seen that the network device can determine the codebook used by the terminal device to process the data based on the codebook indicated by the first indication information, and then the network device can use the codebook to process the received data.
  • the first time-frequency resource is used to receive the first data and the first reference signal; the second time-frequency resource is used to receive the second data; the first time-frequency resource and the second time-frequency resource are different.
  • This implementation enables the network device to determine the codebook used by the terminal device to process the data based on the time-frequency resource used to receive the data, and then process the received data based on the codebook.
  • the third time-frequency resource is used to receive the first data
  • the fourth time-frequency resource is used to receive the first reference signal; or, both the third time-frequency resource and the fourth time-frequency resource are used to receive the second data; the mapping method of the first data in the third time-frequency resource is the same as the mapping method of the second data in the third time-frequency resource; the third time-frequency resource and the fourth time-frequency resource are different.
  • the first data and the second data are mapped in the same manner in the third time-frequency resource, which can reduce the interference between the first data and the second data in the process of the network device performing despreading processing and interference elimination on the received data when the network device receives both the first data sent by the terminal device and the second data sent by other terminal devices, thereby improving the demodulation performance and spectrum efficiency.
  • the present application further provides a communication device.
  • the communication device has the function of implementing some or all of the implementation methods described in the first aspect above, or has the function of implementing some or all of the functional implementation methods described in the second aspect above.
  • the functions can be implemented by hardware, or by hardware executing corresponding software implementations.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform the corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other communication devices.
  • the communication device may also include a storage unit, which is used to couple with the processing unit and the communication unit, and store the necessary program instructions and data of the communication device.
  • the communication device includes: a processing unit and a communication unit, wherein the processing unit is used to control the communication unit to send and receive data/signaling.
  • the processing unit is used to determine a codebook from a first codebook and a second codebook according to a first parameter, wherein each codeword in the first codebook has a corresponding reference signal, and each codeword in the second codebook does not have a corresponding reference signal.
  • the communication unit is used to send first data and a first reference signal, the determined codebook is the first codebook; the first data is determined by using a codeword in the first codebook; the first reference signal corresponds to the codeword used to determine the first data.
  • the communication unit is used to send second data, the determined codebook is the second codebook; the second data is determined by using a codeword in the second codebook.
  • the communication device includes: a processing unit and a communication unit, and the processing unit is used to control the communication unit to send and receive data/signaling.
  • the communication unit is used to receive first data and a first reference signal; the first data is determined by using a codeword in a first codebook; and the first reference signal corresponds to the codeword used to determine the first data.
  • the communication unit is used to receive second data, where the second data is determined by using a codeword in a second codebook.
  • Each codeword in the first codebook has a corresponding reference signal; and each codeword in the second codebook does not have a corresponding reference signal.
  • the communication unit may be a transceiver or a communication interface
  • the storage unit may be a memory
  • the processing unit may be a processor.
  • the processor may be used to execute the method described in the first aspect or the second aspect through a logic circuit or running a computer program
  • the transceiver or the communication interface may be used to send and receive signals and/or data
  • the memory may be used to store the computer program.
  • the communication device includes: a processor and a transceiver.
  • the processor is used to determine a codebook from a first codebook and a second codebook according to a first parameter.
  • Each codeword in the first codebook has a corresponding reference signal, and each codeword in the second codebook does not have a corresponding reference signal.
  • the transceiver is used to send first data and a first reference signal, the determined codebook is the first codebook; the first data is determined by using a codeword in the first codebook; the first reference signal corresponds to the codeword used to determine the first data.
  • the transceiver is used to send second data, the determined codebook is the second codebook; the second data is determined by using a codeword in the second codebook.
  • the communication device includes: a transceiver.
  • the transceiver is used to receive first data and a first reference signal; the first data is determined by a codeword in a first codebook; the first reference signal corresponds to the codeword used to determine the first data.
  • the transceiver is used to receive second data, and the second data is determined by a codeword in a second codebook.
  • Each codeword in the first codebook has a corresponding reference signal; each codeword in the second codebook does not have a corresponding reference signal.
  • the communication device is a chip or a chip system.
  • the processing unit may also be embodied as a processing circuit or a logic circuit; the transceiver unit may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or the chip system.
  • the processor can be used to perform, for example, but not limited to, baseband related processing, and the transceiver or communication interface can be used to perform, for example, but not limited to, radio frequency transceiver.
  • the above-mentioned devices can be set on independent chips respectively, or at least partially or completely on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor can be integrated with the transceiver (or communication interface) on the same chip, and the digital baseband processor can be set on an independent chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with a variety of application processors (such as but not limited to a graphics processor, a multimedia processor, etc.) on the same chip.
  • application processors such as but not limited to a graphics processor, a multimedia processor, etc.
  • SoC System on a Chip
  • the present application also provides a processor for executing the above-mentioned various methods.
  • the process of sending the above-mentioned signal and receiving the above-mentioned signal in the above-mentioned method can be understood as the process of outputting the above-mentioned signal by the processor, and the process of the above-mentioned signal input by the processor.
  • the processor When outputting the above-mentioned signal, the processor outputs the above-mentioned signal to the transceiver so that it can be transmitted by the transceiver (or communication interface). After the above-mentioned signal is output by the processor, it may also need to be processed otherwise before it reaches the transceiver (or communication interface).
  • the transceiver receives the above-mentioned signal and inputs it into the processor. Furthermore, after the transceiver (or communication interface) receives the above-mentioned signal, the above-mentioned signal may need to be processed otherwise before it is input into the processor.
  • the above-mentioned processor can be a processor specifically used to execute these methods, or it can be a processor that executes computer instructions in the memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated with the processor on the same chip, or can be set on different chips.
  • ROM read-only memory
  • the present application further provides a communication system, which includes at least one terminal device and at least one network device of the above aspects.
  • the system may also include other devices that interact with the terminal device and/or the network device in the solution provided by the present application.
  • the present application provides a computer-readable storage medium, which stores a computer program.
  • the computer program When the computer program is run, the method described in any one of the first aspect or the second aspect is executed.
  • the present application further provides a computer program product comprising instructions, the computer program product comprising: a computer program code, when the computer program code is run, the method described in any one of the first aspect or the second aspect is executed.
  • the present application provides a chip system, which includes a processor and an interface, wherein the interface is used to obtain a program or instruction, and the processor is used to call the program or instruction to implement the function involved in the first aspect, or to call the program or instruction to implement the function involved in the second aspect.
  • the chip system also includes a memory, which is used to store program instructions and data necessary for the terminal.
  • the chip system can be composed of a chip, or it can include a chip and other discrete devices.
  • FIG1 is a schematic diagram of the structure of a communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a codeword corresponding to a reference signal provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of another correspondence between a codeword and a reference signal provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of another correspondence between a codeword and a reference signal provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a flow chart of a data transmission method provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a first codebook and a second codebook provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a third time-frequency resource and a fourth time-frequency resource provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of another third time-frequency resource and a fourth time-frequency resource provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of another communication device provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the structure of a chip provided in an embodiment of the present application.
  • the embodiments of the present application can be applied to wireless communication systems such as long term evolution (LTE), new radio (NR) system, namely fifth generation (5G) communication system, satellite communication system, and with the continuous development of communication technology, the technical solutions of the embodiments of the present application can also be applied to sixth generation (6G) communication system and other communication systems evolved after 5G.
  • LTE long term evolution
  • NR new radio
  • the wireless communication system includes but is not limited to: narrowband Internet of Things (NB-IoT) system, global system for mobile communications (GSM), enhanced data rate for GSM evolution (EDGE), wideband code division multiple access (WCDMA), code division multiple access 2000 (CDMA2000), time division-synchronization code division multiple access (TD-SCDMA), LTE and three major application scenarios of 5G mobile communication system: enhanced mobile broadband (eMBB), ultra-reliable low latency communication (URLLC) and massive machine type communication (mMTC).
  • NB-IoT narrowband Internet of Things
  • GSM global system for mobile communications
  • EDGE enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access 2000
  • TD-SCDMA time division-synchronization code division multiple access
  • LTE LTE
  • 5G mobile communication system enhanced mobile broadband (eMBB), ultra-reliable low latency communication (URLLC) and massive machine type communication (mMTC).
  • FIG 1 is a schematic diagram of the structure of a communication system provided in an embodiment of the present application.
  • the communication system may include but is not limited to a network device and a terminal device.
  • the communication system may also include a channel for transmitting data between the network device and the terminal device, such as a transmission medium such as optical fiber, cable or atmosphere.
  • the number and form of the devices shown in Figure 1 are used for example and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more network devices and two or more terminal devices may be included.
  • the communication system shown in Figure 1 is explained by taking a network device and two terminal devices as an example. Among them, the network device in Figure 1 takes a base station as an example, and the terminal device takes a mobile phone as an example.
  • the network device may be a device with wireless transceiver functions, and the network device includes but is not limited to: evolved node B (eNB), radio network controller (RNC), node B (NB), base station controller (BSC), base transceiver station (BTS), home network equipment (for example, home evolved Node B, or home Node B, HNB), baseband unit (BBU), access point (AP) in wireless fidelity (WIFI) system, wireless relay node, wireless backhaul node, transmission point (TRP) or transmission point (TP), etc., and can also be a base station (BS) in 4G, 5G or even 6G system.
  • a base station is a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • a base station can include a BBU and a remote radio unit (RRU).
  • BBU and RRU can be placed in different places, for example: RRU is remote and placed in an area with high traffic volume, and BBU is placed in a central computer room. BBU and RRU can also be placed in the same computer room. BBU and RRU can also be different components under one rack.
  • Base stations can be in the following forms: macro base station, micro base station (also called small station), pico base station, relay station, access point, or, balloon station, etc.
  • the terminal device may also be referred to as user equipment (UE), terminal, access terminal, subscriber unit, user station, mobile station, mobile station (MS), remote station, remote terminal, mobile device, user terminal, user agent or user device, and may be applied to 4G, 5G or even 6G systems.
  • UE user equipment
  • MS mobile station
  • remote station remote terminal
  • mobile device user terminal, user agent or user device
  • the terminal device in the embodiments of the present application may be a handheld device with wireless communication function, a vehicle-mounted device, a wearable device, a computing device or other processing device connected to a wireless modem, such as a cellular phone, a smart phone, a tablet computer, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, a wireless modem, a handheld device (handset), a laptop computer, a machine type communication (MTC) terminal, etc.
  • a wireless modem such as a cellular phone, a smart phone, a tablet computer, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, a wireless modem, a handheld device (handset), a laptop computer, a machine type communication (MTC) terminal, etc.
  • PDA personal digital assistant
  • MTC machine type communication
  • the terminal device can also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in self driving, a wireless terminal in remote medical, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, and so on.
  • VR virtual reality
  • AR augmented reality
  • a codebook consists of one or more code words, which can be used by a terminal device to perform spreading processing on data.
  • the data for spreading processing by the terminal device can be a modulation symbol
  • the data for spreading processing by the terminal device can also be the output data obtained after Fourier transforming the modulation symbol.
  • the codeword can be a sparse codeword, such as a codeword used for sparse code multiple access (SCMA) transmission; the codeword can also be a dense codeword, such as a codeword used for multi-user shared multiple access (MUSA) transmission, without limitation.
  • the codebook can also be called a signature sequence group, and correspondingly, the codeword can also be called a signature sequence.
  • the codebook can also be called a spread spectrum sequence group, and correspondingly, the codeword can also be called a spread spectrum sequence.
  • the codeword capacity refers to the number of codewords, and the codeword length refers to the coefficient values included in a codeword. For example, if the codeword length is 4, that is, a codeword includes 4 coefficient values, the codeword capacity can be 64 codewords. For another example, if the codeword length is L, that is, a codeword includes L coefficient values, using a codeword to perform an extended processing on a modulation symbol can be to multiply the modulation symbol with the L coefficient values respectively, and L data after the extended processing, that is, L values, can be obtained, where L is a positive integer.
  • Signature hopping means that when a terminal device performs extension processing on multiple modulation symbols, the codewords used for extension processing on different modulation symbols can be different. Codeword hopping is helpful to randomize the interference when multiple terminal devices perform non-orthogonal multiple access (NoMA) transmission, which helps to improve demodulation performance. In addition, when the terminal device does not perform codeword hopping on multiple modulation symbols, the codewords used by the terminal device for extension processing on the multiple modulation symbols are the same.
  • NoMA non-orthogonal multiple access
  • the reference signal can be used by the network device to perform channel estimation to obtain the channel response of the terminal device.
  • the reference signal can also be used by the network device to determine the codeword used by the terminal device to perform expansion processing on the data to be sent, and then the network device can perform despreading processing on the received data based on the determined codeword.
  • the reference signal can also be called a reference signal sequence.
  • the reference signal may be a Zad-off Chu sequence (ZC sequence for short), or a pseudo-random noise (PN) sequence, or a demodulation reference signal (DMRS).
  • ZC sequence Zad-off Chu sequence
  • PN pseudo-random noise
  • DMRS demodulation reference signal
  • the time unit may be one or more frames, one or more sub-frames, one or more time slots, one or more mini-slots, or one or more symbols, etc.
  • the symbol may be an orthogonal frequency division multiplexing (OFDM) symbol, a discrete Fourier transform spread spectrum orthogonal frequency division multiplexing (DFT-S-OFDM) symbol, etc.
  • the duration of the time unit may be millisecond (ms) or second (s).
  • the time-frequency resource used to send data, signals or information can be in units of time units in the time domain, such as the first time-frequency resource, the second time-frequency resource, the third time-frequency resource and the fourth time-frequency resource respectively include one or more time units in the time domain.
  • the time unit can be predefined or specified by the network device without limitation.
  • the codewords in the codebook correspond to the reference signals, and multiple terminal devices can send data and reference signals to the network device at the same time.
  • any terminal device can use the codewords in the codebook to perform expansion processing on the data to be sent, or use the codewords in the codebook to perform expansion processing on the data to be sent and the reference signal, and send the expanded data and reference signal to the network device.
  • the network device can perform channel estimation based on the reference signal to obtain the channel response of the terminal device, and use successive interference cancellation (SIC) technology to eliminate interference between multiple terminal devices and improve demodulation performance.
  • SIC successive interference cancellation
  • the codewords used by different terminal devices to process the data to be sent can be orthogonal or non-orthogonal.
  • the codewords in the codebook correspond to the reference signals one-to-one, that is, different codewords correspond to different reference signals; then the network device can determine the codeword used by the terminal device to process the data by detecting the reference signal.
  • the codeword length is 4
  • the codeword capacity is 64 codewords
  • the 64 codewords correspond one-to-one to 64 reference signals. In this way, when the codeword length is large, the space for codeword design is relatively large, that is, the number of codewords that can be designed is relatively large. At this time, the codeword capacity may be limited by the number of reference signals.
  • one reference signal corresponds to multiple codewords.
  • the codeword length is 8
  • 192 codewords can be designed, and the 192 codewords can be divided into 3 groups, each group includes 64 codewords, and each reference signal in the 64 reference signals corresponds to 1 codeword in each group of codewords, such as reference signal #1 corresponds to 1 codeword in the first group of codewords, 1 codeword in the second group, and 1 codeword in the third group.
  • reference signal #1 corresponds to 1 codeword in the first group of codewords, 1 codeword in the second group, and 1 codeword in the third group.
  • different colors are used to distinguish codewords in different groups, and codewords with the same color belong to the same group.
  • the method in which one reference signal corresponds to multiple codewords can increase the codeword capacity, and the probability of reference signal collision is smaller.
  • different codewords may correspond to the same reference signal, thereby generating a reference signal collision.
  • the network device cannot determine which codeword the terminal has selected based on the detected reference signal. It can be seen that the method of using one reference signal to correspond to multiple codewords will still make the probability of reference signal collision relatively high, affecting the channel estimation performance and further affecting the demodulation performance.
  • An embodiment of the present application provides a data transmission method, in which a terminal device can determine a codebook from a first codebook and a second codebook according to a first parameter; each codeword in the first codebook has a corresponding reference signal; each codeword in the second codebook does not have a corresponding reference signal.
  • the terminal device sends the first data and the first reference signal, and the determined codebook is the first codebook, the first data is determined using the codeword in the first codebook, and the first reference signal corresponds to the codeword used to determine the first data.
  • the terminal device sends the second data, and the determined codebook is the second codebook, and the second data is determined using the codeword in the second codebook.
  • This data transmission method can reduce the probability of reference signal collision, which is beneficial to improving channel estimation performance, and thus improving demodulation performance.
  • FIG. 5 is a flow chart of a data transmission method provided in an embodiment of the present application.
  • the data transmission method is described from the perspective of interaction between a network device and a terminal device.
  • the data transmission method includes the following steps:
  • the terminal device determines a codebook from a first codebook and a second codebook according to a first parameter. Each codeword in the first codebook has a corresponding reference signal, and each codeword in the second codebook does not have a corresponding reference signal.
  • any two of the multiple codewords included in the first codebook are different, and/or any two of the multiple codewords included in the second codebook are different; any codeword included in the first codebook is different from any codeword included in the second codebook.
  • the codewords in the first codebook may correspond one-to-one to the reference signal, or one reference signal may correspond to multiple codewords in the first codebook.
  • the codewords included in the first codebook and the second codebook, respectively may be predefined, or may be determined by negotiation between the network device and the terminal device, or may be notified to the terminal device by the network device through signaling, for example, the signaling may be radio resource control (RRC) signaling.
  • RRC radio resource control
  • the first codebook includes N codewords
  • the second codebook includes P codewords, where N and P are both positive integers.
  • each codeword corresponds to a reference signal one-to-one; in conjunction with FIG6 , there are N different reference signals, and the N reference signals correspond to the N codewords included in the first codebook one-to-one.
  • one reference signal corresponds to multiple codewords in the first codebook; there are reference signals, where is a positive integer, Q is an integer greater than 1, and the value of Q can be predefined; the N codewords in the first codebook can be divided into Q groups of codewords, each group of codewords includes Code words, Each reference signal in the reference signals corresponds to a codeword in each group of codewords, that is, Each reference signal in the reference signals corresponds to Q codewords.
  • the first codebook and the second codebook correspond to modulation modes, respectively.
  • the first data can be determined using the codewords in the first codebook and the modulation mode corresponding to the first codebook
  • the second data can be determined using the codewords in the second codebook and the modulation mode corresponding to the second codebook.
  • the modulation mode can be used for the terminal device to modulate the data to be sent to obtain modulation symbols, then, the first data is obtained by using the codewords in the first codebook to extend the modulation symbols obtained based on the modulation mode corresponding to the first codebook; the second data is obtained by using the codewords in the second codebook to extend the modulation symbols obtained based on the modulation mode corresponding to the second codebook.
  • the modulation symbols may be subjected to Fourier transform to obtain transformed output data, and the first data may be obtained by extending the transformed output data using code words in a first code book; and the second data may be obtained by extending the transformed output data using code words in a second code book.
  • the modulation mode corresponding to the second codebook is differential modulation or chaos modulation.
  • the network device receives data based on differential modulation or chaos modulation processing, it is not necessary to use a reference signal to perform channel estimation to obtain a channel response, and can perform corresponding equalization and demodulation operations to obtain data sent by the terminal device. Therefore, when the modulation mode corresponding to the second codebook is differential modulation or chaos modulation, the second codebook may not correspond to a reference signal. Then, when the terminal device uses the second codebook as a determined codebook, it may not send a reference signal, thereby saving the reference signal overhead.
  • the first parameter includes one or more of the following: data packet size, code rate, reference signal received power (RSRP), reference signal strength indicator (RSSI), reference signal received quality (RSRQ), modulation and coding scheme (MCS), and synchronization timer count value.
  • the data packet size may be a transport block size (TBS).
  • RSRP, RSSI or RSRQ can be obtained by the terminal device measuring the downlink reference signal from the network device. For example, based on the value of RSRP, RSSI or RSRQ, the terminal device can determine the current environment for data transmission, or determine the synchronization between the terminal device and the network device. If the current environment for data transmission is relatively poor, the terminal device can use the modulation method corresponding to the second codebook to generate modulation symbols; otherwise, the terminal device can use the modulation method corresponding to the first codebook to generate modulation symbols.
  • the synchronization timer can be used to determine the synchronization status of the terminal device and the network device. For example, after the terminal device and the network device complete synchronization using random access, the terminal device can start the synchronization timer to count. When the count value of the synchronization timer exceeds the set range, it can be considered that the synchronization status between the terminal device and the network device is relatively poor or has been out of synchronization. At this time, the terminal device can use the modulation method corresponding to the second codebook to generate modulation symbols; otherwise, the terminal device can use the modulation method corresponding to the first codebook to generate modulation symbols.
  • the method may further include: the terminal device determines a first range and a second range; if the first parameter belongs to the first range, the determined codebook is the first codebook; if the first parameter belongs to the second range, the determined codebook is the second codebook.
  • the first parameter is a data packet size, a code rate, RSRP, RSSI or RSRQ
  • the first range is a range greater than a first threshold
  • the second range is a range less than or equal to the first threshold
  • the codebook determined by the terminal device is the first codebook
  • the codebook determined by the terminal device is the second codebook.
  • the value of the first threshold may be different.
  • the first threshold may be 50 bytes (byte), that is, when the data packet size is greater than 50 bytes, the codebook determined by the terminal device is the first codebook; when the data packet size is less than or equal to 50 bytes, the codebook determined by the terminal device is the second codebook.
  • the first threshold value may be 1/3, that is, when the code rate is greater than 1/3, a codebook determined by the terminal device is the first codebook; when the code rate is less than or equal to 1/3, a codebook determined by the terminal device is the second codebook.
  • the first parameter is the count value of the synchronization timer
  • the first range is a range less than or equal to the second threshold value
  • the second range is a range greater than the second threshold value
  • a codebook determined by the terminal device is the first codebook
  • the first threshold value and the second threshold value may be predefined, or may be determined by negotiation between the network device and the terminal device, or may be indicated to the terminal device by the network device through signaling, for example, the signaling may be RRC signaling, without limitation.
  • the terminal device can flexibly select the data packet size or the code rate based on its own business needs, thereby flexibly selecting a suitable modulation mode to modulate the data to be sent, which is beneficial to improving spectrum efficiency.
  • the terminal device can determine the synchronization between the terminal device and the network device based on the first parameter.
  • the terminal device can use the second codebook as a determined codebook and use the modulation mode corresponding to the second codebook to modulate the data to be sent. In this way, the terminal device can not send a reference signal, which is beneficial to improving the demodulation performance and spectrum efficiency, and also reduces the reference signal overhead.
  • the terminal device determines a codebook from a first codebook and a second codebook according to a first parameter, which may include: the first parameter is MCS, the first codebook and the second codebook correspond to modulation modes respectively; the terminal device determines the codebook corresponding to the modulation mode and MCS from the first codebook and the second codebook.
  • the modulation mode corresponding to the first codebook is quadrature amplitude modulation (QAM), and the modulation mode corresponding to the second codebook is differential modulation or chaotic modulation.
  • QAM quadrature amplitude modulation
  • the MCS indicates differential modulation or chaotic modulation
  • the MCS may be indicated by the network device to the terminal device, or may be predefined, or may be determined by negotiation between the network device and the terminal device, without limitation.
  • the terminal device may not perform step S101, that is, the terminal device may not determine the codebook according to the first parameter, but the network device specifies a codebook for the terminal device, and the specified codebook is the first codebook or the second codebook.
  • the network device may send the second indication information to the terminal device, and accordingly, the terminal device receives the second indication information from the network device, and uses the codebook indicated by the second indication information as a determined codebook, wherein the second indication information is used to indicate the codebook used by the terminal device to process the data to be sent.
  • the data transmission method further includes: the terminal device selects a codeword from the determined codebook; if the determined codebook is the first codebook, the codeword selected by the terminal device from the first codebook is used to determine the first data; if the determined codebook is the second codebook, the codeword selected by the terminal device from the second codebook is used to determine the second data.
  • the terminal device may select a codeword randomly.
  • the codeword selected by the terminal device may also be determined based on third indication information from the network device, and the third indication information is used to indicate the codeword selected by the terminal device.
  • each codeword in the first codebook and the second codebook corresponds to an index respectively
  • the third indication information includes the index of the codeword selected by the network device instructing the terminal device, and the terminal device may select the codeword corresponding to the index included in the third indication information.
  • the codeword selected by the terminal device may be one or more.
  • the number of codewords selected by the terminal device is one, and the terminal device uses the selected codeword for extension processing for one or more modulation symbols.
  • the terminal device performs extension processing on multiple modulation symbols and uses codeword hopping the number of codewords selected by the terminal device is multiple, and each of the multiple codewords is used to perform extension processing on one modulation symbol in multiple modulation symbols.
  • the terminal device When the terminal device performs extension processing on multiple modulation symbols and uses codeword hopping, the terminal device can also select a codeword, and then determine multiple codewords based on the selected codeword and the preconfigured codeword hopping method, and each of the multiple codewords is used to perform extension processing on one modulation symbol in multiple modulation symbols.
  • the embodiment of the present application does not limit the way in which the terminal device selects codewords when the terminal device needs to perform extension processing on multiple modulation symbols and uses codeword hopping.
  • the following provides an exemplary codeword determination method.
  • each codeword in the first codebook and the second codebook corresponds to an index respectively.
  • the terminal device can randomly select a codeword from a determined codebook, and use the codeword as the codeword adopted by the terminal device to perform extended processing on a starting modulation symbol among multiple modulation symbols, and then based on the offset of the index of other modulation symbols compared to the index of the starting modulation symbol, determine the offset of the index of the codeword adopted for extended processing on other modulation symbols compared to the index of the codeword adopted for extended processing on the starting modulation symbol, and then determine the codeword adopted for extended processing on each modulation symbol among the multiple modulation symbols.
  • the terminal device may further execute step S102a; if the codebook determined by the terminal device from the first codebook and the second codebook is the second codebook, the terminal device may further execute step S102b.
  • the terminal device sends first data and a first reference signal
  • the determined codebook is the first codebook
  • the first data is determined using a codeword in the first codebook
  • the first reference signal corresponds to the codeword used to determine the first data.
  • the network device receives the first data and the first reference signal.
  • the first reference signal may be used by the network device to determine the codeword used by the terminal device to determine the first data.
  • the terminal device sends second data, the determined codebook is the second codebook, and the second data is determined by using codewords in the second codebook.
  • the network device receives the second data.
  • the terminal device determines the first data using the codeword corresponding to the reference signal #1 in the first codebook, the terminal device sends the first data and the reference signal #1. If the terminal device determines the second data using the codeword in the second codebook, the terminal device sends the second data without sending the reference signal.
  • the network device in the case where multiple terminal devices all use the codewords in the first codebook to determine data, the network device will receive multiple first data and multiple first reference signals from the multiple terminal devices. In the case where multiple terminal devices all use the codewords in the second codebook to determine data, the network device will receive multiple second data from the multiple terminal devices. In the case where k 1 terminal devices among k 1 +k 2 terminal devices use the codewords in the first codebook to determine data, and the remaining k 2 terminal devices use the codewords in the second codebook to determine data, the network device will receive k 1 first data, k 1 first reference signals, and k 2 second data, where k 1 and k 2 are both positive integers.
  • the method may further include: the terminal device sends first indication information, the first indication information is used to indicate a codebook determined by the terminal device; correspondingly, the network device receives the first indication information. Since the network device does not know whether the received data is the first data determined by the terminal device using the codeword in the first codebook, or the second data determined by the codeword in the second codebook, through this implementation, the terminal device can inform the network device through the first indication information whether the codebook determined by the terminal device is the first codebook or the second codebook, which is conducive to the network device performing despreading processing on the received data based on the codebook indicated by the first indication information.
  • the first data and the second data are transmitted on different time-frequency resources.
  • there are a first time-frequency resource and a second time-frequency resource and the first time-frequency resource and the second time-frequency resource are different.
  • the first time-frequency resource is used to send the first data and the first reference signal;
  • the second time-frequency resource is used to send the second data;
  • the first time-frequency resource is used to receive the first data and the first reference signal;
  • the second time-frequency resource is used to receive the second data.
  • the network device can determine whether the codebook used for the data sent by the terminal device is the first codebook or the second codebook by judging whether the time-frequency resource used for the received data is the first time-frequency resource or the second time-frequency resource, so that the network device can use the codeword in the determined codebook to despread the received data.
  • the network device receives data from the terminal device in the first time-frequency resource, it can be determined that the received data is the first data determined by the terminal device using the codeword in the first codebook; if the network device receives data from the terminal device in the second time-frequency resource, it can be determined that the received data is the second data determined by the terminal device using the codeword in the second codebook.
  • the method may also include: the terminal device determines the first time-frequency resource and the second time-frequency resource.
  • the first time-frequency resource and the second time-frequency resource may be configured by the network device for the terminal device.
  • the method may further include: the network device determines the codebook selected by the terminal device through blind detection. Specifically, since the codewords in the first codebook and the codewords in the second codebook are different, the network device may use the codewords in the first codebook and the second codebook to perform one-to-one detection when processing the received data, and determine the codebook selected by the terminal device based on the codeword used when the correct data is detected.
  • the network device may also perform demodulation processing on the received data based on the modulation mode corresponding to the determined codebook.
  • the time-frequency resource used by the terminal device to send the first data and the first reference signal may be the same as the time-frequency resource used by the terminal device to send the second data.
  • there are third time-frequency resources and fourth time-frequency resources and the third time-frequency resources are different from the fourth time-frequency resources.
  • the third time-frequency resource is used to send the first data
  • the fourth time-frequency resource is used to send the first reference signal; or, the third time-frequency resource and the fourth time-frequency resource are both used to send the second data.
  • the third time-frequency resource is used to receive the first data
  • the fourth time-frequency resource is used to receive the first reference signal; or, the third time-frequency resource and the fourth time-frequency resource are both used to receive the second data.
  • the third time-frequency resource is used for the network device to receive the first data and the second data
  • the fourth time-frequency resource is used for the network device to receive the first reference signal and the second data.
  • the received first data and the second data come from different terminal devices.
  • the method may also include: the terminal device determines the third time-frequency resource and the fourth time-frequency resource.
  • the third time-frequency resource and the fourth time-frequency resource may be configured by the network device to the terminal device.
  • mapping method of the first data in the third time-frequency resource is the same as the mapping method of the second data in the third time-frequency resource, which is beneficial for reducing the interference between the first data and the second data when the network device performs despreading and interference elimination when there are both terminal devices sending the first data and other terminal devices sending the second data, thereby improving the demodulation performance.
  • Figure 7 shows that when a codebook determined by terminal device #1 is the first codebook, the first data is sent in the third time-frequency resource and the first reference signal is sent in the fourth time-frequency resource;
  • Figure 8 shows that when a codebook determined by terminal device #2 is the second codebook, the second data is sent in the third time-frequency resource and the fourth time-frequency resource.
  • the four values obtained after the codeword with a codeword length of 4 is extended are mapped on the time-frequency resource along the time domain direction.
  • Figures 7 and 8 show 8 symbols from t 1 to t 2 , and the 8 symbols are symbol #0 to symbol #7 in order from front to back in time.
  • symbol #0, symbol #1, symbol #4, and symbol #5 are the third time-frequency resource; symbol #2, symbol #3, symbol #6, and symbol #7 are the fourth time-frequency resource.
  • symbol #0, symbol #1, symbol #4, and symbol #5 are the third time-frequency resource; symbol #2, symbol #3, symbol #6, and symbol #7 are the fourth time-frequency resource.
  • the four rectangular boxes with the same filling pattern on the same subcarrier in symbol #0, symbol #1, symbol #4, and symbol #5 are represented as follows: the four values obtained after a modulated symbol is extended using a codeword of length 4. It can be seen that the four values are mapped along the time domain, that is, mapped along different symbols. Similarly, in Figure 8, the data sent by terminal device #2 in the third time-frequency resource is also mapped along the time domain.
  • the network device can eliminate the interference between the first data and the second data received in the third time-frequency resource through despreading processing and interference elimination technology. Compared with the method in which the first data sent by terminal device #1 and the second data sent by terminal device #1 are mapped differently in the third time-frequency resource, this can reduce interference between data and improve demodulation performance.
  • mapping method of the second data in the fourth time-frequency resource can be predefined, or can be indicated by the network device through signaling, or can be determined by negotiation between the network device and the terminal device without limitation.
  • the network device may use the codeword corresponding to the first reference signal to perform despreading processing on the received data.
  • the network device may perform despreading processing on the received data in a blind detection manner. Specifically, the network device may perform despreading processing on the received data one by one using the codewords in the first codebook and the second codebook until the correct data is obtained.
  • the method may further include: the network device demodulates the first data or the second data after despreading using the modulation mode corresponding to the determined codebook.
  • the terminal device can determine a codebook from the first codebook and the second codebook.
  • each codeword in the first codebook has a corresponding reference signal; each codeword in the second codebook does not have a corresponding reference signal.
  • the terminal device sends the first data and the first reference signal, and the determined codebook is the first codebook; the first data is determined by the codeword in the first codebook; the first reference signal corresponds to the codeword used to determine the first data.
  • the terminal device sends the second data, and the determined codebook is the second codebook; the second data is determined by the codeword in the second codebook.
  • the design of the first codebook and the second codebook can increase the codeword capacity when the number of reference signals is limited, reduce the probability of different terminal devices using the same codeword to process data, and reduce the probability of reference signal collision, thereby improving the channel estimation performance, and then improving the demodulation performance and spectrum efficiency.
  • the terminal device may not send a reference signal, and the reference signal overhead is also reduced.
  • the network device or terminal device may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a function of the above functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • an embodiment of the present application provides a communication device 900.
  • the communication device 900 can be a component of a network device (for example, an integrated circuit, a chip, etc.), or a component of a terminal device (for example, an integrated circuit, a chip, etc.).
  • the communication device 900 can also be other communication units for implementing the method in the method embodiment of the present application.
  • the communication device 900 may include a processing unit 901.
  • the communication device 900 may also include a communication unit 902, and the processing unit 901 is used to control the communication unit 902 to send and receive data/signaling.
  • the communication device 900 may also include a storage unit 903.
  • the processing unit 901 is configured to determine a codebook from a first codebook and a second codebook according to a first parameter; each codeword in the first codebook has a corresponding reference signal; and each codeword in the second codebook does not have a corresponding reference signal.
  • the communication unit 902 is used to send the first data and the first reference signal, the determined codebook is the first codebook, the first data is determined by using the codeword in the first codebook, and the first reference signal corresponds to the codeword used to determine the first data.
  • the communication unit 902 is used to send the second data, the determined codebook is the second codebook, and the second data is determined by using the codeword in the second codebook.
  • the second data is determined by using code words in the second codebook and a modulation mode corresponding to the second codebook; the modulation mode corresponding to the second codebook is differential modulation or chaotic modulation.
  • the processing unit 901 is further configured to determine a first range and a second range. If the first parameter belongs to the first range, the determined codebook is the first codebook; if the first parameter belongs to the second range, the determined codebook is the second codebook.
  • the first parameter includes one or more of the following: transmission block size, code rate, reference signal reception power, reference signal strength indication, reference signal reception quality, modulation and coding strategy, and a count value of a synchronization timer.
  • any two codewords among the multiple codewords included in the first codebook are different, and/or any two codewords among the multiple codewords included in the second codebook are different; any codeword included in the first codebook is different from any codeword included in the second codebook.
  • the communication unit 902 is further configured to send first indication information, where the first indication information is used to indicate a determined codebook.
  • the first time-frequency resource is used to send the first data and the first reference signal; the second time-frequency resource is used to send the second data; and the first time-frequency resource and the second time-frequency resource are different.
  • the third time-frequency resource is used to send the first data
  • the fourth time-frequency resource is used to send the first reference signal; or, the third time-frequency resource and the fourth time-frequency resource are both used to send the second data.
  • the mapping method of the first data in the third time-frequency resource is the same as the mapping method of the second data in the third time-frequency resource; the third time-frequency resource and the fourth time-frequency resource are different.
  • the communication unit 902 is used to receive first data and a first reference signal; the first data is determined using a codeword in a first codebook; and the first reference signal corresponds to the codeword used to determine the first data.
  • the communication unit 902 is used to receive second data, and the second data is determined using a codeword in a second codebook. Each codeword in the first codebook has a corresponding reference signal; and each codeword in the second codebook does not have a corresponding reference signal.
  • the second data is determined by using code words in the second codebook and a modulation mode corresponding to the second codebook; the modulation mode corresponding to the second codebook is differential modulation or chaotic modulation.
  • the first parameter includes one or more of the following: transmission block size, code rate, reference signal reception power, reference signal strength indication, reference signal reception quality, modulation and coding strategy, and a count value of a synchronization timer.
  • any two codewords among the multiple codewords included in the first codebook are different, and/or any two codewords among the multiple codewords included in the second codebook are different; any codeword included in the first codebook is different from any codeword included in the second codebook.
  • the communication unit 902 is further configured to receive first indication information, where the first indication information is used to determine a codebook used to process the first data or the second data.
  • the first time-frequency resource is used to receive the first data and the first reference signal; the second time-frequency resource is used to receive the second data; and the first time-frequency resource and the second time-frequency resource are different.
  • the third time-frequency resource is used to receive the first data
  • the fourth time-frequency resource is used to receive the first reference signal; or, the third time-frequency resource and the fourth time-frequency resource are used to receive the second data; the mapping method of the first data in the third time-frequency resource is the same as the mapping method of the second data in the third time-frequency resource; the third time-frequency resource and the fourth time-frequency resource are different.
  • the embodiment of the present application also provides a communication device 1000, as shown in Figure 10.
  • the communication device 1000 can be a network device or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a processor that supports the terminal device to implement the above method.
  • the device can be used to implement the method described in the above method embodiment, and the details can be referred to the description in the above method embodiment.
  • the communication device 1000 may include one or more processors 1001.
  • the processor 1001 may be used to implement part or all of the functions of the above-mentioned network device or terminal device through a logic circuit or running a computer program.
  • the processor 1001 may be a general-purpose processor or a dedicated processor, etc. For example, it may be a baseband processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component or a central processing unit (CPU).
  • CPU central processing unit
  • the baseband processor may be used to process the communication protocol and the communication data
  • the central processing unit may be used to control the communication device, execute the software program, and process the data of the software program, wherein the communication device is, for example, a base station, a baseband chip, a terminal, a terminal chip, a centralized unit (distributed unit, DU) or a distributed unit (centralized unit, CU), etc.
  • the communication device 1000 may include one or more memories 1002, on which instructions 1004 may be stored, and the instructions may be executed on the processor 1001, so that the communication device 1000 performs the method described in the above method embodiment.
  • data may also be stored in the memory 1002.
  • the processor 1001 and the memory 1002 may be provided separately or integrated together.
  • the memory 1002 may include, but is not limited to, non-volatile memories such as a hard disk drive (HDD) or a solid-state drive (SSD), random access memory (RAM), erasable programmable ROM (EPROM), ROM or portable read-only memory (compact disc read-only memory, CD-ROM), etc.
  • non-volatile memories such as a hard disk drive (HDD) or a solid-state drive (SSD), random access memory (RAM), erasable programmable ROM (EPROM), ROM or portable read-only memory (compact disc read-only memory, CD-ROM), etc.
  • the communication device 1000 may further include a transceiver 1005 and an antenna 1006.
  • the transceiver 1005 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., for implementing a transceiver function.
  • the transceiver 1005 may include a receiver and a transmitter, the receiver may be referred to as a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be referred to as a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the processor 1001 is configured to determine a codebook from a first codebook and a second codebook according to a first parameter; each codeword in the first codebook has a corresponding reference signal; and each codeword in the second codebook does not have a corresponding reference signal.
  • the transceiver 1005 is used to send the first data and the first reference signal, the determined codebook is the first codebook, the first data is determined by using the codeword in the first codebook, and the first reference signal corresponds to the codeword used to determine the first data.
  • the transceiver 1005 is used to send the second data, the determined codebook is the second codebook, and the second data is determined by using the codeword in the second codebook.
  • the second data is determined by using code words in the second codebook and a modulation mode corresponding to the second codebook; the modulation mode corresponding to the second codebook is differential modulation or chaotic modulation.
  • the processor 1001 is further configured to determine a first range and a second range. If the first parameter belongs to the first range, the determined codebook is the first codebook; if the first parameter belongs to the second range, the determined codebook is the second codebook.
  • the first parameter includes one or more of the following: transmission block size, code rate, reference signal reception power, reference signal strength indication, reference signal reception quality, modulation and coding strategy, and a count value of a synchronization timer.
  • any two codewords among the multiple codewords included in the first codebook are different, and/or any two codewords among the multiple codewords included in the second codebook are different; any codeword included in the first codebook is different from any codeword included in the second codebook.
  • the transceiver 1005 is further configured to send first indication information, where the first indication information is used to indicate a determined codebook.
  • the first time-frequency resource is used to send the first data and the first reference signal; the second time-frequency resource is used to send the second data; and the first time-frequency resource and the second time-frequency resource are different.
  • the third time-frequency resource is used to send the first data
  • the fourth time-frequency resource is used to send the first reference signal; or, both the third time-frequency resource and the fourth time-frequency resource are used to send the second data; the mapping method of the first data in the third time-frequency resource is the same as the mapping method of the second data in the third time-frequency resource; the third time-frequency resource and the fourth time-frequency resource are different.
  • the transceiver 1005 is used to receive first data and a first reference signal; the first data is determined using a codeword in a first codebook; and the first reference signal corresponds to the codeword used to determine the first data.
  • the transceiver 1005 is used to receive second data, and the second data is determined using a codeword in a second codebook. Each codeword in the first codebook has a corresponding reference signal; and each codeword in the second codebook does not have a corresponding reference signal.
  • the second data is determined by using code words in the second codebook and a modulation mode corresponding to the second codebook; the modulation mode corresponding to the second codebook is differential modulation or chaotic modulation.
  • the first parameter includes one or more of the following: transmission block size, code rate, reference signal reception power, reference signal strength indication, reference signal reception quality, modulation and coding strategy, and a count value of a synchronization timer.
  • any two codewords among the multiple codewords included in the first codebook are different, and/or any two codewords among the multiple codewords included in the second codebook are different; any codeword included in the first codebook is different from any codeword included in the second codebook.
  • the transceiver 1005 is further configured to receive first indication information, where the first indication information is used to determine a codebook used to process the first data or the second data.
  • the first time-frequency resource is used to receive the first data and the first reference signal; the second time-frequency resource is used to receive the second data; and the first time-frequency resource and the second time-frequency resource are different.
  • the third time-frequency resource is used to receive the first data
  • the fourth time-frequency resource is used to receive the first reference signal; or, the third time-frequency resource and the fourth time-frequency resource are used to receive the second data; the mapping method of the first data in the third time-frequency resource is the same as the mapping method of the second data in the third time-frequency resource; the third time-frequency resource and the fourth time-frequency resource are different.
  • the processor 1001 may include a transceiver for implementing the receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 1001 may store an instruction 1003, and the instruction 1003 runs on the processor 1001, so that the communication device 1000 can execute the method described in the above method embodiment.
  • the instruction 1003 may be solidified in the processor 1001, in which case the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiments.
  • the processor and transceiver described in the embodiments of the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit (RFIC), a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • IC integrated circuit
  • RFIC radio frequency integrated circuit
  • ASIC application specific integrated circuit
  • PCB printed circuit board
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the embodiments of the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 10.
  • the communication device may be an independent device or may be part of a larger device.
  • the communication device may be:
  • the IC set may also include a storage component for storing data and instructions;
  • ASIC such as a modem
  • the communication device can be a chip or a chip system
  • the chip 1100 shown in Figure 11 includes a processor 1101 and an interface 1102.
  • the number of processors 1101 can be one or more, and the number of interfaces 1102 can be multiple.
  • the processor 1101 can be a logic circuit, and the interface 1102 can be an input-output interface, an input interface, or an output interface.
  • the chip 1100 may also include a memory 1103.
  • the processor 1101 is configured to determine a codebook from a first codebook and a second codebook according to a first parameter; each codeword in the first codebook has a corresponding reference signal; and each codeword in the second codebook does not have a corresponding reference signal.
  • the interface 1102 is used to send the first data and the first reference signal, the determined codebook is the first codebook, the first data is determined by using the codeword in the first codebook, and the first reference signal corresponds to the codeword used to determine the first data.
  • the interface 1102 is used to send the second data, the determined codebook is the second codebook, and the second data is determined by using the codeword in the second codebook.
  • the interface 1102 is used to receive first data and a first reference signal; the first data is determined using a codeword in a first codebook; and the first reference signal corresponds to the codeword used to determine the first data.
  • the interface 1102 is used to receive second data, and the second data is determined using a codeword in a second codebook. Each codeword in the first codebook has a corresponding reference signal; and each codeword in the second codebook does not have a corresponding reference signal.
  • the communication device 1000 and the chip 1100 can also execute the implementation method described in the above-mentioned communication device 900.
  • the various illustrative logical blocks and steps listed in the embodiments of the present application can be implemented by electronic hardware, computer software, or a combination of the two. Whether such functions are implemented by hardware or software depends on the specific application and the design requirements of the entire system. Those skilled in the art can use various methods to implement the described functions for each specific application, but such implementation should not be understood as exceeding the scope of protection of the embodiments of the present application.
  • the present application also provides a computer-readable storage medium for storing computer software instructions, which, when executed by a communication device, implement the functions of any of the above method embodiments.
  • the present application also provides a computer program product for storing computer software instructions, which, when executed by a communication device, implement the functions of any of the above method embodiments.
  • the present application also provides a computer program, which, when executed on a computer, implements the functions of any of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a high-density digital video disc (DVD)), or a semiconductor medium (e.g., an SSD), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD semiconductor medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种数据传输方法及装置,该方法包括:终端设备根据第一参数,从第一码本和第二码本中确定一个码本。其中,第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。终端设备发送第一数据和第一参考信号,确定的一个码本是第一码本;第一数据是采用第一码本中的码字确定的;第一参考信号与确定第一数据所采用的码字对应。或者,终端设备发送第二数据,确定的一个码本是第二码本;第二数据是采用第二码本中的码字确定的。该方法中第一码本和第二码本的设计增加了码字容量,有利于降低参考信号碰撞的概率,从而能够提升信道估计性能,进而提升解调性能。

Description

数据传输方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
目前,在非正交多址(non-orthogonal multiple access,NoMA)传输系统中,码本中的码字与参考信号对应,终端可以采用码本中的码字对数据进行扩展(spreading)处理,并将扩展处理后的数据以及扩展处理中采用的码字所对应的参考信号发送给基站。基站可以检测接收到的参考信号以确定对应的码字,并基于确定的码字对接收到的数据进行解扩处理;基站还基于接收到的参考信号进行信道估计。
其中,如果码本中的码字与参考信号一一对应,一般而言码字容量即码本包含的码字数目会受到参考信号数目的限制。当终端数目比较多时,不同终端采用相同码字处理数据的概率较高,那么不同终端发送同一参考信号即产生参考信号碰撞的概率较大。而令一个参考信号对应码本中多个码字的方式可以增加码字容量,但在这一方式中,不同终端即使采用不同码字进行扩展处理,采用的码字也可能对应同一个参考信号,从而产生参考信号碰撞。参考信号碰撞会影响信道估计性能,进而影响解调性能。
发明内容
本申请实施例提供一种数据传输方法及装置,能够降低参考信号碰撞的概率,提升解调性能。
第一方面,本申请提供一种数据传输方法,该方法的执行主体可以是终端设备也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。该方法包括:终端设备根据第一参数,从第一码本和第二码本中确定一个码本。其中,第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。终端设备发送第一数据和第一参考信号,确定的一个码本是第一码本;第一数据是采用第一码本中的码字确定的;第一参考信号与确定第一数据所采用的码字对应。或者,终端设备发送第二数据,确定的一个码本是第二码本;第二数据是采用第二码本中的码字确定的。
可见,终端设备发送的数据是基于第一码本或第二码本中的码字确定的,其中,第一码本中的码字对应了参考信号,第二码本中的码字不对应参考信号,在参考信号数目有限的情况下增加了码字容量,能够降低终端设备与其他终端设备选择到相同码字的概率,降低了终端设备与其他终端设备发送同一参考信号的概率,即降低了参考信号碰撞的概率,从而能够提升信道估计性能,进而提升解调性能和频谱效率。另外,如果终端设备确定的一个码本是第二码本,终端设备可以不发送参考信号,还减少了参考信号的开销以及用于发送参考信号的资源开销,这样可以有更多的时频资源能够用于传输数据,可以提升解调性能。
在一种可选的实施方式中,第二数据是采用第二码本中的码字以及第二码本对应的调制方式确定的;第二码本对应的调制方式为差分调制或混沌调制。由于网络设备在接收到采用差分调制或混沌调制生成的数据时,可以不利用参考信号进行信道估计得到信道相应,便可以进行相应的均衡、解调操作得到终端设备发送的数据,因此第二码本对应差分调制或混沌 调制时,第二码本中的码字可以不对应参考信号,那么终端设备确定的一个码本是第二码本时终端设备可以不发送参考信号,节省了参考信号的开销。
在一种可选的实施方式中,该方法还包括:终端设备确定第一范围和第二范围。如果第一参数属于第一范围,确定的一个码本是第一码本;如果第一参数属于第二范围,确定的一个码本是第二码本。该实施方式使得终端设备能够从第一码本和第二码本中确定一个码本,其中,第一码本和第二码本的设计能够增加码字容量,有利于降低参考信号碰撞的概率,提升信道估计性能,进而提升解调性能和频谱效率。
在一种可选的实施方式中,第一参数包括以下一项或多项:传输块大小、码率、参考信号接收功率、参考信号强度指示、参考信号接收质量、调制与编码策略、同步定时器的计数值。
在一种可选的实施方式中,第一码本包括的多个码字中任意两个码字不同,和/或,第二码本包括的多个码字中任意两个码字不同;第一码本包括的任一码字与第二码本包括的任一码字不同。可见,第一码本和第二码本中的码字均互不相同,增加了码字容量,有利于降低参考信号碰撞的概率,提升信道估计性能,进而提升解调性能和频谱效率。
在一种可选的实施方式中,该方法还包括:终端设备发送第一指示信息,第一指示信息用于指示确定的一个码本。可见,终端设备可以通过第一指示信息告知网络设备,终端设备确定的码本,有利于网络设备能够基于第一指示信息所指示的码本处理接收的第一数据或第二数据。
在一种可选的实施方式中,第一时频资源用于发送第一数据和第一参考信号;第二时频资源用于发送第二数据;第一时频资源和第二时频资源不同。该实施方式有利于使得网络设备可基于接收数据所采用的时频资源确定终端设备处理数据所采用的码本,进而可基于该码本处理接收到的数据。
在一种可选的实施方式中,第三时频资源用于发送第一数据,第四时频资源用于发送第一参考信号;或者,第三时频资源和第四时频资源均用于发送第二数据;第一数据在第三时频资源内的映射方式,与第二数据在第三时频资源内的映射方式相同;第三时频资源和第四时频资源不同。该实施方式中,第一数据和第二数据在第三时频资源内的映射方式相同,有利于在既有终端设备发送第一数据,又有其他终端设备发送第二数据的情况下,降低网络设备对接收到的数据进行解扩处理和干扰消除的过程中第一数据和第二数据之间的干扰,进而提升解调性能和频谱效率。
第二方面,本申请提供一种数据传输方法,该方法的执行主体可以是网络设备也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:网络设备接收第一数据和第一参考信号;第一数据是采用第一码本中的码字确定的;第一参考信号与确定第一数据所采用的码字对应。或者,网络设备接收第二数据,第二数据是采用第二码本中的码字确定的。第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。
可见,网络设备接收的数据是基于第一码本或第二码本中的码字确定的,其中,第一码本中的码字对应了参考信号,第二码本中的码字不对应参考信号,在参考信号数目有限的情况下增加了码字容量,能够降低终端设备与其他终端设备选择到相同码字的概率,降低了不同终端设备发送同一参考信号的概率,即降低了参考信号碰撞的概率,从而能够提升信道估计性能,进而提升解调性能和频谱效率。另外,第二码本中的码字不对应参考信号,有利于终端设备采用第二码本处理数据时可以不发送参考信号,节省了参考信号的开销以及用于接 收参考信号的资源开销,这样可以有更多的时频资源能够用于传输数据,可以提升解调性能。
在一种可选的实施方式中,第二数据是采用第二码本中的码字以及第二码本对应的调制方式确定的;第二码本对应的调制方式为差分调制或混沌调制。由于网络设备在接收到采用差分调制或混沌调制生成的数据时,可以不利用参考信号进行信道估计得到信道相应,便可以进行相应的均衡、解调操作得到终端设备发送的数据,因此第二码本对应差分调制或混沌调制时,第二码本中的码字可以不对应参考信号,有利于终端设备采用第二码本处理数据时可以不发送参考信号,节省了参考信号的开销。
在一种可选的实施方式中,第一参数包括以下一项或多项:传输块大小、码率、参考信号接收功率、参考信号强度指示、参考信号接收质量、调制与编码策略、同步定时器的计数值。
在一种可选的实施方式中,第一码本包括的多个码字中任意两个码字不同,和/或,第二码本包括的多个码字中任意两个码字不同;第一码本包括的任一码字与第二码本包括的任一码字不同。可见,第一码本和第二码本中的码字均互不相同,增加了码字容量,有利于降低参考信号碰撞的概率,提升信道估计性能,进而提升解调性能和频谱效率。
在一种可选的实施方式中,该方法还包括:网络设备接收第一指示信息,第一指示信息用于确定处理第一数据或第二数据采用的码本。可见,网络设备能够基于第一指示信息所指示的码本确定终端设备处理数据所采用的码本,进而网络设备可采用该码本处理接收的数据。
在一种可选的实施方式中,第一时频资源用于接收第一数据和第一参考信号;第二时频资源用于接收第二数据;第一时频资源和第二时频资源不同。该实施方式可使得网络设备基于接收数据所采用的时频资源确定终端设备处理数据所采用的码本,进而可基于该码本处理接收到的数据。
在一种可选的实施方式中,第三时频资源用于接收第一数据,第四时频资源用于接收第一参考信号;或者,第三时频资源和第四时频资源均用于接收第二数据;第一数据在第三时频资源内的映射方式,与第二数据在第三时频资源内的映射方式相同;第三时频资源和第四时频资源不同。该实施方式中,第一数据和第二数据在第三时频资源内的映射方式相同,能够在网络设备既接收到终端设备发送的第一数据,又接收到其他终端设备发送的第二数据的情况下,降低网络设备对接收到的数据进行解扩处理和干扰消除的过程中第一数据和第二数据之间的干扰,进而提升解调性能和频谱效率。
第三方面,本申请还提供一种通信装置。该通信装置具有实现上述第一方面所述的部分或全部实施方式的功能,或者具有实现上述第二方面所述的部分或全部功能实施方式的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持该通信装置与其他通信装置之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括:处理单元和通信单元,处理单元用于控制通信单元进行数据/信令收发。
处理单元用于根据第一参数,从第一码本和第二码本中确定一个码本。其中,第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。
通信单元用于发送第一数据和第一参考信号,确定的一个码本是第一码本;第一数据是 采用第一码本中的码字确定的;第一参考信号与确定第一数据所采用的码字对应。或者,通信单元用于发送第二数据,确定的一个码本是第二码本;第二数据是采用第二码本中的码字确定的。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置包括:处理单元和通信单元,处理单元用于控制通信单元进行数据/信令收发。
通信单元用于接收第一数据和第一参考信号;第一数据是采用第一码本中的码字确定的;第一参考信号与确定第一数据所采用的码字对应。或者,
通信单元用于接收第二数据,第二数据是采用第二码本中的码字确定的。
其中,第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
作为示例,通信单元可以为收发器或通信接口,存储单元可以为存储器,处理单元可以为处理器。处理器可用于通过逻辑电路或运行计算机程序执行上述第一方面或第二方面所述的方法,收发器或通信接口可用于收发信号和/或数据,存储器可用于存储计算机程序。
一种实施方式中,所述通信装置包括:处理器和收发器。处理器用于根据第一参数,从第一码本和第二码本中确定一个码本。其中,第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。
收发器用于发送第一数据和第一参考信号,确定的一个码本是第一码本;第一数据是采用第一码本中的码字确定的;第一参考信号与确定第一数据所采用的码字对应。或者,收发器用于发送第二数据,确定的一个码本是第二码本;第二数据是采用第二码本中的码字确定的。
另外,该方面中,通信装置其他可选的实施方式可参见上述第一方面的相关内容,此处不再详述。
另一种实施方式中,所述通信装置包括:收发器。收发器用于接收第一数据和第一参考信号;第一数据是采用第一码本中的码字确定的;第一参考信号与确定第一数据所采用的码字对应。或者,收发器用于接收第二数据,第二数据是采用第二码本中的码字确定的。其中,第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。
另外,该方面中,通信装置其他可选的实施方式可参见上述第二方面的相关内容,此处不再详述。
另一种实施方式中,该通信装置为芯片或芯片系统。所述处理单元也可以体现为处理电路或逻辑电路;所述收发单元可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器或通信接口可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器(或通信接口)集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在 同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on a Chip,SoC)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
第四方面,本申请还提供一种处理器,用于执行上述各种方法。在执行这些方法的过程中,上述方法中有关发送上述信号和接收上述信号的过程,可以理解为由处理器输出上述信号的过程,以及处理器输入的上述信号的过程。在输出上述信号时,处理器将该上述信号输出给收发器,以便由收发器(或通信接口)进行发射。该上述信号在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器(或通信接口)。类似的,处理器接收输入的上述信号时,收发器(或通信接口)接收该上述信号,并将其输入处理器。更进一步的,在收发器(或通信接口)收到该上述信号之后,该上述信号可能需要进行其他的处理,然后才输入处理器。
对于处理器所涉及的发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第五方面,本申请还提供了一种通信系统,该系统包括上述方面的至少一个终端设备和至少一个网络设备。在另一种可能的设计中,该系统还可以包括本申请提供的方案中与终端设备和/或网络设备进行交互的其他设备。
第六方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,当计算机程序被运行时,使得上述第一方面或第二方面任一项所述的方法被执行。
第七方面,本申请还提供了一种包括指令的计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码并运行时,使得上述第一方面或第二方面任一项所述的方法被执行。
第八方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,所述接口用于获取程序或指令,所述处理器用于调用所述程序或指令以实现第一方面所涉及的功能,或者用于调用所述程序或指令以实现第二方面所涉及的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的一种码字与参考信号对应的示意图;
图3是本申请实施例提供的另一种码字与参考信号对应的示意图;
图4是本申请实施例提供的另一种码字与参考信号对应的示意图;
图5是本申请实施例提供的一种数据传输方法的流程示意图;
图6是本申请实施例提供的一种第一码本和第二码本的示意图;
图7是本申请实施例提供的一种第三时频资源和第四时频资源的示意图;
图8是本申请实施例提供的另一种第三时频资源和第四时频资源的示意图;
图9是本申请实施例提供的一种通信装置的结构示意图;
图10是本申请实施例提供的另一种通信装置的结构示意图;
图11是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
首先,为了更好的理解本申请实施例公开的数据传输方法,对本申请实施例适用的通信系统进行描述。
本申请实施例可应用于长期演进系统(long term evolution,LTE)、新无线(new radio,NR)系统即第五代(5th generation,5G)通信系统、卫星通信系统等无线通信系统中,以及随着通信技术的不断发展,本申请实施例的技术方案还可应用于第六代(6th generation,6G)通信系统等5G之后演进的通信系统。本申请实施例中,无线通信系统包括但不限于:窄带物联网系统(narrow band-internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA)、LTE以及5G移动通信系统的三大应用场景:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra-reliable low latency communication,URLLC)和海量机器类通信(massive machine type of communication,mMTC)等。
请参阅图1,图1是本申请实施例提供的一种通信系统的结构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备。该通信系统还可以包括网络设备与终端设备之间用于传输数据的信道,例如光纤、电缆或大气等传输媒介。图1所示的设备数量和形态用于举例并不构成对本申请实施例的限定,实际应用中可包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以一个网络设备和两个终端设备为例进行阐述。其中,图1中的网络设备以基站为例,终端设备以手机为例。
本申请实施例中,网络设备可为具有无线收发功能的设备,该网络设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP)或者transmission point,TP)等,还可以为4G、5G甚至6G系统中的基站(base station,BS)。基站是一种部署在无线接入网中为终端设备提供无线通信功能的装置,其还可以称为基站设备,例如LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)、第三代(3th generation,3G)通信系统中的节点B(Node B)、NR中的基站(gNodeB或gNB)等。基站可以包含BBU和远端射频单元(remote radio unit,RRU)。BBU和RRU可以放置在不同的地方,例如:RRU 拉远,放置于高话务量的区域,BBU放置于中心机房。BBU和RRU也可以放置在同一机房。BBU和RRU也可以为一个机架下的不同部件。基站可以是以下形式:宏基站,微基站(也称为小站),微微基站,中继站,接入点,或,气球站等。
本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、终端(terminal)、接入终端、用户单元(subscriber unit)、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、用户代理或用户装置,可以应用于4G、5G甚至6G系统。本申请实施例中的终端设备可以是具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如可以是蜂窝电话(cellular phone)、智能手机(smart phone)、平板电脑(Pad)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
为了便于理解本申请公开的实施例,作以下两点说明。
(1)本申请公开的实施例中场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
(2)本申请公开的实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
其次,对本申请实施例涉及的相关概念进行简单的介绍。
1.码本和码字
一个码本(codebook)由一个或多个码字(code word)组成,码字可用于终端设备对数据进行扩展(spreading)处理。其中,终端设备进行扩展处理的数据可以是调制符号(modulation symbol),终端设备进行扩展处理的数据也可以是将调制符号进行傅里叶变换后得到的输出数据。在本申请实施例中,码字可以是稀疏码字,例如是稀疏码多址(sparse code multiple access,SCMA)传输使用的码字;码字也可以是稠密码字,例如是多用户共享多址(multi user shared access,MUSA)传输使用的码字,不作限制。另外,码本还可以称为签名(signature)序列组,相应的,码字还可以称为签名序列。另外,码本还可以称为扩频序列组,相应的,码字还可以称为扩频序列。
码字容量是指码字数目,码字长度是指一个码字包括的系数值。例如,码字长度为4即一个码字包括4个系数值,码字容量可以为64个码字。又例如,码字长度为L即一个码字包括L个系数值,采用码字对一个调制符号进行扩展处理可以是将该调制符号与L个系数值分别相乘,能够得到扩展处理后的L个数据即L个值,其中,L为正整数。
码字跳跃(signature hopping)是指终端设备对多个调制符号进行扩展处理时,针对不同调制符号进行扩展处理所采用的码字可以不同。码字跳跃有利于随机化多个终端设备进行非 正交多址(non-orthogonal multiple access,NoMA)传输时的干扰,有助于提高解调性能。另外,在终端设备针对多个调制符号不进行码字跳跃时,终端设备对该多个调制符号进行扩展处理所采用的码字相同。
2.参考信号
参考信号可用于网络设备进行信道估计以获取终端设备的信道相应。在NoMA传输系统中,如果参考信号与码字对应,参考信号还可用于网络设备确定终端设备对待发送的数据进行扩展处理所采用的码字,进而网络设备可以基于确定的码字对接收到的数据进行解扩处理。另外,参考信号还可以称为参考信号序列。
在本申请实施例中,参考信号可以是Zad-off Chu序列(简称ZC序列),或者是伪随机噪声(pseudo noise,PN)序列,还可以是解调参考信号(de-modulation reference signal,DMRS)。
3.时间单元
时间单元可以是一个或多个帧(frame)、一个或多个子帧(sub frame)、一个或多个时隙(slot)、一个或多个小时隙(mini-slot)或者一个或多个符号等。其中,符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、离散傅里叶变换扩频的正交频分复用(discrete fourier transform spread spectrum orthogonal frequency division multiplexing,DFT-S-OFDM)符号等。另外,时间单元的持续时间可以是毫秒(millisecond,ms)或秒(second,s)。
在本申请实施例中,用于发送数据、信号或信息的时频资源在时域上可以以时间单元为单位,如第一时频资源、第二时频资源、第三时频资源和第四时频资源在时域上分别包括一个或多个时间单元。另外,时间单元可以是预定义的,还可以是网络设备指定的,不作限制。
目前,在NoMA传输系统中,码本中的码字与参考信号对应,多个终端设备可以同时向网络设备发送数据和参考信号。具体地,任一终端设备可采用码本中的码字对待发送的数据进行扩展处理,或者采用码本中的码字对待发送的数据和参考信号进行扩展处理,并将扩展处理后的数据和参考信号发送给网络设备。网络设备可基于参考信号进行信道估计以获取终端设备的信道相应,以及采用连续干扰消除(successive interference cancellation,SIC)技术消除多个终端设备之间的干扰,提升解调性能。另外,不同终端设备处理待发送的数据所采用的码字可以是正交的或是非正交的。
一种方式中,码本中的码字与参考信号一一对应,即不同码字对应不同的参考信号;那么网络设备可以通过检测参考信号来确定终端设备处理数据所采用的码字。例如,结合图2,码字长度为4,码字容量为64个码字,该64个码字与64个参考信号一一对应。在这种方式中,在码字长度较大时码字设计的空间比较大,即可以设计的码字的数目比较多,此时码字容量可能反而会受限于参考信号的数目,这是因为基于正交性要求能够设计的参考信号的数目有限,那么与参考信号一一对应的码字的数目也会受限。码字容量越小,不同终端设备选择同一码字处理数据的概率越大,那么不同终端设备发送同一参考信号即参考信号碰撞的概率越大,对信道估计性能的影响越大,解调性能越低。例如,结合图3,码字长度为8时可以设计192个码字,但由于能够设计的参考信号数目为64个,要使得码字与参考信号一一对应,码字容量会受到参考信号数目的限制,那么只能确定64个码字。
另一种方式中,一个参考信号对应多个码字。例如,结合图4,码字长度为8时可以设计192个码字,可将该192个码字分为3组,每组包括64个码字,64个参考信号中每个参考信号与每组码字中的1个码字对应,如参考信号#1与第一组码字中的1个码字、第二组中 的1个码字、第三组中的1个码字对应。图3中以不同颜色来区分不同组的码字,颜色相同的码字属于同一组。与码字和参考信号一一对应的方式相比,一个参考信号对应多个码字的方式可以增加码字容量,参考信号碰撞的概率更小。然而,即使多个终端设备所选择的码字不同,不同的码字也可能会对应同一个参考信号,从而产生参考信号碰撞,例如两个终端设备选择了两组码字中对应同一参考信号的不同码字,那么网络设备无法基于检测的参考信号确定终端选择了哪一个码字。可见,采用一个参考信号对应多个码字的方式依然会使得参考信号碰撞的概率较大,影响信道估计性能,进而影响解调性能。
本申请实施例提供了一种数据传输方法,该方法中,终端设备可根据第一参数,从第一码本和第二码本中确定一个码本;第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。终端设备发送第一数据和第一参考信号,确定的一个码本是第一码本,第一数据是采用第一码本中的码字确定的,第一参考信号与确定第一数据所采用的码字对应。或者,终端设备发送第二数据,确定的一个码本是第二码本,第二数据是采用第二码本中的码字确定的。该数据传输方法能够降低参考信号碰撞的概率,有利于提升信道估计性能,进而提升解调性能。
请参阅图5,图5是本申请实施例提供的一种数据传输方法的流程示意图,该数据传输方法从网络设备与终端设备交互的角度进行阐述。该数据传输方法包括以下步骤:
S101,终端设备根据第一参数,从第一码本和第二码本中确定一个码本。第一码本中每个码字分别具有对应的参考信号,第二码本中每个码字均不具有对应的参考信号。
在一种可选的实施方式中,第一码本包括的多个码字中任意两个码字不同,和/或,第二码本包括的多个码字中任意两个码字不同;第一码本包括的任一码字与第二码本包括的任一码字不同。其中,第一码本中的码字与参考信号之间可以是一一对应的,或者,一个参考信号与第一码本中的多个码字对应。另外,第一码本和第二码本分别包括的码字可以是预定义的,也可以是网络设备和终端设备协商确定的,还可以是由网络设备通过信令通知给终端设备的,例如该信令可以是射频资源控制(radio resource control,RRC)信令。
例如,第一码本包括N个码字,第二码本包括P个码字,N和P均为正整数。在第一码本中,每个码字与参考信号一一对应;结合图6,存在互不相同的N个参考信号,该N个参考信号与第一码本包括的N个码字一一对应。或者,一个参考信号与第一码本中的多个码字对应;存在互不相同的
Figure PCTCN2022121811-appb-000001
个参考信号,其中,
Figure PCTCN2022121811-appb-000002
为正整数,Q为大于1的整数,Q的取值可以是预定义的;可将第一码本中的N个码字分为Q组码字,每组码字包括
Figure PCTCN2022121811-appb-000003
个码字,
Figure PCTCN2022121811-appb-000004
个参考信号中每个参考信号与每组码字中的一个码字对应,也就是说,
Figure PCTCN2022121811-appb-000005
个参考信号中每个参考信号与Q个码字对应。
在一种可选的实施方式中,第一码本和第二码本分别对应了调制方式。采用第一码本中的码字以及第一码本对应的调制方式可确定第一数据,采用第二码本中的码字以及第二码本对应的调制方式可确定第二数据。具体地,调制方式可用于终端设备对待发送的数据进行调制处理以得到调制符号,那么,第一数据是采用第一码本中的码字对基于第一码本对应的调制方式得到的调制符号进行扩展处理得到的;第二数据是采用第二码本中的码字对基于第二码本对应的调制方式得到的调制符号进行扩展处理得到的。
可选的,可以对调制符号进行傅里叶变换得到变换后的输出数据,第一数据可以是采用 第一码本中的码字对变换后的输出数据进行扩展处理得到的;第二数据可以是采用第二码本中的码字对变换后的输出数据进行扩展处理得到的。
可选的,第二码本对应的调制方式为差分调制(differential modulation)或混沌调制(chaos modulation)。当网络设备接收的是基于差分调制或混沌调制处理的数据时,可以不需要利用参考信号进行信道估计得到信道相应,便可以进行相应的均衡、解调操作得到终端设备发送的数据,因此第二码本对应的调制方式为差分调制或混沌调制时第二码本可以不对应参考信号,那么终端设备将第二码本作为确定的一个码本时,可以不发送参考信号,节省了参考信号的开销。
在一种可选的实施方式中,第一参数包括以下一项或多项:数据包大小、码率(code rate)、参考信号接收功率(reference signal received power,RSRP)、参考信号强度指示(received signal strength indicator,RSSI)、参考信号接收质量(reference signal received quality,RSRQ)、调制与编码策略(modulation and coding scheme,MCS)、同步定时器的计数值。其中,数据包大小可以是传输块大小(transport block size,TBS)。
其中,RSRP、RSSI或RSRQ可以是终端设备对来自网络设备的下行参考信号进行测量得到的。例如,基于RSRP、RSSI或RSRQ的值,终端设备可以判断当前进行数据传输的环境情况,或者判断终端设备和网络设备的同步情况。如果当前进行数据传输的环境情况比较差,则终端设备可以采用第二码本对应的调制方式生成调制符号;反之终端设备可以采用第一码本对应的调制方式生成调制符号。
同步定时器可以用于判断终端设备和网络设备的同步情况。例如终端设备与网络设备采用随机接入完成同步后,终端设备可以启动同步定时器进行计数,当同步定时器的计数值超过所设定的范围时,可以认为终端设备与网络设备之间同步状态比较差或者已经不同步了,此时终端设备可以采用第二码本对应的调制方式生成调制符号;反之终端设备可以采用第一码本对应的调制方式生成调制符号。
在一种可选的实施方式中,该方法还可以包括:终端设备确定第一范围和第二范围;如果第一参数属于第一范围,确定的一个码本是第一码本;如果第一参数属于第二范围,确定的一个码本是第二码本。例如,第一参数是数据包大小、码率、RSRP、RSSI或RSRQ,第一范围是大于第一阈值的范围,第二范围是小于或等于第一阈值的范围;那么,如果第一参数大于第一阈值,终端设备确定的一个码本是第一码本;如果第一参数小于或等于第一阈值,终端设备确定的一个码本是第二码本。其中,第一参数分别是数据包大小、码率、RSRP、RSSI和RSRQ时,第一阈值的取值可能不同。例如第一参数是数据包大小时,第一阈值可以是50个字节(byte),即当数据包大小大于50byte时,终端设备确定的一个码本是第一码本;当数据包大小是小于或等于50byte时,终端设备确定的一个码本是第二码本。例如第一参数是码率时,第一阈值可以是1/3,即当码率大于1/3时,终端设备确定的一个码本是第一码本;当码率小于或等于1/3时,终端设备确定的一个码本是第二码本。又例如,第一参数是同步定时器的计数值,第一范围是小于或等于第二阈值的范围,第二范围是大于第二阈值的范围;那么,如果同步定时器的计数值小于或等于第二阈值,终端设备确定的一个码本是第一码本;如果同步定时器的计数值大于第二阈值,终端设备确定的一个码本是第二码本。另外,第一阈值和第二阈值可以是预定义的,也可以是网络设备和终端设备协商确定的,还可以是网络设备通过信令指示给终端设备的,例如该信令可以是RRC信令,不作限制。
可见,如果第一码本和第二码本分别对应了调制方式,第一参数包括数据包大小和/或码率时,终端设备可以基于自身的业务需求灵活选择数据包大小或码率,从而灵活地选择合适 的调制方式来调制待发送的数据,有利于提升频谱效率。第一参数包括RSRP、RSSI、RSRQ、同步定时器的计数值中的一项或多项时,终端设备可以基于第一参数判断终端设备和网络设备之间的同步情况。在终端设备和网络设备之间的同步情况较差如完全不同步时,如果多个终端设备均发送参考信号的话,不同终端设备发送的参考信号的不同步会导致参考信号之间的干扰较大,影响信道估计的性能,从而影响解调性能,因此终端设备可以将第二码本作为确定的一个码本以及采用第二码本对应的调制方式对待发送的数据进行调制,这样,终端设备可以不发送参考信号,有利于提升解调性能和频谱效率,还减少了参考信号的开销。
在一种可选的实施方式中,终端设备根据第一参数从第一码本和第二码本中确定一个码本,可以包括:第一参数是MCS,第一码本和第二码本分别对应了调制方式;终端设备从第一码本和第二码本中确定调制方式与MCS对应的码本。例如,第一码本对应的调制方式为正交幅度调制(quadrature amplitude modulation,QAM),第二码本对应的调制方式为差分调制或者混沌调制,如果MCS所指示的是QAM,终端设备确定的一个码本为第一码本;如果MCS所指示的是差分调制或者混沌调制,终端设备确定的一个码本为第二码本。可选的,MCS可以是网络设备指示给终端设备的,或者还可以是预定义的,又或者是网络设备与终端设备协商确定的,不作限制。
在另一种可选的实施方式中,终端设备可以不执行步骤S101,也就是终端设备可以不根据第一参数来确定码本,而是由网络设备为终端设备指定一个码本,指定的码本是第一码本或是第二码本。具体地,网络设备可向终端设备发送第二指示信息,相应的,终端设备接收来自网络设备的第二指示信息,并将第二指示信息所指示的码本作为确定的一个码本,其中,第二指示信息用于指示终端设备处理待发送的数据采用的码本。
在一种可选的实施方式中,终端设备从第一码本和第二码本中确定一个码本之后,该数据传输方法还包括:终端设备从确定的一个码本中选择码字;如果确定的一个码本是第一码本,终端设备从第一码本中选择的码字用于确定第一数据;如果确定的一个码本是第二码本,终端设备从第二码本中选择的码字用于确定第二数据。可选的,终端设备可以随机选择码字。或者,终端设备选择的码字还可以是基于来自网络设备的第三指示信息确定的,该第三指示信息用于指示终端设备选择的码字。例如,第一码本和第二码本中的每个码字分别对应一个索引,第三指示信息包括网络设备指示终端设备选择的码字的索引,终端设备可以选择第三指示信息包括的索引所对应的码字。
其中,终端设备选择的码字可以是一个或多个。在终端设备需对一个调制符号进行扩展处理,或者,对多个调制符号进行扩展处理且不采用码字跳跃时,终端设备选择的码字数量为一个,终端设备针对一个或多个调制符号均采用选择的一个码字进行扩展处理。在终端设备对多个调制符号进行扩展处理且采用码字跳跃时,终端设备选择的码字数量为多个,该多个码字中每个码字分别用于对多个调制符号中的一个调制符号进行扩展处理。在终端设备对多个调制符号进行扩展处理且采用码字跳跃时,终端设备还可以选择一个码字,然后基于所选择的一个码字和预配置的码字跳跃方式确定多个码字,该多个码字中每个码字分别用于对多个调制符号中的一个调制符号进行扩展处理。本申请实施例对在终端设备需对多个调制符号进行扩展处理且采用码字跳跃的情况下,终端设备选择码字的方式不作限制,以下提供一种示例性的码字确定方式。
示例性地,第一码本和第二码本中每个码字分别对应一个索引,终端设备可以从确定的一个码本中随机选择一个码字,并将该码字作为终端设备对多个调制符号中的起始调制符号进行扩展处理所采用的码字,然后基于其他调制符号的索引相比于起始调制符号的索引的偏 移,确定对其他调制符号进行扩展处理所采用的码字的索引相比于对起始调制符号进行扩展处理所采用的码字的索引的偏移,进而确定对多个调制符号中每个调制符号进行扩展处理分别采用的码字。
另外,如果终端设备从第一码本和第二码本中确定的一个码本是第一码本,终端设备还可以执行步骤S102a;如果终端设备从第一码本和第二码本中确定的一个码本是第二码本,终端设备还可以执行步骤S102b。
S102a,终端设备发送第一数据和第一参考信号,确定的一个码本是第一码本,第一数据是采用第一码本中的码字确定的,第一参考信号与确定第一数据所采用的码字对应。相应的,网络设备接收第一数据和第一参考信号。
其中,第一参考信号可用于网络设备确定终端设备确定第一数据所采用的码字。
S102b,终端设备发送第二数据,确定的一个码本是第二码本,第二数据是采用第二码本中的码字确定的。相应的,网络设备接收第二数据。
例如,结合图6,如果终端设备采用第一码本中与参考信号#1对应的码字确定了第一数据,终端设备发送第一数据和参考信号#1。如果终端设备采用第二码本中的码字确定了第二数据,那么终端设备发送第二数据,可以不发送参考信号。
另外,对于网络设备来说,在多个终端设备均采用第一码本中的码字确定数据的情况下,网络设备会接收到来自多个终端设备的多个第一数据和多个第一参考信号。在多个终端设备均采用第二码本中的码字确定数据的情况下,网络设备会接收到来自多个终端设备的多个第二数据。在k 1+k 2个终端设备中的k 1个终端设备采用第一码本中的码字确定数据,其余的k 2个终端设备采用第二码本中的码字确定数据的情况下,网络设备会接收到k 1个第一数据、k 1个第一参考信号以及k 2个第二数据,其中,k 1和k 2均为正整数。
在一种可选的实施方式中,该方法还可以包括:终端设备发送第一指示信息,该第一指示信息用于指示终端设备确定的一个码本;相应的,网络设备接收第一指示信息。由于网络设备在接收数据时并不知晓接收的数据是终端设备采用第一码本中的码字确定的第一数据,还是采用第二码本中的码字确定的第二数据,通过该实施方式,终端设备可以通过第一指示信息告知网络设备,终端设备确定的一个码本是第一码本还是第二码本,有利于网络设备基于第一指示信息所指示的码本对接收到的数据进行解扩处理。
另一种可选的实施方式中,第一数据和第二数据是在不同的时频资源上传输的。示例性地,存在第一时频资源和第二时频资源,第一时频资源和第二时频资源不同。对于终端设备来说,第一时频资源用于发送第一数据和第一参考信号;第二时频资源用于发送第二数据;相应的,对于网络设备来说,第一时频资源用于接收第一数据和第一参考信号;第二时频资源用于接收第二数据。由于网络设备在接收数据时并不知晓接收的数据是终端设备采用第一码本中的码字确定的第一数据,还是采用第二码本中的码字确定的第二数据,通过该实施方式,网络设备可以通过判断接收数据所采用的时频资源是第一时频资源还是第二时频资源,来确定终端设备发送的数据所采用的码本是第一码本还是第二码本,从而网络设备可采用确定的码本中的码字对接收到的数据进行解扩处理。具体地,如果网络设备在第一时频资源内接收到来自终端设备的数据,可以确定接收的数据是终端设备采用第一码本中的码字确定的第一数据;如果网络设备在第二时频资源内接收到来自终端设备的数据,可以确定接收的数据是终端设备采用第二码本中的码字确定的第二数据。可选的,该方法还可以包括:终端设备确定第一时频资源和第二时频资源。该第一时频资源和第二时频资源可以是网络设备配置给终端设备的。
又一种可选的实施方式中,该方法还可以包括:网络设备通过盲检确定终端设备所选择的码本。具体地,由于第一码本中的码字和第二码本的码字不同,网络设备在处理接收到的数据时可采用第一码本和第二码本中的码字进行一一检测,基于检测到正确数据时所采用的码字确定终端设备所选择的码本。
另外,如果第一码本和第二码本分别对应了调制方式,网络设备还可基于确定的码本对应的调制方式对接收到数据进行解调处理。
可选的,用于终端设备发送第一数据和第一参考信号所采用的时频资源,与用于终端设备发送第二数据所采用的时频资源可以是相同的。示例性地,存在第三时频资源和第四时频资源,第三时频资源和第四时频资源不同。其中,对于终端设备来说,第三时频资源用于发送第一数据,第四时频资源用于发送第一参考信号;或者,第三时频资源和第四时频资源均用于发送第二数据。对于网络设备来说,第三时频资源用于接收第一数据,第四时频资源用于接收第一参考信号;或者,第三时频资源和第四时频资源均用于接收第二数据。在既有终端设备采用第一码本中的码字确定了第一数据并发送第一数据,又有其他终端设备采用第二码本中的码字确定了第二数据并发送第二数据的场景下,第三时频资源用于网络设备接收第一数据和第二数据,第四时频资源用于网络设备接收第一参考信号和第二数据。其中,接收的第一数据和第二数据来自不同的终端设备。可选的,该方法还可以包括:终端设备确定第三时频资源和第四时频资源。该第三时频资源和第四时频资源可以是网络设备配置给终端设备的。
另外,第一数据在第三时频资源内的映射方式,与第二数据在第三时频资源内的映射方式相同,有利于在既有终端设备发送第一数据又有其他终端设备发送第二数据的情况下,降低网络设备进行解扩处理和干扰消除时第一数据和第二数据之间的干扰,从而可以提升解调性能。
例如,以码字长度等于4为例,结合图7和图8,图7展示了终端设备#1确定的一个码本是第一码本时,在第三时频资源内发送第一数据以及在第四时频资源内发送第一参考信号;图8展示了终端设备#2确定的一个码本是第二码本时,在第三时频资源内和第四时频资源内发送第二数据。在第一数据或第二数据中,采用码字长度为4的码字进行扩展处理后得到的4个值沿着时域方向在时频资源上映射。图7和图8展示了t 1至t 2中的8个符号,该8个符号按照时间从前至后的顺序依次为符号#0至符号#7。其中符号#0、符号#1、符号#4、符号#5为第三时频资源;符号#2、符号#3、符号#6、符号#7为第四时频资源。图7中,符号#0、符号#1、符号#4、符号#5中同一个子载波上采用相同填充图案的4个矩形框表示为:采用长度为4的码字对一个调制符号进行扩展处理后得到的4个值,可以知道该4个值是沿着时域映射,即沿着不同符号映射的。类似的,在图8中,终端设备#2在第三时频资源内发送的数据也沿着时域映射。
从图7和图8中可以看出,终端设备#1发送的第一数据和终端设备#2发送的第二数据在第三时频资源内是重叠的,那么网络设备接收到两个终端设备发送的数据后,由于两个终端设备发送的数据在第三时频资源内的映射方式相同,因此网络设备可以通过解扩处理、干扰消除技术来消除在第三时频资源内接收到的第一数据和第二数据之间的干扰,与终端设备#1发送的第一数据和终端设备#1发送的第二数据在第三时频资源内的映射方式不同的方式相比,可以降低数据之间干扰,提升解调性能。
另外,第二数据在第四时频资源内的映射方式可以预定义,或者可以是由网络设备通过信令指示的,还可以是网络设备与终端设备协商确定的,不作限制。
在一种可选的实施方式中,如果网络设备接收到第一参考信号,网络设备可以采用第一参考信号对应的码字对接收到的数据进行解扩处理。在另一种可选的实施方式中,网络设备可以采用盲检的方式对接收到的数据进行解扩处理。具体地,网络设备可以采用第一码本和第二码本中的码字一一对接收到的数据进行解扩处理,直至得到正确的数据。
在一种可选的实施方式中,在第一码本和第二码本分别对应了调制方式的情况下,该方法还可以包括:网络设备采用确定的码本所对应的调制方式对解扩处理后的第一数据或第二数据进行解调处理。
综上,该数据传输方法中,终端设备可从第一码本和第二码本中确定一个码本。其中,第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。终端设备发送第一数据和第一参考信号,确定的一个码本是第一码本;第一数据是采用第一码本中的码字确定的;第一参考信号与确定第一数据所采用的码字对应。或者,终端设备发送第二数据,确定的一个码本是第二码本;第二数据是采用第二码本中的码字确定的。其中,第一码本和第二码本的设计能够在参考信号数目有限的情况下增加码字容量,降低不同终端设备采用相同码字处理数据的概率,降低了参考信号碰撞的概率,从而能够提升信道估计性能,进而提升解调性能和频谱效率。另外,如果终端设备确定的是第二码本,终端设备可以不发送参考信号,还减少了参考信号的开销。
为了实现上述本申请实施例提供的方法中的各功能,网络设备或终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图9所示,本申请实施例提供了一种通信装置900。该通信装置900可以是网络设备的部件(例如,集成电路,芯片等等),也可以是终端设备的部件(例如,集成电路,芯片等等)。该通信装置900也可以是其他通信单元,用于实现本申请方法实施例中的方法。该通信装置900可以包括处理单元901。可选的,通信装置900还可以包括通信单元902,处理单元901用于控制通信单元902进行数据/信令收发。可选的,通信装置900还可以包括存储单元903。
在一种可能的设计中,处理单元901用于根据第一参数,从第一码本和第二码本中确定一个码本;第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。
通信单元902用于发送第一数据和第一参考信号,确定的一个码本是第一码本,第一数据是采用第一码本中的码字确定的,第一参考信号与确定第一数据所采用的码字对应。或者,通信单元902用于发送第二数据,确定的一个码本是第二码本,第二数据是采用第二码本中的码字确定的。
在一种可选的实施方式中,第二数据是采用第二码本中的码字以及第二码本对应的调制方式确定的;第二码本对应的调制方式为差分调制或混沌调制。
在一种可选的实施方式中,处理单元901还用于确定第一范围和第二范围。如果第一参数属于第一范围,确定的一个码本是第一码本;如果第一参数属于第二范围,确定的一个码本是第二码本。
在一种可选的实施方式中,第一参数包括以下一项或多项:传输块大小、码率、参考信号接收功率、参考信号强度指示、参考信号接收质量、调制与编码策略、同步定时器的计数 值。
在一种可选的实施方式中,第一码本包括的多个码字中任意两个码字不同,和/或,第二码本包括的多个码字中任意两个码字不同;第一码本包括的任一码字与第二码本包括的任一码字不同。
在一种可选的实施方式中,通信单元902还用于发送第一指示信息,第一指示信息用于指示确定的一个码本。
在一种可选的实施方式中,第一时频资源用于发送第一数据和第一参考信号;第二时频资源用于发送第二数据;第一时频资源和第二时频资源不同。
在一种可选的实施方式中,第三时频资源用于发送第一数据,第四时频资源用于发送第一参考信号;或者,第三时频资源和第四时频资源均用于发送第二数据。第一数据在第三时频资源内的映射方式,与第二数据在第三时频资源内的映射方式相同;第三时频资源和第四时频资源不同。
在另一种可能的设计中,通信单元902用于接收第一数据和第一参考信号;第一数据是采用第一码本中的码字确定的;第一参考信号与确定第一数据所采用的码字对应。或者,通信单元902用于接收第二数据,第二数据是采用第二码本中的码字确定的。其中,第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。
在一种可选的实施方式中,第二数据是采用第二码本中的码字以及第二码本对应的调制方式确定的;第二码本对应的调制方式为差分调制或混沌调制。
在一种可选的实施方式中,第一参数包括以下一项或多项:传输块大小、码率、参考信号接收功率、参考信号强度指示、参考信号接收质量、调制与编码策略、同步定时器的计数值。
在一种可选的实施方式中,第一码本包括的多个码字中任意两个码字不同,和/或,第二码本包括的多个码字中任意两个码字不同;第一码本包括的任一码字与第二码本包括的任一码字不同。
在一种可选的实施方式中,通信单元902还用于接收第一指示信息,第一指示信息用于确定处理第一数据或第二数据采用的码本。
在一种可选的实施方式中,第一时频资源用于接收第一数据和第一参考信号;第二时频资源用于接收第二数据;第一时频资源和第二时频资源不同。
在一种可选的实施方式中,第三时频资源用于接收第一数据,第四时频资源用于接收第一参考信号;或者,第三时频资源和第四时频资源用于接收第二数据;第一数据在第三时频资源内的映射方式,与第二数据在第三时频资源内的映射方式相同;第三时频资源和第四时频资源不同。
申请实施例和上述所示的数据传输方法基于同一构思,其带来的技术效果也相同,具体原理请参照上述所示实施例的描述,不再赘述。
本申请实施例还提供一种通信装置1000,如图10所示。通信装置1000可以是网络设备或终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置1000可以包括一个或多个处理器1001。处理器1001可用于通过逻辑电路或运行计算机程序实现上述网络设备或终端设备的部分或全部功能。所述处理器1001可以是 通用处理器或者专用处理器等。例如可以是基带处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或中央处理器(central processing unit,CPU)。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置进行控制,执行软件程序,处理软件程序的数据,其中,通信装置例如为基站、基带芯片,终端、终端芯片,集中单元(distributed unit,DU)或分布单元(centralized unit,CU)等。
可选的,通信装置1000中可以包括一个或多个存储器1002,其上可以存有指令1004,所述指令可在处理器1001上被运行,使得通信装置1000执行上述方法实施例中描述的方法。可选的,存储器1002中还可以存储有数据。处理器1001和存储器1002可以单独设置,也可以集成在一起。
存储器1002可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(random access memory,RAM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、ROM或便携式只读存储器(compact disc read-only memory,CD-ROM)等等。
可选的,所述通信装置1000还可以包括收发器1005、天线1006。所述收发器1005可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1005可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
一种方式中,处理器1001用于根据第一参数,从第一码本和第二码本中确定一个码本;第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。
收发器1005用于发送第一数据和第一参考信号,确定的一个码本是第一码本,第一数据是采用第一码本中的码字确定的,第一参考信号与确定第一数据所采用的码字对应。或者,收发器1005用于发送第二数据,确定的一个码本是第二码本,第二数据是采用第二码本中的码字确定的。
在一种可选的实施方式中,第二数据是采用第二码本中的码字以及第二码本对应的调制方式确定的;第二码本对应的调制方式为差分调制或混沌调制。
在一种可选的实施方式中,处理器1001还用于确定第一范围和第二范围。如果第一参数属于第一范围,确定的一个码本是第一码本;如果第一参数属于第二范围,确定的一个码本是第二码本。
在一种可选的实施方式中,第一参数包括以下一项或多项:传输块大小、码率、参考信号接收功率、参考信号强度指示、参考信号接收质量、调制与编码策略、同步定时器的计数值。
在一种可选的实施方式中,第一码本包括的多个码字中任意两个码字不同,和/或,第二码本包括的多个码字中任意两个码字不同;第一码本包括的任一码字与第二码本包括的任一码字不同。
在一种可选的实施方式中,收发器1005还用于发送第一指示信息,第一指示信息用于指示确定的一个码本。
在一种可选的实施方式中,第一时频资源用于发送第一数据和第一参考信号;第二时频资源用于发送第二数据;第一时频资源和第二时频资源不同。
在一种可选的实施方式中,第三时频资源用于发送第一数据,第四时频资源用于发送第 一参考信号;或者,第三时频资源和第四时频资源均用于发送第二数据;第一数据在第三时频资源内的映射方式,与第二数据在第三时频资源内的映射方式相同;第三时频资源和第四时频资源不同。
另一种可能的设计中,收发器1005用于接收第一数据和第一参考信号;第一数据是采用第一码本中的码字确定的;第一参考信号与确定第一数据所采用的码字对应。或者,收发器1005用于接收第二数据,第二数据是采用第二码本中的码字确定的。其中,第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。
在一种可选的实施方式中,第二数据是采用第二码本中的码字以及第二码本对应的调制方式确定的;第二码本对应的调制方式为差分调制或混沌调制。
在一种可选的实施方式中,第一参数包括以下一项或多项:传输块大小、码率、参考信号接收功率、参考信号强度指示、参考信号接收质量、调制与编码策略、同步定时器的计数值。
在一种可选的实施方式中,第一码本包括的多个码字中任意两个码字不同,和/或,第二码本包括的多个码字中任意两个码字不同;第一码本包括的任一码字与第二码本包括的任一码字不同。
在一种可选的实施方式中,收发器1005还用于接收第一指示信息,第一指示信息用于确定处理第一数据或第二数据采用的码本。
在一种可选的实施方式中,第一时频资源用于接收第一数据和第一参考信号;第二时频资源用于接收第二数据;第一时频资源和第二时频资源不同。
在一种可选的实施方式中,第三时频资源用于接收第一数据,第四时频资源用于接收第一参考信号;或者,第三时频资源和第四时频资源用于接收第二数据;第一数据在第三时频资源内的映射方式,与第二数据在第三时频资源内的映射方式相同;第三时频资源和第四时频资源不同。
另一种可能的设计中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
又一种可能的设计中,可选的,处理器1001可以存有指令1003,指令1003在处理器1001上运行,可使得所述通信装置1000执行上述方法实施例中描述的方法。指令1003可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
又一种可能的设计中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请实施例中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或终端设备,但本申请实施例中描述的通 信装置的范围并不限于此,而且通信装置的结构可以不受图10的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,指令的存储部件;
(3)ASIC,例如调制解调器(modulator);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图11所示的芯片的结构示意图。图11所示的芯片1100包括处理器1101和接口1102。其中,处理器1101的数量可以是一个或多个,接口1102的数量可以是多个。该处理器1101可以是逻辑电路,该接口1102可以是输入输出接口、输入接口或输出接口。所述芯片1100还可包括存储器1103。
一种方式中,处理器1101用于据第一参数,从第一码本和第二码本中确定一个码本;第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。
接口1102用于发送第一数据和第一参考信号,确定的一个码本是第一码本,第一数据是采用第一码本中的码字确定的,第一参考信号与确定第一数据所采用的码字对应。或者,接口1102用于发送第二数据,确定的一个码本是第二码本,第二数据是采用第二码本中的码字确定的。
另一种方式中,接口1102用于接收第一数据和第一参考信号;第一数据是采用第一码本中的码字确定的;第一参考信号与确定第一数据所采用的码字对应。或者,接口1102用于接收第二数据,第二数据是采用第二码本中的码字确定的。其中,第一码本中每个码字分别具有对应的参考信号;第二码本中每个码字均不具有对应的参考信号。
本申请实施例中通信装置1000、芯片1100还可执行上述通信装置900所述的实现方式。本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例和上述的资源单位的确定方法基于同一构思,其带来的技术效果也相同,具体原理请参照上述资源单位的确定方法中的描述,不再赘述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供了一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序,当其在计算机上运行时,实现上述任一方法实施例的功能。
上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,SSD)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    根据第一参数,从第一码本和第二码本中确定一个码本;所述第一码本中每个码字分别具有对应的参考信号;所述第二码本中每个码字均不具有对应的参考信号;
    发送第一数据和第一参考信号,所述确定的一个码本是所述第一码本,所述第一数据是采用所述第一码本中的码字确定的,所述第一参考信号与确定所述第一数据所采用的码字对应;或者,
    发送第二数据,所述确定的一个码本是所述第二码本,所述第二数据是采用所述第二码本中的码字确定的。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第二数据是采用所述第二码本中的码字以及所述第二码本对应的调制方式确定的;所述第二码本对应的调制方式为差分调制或混沌调制。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    确定第一范围和第二范围;
    如果所述第一参数属于所述第一范围,所述确定的一个码本是所述第一码本;
    如果所述第一参数属于所述第二范围,所述确定的一个码本是所述第二码本。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,
    所述第一参数包括以下一项或多项:传输块大小、码率、参考信号接收功率、参考信号强度指示、参考信号接收质量、调制与编码策略、同步定时器的计数值。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,
    所述第一码本包括的多个码字中任意两个码字不同,和/或,所述第二码本包括的多个码字中任意两个码字不同;
    所述第一码本包括的任一码字与所述第二码本包括的任一码字不同。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    发送第一指示信息,所述第一指示信息用于指示所述确定的一个码本。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,
    第一时频资源用于发送所述第一数据和所述第一参考信号;
    第二时频资源用于发送所述第二数据;
    所述第一时频资源和所述第二时频资源不同。
  8. 根据权利要求1至5任一项所述的方法,其特征在于,
    第三时频资源用于发送所述第一数据,第四时频资源用于发送所述第一参考信号;或者,
    第三时频资源和第四时频资源均用于发送所述第二数据;
    所述第一数据在所述第三时频资源内的映射方式,与所述第二数据在所述第三时频资源内的映射方式相同;
    所述第三时频资源和所述第四时频资源不同。
  9. 一种数据传输方法,其特征在于,所述方法包括:
    接收第一数据和第一参考信号;所述第一数据是采用第一码本中的码字确定的;所述第一参考信号与确定所述第一数据所采用的码字对应;或者,
    接收第二数据,所述第二数据是采用第二码本中的码字确定的;
    所述第一码本中每个码字分别具有对应的参考信号;所述第二码本中每个码字均不具有对应的参考信号。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第二数据是采用所述第二码本中的码字以及所述第二码本对应的调制方式确定的;所述第二码本对应的调制方式为差分调制或混沌调制。
  11. 根据权利要求9或10所述的方法,其特征在于,
    所述第一参数包括以下一项或多项:传输块大小、码率、参考信号接收功率、参考信号强度指示、参考信号接收质量、调制与编码策略、同步定时器的计数值。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,
    所述第一码本包括的多个码字中任意两个码字不同,和/或,所述第二码本包括的多个码字中任意两个码字不同;
    所述第一码本包括的任一码字与所述第二码本包括的任一码字不同。
  13. 根据权利要求9至12任一项所述的方法,其特征在于,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于确定处理所述第一数据或所述第二数据采用的码本。
  14. 根据权利要求9至12任一项所述的方法,其特征在于,
    第一时频资源用于接收所述第一数据和所述第一参考信号;
    第二时频资源用于接收所述第二数据;
    所述第一时频资源和所述第二时频资源不同。
  15. 根据权利要求9至12任一项所述的方法,其特征在于,
    第三时频资源用于接收所述第一数据,第四时频资源用于接收所述第一参考信号;或者,
    第三时频资源和第四时频资源均用于接收所述第二数据;
    所述第一数据在所述第三时频资源内的映射方式,与所述第二数据在所述第三时频资源内的映射方式相同;
    所述第三时频资源和所述第四时频资源不同。
  16. 一种通信装置,其特征在于,所述装置包括用于实现权利要求1至8中任一项所述的方法的模块或单元,或者实现权利要求9至15中任一项所述的方法的模块或单元。
  17. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至8中任一项所述的方法,或者,使得所述装置执行如权利要求9至15中任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如权利要求1至8中任一项所述的方法,或者实现如权利要求9至15中任一项所述的方法。
  19. 一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,实现如权利要求1至8中任一项所述的方法,或者,实现如权利要求9至15中任一项所述的方法。
PCT/CN2022/121811 2022-09-27 2022-09-27 数据传输方法及装置 WO2024065196A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121811 WO2024065196A1 (zh) 2022-09-27 2022-09-27 数据传输方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121811 WO2024065196A1 (zh) 2022-09-27 2022-09-27 数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2024065196A1 true WO2024065196A1 (zh) 2024-04-04

Family

ID=90475041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121811 WO2024065196A1 (zh) 2022-09-27 2022-09-27 数据传输方法及装置

Country Status (1)

Country Link
WO (1) WO2024065196A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398620A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种参考信号的指示方法及装置
WO2022110086A1 (zh) * 2020-11-28 2022-06-02 华为技术有限公司 一种通信方法、装置及计算机可读存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112398620A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种参考信号的指示方法及装置
WO2022110086A1 (zh) * 2020-11-28 2022-06-02 华为技术有限公司 一种通信方法、装置及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining details on NR-RACH configurations and formats", 3GPP DRAFT; R1-1716154_REMAINING DETAILS ON NR-RACH CONFIGURATIONS AND FORMATS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 12 September 2017 (2017-09-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051329777 *

Similar Documents

Publication Publication Date Title
US11101909B2 (en) Scrambling code sequence generation method and apparatus
CN108632193B (zh) 一种资源指示方法及网络设备、终端设备
CN113287263B (zh) 一种跳频方法及装置
WO2018090259A1 (zh) 上行信号的传输方法和装置
US20210014023A1 (en) Data transmission method, terminal device, and network device
JP2021503210A (ja) リソース構成方法、端末装置及びネットワーク装置
WO2019242738A1 (zh) 发送调制符号的方法、接收调制符号的方法和通信设备
CN114667685B (zh) 通信方法和装置
CN108282294B (zh) 一种参考信号传输方法及装置
US10763948B2 (en) Signal sending method and apparatus, and signal receiving method and apparatus
US11108531B2 (en) Method and apparatus for setting symbol
US20190174515A1 (en) Physical Channel Sending Method and Receiving Method, Terminal Device, and Network Device
WO2024065196A1 (zh) 数据传输方法及装置
US20210195568A1 (en) Communication method and apparatus
WO2022205022A1 (zh) 用于传输参考信号的方法和装置
US20220329379A1 (en) Signal sending method, signal receiving method, and apparatus
WO2018137219A1 (zh) 一种信息传输方法及装置
WO2021043059A1 (zh) 随机接入方法及装置
CN112134660B (zh) 通信方法及装置
WO2024050789A1 (zh) 通信方法及相关装置
WO2023220943A1 (zh) 随机接入方法及装置
WO2022082494A1 (zh) 无线通信方法、发送端和接收端
EP3996440A1 (en) Control channel transmission method and apparatus
CN115250528A (zh) Sl-ssb的传输方法及相关装置
CN117856989A (zh) 延迟多普勒域的参考信号配置方法及通信装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959845

Country of ref document: EP

Kind code of ref document: A1