WO2024055947A1 - 基于混合调制的通信方法、装置及通信设备 - Google Patents

基于混合调制的通信方法、装置及通信设备 Download PDF

Info

Publication number
WO2024055947A1
WO2024055947A1 PCT/CN2023/118153 CN2023118153W WO2024055947A1 WO 2024055947 A1 WO2024055947 A1 WO 2024055947A1 CN 2023118153 W CN2023118153 W CN 2023118153W WO 2024055947 A1 WO2024055947 A1 WO 2024055947A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
signal
bit information
group
modulation
Prior art date
Application number
PCT/CN2023/118153
Other languages
English (en)
French (fr)
Inventor
谭俊杰
黄伟
简荣灵
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024055947A1 publication Critical patent/WO2024055947A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a communication method, device and communication equipment based on hybrid modulation.
  • the first data symbol can be Quadrature Amplitude Modulation (QAM), Quadrature Phase Shift Keying (QPSK) and other arbitrary modulation symbols
  • the second data symbol is an OOK modulated symbol, using ON/OFF or OFF/ON to represent the 0/1 bit.
  • the second data stream modulates information by adding blank time intervals to the symbols of the first data stream.
  • the time utilization of the mixed modulated signal is low: the received signal quality of the first data stream symbols will be greatly reduced while keeping the first data stream symbol rate unchanged; or the received signal quality will be kept unchanged but greatly reduced. Reduce the first data stream symbol rate. Therefore, it is urgent to design an efficient hybrid modulation signal modulation method.
  • Embodiments of the present application provide a communication method, device and communication equipment based on hybrid modulation, which can solve the problem of how to perform hybrid modulation efficiently.
  • a communication method based on hybrid modulation includes: a first device modulates a first group of bit information into at least one of frequency, amplitude and phase of a first signal, and modulates a second group of bit information into at least one of the frequency, amplitude and phase of a first signal. The information is modulated to the frequency of the first signal.
  • a communication method based on hybrid modulation includes: a second device receives a first signal, wherein the first signal modulates a first group with at least one of frequency, amplitude and phase. bit information, a signal obtained by frequency modulating the second group of bit information; the second device demodulates the first signal and determines and obtain the first group of bit information according to at least one of the frequency, amplitude and phase of the first signal; or, determine and obtain the second group of bit information according to the frequency of the first signal; or, determine and obtain the second group of bit information according to the frequency of the first signal; According to at least one of the frequency, amplitude and phase of the first signal, a first set of bit information and a second set of bit information are obtained.
  • a communication method based on hybrid modulation includes: a third device performs a first operation; wherein the first operation includes: determining first configuration information according to the first information, and providing the first configuration information to the first operation.
  • the device sends the first configuration information; or, according to the first information, determines the first configuration information and the second configuration information, sends the first configuration information to the first device and the second configuration information to the second device.
  • Configuration information wherein the first device is the sending end of the first signal, the second device is the receiving end of the first signal, and the first signal is modulated with at least one of frequency, amplitude and phase.
  • a set of bit information a signal obtained by frequency modulating a second set of bit information; wherein the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status; where, The capability information of the first device or the second device includes at least one of the following: amplitude modulation capability; phase modulation capability; carrier generation capability; demodulation capability; synchronization capability; antenna capability; wherein the channel status includes historical channels Status information, or, real-time channel status information.
  • a device for communication based on hybrid modulation including: a first modulation unit, configured to modulate the first group of bit information into at least one of the frequency, amplitude and phase of the first signal, and convert the first Two sets of bit information are modulated to the frequency of the first signal.
  • a device for communication based on hybrid modulation including: a first receiving unit configured to receive a first signal, wherein the first signal is a first signal modulated with at least one of frequency, amplitude and phase.
  • a set of bit information a signal obtained by frequency modulating a second set of bit information; a first demodulation unit, used to demodulate the first signal, determine and based on at least one of the frequency, amplitude and phase of the first signal.
  • One item obtain the first group of bit information; or, determine and obtain the second group of bit information according to the frequency of the first signal; or determine and obtain the second group of bit information according to at least one of the frequency, amplitude and phase of the first signal. item to obtain the first group of bit information and the second group of bit information.
  • a sixth aspect provides a communication device based on hybrid modulation, including: a first execution unit configured to perform a first operation; wherein the first operation includes: determining first configuration information according to the first information, and providing the first configuration information to the first A device sends the first configuration information; or, determines the first configuration information and the second configuration information according to the first information, sends the first configuration information to the first device and the second configuration information to the second device.
  • Two configuration information wherein, the first device is the sending end of the first signal, the second device is the receiving end of the first signal, and the first signal is modulated with at least one of frequency, amplitude and phase.
  • the first set of bit information is a signal obtained by frequency modulating the second set of bit information; wherein the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status; wherein , the capability information of the first device or the second device includes at least one of the following: amplitude modulation capability; phase modulation capability; carrier generation capability; demodulation capability; synchronization capability; antenna capability; wherein the channel status includes historical Channel status information, or, real-time channel status information.
  • a communication device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are implemented when executed by the processor.
  • a communication system including: a first device, a second device and a third device.
  • the first device can be used to perform the steps of the hybrid modulation-based communication method as described in the first aspect
  • the second device may be configured to perform the steps of the hybrid modulation-based communication method as described in the second aspect
  • the third device may be configured to perform the steps of the hybrid modulation-based communication method as described in the third aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the hybrid modulation-based communication method as described in the first aspect is implemented. Steps, or steps for implementing the communication method based on hybrid modulation as described in the second aspect, or steps for implementing the communication method based on hybrid modulation as described in the third aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method based on the first aspect. The steps of the hybrid modulation communication method, or the steps of implementing the hybrid modulation-based communication method as described in the second aspect, or the steps of implementing the hybrid modulation-based communication method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect
  • the first device modulates the first group of bit information to at least one of the frequency, amplitude and phase of the first signal, and modulates the second group of bit information to the frequency of the first signal, It realizes the simultaneous transmission of multiple sets of bit information to the receiving end using a unified signal, improving the flexibility and efficiency of transmission.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is a structural diagram of a coherent demodulation receiver in the related art
  • Figure 3 is a structural diagram of a non-coherent demodulation receiver in the related art
  • Figure 4 is a schematic diagram of second-order PAM modulation in the related art
  • Figure 5 is a schematic diagram of fourth-order PAM modulation in related technology
  • Figure 6 is a typical 16-QAM signal and 64-QAM constellation diagram in related technologies
  • Figure 7 is one of the flow diagrams of a communication method based on hybrid modulation provided by an embodiment of the present application.
  • Figure 8 is a constellation diagram of a mixed modulation signal provided by an embodiment of the present application.
  • Figure 9 is a structural diagram of a modulation end of a mixed modulation signal provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the multiplexing mode provided by the embodiment of the present application at the modulation end;
  • Figure 11 is a schematic diagram of the diversity mode provided by the embodiment of the present application at the modulation end;
  • Figure 12 is a schematic diagram of the timing relationship between two sets of bit information provided by the embodiment of the present application.
  • Figure 13 is a schematic diagram of a single receiving device demodulation scenario provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of an independent demodulation scenario of multiple receiving devices provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of a collaborative joint demodulation scenario of multiple receiving devices provided by an embodiment of the present application.
  • Figure 16 is the second schematic flowchart of the communication method based on hybrid modulation provided by the embodiment of the present application.
  • Figure 17 is a demodulation end structure diagram of a non-coherent demodulation provided by an embodiment of the present application.
  • Figure 18 is a structural diagram of the demodulation end of coherent demodulation provided by the embodiment of the present application.
  • Figure 19 is the third schematic flowchart of the communication method based on hybrid modulation provided by the embodiment of the present application.
  • Figure 20 is one of the structural schematic diagrams of a communication device based on hybrid modulation provided by an embodiment of the present application.
  • Figure 21 is the second structural schematic diagram of a communication device based on hybrid modulation provided by an embodiment of the present application.
  • Figure 22 is a third schematic structural diagram of a communication device based on hybrid modulation provided by an embodiment of the present application.
  • Figure 23 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 24 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • Figure 25 is a schematic diagram of the hardware structure of a network-side device that implements an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PC personal computers
  • teller machines or self-service Terminal devices such as mobile phones
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), Smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include base stations, WLAN access points or WiFi nodes, etc.
  • the base stations may be called Node B, Evolved Node B (eNB), Access Point, Base Transceiver Station (BTS), Radio Base Station , radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home B-Node, Home Evolved B-Node, Transmitting Receiving Point (TRP) or the above
  • eNB Evolved Node B
  • BTS Base Transceiver Station
  • ESS Extended Service Set
  • Home B-Node Home Evolved B-Node
  • TRP Transmitting Receiving Point
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data warehousing (Unified Data Repository, UDR), attributed user service Home Subscriber Server (HSS), Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane
  • Coherent demodulation is also called synchronous detection.
  • the key to its implementation is that the receiving end must recover a coherent carrier that is strictly synchronized with the modulated carrier.
  • To achieve coherent demodulation it is usually necessary to use a multiplier to input a reference signal that is coherent with the carrier frequency (same frequency and same phase) and multiplies the carrier frequency.
  • Figure 2 shows a typical coherent demodulation receiver.
  • the voltage-controlled oscillator controlled by the phase-locked loop generates a carrier signal with the same frequency and phase as the input signal, and then is divided into two carriers I and Q through 0-degree and 90-degree phase shifters respectively (where I is the same phase (In-phase) component, Q is a 90-degree phase shift (quadrature phase component), these two carriers are multiplied by the received signal, and the I and Q baseband signals are obtained after filtering out the high-frequency components through a filter. Finally, after sampling and judging the I and Q baseband signals, the corresponding demodulation symbols can be obtained.
  • Coherent demodulation is suitable for the demodulation of all linear modulation signals, including pulse amplitude modulation (PAM) (including OOK, binary amplitude keying (Amplitude Shift Keying, ASK)), QAM, frequency shift keying (Frequency- shift keying (FSK), phase-shift keying (PSK), etc.
  • PAM pulse amplitude modulation
  • ASK binary amplitude keying
  • QAM QAM
  • PSK phase-shift keying
  • non-coherent demodulation does not require the recovery of coherent carriers.
  • non-coherent demodulation does not use multipliers and does not require receiver and carrier synchronization, so it is simpler than coherent demodulation, and the difficulty and cost of receiver implementation are lower.
  • Figure 3 shows the structure diagram of a non-coherent demodulation receiver. Specifically, the received signal is multiplied by the I and Q matched filters of the same frequency, and after low-pass filtering, sampling, summation of squares, and root sign, the baseband envelope signal of the received signal is obtained. Finally, after judging the baseband envelope signal, the corresponding demodulation symbol is obtained.
  • non-coherent demodulation is often also called envelope detection. Obviously, the envelope signal cannot carry phase information. For any transmitted signal, only the amplitude-related baseband signal can finally be obtained after non-coherent demodulation. Therefore, non-coherent demodulation can only be applied to modulation methods such as PAM (including OOK, ASK) and FSK that do not rely on phase modulation information (or use I and Q branches to modulate independent information).
  • Pulse amplitude modulation PAM is a modulation method in which the amplitude of the pulse carrier changes with the baseband signal.
  • This modulation system is simple to implement and can be demodulated based on a non-coherent demodulator.
  • the 2nd order PAM The schematic diagram of modulation uses high level to represent "1" and low level to represent "0". This modulation method can also be called OOK or ASK.
  • Figure 5 shows a schematic diagram of fourth-order PAM modulation.
  • a fourth-order amplitude pulse signal is used to carry information bits. Each pulse signal can carry two information bits.
  • Quadrature Amplitude Modulation is a modulation method that performs amplitude modulation on two orthogonal carriers (I and Q branches). These two carriers are usually sine waves with a phase difference of 90 degrees ( ⁇ /2) and are therefore called orthogonal carriers. This modulation gets its name.
  • QAM Quadrature Amplitude Modulation
  • the data signal is represented by the amplitude changes of two carriers that are orthogonal to each other.
  • g(t) is the signal pulse.
  • Figure 6 shows a typical 16-QAM signal and 64-QAM constellation diagram, in which the abscissa and ordinate represent the amplitudes of the I and Q branches respectively.
  • FSK is a modulation method that uses digital signals to control carrier frequency changes. It is the earliest modulation method used in digital signal transmission. This method is relatively easy to implement, has good anti-noise and anti-attenuation performance, is stable and reliable, and is the best choice for medium and low-speed data transmission.
  • Binary FSK Binary Frequency Shift Keying, BFSK
  • BFSK Binary Frequency Shift Keying
  • the RF passband signal expression of BFSK can be written as:
  • FSK frequency division multiplex
  • Figure 7 is one of the schematic flowcharts of a communication method based on hybrid modulation provided by an embodiment of the present application. As shown in Figure 7, the method includes the following steps:
  • Step 700 The first device modulates the first group of bit information to at least one of the frequency, amplitude and phase of the first signal, and modulates the second group of bit information to the frequency of the first signal.
  • the first device is a modulation end, which may be a terminal or a network side device.
  • the first device modulates the bit information into a baseband or radio frequency passband signal, wherein the first set of bit information is mapped to at least one of frequency, amplitude and phase of the modulated signal (ie, the first signal), and the second set of bit information is mapped to the frequency of the modulated signal to form a first signal, which is a mixed modulated signal.
  • the use of A unified signal transmits multiple sets of bit information to the receiving end at the same time, improving the flexibility and efficiency of transmission.
  • the following uses a mixed modulation signal as an example to illustrate the specific modulation process.
  • the mixed modulation signal can be regarded as composed of a combination of conventional FSK modulation and QAM modulation, so this embodiment calls it an FSK-QAM signal.
  • f 1 , f 2 2 available frequencies
  • a1, a2 2 available amplitudes
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 4 available phases
  • Table 1 A value of amplitude and phase
  • Table 2 A mapping relationship between bit information and frequency
  • Table 3 A mapping relationship between bit information and amplitude and phase
  • the constellation diagram of the mixed modulation signal can be expressed in the form of Figure 8.
  • the scheme described in this embodiment can easily extend the frequency modulation method to MSK (Minimum Shift Keying), Gaussian Filtered Minimum Shift Keying (Gaussian Filtered Minimum Shift Keying), and continuous phase frequency shift keying (continuous phase frequency) Modulation methods that use frequency to carry information such as shift keying); as for amplitude and phase modulation, it is easy to expand to PSK, PAM, ASK, Differential Phase Shift Keying (DPSK), Amplitude Phase Shift Keying (DPSK) Phase Shift Keying (APSK) and other modulation methods that use amplitude and/or phase to carry information.
  • MSK Minimum Shift Keying
  • Gaussian Filtered Minimum Shift Keying Gaussian Filtered Minimum Shift Keying
  • continuous phase frequency shift keying continuous phase frequency shift keying
  • PSK Phase Shift Keying
  • the first group of bit information and the second group of bit information are modulated according to first configuration information, where the first configuration information is used to indicate a first modulation parameter.
  • the first modulation parameter includes at least one of the following:
  • the frequency information includes at least one of the following: frequency point, frequency starting position, and frequency interval.
  • the number of available amplitudes, or the modulation order of the amplitudes depends on the capabilities of the first device.
  • the total number of constellation points refers to the total number of all possible different mixed modulation signals.
  • mapping rule between bit information and mixed modulation signal frequency That is, the mapping rule between bit information and mixed modulation signal frequency.
  • mapping rule between bit information and mixed modulation signal amplitude That is, the mapping rule between bit information and mixed modulation signal amplitude.
  • mapping rule between bit information and mixed modulation signal phase is, the mapping rule between bit information and mixed modulation signal phase.
  • the transmission mode includes: multiplexing mode, diversity mode or hybrid mode.
  • the transmission modes of the two sets of bit information include multiplexing mode, diversity mode, and hybrid mode.
  • the multiplexing mode means that the information contained or represented by each group of bit information is independent and unrelated;
  • the diversity mode means that each group of bit information is the same information, or that each group of bit information of the two groups of bit information is a different representation of the same information with correlation;
  • the same information has different representations of correlation after being processed by encoding, compressing, encrypting, cutting, interleaving, etc.
  • the mixed mode means that some bit information in the two sets of bit information contains independent and unrelated information, and other bit information is different representations of the same information with correlation.
  • the multiplexing mode can map the multi-channel information separately (or optionally through preprocessing) into different sets of bit information. For example, if there are only two channels of information, then the first group of bit information and the second group of bits can be used to transmit the two channels of information respectively; if there are more than two channels of information, then the multiple channels of information can be combined, and then finally mapped to in two sets of bit information.
  • Figure 10 is a schematic diagram of the multiplexing mode provided by the embodiment of the present application at the modulation end.
  • FIG. 11 is a schematic diagram of the diversity mode provided by the embodiment of the present application at the modulation end.
  • the mixed mode it is also aimed at the situation where there is multi-channel information, in which part of the information is mapped to part of the two sets of bit information in the multiplex mode; and the remaining information is mapped to the two sets of bit information in the diversity mode. in the remaining bits.
  • the schematic diagram of the modulation end of the mixed mode is the same as Figure 11, but the difference is that the original information represented by the finally obtained first group of bit information and the second group of bit information are not completely independent.
  • the demodulation end can demodulate multiple bits of information representing the same information, it will perform corresponding processing (decoding, decompression, decryption, demerging, merging, deinterleaving, etc.) Afterwards, get the same information sent.
  • Diversity mode provides redundancy for the same channel of information, improves transmission reliability, and provides flexibility for the demodulation end. For example, if two groups of bit information are used to transmit the same information, the first group of bit information is represented by the phase of the mixed modulation signal, and the second group of bit information is represented by the frequency of the mixed modulation signal. This allows the demodulation end to try first. Try non-coherent demodulation, and then use coherent demodulation when demodulation fails, thereby reducing power consumption at the demodulation end.
  • Diversity mode can also provide differentiated transmission services for receivers with different demodulation capabilities. For example, for one channel of information, two sets of bit information with different importance can be obtained through a hierarchical compression method with priority.
  • the mixed modulation signal uses different dimensions to represent these two sets of bit information, such as frequency to represent the more important bit stream. Then, for a receiving device with weak capabilities, it can use non-coherent demodulation to receive the more important group of bit information and obtain a limited service; for a receiving device with strong capabilities, it can use coherent demodulation to receive all the bit information and obtain a complete Serve.
  • a mixed modulation signal can represent a total of log 2 (F) + log 2 (A) + log 2 (P) bits of information.
  • the first group of bit information and the second group of bit information in the mixed modulated signal may have a flexible timing correspondence relationship.
  • Figure 12 is a schematic diagram of the timing relationship between two sets of bit information provided by an embodiment of the present application. As shown in Figure 12, the sending end can send the second set of bit information once every time it sends the first set of bit information twice. In actual situations, the corresponding relationship between two sets of bit information can be one-to-many, many-to-one, or many-to-many, depending on the configuration.
  • the method also includes:
  • the first device determines the first configuration information based on the first information
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status;
  • the second device is the receiving end of the first signal.
  • the first configuration information mentioned in the above embodiments may be determined by the first device, specifically determined based on the first information.
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status.
  • the second device is the receiving end of the first signal, or is called a demodulation end, and may be a terminal or a network side device.
  • the first configuration information may be determined by a third device.
  • the third device determines the first configuration information based on the first information and sends the first configuration information to the first device.
  • the first device reports the capability information of the first device to the third device.
  • the first device reports its own UE capability information through UE Capability Inquiry-UE Capability Information signaling, or reports its own UE capability information through UE Assistance Information information.
  • the first device reports its own UE capability information through UE Assistance Information information.
  • the third device may be a transmitting end (i.e., modulation end, first device), a receiving end (i.e., demodulation end, second device), or a third-party communication device.
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • Historical channel state information may be channel state information recorded when the device was parked.
  • Real-time channel state information may be estimated or information state information obtained through other methods.
  • the first configuration information (ie, the first modulation parameter) may be configured by default or set at the factory.
  • the first group of bit information includes one of the following: a wake-up indication signal, a paging message, a control command, and indication information.
  • Mixed modulated signals have important advantages in transmitting control signaling, such as wake-up indication signals. Since non-coherent demodulation is relatively simple and has relatively low power consumption, it is suitable to be turned on for a long time. Therefore, paging messages, control commands (such as media access control element (MAC Control Element, MAC CE)), indication information (such as sidelink control information (Sidelink Control Information, SCI), downlink control information (Downlink Control Information, DCI)) and other bit information are modulated to the frequency part of the mixed modulation signal.
  • control commands such as media access control element (MAC Control Element, MAC CE)
  • indication information such as sidelink control information (Sidelink Control Information, SCI), downlink control information (Downlink Control Information, DCI)
  • DCI Downlink Control Information
  • the frequency change of the mixed modulation signal can be used to carry the bit information of the wake-up sequence, while the amplitude and phase are used to carry the specific paging (Paging) signal position and initial random access opportunity (RACH Occasion). RO) and other information. Then, after the receiving device receives the wake-up sequence using the demodulation end of non-coherent demodulation, the demodulation end that turns on coherent demodulation receives the remaining information.
  • this solution allows the receiving device to continuously monitor wake-up information with lower power consumption and reduce wake-up delay; on the other hand, it can also provide the receiving device with sufficient auxiliary information to help quickly establish a connection, such as Radio Resource Control (Radio Resource Control). Control, RRC) connection.
  • Radio Resource Control Radio Resource Control
  • modulating the bit information includes:
  • the first symbol comes from the first group of bit information, modulating the second symbol into at least one of the frequency, amplitude and phase of the first signal;
  • the first symbol includes a single-dimensional modulation symbol or a multi-dimensional modulation symbol; the first processing includes at least one of the following: direct mapping, interleaving, spreading, and scrambling.
  • part of the bit information may have been modulated into the first symbol.
  • the part of the bit information may be the first group of bit information, the second group of bit information, or, Partial bit information of the first group of bit information, partial bit information of the second group of bit information, such as OFDM, QAM symbols, etc.
  • the first symbol of premodulation will occupy part of the dimensions of the mixed modulation signal. For example, QAM symbols need to be carried by amplitude and phase. At this point, the remaining dimensions of the mixed modulated signal, such as frequency, can be used to carry the remaining bit information.
  • the first symbol can be directly mapped to the corresponding dimension of the mixed modulation signal (for example, the amplitude and phase of the QAM signal are directly mapped to the amplitude and phase of the mixed modulation signal); or, it can be formed through at least one process such as interleaving, spreading, and scrambling.
  • One or more second symbols (expanding will increase the number of symbols) are then mapped to the corresponding dimensions of one or more mixed modulation signals for carrying.
  • interleaving means exchanging the positions of multiple symbols to become a new set of symbols
  • Expansion refers to copying one symbol into multiple new symbols.
  • the original symbol can be modified according to the agreed rules (such as adjusting the amplitude and phase).
  • Scrambling means modifying the original symbols according to the agreed rules and turning them into new symbols.
  • the first symbol may be a single-dimensional modulation symbol or a multi-dimensional modulation symbol.
  • single-dimensional modulation modulates information only in one of the dimensions such as amplitude, phase, and frequency of electromagnetic waves.
  • Typical single-dimensional modulations include: ASK modulation, PSK modulation, FSK modulation, etc.
  • Multidimensional modulation refers to the use of multiple dimensions to represent bit information.
  • two-dimensional modulation performs joint modulation on two of the dimensions such as amplitude, phase, and frequency of electromagnetic waves.
  • Typical two-dimensional modulations include: QAM modulation, carrierless Amplitude-phase modulation (Carrierless Amplitude-Phase, CAP) modulation, APSK modulation, etc.
  • the method also includes:
  • the first signal is sent to a second device, where the second device includes a plurality of different receiving devices, or different demodulation ends of the same device, or the same demodulation end of the same device.
  • the second device mentioned in the foregoing embodiments may be different demodulation ends of multiple different receiving devices, or may be different demodulating ends of the same receiving device, or the second device may be the same device. the same demodulation terminal.
  • the sending end sends a mixed modulation signal, and the system configuration or the sending end instructs the receiving end to demodulate part or all of the bit information in the mixed modulation signal.
  • one situation is that different devices perform demodulation independently. If the capabilities of UEs distributed in the network are different, for example, some UEs can only demodulate part of the bit information in the mixed modulation signal, and other part of the UE can demodulate all the bit information in the mixed modulation signal. At this time, the sender can use a unified modulation method to provide information transmission for different users at the same time, reducing scheduling and transmission delays.
  • the method also includes:
  • the first instruction information is instruction information sent by the modulation end to the demodulation end to instruct the demodulation end how to demodulate the received mixed adjustment signal.
  • the embodiments of the present application realize the simultaneous transmission of multiple sets of bit information to different receiving devices or demodulation terminals using unified signals, and provide flexible bit mapping and transmission modes, which can meet the requirements of different receiving devices/demodulation terminals in terms of speed and complexity. Differentiated requirements in terms of speed, power consumption, etc., improve the flexibility and efficiency of transmission.
  • Figure 16 is a second schematic flowchart of a communication method based on hybrid modulation provided by an embodiment of the present application. As shown in Figure 16, the method includes the following steps:
  • Step 1600 The second device receives a first signal, wherein the first signal is a signal obtained by modulating the first group of bit information with at least one of frequency, amplitude and phase, and modulating the second group of bit information with frequency;
  • Step 1601 The second device demodulates the first signal, determines and obtains a first group of bit information based on at least one of the frequency, amplitude and phase of the first signal; or, determines and based on the The frequency of the first signal is used to obtain the second group of bit information; or, the first group of bit information and the second group of bit information are obtained by determining and based on at least one of the frequency, amplitude and phase of the first signal.
  • the second device is a demodulation end, which may be a terminal or a network side device.
  • the second device receives the first signal, wherein the first signal is a signal obtained by modulating the first group of bit information with at least one of frequency, amplitude and phase, and modulating the second group of bit information with frequency.
  • the second device The first signal is demodulated, and at least one of the first group of bit information and the second group of bit information can be obtained.
  • the first signal is a signal obtained by modulating the first group of bit information with at least one of frequency, amplitude and phase, and modulating the second group of bit information with frequency. Therefore, at the demodulation end, the first signal is determined and At least one of the frequency, amplitude and phase of the first signal is determined to obtain the first group of bit information; or, the frequency of the first signal is determined and based on the frequency of the first signal, the second group of bit information is obtained; or, the frequency of the first signal is determined and based on the frequency of the first signal. At least one of frequency, amplitude and phase is used to obtain a first group of bit information and a second group of bit information.
  • the following uses the mixed modulation signal mentioned in the previous embodiment as an example to describe a demodulation method of the mixed modulation signal, which is divided into non-coherent demodulation and coherent demodulation.
  • Figure 17 shows the demodulation end structure diagram of a non-coherent demodulation.
  • First perform down-conversion, low-pass filtering, and matching filtering on the received signal y(t).
  • the amplitudes of the I and Q branches at the two frequencies f 1 and f 2 can be obtained, and then the squares are summed to obtain the signal.
  • the energy at different frequencies is used to determine the frequency of the signal (such as the frequency where the maximum value is found), and is finally mapped to bit information.
  • Figure 18 shows the demodulation end structure diagram of a coherent demodulation.
  • the oscillator in the figure is an oscillator with synchronization function. It can generate a carrier wave with a phase of ⁇ ', compensate for the phase deviation of the received signal, and thereby obtain accurate I and Q branch amplitudes. By finding the Euclidean distance between the I and Q branch amplitudes corresponding to each frequency and the I and Q branch amplitudes corresponding to all constellation points in the mixed modulation signal constellation (as shown in Figure 8), the closest frequency, Amplitude and phase are mapped to obtain bit information. In addition to outputting two sets of bit information as described in the figure, the bit information can also be divided and filtered according to the demultiplexing related configuration to output only the required bit information. It is worth noting that the implementation method of the oscillator that provides the synchronized carrier is not limited here. There are usually phase-locked loops, delayed feedback phase-locked loops, etc. The phase deviation can also be estimated through the pilot.
  • This embodiment uses the mixed modulation signal formed in the previous embodiment as an example to illustrate a possible implementation of the demodulation end.
  • the corresponding idea can be extended to any mixed modulation signal. For example, when the frequency is greater than two, the number of oscillators is increased. Decision criteria, mapping more than 1 or 2 channels of bit information, etc.
  • the demodulating the first signal includes:
  • the second configuration information may be determined by the second device or may come from a third device.
  • the first indication information comes from the first device.
  • the second configuration information and the first indication information need to include all demodulation parameters, which are divided into the following situations:
  • the second configuration information indicates all demodulation parameters
  • the first indication information indicates all demodulation parameters
  • the second configuration information and the first indication information together indicate all demodulation parameters, that is, each indicates part of the demodulation parameters.
  • the first demodulation parameter or first modulation parameter includes at least one of the following:
  • a transmission mode for two groups of bit information including the first group of bit information and the second group of bit information
  • the transmission mode includes: multiplexing mode, diversity mode or hybrid mode;
  • the multiplexing mode means that the information contained or represented by each group of bit information is independent and unrelated;
  • the diversity mode means that each group of bit information is the same information, or that each group of bit information of the two groups of bit information is a different representation of the same information with correlation;
  • the mixed mode means that some bit information in the two sets of bit information contains independent and unrelated information, and other bit information is different representations of the same information with correlation.
  • the method also includes:
  • the second device determines the second configuration information based on the second set of bit information
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status;
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • the second configuration information mentioned in the above embodiments may be determined by the second device, specifically determined based on the second set of bit information.
  • the second configuration information may be determined by a third device.
  • the third device determines the second configuration information based on the first information, and sends the second configuration information to the second device.
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status.
  • the second device reports the capability information of the second device to the third device.
  • the first device reports its own UE capability information through UE Capability Inquiry-UE Capability Information signaling, or reports its own UE capability information through UE Assistance Information information.
  • the first device reports its own UE capability information through UE Capability Inquiry-UE Capability Information signaling, or reports its own UE capability information through UE Assistance Information information.
  • the first device reports its own UE capability information through UE Capability Inquiry-UE Capability Information signaling, or reports its own UE capability information through UE Assistance Information information.
  • the third device may be a transmitting end (i.e., modulation end, first device), a receiving end (i.e., demodulation end, second device), or a third-party communication device.
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • the second device includes a plurality of different receiving devices, or different demodulation ends of the same device, or the same demodulation end of the same device.
  • the sending end sends a mixed modulation signal, and the system configuration or the sending end instructs the receiving end to demodulate part or all of the bit information in the mixed modulation signal.
  • one situation is that different devices perform demodulation independently. If the capabilities of UEs distributed in the network are different, for example, some UEs can only demodulate part of the bit information in the mixed modulation signal, and other part of the UE can demodulate all the bit information in the mixed modulation signal. At this time, the sender can use a unified modulation method to provide information transmission for different users at the same time, reducing scheduling and transmission delays.
  • the demodulating the first signal includes:
  • the first demodulation end determines and obtains the second set of bit information based on the frequency of the first signal
  • the first demodulation end sends second instruction information to the second demodulation end according to the second group of bit information, and the second instruction information is used to indicate the information required to demodulate the first group of bit information; Or, the first demodulation end sends the second group of bit information to the second demodulation end;
  • the second demodulation end determines and obtains the first group of bit information based on at least one of the frequency, amplitude and phase of the first signal based on the second indication information or the second group of bit information;
  • the first demodulation end and the second demodulation end are different demodulation ends of different receiving devices, or different demodulation ends of the same device.
  • the second group of bit information includes one of the following: wake-up indication signal, paging message, control command, and indication information.
  • the method further includes:
  • the second processing includes at least one of the following: decoding, decompression, decryption, demerging, merging, and deinterleaving.
  • each group of bit information of the two groups of bit information is a different representation of the same information with correlation. Therefore, the second device demodulates the first signal to obtain the After at least one of the first group of bit information and the second group of bit information is described, it is also necessary to perform a second process (including decoding) on at least one of the first group of bit information and the second group of bit information. , at least one of decompression, decryption, decompression, merging, and deinterleaving), thereby restoring at least one of the first group of bit information and the second group of bit information to the original bit information.
  • the embodiments of the present application enable different receiving devices or demodulation terminals to receive multiple sets of bit information simultaneously transmitted by the transmitting terminal using a unified signal.
  • By providing flexible bit mapping and transmission modes they can meet the requirements of different receiving devices/demodulation terminals in terms of speed. Differentiated requirements in terms of complexity, power consumption, etc., improve the flexibility and efficiency of transmission.
  • Figure 19 is a third schematic flowchart of a communication method based on hybrid modulation provided by an embodiment of the present application. As shown in Figure 19, the method includes:
  • Step 1900 The third device performs the first operation
  • the first operation includes:
  • the first device is the sending end of the first signal
  • the second device is the receiving end of the first signal
  • the first signal modulates the first group of bits with at least one of frequency, amplitude and phase.
  • Information a signal obtained by frequency modulating the second set of bit information
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status;
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • the first configuration information or second configuration information is carried in one of the following ways:
  • physical layer signaling includes but is not limited to: Downlink Control Information (DCI), Sidelink Control Information (Sidelink Control Information, SCI), physical frame header preamble, etc.
  • DCI Downlink Control Information
  • SCI Sidelink Control Information
  • SCI Physical frame header preamble
  • the embodiments of this application realize the use of unified signals to simultaneously transmit multiple sets of bit information to different receiving devices or demodulation terminals.
  • By providing flexible bit mapping and transmission modes they can meet the requirements of different receiving devices/demodulation terminals in terms of speed and complexity. , power consumption and other aspects of differentiated requirements, improving the flexibility and efficiency of transmission.
  • the communication methods based on hybrid modulation provided by the above embodiments of this application can be applied to LTE systems, 5G NR systems and NR evolution systems, 6G systems, and many wireless communication systems such as IEEE 802.11, wireless optical communication, backscatter communication, etc.
  • the execution subject may be a communication device based on hybrid modulation.
  • a communication device based on hybrid modulation performing a communication method based on hybrid modulation is used as an example to illustrate the communication device based on hybrid modulation provided in the embodiment of the present application.
  • Figure 20 is one of the structural schematic diagrams of a communication device based on hybrid modulation provided by an embodiment of the present application. As shown in Figure 20, the hybrid modulation-based communication device 2000 includes:
  • the first modulation unit 2010 is configured to modulate the first group of bit information into at least one of the frequency, amplitude and phase of the first signal, and modulate the second group of bit information into the frequency of the first signal.
  • the use of A unified signal transmits multiple sets of bit information to the receiving end at the same time, improving the flexibility and efficiency of transmission.
  • the first modulation parameter includes at least one of the following:
  • a transmission mode for two groups of bit information including the first group of bit information and the second group of bit information
  • the transmission mode includes: multiplexing mode, diversity mode or hybrid mode;
  • the multiplexing mode means that the information contained or represented by each group of bit information is independent and unrelated;
  • the diversity mode means that each group of bit information is the same information, or that each group of bit information of the two groups of bit information is a different representation of the same information with correlation;
  • the mixed mode means that some bit information in the two sets of bit information contains independent and unrelated information, and other bit information is different representations of the same information with correlation.
  • the device further includes a first processing unit for:
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status;
  • the second device is the receiving end of the first signal
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • the second group of bit information includes one of the following: wake-up indication signal, paging message, control command, and indication information.
  • modulating the bit information includes:
  • the first symbol comes from the first group of bit information, modulating the second symbol into at least one of the frequency, amplitude and phase of the first signal;
  • the first symbol includes a single-dimensional modulation symbol or a multi-dimensional modulation symbol; the first processing includes at least one of the following: direct mapping, interleaving, spreading, and scrambling.
  • the device also includes:
  • a first sending unit configured to send the first signal to a second device, where the second device includes a plurality of different receiving devices, or different demodulation ends of the same device, or the same demodulator of the same device. Adjust the end.
  • the device also includes:
  • the second sending unit is configured to send first indication information to the second device, where the first indication information is used to indicate the first modulation parameter.
  • the embodiments of the present application realize the simultaneous transmission of multiple sets of bit information to different receiving devices or demodulation terminals using unified signals, and provide flexible bit mapping and transmission modes, which can meet the requirements of different receiving devices/demodulation terminals in terms of speed and complexity. Differentiated requirements in terms of speed, power consumption, etc., improve the flexibility and efficiency of transmission.
  • the communication device based on hybrid modulation in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the communication device based on hybrid modulation provided by the embodiments of the present application can implement each process implemented by the method embodiments of Figures 7 to 15 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • FIG 21 is the second structural schematic diagram of a communication device based on hybrid modulation provided by an embodiment of the present application.
  • the hybrid modulation-based communication device 2100 includes:
  • the first receiving unit 2110 is configured to receive a first signal, where the first signal is a signal obtained by modulating a first group of bit information with at least one of frequency, amplitude and phase, and modulating a second group of bit information with frequency. ;
  • the first demodulation unit 2120 is used to demodulate the first signal, determine and obtain the first group of bit information according to at least one of the frequency, amplitude and phase of the first signal; or, determine and obtain the first group of bit information according to the The frequency of the first signal is determined to obtain the second group of bit information; or, the first group of bit information and the second group of bit information are obtained by determining and based on at least one of the frequency, amplitude and phase of the first signal.
  • the demodulating the first signal includes:
  • the first demodulation parameter or first modulation parameter includes at least one of the following:
  • a transmission mode for two groups of bit information including the first group of bit information and the second group of bit information
  • the transmission mode includes: multiplexing mode, diversity mode or hybrid mode;
  • the multiplexing mode means that the information contained or represented by each group of bit information is independent and unrelated;
  • the diversity mode means that each group of bit information is the same information, or that each group of bit information of the two groups of bit information is a different representation of the same information with correlation;
  • the mixed mode means that some bit information in the two sets of bit information contains independent and unrelated information, and other bit information is different representations of the same information with correlation.
  • the device further includes a second processing unit for:
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status;
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • the second device includes a plurality of different receiving devices, or different demodulation ends of the same device, or the same demodulation end of the same device.
  • the demodulating the first signal includes:
  • the first demodulation end determines and obtains the second set of bit information based on the frequency of the first signal
  • the first demodulation end sends second instruction information to the second demodulation end according to the second group of bit information, and the second instruction information is used to indicate the information required to demodulate the first group of bit information; Or, the first demodulation end sends the second group of bit information to the second demodulation end;
  • the second demodulation end determines and obtains the first group of bit information based on at least one of the frequency, amplitude and phase of the first signal based on the second indication information or the second group of bit information;
  • the first demodulation end and the second demodulation end are different demodulation ends of different receiving devices, or different demodulation ends of the same device.
  • the second group of bit information includes one of the following: wake-up indication signal, paging message, control command, and indication information.
  • the device when the transmission mode is diversity mode, the device further includes:
  • a third processing unit configured to perform second processing on at least one of the first group of bit information and the second group of bit information, so as to convert the first group of bit information and the second group of bit information into At least one is restored to the original bit information;
  • the second processing includes at least one of the following: decoding, decompression, decryption, demerging, merging, and deinterleaving.
  • the embodiments of the present application enable different receiving devices or demodulation terminals to receive multiple sets of bit information simultaneously transmitted by the transmitting terminal using a unified signal.
  • By providing flexible bit mapping and transmission modes they can meet the requirements of different receiving devices/demodulation terminals in terms of speed. Differentiated requirements in terms of complexity, power consumption, etc., improve the flexibility and efficiency of transmission.
  • the communication device based on hybrid modulation in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to those listed above Regarding the type of terminal 11 mentioned above, other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the communication device based on hybrid modulation provided by the embodiments of the present application can implement each process implemented by the method embodiments of Figures 16 to 18 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • Figure 22 is a third schematic structural diagram of a communication device based on hybrid modulation provided by an embodiment of the present application.
  • the hybrid modulation-based communication device 2200 includes:
  • the first execution unit 2210 is used to perform the first operation
  • the first operation includes:
  • the first device is the sending end of the first signal
  • the second device is the receiving end of the first signal
  • the first signal modulates the first group of bits with at least one of frequency, amplitude and phase.
  • Information a signal obtained by frequency modulating the second set of bit information
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status;
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • the first configuration information or the second configuration information is carried in one of the following ways:
  • the embodiments of this application realize the use of unified signals to simultaneously transmit multiple sets of bit information to different receiving devices or demodulation terminals.
  • By providing flexible bit mapping and transmission modes they can meet the requirements of different receiving devices/demodulation terminals in terms of speed and complexity. , power consumption and other aspects of differentiated requirements, improving the flexibility and efficiency of transmission.
  • the communication device based on hybrid modulation in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to those listed above Regarding the type of terminal 11 mentioned above, other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the communication device based on hybrid modulation provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 19 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 2300, which includes a processor 2301 and a memory 2302.
  • the memory 2302 stores programs or instructions that can be run on the processor 2301, such as , when the communication device 2300 is a terminal, when the program or instruction is executed by the processor 2301, each step of the above hybrid modulation-based communication method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 2300 is a network-side device, when the program or instruction is executed by the processor 2301, the steps of the above hybrid modulation-based communication method embodiment are implemented, and the same technical effect can be achieved. To avoid duplication, they will not be described again here. .
  • An embodiment of the present application also provides a communication device.
  • the communication device is a first device and includes a processor and a communication interface.
  • the processor is configured to modulate the first group of bit information into at least one of the frequency, amplitude and phase of the first signal. item, modulate the second set of bit information to the frequency of the first signal.
  • This communication device embodiment corresponds to the above-mentioned first device-side method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this communication device embodiment, and can achieve the same technical effect.
  • An embodiment of the present application also provides a communication device.
  • the communication device is a second device and includes a processor and a communication interface.
  • the communication interface is used to receive a first signal, wherein the first signal is generated using frequency, amplitude and phase.
  • At least one item obtain the first group of bit information; or, determine and obtain the second group of bit information based on the frequency of the first signal; or determine and obtain the second group of bit information based on the frequency, amplitude, and phase of the first signal.
  • This communication device embodiment corresponds to the above-mentioned second device-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this communication device embodiment, and can achieve the same technical effect.
  • An embodiment of the present application also provides a communication device.
  • the communication device is a third device and includes a processor and a communication interface.
  • the processor is configured to perform a first operation; wherein the first operation includes: determining the first operation according to the first information. Configuration information, sending the first configuration information to the first device; or, determining the first configuration information and the second configuration information according to the first information, sending the first configuration information to the first device and the second configuration information to the first device.
  • Two devices send the second configuration information; wherein, the first device is the sending end of the first signal, the second device is the receiving end of the first signal, and the first signal is a signal with frequency, amplitude and phase.
  • This communication device embodiment corresponds to the above-mentioned third device-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this communication device embodiment, and can achieve the same technical effect.
  • FIG. 24 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 2400 includes but is not limited to: a radio frequency unit 2401, a network module 2402, an audio output unit 2403, an input unit 2404, a sensor 2405, a display unit 2406, a user input unit 2407, an interface unit 2408, a memory 2409, a processor 2410, etc. At least some parts.
  • the terminal 2400 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 2410 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in Figure 24 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 2404 may include a graphics processing unit (Graphics Processing Unit, GPU) 24041 and a microphone 24042.
  • the graphics processor 24041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 2406 may include a display panel 24061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 2407 includes at least one of a touch panel 24071 and other input devices 24072. Touch panel 24071, also known as touch screen.
  • the touch panel 24071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 24072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 2401 after receiving downlink data from the network side device, the radio frequency unit 2401 can transmit it to the processor 2410 for processing; in addition, the radio frequency unit 2401 can send uplink data to the network side device.
  • the radio frequency unit 2401 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 2409 may be used to store software programs or instructions as well as various data.
  • the memory 2409 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 2409 may include volatile memory or nonvolatile memory, or memory 2409 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronization Dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM SDRAM
  • Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
  • enhanced synchronization Dynamic random access memory Enhanced SDRAM, ESDRAM
  • Synch link DRAM, SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the processor 2410 may include one or more processing units; optionally, the processor 2410 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 2410.
  • the terminal executes the method steps on the first device side:
  • the processor 2410 is configured to modulate the first group of bit information into at least one of frequency, amplitude and phase of the first signal, and modulate the second group of bit information into the frequency of the first signal.
  • the first modulation parameter includes at least one of the following:
  • a transmission mode for two groups of bit information including the first group of bit information and the second group of bit information
  • the transmission mode includes: multiplexing mode, diversity mode or hybrid mode;
  • the multiplexing mode means that the information contained or represented by each group of bit information is independent and unrelated;
  • the diversity mode means that each group of bit information is the same information, or that each group of bit information of the two groups of bit information is a different representation of the same information with correlation;
  • the mixed mode means that some bit information in the two sets of bit information contains independent and unrelated information, and other bit information is different representations of the same information with correlation.
  • processor 2410 is also used to:
  • the first information includes at least one of the following: capability information of the first device, capability information of the second device, and channel status;
  • the second device is the receiving end of the first signal
  • the capability information of the first device or the second device includes at least one of the following:
  • the channel status includes historical channel status information, or real-time channel status information.
  • the second group of bit information includes one of the following: wake-up indication signal, paging message, control command, and indication information.
  • modulating the bit information includes:
  • the first symbol comes from the first group of bit information, modulating the second symbol into at least one of the frequency, amplitude and phase of the first signal;
  • the first symbol includes a single-dimensional modulation symbol or a multi-dimensional modulation symbol; the first processing includes at least one of the following: direct mapping, interleaving, spreading, and scrambling.
  • the radio frequency unit 2401 is used for:
  • the first signal is sent to a second device, where the second device includes a plurality of different receiving devices, or different demodulation ends of the same device, or the same demodulation end of the same device.
  • the radio frequency unit 2401 is also used for:
  • the embodiments of the present application realize the simultaneous transmission of multiple sets of bit information to different receiving devices or demodulation terminals using unified signals, and provide flexible bit mapping and transmission modes, which can meet the requirements of different receiving devices/demodulation terminals in terms of speed and complexity. Differentiated requirements in terms of speed, power consumption, etc., improve the flexibility and efficiency of transmission.
  • the terminal may perform method steps on the second device side, which will not be described again here.
  • the terminal may perform method steps on the third device side, which will not be described again here.
  • the embodiment of the present application also provides a network side device.
  • the network side device 2500 includes: an antenna 2501, a radio frequency device 2502, a baseband device 2503, a processor 2504 and a memory 2505.
  • Antenna 2501 is connected to radio frequency device 2502.
  • the radio frequency device 2502 receives information through the antenna 2501 and sends the received information to the baseband device 2503 for processing.
  • the baseband device 2503 processes the information to be sent and sends it to the radio frequency device 2502.
  • the radio frequency device 2502 processes the received information and then sends it out through the antenna 2501.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 2503, which includes a baseband processor.
  • the baseband device 2503 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. 25 .
  • One of the chips is, for example, a baseband processor, which is connected to the memory 2505 through a bus interface to call the memory 2505 .
  • the network side device may also include a network interface 2506, which is, for example, a common public radio interface (CPRI).
  • a network interface 2506 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 2500 in this embodiment of the present application also includes: instructions or programs stored in the memory 2505 and executable on the processor 2504.
  • the processor 2504 calls the instructions or programs in the memory 2505 to execute Figure 7 or Figure 16 Or the method shown in Figure 19 and achieve the same technical effect. To avoid repetition, it will not be described again here.
  • Embodiments of the present application also provide a readable storage medium, with programs or instructions stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the above hybrid modulation-based communication method embodiment is implemented, and can achieve the same technical effect, so to avoid repetition, we will not repeat them here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage media includes computer-readable storage media. Examples of computer-readable storage media include non-transitory computer-readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disks or optical disks.
  • An embodiment of the present application also provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above hybrid modulation-based communication method.
  • Each process of the embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application also provide a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above hybrid modulation-based communication.
  • Each process of the method embodiment can achieve the same technical effect, so to avoid repetition, it will not be described again here.
  • An embodiment of the present application also provides a communication system, including: a first device, a second device, and a third device.
  • the first device may be configured to perform the steps of the hybrid modulation-based communication method of the first device as described above
  • the second device may be configured to perform the steps of the hybrid modulation-based communication method of the second device as described above
  • the third device may be configured to perform the steps of the hybrid modulation-based communication method of the third device as described above.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请公开了一种基于混合调制的通信方法、装置及通信设备,属于通信技术领域,本申请实施例的应用于第一设备的基于混合调制的通信方法包括:第一设备将第一组比特信息调制为第一信号的频率、幅度和相位中的至少一项,将第二组比特信息调制为所述第一信号的频率。

Description

基于混合调制的通信方法、装置及通信设备
相关申请的交叉引用
本申请主张在2022年09月16日在中国提交的中国专利申请号202211133193.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种基于混合调制的通信方法、装置及通信设备。
背景技术
在低功耗唤醒信号的设计中,存在一种基于开关键控(On-off Keying,OOK)调制的混合信号调制方法,第一数据符号可以是正交幅度调制(Quadrature Amplitude Modulation,QAM)、正交相移键控(Quadrature Phase Shift Keying,QPSK)等任意调制符号,而第二数据符号是OOK调制的符号,用ON/OFF或OFF/ON来表示0/1比特。通过按照OOK调制后的ON、OFF规律对第一数据符号进行叠加调制,最后得到混合数据符号流。
在上述混合调制信号生成方法中,第二数据流是在第一数据流符号中通过加入空白时间间隔来调制信息。在该方法中,混合调制信号的时间利用率较低:在保持第一数据流符号速率不变的情况下将大幅降低第一数据流符号的接收信号质量;或者保持接收信号质量不变但大幅降低第一数据流符号速率。因此,亟待设计一种高效的混合调制信号调制方法。
发明内容
本申请实施例提供一种基于混合调制的通信方法、装置及通信设备,能够解决如何高效进行混合调制的问题。
第一方面,提供了一种基于混合调制的通信方法,该方法包括:第一设备将第一组比特信息调制为第一信号的频率、幅度和相位中的至少一项,将第二组比特信息调制为所述第一信号的频率。
第二方面,提供了一种基于混合调制的通信方法,该方法包括:第二设备接收第一信号,其中,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;所述第二设备解调所述第一信号,确定 并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息;或,确定并根据所述第一信号的频率,得到第二组比特信息;或,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息和第二组比特信息。
第三方面,提供了一种基于混合调制的通信方法,该方法包括:第三设备执行第一操作;其中,所述第一操作包括:根据第一信息,确定第一配置信息,向第一设备发送所述第一配置信息;或者,根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向第二设备发送所述第二配置信息;其中,所述第一设备为第一信号的发送端,所述第二设备为第一信号的接收端,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;其中,所述第一设备或第二设备的能力信息包括以下至少一项:调幅能力;调相能力;载波生成能力;解调能力;同步能力;天线能力;其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
第四方面,提供了一种基于混合调制的通信的装置,包括:第一调制单元,用于将第一组比特信息调制为第一信号的频率、幅度和相位中的至少一项,将第二组比特信息调制为所述第一信号的频率。
第五方面,提供一种基于混合调制的通信的装置,包括:第一接收单元,用于接收第一信号,其中,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;第一解调单元,用于解调所述第一信号,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息;或,确定并根据所述第一信号的频率,得到第二组比特信息;或,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息和第二组比特信息。
第六方面,提供一种基于混合调制的通信装置,包括:第一执行单元,用于执行第一操作;其中,所述第一操作包括:根据第一信息,确定第一配置信息,向第一设备发送所述第一配置信息;或者,根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向第二设备发送所述第二配置信息;其中,所述第一设备为第一信号的发送端,所述第二设备为第一信号的接收端,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;其中,所述第一设备或第二设备的能力信息包括以下至少一项:调幅能力;调相能力;载波生成能力;解调能力;同步能力;天线能力;其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
第七方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的基于混合调制的通信方法的步骤,或者实现如第二方面所述的基于混合调制的通信方法的步骤,或者实现如第三方面所述的基于混合调制的通信方法的步骤。
第八方面,提供了一种通信系统,包括:第一设备,第二设备和第三设备,所述第一设备可用于执行如第一方面所述的基于混合调制的通信方法的步骤,所述第二设备可用于执行如第二方面所述的基于混合调制的通信方法的步骤,所述第三设备可用于执行如第三方面所述的基于混合调制的通信方法的步骤。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的基于混合调制的通信方法的步骤,或者实现如第二方面所述的基于混合调制的通信方法的步骤,或者实现如第三方面所述的基于混合调制的通信方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的基于混合调制的通信方法的步骤,或者实现如第二方面所述的基于混合调制的通信方法的步骤,或者实现如第三方面所述的基于混合调制的通信方法的步骤。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的基于混合调制的通信方法的步骤,或者实现如第二方面所述的基于混合调制的通信方法的步骤,或者实现如第三方面所述的基于混合调制的通信方法的步骤。
在本申请实施例中,第一设备通过将第一组比特信息调制为第一信号的频率、幅度和相位中的至少一项,将第二组比特信息调制为所述第一信号的频率,实现了用统一的信号向接收端同时传输多组比特信息,提高了传输的灵活性和效率。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图
图2是相关技术中一种相干解调接收机的结构图;
图3是相关技术中一种非相干解调接收机的结构图;
图4是相关技术中2阶PAM调制的示意图;
图5是相关技术中4阶PAM调制示意图;
图6是相关技术中典型的16-QAM信号和64-QAM星座图;
图7是本申请实施例提供的基于混合调制的通信方法的流程示意图之一;
图8是本申请实施例提供的一种混合调制信号的星座图;
图9是本申请实施例提供的一种混合调制信号调制端的结构图;
图10是本申请实施例提供的复用模式在调制端的示意图;
图11是本申请实施例提供的分集模式在调制端的示意图;
图12是本申请实施例提供的两组比特信息的时序关系示意图;
图13是本申请实施例提供的单接收设备解调场景的示意图;
图14是本申请实施例提供的多接收设备独立解调场景的示意图;
图15是本申请实施例提供的多接收设备协作联合解调场景的示意图;
图16是本申请实施例提供的基于混合调制的通信方法的流程示意图之二;
图17是本申请实施例提供的一种非相干解调的解调端结构图;
图18是本申请实施例提供的一种相干解调的解调端结构图;
图19是本申请实施例提供的基于混合调制的通信方法的流程示意图之三;
图20是本申请实施例提供的基于混合调制的通信装置的结构示意图之一;
图21是本申请实施例提供的基于混合调制的通信装置的结构示意图之二;
图22是本申请实施例提供的基于混合调制的通信装置的结构示意图之三;
图23是本申请实施例提供的通信设备的结构示意图;
图24是实现本申请实施例的一种终端的硬件结构示意图。
图25是实现本申请实施例的一种网络侧设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access, OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服 务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
首先对本申请涉及的相关技术进行介绍。
一、相干解调
相干解调也叫同步检波,实现的关键是接收端要恢复出一个与调制载波严格同步的相干载波。实现相干解调通常需要利用乘法器,输入一路与载频相干(同频同相)的参考信号与载频相乘。图2展示了一种典型的相干解调接收机。具体地,由锁相环控制的压控振荡器产生一个与输入信号同频同相的载波信号,然后分别经过0度和90度相移器分成I、Q两路载波(其中,I为同相位(In-phase)分量,Q为90度相移(quadrature phase)分量),这两路载波与接收信号相乘,经过滤波器滤掉高频分量后得到I、Q两路的基带信号。最终,对I、Q两路基带信号进行采样和判决后,可以得到相应的解调符号。
相干解调适用于所有线性调制信号的解调,包括脉冲幅度调制(Pulse Amplitude Modulation,PAM)(包括OOK、二进制振幅键控(Amplitude Shift Keying,ASK))、QAM、频移键控(Frequency-shift keying,FSK)、相移键控(phase-shift keying,PSK)等。
二、非相干解调
与相干解调相对应,非相干解调不需要恢复出相干载波。特别地,非相干解调不使用乘法器,不需要接收机和载波同步,所以比相干解调方式要简单,接收机实现难度和成本都较低。图3展示了一种非相干解调接收机的结构图。具体地,接收信号与同频的I、Q两路匹配滤波器相乘,经过低通滤波器、采样、平方求和、开根号后,得到接收信号的基带包络信号。最终,对基带包络信号进行判决后,得到相应的解调符号。
由于最终获得的信号是包络信号,非相干解调通常也被称为包络检波。显然,包络信号无法携带相位信息。对于任意的发送信号,经过非相干解调后最终只能获得与幅度相关的基带信号。因此,非相干解调只能适用于PAM(包括OOK、ASK)、FSK等不依赖相位调制信息(或利用I、Q两个支路调制独立信息)的调制方式。
三、脉冲幅度调制
脉冲幅度调制PAM是一种脉冲载波的幅度随基带信号变化的一种调制方式。该调制方式系统实现简单,并且可以基于非相干解调器实现解调。如图4所示为2阶PAM 调制的示意图,用高电平表示“1”,用低电平表示“0”,该调制方式也可以叫做OOK或ASK。图5所示为4阶PAM调制示意图,用4阶幅度的脉冲信号来承载信息比特,每个脉冲信号都可以携带两个信息比特。
四、正交幅度调制
正交幅度调制(QAM,Quadrature Amplitude Modulation)是一种在两个正交载波(I、Q支路)上进行幅度调制的调制方式。这两个载波通常是相位差为90度(π/2)的正弦波,因此被称作正交载波。这种调制方式因此而得名。在QAM中,数据信号由相互正交的两个载波的幅度变化表示。
M-QAM信号的通带射频信号波形的表达式为:
其中,g(t)为信号脉冲。
图6展示了典型的16-QAM信号和64-QAM星座图,其中横坐标和纵坐标分别表示I、Q支路的幅度。
五、频移键控
FSK是一种以数字信号控制载波频率变化的调制方式,是数字信号传输中用的最早的一种调制方式。此方式实现起来比较容易,抗噪声和抗衰减性能好,稳定可靠,是中低速数据传输最佳选择。二进制的FSK(Binary Frequency Shift Keying,BFSK),通过频率的变化来表示0和1。同理,可以拓展到任意的多进制频率键控M-FSK。
BFSK的射频通带信号表达式可以写作:
由于FSK仅使用频率来表示信息,可以用非相干的方式进行解调。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的基于混合调制的通信方法进行详细地说明。
图7是本申请实施例提供的基于混合调制的通信方法的流程示意图之一。如图7所示,该方法包括以下步骤:
步骤700、第一设备将第一组比特信息调制为第一信号的频率、幅度和相位中的至少一项,将第二组比特信息调制为所述第一信号的频率。
可以理解的是,第一设备为调制端,可以是终端或网络侧设备。
第一设备将比特信息调制成基带或射频通带信号,其中,第一组比特信息被映射为调制信号(即第一信号)的频率、幅度和相位中的至少一项,第二组比特信息被映射为调制信号的频率,形成第一信号,第一信号即是一种混合调制信号。
在本申请实施例中,通过将第一组比特信息调制为第一信号的频率、幅度和相位中的至少一项,将第二组比特信息调制为所述第一信号的频率,实现了用统一的信号向接收端同时传输多组比特信息,提高了传输的灵活性和效率。
下面以一种混合调制信号为例说明具体的调制过程,该混合调制信号可以看作由常规的FSK调制和QAM调制复合构成,因此本实施例将其称为FSK-QAM信号。考虑2个可用频率(f1,f2),2个可用幅度(a1,a2)和4个可用相位(θ1234)。表1列出了幅度和相位的一种可能取值。
表1一种幅度和相位的取值
考虑传输2组比特信息,速率分别为3bit/调制信号以及1bit/调制信号。因此,第一组比特信息的3bit可以用幅度和相位来表示,而第二组比特信息的1bit可以用频率来表示。表2和表3分别列出了比特信息与频率、幅度和相位的一种可能的映射关系。表3还列出了每种映射关系下对应的I、Q支路幅度。
表2一种比特信息和频率的映射关系
表3一种比特信息和幅度、相位的映射关系
在频率、I支路幅度、Q支路幅度的三维坐标系下,混合调制信号的星座图可以表示成图8的形式。
图9展示了混合调制信号的一种调制过程:分别根据第一组比特信息和第二组比特信息映射得到频率f、幅度a、相位θ(或I、Q支路的幅度i、q);将I、Q支路相应的幅度分别与振荡器根据f产生的信号进行混频,最后相加得到输出信号x(t):
x(t)=acos(θ)g(t)cos2πft-asin(θ)g(t)sin2πft
其中,对应表1、2、3,有a∈{a1,a2},θ∈{θ1234},f∈{f1,f2}。
本实施例所述方案对于频率的调制方式容易拓展到最小频移键控MSK(Minimum Shift Keying)、高斯最小频移键控(Gaussian Filtered Minimum Shift Keying)、连续相位频移键控(continuous phase frequency shift keying)等利用频率承载信息的调制方式;而对于幅度、相位的调制则容易拓展到PSK、PAM、ASK、差分相移键控(Differential Phase Shift Keying,DPSK)、幅度相移键控(Amplitude Phase Shift Keying,APSK)等利用幅度和/或相位承载信息的调制方式。
可选地,根据第一配置信息,对所述第一组比特信息和第二组比特信息进行调制,所述第一配置信息用于指示第一调制参数。
所述第一调制参数包括以下至少一项:
a)可用的频率数量,或,频率的调制阶数;
b)可用的频率信息;
频率信息包括以下至少一项:频点、频率起始位置、频率间隔。
c)可用的幅度数量,或,幅度的调制阶数;
需要说明的是,可用的幅度数量,或,幅度的调制阶数取决于第一设备的能力。
d)可用的相位数量,或,相位的调制阶数;
e)可用的I支路和/或Q支路的幅度数量,或,I支路和/或Q支路的幅度调制阶数;
f)第一信号的星座点总数;
此处,星座点总数是指所有可能的不同混合调制信号的总数。
g)单个第一信号可表示的比特总数;或,第一信号的调制阶数;
单个混合调制信号可表示的比特总数,或,混合调制信号的调制阶数。
h)比特信息与第一信号频率的映射规则;
即比特信息与混合调制信号频率的映射规则。
i)比特信息与第一信号幅度的映射规则;
即比特信息与混合调制信号幅度的映射规则。
j)比特信息与第一信号相位的映射规则;
即比特信息与混合调制信号相位的映射规则。
k)比特信息与第一信号I支路幅度的映射规则;
l)比特信息与第一信号Q支路幅度的映射规则;
m)两组比特信息的传输模式,所述两组比特信息包括所述第一组比特信息和第二组比特信息;
可选地,所述传输模式包括:复用模式,分集模式或混合模式。
取决于比特信息之间的关系,两组比特信息的传输模式有复用模式、分集模式、混合模式。
所述复用模式是指各组比特信息包含或表征的信息是独立不相关的;
所述分集模式是指各组比特信息为相同信息,或者,所述两组比特信息的每组比特信息为相同信息具有关联性的不同表示;
可选地,相同信息经过编码、压缩、加密、切割、交织等处理后具有关联性的不同表示。
所述混合模式是指两组比特信息中的部分比特信息包含独立不相关的信息,其他比特信息是相同信息具有关联性的不同表示。
若存在来自多个信息源(比如不同的应用)的独立信息(下面称为多路信息),复用模式可以将多路信息分别映射(或可选通过预处理)到不同组的比特信息中。比如,若只有两路信息,那么可以分别用第一组比特信息和第二组比特来传输这两路信息;若有大于两路信息,那么可以对这多路信息进行合并,然后最终映射到两组比特信息中。图10是本申请实施例提供的复用模式在调制端的示意图。
对于分集模式,主要针对单路信息的情况,该单路信息通过编码、压缩、加密、切割、交织等处理后,最终映射到两组比特信息中。显然,这两组比特信息是该单路信息的重复表示,或者是有关联的不同表示。图11是本申请实施例提供的分集模式在调制端的示意图。
对于混合模式,同样针对存在多路信息的情况,其中,部分信息以复用模式的方式映射到两组比特信息中的部分比特中;而剩余信息以分集模式的方式映射到两组比特信息的剩余比特中。混合模式的调制端示意图和图11一样,但区别在于最终得到的第一组比特信息和第二组比特信息所表示的原始信息不是完全独立的。
相应的,对于分集模式和混合模式,如果解调端能够解调出表示相同信息的多个比特信息,对其进行相应的处理(解码、解压缩、解密、解合并、合并、解交织等)后,获得发送的相同信息。
分集模式为同一路信息提供了冗余性,提高了传输可靠性,为解调端提供了灵活性。比如,若分别用两组比特信息传输相同信息,其中第一组比特信息用混合调制信号的相位表示,第二组比特信息用混合调制信号的频率表示,这样可以让解调端先尝 试进行非相干解调,在无法成功解调时再使用相干解调,从而可以降低解调端的功耗。
分集模式还可以为具有不同解调能力的接收端提供有差异的传输服务。比如,对于一路信息,可以通过具有优先级的分层压缩方法得到重要性不同的两组比特信息。混合调制信号采用不同维度表示这两组比特信息,比如用频率来表示重要性更高的比特流。那么,对于能力弱的接收设备可以采用非相干解调接收更为重要的那一组比特信息,获得有限度的服务;对于能力强的接收设备可以采用相干解调接收全部比特信息,获得完整的服务。
可选地,若频率、幅度、相位的调制阶数分别为F、A、P,那么一个混合调制信号总共可以表示log2(F)+log2(A)+log2(P)个比特信息。比特信息与频率、幅度、相位的映射可以是灵活的。比如,对于F=4,P=4的混合调制信号来说,共可以表示4个比特。那么,包含3个比特的第一组比特信息可以联合使用2个频率和4个相位来表示;而包含1个比特的第二组比特信息使用2个频率来表示。采用本申请实施例提供的方法可以实现灵活映射。结合前述实施例提到的多种传输模式,使得多路信息与混合调制信号中的频率、幅度、相位也能具有灵活的映射方式。
n)所述两组比特信息的时序关系。
混合调制信号中的第一组比特信息和第二组比特信息可以是灵活的时序对应关系。比如,图12是本申请实施例提供的两组比特信息的时序关系示意图,如图12所示,发送端可以每发送两次第一组比特信息时发送一次第二组比特信息。实际情况中,两组比特信息的对应关系可以是一对多,多对一,多对多,根据配置情况而定。
可选地,所述方法还包括:
所述第一设备根据第一信息,确定所述第一配置信息;
或者,接收所述第三设备发送的第一配置信息,所述第一配置信息是所述第三设备根据第一信息确定的;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
其中,所述第二设备为所述第一信号的接收端。
可以理解的是,上述实施例提及的第一配置信息可以是第一设备确定的,具体根据第一信息确定。第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
所述第二设备为所述第一信号的接收端,或称为解调端,可以是终端或网络侧设备。
可选地,第一配置信息可以是第三设备确定的,具体地,第三设备根据第一信息确定第一配置信息,向第一设备发送第一配置信息。
可选地,第一设备向第三设备上报第一设备的能力信息。例如,进入连接态后,第一设备通过UE Capability Enquiry-UE Capability Information信令上报自己的UE能力信息,或者,通过UE Assistance Information信息上报自己的UE能力信息。或者,在初始注册或添加过程中,通过Initial UE message主动上报自己的UE能力信息。
第三设备可以是发送端(即调制端,第一设备),接收端(即解调端,第二设备),或第三方通信设备。
可选地,所述第一设备或第二设备的能力信息包括以下至少一项:
a)调幅能力;
包括支持的幅度信息,连续调幅或离散调幅及对应的连续或离散特征的状态数量。
b)调相能力;
包括支持的相位信息,连续调相或离散调相及对应的连续或离散特征的状态数量。
c)载波生成能力;
包括支持的频率信息及其数量等。
d)解调能力;
如支持相干解调或非相干解调能力。
e)同步能力;
包括是否支持相位同步、是否支持时间同步、同步精度、误差范围等。
f)天线能力
包括天线数量、天线阵列排列配置、频率响应情况等。
可选地,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
历史的信道状态信息可以是曾经设备驻留时记录的信道状态信息。实时的信道状态信息可以是估计或是通过其它方式获得的信息状态信息。
在一些可选的实施例中,第一配置信息(即第一调制参数)可以是默认配置好的或出厂设置的。
可选地,所述第一组比特信息包括以下之一:唤醒指示信号,寻呼消息,控制命令,指示信息。
混合调制信号在传输控制信令方面具有重要优势,比如唤醒指示信号。由于非相干解调较为简单,功耗比较低,适合长时间开启。因此,可以将寻呼消息、控制命令(如媒体访问控制控制元素(MAC Control Element,MAC CE))、指示信息(如侧链路控制信息(Sidelink Control Information,SCI),下行控制信息(Downlink Control Information,DCI))等的比特信息调制到混合调制信号的频率部分。
以唤醒信号为例,可以将混合调制信号的频率变化用于承载唤醒序列的比特信息,而幅度、相位则用于承载具体的寻呼(Paging)信号位置、初始随机接入机会(RACH Occasion,RO)等信息。那么,当接收设备用非相干解调的解调端接收到唤醒序列后,开启相干解调的解调端接收剩余的信息。该方案一方面能让接收设备以较低的功耗持续监听唤醒信息,降低唤醒时延;另一方面还能为接收设备提供足够的辅助信息,帮助快速建立连接,比如无线资源控制(Radio Resource Control,RRC)连接。
可选地,在部分比特信息已被预调制为第一符号的情况下,对比特信息进行调制包括:
对所述第一符号进行第一处理,获得一个或多个第二符号;
若第一符号来自第一组比特信息,则将第二符号调制为第一信号的频率、幅度和相位中的至少一项;
若第一符号来自第二组比特信息,则将第二符号调制为第一信号的频率;
其中,所述第一符号包括单维调制符号或多维调制符号;所述第一处理包括以下至少一项:直接映射、交织、扩展、加扰。
可以理解的是,发送端在接收原始的一路或多路信息时,可能部分比特信息已经被调制成了第一符号,部分比特信息可以是第一组比特信息,第二组比特信息,或者,第一组比特信息的部分比特信息,第二组比特信息的部分比特信息,比如OFDM、QAM符号等。预调制的第一符号会占据混合调制信号的部分维度,比如QAM符号需要用幅度和相位进行承载。此时,混合调制信号的剩余维度,比如频率可以用于承载剩余的比特信息。
另外,第一符号可以直接被映射到混合调制信号的相应维度(比如QAM信号的幅度相位直接映射到混合调制信号的幅度和相位);或者,经过交织、扩展、加扰等至少一项处理形成一个或者多个第二符号(扩展会增加符号的数量),然后映射到一个或多个混合调制信号的相应维度进行承载。
其中,交织是指:交换多个符号的位置,变成一组新的符号
扩展是指:将一个符号复制成多个新的符号,其中复制到每个新的符号时可以进行对原符号进行按照约定规则的修改(比如调整幅度和相位)。
加扰是指:将原符号进行按照约定规则的修改,变成新的符号
第一符号可以是单维调制符号或多维调制符号。
其中,单维调制即只在电磁波的幅度、相位、频率等维度上的其中一个维度进行信息调制,典型的单维调制有:ASK调制、PSK调制、FSK调制等。
多维调制是指利用多个维度表示比特信息,例如,二维调制在电磁波的幅度、相位、频率等维度上的其中两个维度上进行联合调制,典型的二维调制有:QAM调制、无载波幅相调制(Carrierless Amplitude-Phase,CAP)调制、APSK调制等。
可选地,所述方法还包括:
向第二设备发送所述第一信号,其中,所述第二设备包括多个不同的接收设备,或者,相同设备的不同解调端,或者,相同设备的相同解调端。
需要说明的是,前述实施例中提及的第二设备,可以是多个不同的接收设备的不同解调端,也可以是相同接收设备的不同解调端,或者,第二设备是相同设备的相同解调端。
如图13所示,对于单接收设备的场景,发送端发送混合调制信号,系统配置或发送端指示接收端解调混合调制信号中的部分或全部比特信息。
如图14所示,对于多接收设备的场景,一种情况是不同设备独立地进行解调。若分布在网络中的UE的能力有差异,比如部分UE只能解调混合调制信号中的部分比特信息,另外一部分UE能够解调混合调制信号中的全部比特信息。此时,发送端可利用统一的调制方式就同时为不同的用户提供信息传输,降低了调度和传输时延。
如图15所示,对于多接收设备的场景,另外一种情况是不同设备协作进行解调。同样考虑分布在网络中的UE的能力有差异,不同UE只能解调混合调制信号中不同部分的比特信息。比如,若UE1只能解调第一部分比特信息,UE2能够解调全部或第二部分比特信息,那么UE2可以在完成第二部分比特信息解调之后将解调出的信息传输给UE1,UE1将解调出的第一部分比特信息和来自于UE2传输的第二部分比特信息进行合并,从而解调出发送端发送的混合调制信号的所有比特信息。通过UE之间的协作,实现联合解调。这种方式适合于UE能力弱,但对速率有要求的场景,但要求UE和UE之间能够基于类似于sidelink的数据和信令传输。
可选地,所述方法还包括:
向所述第二设备发送第一指示信息,所述第一指示信息用于指示第一调制参数。
可以理解的是,第一指示信息为调制端发送给解调端的指示信息,以指示解调端如何对接收到的混合调整信号进行解调。
第一调制参数包括的具体内容可以参考前述实施例的描述,在此不再赘述。
本申请实施例实现了用统一的信号向不同的接收设备或解调端同时传输多组比特信息,并提供了灵活的比特映射和传输模式,能够满足不同接收设备/解调端在速率、复杂度、功耗等方面的差异化需求,提高了传输的灵活性和效率。
图16是本申请实施例提供的基于混合调制的通信方法的流程示意图之二。如图16所示,该方法包括以下步骤:
步骤1600、第二设备接收第一信号,其中,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;
步骤1601、所述第二设备解调所述第一信号,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息;或,确定并根据所述第一信号的频率,得到第二组比特信息;或,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息和第二组比特信息。
可以理解的是,第二设备为解调端,可以是终端或网络侧设备。
第二设备接收第一信号,其中,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号,第二设备对所述第一信号进行解调,可以得到所述第一组比特信息和所述第二组比特信息的至少一者。
第一信号是为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号,因此,在解调端,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息;或,确定并根据所述第一信号的频率,得到第二组比特信息;或,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息和第二组比特信息。
下面以前述实施例中提到的混合调制信号为例,描述一种混合调制信号的解调方式,分为非相干解调和相干解调。
图17展示了一种非相干解调的解调端结构图。首先对接收信号y(t)进行下变频和低通滤波、匹配滤波,此时就能得到在f1和f2两个频率I、Q支路的幅度,然后对其平方求和,得到信号在不同频率上的能量,据此判决信号所在的频率(比如取最大值所在频率),最终映射到比特信息。
图18展示了一种相干解调的解调端结构图。图中的振荡器为具有同步功能的振荡器,可以产生相位为θ'的载波,补偿接收信号的相位偏差,从而得到准确的I、Q支路幅度。通过求出每个频率对应的I、Q支路幅度与混合调制信号星座(如图8)中的所有星座点对应的I、Q支路幅度的欧氏距离,可以判决得到最接近的频率、幅度和相位,从而映射得到比特信息。除了图中描述的输出两组比特信息,也可以根据解复用相关配置对比特信息进行分割、筛选等操作,只输出所需的比特信息。值得注意的是,此处不限定提供同步载波的振荡器的实现方式,通常有锁相环、延迟反馈锁相环等,也可以通过导频估计相位偏差。
本实施例以前述实施例形成的混合调制信号为例阐述了解调端的一种可能实现,但相应的思想可以拓展到任意混合调制信号中,比如当大于两个频率时增加振荡器的数量、改变判决准则、映射大于1路或2路比特信息等。
在本申请实施例中,通过接收混合调制信号,对混合调制信号进行解调,从而得到接收端采用统一的信号同时传输的两组比特信息中的至少一者,提高了传输的灵活性和效率。
可选地,所述解调所述第一信号,包括:
根据第二配置信息和/或第一指示信息,解调所述第一信号,其中,所述第二配置信息用于指示第一解调参数,所述第一指示信息用于指示第一调制参数。
其中,第二配置信息可以是第二设备确定的,也可以来自第三设备。第一指示信息来自第一设备。
需要说明的是,第二配置信息和第一指示信息需要包含全部的解调制参数,分为以下几种情形:
1、第二配置信息指示全部的解调制参数;
2、第一指示信息指示全部的解调制参数;
3、第二配置信息和第一指示信息一起指示全部的解调制参数,即各自指示部分解调制参数。
可选地,所述第一解调参数或第一调制参数包括以下至少一项:
可用的频率数量,或,频率的调制阶数;
可用的频率信息;
可用的幅度数量,或,幅度的调制阶数;
可用的相位数量,或,相位的调制阶数;
可用的I支路和/或Q支路的幅度数量,或,I支路和/或Q支路的幅度调制阶数;
第一信号的星座点总数;
单个第一信号可表示的比特总数;或,第一信号的调制阶数;
比特信息与第一信号频率的映射规则;
比特信息与第一信号幅度的映射规则;
比特信息与第一信号相位的映射规则;
比特信息与第一信号I支路幅度的映射规则;
比特信息与第一信号Q支路幅度的映射规则;
两组比特信息的传输模式,所述两组比特信息包括所述第一组比特信息和第二组比特信息;
所述两组比特信息的时序关系。
对于第一解调参数或第一调制参数所包含的各项内容的理解,可以参考前述实施例有关第一配置信息的描述,在此不再赘述。
可选地,所述传输模式包括:复用模式,分集模式或混合模式;
所述复用模式是指各组比特信息包含或表征的信息是独立不相关的;
所述分集模式是指各组比特信息为相同信息,或者,所述两组比特信息的每组比特信息为相同信息具有关联性的不同表示;
所述混合模式是指两组比特信息中的部分比特信息包含独立不相关的信息,其他比特信息是相同信息具有关联性的不同表示。
对于传输模式各项内容的理解,可以参考前述实施例中的描述,在此不再赘述。
可选地,所述方法还包括:
所述第二设备根据第二组比特信息,确定所述第二配置信息;
或者,接收所述第三设备发送的第二配置信息,所述第二配置信息是所述第三设备根据第一信息确定的;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
其中,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力;
调相能力;
载波生成能力;
解调能力;
同步能力;
天线能力;
其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
可以理解的是,上述实施例提及的第二配置信息可以是第二设备确定的,具体根据第二组比特信息确定。
可选地,第二配置信息可以是第三设备确定的,具体地,第三设备根据第一信息确定第二配置信息,向第二设备发送第二配置信息。其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况。
可选地,第二设备向第三设备上报第二设备的能力信息。例如,进入连接态后,第一设备通过UE Capability Enquiry-UE Capability Information信令上报自己的UE能力信息,或者,通过UE Assistance Information信息上报自己的UE能力信息。或者,在初始注册或添加过程中,通过Initial UE message主动上报自己的UE能力信息。
第三设备可以是发送端(即调制端,第一设备),接收端(即解调端,第二设备),或第三方通信设备。
其中,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力;
调相能力;
载波生成能力;
解调能力;
同步能力;
天线能力。
对于能力信息的理解可以参考前述实施例的描述,在此不再赘述。
可选地,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
可选地,所述第二设备包括多个不同的接收设备,或者,相同设备的不同解调端,或者,相同设备的相同解调端。
如图13所示,对于单接收设备的场景,发送端发送混合调制信号,系统配置或发送端指示接收端解调混合调制信号中的部分或全部比特信息。
如图14所示,对于多接收设备的场景,一种情况是不同设备独立地进行解调。若分布在网络中的UE的能力有差异,比如部分UE只能解调混合调制信号中的部分比特信息,另外一部分UE能够解调混合调制信号中的全部比特信息。此时,发送端可利用统一的调制方式就同时为不同的用户提供信息传输,降低了调度和传输时延。
如图15所示,对于多接收设备的场景,另外一种情况是不同设备协作进行解调。同样考虑分布在网络中的UE的能力有差异,不同UE只能解调混合调制信号中不同部分的比特信息。比如,若UE1只能解调第一部分比特信息,UE2能够解调全部或第二部分比特信息,那么UE2可以在完成第二部分比特信息解调之后将解调出的信息传输给UE1,UE1将解调出的第一部分比特信息和来自于UE2传输的第二部分比特信息进行合并,从而解调出发送端发送的混合调制信号的所有比特信息。通过UE之间的协作,实现联合解调。这种方式适合于UE能力弱,但对速率有要求的场景,但要求UE和UE之间能够基于类似于sidelink的数据和信令传输。
可选地,所述解调所述第一信号,包括:
第一解调端确定并根据所述第一信号的频率,得到第二组比特信息;
所述第一解调端根据所述第二组比特信息,向第二解调端发送第二指示信息,所述第二指示信息用于指示解调出第一组比特信息所需要的信息;或者,所述第一解调端向第二解调端发送所述第二组比特信息;
第二解调端根据所述第二指示信息或第二组比特信息,确定并根据第一信号的频率、幅度和相位中的至少一项得到第一组比特信息;
其中,第一解调端和第二解调端为不同的接收设备的不同解调端,或者,相同设备的不同解调端。
可选地,所述第二组比特信息包括以下之一:唤醒指示信号,寻呼消息,控制命令,指示信息。
对于本实施例中第二组比特信息的理解,可以参考前述实施例中的描述,在此不再赘述。
可选地,在所述传输模式为分集模式的情况下,所述解调所述第一信号之后,所述方法还包括:
对所述第一组比特信息和所述第二组比特信息的至少一者进行第二处理,以将所述第一组比特信息和所述第二组比特信息的至少一者还原为原始的比特信息;
其中,所述第二处理包括以下至少一项:解码、解压缩、解密、解合并、合并、去交织。
在所述传输模式为分集模式的情况下,所述两组比特信息的每组比特信息为相同信息具有关联性的不同表示,因此,第二设备对所述第一信号进行解调,得到所述第一组比特信息和所述第二组比特信息的至少一者之后,还需要对对所述第一组比特信息和所述第二组比特信息的至少一者进行第二处理(包括解码、解压缩、解密、解合并、合并、去交织中的至少一项),从而将所述第一组比特信息和所述第二组比特信息的至少一者还原为原始的比特信息。
本申请实施例实现了不同的接收设备或解调端接收发送端用统一的信号同时传输的多组比特信息,通过提供灵活的比特映射和传输模式,能够满足不同接收设备/解调端在速率、复杂度、功耗等方面的差异化需求,提高了传输的灵活性和效率。
图19是本申请实施例提供的基于混合调制的通信方法的流程示意图之三,如图19所示,该方法包括:
步骤1900、第三设备执行第一操作;
其中,所述第一操作包括:
根据第一信息,确定第一配置信息,向第一设备发送所述第一配置信息;或者,
根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向第二设备发送所述第二配置信息;
其中,所述第一设备为第一信号的发送端,所述第二设备为第一信号的接收端,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
其中,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力;
调相能力;
载波生成能力;
解调能力;
同步能力;
天线能力;
其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
所述第一配置信息或第二配置信息通过以下方式之一承载:
无线资源控制RRC信令;
媒体访问控制控制单元MAC CE;
物理层信令。
其中,物理层信令包括但不限于:下行控制信息(Downlink Control Information,DCI)、侧链路控制信息(Sidelink Control Information,SCI)、物理帧头preamble等。
关于第三设备的行为以及第三设备所执行步骤中相关描述的理解,可以参考前述实施例中的相关描述,在此不再赘述。
本申请实施例实现了采用统一的信号向不同的接收设备或解调端同时传输多组比特信息,通过提供灵活的比特映射和传输模式,能够满足不同接收设备/解调端在速率、复杂度、功耗等方面的差异化需求,提高了传输的灵活性和效率。
本申请上述各实施例提供的基于混合调制的通信方法可应用在LTE系统、5G NR系统以及NR演进系统,6G系统,以及IEEE 802.11、无线光通信、反向散射通信等诸多无线通信系统等。
本申请实施例提供的基于混合调制的通信方法,执行主体可以为基于混合调制的通信装置。本申请实施例中以基于混合调制的通信装置执行基于混合调制的通信方法为例,说明本申请实施例提供的基于混合调制的通信装置。
图20是本申请实施例提供的基于混合调制的通信装置的结构示意图之一。如图20所示,该基于混合调制的通信装置2000包括:
第一调制单元2010,用于将第一组比特信息调制为第一信号的频率、幅度和相位中的至少一项,将第二组比特信息调制为所述第一信号的频率。
在本申请实施例中,通过将第一组比特信息调制为第一信号的频率、幅度和相位中的至少一项,将第二组比特信息调制为所述第一信号的频率,实现了用统一的信号向接收端同时传输多组比特信息,提高了传输的灵活性和效率。
可选地,根据第一配置信息,对所述第一组比特信息和第二组比特信息进行调制,所述第一配置信息用于指示第一调制参数;
所述第一调制参数包括以下至少一项:
可用的频率数量,或,频率的调制阶数;
可用的频率信息;
可用的幅度数量,或,幅度的调制阶数;
可用的相位数量,或,相位的调制阶数;
可用的I支路和/或Q支路的幅度数量,或,I支路和/或Q支路的幅度调制阶数;
第一信号的星座点总数;
单个第一信号可表示的比特总数;或,第一信号的调制阶数;
比特信息与第一信号频率的映射规则;
比特信息与第一信号幅度的映射规则;
比特信息与第一信号相位的映射规则;
比特信息与第一信号I支路幅度的映射规则;
比特信息与第一信号Q支路幅度的映射规则;
两组比特信息的传输模式,所述两组比特信息包括所述第一组比特信息和第二组比特信息;
所述两组比特信息的时序关系。
可选地,所述传输模式包括:复用模式,分集模式或混合模式;
所述复用模式是指各组比特信息包含或表征的信息是独立不相关的;
所述分集模式是指各组比特信息为相同信息,或者,所述两组比特信息的每组比特信息为相同信息具有关联性的不同表示;
所述混合模式是指两组比特信息中的部分比特信息包含独立不相关的信息,其他比特信息是相同信息具有关联性的不同表示。
可选地,所述装置还包括第一处理单元,用于:
根据第一信息,确定所述第一配置信息;
或者,接收所述第三设备发送的第一配置信息,所述第一配置信息是所述第三设备根据第一信息确定的;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
其中,所述第二设备为所述第一信号的接收端;
其中,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力;
调相能力;
载波生成能力;
解调能力;
同步能力;
天线能力;
其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
可选地,所述第二组比特信息包括以下之一:唤醒指示信号,寻呼消息,控制命令,指示信息。
可选地,在部分比特信息已被预调制为第一符号的情况下,对比特信息进行调制包括:
对所述第一符号进行第一处理,获得一个或多个第二符号;
若第一符号来自第一组比特信息,则将第二符号调制为第一信号的频率、幅度和相位中的至少一项;
若第一符号来自第二组比特信息,则将第二符号调制为第一信号的频率;
其中,所述第一符号包括单维调制符号或多维调制符号;所述第一处理包括以下至少一项:直接映射、交织、扩展、加扰。
可选地,所述装置还包括:
第一发送单元,用于向第二设备发送所述第一信号,其中,所述第二设备包括多个不同的接收设备,或者,相同设备的不同解调端,或者,相同设备的相同解调端。
可选地,所述装置还包括:
第二发送单元,用于向所述第二设备发送第一指示信息,所述第一指示信息用于指示第一调制参数。
本申请实施例实现了用统一的信号向不同的接收设备或解调端同时传输多组比特信息,并提供了灵活的比特映射和传输模式,能够满足不同接收设备/解调端在速率、复杂度、功耗等方面的差异化需求,提高了传输的灵活性和效率。
本申请实施例中的基于混合调制的通信装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的基于混合调制的通信装置能够实现图7至图15的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图21是本申请实施例提供的基于混合调制的通信装置的结构示意图之二。如图21所示,该基于混合调制的通信装置2100包括:
第一接收单元2110,用于接收第一信号,其中,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;
第一解调单元2120,用于解调所述第一信号,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息;或,确定并根据所述第一信号的频率,得到第二组比特信息;或,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息和第二组比特信息。
在本申请实施例中,通过接收混合调制信号,对混合调制信号进行解调,从而得到接收端采用统一的信号同时传输的两组比特信息中的至少一者,提高了传输的灵活性和效率。
可选地,所述解调所述第一信号,包括:
根据第二配置信息和/或第一指示信息,解调所述第一信号,其中,所述第二配置信息用于指示第一解调参数,所述第一指示信息用于指示第一调制参数。
可选地,所述第一解调参数或第一调制参数包括以下至少一项:
可用的频率数量,或,频率的调制阶数;
可用的频率信息;
可用的幅度数量,或,幅度的调制阶数;
可用的相位数量,或,相位的调制阶数;
可用的I支路和/或Q支路的幅度数量,或,I支路和/或Q支路的幅度调制阶数;
第一信号的星座点总数;
单个第一信号可表示的比特总数;或,第一信号的调制阶数;
比特信息与第一信号频率的映射规则;
比特信息与第一信号幅度的映射规则;
比特信息与第一信号相位的映射规则;
比特信息与第一信号I支路幅度的映射规则;
比特信息与第一信号Q支路幅度的映射规则;
两组比特信息的传输模式,所述两组比特信息包括所述第一组比特信息和第二组比特信息;
所述两组比特信息的时序关系。
可选地,所述传输模式包括:复用模式,分集模式或混合模式;
所述复用模式是指各组比特信息包含或表征的信息是独立不相关的;
所述分集模式是指各组比特信息为相同信息,或者,所述两组比特信息的每组比特信息为相同信息具有关联性的不同表示;
所述混合模式是指两组比特信息中的部分比特信息包含独立不相关的信息,其他比特信息是相同信息具有关联性的不同表示。
可选地,所述装置还包括第二处理单元,用于:
根据第二组比特信息,确定所述第二配置信息;
或者,接收所述第三设备发送的第二配置信息,所述第二配置信息是所述第三设备根据第一信息确定的;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
其中,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力;
调相能力;
载波生成能力;
解调能力;
同步能力;
天线能力;
其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
可选地,所述第二设备包括多个不同的接收设备,或者,相同设备的不同解调端,或者,相同设备的相同解调端。
可选地,所述解调所述第一信号,包括:
第一解调端确定并根据所述第一信号的频率,得到第二组比特信息;
所述第一解调端根据所述第二组比特信息,向第二解调端发送第二指示信息,所述第二指示信息用于指示解调出第一组比特信息所需要的信息;或者,所述第一解调端向第二解调端发送所述第二组比特信息;
第二解调端根据所述第二指示信息或第二组比特信息,确定并根据第一信号的频率、幅度和相位中的至少一项得到第一组比特信息;
其中,第一解调端和第二解调端为不同的接收设备的不同解调端,或者,相同设备的不同解调端。
可选地,所述第二组比特信息包括以下之一:唤醒指示信号,寻呼消息,控制命令,指示信息。
可选地,在所述传输模式为分集模式的情况下,所述装置还包括:
第三处理单元,用于对所述第一组比特信息和所述第二组比特信息的至少一者进行第二处理,以将所述第一组比特信息和所述第二组比特信息的至少一者还原为原始的比特信息;
其中,所述第二处理包括以下至少一项:解码、解压缩、解密、解合并、合并、去交织。
本申请实施例实现了不同的接收设备或解调端接收发送端用统一的信号同时传输的多组比特信息,通过提供灵活的比特映射和传输模式,能够满足不同接收设备/解调端在速率、复杂度、功耗等方面的差异化需求,提高了传输的灵活性和效率。
本申请实施例中的基于混合调制的通信装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列 举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的基于混合调制的通信装置能够实现图16至图18的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图22是本申请实施例提供的基于混合调制的通信装置的结构示意图之三。如图22所示,该基于混合调制的通信装置2200包括:
第一执行单元2210,用于执行第一操作;
其中,所述第一操作包括:
根据第一信息,确定第一配置信息,向第一设备发送所述第一配置信息;或者,
根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向第二设备发送所述第二配置信息;
其中,所述第一设备为第一信号的发送端,所述第二设备为第一信号的接收端,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
其中,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力;
调相能力;
载波生成能力;
解调能力;
同步能力;
天线能力;
其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
可选地,所述第一配置信息或第二配置信息通过以下方式之一承载:
无线资源控制RRC信令;
媒体访问控制控制单元MAC CE;
物理层信令。
本申请实施例实现了采用统一的信号向不同的接收设备或解调端同时传输多组比特信息,通过提供灵活的比特映射和传输模式,能够满足不同接收设备/解调端在速率、复杂度、功耗等方面的差异化需求,提高了传输的灵活性和效率。
本申请实施例中的基于混合调制的通信装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列 举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的基于混合调制的通信装置能够实现图19的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图23所示,本申请实施例还提供一种通信设备2300,包括处理器2301和存储器2302,存储器2302上存储有可在所述处理器2301上运行的程序或指令,例如,该通信设备2300为终端时,该程序或指令被处理器2301执行时实现上述基于混合调制的通信方法实施例的各个步骤,且能达到相同的技术效果。该通信设备2300为网络侧设备时,该程序或指令被处理器2301执行时实现上述基于混合调制的通信方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,该通信设备为第一设备,包括处理器和通信接口,处理器用于将第一组比特信息调制为第一信号的频率、幅度和相位中的至少一项,将第二组比特信息调制为所述第一信号的频率。该通信设备实施例与上述第一设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。
本申请实施例还提供一种通信设备,该通信设备为第二设备,包括处理器和通信接口,通信接口用于接收第一信号,其中,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;处理器用于解调所述第一信号,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息;或,确定并根据所述第一信号的频率,得到第二组比特信息;或,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息和第二组比特信息。该通信设备实施例与上述第二设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。
本申请实施例还提供一种通信设备,该通信设备为第三设备,包括处理器和通信接口,处理器用于执行第一操作;其中,所述第一操作包括:根据第一信息,确定第一配置信息,向第一设备发送所述第一配置信息;或者,根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向第二设备发送所述第二配置信息;其中,所述第一设备为第一信号的发送端,所述第二设备为第一信号的接收端,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;其中,所述第一设备或第二设备的能力信息包括以下至少一项:调幅能力;调相能力;载波生成能力;解调能力;同步能力;天线能力;其中,所述信道状态情况包括历史的信道状态信 息,或,实时的信道状态信息。该通信设备实施例与上述第三设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。
具体地,图24是实现本申请实施例的一种终端的硬件结构示意图。
该终端2400包括但不限于:射频单元2401、网络模块2402、音频输出单元2403、输入单元2404、传感器2405、显示单元2406、用户输入单元2407、接口单元2408、存储器2409以及处理器2410等中的至少部分部件。
本领域技术人员可以理解,终端2400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器2410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图24中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元2404可以包括图形处理单元(Graphics Processing Unit,GPU)24041和麦克风24042,图形处理器24041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元2406可包括显示面板24061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板24061。用户输入单元2407包括触控面板24071以及其他输入设备24072中的至少一种。触控面板24071,也称为触摸屏。触控面板24071可包括触摸检测装置和触摸控制器两个部分。其他输入设备24072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元2401接收来自网络侧设备的下行数据后,可以传输给处理器2410进行处理;另外,射频单元2401可以向网络侧设备发送上行数据。通常,射频单元2401包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器2409可用于存储软件程序或指令以及各种数据。存储器2409可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器2409可以包括易失性存储器或非易失性存储器,或者,存储器2409可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM, SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器2409包括但不限于这些和任意其它适合类型的存储器。
处理器2410可包括一个或多个处理单元;可选地,处理器2410集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器2410中。
在第一设备为终端时,该终端执行第一设备侧的方法步骤:
其中,处理器2410,用于将第一组比特信息调制为第一信号的频率、幅度和相位中的至少一项,将第二组比特信息调制为所述第一信号的频率。
可选地,根据第一配置信息,对所述第一组比特信息和第二组比特信息进行调制,所述第一配置信息用于指示第一调制参数;
所述第一调制参数包括以下至少一项:
可用的频率数量,或,频率的调制阶数;
可用的频率信息;
可用的幅度数量,或,幅度的调制阶数;
可用的相位数量,或,相位的调制阶数;
可用的I支路和/或Q支路的幅度数量,或,I支路和/或Q支路的幅度调制阶数;
第一信号的星座点总数;
单个第一信号可表示的比特总数;或,第一信号的调制阶数;
比特信息与第一信号频率的映射规则;
比特信息与第一信号幅度的映射规则;
比特信息与第一信号相位的映射规则;
比特信息与第一信号I支路幅度的映射规则;
比特信息与第一信号Q支路幅度的映射规则;
两组比特信息的传输模式,所述两组比特信息包括所述第一组比特信息和第二组比特信息;
所述两组比特信息的时序关系。
可选地,所述传输模式包括:复用模式,分集模式或混合模式;
所述复用模式是指各组比特信息包含或表征的信息是独立不相关的;
所述分集模式是指各组比特信息为相同信息,或者,所述两组比特信息的每组比特信息为相同信息具有关联性的不同表示;
所述混合模式是指两组比特信息中的部分比特信息包含独立不相关的信息,其他比特信息是相同信息具有关联性的不同表示。
可选地,所述处理器2410还用于:
根据第一信息,确定所述第一配置信息;
或者,接收所述第三设备发送的第一配置信息,所述第一配置信息是所述第三设备根据第一信息确定的;
其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
其中,所述第二设备为所述第一信号的接收端;
其中,所述第一设备或第二设备的能力信息包括以下至少一项:
调幅能力;
调相能力;
载波生成能力;
解调能力;
同步能力;
天线能力;
其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
可选地,所述第二组比特信息包括以下之一:唤醒指示信号,寻呼消息,控制命令,指示信息。
可选地,在部分比特信息已被预调制为第一符号的情况下,对比特信息进行调制包括:
对所述第一符号进行第一处理,获得一个或多个第二符号;
若第一符号来自第一组比特信息,则将第二符号调制为第一信号的频率、幅度和相位中的至少一项;
若第一符号来自第二组比特信息,则将第二符号调制为第一信号的频率;
其中,所述第一符号包括单维调制符号或多维调制符号;所述第一处理包括以下至少一项:直接映射、交织、扩展、加扰。
可选地,所述射频单元2401用于:
向第二设备发送所述第一信号,其中,所述第二设备包括多个不同的接收设备,或者,相同设备的不同解调端,或者,相同设备的相同解调端。
可选地,所述射频单元2401还用于:
向所述第二设备发送第一指示信息,所述第一指示信息用于指示第一调制参数。
本申请实施例实现了用统一的信号向不同的接收设备或解调端同时传输多组比特信息,并提供了灵活的比特映射和传输模式,能够满足不同接收设备/解调端在速率、复杂度、功耗等方面的差异化需求,提高了传输的灵活性和效率。
在一些可选的实施例中,终端可以执行第二设备侧的方法步骤,在此不再赘述。
在一些可选的实施例中,终端可以执行第三设备侧的方法步骤,在此也不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图25所示,该网络侧设备2500包括:天线2501、射频装置2502、基带装置2503、处理器2504和存储器2505。天线2501与射频装置2502连接。在上行方向上,射频装置2502通过天线2501接收信息,将接收的信息发送给基带装置2503进行处理。在下行方向上,基带装置2503对要发送的信息进行处理,并发送给射频装置2502,射频装置2502对收到的信息进行处理后经过天线2501发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置2503中实现,该基带装置2503包括基带处理器。
基带装置2503例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图25所示,其中一个芯片例如为基带处理器,通过总线接口与存储器2505连接,以调用存储器2505中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口2506,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备2500还包括:存储在存储器2505上并可在处理器2504上运行的指令或程序,处理器2504调用存储器2505中的指令或程序执行图7或图16或图19所示的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述基于混合调制的通信方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,计算机可读存储介质的示例包括非暂态计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例还提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述基于混合调制的通信方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述基于混合调制的通信方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:第一设备,第二设备和第三设备,所述第一设备可用于执行如上所述第一设备的基于混合调制的通信方法的步骤,所述第二设备可用于执行如上所述第二设备的基于混合调制的通信方法的步骤,所述第三设备可用于执行如上所述第三设备的基于混合调制的通信方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (24)

  1. 一种基于混合调制的通信方法,包括:
    第一设备将第一组比特信息调制为第一信号的频率、幅度和相位中的至少一项,将第二组比特信息调制为所述第一信号的频率。
  2. 根据权利要求1所述的方法,其中,根据第一配置信息,对所述第一组比特信息和第二组比特信息进行调制,所述第一配置信息用于指示第一调制参数;
    所述第一调制参数包括以下至少一项:
    可用的频率数量,或,频率的调制阶数;
    可用的频率信息;
    可用的幅度数量,或,幅度的调制阶数;
    可用的相位数量,或,相位的调制阶数;
    可用的I支路和/或Q支路的幅度数量,或,I支路和/或Q支路的幅度调制阶数;
    第一信号的星座点总数;
    单个第一信号可表示的比特总数;或,第一信号的调制阶数;
    比特信息与第一信号频率的映射规则;
    比特信息与第一信号幅度的映射规则;
    比特信息与第一信号相位的映射规则;
    比特信息与第一信号I支路幅度的映射规则;
    比特信息与第一信号Q支路幅度的映射规则;
    两组比特信息的传输模式,所述两组比特信息包括所述第一组比特信息和第二组比特信息;
    所述两组比特信息的时序关系。
  3. 根据权利要求2所述的方法,其中,所述传输模式包括:复用模式,分集模式或混合模式;
    所述复用模式是指各组比特信息包含或表征的信息是独立不相关的;
    所述分集模式是指各组比特信息为相同信息,或者,所述两组比特信息的每组比特信息为相同信息具有关联性的不同表示;
    所述混合模式是指两组比特信息中的部分比特信息包含独立不相关的信息,其他比特信息是相同信息具有关联性的不同表示。
  4. 根据权利要求2-3中任一项所述的方法,所述方法还包括:
    所述第一设备根据第一信息,确定所述第一配置信息;
    或者,接收第三设备发送的第一配置信息,所述第一配置信息是所述第三设备根据第一信息确定的;
    其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
    其中,所述第二设备为所述第一信号的接收端;
    其中,所述第一设备或第二设备的能力信息包括以下至少一项:
    调幅能力;
    调相能力;
    载波生成能力;
    解调能力;
    同步能力;
    天线能力;
    其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
  5. 根据权利要求1-4中任一项所述的方法,其中,所述第二组比特信息包括以下之一:唤醒指示信号,寻呼消息,控制命令,指示信息。
  6. 根据权利要求1所述的方法,其中,在部分比特信息已被预调制为第一符号的情况下,对比特信息进行调制包括:
    对所述第一符号进行第一处理,获得一个或多个第二符号;
    若第一符号来自第一组比特信息,则将第二符号调制为第一信号的频率、幅度和相位中的至少一项;
    若第一符号来自第二组比特信息,则将第二符号调制为第一信号的频率;
    其中,所述第一符号包括单维调制符号或多维调制符号;所述第一处理包括以下至少一项:直接映射、交织、扩展、加扰。
  7. 根据权利要求1-6中任一项所述的方法,所述方法还包括:
    向第二设备发送所述第一信号,其中,所述第二设备包括多个不同的接收设备,或者,相同设备的不同解调端,或者,相同设备的相同解调端。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    向所述第二设备发送第一指示信息,所述第一指示信息用于指示第一调制参数。
  9. 一种基于混合调制的通信方法,包括:
    第二设备接收第一信号,其中,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;
    所述第二设备解调所述第一信号,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息;或,根据所述第一信号的频率,得到第二组比特信息;或,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息和第二组比特信息。
  10. 根据权利要求9所述的方法,其中,所述解调所述第一信号,包括:
    根据第二配置信息和/或第一指示信息,解调所述第一信号,其中,所述第二配置信息用于指示第一解调参数,所述第一指示信息用于指示第一调制参数。
  11. 根据权利要求10所述的方法,其中,所述第一解调参数或第一调制参数包括以下至少一项:
    可用的频率数量,或,频率的调制阶数;
    可用的频率信息;
    可用的幅度数量,或,幅度的调制阶数;
    可用的相位数量,或,相位的调制阶数;
    可用的I支路和/或Q支路的幅度数量,或,I支路和/或Q支路的幅度调制阶数;
    第一信号的星座点总数;
    单个第一信号可表示的比特总数;或,第一信号的调制阶数;
    比特信息与第一信号频率的映射规则;
    比特信息与第一信号幅度的映射规则;
    比特信息与第一信号相位的映射规则;
    比特信息与第一信号I支路幅度的映射规则;
    比特信息与第一信号Q支路幅度的映射规则;
    两组比特信息的传输模式,所述两组比特信息包括所述第一组比特信息和第二组比特信息;
    所述两组比特信息的时序关系。
  12. 根据权利要求11所述的方法,其中,所述传输模式包括:复用模式,分集模式或混合模式;
    所述复用模式是指各组比特信息包含或表征的信息是独立不相关的;
    所述分集模式是指各组比特信息为相同信息,或者,所述两组比特信息的每组比特信息为相同信息具有关联性的不同表示;
    所述混合模式是指两组比特信息中的部分比特信息包含独立不相关的信息,其他比特信息是相同信息具有关联性的不同表示。
  13. 根据权利要求10-12中任一项所述的方法,所述方法还包括:
    所述第二设备根据第二组比特信息,确定所述第二配置信息;
    或者,接收第三设备发送的第二配置信息,所述第二配置信息是所述第三设备根据第一信息确定的;
    其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
    其中,所述第一设备或第二设备的能力信息包括以下至少一项:
    调幅能力;
    调相能力;
    载波生成能力;
    解调能力;
    同步能力;
    天线能力;
    其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
  14. 根据权利要求9-13中任一项所述的方法,其中,所述第二设备包括多个不同的接收设备,或者,相同设备的不同解调端,或者,相同设备的相同解调端。
  15. 根据权利要求14所述的方法,其中,所述解调所述第一信号,包括:
    第一解调端确定并根据所述第一信号的频率,得到第二组比特信息;
    所述第一解调端根据所述第二组比特信息,向第二解调端发送第二指示信息,所述第二指示信息用于指示解调出第一组比特信息所需要的信息;或者,所述第一解调端向第二解调端发送所述第二组比特信息;
    第二解调端根据所述第二指示信息或第二组比特信息,确定并根据第一信号的频率、幅度和相位中的至少一项得到第一组比特信息;
    其中,第一解调端和第二解调端为不同的接收设备的不同解调端,或者,相同设备的不同解调端。
  16. 根据权利要求15所述的方法,其中,所述第二组比特信息包括以下之一:唤醒指示信号,寻呼消息,控制命令,指示信息。
  17. 根据权利要求12所述的方法,在所述传输模式为分集模式的情况下,所述解调所述第一信号之后,所述方法还包括:
    对所述第一组比特信息和所述第二组比特信息的至少一者进行第二处理,以将所述第一组比特信息和所述第二组比特信息的至少一者还原为原始的比特信息;
    其中,所述第二处理包括以下至少一项:解码、解压缩、解密、解合并、合并、去交织。
  18. 一种基于混合调制的通信方法,包括:
    第三设备执行第一操作;
    其中,所述第一操作包括:
    根据第一信息,确定第一配置信息,向第一设备发送所述第一配置信息;或者,
    根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向第二设备发送所述第二配置信息;
    其中,所述第一设备为第一信号的发送端,所述第二设备为第一信号的接收端,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;
    其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
    其中,所述第一设备或第二设备的能力信息包括以下至少一项:
    调幅能力;
    调相能力;
    载波生成能力;
    解调能力;
    同步能力;
    天线能力;
    其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
  19. 根据权利要求18所述的方法,其中,所述第一配置信息或第二配置信息通过以下方式之一承载:
    无线资源控制RRC信令;
    媒体访问控制控制单元MAC CE;
    物理层信令。
  20. 一种基于混合调制的通信装置,包括:
    第一调制单元,用于将第一组比特信息调制为第一信号的频率、幅度和相位中的至少一项,将第二组比特信息调制为所述第一信号的频率。
  21. 一种基于混合调制的通信装置,包括:
    第一接收单元,用于接收第一信号,其中,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;
    第一解调单元,用于解调所述第一信号,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息;或,确定并根据所述第一信号的频率,得到第二组比特信息;或,确定并根据所述第一信号的频率、幅度和相位中的至少一项,得到第一组比特信息和第二组比特信息。
  22. 一种基于混合调制的通信装置,包括:
    第一执行单元,用于执行第一操作;
    其中,所述第一操作包括:
    根据第一信息,确定第一配置信息,向第一设备发送所述第一配置信息;或者,
    根据第一信息,确定第一配置信息和第二配置信息,向所述第一设备发送所述第一配置信息和向第二设备发送所述第二配置信息;
    其中,所述第一设备为第一信号的发送端,所述第二设备为第一信号的接收端,所述第一信号为用频率、幅度和相位中的至少一项调制第一组比特信息,用频率调制第二组比特信息得到的信号;
    其中,所述第一信息包括以下至少一项:第一设备的能力信息,第二设备的能力信息,信道状态情况;
    其中,所述第一设备或第二设备的能力信息包括以下至少一项:
    调幅能力;
    调相能力;
    载波生成能力;
    解调能力;
    同步能力;
    天线能力;
    其中,所述信道状态情况包括历史的信道状态信息,或,实时的信道状态信息。
  23. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至8任一项所述的基于混合调制的通信方法的步骤,或者,实现如权利要求9至17任一项所述的基于混合调制的通信方法的步骤,或者,实现如权利要求18至19任一项所述的基于混合调制的通信方法的步骤。
  24. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至8任一项所述的基于混合调制的通信方法的步骤,或者,实现如权利要求9至17任一项所述的基于混合调制的通信方法的步骤,或者,实现如权利要求18至19任一项所述的基于混合调制的通信方法的步骤。
PCT/CN2023/118153 2022-09-16 2023-09-12 基于混合调制的通信方法、装置及通信设备 WO2024055947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211133193.9 2022-09-16
CN202211133193.9A CN117768277A (zh) 2022-09-16 2022-09-16 基于混合调制的通信方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2024055947A1 true WO2024055947A1 (zh) 2024-03-21

Family

ID=90274249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118153 WO2024055947A1 (zh) 2022-09-16 2023-09-12 基于混合调制的通信方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN117768277A (zh)
WO (1) WO2024055947A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140177750A1 (en) * 2012-12-21 2014-06-26 Broadcom Corporation Fine step blended modulation communications
US20160056984A1 (en) * 2014-08-25 2016-02-25 Telefonaktiebolaget L M Ericsson (Publ) Capacity for narrow-band hybrid modulation
US20170207938A1 (en) * 2014-07-21 2017-07-20 Nokia Solutions And Networks Oy Coverage optimization with fractional bandwidth
CN108540261A (zh) * 2017-03-03 2018-09-14 华为技术有限公司 唤醒消息的传输方法和装置
CN108965185A (zh) * 2017-05-26 2018-12-07 中国移动通信集团公司 一种混合调制和解调多载波的方法及装置
CN109314929A (zh) * 2017-02-06 2019-02-05 华为技术有限公司 多载波唤醒无线帧的波形编码
WO2021227591A1 (zh) * 2020-05-12 2021-11-18 中兴通讯股份有限公司 数据调制方法及装置、数据解调方法及装置、服务节点、终端、介质
WO2022188024A1 (en) * 2021-03-09 2022-09-15 Qualcomm Incorporated Power backoff techniques for modulation schemes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140177750A1 (en) * 2012-12-21 2014-06-26 Broadcom Corporation Fine step blended modulation communications
US20170207938A1 (en) * 2014-07-21 2017-07-20 Nokia Solutions And Networks Oy Coverage optimization with fractional bandwidth
US20160056984A1 (en) * 2014-08-25 2016-02-25 Telefonaktiebolaget L M Ericsson (Publ) Capacity for narrow-band hybrid modulation
CN109314929A (zh) * 2017-02-06 2019-02-05 华为技术有限公司 多载波唤醒无线帧的波形编码
CN108540261A (zh) * 2017-03-03 2018-09-14 华为技术有限公司 唤醒消息的传输方法和装置
CN108965185A (zh) * 2017-05-26 2018-12-07 中国移动通信集团公司 一种混合调制和解调多载波的方法及装置
WO2021227591A1 (zh) * 2020-05-12 2021-11-18 中兴通讯股份有限公司 数据调制方法及装置、数据解调方法及装置、服务节点、终端、介质
WO2022188024A1 (en) * 2021-03-09 2022-09-15 Qualcomm Incorporated Power backoff techniques for modulation schemes

Also Published As

Publication number Publication date
CN117768277A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
TWI789490B (zh) 喚醒無線電發射分集
US6370160B1 (en) Base to handset epoch synchronization in multi-line wireless telephone
US20230246895A1 (en) Data modulation method and apparatus, device, and storage medium
WO2016021466A1 (ja) 無線通信装置および集積回路
US10079706B2 (en) Apparatus for orthogonal 16-QPSK modulated transmission
RU2548901C2 (ru) Модуляция данных в системе связи
JP2009147498A (ja) 送信機、送信機制御方法、送信機制御プログラム、受信機、受信機制御方法、受信機制御プログラム及び無線通信システム
WO2024055947A1 (zh) 基于混合调制的通信方法、装置及通信设备
Reddy Experimental validation of timing, frequency and phase correction of received signals using software defined radio testbed
WO2024055953A1 (zh) 调制方法、装置及通信设备
WO2024067598A1 (zh) 调制、解调方法、装置、设备、系统及存储介质
WO2020020330A1 (zh) 一种数据调制方法、装置及计算机存储介质
WO2021105546A1 (en) Reducing peak to average power ratio in wireless communication systems
KR101276795B1 (ko) 변조 장치 및 그의 변조 방법, 복조 장치 및 그의 복조 방법
US11146441B2 (en) Technique for coherent data communication
WO2023066112A1 (zh) 信息比特调制方法、解调制方法、设备和存储介质
Wang et al. Wireless Communication Network Technology and Evolution
WO2024041504A1 (zh) 一种通信方法及装置
WO2024046219A1 (zh) 信息处理方法、装置、通信设备及可读存储介质
WO2024037446A1 (zh) 信号处理方法、装置及通信设备
CN116781219A (zh) 延迟多普勒域dd域的控制信道资源的指示方法及装置
WO2023246422A1 (zh) 数据处理方法和数据处理装置
WO2022194026A1 (zh) 传输上行mcs指示信息的方法, 终端及网络侧设备
Liu et al. Design of power domain non-orthogonal demodulation based on OFDM system
JP4150284B2 (ja) 直交周波数分割多重送信装置、直交周波数分割多重送信方法、直交周波数分割多重送信プログラムおよび直交周波数分割多重受信装置、直交周波数分割多重受信方法、直交周波数分割多重受信プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864679

Country of ref document: EP

Kind code of ref document: A1