WO2019029367A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2019029367A1
WO2019029367A1 PCT/CN2018/097086 CN2018097086W WO2019029367A1 WO 2019029367 A1 WO2019029367 A1 WO 2019029367A1 CN 2018097086 W CN2018097086 W CN 2018097086W WO 2019029367 A1 WO2019029367 A1 WO 2019029367A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling request
channel
channels
information
response information
Prior art date
Application number
PCT/CN2018/097086
Other languages
English (en)
French (fr)
Inventor
曲秉玉
孙昊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18845110.8A priority Critical patent/EP3648390B1/en
Publication of WO2019029367A1 publication Critical patent/WO2019029367A1/zh
Priority to US16/750,397 priority patent/US11252747B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and device.
  • a terminal may need to simultaneously send an acknowledgement (ACK)/negative acknowledgement (NACK) and a scheduling request (SR).
  • ACK acknowledgement
  • NACK negative acknowledgement
  • SR scheduling request
  • the LTE system carries the SR by channel selection. That is, if the terminal transmits an ACK/NACK on the channel of the SR, it indicates that the terminal simultaneously transmits the SR; and if the terminal transmits an ACK/NACK on the channel of the ACK/NACK, it indicates that the terminal does not transmit the SR.
  • PAPR peak to average power ratio
  • the LTE system reserves the same number of ACK/NACK channels and SR channels for the terminal, generally one SR channel and one ACK/NACK are reserved for one terminal.
  • the channel in this way, the terminal can send the ACK/NACK through the ACK/NACK channel when the SR is not required to be transmitted, and can transmit the SR through the SR channel when the ACK/NACK is not required to be sent, and is sent through the SR channel when the SR and the ACK/NACK need to be simultaneously transmitted.
  • ACK/NACK is
  • the embodiment of the present application provides a communication method and device for rationally utilizing resources.
  • a communication method which can be performed by a network device, such as a base station.
  • the method includes: when the network device configures the first channel on the first time unit for the terminal, the network device indicates, by the downlink control channel, the N second channels on the first time unit by using the downlink control channel;
  • the second channel is configured to send the second response information and the second scheduling request information on the first time unit, where the number of the first channels is M; M+N is greater than or equal to 2 ⁇ B, and M is positive An integer, and M is less than N, the second response information is an element in the second response information set, B is the number of elements in the second response information set, and the second scheduling request information is a presence scheduling request or There is no scheduling request;
  • the second response information set includes response information indicating a data receiving status;
  • the M first channels and any two of the N second channels are different, the first channel
  • the time-frequency resource and the time-frequency resource of the second channel have a time domain overlapping portion on the first time unit; wherein the
  • a communication method which can be performed by a terminal.
  • the method includes: when the network device configures the first channel on the first time unit for the terminal, the terminal determines, by using the downlink control channel, the N second channels on the first time unit indicated by the network device by the network device, The second channel is configured to send the second response information and the second scheduling request information on the first time unit, where the number of the first channels is M; M+N is greater than or equal to 2 ⁇ B, And M is smaller than N, the second response information is an element in the second response information set, B is the number of elements in the second response information set, and the second scheduling request information is a presence scheduling request or does not exist.
  • the second response information set includes response information indicating a data reception status; and any two of the M first channels and the N second channels are different, and the time of the first channel
  • the frequency resource and the time-frequency resource of the second channel have a time domain overlapping portion on the first time unit; wherein the first channel is used to indicate the first scheduling request information on the first time unit, Or
  • the first channel is configured to indicate the first scheduling request information and send the first response information on the first time unit, where M is a positive integer, and the first scheduling request information is a presence scheduling request or a non-existing scheduling request.
  • the first response information is an element in the first response information set, and the first response information set includes response information indicating a data reception status; the terminal is configured from the M according to the generated scheduling request information and response information.
  • One of the first channel or the N second channels is selected and the selected channel is transmitted.
  • the network device configures the N second channels and the M first channels for the terminal, and the M is smaller than N, that is, the number of the first channels configured by the network device is smaller than the number of the second channels, where
  • the second channel is configured to send the second response information and the second scheduling request information, where the first channel is used to indicate the first scheduling request information or to indicate the first scheduling request information and the first response information is sent, and the first channel is considered to be the SR.
  • the second channel is configured by the network device through the downlink control channel, that is, the first channel can be dynamically scheduled, so that when the terminal that needs to simultaneously transmit the ACK/NACK and the SR is less,
  • the second channel can be scheduled for other purposes, and the number of configured first channels is also small, that is, the reserved SR resources are reduced, and the waste of resources is also reduced as a whole, and resources can be saved to a large extent. A more rational use of resources.
  • the second set of response information is ⁇ N, A ⁇ or ⁇ (N, N), (N, A), (A, N), (A, A) ⁇ , wherein, N Indicates NACK, and A indicates ACK.
  • the second response information is information transmitted by the second channel, and the second channel may be regarded as an ACK/NACK resource. Then, if the second response information is response information of a data block group, the corresponding two states are N and A. That is, the second response information set is ⁇ N, A ⁇ , and if the second response information is the response information of the two data block groups, there are four states corresponding to (N, N), (N, A), ( A, N), (A, A), that is, the second set of response information is ⁇ (N, N), (N, A), (A, N), (A, A) ⁇ .
  • the first set of response information is ⁇ N ⁇ or ⁇ (N, N) ⁇ , where N represents a NACK.
  • the first response information is information sent by the first channel, and the first channel is an SR resource, and the state N of the response information of the data block group is generally allocated to the first channel, that is, if the first response information is a data block group.
  • the response status is ⁇ N ⁇ , and if the first response information is response information of two data block groups, the corresponding status is ⁇ (N, N) ⁇ .
  • M 1.
  • the network device can configure a first channel for the terminal, and the number of configured first channels is small, that is, the reserved SR resources are reduced, and the waste of resources is also reduced as a whole, which can save a large extent. Resources have achieved a more rational use of resources.
  • the network device configures M first channels for the terminal, including: the network device configuring the M first channels for the terminal by using high layer signaling.
  • the determining, by the terminal, the M first channels configured by the network device the determining, by the receiving the high layer signaling, the determining, by the terminal, the M first channels configured by the network device for the terminal.
  • a mode in which the network device configures the first channel for the terminal is described.
  • the embodiment of the present application does not limit the manner in which the network device configures the first channel for the terminal.
  • the network device when the network device does not configure the first channel on the first time unit for the terminal, the network device may indicate the terminal to the terminal by using the downlink control channel.
  • the third response information, the third response information is an element in the third response information set, the third response information set includes response information indicating a data reception status; C is a positive integer; and the network device detects the Three channels.
  • the terminal determines, by using a downlink control channel, that the network device is the first indicated by the terminal C third channels on a time unit; wherein the C third channels are true subsets of the N second channels, and the third channel is configured to send a third response on the first time unit Information, the third response information is an element in a third response information set, the third response information set includes response information indicating a data reception status; C is a positive integer; and the terminal is configured according to the generated scheduling request information and The response information selects a third channel from the C third channels and transmits the selected third channel.
  • the number of bits of the response information is 2 and the number of bits of the scheduling request information is 1, then if the terminal needs to simultaneously send the response information and the scheduling request information, it means that the information sent by the terminal may correspond to the state of 3 bits, and 3 bits will be Corresponding to 8 states, if the terminal does not need to send the response information and the scheduling request information at the same time, the network device does not configure the first channel for the terminal, then the information sent by the terminal may only correspond to the state of 2 bits, and 2 bits are only Corresponds to 4 states.
  • each state of the information sent by the terminal corresponds to one channel, and when the terminal needs to transmit the scheduling request information, the network device configures the terminal with more channels than when the terminal does not need to transmit the scheduling request information. That is, N will be greater than C.
  • the network device configures the C third channels to the terminal, and when the terminal needs to transmit the scheduling request, the network device may perform the additional terminal configuration on the basis of the C third channels.
  • the NF channels are all, that is, the N second channels include C third channels, and the NF second channels are included. From this, it can be considered that the C third channels are reused. In this way, the C third channels can be reused with other terminals as much as possible according to the original rules, and no need to additionally configure too many new second channels, which further helps to increase the compatibility of the solution, and also helps Improve resource utilization.
  • the first partial channel of the plurality of channels included in the true subset of the N second channels is used to indicate that a scheduling request exists, and the true subset of the N second channels includes The second portion of the plurality of channels is used to indicate that there is no scheduling request.
  • the exclusive cyclic shift n s of the candidate sequences corresponding to the C third channels is 0, 3, 6, and 9, and the candidate sequences corresponding to the cyclic shifts 0, 3, 6, and 9 are passing through the fading channel. After that, the inter-sequence interference is small.
  • the interval between the cyclic shift corresponding to the scheduling request and the cyclic shift corresponding to the unscheduled request may be Small, for example, the cyclic shifts 0, 3, 6, and 9 are respectively assigned to the status of the response information and the scheduling request information (A, A, there is no scheduling request), (A, N, there is no scheduling request), (N , A, there is no scheduling request), (N, N, there is no scheduling request), and the cyclic shift 1, 4, 7 is assigned to the status of the response information and the scheduling request information (A, A, presence scheduling request), (A, N, there is a scheduling request), (N, A, there is a scheduling request), the candidate sequence corresponding to the cyclic shift 1, 4, 7 will cause a comparison of the candidate sequences corresponding to the cyclic shifts 0, 3, and 6. Strong interference, resulting in a decrease in the detection performance of the scheduling request information. If the cyclic shifts 0, 3, 6, and 9 are assigned to different scheduling request information, the cyclic shifts 0, 3, 6, and 9 are assigned to different
  • the second channel or the first channel located in one subcarrier group is a channel generated by a candidate sequence generated according to the following formula:
  • R is the length of the candidate sequence
  • R is a positive integer
  • a 0 +n s is a candidate sequence y s
  • a cyclic shift of i a 0 is the initial cyclic shift
  • a 0 is a real number
  • n s is a proprietary cyclic shift
  • n s is a real number
  • s is an indicator representing a different sequence
  • j is a unit of an imaginary number.
  • a manner of generating a channel by using a candidate sequence is described.
  • the embodiment of the present application does not limit the use of this manner to generate a channel.
  • the network device may further determine a first mapping relationship among P mapping relationships; each of the P mapping relationships includes N+M candidate information and N+M candidates a mapping relationship between the sequences, wherein the P mapping relationship further includes a second mapping relationship, where the first mapping relationship and the second mapping relationship are used to generate a candidate sequence corresponding to the same candidate information.
  • the n s differs in mod R, and mod represents the remainder operation.
  • the terminal may also determine a first mapping relationship among P mapping relationships; each mapping relationship in the P mapping relationships includes mapping between N+M candidate information and N+M candidate sequences. relationship; wherein the P in the mapping relationship further comprising a second candidate sequence mapping relationship, the mapping relationship of the first and the second mapping relation for generating a candidate corresponding to the same information in a n s mod R is different, mod represents the remainder operation.
  • Each mapping relationship among the P mapping relationships includes a mapping relationship between N+M candidate information and N+M candidate sequences, where N+M candidate sequences are N+M based on n s
  • the value and the generated by a 0 that is, the N candidate sequences in the N+M candidate sequences are generated based on N values of n s and a 0
  • the M candidate sequences in the N+M candidate sequences are based on M values of n s and a 0 are generated. It should be noted that for different terminals, the value of a 0 may be different. When the same terminal sends a sequence at different times, the value of a 0 may also be different.
  • the N+M candidate sequences corresponding to different terminals are also different; when the same terminal transmits the candidate sequences at different times, the same is also The value of a 0 is different, and the N+M candidate sequences corresponding to different times are also different.
  • the status of the response information corresponding to a 0 and the scheduling request information may be different between different terminals. In this way, randomization processing can be implemented as much as possible to reduce interference between different terminals in the same cell.
  • the P mapping relationships are the same, but the mapping relationship applicable to a terminal at a time is determined according to the ID of the terminal or other information of the terminal, and therefore, different terminals are at different times.
  • the mapping relationship used has different changes, thereby reducing interference between different terminals in the same cell or obtaining interference randomization.
  • the candidate sequence has a length R
  • the N second channels include F second channels, where the F second channels correspond to the candidate sequence of n s
  • the two-part channel is used to indicate that there is no scheduling request.
  • the F second channels are channels corresponding to when n s takes values of 0, 3, 6, and 9, wherein n s takes a value of 0 and n s is a value of 6 corresponds to the same scheduling request information, or, the value of n s and n s is 0 to 3 corresponding to the value of the same scheduling request information, or, the value of n s and n s 0
  • the value of 9 corresponds to the same scheduling request information.
  • the F channels may be channels that are reused in the case where the network device does not configure the first channel for the terminal and the first channel is configured for the terminal, that is, the network device does not configure the first channel for the terminal and configures the terminal.
  • the network device indicates the second channel for the terminal. That is, the F second channels are reused.
  • the F second channels can be code-multiplexed with other terminals as much as possible according to the original rules, without additionally indicating too many new second channels, which is more helpful for increasing the compatibility of the scheme, and also Helps improve the utilization of resources.
  • the cyclic shifts corresponding to the F channels may be 0, 3, 6, and 9, and the candidate sequences corresponding to the cyclic shifts 0, 3, 6, and 9 have small inter-sequence interference after passing through the fading channel.
  • Each candidate sequence is assigned to a scheduling request information, and then the interval between the cyclic shift corresponding to the scheduling request and the cyclic shift corresponding to the unscheduled request may be small, for example, the cyclic shift is 0, 3 , 6, 9 are respectively assigned to the status of the response information and the scheduling request information (A, A, there is no scheduling request), (A, N, there is no scheduling request), (N, A, there is no scheduling request), (N , N, there is no scheduling request), and the cyclic shift 1, 4, 7 is assigned to the status of the response information and the scheduling request information (A, A, presence scheduling request), (A, N, presence scheduling request), ( N, A, there is a scheduling request), the candidate sequence corresponding to the cyclic shift 1, 4, 7 may cause strong interference to the candidate sequence
  • the first response information and the first scheduling request information state are (N, there is a scheduling request) or (the downlink data scheduling is not received, there is a scheduling request); the second scheduling request
  • the information and the status of the second response information are (A, there is a scheduling request), or (A, there is no scheduling request), or (N, there is no scheduling request); or, the first response information and The status of the first scheduling request information is: (the downlink data scheduling is not received, the scheduling request is present); the status of the second scheduling request information and the second response information is (A, a scheduling request exists), or (A, there is no scheduling request), or (N, there is no scheduling request), or (N, there is a scheduling request); or, the status of the first response information and the first scheduling request information is ( N, N, there is a scheduling request) or (the downlink data scheduling is not received, there is a scheduling request); the status of the second scheduling request information and the second response information is (A, A, presence scheduling request), or Is (A, A,
  • the network device may allocate a first channel and three second channels to the terminal, or allocate a first channel and four second terminals to the terminal.
  • Channel if the first response information and the second response information are response information of two data block groups, the network device may allocate a first channel and seven second channels to the terminal, or allocate a first channel and eight to the terminal.
  • the second channel that is, the number of the first channel configured by the network device to the terminal is small, which reduces the waste of resources as a whole, can save resources to a large extent, and realizes more reasonable utilization of resources.
  • a network device for performing the method of any of the possible aspects of the first aspect or the first aspect.
  • the network device comprises means for performing the method of any one of the possible aspects of the first aspect or the first aspect.
  • a terminal device for performing the method of any one of the possible aspects of the second aspect or the second aspect.
  • the terminal device comprises means for performing the method provided by any one of the possible aspects of the second aspect or the second aspect.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a transceiver and a processor.
  • the transceiver and processor may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a transceiver and a processor.
  • the transceiver and processor may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a communication device may be a terminal device in the above method design, or a chip disposed in the terminal device in the above method design.
  • the device has the function of implementing the terminal device in the above method design.
  • the specific structure of the device may include a processor.
  • the processor and the corresponding functions of the method provided by any of the possible designs of the second aspect or the second aspect described above.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect of the first aspect of the design Said method.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the possible aspects of the second aspect or the second aspect described above Said method.
  • a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or any one of the possible aspects of the first aspect The method described in the above.
  • a computer program product comprising: instructions stored in a computer program product, when executed on a computer, causing the computer to perform any of the first aspect or the first aspect described above The method described in the design.
  • the second channel is configured by the network device through the downlink control channel, that is, the first channel can implement dynamic scheduling, so that the terminal that needs to simultaneously transmit the ACK/NACK and the SR is required by the solution provided by the embodiment of the present application.
  • the second channel can be scheduled for other purposes, and the number of configured first channels is also small, that is, the reserved SR resources are reduced, and the waste of resources is also reduced as a whole, and can be largely Save resources and achieve a more rational use of resources.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application
  • FIG. 2 is a flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a network device sending a PDCCH and a terminal device receiving a PDSCH according to a PDCCH according to an embodiment of the present disclosure
  • FIG. 4 is a mapping relationship between candidate sequences and subcarriers according to an embodiment of the present disclosure
  • FIG. 5 is a mapping relationship between candidate sequences and subcarriers according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of different subcarrier groups in which a first channel and a second channel occupy the same time period according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of the same subcarrier group in which the first channel and the second channel occupy the same time period according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 14B is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • Terminal Also referred to as a terminal device, including a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal can communicate with the core network via a radio access network (RAN) to exchange voice and/or data with the RAN.
  • the terminal may include a user equipment (UE), a wireless terminal, a mobile terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station (remote) Station), access point (AP), remote terminal, access terminal, user terminal, user agent, user device, etc. .
  • a mobile phone or "cellular” phone
  • a computer with a mobile terminal a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA Personal Digital Assistant
  • smart watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal over one or more cells.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the terminal and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in an LTE system or an evolved LTE system (LTE-A), or may also include a lower part in a 5G NR system.
  • the first generation node B (gNB) is not limited in this embodiment.
  • Scheduling requests such as SR, or there may be other names.
  • the SR is used by the terminal to apply for transmission of uplink data to the network device.
  • the network device After receiving the SR sent by the terminal, the network device configures, by the uplink scheduling signaling (UL grant), a resource for transmitting uplink data for the terminal.
  • UL grant uplink scheduling signaling
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • NR system 5G NR system
  • next generation mobile communication system or other similar communication system.
  • the LTE system supports transmission of a physical uplink control channel (PUCCH).
  • the PUCCH generally occupies 13 or 14 orthogonal frequency division multiplexing (OFDM)/discrete Fourier transform spread multiplexed frequency division multiplexing (discrete fourier transform- in one subframe).
  • OFDM orthogonal frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread multiplexed frequency division multiplexing
  • UCI uplink control information
  • the PUCCH format 1a/1b is used to transmit 1 bit or 2 bits of ACK/NACK.
  • the PUCCH format 1a/1b is transmitted in a sequence modulation manner, that is, on all OFDM symbols transmitting uplink control information (UCI), the signal to be transmitted is modulated into one. Sent on a computer generated sequence (CGS).
  • the PUCCH format 1 is used by the terminal to report a scheduling request (SR) to the base station, which uses the same structure as the PUCCH format 1a/1b to transmit information, and does not need a sequence of CGS carried on each OFDM symbol. Modulate the information.
  • SR scheduling request
  • the LTE system carries the SR by channel selection. That is, if the terminal transmits an ACK/NACK on the channel of the SR, it indicates that the terminal simultaneously transmits the SR; and if the terminal transmits an ACK/NACK on the channel of the ACK/NACK, it indicates that the terminal does not transmit the SR.
  • the base station determines whether the terminal applies for scheduling data by transmitting information on the channel of the SR configured for the terminal.
  • a short PUCCH which occupies 1 or 2 OFDM/DFT-S-OFDM symbol transmission information
  • the short PUCCH when carrying 1-bit information or 2-bit information, the information is transmitted in a sequence selection manner. Specifically, for 1-bit information, the gNB allocates a sequence corresponding to two cyclic shifts of a computer generated sequence (CGS) to the terminal, and the two sequences correspond to the two states of the required transmission.
  • CCS computer generated sequence
  • gNB allocates a sequence corresponding to four cyclic shifts of one CGS for the terminal, and the four sequences and the required transmission 4
  • the states correspond one-to-one, that is, corresponding to the four states of "00", "01", "10", and "11", respectively.
  • Each sequence corresponds to one PUCCH channel. That is to say, in the NR system, two PUCCH channels need to be allocated for a 1-bit short PUCCH, and four PUCCH channels need to be allocated for a 2-bit short PUCCH.
  • the scheme of the LTE system may be considered: for example, when the 2-bit information is transmitted, when the gNB allocates the ACK/NACK resource and the SR resource, The transmission of ACK/NACK allocates 4 orthogonal sequences (sequences corresponding to 4 cyclic shifts of 1 CGS), that is, 4 PUCCH channels are allocated, and the same number of sequences are allocated for the transmission of SR, that is, the same number is allocated. PUCCH channel.
  • the SR resource reserved for each terminal is one PUCCH channel
  • a short PUCCH of 2 bits is taken as an example, if the scheme of the LTE system is used,
  • the SR resources that need to be reserved for each terminal are 4 PUCCH channels.
  • Such a large amount of reserved SR resources when there are fewer terminals that need to transmit ACK/NACK and SR at the same time, will cause a certain amount of resource waste.
  • FIG. 1 is a schematic diagram of the application scenario.
  • FIG. 1 includes a network device and a terminal, wherein the network device can configure an SR resource and an ACK/NACK resource for the terminal, so that the terminal can send the SR and/or ACK/NACK to the network device through the allocated resource.
  • the network device in FIG. 1 is, for example, an access network (AN) device, such as a base station.
  • AN access network
  • the core network device is not shown in FIG. 1 because the solution of the embodiment of the present application mainly relates to an access network device and a terminal.
  • the access network device is, for example, a gNB in the NR system.
  • an embodiment of the present application provides a communication method.
  • the application scenario shown in FIG. 1 is applied to the example.
  • the flow of this method is described below.
  • the network device configures the first channel on the first time unit for the terminal
  • the network device indicates, by the downlink control channel, the N second channels on the first time unit, and the terminal determines by using the downlink control channel.
  • the network device is the N second channels on the first time unit indicated by the terminal.
  • the number of the first channels on the first time unit configured by the network device for the terminal is, for example, M, and M is a positive integer.
  • the network device configures the second channel on the first time unit for the terminal and the N second channels on the first time unit for the terminal, the two processes may be performed simultaneously, or the network device may first configure the first terminal for the terminal.
  • the channel further indicates N second channels for the terminal, or the network device may first indicate the N second channels for the terminal and then configure the first channel for the terminal.
  • this step can be understood as a solution in the case where the network device configures the first channel on the first time unit for the terminal, and is not limited to first configuring the first channel and then indicating the second channel.
  • the downlink control channel is, for example, a physical downlink control channel (PDCCH), that is, the second channel is dynamically indicated by the network device through the downlink control channel.
  • the second channel is not bound to the terminal. It can be understood that when the network device schedules a terminal to transmit information through the second channel, the network device indicates N second channels for the terminal, and the network device does not need to schedule the terminal to pass the When the two channels transmit information, the N second channels may be instructed by the network device to be used by other terminals.
  • the second channel can be understood as a channel corresponding to the response information, for example, a channel that is an ACK/NACK, or the second channel can be understood as a resource that carries the ACK/NACK.
  • the network device sends a PDCCH
  • the PDCCH may indicate a physical downlink shared channel (PDSCH) in the same time slot.
  • the terminal receives the PDCCH, and according to the indication information of the PDCCH, may receive the PDSCH according to the PDSCH.
  • the reception status of the carried data is, for example, whether the reception is correct or not received by the cyclic redundancy check (CRC) or the CRC, thereby correspondingly generating an ACK or a NACK.
  • the terminal sends the response information, or the response information and the scheduling request information, on the PUCCH according to the indication information of the PDCCH.
  • the PUCCH includes the first channel, the second channel, or the third channel which will be described later.
  • the second channel is configured to send the second response information and the second scheduling request information on the first time unit.
  • M+N is greater than or equal to 2 ⁇ B, and M is less than N.
  • the second response information is an element in the second response information set
  • B is the number of elements in the second response information set
  • the second response information set includes response information indicating a data reception status.
  • the second response information is response information indicating a reception status of one data block group, and the number of bits of the second response information is 1, then the second response information set It is ⁇ N, A ⁇ , wherein one data block group may include one data block or multiple data blocks; or the second response information is response information indicating a receiving state of two data block groups, and the second response information
  • the number of bits is 2, then the second set of response information is ⁇ (N, N), (N, A), (A, N), (A, A) ⁇ , wherein each of the two data block groups
  • Each data block group can include one data block or multiple data blocks.
  • N in the response information set represents NACK
  • A represents ACK.
  • the M first channels and any two of the N second channels are different, that is, any two of the M+N channels are different channels.
  • the channels are different, and it can be understood that the candidate sequences for generating channels are different, or the occupied time-frequency resources of the channels are different. The concept of candidate sequences will be introduced later.
  • time-frequency resource of the second channel and the time-frequency resource of the first channel have a time domain overlapping portion on the first time unit, for example, the time-frequency resource of the second channel and the time-frequency resource of the first channel are in the first time unit.
  • the upper time overlaps completely in the time domain, or the time-frequency resource of the second channel and the time-frequency resource of the first channel partially overlap in the time domain on the first time unit.
  • the terminal sends the response information through the second channel and passes the first
  • the low PAPR may not be guaranteed, and in order to ensure the low PAPR, the terminal may select one of the channels for transmission.
  • the embodiment of the present application is a technical solution proposed on the basis of this.
  • the first channel is used to indicate the first scheduling request information on the first time unit, or the first channel is used to indicate the first scheduling request information and the first response information on the first time unit, where the first scheduling request information is present
  • the scheduling request or the absence of the scheduling request, the first response information is an element in the first response information set, and the first response information set includes response information indicating a data receiving status.
  • the first response information is response information indicating a receiving state of a data block group
  • the number of bits of the first response information is 1, and then the first response information set is ⁇ N ⁇ , wherein the one data block group may include a data block or a plurality of data blocks; or the first response information is response information indicating the reception status of the two data block groups, and the number of bits of the first response information is 2, then the first response information set is ⁇ (N, N) ⁇ , wherein each of the two data block groups may include one data block or a plurality of data blocks.
  • the first channel is a network device configured for the terminal, and the first channel can be understood as a channel corresponding to the scheduling request, for example, a channel of the SR, or the first channel can be understood as a resource carrying the SR.
  • the first channel is not scheduled to be used by other terminals after being configured to a terminal.
  • the first channel indication first scheduling request information may be understood as: if the terminal sends the scheduling request through the first channel, that is, the first channel carries the scheduling request, the first scheduling request information indicated by the first channel is a presence scheduling request, and If the terminal does not send the scheduling request through the first channel, that is, the first channel does not carry the scheduling request, the first scheduling request information indicated by the first channel is a non-preserving scheduling request. That is, it is described that the first channel indicates the first scheduling request information because the first channel indicates whether or not there is a scheduling request by transmitting or not transmitting the scheduling request.
  • the channel occupied by the terminal is only the channel of the SR configured by the network device for the terminal, and the ACK/NACK is The channel can be scheduled by the network device to other terminals without indicating to the terminal.
  • the channel of the SR configured by the network device in the embodiment of the present application is less than the channel of the ACK/NACK indicated by the terminal, that is, the number of SR resources configured for the terminal is small, so that when the terminal does not need to simultaneously send the SR and the ACK/NACK, It can save reserved resources and reduce resource waste.
  • the technical solutions of the embodiments of the present application have more obvious advantages, and the effect of saving resources is more significant.
  • the total number of configured first channels is M ⁇ K, where K is the number of terminals supported by the network device capable of simultaneously transmitting the scheduling request, and the first time unit indicated by the network device
  • the total number of two channels is N ⁇ Q, where Q is the number of terminals of the second channel on the first time unit indicated by the network device, wherein the terminal included by Q indicates the second channel on the first time unit It is the terminal configured with the first channel, that is, the number of the second channel is determined by the number of terminals scheduled by the network device.
  • the resources indicated by the network device include M ⁇ K first channels+N ⁇ Q second channels.
  • the number of M is small, then, if the network is in the first time unit The device indicates that the number of terminals of the second channel on the first time unit is also small, and the value of N ⁇ Q is also small.
  • the network device can configure the M first channels for the terminal by using the high layer signaling, and the high layer signaling is, for example, radio resource control (RRC) signaling, or the network device can also configure the M terminals by using other signaling.
  • RRC radio resource control
  • the network device configures the M first channels on the first time unit for the terminal, that is, if the network device configures the M first channels on the first time unit for the terminal, the network device The N second channels on the first time unit may be indicated for the terminal. And if the network device does not configure the first channel on the first time unit for the terminal, for example, the network device determines that the terminal does not need to transmit the scheduling request information on the first time unit, the first time is not configured for the terminal on the first time unit. Channel, then, if the network device determines that the terminal is to transmit the response information on the first time unit, the network device may also indicate the third channel on the first time unit for the terminal, for example, the network device indicates C third channels for the terminal , C is a positive integer.
  • the C third channels are true subsets of the N second channels.
  • the third channel is used to send the third response information on the first time unit.
  • the third channel is a channel carrying the ACK/NACK.
  • the third response information is an element in the third response information set, and the third response information set includes response information indicating a data reception status. For example, if the third response information is response information indicating the reception status of one data block group, the number of bits of the third response information is 1, then the third response information set is ⁇ N, A ⁇ , and the data block group may include one.
  • the third response information is response information indicating a reception status of two data block groups, and the number of bits of the third response information is 2, and then the third response information set is ⁇ (N, N) ), (N, A), (A, N), (A, A) ⁇ , each of the two data block groups may include one data block or a plurality of data blocks.
  • the terminal may select a third channel from the C third channels according to the generated scheduling request information and the response information, and send the selected third channel, and the network device passes The scheduling request information and the response information sent by the terminal can be obtained by detecting the third channel.
  • the network device configures the first channel on the first time unit for the terminal, it indicates that the terminal can transmit the scheduling request information on the first time unit, and the terminal needs to send the response information and the scheduling request information at the same time. If the network device does not configure the first channel for the terminal, it indicates that the terminal only needs to send the response information without sending the scheduling request information.
  • the number of bits of the response information is 2 and the number of bits of the scheduling request information is 1, then if the terminal needs to simultaneously send the response information and the scheduling request information, it means that the information sent by the terminal may correspond to the state of 3 bits, and 3 bits will be Corresponding to 8 states, if the terminal does not need to send the response information and the scheduling request information at the same time, the network device does not configure the first channel for the terminal, then the information sent by the terminal may only correspond to the state of 2 bits, and 2 bits are only Corresponds to 4 states.
  • each state of the information sent by the terminal corresponds to one channel, and when the terminal needs to transmit the scheduling request information, the network device configures the terminal with more channels than when the terminal does not need to transmit the scheduling request information. That is, N will be greater than C.
  • the network device configures the C third channels to the terminal, and when the terminal needs to transmit the scheduling request, the network device may perform the additional terminal configuration on the basis of the C third channels.
  • the NF channels are all, that is, the N second channels include C third channels, and the NF second channels are included. From this, it can be considered that the C third channels are reused. In this way, the C third channels can be reused with other terminals as much as possible according to the original rules, and no need to additionally configure too many new second channels, which further helps to increase the compatibility of the solution, and also helps Improve resource utilization.
  • the scheme that C third channels can be reused is introduced. Then, in the case of C third channel reuses, if the network device configures the M first channels on the first time unit for the terminal, then N The reused C third channels in the two channels indicate at least two scheduling request information, that is, the first partial channels of the plurality of channels included in the true subset of the N second channels are used to indicate that there is a scheduling request, and N second The second partial channel of the plurality of channels included in the true subset of channels is used to indicate that there is no scheduling request.
  • the true subset of the N second channels is the C third channels.
  • the number of bits of the second response information is 2. If the network device does not schedule the first channel for the terminal, the number C of the third channel indicated by the network device for the terminal is, for example, 4, and the 4 third channels are respectively the third channel. A, third channel B, third channel C, and third channel D. If the network device schedules M first channels for the terminal, the number N of the second channels indicated by the network device for the terminal is, for example, 7, and the 7 second channels are the second channel A and the second channel B, respectively. Two channels C, a second channel D, a second channel E, a second channel F, and a second channel G.
  • the third channel A and the second channel A are the same channel
  • the third channel B and the second channel B are the same channel
  • the third channel C and the second channel C are the same channel
  • the two channels D are the same channel, and it can be seen that the second channel A (ie, the third channel A), the second channel B (ie, the third channel A), the second channel C (ie, the third channel C), and the second Channel D (i.e., third channel D) is reused.
  • the first partial part of the second channel A, the second channel B, the second channel C, and the second channel D indicates that there is a scheduling request
  • the second portion of the second channel D, the second channel indicates that there is no scheduling request.
  • the status of the second response information and the second scheduling request information sent by the second channel A is (A, A, presence scheduling request), and the status of the second response information and the second scheduling request information sent by the second channel B is (A, A, there is no scheduling request), the status of the second response information and the second scheduling request information sent by the second channel C is (A, N, presence scheduling request), and the second response information sent by the second channel D
  • the status of the second scheduling request information is (A, N, there is no scheduling request), that is, the second channel A and the second channel C indicate that there is a scheduling request, and the second channel B and the second channel D indicate that there is no scheduling request.
  • the values of n s of the candidate sequences corresponding to the C third channels are 0, 3, 6, and 9, and the candidate sequences corresponding to the cyclic shifts 0, 3, 6, and 9 pass through the fading channel, and the inter-sequence interference Smaller, if the four candidate sequences are all assigned to one scheduling request information, the interval between the cyclic shift corresponding to the scheduling request and the cyclic shift corresponding to the unscheduled request may be small, for example,
  • the cyclic shifts 0, 3, 6, and 9 are respectively assigned to the status of the response information and the scheduling request information (A, A, there is no scheduling request), (A, N, there is no scheduling request), (N, A, does not exist) Scheduling request), (N, N, no scheduling request), and assigning cyclic shifts 1, 4, 7 to the status of the response information and scheduling request information (A, A, presence scheduling request), (A, N, There is a scheduling request), (N, A, there is a scheduling request), and the candidate sequences corresponding to the cycl
  • the first channel or the second channel is a channel generated by the candidate sequence, that is, the N second channels are in one-to-one correspondence with the N candidate sequences, and the M first channels and the M candidate sequences are used.
  • One-to-one correspondence, and each candidate sequence corresponds to different candidate information, and the candidate information can be understood as the status of the response information and the scheduling request information, that is, the channel-candidate sequence-candidate information, one-to-one correspondence between the three , sending through different channels, or sending different channels, means that different candidate information is sent.
  • a candidate sequence can be generated by a sequence such as a computer generated sequence (CGS), or a constant amplitude zero auto correlation (CAZAC) sequence, or Zadoff-Chu. Sequence generated sequences, etc.
  • CGS computer generated sequence
  • CAZAC constant amplitude zero auto correlation
  • each candidate sequence may be generated based on the following formula 1:
  • R is the length of the candidate sequence
  • R is a positive integer
  • the sequence, a 0 +n s is the cyclic shift of the candidate sequence ⁇ y s,i ⁇ (reported as n t for ease of distinction and understanding), ie the sequence ⁇ y s,i ⁇ can be considered to be from the sequence ⁇ x i
  • i 0,1,2,...,R-1 ⁇ is obtained by cyclic shift, j is the unit of imaginary number, a 0 is the initial cyclic shift, which is a real number, and n s is a proprietary cyclic shift, which is a real number .
  • a 0 represents an initial cyclic shift, which is a common parameter used to generate N+M candidate sequences, that is, used to generate the N+M candidate sequences.
  • the value of a 0 of each candidate sequence is the same, or the terminals of different cells may correspond to different values of a 0 at the same time, and the same terminal corresponds to the same value of a 0 at the same time, the same The terminal may also correspond to different values of a 0 at different times.
  • n s denotes a proprietary cyclic shift, which is a proprietary parameter for each terminal to generate each candidate sequence of the N+M candidate sequences, that is, different values corresponding to n s for different candidate sequences of the same terminal.
  • s is an indicator representing a different candidate sequence. For example, s can take 0, 1, 2, ... corresponding to the candidate sequence ⁇ y 0,i
  • i 0,1,2,..,R-1 ⁇ , ⁇ y 1,i
  • i 0,1,2 ,...,R-1 ⁇ , ⁇ y 2,i
  • i 0,1,2,...,R-1 ⁇ ,...
  • a 0 and/or n s in Equation 1 may have independent values
  • a second channel located in a different subcarrier group a 0 and / in Equation 1
  • n s can have independent values
  • i 0,1,2,..,R-1 ⁇ are mapped to different subcarrier groups, and corresponding to different channels.
  • the value of a 0 may be the same.
  • the value of a 0 may be the same or different.
  • a candidate sequence for generating a first channel and a candidate sequence for generating a second channel may occupy different subcarrier groups of the same time period, or a candidate sequence for generating a first channel and for generating a second The candidate sequence of the channel can occupy the same subcarrier group of the same time period.
  • n t can be distinguished by different candidate information, or that can distinguish different candidate sequences by n t, i.e., for the same terminal, different status response information and the scheduling request information
  • the values of n t of the corresponding candidate sequences of the same subcarrier group are different.
  • P mapping relationships are formed between the candidate information and the candidate sequence.
  • the number of mapping relationships is not limited, as long as P is greater than 1.
  • Each of the P mapping relationships includes a mapping relationship between N+M candidate information and N+M candidate sequences.
  • N candidate information among the N+M candidate information is composed of elements in the second response information set and second scheduling request information
  • M candidate information among the N+M candidate information is composed of elements in the first response information set. It is composed of first scheduling request information. That is, the status of the response information and the scheduling request information constitutes candidate information, the candidate information corresponds to the candidate sequence, and one candidate sequence is used to generate one channel.
  • Candidate sequences can be generated by cyclically shifting the root sequence.
  • the maximum number of cyclic shifts it can support is the number of elements in the CGS sequence, such as the maximum cyclic shift supported by a 12-length CGS sequence.
  • the number is 12.
  • the 12 sequences generated by 12 cyclic shifts of one CGS sequence are mutually orthogonal.
  • the candidate sequence corresponding to the response information and the scheduling request information may be a sequence obtained by cyclically shifting the CGS sequence.
  • the N second channels indicated by the network device as one terminal may be generated by cyclic shift of a root sequence, or may also be generated by cyclic shift of multiple root sequences.
  • the network device indicates 7 second channels for the terminal, and the 7 second channels may be channels generated by candidate sequences generated by 7 cyclic shifts of one root sequence, where each The cyclic shift corresponds to a state of the response information and the scheduling request information.
  • the states of the response information and the scheduling request information corresponding to the seven candidate sequences are respectively (A, A, no scheduling request), (A, N) , there is no scheduling request), (N, A, there is no scheduling request), (N, N, there is no scheduling request), (A, A, there is a scheduling request), (A, N, there is a scheduling request), ( N, A, there is a scheduling request).
  • the seven second channels correspond to two root sequences, and the sequences generated by the two root sequences are respectively mapped to different subcarrier groups, that is, four of the seven second channels are among them.
  • the channel generated by the 4 candidate sequences generated by 4 cyclic shifts of one root sequence, and the remaining 3 second channels of the 7 second channels are 4 generated by 3 cyclic shifts of another root sequence a channel generated by the candidate sequence, wherein one cyclic shift of each root sequence corresponds to a state of the response information and the scheduling request information, for example, the states of the response information and the scheduling request information corresponding to the seven candidate sequences are respectively (A, A, there is no scheduling request), (A, N, no scheduling request), (N, A, no scheduling request), (N, N, no scheduling request), (A, A, presence scheduling request) , (A, N, there is a scheduling request), (N, A, there is a scheduling request).
  • P is 8
  • N is 7, and M is 1, that is, 8 candidate information (recorded as candidate information #1 to candidate information #8) and 8 candidate sequences (recorded as candidate sequences) are included in 8 mapping relationships.
  • the mapping relationship between the eight candidate information and the eight candidate sequences is represented, for example, in the first mapping relationship.
  • the candidate information #1 corresponds to the candidate sequence #1
  • the candidate information #2 corresponds to the candidate sequence #2
  • the candidate information #1 may correspond to the candidate sequence #2
  • the candidate information #2 corresponds to the candidate sequence # 1.
  • Table 1 shows an illustration of P mapping relationships in the embodiments of the present application.
  • candidate information #2, candidate information #3, and candidate information #4 which represent (A, N, presence scheduling request), (N, N, no scheduling request), (A, A, There is a scheduling request) and (N, A, there is no scheduling request).
  • candidate sequences There are four candidate sequences, namely, candidate sequence #1, candidate sequence #2, candidate sequence #3, and candidate sequence #4, and the corresponding values of n s are 0, 6, 9, and 3, respectively, in Table 1, each The values shown by the parentheses after the candidate sequences are the values of n s corresponding to each candidate sequence.
  • Is a mapping relationship between the four candidate information and four of the four candidate sequence mapping relationship each represents a mapping relationship, wherein four candidate sequences corresponding to the four values of n s, i.e., n s Each value is used to generate a corresponding candidate sequence.
  • the values of n s used to generate candidate sequences corresponding to the same candidate information are different under mod R, for example, P mappings.
  • the relationship includes a first mapping relationship and a second mapping relationship, where n s of the first mapping relationship and the second mapping relationship for generating candidate sequences corresponding to the same candidate information are different under mod R, that is, P
  • mod represents the remainder operation.
  • the n s used to generate the candidate sequence corresponding to the same candidate information in the first mapping relationship and the second mapping relationship are different in mod R, which can be understood as n in the two mapping relationships.
  • mod R which can be understood as n in the two mapping relationships.
  • the remainder is different.
  • the n s and R used to generate the candidate sequence corresponding to the candidate information a in the first mapping relationship are used as a remainder operation to obtain a remainder A
  • the second mapping relationship is used to generate a candidate sequence corresponding to the candidate information a.
  • n s and R do the remainder operation to obtain the remainder B, and the remainder A and the remainder B are not the same.
  • mapping relationship #1 and mapping relationship #2 as an example, in the two mapping relationships, for candidate information #1, the values of n s in the two mapping relationships are different under mod R, for candidate information. #2, the value of n s in the two mapping relationships is also different under mod R. For candidate information #3, the values of n s in the two mapping relationships are the same under mod R, for candidate information. #4, the value of n s in the two mapping relationships is the same under mod R.
  • mapping relationship #2 and mapping relationship #3 as an example, for any one of the four candidate information, the values of n s in the two mapping relationships are different under mod R.
  • one mapping relationship is selected among the four mapping relationships according to the rules of the configuration of the network device or according to the protocol, and then the candidate sequence corresponding to the generated information #A is determined according to the selected mapping relationship. Alternatively, a proprietary cyclic shift corresponding to the information #A is determined based on the selected mapping relationship.
  • Information #A is the status of the response information and the scheduling request information.
  • each of the P mapping relationships includes a mapping relationship between N+M candidate information and N+M candidate sequences, wherein the N+M candidate sequences are based on n s N+ M values are generated and a 0 is generated, that is, N candidate sequences in the N+M candidate sequences are generated based on N values of n s and a 0 , and M candidates in N+M candidate sequences The sequence is generated based on M values of n s and a 0 .
  • the value of a 0 may be different.
  • the value of a 0 may also be different. Therefore, for different terminals, because the values of a 0 are different or the frequency occupied by the sequence is different, the N+M candidate sequences corresponding to different terminals are also different; when the same terminal transmits the candidate sequences at different times, the same is also The value of a 0 is different, and the N+M candidate sequences corresponding to different times are also different.
  • the status of the response information corresponding to a 0 and the scheduling request information may be different between different terminals.
  • the terminal may determine, according to the first mapping relationship among the determined P mapping relationships, the candidate sequence corresponding to the state of the response information generated by the terminal and the scheduling request information. That is, the second channel or the first channel is determined, so that the determined channel is transmitted.
  • the network device may determine the first mapping relationship from the P mapping relationships in the same manner as the terminal, thereby receiving the channel sent by the terminal. . In this way, randomization processing can be implemented as much as possible to reduce interference between different terminals in the same cell.
  • mapping relationship which mapping relationship is applied to a certain terminal at a certain time may be configured by the network device, or is specified by the protocol, and is not limited in this embodiment. That is to say, for each terminal, the P mapping relationships are the same, but the mapping relationship applicable to a terminal at a time is determined according to the identity identification number (ID) of the terminal or other information of the terminal. Therefore, the mapping relationships used by different terminals at different times have different changes, thereby reducing interference between different terminals in the same cell or obtaining interference randomization.
  • ID identity identification number
  • 7 candidate sequences correspond to 7 cyclic shifts of one root sequence, and the 7 cyclic shifts are 0, 3, 6, 9, 1 respectively.
  • the 4, 7, and 7 sequences are mapped to the sub-group 1 , and the corresponding values of a 0 are 0, and the values of n s are 0, 3, 6, 9, 1, 4,
  • the status of the response information and the scheduling request information corresponding to the different values of 7,n s are (A, A, presence scheduling request), (A, N, there is no scheduling request), (N, A, there is no scheduling request) ), (N, N, there is no scheduling request), (A, A, there is no scheduling request), (A, N, there is a scheduling request), (N, A, there is a scheduling request).
  • 7 candidate sequences can be mapped to subcarrier group 2, and in slot n, the cyclic shifts used by the 7 candidate sequences may be 1, 4, 7, 10, 2, 5, 6, respectively.
  • the value of a 0 corresponding to the seven candidate sequences is 1, and the values of n s are 0 , 3, 6, 9, 1, 4, 7, and n s respectively correspond to (A, A , there is no scheduling request), (A, N, there is a scheduling request), (N, A, there is no scheduling request), (N, N, there is no scheduling request), (A, A, there is a scheduling request), ( A, N, there is no scheduling request), (N, A, there is a scheduling request).
  • the F second channels may be included in the N second channels, where the values of n s of the candidate sequences corresponding to the F second channels are 0, R/F, ..., (F- 1) R/F, the first part of the F second channels is used to indicate that there is a scheduling request, and the second part of the F second channels is used to indicate that there is no scheduling request.
  • the network device may indicate C third channels for the terminal, where the C third channels and the F second channels may be understood to be the same.
  • the N second channels include F second channels, and the F channels may be channels that are reused in the case that the network device does not configure the first channel for the terminal and the first channel is configured for the terminal. That is to say, in the case where the network device does not configure the first channel for the terminal and the first channel is configured for the terminal, the network device indicates the second channel for the terminal.
  • the F second channels are used to send the third response information on the first time unit, and the third response information is an element in the third response information set, and the content in the third response information may be Refer to the introduction of C third channels in the previous section.
  • the F second channels are reused.
  • the F second channels can be code-multiplexed with other terminals as much as possible according to the original rules, without additionally indicating too many new second channels, which is more helpful for increasing the compatibility of the scheme, and also Helps improve the utilization of resources.
  • F schemes in which the second channels can be reused are introduced.
  • F second channel reuses if the network device configures the M first channels on the first time unit for the terminal, then F The first part of the second channel is used to indicate that there is a scheduling request, and the second part of the second channels of the second channels is used to indicate that there is no scheduling request.
  • the number of bits of the second response information is 2. If the network device does not configure the first channel for the terminal, the number F of the second channel indicated by the network device for the terminal is, for example, 4, and the 4 second channels are respectively the second channel.
  • the number N of the second channels indicated by the network device for the terminal is, for example, 7, and the 7 second channels are the second channel A and the second channel B, respectively.
  • the second channel A, the second channel B, the second channel C, and the second channel D indicate at least two scheduling request information, that is, the second channel A, the second channel B, the second channel C, and the second channel A portion of the second channel in D indicates that there is a scheduling request, and the remaining second channels in the second channel A, the second channel B, the second channel C, and the second channel D indicate that there is no scheduling request.
  • the status of the second response information and the second scheduling request information sent by the second channel A is (A, A, presence scheduling request)
  • the status of the second response information and the second scheduling request information sent by the second channel B is (A, A, there is no scheduling request)
  • the status of the second response information and the second scheduling request information sent by the second channel C is (A, N, presence scheduling request)
  • the second response information sent by the second channel D is (A, N, there is no scheduling request).
  • the value of M is not limited to 1, and may be more, for example, 2, as long as M is smaller than N.
  • the values of n s of the candidate sequences corresponding to the F second channels are 0, 3, 6, and 9.
  • the 7 candidate sequences correspond to 7 cyclic shifts of a root sequence of length 12, and the 7 cyclic shifts include 4 cyclic shifts to 0, 3, 6, and 9, which are 4
  • the candidate sequence corresponding to the cyclic shift corresponds to a 0 , and the value of n s is 0, 12/4, 12 ⁇ 2/4, and 12 ⁇ 3/4.
  • the status of the response information and the scheduling request information corresponding to the values 0, 3, 6, and 9 of n s are (A, A, presence scheduling request), (A, N, there is no scheduling request), (N, A, there is no scheduling request), (N, N, there is no scheduling request), and the status of the four types of response information and scheduling request information includes the presence of a scheduling request and the absence of a scheduling request.
  • the value 0 and the value of n s n s 6 may correspond to the same scheduling request information, or, the value n s n s 0 and 3 may correspond to the same value of the scheduling request information, or, n s The value of 0 and the value of n s 9 can correspond to the same scheduling request information.
  • the candidate sequences corresponding to cyclic shifts 0, 3, 6, and 9 have small inter-sequence interference after passing through the fading channel. If the four candidate sequences are all assigned to one scheduling request information, then there is a loop corresponding to the scheduling request.
  • the interval between the shift and the cyclic shift corresponding to the unscheduled request may be small, for example, the cyclic shifts 0, 3, 6, and 9 are respectively assigned to the state of the response information and the scheduling request information (A, A, There is no scheduling request), (A, N, there is no scheduling request), (N, A, there is no scheduling request), (N, N, there is no scheduling request), and the cyclic shift 1, 4, 7 allocation Status of response information and scheduling request information (A, A, presence scheduling request), (A, N, presence scheduling request), (N, A, presence scheduling request), cyclic shift 1, 4, 7 corresponding
  • the candidate sequence may cause strong interference to the candidate sequences corresponding to cyclic shifts 0, 3, and 6, resulting in a decrease in the detection performance of the scheduling
  • the following is an example of the status of the response information and the scheduling request information, that is, the candidate information.
  • the second response information is response information indicating the reception status of one data block group, and the number of bits of the second response information is 1.
  • the status of the second response information and the second scheduling request information sent by the second channel is (A, there is a scheduling request), or (A, there is no scheduling request), or (N, there is no scheduling request), which can be understood
  • N 3 wherein the second response information sent by the second channel A and the second scheduling request information are (A, presence scheduling request), and the second response information sent by the second channel B is And the state of the second scheduling request information is (A, there is no scheduling request), and the status of the second response information and the second scheduling request information sent by the second channel C is (A, there is a scheduling request).
  • the network device knows that the second response information sent by the terminal and the second scheduling request information are ( A, there is no scheduling request).
  • the first channel may indicate two states, one is (N, there is a scheduling request), and the other is (no downlink data scheduling is received, there is a scheduling request), because for the network device, whether it is indicated as N It is also indicated that the downlink data scheduling is not received, and the effect is not much different.
  • N in the state of the response information and the scheduling request information indicates NACK, and A indicates ACK.
  • DTX downlink data scheduling
  • the second response information is response information indicating the reception status of one data block group, and the number of bits of the second response information is 1.
  • the status of the response information and the second scheduling request information is (A, there is no scheduling request), and the status of the second response information and the second scheduling request information sent by the second channel C is (A, presence scheduling request), the second channel
  • the status of the second response information and the second scheduling request information transmitted by D is (N, there is no scheduling request).
  • the second response information is response information indicating the reception status of the two data block groups, and the number of bits of the second response information is 2.
  • the status of the second response information and the second scheduling request information sent by the second channel is (A, A, presence scheduling request), or (A, A, no scheduling request), or (A, N, presence scheduling) Request), either (A, N, no scheduling request), or (N, A, there is a scheduling request), or (N, A, no scheduling request), or (N, N, does not exist) Schedule request).
  • N 7, wherein the status of the second response information and the second scheduling request information sent by the second channel A is (A, A, presence scheduling request), and the second channel B sends
  • the status of the second response information and the second scheduling request information is (A, A, no scheduling request), and the status of the second response information and the second scheduling request information sent by the second channel C is (A, N, presence scheduling)
  • the request, the second response information sent by the second channel D and the second scheduling request information are (A, N, no scheduling request), the second response information sent by the second channel E, and the second scheduling request information
  • the status is (N, A, presence scheduling request), the status of the second response information and the second scheduling request information sent by the second channel F is (N, A, there is no scheduling request), and the second channel G sends the second.
  • the status of the response information and the second scheduling request information is (N, N, there is no scheduling request).
  • the first channel sends the first response information and the indicated first scheduling request information, where the state is (N, N, there is a scheduling request) or (the downlink data scheduling is not received, there is a scheduling request), where the downlink data is not received.
  • the terminal may not be able to determine whether the unscheduled one is a data block group or a plurality of data block groups, so the corresponding state may be (no downlink data scheduling is received).
  • the first channel can indicate two states, one is (N, N, there is a scheduling request), and the other is (no downlink data scheduling is received, there is a scheduling request), and the same,
  • the number of first channels can be saved by indicating two states through a first channel.
  • the second response information is response information indicating the reception status of the two data block groups, and the number of bits of the second response information is 2.
  • the status of the second response information and the second scheduling request information sent by the second channel is (A, A, presence scheduling request), or (A, A, no scheduling request), or (A, N, presence scheduling) Request), either (A, N, no scheduling request), or (N, A, there is a scheduling request), or (N, A, no scheduling request), or (N, N, does not exist) Scheduling request), or (N, N, there is a scheduling request).
  • the status of the second response information and the second scheduling request information is (A, A, no scheduling request), and the status of the second response information and the second scheduling request information sent by the second channel C is (A, N, presence scheduling)
  • the request, the second response information sent by the second channel D and the second scheduling request information are (A, N, no scheduling request), the second response information sent by the second channel E, and the second scheduling request information
  • the status is (N, A, presence scheduling request), the status of the second response information and the second scheduling request information sent by the second channel F is (N, A, there is no scheduling request), and the second channel G sends the second.
  • the status of the response information and the second scheduling request information is (N, N, there is no scheduling request), and the status of the second response information and the second scheduling request information sent by the second channel H is (N, N, presence scheduling request) .
  • the data reception status is represented by the response information, that is, the status of the response information and the status of the response information included in the status of the scheduling request information can be understood as the data reception status.
  • the terminal selects one channel from the M first channels or the N second channels according to the generated scheduling request information and the response information, and sends the selected channel.
  • the network device detects the first channel and/or the second channel to obtain scheduling request information and response information sent by the terminal.
  • the different states of the scheduling request information and the response information correspond to different channels.
  • the terminal may select the first mapping relationship among the P mapping relationships, thereby generating the The status of the response information and the scheduling request information and the candidate sequence corresponding to the first mapping relationship. For example, if the terminal selects the first sequence, the terminal may send the channel generated by the first sequence to the network device, and the network device detects the first The channel and/or the second channel can receive the channel transmitted by the terminal.
  • the channel generated by the first sequence is one of the N second channels, or one of the M first channels.
  • the channel is generated by the candidate sequence, and the elements of the candidate sequence can be sequentially mapped to the subcarriers of the subcarrier group, for example, as shown in FIG. 4:
  • the candidate sequence is mapped to the subcarrier.
  • the first element of the candidate sequence can be mapped to the first subcarrier in the subcarrier group
  • the second element in the candidate sequence can be mapped to the second subcarrier in the subcarrier group, and so on.
  • IFFT inverse fast Fourier transform
  • IFT inverse Fourier transform
  • the signal to be transmitted is generated, and the signal to be transmitted is sent out.
  • the subcarriers within the subcarrier group may be consecutive subcarriers as shown in FIG. 4, or equally spaced subcarriers.
  • the black subcarriers are subcarriers within the subcarrier group, and the candidate sequences are mapped to black subcarriers.
  • the first channel and the second channel may occupy different subcarrier groups of the same time period, for example, the first channel and the second channel occupy the subcarrier group 1 and the subcarrier group 2.
  • the first channel and the second channel may occupy the same subcarrier group in the same time period, for example, the first channel and the second channel occupy the subcarrier group 3.
  • the second channel may occupy multiple subcarrier groups in the same time period, for example, occupy 2 subcarrier groups, as shown in FIG. 6. Even if the two candidate sequences mapped to the two subcarrier groups are the same, the two channels generated by the two candidate sequences are different.
  • the first channel and/or the second channel can be detected to receive the channel sent by the terminal. Because the network device may not know what state the scheduling request information and the response information fed back by the terminal are, it may not know which channel the terminal has selected. Therefore, it is safer for the network device to detect both the second channel and the first channel, thereby avoiding missing information sent by the terminal.
  • the technical solution provided by the embodiment of the present application helps reduce the reserved SR resources, thereby reducing resource waste and realizing the rational use of resources.
  • FIG. 8 is a schematic diagram of a network device 800 according to an embodiment of the present application.
  • the network device 800 can be applied to the scenario shown in FIG. 1 for performing the method provided by the embodiment shown in FIG. 2.
  • the network device 800 includes a processing unit 801 and a transceiver unit 802.
  • the transceiver unit 802 is specifically configured to perform various types of information transmission and reception performed by the network device in the foregoing embodiment shown in FIG. 2; the processing unit 801 is specifically configured to execute the network device in the foregoing embodiment shown in FIG. Other processing than sending and receiving information.
  • the transceiver unit 802 can be configured to: when the network device configures the first channel on the first time unit for the terminal, indicate, by the downlink control channel, the N second channels on the first time unit by using the downlink control channel;
  • the second channel is configured to send the second response information and the second scheduling request information on the first time unit, where the number of the first channels is M; M+N is greater than or equal to 2 ⁇ B, and M is a positive integer, and M is smaller than N, the second response information is an element in the second response information set, B is the number of elements in the second response information set, and the second scheduling request information is a presence scheduling request Or a scheduling request is not included;
  • the second response information set includes response information indicating a data receiving state; and the M first channels and any two of the N second channels are different, the first The time-frequency resource of the channel and the time-frequency resource of the second channel have a time domain overlapping portion on the first time unit; wherein the first channel is used to indicate the first scheduling on the first time unit Request
  • the transceiver unit 802 can be implemented by a transceiver
  • the processing unit 801 can be implemented by a processor.
  • network device 900 can include a processor 901, a transceiver 902, and a memory 903.
  • the memory 903 can be used to store a program/code pre-installed when the network device 900 is shipped from the factory, or a code for the execution of the processor 901, and the like.
  • the network device 900 may correspond to the network device in the embodiment shown in FIG. 2 according to the embodiment of the present application, where the transceiver 902 is configured to perform the embodiment described in the embodiment shown in FIG.
  • the processor 901 is configured to perform other processing than the information transmission and reception of the network device in the embodiment shown in FIG. 2 . I will not repeat them here.
  • FIG. 10 shows a schematic structural diagram of a network device 100, which may be, for example, a base station.
  • the network device 100 is applicable to the system as shown in FIG. 1 for performing the method provided by the embodiment shown in FIG. 2.
  • the network device 100 includes one or more remote radio unit (RRU) 1001 and one or more baseband units (BBU 1002.
  • the RRU 1001 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver. And so on, which may include at least one antenna 10011 and radio frequency unit 10012.
  • the RRU 1001 is mainly used for transceiving radio frequency signals and converting radio frequency signals with baseband signals, for example, for performing the above-described embodiment shown in FIG.
  • the BBU 1002 is mainly used for performing baseband processing, controlling network devices, etc.
  • the RRU 1001 and the BBU 1002 may be physically disposed together or physically separated, for example, Distributed base station.
  • the BBU 1002 is a control center of a network device, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing unit
  • the BBU can be used to control the network device to perform other processing than the processing information transmission and reception in the embodiment shown in FIG. 2.
  • the BBU 1002 may be composed of one or more boards, and multiple boards may jointly support a single access standard radio access network (such as an LTE network), or may separately support different access modes of wireless. Access Network.
  • the BBU 1002 also includes a memory 10021 and a processor 10022.
  • the memory 10021 is used to store necessary instructions and data.
  • the processor 10022 is configured to control the network device to perform necessary actions, for example, to control the network device to perform other processing than the processing information transmission and reception in the embodiment shown in FIG. 2.
  • the memory 10021 and the processor 10022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor.
  • the necessary circuits are also provided on each board.
  • FIG. 11 is a schematic diagram of a terminal 1100 according to an embodiment of the present application.
  • the terminal 1100 can be applied to the scenario shown in FIG. 1 for performing the method shown in FIG. 2.
  • the terminal 1100 includes a processing unit 1101 and a transceiver unit 1102.
  • the transceiver unit 1102 is specifically configured to perform various types of information transmission and reception performed by the terminal in the embodiment shown in FIG. 2; the processing unit 1101 is specifically configured to execute the terminal except the information in the embodiment shown in FIG. Other processing than sending and receiving.
  • the processing unit 1101 is configured to: when the network device configures the first channel on the first time unit for the terminal, determine, by using the downlink control channel, the N second channels on the first time unit indicated by the network device by the terminal
  • the second channel is configured to send the second response information and the second scheduling request information on the first time unit, where the number of the first channels is M; M+N is greater than or equal to 2 ⁇ B And M is smaller than N, the second response information is an element in the second response information set, B is the number of elements in the second response information set, and the second scheduling request information is a presence scheduling request or not There is a scheduling request;
  • the second response information set includes response information indicating a data reception status; and the M first channels and any two of the N second channels are different, the first channel
  • the time-frequency resource and the time-frequency resource of the second channel have a time domain overlapping portion on the first time unit; wherein the first channel is used to indicate the first scheduling request information on the first time unit ,or The first channel is configured to indicate the
  • the transceiver unit 1102 can be implemented by a transceiver
  • the processing unit 1101 can be implemented by a processor.
  • the terminal 1200 can include a processor 1201, a transceiver 1202, and a memory 1203.
  • the memory 1203 may be used to store a program/code pre-installed when the terminal 1200 is shipped from the factory, or may store a code or the like for execution of the processor 1201.
  • terminal 1200 may correspond to the terminal in the embodiment shown in FIG. 2 according to the embodiment of the present application, wherein the transceiver 1202 is configured to execute the embodiment shown in FIG.
  • the processor 1201 is configured to perform other processing in addition to information transceiving of the terminal in the embodiment shown in FIG. 2 . I will not repeat them here.
  • FIG. 13 provides a schematic structural diagram of a terminal.
  • the terminal can be used in the scenario shown in FIG. 1 to perform the method provided in the embodiment shown in FIG. 2.
  • FIG. 13 shows only the main components of the terminal.
  • the terminal 130 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit and the antenna together may also be called a transceiver, and are mainly used for transmitting and receiving radio frequency signals in the form of electromagnetic waves, and receiving signaling indications and/or reference signals sent by the base station, for performing the terminal execution in the embodiment shown in FIG. 2 above.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal, executing the software program, and processing the data of the software program, for example, for supporting the terminal to execute the embodiment except the information transmission and reception in the embodiment shown in FIG. action.
  • Memory is primarily used to store software programs and data.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 13 shows only one memory and processor for ease of illustration. In an actual user device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process communication protocols and communication data, and the central processing unit is mainly used to control the entire terminal and execute the software.
  • the processor in FIG. 13 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal may include multiple baseband processors to accommodate different network standards.
  • the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 1301 of the terminal 130, and the processor having the processing function is regarded as the processing unit 1302 of the terminal 130.
  • the terminal 130 includes a transceiver unit 1301 and a processing unit 1302.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 1301 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 1301 is regarded as a sending unit, that is, the transceiver unit 1301 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
  • the transceiver may be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network transceiver, a cellular network transceiver, or a combination thereof.
  • the processor can be a central processing unit (CPU), a network processor (NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a read-only memory (read) -only memory, ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); the memory may also include a combination of the above types of memory.
  • bus interface which may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor and various circuits of memory represented by the memory.
  • the bus interface can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver provides means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • FIG. 14A shows a schematic structural diagram of a communication device 1400.
  • the communication device 1400 can implement the functions of the terminal device referred to above.
  • the device 1400 can include a processor 1401.
  • the processor 1401 can be used to perform various functions performed by the terminal described in the embodiment shown in FIG. 2, and/or other processes for supporting the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • the communication device 1400 can be a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), and a central processor (central Processor unit (CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), or programmable logic device (programmable logic device) , PLD) or other integrated chips.
  • the communication device 1400 can be configured in the terminal device of the embodiment of the present application, so that the terminal device implements the measurement interval parameter configuration and the method for measuring the reference signal provided by the embodiment of the present application.
  • the communication device 1400 can further include a memory 1402, which can be referenced to FIG. 14B, wherein the memory 1402 is used to store computer programs or instructions, and the processor 1401 is used to decode and execute the computer programs or instructions. . It should be understood that these computer programs or instructions may include the functional programs of the terminal devices described above. When the function program of the terminal device is decoded and executed by the processor 1401, the communication device 1400 can be caused to implement the function of the terminal device in the communication method of the embodiment of the present application.
  • the functional programs of these terminal devices are stored in a memory external to the communication device 1400.
  • the function program of the terminal device is decoded and executed by the processor 1401, part or all of the contents of the function program of the terminal device are temporarily stored in the memory 1402.
  • the functional programs of these terminal devices are disposed in a memory 1402 stored within the communication device 1400.
  • the function program of the terminal device is stored in the memory 1402 inside the communication device 1400, the communication device 1400 can be disposed in the terminal device of the embodiment of the present application.
  • portions of the functional programs of the terminal devices are stored in a memory external to the communication device 1400, and other portions of the functional programs of the terminal devices are stored in the memory 1402 internal to the communication device 1400.
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in an ASIC, and the ASIC may be disposed in the UE. Alternatively, the processor and the storage medium may also be located in different components in the UE.
  • the size of the sequence number of each process does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be taken by the embodiment of the present application.
  • the implementation process constitutes any qualification.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及设备,用于合理利用资源。其中的一种通信方法包括:当网络设备为终端配置了第一时间单元上的第一信道时,网络设备通过下行控制信道为终端指示第一时间单元上的N个第二信道;第二信道用于在第一时间单元上发送第二应答信息及第二调度请求信息,第一信道为M个;M+N大于或等于2×B,且M小于N,第二应答信息为第二应答信息集合中的元素,B为第二应答信息集合中的元素的数量;第一信道的时频资源和第二信道的时频资源在第一时间单元上存在时域重叠部分;第一信道用于在第一时间单元上指示第一调度请求信息,或第一信道用于在第一时间单元上指示第一调度请求信息及发送第一应答信息;网络设备检测第一信道和/或第二信道。

Description

一种通信方法及设备
本申请要求在2017年8月11日提交中国专利局、申请号为201710687270.8、申请名称为“一种通信方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及设备。
背景技术
在长期演进(long term evolution,LTE)系统中,一个终端可能需要同时发送肯定应答(ACK)/否定应答(NACK)和调度请求(scheduling request,SR)。这个时候,为了保持低峰值平均功率比(peak to average power ratio,PAPR),LTE系统通过信道选择的方式承载SR。即,终端若在SR的信道上发送ACK/NACK,则表示终端同时发送了SR;而终端若在ACK/NACK的信道上发送ACK/NACK,则表示终端未发送SR。那么,为了应对终端同时发送ACK/NACK和SR的情况,LTE系统中要为终端预留数量相同的ACK/NACK信道和SR信道,一般来说为一个终端预留一个SR信道和一个ACK/NACK信道,这样,终端在无需发送SR时可通过ACK/NACK信道发送ACK/NACK,在无需发送ACK/NACK时可通过SR信道发送SR,在需要同时发送SR和ACK/NACK时则通过SR信道发送ACK/NACK。
而在第五代移动通信技术(5G)新无线(new radio,NR)系统中,如何为终端配置SR信道和ACK/NACK信道,以合理利用资源,成为了亟待解决的问题。
发明内容
本申请实施例提供一种通信方法及设备,用于合理利用资源。
第一方面,提供一种通信方法,该方法可由网络设备执行,网络设备例如为基站。该方法包括:当网络设备为终端配置了第一时间单元上的第一信道时,所述网络设备通过下行控制信道为所述终端指示所述第一时间单元上的N个第二信道;所述第二信道用于在所述第一时间单元上发送第二应答信息及第二调度请求信息,所述第一信道的数量为M个;M+N大于或等于2×B,M为正整数,且M小于N,所述第二应答信息为第二应答信息集合中的元素,B为所述第二应答信息集合中的元素的数量,所述第二调度请求信息为存在调度请求或不存在调度请求;所述第二应答信息集合中包括表示数据接收状态的应答信息;所述M个第一信道以及所述N个第二信道中的任意两个信道不同,所述第一信道的时频资源和所述第二信道的时频资源在所述第一时间单元上存在时域重叠部分;其中,所述第一信道用于在所述第一时间单元上指示第一调度请求信息,或所述第一信道用于在所述第一时间单元上指示所述第一调度请求信息及发送第一应答信息,M为正整数,所述第一调度请求信息为存在调度请求或不存在调度请求,所述第一应答信息为第一应答信息集合中的元素,所述第一应答信息集合中包括表示数据接收状态的应答信息;所述网络设备 检测所述第一信道和/或所述第二信道。
相应的,第二方面,提供一种通信方法,该方法可由终端执行。该方法包括:当网络设备为终端配置了第一时间单元上的第一信道时,所述终端通过下行控制信道确定网络设备为所述终端指示的第一时间单元上的N个第二信道,所述第二信道用于在所述第一时间单元上发送所述第二应答信息及第二调度请求信息,所述第一信道的数量为M个;M+N大于或等于2×B,且M小于N,所述第二应答信息为第二应答信息集合中的元素,B为所述第二应答信息集合中的元素的数量,所述第二调度请求信息为存在调度请求或不存在调度请求;所述第二应答信息集合中包括表示数据接收状态的应答信息;所述M个第一信道以及所述N个第二信道中的任意两个信道不同,所述第一信道的时频资源和所述第二信道的时频资源在所述第一时间单元上存在时域重叠部分;其中,所述第一信道用于在所述第一时间单元上指示第一调度请求信息,或所述第一信道用于在所述第一时间单元上指示所述第一调度请求信息及发送第一应答信息,M为正整数,所述第一调度请求信息为存在调度请求或不存在调度请求,所述第一应答信息为第一应答信息集合中的元素,所述第一应答信息集合中包括表示数据接收状态的应答信息;所述终端根据生成的调度请求信息和应答信息从所述M个第一信道或所述N个第二信道中选择一个信道,并发送所选择的信道。
在本申请实施例中,网络设备为终端配置N个第二信道和M个第一信道,且M小于N,即网络设备所配置的第一信道的数量小于第二信道的数量,其中,第二信道用于发送第二应答信息以及第二调度请求信息,第一信道用于指示第一调度请求信息或用于指示第一调度请求信息以及发送第一应答信息,可以认为第一信道是SR资源,且第二信道是网络设备通过下行控制信道配置的,即第一信道可以实现动态调度,从而通过本申请实施例提供的方案,当需要同时传输ACK/NACK与SR的终端较少时,第二信道可以调度为其他用途,配置的第一信道的数量也较少,即,减少了预留的SR资源,在整体上也减少了资源的浪费,能够在较大程度上节省资源,实现了对资源的较为合理的利用。
在一个可能的设计中,所述第二应答信息集合为{N,A}或{(N,N),(N,A),(A,N),(A,A)},其中,N表示NACK,A表示ACK。
第二应答信息是第二信道发送的信息,第二信道可以认为是ACK/NACK资源,那么,如果第二应答信息是一个数据块组的应答信息,则对应的两种状态就是N和A,即第二应答信息集合为{N,A},如果第二应答信息是两个数据块组的应答信息,则会对应四种状态,分别为(N,N),(N,A),(A,N),(A,A),即第二应答信息集合为{(N,N),(N,A),(A,N),(A,A)}。
在一个可能的设计中,所述第一应答信息集合为{N}或{(N,N)},其中,N表示NACK。
第一应答信息是第一信道发送的信息,第一信道是SR资源,则一般会将数据块组的应答信息的状态N分配给第一信道,即,如果第一应答信息是一个数据块组的应答信息,则对应的状态为{N},如果第一应答信息是两个数据块组的应答信息,则对应的状态为{(N,N)}。
在一个可能的设计中,M=1。
即,网络设备可以为终端配置一个第一信道,配置的第一信道的数量较少,即,减少了预留的SR资源,在整体上也减少了资源的浪费,能够在较大程度上节省资源,实现了对资源的较为合理的利用。
在一个可能的设计中,网络设备为终端配置M个第一信道,包括:所述网络设备通过高层信令为所述终端配置所述M个第一信道。相应的,终端确定网络设备配置的M个第一信道,包括:所述终端通过接收高层信令确定所述网络设备为所述终端配置的所述M个第一信道。
介绍了网络设备为终端配置第一信道的一种方式,当然本申请实施例不限制网络设备为终端配置第一信道的方式。
在一个可能的设计中,当所述网络设备没有为所述终端配置在所述第一时间单元上的第一信道时,所述网络设备可以通过所述下行控制信道为所述终端指示所述第一时间单元上的C个第三信道;其中,所述C个第三信道是所述N个第二信道的真子集,所述第三信道用于在所述第一时间单元上发送第三应答信息,所述第三应答信息为第三应答信息集合中的元素,所述第三应答信息集合中包括表示数据接收状态的应答信息;C为正整数;所述网络设备检测所述第三信道。相应的,当所述网络设备没有为所述终端配置在所述第一时间单元上的第一信道时,所述终端通过下行控制信道确定所述网络设备为所述终端指示的所述第一时间单元上的C个第三信道;其中,所述C个第三信道是所述N个第二信道的真子集,所述第三信道用于在所述第一时间单元上发送第三应答信息,所述第三应答信息为第三应答信息集合中的元素,所述第三应答信息集合中包括表示数据接收状态的应答信息;C为正整数;所述终端根据生成的调度请求信息和应答信息从所述C个第三信道中选择一个第三信道,并发送所选择的第三信道。
例如应答信息的比特数为2,调度请求信息的比特数为1,那么如果终端需要同时发送应答信息与调度请求信息,就意味着终端发送的信息可能对应3个比特的状态,3个比特会对应于8个状态,而如果终端不需要同时发送应答信息与调度请求信息,则网络设备没有为终端配置第一信道,那么终端发送的信息就可能只对应2个比特的状态,2个比特只是对应4个状态。按照序列选择的方式,终端发送的信息的每种状态会对应一个信道,则在终端需要传输调度请求信息时,网络设备会为终端配置相对于终端不需要传输调度请求信息时的更多的信道,即,N会大于C。在终端无需传输调度请求时,网络设备给终端配置了C个第三信道,那么在终端需要传输调度请求时,可以实施为,网络设备可以在C个第三信道的基础上再额外为终端配置N-F个信道即可,也就是说,N个第二信道里包括了C个第三信道,以及包括了N-F个第二信道。由此可以认为,C个第三信道实现了重用。通过这种方式,使得C个第三信道可以尽量按照原有的规则来与其他终端复用,无需额外配置过多的新的第二信道,更有助于增加方案的兼容性,也有助于提高资源的利用率。
在一个可能的设计中,所述N个第二信道的所述真子集包括的多个信道中的第一部分信道用于指示存在调度请求,以及所述N个第二信道的所述真子集包括的多个信道中的第二部分信道用于指示不存在调度请求。
例如,C个第三信道对应的候选序列的专有循环移位n s的取值是0、3、6、9,循环移位0,3,6,9所对应的候选序列在通过衰落信道后,序列间干扰较小,如果这4个候选序列都分配给一种调度请求信息,那么有调度请求所对应的循环移位与无调度请求所对应的循环移位之间的间隔可能会较小,例如,将循环移位0,3,6,9分别分配给应答信息和调度请求信息的状态(A,A,不存在调度请求),(A,N,不存在调度请求),(N,A,不存在调度请求),(N,N,不存在调度请求),而将循环移位1,4,7分配给应答信息和调度请求信息的状态(A,A,存在调度请求),(A,N,存在调度请求),(N,A,存在调 度请求),循环移位1,4,7所对应的候选序列对循环移位0,3,6所对应的候选序列会造成较强的干扰,从而导致调度请求信息的检测性能下降。而如果将循环移位0,3,6,9分配给不同的调度请求信息,则能够在一定程度上提高调度请求信息的检测性能。
在一个可能的设计中,位于一个子载波组的所述第二信道或所述第一信道是由根据下述公式生成的候选序列所生成的信道:
Figure PCTCN2018097086-appb-000001
其中,R是所述候选序列的长度,R为正整数,{x i|i=0,1,2,...,R-1}是一个序列,a 0+n s是候选序列y s,i的循环移位,a 0是初始循环移位,a 0是实数,n s是专有循环移位,n s是实数,s是表示不同序列的指标,j为虚数的单位。
介绍了通过候选序列生成信道的一种方式,本申请实施例不限制使用这种方式生成信道。
在一个可能的设计中,所述网络设备还可以确定P个映射关系中的第一映射关系;所述P个映射关系中的每个映射关系包括N+M个候选信息与N+M个候选序列之间的映射关系;其中,在所述P个映射关系中还包括第二映射关系,所述第一映射关系和所述第二映射关系中用于生成对应于同一个候选信息的候选序列的n s在mod R下相异,mod表示求余运算。相应的,所述终端也可以确定P个映射关系中的第一映射关系;所述P个映射关系中的每个映射关系包括N+M个候选信息与N+M个候选序列之间的映射关系;其中,在所述P个映射关系中还包括第二映射关系,所述第一映射关系和所述第二映射关系中用于生成对应于同一个候选信息的候选序列的n s在mod R下相异,mod表示求余运算。
其中,P个映射关系中的每个映射关系包括N+M个候选信息与N+M个候选序列之间的映射关系,其中,N+M个候选序列是基于n s的N+M个取值以及a 0生成的,即,N+M个候选序列中的N个候选序列是基于n s的N个取值和a 0生成的,N+M个候选序列中的M个候选序列是基于n s的M个取值和a 0生成的。需要说明的是,对于不同的终端,a 0的取值可以不一样,同一个终端在不同时间发送序列时,a 0的取值也可以不一样。所以,对于不同的终端来说,由于a 0的取值的不同或者序列占用频率资源不同,不同终端对应的N+M个候选序列也不同;同一个终端在不同时间发送候选序列时,同样由于a 0的取值的不同,不同时间对应的N+M个候选序列也不同。另外,不同的终端之间,a 0对应的应答信息以及调度请求信息的状态可能是不同的。通过这种方式可以尽量实现随机化处理,以减少同一小区内不同的终端之间的干扰。对于每个终端来说,P个映射关系都是相同的,但一个终端在一个时刻所适用的映射关系是根据该终端的ID或该终端的其他信息确定的,因此,不同的终端在不同时刻使用的映射关系有不同的变化,从而减少同一小区内不同的终端之间的干扰或者获得干扰随机化。
在一个可能的设计中,所述候选序列的长度为R,所述N个第二信道包含了F个第二信道,其中,所述F个第二信道对应的所述候选序列的n s的取值为0,R/F,…,(F-1)R/F,所述F个第二信道中的第一部分信道用于指示存在调度请求,以及所述F个第二信道中的第二部分信道用于指示不存在调度请求。
在一个可能的设计中,当R=12时,所述F个第二信道为n s的取值为0、3、6、9时所对应的信道,其中,n s的取值为0和n s的取值为6对应相同的调度请求信息,或,n s的取值为0和n s的取值为3对应相同的调度请求信息,或,n s的取值为0和n s的取值为9对应相同的调度请求信息。
这F个信道可以是在网络设备没有为终端配置第一信道以及为终端配置了第一信道的两种情况下重用的信道,就是说,在网络设备没有为终端配置第一信道以及为终端配置了第一信道的两种情况下,网络设备都为终端指示了第二信道。即,F个第二信道实现了重用。通过这种方式,使得F个第二信道可以尽量按照原有的规则来与其他终端码分复用,无需额外指示过多的新的第二信道,更有助于增加方案的兼容性,也有助于提高资源的利用率。
例如,F个信道对应的循环移位可以是0,3,6,9,循环移位0,3,6,9所对应的候选序列在通过衰落信道后,序列间干扰较小,如果这4个候选序列都分配给一种调度请求信息,那么有调度请求所对应的循环移位与无调度请求所对应的循环移位之间的间隔可能会较小,例如,将循环移位0,3,6,9分别分配给应答信息和调度请求信息的状态(A,A,不存在调度请求),(A,N,不存在调度请求),(N,A,不存在调度请求),(N,N,不存在调度请求),而将循环移位1,4,7分配给应答信息和调度请求信息的状态(A,A,存在调度请求),(A,N,存在调度请求),(N,A,存在调度请求),循环移位1,4,7所对应的候选序列对循环移位0,3,6所对应的候选序列会造成较强的干扰,从而导致调度请求信息的检测性能下降。而如果将循环移位0,3,6,9分配给不同的调度请求信息,则能够在一定程度上提高调度请求信息的检测性能。
在一个可能的设计中,所述第一应答信息及所述第一调度请求信息状态为(N,存在调度请求)或(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,存在调度请求),或为(A,不存在调度请求),或为(N,不存在调度请求);或,所述第一应答信息及所述第一调度请求信息的状态为(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,存在调度请求),或为(A,不存在调度请求),或为(N,不存在调度请求),或为(N,存在调度请求);或,所述第一应答信息及所述第一调度请求信息的状态为(N,N,存在调度请求)或(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,A,存在调度请求),或为(A,A,不存在调度请求),或为(A,N,存在调度请求),或为(A,N,不存在调度请求),或为(N,A,存在调度请求),或为(N,A,不存在调度请求),或为(N,N,不存在调度请求);或,所述第一应答信息及所述第一调度请求信息的状态为所述第一应答信息及所述第一调度请求信息的状态为(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,A,存在调度请求),或为(A,A,不存在调度请求),或为(A,N,存在调度请求),或为(A,N,不存在调度请求),或为(N,A,存在调度请求),或为(N,A,不存在调度请求),或为(N,N,不存在调度请求),或为(N,N,存在调度请求);其中,N表示NACK,A表示ACK。
如果第一应答信息和第二应答信息为一个数据块组的应答信息,则网络设备可以为终端分配一个第一信道以及三个第二信道,或者为终端分配一个第一信道以及四个第二信道,如果第一应答信息和第二应答信息为两个数据块组的应答信息,则网络设备可以为终端分配一个第一信道以及七个第二信道,或者为终端分配一个第一信道以及八个第二信道,即,网络设备配置给终端的第一信道的数量较少,在整体上也减少了资源的浪费,能够在较大程度上节省资源,实现了对资源的较为合理的利用。
第三方面,提供了一种网络设备,用于执行第一方面或第一方面的任意一种可能的设 计中的方法。具体地,该网络设备包括用于执行第一方面或第一方面的任意一种可能的设计提供的方法的单元。
第四方面,提供了一种终端设备,用于执行第二方面或第二方面的任意一种可能的设计中的方法。具体地,该终端设备包括用于执行第二方面或第二方面的任意一种可能的设计提供的方法的单元。
第五方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,网络设备的具体结构可包括收发机和处理器。收发机和处理器可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第六方面,提供一种终端设备。该终端设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,终端设备的具体结构可包括收发机和处理器。收发机和处理器可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第七方面,提供一种通信装置。该设备可以为上述方法设计中的终端设备,或者为设置在上述方法设计中的终端设备中的芯片。该设备具有实现上述方法设计中的终端设备的功能。在一个可能的设计中,该设备的具体结构可包括处理器。处理器和可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第八方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第九方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十一方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
在本申请实施例中,第二信道是网络设备通过下行控制信道配置的,即第一信道可以实现动态调度,从而通过本申请实施例提供的方案,当需要同时传输ACK/NACK与SR的终端较少时,第二信道可以调度为其他用途,配置的第一信道的数量也较少,即,减少了预留的SR资源,在整体上也减少了资源的浪费,能够在较大程度上节省资源,实现了对资源的较为合理的利用。
附图说明
图1为本申请实施例的一种应用场景示意图;
图2为本申请实施例提供的一种通信方法的流程图;
图3为本申请实施例提供的网络设备发送PDCCH以及终端设备根据PDCCH接收PDSCH的示意图;
图4为本申请实施例提供的候选序列到子载波之间的一种映射关系;
图5为本申请实施例提供的候选序列到子载波之间的一种映射关系;
图6为本申请实施例提供的第一信道和第二信道占用同一时间段的不同的子载波组的示意图;
图7为本申请实施例提供的第一信道和第二信道占用同一时间段的相同的子载波组的示意图;
图8为本申请实施例提供的一种网络设备的结构示意图;
图9为本申请实施例提供的另一种网络设备的结构示意图;
图10为本申请实施例提供的另一种网络设备的结构示意图;
图11为本申请实施例提供的一种终端设备的结构示意图;
图12为本申请实施例提供的另一种终端设备的结构示意图;
图13为本申请实施例提供的另一种终端设备的结构示意图;
图14A为本申请实施例提供的通信装置的一种结构示意图;
图14B为本申请实施例提供的通信装置的一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端:也可以称之为终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端可以包括用户设备(user equipment,UE)、无线终端、移动终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线终端通信的设备。基站可用于将收到的空中帧与网际协议(IP)分 组进行相互转换,作为终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB),本申请实施例并不限定。
3)调度请求,例如为SR,或者也可能有其他的名称。其中,SR用于终端向网络设备申请传输上行数据,网络设备在收到终端发送的SR后,通过上行调度信令(UL grant)为终端配置用于传输上行数据的资源。
4)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本文所提供的技术方案可以应用于5G NR系统(下文简称NR系统),或者下一代移动通信系统,或者是其他类似的通信系统。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术背景。
LTE系统支持物理上行控制信道(physical uplink control channel,PUCCH)的发送。PUCCH一般占用一个子帧(subframe)内的13个或14个正交频分复用(orthogonal frequency division multiplexing,OFDM)/离散傅里叶变换扩频的正交频分复用(discrete fourier transform-spead-OFDM,DFT-s-OFDM)符号发送上行控制信息(uplink control information,UCI)。其中,PUCCH格式(format)1a/1b用于传输1比特或2比特的ACK/NACK。为了提高PUCCH format 1a/1b的覆盖性能,PUCCH format 1a/1b采用序列调制的方式发送,即,在所有传输上行控制信息(uplink control information,UCI)的OFDM符号上,将待发送信号调制到一个计算机生成的序列(computer generated sequence,CGS)上发送。另外,PUCCH格式1用于终端向基站上报调度请求(scheduling request,SR),其采用了与PUCCH格式1a/1b相同的结构来传输信息,而且不需要在每个OFDM符号上承载的CGS的序列上调制信息。
同时,在LTE系统中,一个终端可能需要同时发送ACK/NACK和SR。这个时候,为了保持低峰值平均功率比(peak to average power ratio,PAPR),LTE系统通过信道选择的方式承载SR。即,终端若在SR的信道上发送ACK/NACK,则表示终端同时发送了SR;而终端若在ACK/NACK的信道上发送ACK/NACK,则表示终端未发送SR。基站通过终端是否在为其配置的SR的信道上发送信息来判断终端是否申请调度数据。
在NR系统中,已经支持了短PUCCH的传输,其中,短PUCCH是占用1个或2个OFDM/DFT-S-OFDM符号发送信息。对于短PUCCH,其在承载1比特信息或2比特信息时,采用的是序列选择的方式传输信息。具体地,对于1比特信息,gNB为终端分配1个计算机生成序列(computer generated sequence,CGS)的两个循环移位所对应的序列,这两个序列与所需传输的两个状态一一对应,即分别与“0”和“1”这两种状态对应;对于2比特信息,gNB为终端分配1个CGS的4个循环移位所对应的序列,这4个序列与所需传 输的4个状态一一对应,即分别与“00”、“01”、“10”和“11”这四种状态对应。其中,每个序列对应一个PUCCH信道,也就是说在NR系统中,对于1比特的短PUCCH,需要分配两个PUCCH信道,对于2比特的短PUCCH,需要分配四个PUCCH信道。
在NR系统中,同样存在一个终端需要同时发送ACK/NACK与SR的情况,短PUCCH亦是如此。那么,当一个终端的短PUCCH承载的ACK/NACK与SR需要同时发送时,可以考虑借鉴LTE系统的方案:例如当传输2比特信息时,gNB在分配ACK/NACK资源与SR资源的时候,对ACK/NACK的传输分配4个正交序列(1个CGS的4个循环移位所对应的序列),即分配4个PUCCH信道,为SR的传输也分配相同数量的序列,即分配相同数量的PUCCH信道。可以看到,在LTE系统中,为每个终端预留的SR资源是1个PUCCH信道,而在NR系统的短PUCCH中,以2比特的短PUCCH为例,如果借鉴LTE系统的方案,则需要为每个终端预留的SR资源是4个PUCCH信道。这种大量预留SR资源的方式,当需要同时传输ACK/NACK与SR的终端较少时,就会造成一定程度的资源浪费。
鉴于此,提供了本申请实施例的技术方案,能够减少资源浪费。
下面介绍本申请实施例的一种应用场景,请参考图1,为该应用场景的示意图。图1中包括网络设备和终端,其中网络设备可为终端配置SR资源以及ACK/NACK资源,从而终端可以通过分配的资源向网络设备发送SR和/或ACK/NACK。图1中的网络设备例如为接入网(access network,AN)设备,例如基站。其中,因为本申请实施例的方案主要涉及的是接入网设备和终端,因此图1中未画出核心网设备。其中,接入网设备例如为NR系统中的gNB。
下面结合附图介绍本申请实施例提供的技术方案。
请参见图2,本申请实施例提供一种通信方法,在下文的介绍过程中,以该方法应用在图1所示的应用场景为例。该方法的流程介绍如下。
S21、当网络设备为终端配置了第一时间单元上的第一信道时,该网络设备通过下行控制信道为该终端指示第一时间单元上的N个第二信道,则终端通过下行控制信道确定网络设备为终端指示的第一时间单元上的N个第二信道。其中,网络设备为终端配置的第一时间单元上的第一信道的数量例如为M个,M为正整数。
其中,网络设备为终端配置第一时间单元上的第二信道和为终端指示第一时间单元上的N个第二信道,这两个过程可以同时进行,或者网络设备可以先为终端配置第一信道再为终端指示N个第二信道,或者网络设备可以先为终端指示N个第二信道再为终端配置第一信道。总之该步骤可理解为是在网络设备为终端配置了第一时间单元上的第一信道的情况下的方案,并不是限定一定是先配置第一信道再指示第二信道。
下行控制信道例如为物理下行控制信道(physical downlink control channel,PDCCH),即第二信道是网络设备通过下行控制信道动态指示的。第二信道不与终端绑定,可以理解为,在网络设备调度某个终端通过第二信道传输信息时,则网络设备为终端指示N个第二信道,而在网络设备无需调度该终端通过第二信道传输信息时,该N个第二信道可以被网络设备指示给其他终端使用。其中,第二信道可以理解为应答信息对应的信道,例如为ACK/NACK的信道,或者说,第二信道可以理解为承载ACK/NACK的资源。
下面结合图3介绍一下应答信息的来源,以及如何发送应答信息。如图3所示,网络设备发送PDCCH,PDCCH可以指示同一个时隙内的物理下行共享信道(physical downlink shared channel,PDSCH),终端接收到PDCCH,根据PDCCH的指示信息,可以接收PDSCH, 根据PDSCH承载的数据的接收状态,例如是通过循环冗余校验(cyclic redundancy check,CRC)还是没有通过CRC来判断是接收正确还是接收不正确,从而相对应地生成ACK或NACK。终端则根据PDCCH的指示信息,在PUCCH上发送应答信息,或者应答信息和调度请求信息。PUCCH包括如前所述的第一信道,第二信道,或在后文中将介绍的第三信道。
其中,第二信道用于在第一时间单元上发送第二应答信息及第二调度请求信息。M+N大于或等于2×B,M小于N。第二应答信息为第二应答信息集合中的元素,B为第二应答信息集合中的元素的数量,第二调度请求信息为存在调度请求或不存在调度请求。例如B=2时,M可以取1,N可以取3或4,或者B=4时,M可以取1,N可以取7或8。
第二应答信息集合中包括表示数据接收状态的应答信息,例如第二应答信息为表示一个数据块组的接收状态的应答信息,则第二应答信息的比特数为1,那么第二应答信息集合为{N,A},其中,该一个数据块组中可以包括一个数据块或多个数据块;或者第二应答信息为表示两个数据块组的接收状态的应答信息,则第二应答信息的比特数为2,那么第二应答信息集合为{(N,N),(N,A),(A,N),(A,A)},其中,该两个数据块组中的每个数据块组都可以包括一个数据块或多个数据块。其中,应答信息集合中的N表示NACK,A表示ACK。
其中,M个第一信道以及N个第二信道中的任意两个信道不同,也就是M+N个信道中的任意两个信道都是不同的信道。这里的信道不同,可理解为用于生成信道的候选序列不同,或者信道的占用的时频资源不同。关于候选序列的概念将在后文中介绍。
且,第二信道的时频资源和第一信道的时频资源在第一时间单元上存在时域重叠部分,例如第二信道的时频资源和第一信道的时频资源在第一时间单元上在时域上完全重叠,或者第二信道的时频资源和第一信道的时频资源在第一时间单元上在时域上部分重叠。也就是说,网络设备为终端配置了第二信道以及指示了第一信道,且第二信道和第一信道在时域上存在重叠部分,那么终端如果通过第二信道发送应答信息以及通过第一信道发送调度请求信息,则可能无法保证低PAPR,而为了尽量保证低PAPR,终端可能选择其中一个信道进行发送,本申请实施例就是在此基础上提出的技术方案。
第一信道用于在第一时间单元上指示第一调度请求信息,或第一信道用于在第一时间单元上指示第一调度请求信息及发送第一应答信息,第一调度请求信息为存在调度请求或不存在调度请求,第一应答信息为第一应答信息集合中的元素,第一应答信息集合中包括表示数据接收状态的应答信息。例如第一应答信息为表示一个数据块组的接收状态的应答信息,则第一应答信息的比特数为1,那么第一应答信息集合为{N},其中,该一个数据块组中可以包括一个数据块或多个数据块;或者第一应答信息为表示两个数据块组的接收状态的应答信息,则第一应答信息的比特数为2,那么第一应答信息集合为{(N,N)},其中,该两个数据块组中的每个数据块组可以包括一个数据块或多个数据块。
其中,第一信道是网络设备为终端配置的,第一信道可以理解为调度请求对应的信道,例如为SR的信道,或者说,第一信道可以理解为承载SR的资源。其中,第一信道在配置给某个终端后,一般不能再调度给其他终端使用。第一信道指示第一调度请求信息可以理解为,如果终端通过第一信道发送了调度请求,即第一信道承载了调度请求,则第一信道指示的第一调度请求信息为存在调度请求,而如果终端未通过第一信道发送调度请求,即第一信道未承载调度请求,则第一信道指示的第一调度请求信息为不存在调度请求。即, 之所以描述为第一信道指示第一调度请求信息,是因为第一信道是通过发送或不发送调度请求来指示了是否存在调度请求。
在某个时刻,如果终端无需同时发送SR和ACK/NACK且在该终端无需发送ACK/NACK时,则该终端占用的信道就只是网络设备为该终端配置的SR的信道,而ACK/NACK的信道可被网络设备调度给其他终端使用,无需指示给该终端。而本申请实施例中网络设备为终端配置的SR的信道少于为终端指示的ACK/NACK的信道,即为终端配置的SR资源较少,从而在终端无需同时发送SR和ACK/NACK时,可以节省预留的资源,减少资源浪费。特别是在不需要同时传输ACK/NACK与SR的终端较多时,本申请实施例的技术方案的优势更为明显,在节省资源方面的效果会更为显著。
对于网络设备来说,所配置的第一信道的总数量为M×K,其中K为该网络设备支持的能够同时传输调度请求的终端的数量,而网络设备指示的第一时间单元上的第二信道的总数量为N×Q,其中Q为网络设备指示了第一时间单元上的第二信道的终端的数量,其中,Q所包括的指示了第一时间单元上的第二信道的终端是配置了第一信道的终端,即第二信道的数量是取决于网络设备所调度的终端的数量。那么在第一时间单元,网络设备指示的资源包括M×K个第一信道+N×Q个第二信道,本申请实施例中,M的数量较少,那么,如果在第一时间单元网络设备指示了第一时间单元上的第二信道的终端的数量也较少,则N×Q的值也就较小。以应答信息的比特数是2为例,在第一时间单元M=1,网络设备支持的能够同时传输调度请求的终端的数量为400,即K=400,N=7,网络设备指示了第一时间单元上的第二信道的终端的数量为100,即Q=100,则在第一时间单元网络设备指示的资源就为1×400+7×100=1100,而如果延用LTE系统中的方案,则网络设备为终端配置的SR信道与ACK/NACK信道的数量相等,均为4,则在第一时间单元网络设备指示的资源会是4×400+4×100=2000。可见,在网络设备调度的终端的数量较少的情况下,本申请实施例的技术方案较有优势。
其中,网络设备可通过高层信令为终端配置M个第一信道,高层信令例如为无线资源控制(radio resource control,RRC)信令,或者网络设备也可以通过其他信令为终端配置M个第一信道。
如前描述的是网络设备为终端配置了第一时间单元上的M个第一信道的情况,即,如果网络设备为终端配置了在第一时间单元上的M个第一信道,则网络设备可以为终端指示在第一时间单元上的N个第二信道。而如果网络设备没有为终端配置在第一时间单元上的第一信道,例如网络设备确定终端在第一时间单元上无需传输调度请求信息,则不为终端配置在第一时间单元上的第一信道,那么,如果网络设备确定终端在第一时间单元上待传输应答信息,则网络设备也可以为终端指示在第一时间单元上的第三信道,例如网络设备为终端指示C个第三信道,C为正整数。其中,C个第三信道是N个第二信道的真子集。在网络设备没有为终端配置M个第一信道时,第三信道用于在第一时间单元上发送第三应答信息,可以理解为,第三信道是承载ACK/NACK的信道。第三应答信息为第三应答信息集合中的元素,第三应答信息集合中包括表示数据接收状态的应答信息。例如第三应答信息为表示一个数据块组的接收状态的应答信息,则第三应答信息的比特数为1,那么第三应答信息集合为{N,A},该数据块组中可以包括一个数据块或多个数据块;或者第三应答信息为表示两个数据块组的接收状态的应答信息,则第三应答信息的比特数为2,那么第三应答信息集合为{(N,N),(N,A),(A,N),(A,A)},该两个数据块组中的每 个数据块组可以包括一个数据块或多个数据块。
如果网络设备为终端指示了C个第三信道,则终端可以根据生成的调度请求信息和应答信息从C个第三信道中选择一个第三信道,并发送所选择的第三信道,网络设备通过检测第三信道就可以获得终端所发送的调度请求信息和应答信息。
其中,如果网络设备为终端配置了在第一时间单元上的第一信道,则表明终端能够在第一时间单元上传输调度请求信息,且终端需要同时发送应答信息与调度请求信息。而如果网络设备没有为终端配置第一信道,就表明终端只需发送应答信息而无需发送调度请求信息。例如应答信息的比特数为2,调度请求信息的比特数为1,那么如果终端需要同时发送应答信息与调度请求信息,就意味着终端发送的信息可能对应3个比特的状态,3个比特会对应于8个状态,而如果终端不需要同时发送应答信息与调度请求信息,则网络设备没有为终端配置第一信道,那么终端发送的信息就可能只对应2个比特的状态,2个比特只是对应4个状态。按照序列选择的方式,终端发送的信息的每种状态会对应一个信道,则在终端需要传输调度请求信息时,网络设备会为终端配置相对于终端不需要传输调度请求信息时的更多的信道,即,N会大于C。在终端无需传输调度请求时,网络设备给终端配置了C个第三信道,那么在终端需要传输调度请求时,可以实施为,网络设备可以在C个第三信道的基础上再额外为终端配置N-F个信道即可,也就是说,N个第二信道里包括了C个第三信道,以及包括了N-F个第二信道。由此可以认为,C个第三信道实现了重用。通过这种方式,使得C个第三信道可以尽量按照原有的规则来与其他终端复用,无需额外配置过多的新的第二信道,更有助于增加方案的兼容性,也有助于提高资源的利用率。
上文中介绍了C个第三信道可以重用的方案,那么在C个第三信道重用的情况下,如果网络设备为终端配置了在第一时间单元上的M个第一信道,则N个第二信道中的重用的C个第三信道至少指示两种调度请求信息,即,N个第二信道的真子集包括的多个信道中的第一部分信道用于指示存在调度请求,N个第二信道的真子集包括的多个信道中的第二部分信道用于指示不存在调度请求。N个第二信道的真子集即为C个第三信道。
例如第二应答信息的比特数为2,如果网络设备没有为终端调度第一信道,则网络设备为终端指示的第三信道的数量C例如为4,这4个第三信道分别为第三信道A、第三信道B、第三信道C和第三信道D。而如果网络设备为终端调度了M个第一信道,则网络设备为终端指示的第二信道的数量N例如为7,这7个第二信道分别为第二信道A、第二信道B、第二信道C、第二信道D、第二信道E、第二信道F和第二信道G。其中,第三信道A与第二信道A是同一个信道,第三信道B与第二信道B是同一个信道,第三信道C与第二信道C是同一个信道,第三信道D与第二信道D是同一个信道,可以看到,第二信道A(即第三信道A)、第二信道B(即第三信道A)、第二信道C(即第三信道C)和第二信道D(即第三信道D)实现了重用。那么,第二信道A、第二信道B、第二信道C和第二信道D中的第一部分部分第二信道指示存在调度请求,第二信道A、第二信道B、第二信道C和第二信道D中的第二部分第二信道指示不存在调度请求。例如,第二信道A发送的第二应答信息以及第二调度请求信息的状态为(A,A,存在调度请求),第二信道B发送的第二应答信息以及第二调度请求信息的状态为(A,A,不存在调度请求),第二信道C发送的第二应答信息以及第二调度请求信息的状态为(A,N,存在调度请求),第二信道D发送的第二应答信息以及第二调度请求信息的状态为(A,N,不存在调度请求),即第二信道A和第二信道C指示存在调度请求,第二信道B和第二信道D指示不存在调 度请求。
例如,C个第三信道对应的候选序列的n s的取值是0、3、6、9,循环移位0,3,6,9所对应的候选序列在通过衰落信道后,序列间干扰较小,如果这4个候选序列都分配给一种调度请求信息,那么有调度请求所对应的循环移位与无调度请求所对应的循环移位之间的间隔可能会较小,例如,将循环移位0,3,6,9分别分配给应答信息和调度请求信息的状态(A,A,不存在调度请求),(A,N,不存在调度请求),(N,A,不存在调度请求),(N,N,不存在调度请求),而将循环移位1,4,7分配给应答信息和调度请求信息的状态(A,A,存在调度请求),(A,N,存在调度请求),(N,A,存在调度请求),循环移位1,4,7所对应的候选序列对循环移位0,3,6所对应的候选序列会造成较强的干扰,从而导致调度请求信息的检测性能下降。而如果将循环移位0,3,6,9分配给不同的调度请求信息,则能够在一定程度上提高调度请求信息的检测性能。关于n s,将在后文中介绍。
在本申请实施例中,第一信道或第二信道是由候选序列生成的信道,也就是说,N个第二信道与N个候选序列一一对应,M个第一信道与M个候选序列一一对应,而每个候选序列又对应于不同的候选信息,候选信息可理解为应答信息以及调度请求信息的状态,也就是说,信道-候选序列-候选信息,三者之间一一对应,则通过不同的信道发送,或者说发送不同的信道,就意味着发送的是不同的候选信息。
作为一种示例,候选序列可以由下列序列生成,例如由计算机搜索得到的序列(computer generated sequence,CGS),或者恒包络零自相关(constant amplitude zero auto correlation,CAZAC)序列,或者Zadoff–Chu序列生成的序列等。其中,对于位于同一个子载波组的第一信道或第二信道,每个候选序列可以基于下述公式1生成:
Figure PCTCN2018097086-appb-000002
其中,R是候选序列的长度,R为正整数,{x i|i=0,1,2,...,R-1}是一个序列,例如预先定义的或者系统分配的序列,例如CGS序列,a 0+n s是候选序列{y s,i}的循环移位(为了便于区分与理解,记为n t),即可以认为序列{y s,i}由序列{x i|i=0,1,2,...,R-1}经过循环移位得到的,j为虚数的单位,a 0是初始循环移位,为实数,n s是专有循环移位,为实数。例如针对于同一终端的对应的N+M个候选序列,a 0表示初始循环移位,为用于生成N+M个候选序列的公有参数,即用于生成该N+M个候选序列中的每个候选序列的a 0的取值是相同的,或者说,不同小区的终端在同一时刻可能对应a 0的不同取值,同一个终端在同一时刻对应a 0的同一个取值,同一个终端在不同的时刻也可能对应a 0的不同取值。n s表示专有循环移位,为用于一个终端生成该N+M个候选序列中每个候选序列的专有参数,即,对于同一终端的不同候选序列对应n s的不同取值。其中s是表示不同候选序列的指标。例如s可以取0,1,2,…分别对应候选序列{y 0,i|i=0,1,2,..,R-1},{y 1,i|i=0,1,2,...,R-1},{y 2,i|i=0,1,2,...,R-1},...。对于位于不同的子载波组的第一信道,公式1中的a 0和/或n s可以有独立的取值,对于位于不同的子载波组的第二信道,公式1中的a 0和/或n s可以有独立的取值。
公式1的候选序列可以映射到频域上连续的G个子载波上,或者映射到频域上等间隔分布的G个子载波上。G个连续的子载波或者等间隔分布的子载波形成一个子载组。公式1中 的多个候选序列,可以映射到不同的子载波组。对于映射到不同的子载波组的候选序列,n s的取值即使相同,也认为是不同的信道,例如s=0,和s=5时,n s的取值可以相同,但由于{y s,i|i=0,1,2,..,R-1}映射到不同的子载波组上,则对应的是不同的信道。对于映射到相同的子载波组的多个候选序列,a 0的取值可以相同。对于映射到不同的子载波组的两个候选序列,a 0的取值可以相同,也可以不同。例如,用于生成第一信道的候选序列和用于生成第二信道的候选序列可以占用同一时间段的不同的子载波组,或者,用于生成第一信道的候选序列和用于生成第二信道的候选序列可以占用同一时间段的相同的子载波组,
因而,从上述公式描述可知,可以通过n t来区分不同候选信息,或者说,可以通过n t来区分不同的候选序列,即,对于同一终端来说,不同的应答信息以及调度请求信息的状态对应的同一个子载波组的候选序列的n t的取值不同。
在本申请实施例中,候选信息与候选序列之间形成P个映射关系,在本申请实施例中,对映射关系的个数不做任何限定,只要P大于1即可。P个映射关系中的每个映射关系包括N+M个候选信息与N+M个候选序列之间的映射关系。N+M个候选信息中的N个候选信息由第二应答信息集合中的元素与第二调度请求信息构成,N+M个候选信息中的M个候选信息由第一应答信息集合中的元素与第一调度请求信息构成。即,应答信息以及调度请求信息的状态构成候选信息,候选信息对应于候选序列,而一个候选序列又用于生成一个信道。候选序列可通过对根序列进行循环移位而生成。例如对于1个作为根序列的CGS序列来说,其所能支持的最大的循环移位数量为该CGS序列中元素的数量,例如1个长度为12的CGS序列所支持的最大的循环移位数量为12。且,由1个CGS序列的12个循环移位生成的12个序列是相互正交的。则应答信息以及调度请求信息对应的候选序列可以是CGS序列循环移位后得到的序列。
其中,网络设备为一个终端指示的N个第二信道可以通过一个根序列的循环移位生成,或者也可以通过多个根序列的循环移位生成。例如对于2比特的应答信息,网络设备为终端指示了7个第二信道,这7个第二信道可以是由1个根序列的7个循环移位生成的候选序列所生成的信道,其中每个循环移位对应一种应答信息与调度请求信息的状态,例如,这7个候选序列对应的应答信息与调度请求信息的状态分别是(A,A,不存在调度请求),(A,N,不存在调度请求),(N,A,不存在调度请求),(N,N,不存在调度请求),(A,A,存在调度请求),(A,N,存在调度请求),(N,A,存在调度请求)。或者,这7个第二信道对应了2个根序列,这两个根序列生成的序列分别映射到不同的子载波组上,即,这7个第二信道中的4个第二信道是其中一个根序列的4个循环移位所生成的4个候选序列生成的信道,这7个第二信道中剩余的3个第二信道是另一个根序列的3个循环移位所生成的4个候选序列生成的信道,其中每个根序列的1个循环移位对应一种应答信息与调度请求信息的状态,例如,7个候选序列对应的应答信息与调度请求信息的状态分别是(A,A,不存在调度请求),(A,N,不存在调度请求),(N,A,不存在调度请求),(N,N,不存在调度请求),(A,A,存在调度请求),(A,N,存在调度请求),(N,A,存在调度请求)。
下面举例介绍P个映射关系。例如P为8,N为7,M为1,即在8个映射关系中,包括了8个候选信息(记为候选信息#1~候选信息#8)和8个候选序列(记为候选序列#1~候选序列#8),在8个映射关系中的每个映射关系中,表示的都是该8个候选信息和该8个候选序列之间的映射关系,例如在第1个映射关系中,候选信息#1对应候选序列#1,候选 信息#2对应候选序列#2,而在第2组映射关系中,候选信息#1可能对应候选序列#2,候选信息#2对应候选序列#1。
下面,结合表1,对本申请实施例的P个映射关系进行详细说明。
表1所示为本申请实施例的P个映射关系的示意。如表1所示,P=4,即有4个映射关系,分别为映射关系#1、映射关系#2、映射关系#3和映射关系#4,有4个候选信息,分别为候选信息#1、候选信息#2、候选信息#3和候选信息#4,这4个候选信息分别表示(A,N,存在调度请求)、(N,N,不存在调度请求)、(A,A,存在调度请求)和(N,A,不存在调度请求)。有4个候选序列,即候选序列#1、候选序列#2、候选序列#3和候选序列#4,对应的n s的取值分别是0,6,9,3,在表1中,每个候选序列后面的括号所示的数值即为每个候选序列对应的n s的取值。在4个映射关系中,每个映射关系表示的都是上述4个候选信息和4个候选序列之间的映射关系,其中,4个候选序列对应n s的4个取值,即,n s的每个取值都用于生成对应的候选序列。
在本申请实施例中,在P个映射关系中的至少两个映射关系中,用于生成对应于同一个候选信息的候选序列的n s的取值在mod R下相异,例如P个映射关系中包括第一映射关系和第二映射关系,第一映射关系和第二映射关系中用于生成对应于同一个候选信息的候选序列的n s在mod R下相异,也就是说,P个映射关系中至少包括两个不相同的映射关系。其中,mod表示求余运算。
本申请实施例中,第一映射关系和第二映射关系中用于生成对应于同一个候选信息的候选序列的n s在mod R下相异,可以理解为,这两个映射关系中的n s分别和R做求余运算后,求得的余数是不同的。例如,第一映射关系中用于生成对应于候选信息a的候选序列的n s和R做求余运算,得到余数A,第二映射关系中用于生成对应于该候选信息a的候选序列的n s和R做求余运算,得到余数B,余数A和余数B不相同。
以映射关系#1和映射关系#2为例,在这两个映射关系中,针对于候选信息#1,两个映射关系中的n s的取值在mod R下相异,针对于候选信息#2,两个映射关系中的n s的取值在mod R下也相异,针对于候选信息#3,两个映射关系中的n s的取值在mod R下相同,针对于候选信息#4,两个映射关系中的n s的取值在mod R下也相同。
同理,以映射关系#2和映射关系#3为例,针对于4个候选信息中的任一个候选信息,两个映射关系中的n s的取值在mod R下都相异。
表1
Figure PCTCN2018097086-appb-000003
对于终端#A来说,根据网络设备的配置的规则或根据协议的规定在4个映射关系中选择一个映射关系,进而,根据选择的映射关系确定与根据生成的信息#A对应的候选序列,或者说,根据选择的映射关系确定与该信息#A对应的专有循环移位。信息#A即为应答信息以及调度请求信息的状态。
如前介绍了,P个映射关系中的每个映射关系包括N+M个候选信息与N+M个候选序列之间的映射关系,其中,N+M个候选序列是基于n s的N+M个取值以及a 0生成的,即,N+M个候选序列中的N个候选序列是基于n s的N个取值和a 0生成的,N+M个候选序列中的M个候选序列是基于n s的M个取值和a 0生成的。
需要说明的是,对于不同的终端,a 0的取值可以不一样,同一个终端在不同时间发送序列时,a 0的取值也可以不一样。所以,对于不同的终端来说,由于a 0的取值的不同或者序列占用频率资源不同,不同终端对应的N+M个候选序列也不同;同一个终端在不同时间发送候选序列时,同样由于a 0的取值的不同,不同时间对应的N+M个候选序列也不同。
另外,不同的终端之间,a 0对应的应答信息以及调度请求信息的状态可能是不同的。可以理解为,本申请实施例提供P个映射关系,则终端根据确定的P个映射关系中的第一映射关系就可以确定该终端生成的应答信息以及调度请求信息的状态所对应的候选序列,即确定第二信道或第一信道,从而发送所确定的信道,同样的,网络设备也可以采用与终端相同的方式来从P个映射关系中确定第一映射关系,从而接收终端所发送的信道。通过这种方式可以尽量实现随机化处理,以减少同一小区内不同的终端之间的干扰。其中,P个映射关系中,在某个时刻某个终端究竟应用其中的哪个映射关系,可以由网络设备配置,或者由协议规定,本申请实施例不做限制。也就是说,对于每个终端来说,P个映射关系都是相同的,但一个终端在一个时刻所适用的映射关系是根据该终端的身份标识号(ID)或该终端的其他信息确定的,因此,不同的终端在不同时刻使用的映射关系有不同的变化,从而减少同一小区内不同的终端之间的干扰或者获得干扰随机化。
例如对于某个终端来说,在时隙(slot)n,7个候选序列对应于1个根序列的7个循环移位,这7个循环移位分别为0,3,6,9,1,4,7,7个序列映射到子在波组1,则这7个候选序列对应的a 0的取值为0,n s的取值为0,3,6,9,1,4,7,n s的不同取值对应的应答信息与调度请求信息的状态分别为(A,A,存在调度请求),(A,N,不存在调度请求),(N,A,不存在调度请求),(N,N,不存在调度请求),(A,A,不存在调度请求),(A,N,存在调度请求),(N,A,存在调度请求)。而对于另一个终端来说,7个候选序列可以映射到子载波组2,同样在slot n,7个候选序列所用的循环移位可能分别为1,4,7,10,2,5,6,则这7个候选序列对应的a 0的取值为1,n s的取值为0,3,6,9,1,4,7,n s的不同取值分别对应了(A,A,不存在调度请求),(A,N,存在调度请求),(N,A,不存在调度请求),(N,N,不存在调度请求),(A,A,存在调度请求),(A,N,不存在调度请求),(N,A,存在调度请求)。
在本申请实施例中,N个第二信道中可以包含F个第二信道,其中,F个第二信道对应的候选序列的n s的取值为0,R/F,…,(F-1)R/F,F个第二信道中的第一部分信道用于指示存在调度请求,以及F个第二信道中的第二部分信道用于指示不存在调度请求。下面具体介绍。
在前文中已有介绍,如果网络设备没有为终端配置第一信道,则网络设备可以为终端指示C个第三信道,其中,C个第三信道与F个第二信道可以理解为是相同的信道,即C 个第三信道也可以称为F个第二信道,C=F。可以理解为,N个第二信道中包含F个第二信道,这F个信道可以是在网络设备没有为终端配置第一信道以及为终端配置了第一信道的两种情况下重用的信道,就是说,在网络设备没有为终端配置第一信道以及为终端配置了第一信道的两种情况下,网络设备都为终端指示了第二信道。在网络设备没有为终端配置第一信道时,F个第二信道用于在第一时间单元上发送第三应答信息,第三应答信息为第三应答信息集合中的元素,关于这部分内容可参考前文中对于C个第三信道的介绍。
根据如前的介绍可知,F个第二信道实现了重用。通过这种方式,使得F个第二信道可以尽量按照原有的规则来与其他终端码分复用,无需额外指示过多的新的第二信道,更有助于增加方案的兼容性,也有助于提高资源的利用率。
上文中介绍了F个第二信道可以重用的方案,那么在F个第二信道重用的情况下,如果网络设备为终端配置了在第一时间单元上的M个第一信道,则F个第二信道中的第一部分第二信道用于指示存在调度请求,F个第二信道中的第二部分第二信道用于指示不存在调度请求。例如第二应答信息的比特数为2,如果网络设备没有为终端配置第一信道,则网络设备为终端指示的第二信道的数量F例如为4,这4个第二信道分别为第二信道A、第二信道B、第二信道C和第二信道D。而如果网络设备为终端配置了M个第一信道,则网络设备为终端指示的第二信道的数量N例如为7,这7个第二信道分别为第二信道A、第二信道B、第二信道C、第二信道D、第二信道E、第二信道F和第二信道G。可以看到,第二信道A、第二信道B、第二信道C和第二信道D实现了重用。那么,第二信道A、第二信道B、第二信道C和第二信道D就至少指示两种调度请求信息,即,第二信道A、第二信道B、第二信道C和第二信道D中的部分第二信道指示存在调度请求,第二信道A、第二信道B、第二信道C和第二信道D中的剩余的第二信道指示不存在调度请求。例如,第二信道A发送的第二应答信息以及第二调度请求信息的状态为(A,A,存在调度请求),第二信道B发送的第二应答信息以及第二调度请求信息的状态为(A,A,不存在调度请求),第二信道C发送的第二应答信息以及第二调度请求信息的状态为(A,N,存在调度请求),第二信道D发送的第二应答信息以及第二调度请求信息的状态为(A,N,不存在调度请求)。
在如前的示例中,均以M=1为例,实际上M的取值不限于1,也可以更多,例如为2,只要M小于N即可。
例如候选序列的长度为R,则F个第二信道对应的候选序列的n s的取值为0,R/F,…,(F-1)R/F,例如F=4、R=12,则F个第二信道对应的候选序列的n s的取值就是0、3、6、9。例如在slot n,7个候选序列对应于1个长度为12的根序列的7个循环移位,这7个循环移位包含了4个循环移位为0,3,6,9,这4个循环移位对应的候选序列对应的a 0的取值为0,n s的取值为0,12/4,12×2/4,12×3/4。其中,n s的取值0,3,6,9对应的应答信息和调度请求信息的状态分别为(A,A,存在调度请求),(A,N,不存在调度请求),(N,A,不存在调度请求),(N,N,不存在调度请求),这4种应答信息和调度请求信息的状态中包含了存在调度请求和不存在调度请求的情况。
进一步,n s的取值0和n s的取值6可以对应相同的调度请求信息,或,n s的取值0和n s的取值3可以对应相同的调度请求信息,或,n s的取值0和n s的取值9可以对应相同的调度请求信息。
循环移位0,3,6,9所对应的候选序列在通过衰落信道后,序列间干扰较小,如果 这4个候选序列都分配给一种调度请求信息,那么有调度请求所对应的循环移位与无调度请求所对应的循环移位之间的间隔可能会较小,例如,将循环移位0,3,6,9分别分配给应答信息和调度请求信息的状态(A,A,不存在调度请求),(A,N,不存在调度请求),(N,A,不存在调度请求),(N,N,不存在调度请求),而将循环移位1,4,7分配给应答信息和调度请求信息的状态(A,A,存在调度请求),(A,N,存在调度请求),(N,A,存在调度请求),循环移位1,4,7所对应的候选序列对循环移位0,3,6所对应的候选序列会造成较强的干扰,从而导致调度请求信息的检测性能下降。而如果将循环移位0,3,6,9分配给不同的调度请求信息,则能够在一定程度上提高调度请求信息的检测性能。
下面对应答信息以及调度请求信息的状态,即对候选信息进行举例介绍。
作为一种示例,第二应答信息为表示一个数据块组的接收状态的应答信息,则第二应答信息的比特数为1。第二信道发送的第二应答信息以及第二调度请求信息的状态为(A,存在调度请求),或为(A,不存在调度请求),或为(N,不存在调度请求),可以理解为,在这种情况下N=3,其中的第二信道A发送的第二应答信息以及第二调度请求信息的状态为(A,存在调度请求),第二信道B发送的第二应答信息以及第二调度请求信息的状态为(A,不存在调度请求),第二信道C发送的第二应答信息以及第二调度请求信息的状态为(A,存在调度请求)。例如,终端通过第二信道B发送第二应答信息以及第二调度请求信息,则网络设备只要检测到第二信道B,就知道终端发送的第二应答信息以及第二调度请求信息的状态为(A,不存在调度请求)。第一信道发送第一应答信息及指示的第一调度请求信息的状态为(N,存在调度请求)以及(未收到下行数据调度(DTX),存在调度请求),可以理解为M=1,该第一信道可以指示两种状态,一种为(N,存在调度请求),另一种为(未收到下行数据调度,存在调度请求),因为对于网络设备来说,无论是指示为N还是指示为未收到下行数据调度,其效果差别不大,因此可以通过一个第一信道来指示两种状态,这样可进一步节省所配置的第一信道。其中,应答信息以及调度请求信息的状态中的N表示NACK,A表示ACK。当终端只发送调度请求信息时,隐含地指示了未收到下行数据调度(DTX)。
作为另一种示例,第二应答信息为表示一个数据块组的接收状态的应答信息,则第二应答信息的比特数为1。第二信道发送的第二应答信息以及第二调度请求信息的状态为(A,存在调度请求),或为(A,不存在调度请求),或为(N,不存在调度请求),或为(N,不存在调度请求)。可以理解为,在这种情况下N=4,其中的第二信道A发送的第二应答信息以及第二调度请求信息的状态为(A,存在调度请求),第二信道B发送的第二应答信息以及第二调度请求信息的状态为(A,不存在调度请求),第二信道C发送的第二应答信息以及第二调度请求信息的状态为(A,存在调度请求),第二信道D发送的第二应答信息以及第二调度请求信息的状态为(N,不存在调度请求)。第一信道发送第一应答信息及指示的第一调度请求信息的状态为(未收到下行数据调度,存在调度请求),可以理解为M=1。即,在这种示例中,实现了通过不同的信道来指示应答信息和调度请求信息的不同的状态,使得指示更为明确。
作为另一种示例,第二应答信息为表示两个数据块组的接收状态的应答信息,则第二应答信息的比特数为2。第二信道发送的第二应答信息及第二调度请求信息的状态为(A,A,存在调度请求),或为(A,A,不存在调度请求),或为(A,N,存在调度请求),或为(A,N,不存在调度请求),或为(N,A,存在调度请求),或为(N,A,不存在调度 请求),或为(N,N,不存在调度请求)。可以理解为,在这种情况下N=7,其中的第二信道A发送的第二应答信息以及第二调度请求信息的状态为(A,A,存在调度请求),第二信道B发送的第二应答信息以及第二调度请求信息的状态为(A,A,不存在调度请求),第二信道C发送的第二应答信息以及第二调度请求信息的状态为(A,N,存在调度请求),第二信道D发送的第二应答信息以及第二调度请求信息的状态为(A,N,不存在调度请求),第二信道E发送的第二应答信息以及第二调度请求信息的状态为(N,A,存在调度请求),第二信道F发送的第二应答信息以及第二调度请求信息的状态为(N,A,不存在调度请求),第二信道G发送的第二应答信息以及第二调度请求信息的状态为(N,N,不存在调度请求)。第一信道发送第一应答信息及指示的第一调度请求信息的状态为(N,N,存在调度请求)或(未收到下行数据调度,存在调度请求),其中,在未收到下行数据调度时,可能终端并不能确定未调度的是一个数据块组还是多个数据块组,因此对应的状态可以是(未收到下行数据调度)。可以理解为M=1,该第一信道可以指示两种状态,一种为(N,N,存在调度请求),另一种为(未收到下行数据调度,存在调度请求),同样的,通过一个第一信道指示两种状态,可节省第一信道的数量。
作为另一种示例,第二应答信息为表示两个数据块组的接收状态的应答信息,则第二应答信息的比特数为2。第二信道发送的第二应答信息及第二调度请求信息的状态为(A,A,存在调度请求),或为(A,A,不存在调度请求),或为(A,N,存在调度请求),或为(A,N,不存在调度请求),或为(N,A,存在调度请求),或为(N,A,不存在调度请求),或为(N,N,不存在调度请求),或为(N,N,存在调度请求)。可以理解为,在这种情况下N=8,其中的第二信道A发送的第二应答信息以及第二调度请求信息的状态为(A,A,存在调度请求),第二信道B发送的第二应答信息以及第二调度请求信息的状态为(A,A,不存在调度请求),第二信道C发送的第二应答信息以及第二调度请求信息的状态为(A,N,存在调度请求),第二信道D发送的第二应答信息以及第二调度请求信息的状态为(A,N,不存在调度请求),第二信道E发送的第二应答信息以及第二调度请求信息的状态为(N,A,存在调度请求),第二信道F发送的第二应答信息以及第二调度请求信息的状态为(N,A,不存在调度请求),第二信道G发送的第二应答信息以及第二调度请求信息的状态为(N,N,不存在调度请求),第二信道H发送的第二应答信息以及第二调度请求信息的状态为(N,N,存在调度请求)。第一信道发送第一应答信息及指示的第一调度请求信息的状态为(未收到下行数据调度,存在调度请求),可以理解为M=1。即,在这种示例中,实现了通过不同的信道来指示应答信息和调度请求信息的不同的状态,使得指示更为明确。
其中,数据接收状态是通过应答信息来表示的,即应答信息以及调度请求信息的状态中包括的应答信息的状态就可以理解为数据接收状态。
S22、终端根据生成的调度请求信息和应答信息从M个第一信道或N个第二信道中选择一个信道,并发送所选择的信道。网络设备则检测第一信道和/或第二信道,以获取终端发送的调度请求信息和应答信息。
在前文中介绍了,调度请求信息和应答信息的不同的状态会对应不同的信道,则终端生成应答信息和调度请求信息后,可以选择P个映射关系中的第一映射关系,从而根据生成的应答信息和调度请求信息的状态以及第一映射关系选择对应的候选序列,例如终端选择了第一序列,则终端可向网络设备发送通过第一序列所生成的信道,则网络设备通过检 测第一信道和/或第二信道就可以接收终端发送的该信道。其中,第一序列生成的信道是N个第二信道中的一个信道,或是M个第一信道中的一个信道。
一般的,通过候选序列生成信道,可以把候选序列的元素依次映射到子载波组的子载波上,例如图4所示:
S41、候选序列映射到子载波。
例如,候选序列的第一个元素可以映射到子载波组中第一个子载波,候选序列中的第二个元素可以映射到子载波组中的第二个子载波,等等。
S42、快速傅立叶逆变换(inverse fast Fourier transform,IFFT)。或者也可以是傅立叶逆变换(inverse Fourier transform,IFT),图4以快速傅里叶逆变换为例。
经过傅立叶逆变换,或者快速傅里叶逆变换,生成待发送的信号,再将待发送的信号发送出去。子载波组内的子载波可以是如图4所示的连续的子载波,或者等间隔分布的子载波。如图5所示,黑色的子载波是子载波组内的子载波,候选序列就映射到黑色的子载波上。
如图6所示,第一信道和第二信道可以占用同一时间段的不同的子载波组,例如第一信道和第二信道占用了子载波组1和子载波组2。或者也可以如图7所示,第一信道和第二信道可以占用同一时间段的相同的子载波组,例如第一信道和第二信道占用了子载波组3。
第二信道可以占用同一时间段的多个子载波组,例如占用2个子载波组,如图6所示。即使映射到两个子载波组的两个候选序列是相同的,由这两个候选序列生成的两个信道也是不同的。
而对于网络设备来说,可以检测第一信道和/或第二信道,从而接收终端所发送的信道。因为网络设备可能并不知道终端反馈的调度请求信息和应答信息是何种状态,因此可能不知道终端究竟选择了哪个信道。所以较为稳妥的做法是,网络设备对第二信道和第一信道都会检测,从而避免遗漏终端所发送的信息。
本申请实施例提供的技术方案,有助于减少预留的SR资源,从而可以减少资源浪费,尽量实现资源的合理利用。
下面结合附图对与上述各方法实施例对应的装置进行描述。
图8是本申请实施例提供的一种网络设备800的示意图。该网络设备800可以应用于图1所示的场景中,用于执行图2所示的实施例提供的方法。如图8所示,该网络设备800包括处理单元801和收发单元802。该收发单元802具体可以用于执行上述图2所示的实施例中所述网络设备执行的各种信息收发;该处理单元801具体用于执行上述图2所示的实施例中所述网络设备除了信息收发之外的其它处理。
例如,该收发单元802可以用于当网络设备为终端配置了第一时间单元上的第一信道时,通过下行控制信道为所述终端指示所述第一时间单元上的N个第二信道;所述第二信道用于在所述第一时间单元上发送第二应答信息及第二调度请求信息,所述第一信道的数量为M个;M+N大于或等于2×B,M为正整数,且M小于N,所述第二应答信息为第二应答信息集合中的元素,B为所述第二应答信息集合中的元素的数量,所述第二调度请求信息为存在调度请求或不存在调度请求;所述第二应答信息集合中包括表示数据接收状态的应答信息;所述M个第一信道以及所述N个第二信道中的任意两个信道不同,所述第一信道的时频资源和所述第二信道的时频资源在所述第一时间单元上存在时域重叠部 分;其中,所述第一信道用于在所述第一时间单元上指示第一调度请求信息,或所述第一信道用于在所述第一时间单元上指示所述第一调度请求信息及发送第一应答信息,M为正整数,所述第一调度请求信息为存在调度请求或不存在调度请求,所述第一应答信息为第一应答信息集合中的元素,所述第一应答信息集合中包括表示数据接收状态的应答信息;该处理单元801可以用于检测所述第一信道和/或所述第二信道。
具体内容以参考图2所示的实施例中相关部分的描述,此处不再赘述。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元802可以由收发机实现,处理单元801可以由处理器实现。如图9所示,网络设备900可以包括处理器901、收发机902和存储器903。其中,存储器903可以用于存储网络设备900出厂时预装的程序/代码,也可以存储用于处理器901执行时的代码等。
应理解,根据本申请实施例的网络设备900可对应于根据本申请实施例的图2所示的实施例中的网络设备,其中收发机902用于执行图2所示的实施例中所述网络设备执行的各种信息收发,处理器901用于执行图2所示的实施例中所述网络设备除了信息收发以外的其它处理。在此不再赘述。
图10示出了一种网络设备100的结构示意图,该网络设备100例如可以是基站。该网络设备100可应用于如图1所示的系统,用于执行图2所示的实施例提供的方法。网络设备100包括一个或多个远端射频单元(remote radio unit,RRU)1001和一个或多个基带单元(baseband unit,BBU1002。所述RRU1001可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线10011和射频单元10012。所述RRU1001分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于执行上述图2所示的实施例中所述网络设备执行的各种信息收发。所述BBU1002部分主要用于进行基带处理,对网络设备进行控制等。所述RRU1001与BBU1002可以是物理上设置在一起,也可以物理上分离设置的,例如分布式基站。
所述BBU1002为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制网络设备执行图2所示的实施例中处理信息收发以外的其它处理。
在一个示例中,所述BBU1002可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网。所述BBU1002还包括存储器10021和处理器10022。所述存储器10021用以存储必要的指令和数据。所述处理器10022用于控制网络设备进行必要的动作,例如用于控制网络设备执行图2所示的实施例中处理信息收发以外的其它处理。所述存储器10021和处理器10022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板公用相同的存储器和处理器。此外每个单板上还设置有必要的电路。
图11是本申请实施例提供的一种终端1100的示意图。该终端1100可以应用于图1所示的场景中,用于执行图2所示的方法。如图11所示,该终端1100包括处理单元1101和收发单元1102。该收发单元1102具体可以用于执行上述图2所示的实施例中所述终端执行的各种信息收发;该处理单元1101具体用于执行上述图2所示的实施例中所述终端除了信息收发之外的其它处理。
例如,处理单元1101,用于当网络设备为终端配置了第一时间单元上的第一信道时, 通过下行控制信道确定网络设备为所述终端指示的第一时间单元上的N个第二信道,所述第二信道用于在所述第一时间单元上发送所述第二应答信息及第二调度请求信息,所述第一信道的数量为M个;M+N大于或等于2×B,且M小于N,所述第二应答信息为第二应答信息集合中的元素,B为所述第二应答信息集合中的元素的数量,所述第二调度请求信息为存在调度请求或不存在调度请求;所述第二应答信息集合中包括表示数据接收状态的应答信息;所述M个第一信道以及所述N个第二信道中的任意两个信道不同,所述第一信道的时频资源和所述第二信道的时频资源在所述第一时间单元上存在时域重叠部分;其中,所述第一信道用于在所述第一时间单元上指示第一调度请求信息,或所述第一信道用于在所述第一时间单元上指示所述第一调度请求信息及发送第一应答信息,M为正整数,所述第一调度请求信息为存在调度请求或不存在调度请求,所述第一应答信息为第一应答信息集合中的元素,所述第一应答信息集合中包括表示数据接收状态的应答信息;以及,用于根据生成的调度请求信息和应答信息从所述M个第一信道或所述N个第二信道中选择一个信道;收发单元1102,用于发送处理单元1101所选择的信道。
具体内容参见上述图2所示的实施例中的具体说明,此处不再赘述。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元1102可以由收发机实现,处理单元1101可以由处理器实现。如图12所示,终端1200可以包括处理器1201、收发机1202和存储器1203。其中,存储器1203可以用于存储终端1200出厂时预装的程序/代码,也可以存储用于处理器1201执行时的代码等。
应理解,根据本申请实施例的终端1200可对应于根据本申请实施例的图2所示的实施例中的终端,其中收发机1202用于执行中所述终端执行图2所示的实施例中的各种信息收发,处理器1201用于执行图2所示的实施例中所述终端除了信息收发以外的其它处理。在此不再赘述。
图13提供了一种终端的结构示意图。该终端可以用于图1所示场景中,执行图2所示的实施例提供的方法。为了便于说明,图13仅示出了终端的主要部件。如图13所示,终端130包括处理器、存储器、控制电路、天线以及输入输出装置。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号,接收基站发送的信令指示和/或参考信号,用于执行上述图2所示的实施例中所述终端执行的各种信息收发,具体可参照上面相关部分的描述。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端执行图2所示的实施例中除了信息收发以外的动作。存储器主要用于存储软件程序和数据。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图13仅示出了一个存储器和处理器。在实 际的用户设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图13中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端130的收发单元1301,将具有处理功能的处理器视为终端130的处理单元1302。如图13所示,终端130包括收发单元1301和处理单元1302。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1301中用于实现接收功能的器件视为接收单元,将收发单元1301中用于实现发送功能的器件视为发送单元,即收发单元1301包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
本申请实施例中,收发机可以是有线收发机,无线收发机或其组合。有线收发机例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发机例如可以为无线局域网收发机,蜂窝网络收发机或其组合。处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
图5以及图8中还可以包括总线接口,总线接口可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线接口还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机提供用于在传输介质上与各种其他设备通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
图14A示出了一种通信装置1400的结构示意图。该通信装置1400可以实现上文中涉及的终端设备的功能。该设备1400可以包括处理器1401。其中,处理器1401可以用于执 行图2所示的实施例中所述终端所执行的各种功能,和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
其中,该通信装置1400可以是现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。该通信装置1400可被设置于本申请实施例的终端设备中,以使得该终端设备实现本申请实施例提供的测量间隔参数配置、测量参考信号的方法。
在一种可选实现方式中,该通信装置1400还可以包括存储器1402,可参考图14B,其中,存储器1402用于存储计算机程序或指令,处理器1401用于译码和执行这些计算机程序或指令。应理解,这些计算机程序或指令可包括上述终端设备的功能程序。当终端设备的功能程序被处理器1401译码并执行时,可使得通信装置1400实现本申请实施例的通信方法中终端设备的功能。
在另一种可选实现方式中,这些终端设备的功能程序存储在通信装置1400外部的存储器中。当终端设备的功能程序被处理器1401译码并执行时,存储器1402中临时存放上述终端设备的功能程序的部分或全部内容。
在另一种可选实现方式中,这些终端设备的功能程序被设置于存储在通信装置1400内部的存储器1402中。当通信装置1400内部的存储器1402中存储有终端设备的功能程序时,通信装置1400可被设置在本申请实施例的终端设备中。
在又一种可选实现方式中,这些终端设备的功能程序的部分内容存储在通信装置1400外部的存储器中,这些终端设备的功能程序的其他部分内容存储在通信装置1400内部的存储器1402中。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,ASIC,FPGA或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。 处理器和存储媒介可以设置于ASIC中,ASIC可以设置于UE中。可选地,处理器和存储媒介也可以设置于UE中的不同的部件中。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
本申请说明书的上述描述可以使得本领域技术任何可以利用或实现本申请的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本申请所描述的基本原则可以应用到其它变形中而不偏离本申请的发明本质和范围。因此,本申请所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本申请原则和所公开的新特征一致的最大范围。

Claims (50)

  1. 一种通信方法,其特征在于,包括:
    当网络设备为终端配置了第一时间单元上的第一信道时,
    所述网络设备通过下行控制信道为所述终端指示所述第一时间单元上的N个第二信道;所述第二信道用于在所述第一时间单元上发送第二应答信息及第二调度请求信息,所述第一信道的数量为M个;M+N大于或等于2×B,M为正整数,且M小于N,所述第二应答信息为第二应答信息集合中的元素,B为所述第二应答信息集合中的元素的数量,所述第二调度请求信息为存在调度请求或不存在调度请求;所述第二应答信息集合中包括表示数据接收状态的应答信息;所述M个第一信道以及所述N个第二信道中的任意两个信道不同,所述第一信道的时频资源和所述第二信道的时频资源在所述第一时间单元上存在时域重叠部分;
    其中,所述第一信道用于在所述第一时间单元上指示第一调度请求信息,或所述第一信道用于在所述第一时间单元上指示所述第一调度请求信息及发送第一应答信息,M为正整数,所述第一调度请求信息为存在调度请求或不存在调度请求,所述第一应答信息为第一应答信息集合中的元素,所述第一应答信息集合中包括表示数据接收状态的应答信息;
    所述网络设备检测所述第一信道和/或所述第二信道。
  2. 如权利要求1所述的方法,其特征在于,所述第二应答信息集合为{N,A}或{(N,N),(N,A),(A,N),(A,A)},其中,N表示否定应答NACK,A表示肯定应答ACK。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一应答信息集合为{N}或{(N,N)},其中,N表示否定应答NACK。
  4. 如权利要求1-3任一所述的方法,其特征在于,M=1。
  5. 如权利要求1-4任一所述的方法,其特征在于,网络设备为终端配置M个第一信道,包括:
    所述网络设备通过高层信令为所述终端配置所述M个第一信道。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述方法还包括:
    当所述网络设备没有为所述终端配置在所述第一时间单元上的第一信道时,
    所述网络设备通过所述下行控制信道为所述终端指示所述第一时间单元上的C个第三信道;其中,所述C个第三信道是所述N个第二信道的真子集,所述第三信道用于在所述第一时间单元上发送第三应答信息,所述第三应答信息为第三应答信息集合中的元素,所述第三应答信息集合中包括表示数据接收状态的应答信息;C为正整数;
    所述网络设备检测所述第三信道。
  7. 如权利要求6所述的方法,其特征在于,
    所述N个第二信道的所述真子集包括的多个信道中的第一部分信道用于指示存在调度请求,以及所述N个第二信道的所述真子集包括的多个信道中的第二部分信道用于指示不存在调度请求。
  8. 如权利要求1-5任一所述的方法,其特征在于,位于一个子载波组的所述第二信道或所述第一信道是由根据下述公式生成的候选序列所生成的信道:
    Figure PCTCN2018097086-appb-100001
    其中,R是所述候选序列的长度,R为正整数,{x i|i=0,1,2,...,R-1}是一个序列,a 0+n s 是候选序列y s,i的循环移位,a 0是初始循环移位,a 0是实数,n s是专有循环移位,n s是实数,s是表示不同序列的指标,j为虚数的单位。
  9. 如权利要求8所述的方法,其特征在于,还包括:
    所述网络设备确定P个映射关系中的第一映射关系;
    所述P个映射关系中的每个映射关系包括N+M个候选信息与N+M个候选序列之间的映射关系;
    其中,在所述P个映射关系中还包括第二映射关系,所述第一映射关系和所述第二映射关系中用于生成对应于同一个候选信息的候选序列的n s在mod R下相异,mod表示求余运算。
  10. 如权利要求8或9所述的方法,其特征在于,所述候选序列的长度为R,所述N个第二信道包含了F个第二信道,其中,所述F个第二信道对应的所述候选序列的n s的取值为0,R/F,…,(F-1)R/F,所述F个第二信道中的第一部分信道用于指示存在调度请求,以及所述F个第二信道中的第二部分信道用于指示不存在调度请求。
  11. 如权利要求10所述的方法,其特征在于,当R=12时,所述F个第二信道为n s的取值为0、3、6、9时所对应的信道,其中,n s的取值为0和n s的取值为6对应相同的调度请求信息,或,n s的取值为0和n s的取值为3对应相同的调度请求信息,或,n s的取值为0和n s的取值为9对应相同的调度请求信息。
  12. 如权利要求1-11任一所述的方法,其特征在于,
    所述第一应答信息及所述第一调度请求信息状态为(N,存在调度请求)或(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,存在调度请求),或为(A,不存在调度请求),或为(N,不存在调度请求);或,
    所述第一应答信息及所述第一调度请求信息的状态为(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,存在调度请求),或为(A,不存在调度请求),或为(N,不存在调度请求),或为(N,存在调度请求);或,
    所述第一应答信息及所述第一调度请求信息的状态为(N,N,存在调度请求)或(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,A,存在调度请求),或为(A,A,不存在调度请求),或为(A,N,存在调度请求),或为(A,N,不存在调度请求),或为(N,A,存在调度请求),或为(N,A,不存在调度请求),或为(N,N,不存在调度请求);或,
    所述第一应答信息及所述第一调度请求信息的状态为所述第一应答信息及所述第一调度请求信息的状态为(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,A,存在调度请求),或为(A,A,不存在调度请求),或为(A,N,存在调度请求),或为(A,N,不存在调度请求),或为(N,A,存在调度请求),或为(N,A,不存在调度请求),或为(N,N,不存在调度请求),或为(N,N,存在调度请求);
    其中,N表示NACK,A表示ACK。
  13. 一种通信方法,其特征在于,包括:
    当网络设备为终端配置了第一时间单元上的第一信道时,
    所述终端通过下行控制信道确定网络设备为所述终端指示的第一时间单元上的N个第二信道,所述第二信道用于在所述第一时间单元上发送所述第二应答信息及第二调度请求 信息,所述第一信道的数量为M个;M+N大于或等于2×B,且M小于N,所述第二应答信息为第二应答信息集合中的元素,B为所述第二应答信息集合中的元素的数量,所述第二调度请求信息为存在调度请求或不存在调度请求;所述第二应答信息集合中包括表示数据接收状态的应答信息;所述M个第一信道以及所述N个第二信道中的任意两个信道不同,所述第一信道的时频资源和所述第二信道的时频资源在所述第一时间单元上存在时域重叠部分;
    其中,所述第一信道用于在所述第一时间单元上指示第一调度请求信息,或所述第一信道用于在所述第一时间单元上指示所述第一调度请求信息及发送第一应答信息,M为正整数,所述第一调度请求信息为存在调度请求或不存在调度请求,所述第一应答信息为第一应答信息集合中的元素,所述第一应答信息集合中包括表示数据接收状态的应答信息;
    所述终端根据生成的调度请求信息和应答信息从所述M个第一信道或所述N个第二信道中选择一个信道,并发送所选择的信道。
  14. 如权利要求13所述的方法,其特征在于,所述第二应答信息集合为{N,A},或{(N,N),(N,A),(A,N),(A,A)},其中,N表示否定应答NACK,A表示肯定应答ACK。
  15. 如权利要求13或14所述的方法,其特征在于,所述第一应答信息集合为{N}或{(N,N)},其中,N表示否定应答NACK。
  16. 如权利要求13-15任一所述的方法,其特征在于,M=1。
  17. 如权利要求13-16任一所述的方法,其特征在于,终端确定网络设备配置的M个第一信道,包括:
    所述终端通过接收高层信令确定所述网络设备为所述终端配置的所述M个第一信道。
  18. 如权利要求13-17任一所述的方法,其特征在于,
    当所述网络设备没有为所述终端配置在所述第一时间单元上的第一信道时,
    所述终端通过下行控制信道确定所述网络设备为所述终端指示的所述第一时间单元上的C个第三信道;其中,所述C个第三信道是所述N个第二信道的真子集,所述第三信道用于在所述第一时间单元上发送第三应答信息,所述第三应答信息为第三应答信息集合中的元素,所述第三应答信息集合中包括表示数据接收状态的应答信息;C为正整数;
    所述终端根据生成的调度请求信息和应答信息从所述C个第三信道中选择一个第三信道,并发送所选择的第三信道。
  19. 如权利要求18所述的方法,其特征在于,
    所述N个第二信道的所述真子集包括的多个信道中的第一部分信道用于指示存在调度请求,以及所述N个第二信道的所述真子集包括的多个信道中的第二部分信道用于指示不存在调度请求。
  20. 如权利要求13-17任一所述的方法,其特征在于,位于一个子载波组的所述第二信道或所述第一信道是由根据下述公式生成的候选序列所生成的信道:
    Figure PCTCN2018097086-appb-100002
    其中,R是所述候选序列的长度,R为正整数,{x i|i=0,1,2,...,R-1}是一个序列,,a 0+n s是候选序列y s,i的循环移位,a 0是初始循环移位,a 0是实数,n s是专有循环移位,n s是实数,s是表示不同序列的指标,j为虚数的单位。
  21. 如权利要求20所述的方法,其特征在于,还包括:
    所述终端确定P个映射关系中的第一映射关系;
    所述P个映射关系中的每个映射关系包括N+M个候选信息与N+M个候选序列之间的映射关系;
    其中,在所述P个映射关系中还包括第二映射关系,所述第一映射关系和所述第二映射关系中用于生成对应于同一个候选信息的候选序列的n s在mod R下相异,mod表示求余运算。
  22. 如权利要求20或21所述的方法,其特征在于,所述候选序列的长度为R,所述N个第二信道包含了F个第二信道,其中,所述F个第二信道对应的所述候选序列的n s的取值为0,R/F,…,(F-1)R/F,所述F个第二信道中的第一部分信道用于指示存在调度请求,以及所述F个第二信道中的第二部分信道用于指示不存在调度请求,F为大于1的整数。
  23. 如权利要求22所述的方法,其特征在于,
    当R=12时,所述F个第二信道为n s的取值为0、3、6、9时所对应的信道,其中,n s的取值为0和n s的取值为6对应相同的调度请求信息,或,n s的取值为0和n s的取值为3对应相同的调度请求信息,或,n s的取值为0和n s的取值为9对应相同的调度请求信息。
  24. 如权利要求13-23任一所述的方法,其特征在于,
    所述第一应答信息及所述第一调度请求信息状态为(N,存在调度请求)或(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,存在调度请求),或为(A,不存在调度请求),或为(N,不存在调度请求);或,
    所述第一应答信息及所述第一调度请求信息的状态为(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,存在调度请求),或为(A,不存在调度请求),或为(N,不存在调度请求),或为(N,存在调度请求);或,
    所述第一应答信息及所述第一调度请求信息的状态为(N,N,存在调度请求)或(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,A,存在调度请求),或为(A,A,不存在调度请求),或为(A,N,存在调度请求),或为(A,N,不存在调度请求),或为(N,A,存在调度请求),或为(N,A,不存在调度请求),或为(N,N,不存在调度请求);或,
    所述第一应答信息及所述第一调度请求信息的状态为(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,A,存在调度请求),或为(A,A,不存在调度请求),或为(A,N,存在调度请求),或为(A,N,不存在调度请求),或为(N,A,存在调度请求),或为(N,A,不存在调度请求),或为(N,N,不存在调度请求),或为(N,N,存在调度请求);
    其中,N表示NACK,A表示ACK。
  25. 一种网络设备,其特征在于,包括:
    收发单元,用于当所述网络设备包括的处理单元为终端配置了第一时间单元上的第一信道时,通过下行控制信道为所述终端指示所述第一时间单元上的N个第二信道;所述第二信道用于在所述第一时间单元上发送第二应答信息及第二调度请求信息,所述第一信道的数量为M个;M+N大于或等于2×B,M为正整数,且M小于N,所述第二应答信息为第二应答信息集合中的元素,B为所述第二应答信息集合中的元素的数量,所述第二调度请求信息为存在调度请求或不存在调度请求;所述第二应答信息集合中包括表示数据接收状态的应答信息;所述M个第一信道以及所述N个第二信道中的任意两个信道不同, 所述第一信道的时频资源和所述第二信道的时频资源在所述第一时间单元上存在时域重叠部分;
    其中,所述第一信道用于在所述第一时间单元上指示第一调度请求信息,或所述第一信道用于在所述第一时间单元上指示所述第一调度请求信息及发送第一应答信息,M为正整数,所述第一调度请求信息为存在调度请求或不存在调度请求,所述第一应答信息为第一应答信息集合中的元素,所述第一应答信息集合中包括表示数据接收状态的应答信息;
    处理单元,用于检测所述第一信道和/或所述第二信道。
  26. 如权利要求25所述的网络设备,其特征在于,所述第二应答信息集合为{N,A}或{(N,N),(N,A),(A,N),(A,A)},其中,N表示否定应答NACK,A表示肯定应答ACK。
  27. 如权利要求25或26所述的网络设备,其特征在于,所述第一应答信息集合为{N}或{(N,N)},其中,N表示否定应答NACK。
  28. 如权利要求25-27任一所述的网络设备,其特征在于,M=1。
  29. 如权利要求25-28任一所述的网络设备,其特征在于,所述处理单元用于为终端配置M个第一信道,包括:
    所述处理单元通过高层信令为所述终端配置所述M个第一信道。
  30. 如权利要求25-29任一所述的网络设备,其特征在于,
    所述收发单元,还用于当所述处理单元没有为所述终端配置在所述第一时间单元上的第一信道时,通过所述下行控制信道为所述终端指示所述第一时间单元上的C个第三信道;其中,所述C个第三信道是所述N个第二信道的真子集,所述第三信道用于在所述第一时间单元上发送第三应答信息,所述第三应答信息为第三应答信息集合中的元素,所述第三应答信息集合中包括表示数据接收状态的应答信息;C为正整数;
    所述处理单元,还用于检测所述第三信道。
  31. 如权利要求30所述的网络设备,其特征在于,
    所述N个第二信道的所述真子集包括的多个信道中的第一部分信道用于指示存在调度请求,以及所述N个第二信道的所述真子集包括的多个信道中的第二部分信道用于指示不存在调度请求。
  32. 如权利要求25-29任一所述的网络设备,其特征在于,位于一个子载波组的所述第二信道或所述第一信道是由根据下述公式生成的候选序列所生成的信道:
    Figure PCTCN2018097086-appb-100003
    其中,R是所述候选序列的长度,R为正整数,{x i|i=0,1,2,...,R-1}是一个序列,,a 0+n s是候选序列y s,i的循环移位,a 0是初始循环移位,a 0是实数,n s是专有循环移位,n s是实数,s是表示不同序列的指标,j为虚数的单位。
  33. 如权利要求32所述的网络设备,其特征在于,所述处理单元,还用于:
    确定P个映射关系中的第一映射关系;
    所述P个映射关系中的每个映射关系包括N+M个候选信息与N+M个候选序列之间的映射关系;
    其中,在所述P个映射关系中还包括第二映射关系,所述第一映射关系和所述第二映射关系中用于生成对应于同一个候选信息的候选序列的n s在mod R下相异,mod表示求余运算。
  34. 如权利要求32或33所述的网络设备,其特征在于,所述候选序列的长度为R,所述N个第二信道包含了F个第二信道,其中,所述F个第二信道对应的所述候选序列的n s的取值为0,R/F,…,(F-1)R/F,所述F个第二信道中的第一部分信道用于指示存在调度请求,以及所述F个第二信道中的第二部分信道用于指示不存在调度请求。
  35. 如权利要求34所述的网络设备,其特征在于,当R=12时,所述F个第二信道为n s的取值为0、3、6、9时所对应的信道,其中,n s的取值为0和n s的取值为6对应相同的调度请求信息,或,n s的取值为0和n s的取值为3对应相同的调度请求信息,或,n s的取值为0和n s的取值为9对应相同的调度请求信息。
  36. 如权利要求25-35任一所述的网络设备,其特征在于,
    所述第一应答信息及所述第一调度请求信息状态为(N,存在调度请求)或(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,存在调度请求),或为(A,不存在调度请求),或为(N,不存在调度请求);或,
    所述第一应答信息及所述第一调度请求信息的状态为(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,存在调度请求),或为(A,不存在调度请求),或为(N,不存在调度请求),或为(N,存在调度请求);或,
    所述第一应答信息及所述第一调度请求信息的状态为(N,N,存在调度请求)或(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,A,存在调度请求),或为(A,A,不存在调度请求),或为(A,N,存在调度请求),或为(A,N,不存在调度请求),或为(N,A,存在调度请求),或为(N,A,不存在调度请求),或为(N,N,不存在调度请求);或,
    所述第一应答信息及所述第一调度请求信息的状态为所述第一应答信息及所述第一调度请求信息的状态为(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,A,存在调度请求),或为(A,A,不存在调度请求),或为(A,N,存在调度请求),或为(A,N,不存在调度请求),或为(N,A,存在调度请求),或为(N,A,不存在调度请求),或为(N,N,不存在调度请求),或为(N,N,存在调度请求);
    其中,N表示NACK,A表示ACK。
  37. 一种终端设备,其特征在于,包括:
    处理单元,用于当网络设备为终端配置了第一时间单元上的第一信道时,通过下行控制信道确定网络设备为所述终端指示的第一时间单元上的N个第二信道,所述第二信道用于在所述第一时间单元上发送所述第二应答信息及第二调度请求信息,所述第一信道的数量为M个;M+N大于或等于2×B,且M小于N,所述第二应答信息为第二应答信息集合中的元素,B为所述第二应答信息集合中的元素的数量,所述第二调度请求信息为存在调度请求或不存在调度请求;所述第二应答信息集合中包括表示数据接收状态的应答信息;所述M个第一信道以及所述N个第二信道中的任意两个信道不同,所述第一信道的时频资源和所述第二信道的时频资源在所述第一时间单元上存在时域重叠部分;其中,所述第一信道用于在所述第一时间单元上指示第一调度请求信息,或所述第一信道用于在所述第一时间单元上指示所述第一调度请求信息及发送第一应答信息,M为正整数,所述第一调度请求信息为存在调度请求或不存在调度请求,所述第一应答信息为第一应答信息集合中的元素,所述第一应答信息集合中包括表示数据接收状态的应答信息;以及,用于根据生 成的调度请求信息和应答信息从所述M个第一信道或所述N个第二信道中选择一个信道;
    收发单元,用于发送所述处理单元所选择的信道。
  38. 如权利要求37所述的终端设备,其特征在于,所述第二应答信息集合为{N,A},或{(N,N),(N,A),(A,N),(A,A)},其中,N表示否定应答NACK,A表示肯定应答ACK。
  39. 如权利要求37或38所述的终端设备,其特征在于,所述第一应答信息集合为{N}或{(N,N)},其中,N表示否定应答NACK。
  40. 如权利要求37-39任一所述的终端设备,其特征在于,M=1。
  41. 如权利要求37-40任一所述的终端设备,其特征在于,所述处理单元用于确定网络设备配置的M个第一信道,包括:
    所述处理单元通过所述收发单元接收的高层信令确定所述网络设备为所述终端配置的所述M个第一信道。
  42. 如权利要求37-41任一所述的终端设备,其特征在于,
    所述处理单元,还用于当所述网络设备没有为所述终端配置在所述第一时间单元上的第一信道时,通过下行控制信道确定所述网络设备为所述终端指示的所述第一时间单元上的C个第三信道;其中,所述C个第三信道是所述N个第二信道的真子集,所述第三信道用于在所述第一时间单元上发送第三应答信息,所述第三应答信息为第三应答信息集合中的元素,所述第三应答信息集合中包括表示数据接收状态的应答信息;C为正整数;以及,用于根据生成的调度请求信息和应答信息从所述C个第三信道中选择一个第三信道;
    所述收发单元,还用于发送所述处理单元所选择的第三信道。
  43. 如权利要求42所述的终端设备,其特征在于,
    所述N个第二信道的所述真子集包括的多个信道中的第一部分信道用于指示存在调度请求,以及所述N个第二信道的所述真子集包括的多个信道中的第二部分信道用于指示不存在调度请求。
  44. 如权利要求37-41任一所述的终端设备,其特征在于,位于一个子载波组的所述第二信道或所述第一信道是由根据下述公式生成的候选序列所生成的信道:
    Figure PCTCN2018097086-appb-100004
    其中,R是所述候选序列的长度,R为正整数,{x i|i=0,1,2,...,R-1}是一个序列,,a 0+n s是候选序列y s,i的循环移位,a 0是初始循环移位,a 0是实数,n s是专有循环移位,n s是实数,s是表示不同序列的指标,j为虚数的单位。
  45. 如权利要求44所述的终端设备,其特征在于,所述处理单元,还用于:
    确定P个映射关系中的第一映射关系;
    所述P个映射关系中的每个映射关系包括N+M个候选信息与N+M个候选序列之间的映射关系;
    其中,在所述P个映射关系中还包括第二映射关系,所述第一映射关系和所述第二映射关系中用于生成对应于同一个候选信息的候选序列的n s在mod R下相异,mod表示求余运算。
  46. 如权利要求44或45所述的终端设备,其特征在于,所述候选序列的长度为R,所述N个第二信道包含了F个第二信道,其中,所述F个第二信道对应的所述候选序列的n s的取值为0,R/F,…,(F-1)R/F,所述F个第二信道中的第一部分信道用于指示存在调 度请求,以及所述F个第二信道中的第二部分信道用于指示不存在调度请求,F为大于1的整数。
  47. 如权利要求46所述的终端设备,其特征在于,
    当R=12时,所述F个第二信道为n s的取值为0、3、6、9时所对应的信道,其中,n s的取值为0和n s的取值为6对应相同的调度请求信息,或,n s的取值为0和n s的取值为3对应相同的调度请求信息,或,n s的取值为0和n s的取值为9对应相同的调度请求信息。
  48. 如权利要求37-47任一所述的终端设备,其特征在于,
    所述第一应答信息及所述第一调度请求信息状态为(N,存在调度请求)或(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,存在调度请求),或为(A,不存在调度请求),或为(N,不存在调度请求);或,
    所述第一应答信息及所述第一调度请求信息的状态为(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,存在调度请求),或为(A,不存在调度请求),或为(N,不存在调度请求),或为(N,存在调度请求);或,
    所述第一应答信息及所述第一调度请求信息的状态为(N,N,存在调度请求)或(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,A,存在调度请求),或为(A,A,不存在调度请求),或为(A,N,存在调度请求),或为(A,N,不存在调度请求),或为(N,A,存在调度请求),或为(N,A,不存在调度请求),或为(N,N,不存在调度请求);或,
    所述第一应答信息及所述第一调度请求信息的状态为(未收到下行数据调度,存在调度请求);所述第二调度请求信息及所述第二应答信息的状态为(A,A,存在调度请求),或为(A,A,不存在调度请求),或为(A,N,存在调度请求),或为(A,N,不存在调度请求),或为(N,A,存在调度请求),或为(N,A,不存在调度请求),或为(N,N,不存在调度请求),或为(N,N,存在调度请求);
    其中,N表示NACK,A表示ACK。
  49. 一种计算机存储介质,其特征在于,其上存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-12任一项所述的方法。
  50. 一种计算机存储介质,其特征在于,其上存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求13-24任一项所述的方法。
PCT/CN2018/097086 2017-08-11 2018-07-25 一种通信方法及设备 WO2019029367A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18845110.8A EP3648390B1 (en) 2017-08-11 2018-07-25 Communication method and device
US16/750,397 US11252747B2 (en) 2017-08-11 2020-01-23 Communication method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710687270.8A CN109391427B (zh) 2017-08-11 2017-08-11 一种通信方法及设备
CN201710687270.8 2017-08-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/750,397 Continuation US11252747B2 (en) 2017-08-11 2020-01-23 Communication method and device

Publications (1)

Publication Number Publication Date
WO2019029367A1 true WO2019029367A1 (zh) 2019-02-14

Family

ID=65273341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097086 WO2019029367A1 (zh) 2017-08-11 2018-07-25 一种通信方法及设备

Country Status (4)

Country Link
US (1) US11252747B2 (zh)
EP (1) EP3648390B1 (zh)
CN (1) CN109391427B (zh)
WO (1) WO2019029367A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4087351A4 (en) * 2020-01-14 2023-01-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. UPLINK TRANSMISSION METHOD AND TERMINAL

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391406A (zh) * 2017-08-10 2019-02-26 株式会社Ntt都科摩 数据发送方法、确认信号发送方法、用户设备和基站
CN112867159B (zh) * 2021-04-25 2021-07-09 浙江华创视讯科技有限公司 一种数据传输方法、第一设备、第二设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110216713A1 (en) * 2007-08-14 2011-09-08 Hak Seong Kim Method Of Transmitting Scheduling Request Signal
CN102857325A (zh) * 2011-06-27 2013-01-02 华为技术有限公司 确定控制信道资源的方法和用户设备
CN103391152A (zh) * 2012-05-09 2013-11-13 电信科学技术研究院 不同上/下行配置载波聚合的重叠子帧传输方法及装置
CN106664520A (zh) * 2014-09-25 2017-05-10 英特尔Ip公司 为增强覆盖模式ue处理上行链路传输冲突的系统和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227717B (zh) * 2008-01-05 2012-07-04 中兴通讯股份有限公司 Pucch传输状态的表示和检测方法、基站、用户设备
KR20100019947A (ko) * 2008-08-11 2010-02-19 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법
CN101478371B (zh) * 2009-02-03 2014-07-23 中兴通讯股份有限公司南京分公司 上行半静态调度释放的反馈信息发送方法
KR101875611B1 (ko) * 2010-11-22 2018-07-06 엘지전자 주식회사 무선 통신 시스템에서 하향링크 전송에 대한 확인응답의 전송 방법 및 장치
CN102098151B (zh) * 2010-12-28 2015-08-12 中兴通讯股份有限公司 一种正确/错误应答消息的发送方法及用户终端
CN110446262A (zh) * 2015-12-14 2019-11-12 上海朗帛通信技术有限公司 一种窄带无线通信的方法和装置
JP2020520147A (ja) 2017-05-03 2020-07-02 アイディーエーシー ホールディングス インコーポレイテッド アップリンク制御情報を送信するための方法、システム、および装置
CN115642994A (zh) * 2017-08-11 2023-01-24 韦勒斯标准与技术协会公司 发送或接收上行链路控制信道的方法、设备和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110216713A1 (en) * 2007-08-14 2011-09-08 Hak Seong Kim Method Of Transmitting Scheduling Request Signal
CN102857325A (zh) * 2011-06-27 2013-01-02 华为技术有限公司 确定控制信道资源的方法和用户设备
CN103391152A (zh) * 2012-05-09 2013-11-13 电信科学技术研究院 不同上/下行配置载波聚合的重叠子帧传输方法及装置
CN106664520A (zh) * 2014-09-25 2017-05-10 英特尔Ip公司 为增强覆盖模式ue处理上行链路传输冲突的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3648390A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4087351A4 (en) * 2020-01-14 2023-01-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. UPLINK TRANSMISSION METHOD AND TERMINAL

Also Published As

Publication number Publication date
EP3648390A4 (en) 2020-07-29
EP3648390A1 (en) 2020-05-06
US11252747B2 (en) 2022-02-15
EP3648390B1 (en) 2022-12-07
CN109391427B (zh) 2021-03-30
CN109391427A (zh) 2019-02-26
US20200163105A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
AU2021212111B2 (en) Uplink transmission method and corresponding equipment
US11785605B2 (en) Base station, terminal, and communication method
CN114884637B (zh) 用于资源块中的物理上行链路控制信道的方法和装置
JP5613250B2 (ja) 通信システムにおける方法および装置
JP7032576B2 (ja) フィードバック情報送信方法および通信デバイス
CN110073627B (zh) 通信系统中的uci传输
ES2480267T3 (es) Aparato y método de comunicación
US11330595B2 (en) Method for sending control information, method for receiving control information, and apparatus
WO2020199856A1 (zh) 信息传输的方法和通信装置
US20200213997A1 (en) Resource configuration method, base station, terminal, and computer readable storage medium
WO2019037695A1 (zh) 一种通信方法及装置
CN111865515B (zh) 通信方法和通信装置
US20220159568A1 (en) Method and apparatus for transmitting and receiving terminal support information in wireless communication system
US11252747B2 (en) Communication method and device
WO2018196618A1 (zh) 一种通信方法及装置
TW202011758A (zh) 移動通信中的上行鏈路控制資訊和實體上行鏈路控制通道傳輸增強
CN116158172A (zh) 用于随机接入过程中的pusch重复的方法和装置
JP2020502842A (ja) 通信方法、端末及びネットワーク機器
WO2019096135A1 (zh) 信息发送方法、装置、处理器及存储介质
WO2020200176A1 (zh) 确定传输资源的方法及装置
WO2020030025A1 (zh) 用于上报csi的方法和装置
WO2019114467A1 (zh) 一种信道资源集的指示方法及装置、计算机存储介质
TWI715883B (zh) Pucch傳輸方法、終端及網路側設備
WO2020030026A1 (zh) 用于发送srs的方法和装置
CN109691204B (zh) 用于无线通信系统的网络节点、用户装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018845110

Country of ref document: EP

Effective date: 20200129

NENP Non-entry into the national phase

Ref country code: DE