WO2019096135A1 - 信息发送方法、装置、处理器及存储介质 - Google Patents

信息发送方法、装置、处理器及存储介质 Download PDF

Info

Publication number
WO2019096135A1
WO2019096135A1 PCT/CN2018/115279 CN2018115279W WO2019096135A1 WO 2019096135 A1 WO2019096135 A1 WO 2019096135A1 CN 2018115279 W CN2018115279 W CN 2018115279W WO 2019096135 A1 WO2019096135 A1 WO 2019096135A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
ack
information
harq
terminal
Prior art date
Application number
PCT/CN2018/115279
Other languages
English (en)
French (fr)
Inventor
韩祥辉
夏树强
苟伟
梁春丽
石靖
任敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/763,942 priority Critical patent/US11438900B2/en
Priority to EP18878340.1A priority patent/EP3713343A4/en
Priority to KR1020207017075A priority patent/KR102398711B1/ko
Priority to JP2020526590A priority patent/JP7036308B2/ja
Publication of WO2019096135A1 publication Critical patent/WO2019096135A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present invention relates to, but is not limited to, the field of communications, and in particular, to a method, an apparatus, a processor, and a storage medium for transmitting information.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Research
  • 5G Fifth-generation
  • a Transmission Time Interval is a basic unit of downlink and uplink transmission scheduling in the time domain.
  • TTI scheduling is defined in the current standard, and each shortened TTI may include only two Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the uplink control symbol may have only one or two time domains. symbol.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • sequence 0 can be used to indicate ACK
  • sequence 1 is NACK
  • the receiving end can judge ACK or NACK according to the peak size.
  • SR Scheduling Request
  • the embodiments of the present invention are directed to providing a method, an apparatus, a processor, and a storage medium for transmitting information, and capable of flexibly configuring a transmission resource of uplink information.
  • An embodiment of the present invention provides a method for transmitting information, including: a terminal receiving a radio resource configured on a network side; the terminal acquiring a resource set according to the radio resource; and the terminal adopting one or more of the resource set
  • the resource group sends uplink information, where the number of resource groups in the resource set is greater than or equal to 2.
  • An embodiment of the present invention further provides an information sending apparatus, including: a receiving module configured to receive a radio resource configured on a network side; an acquiring module configured to acquire a resource set according to the radio resource; and a sending module configured to adopt The one or more resource groups in the resource set send uplink information; where the number of resource groups in the resource set is greater than or equal to 2.
  • the embodiment of the present invention further provides a storage medium, where the storage medium includes a stored program, where the program is executed to execute the information sending method provided by the embodiment of the present invention.
  • the embodiment of the present invention further provides a processor, where the processor is configured to run a program, where the program is executed to execute the information sending method provided by the embodiment of the present invention.
  • An embodiment of the present invention further provides an information sending apparatus, including:
  • a memory configured to store a program for transmitting information
  • the processor is configured to run the program, wherein the program is executed to execute the information sending method provided by the embodiment of the present invention.
  • the dynamic multiplexing of multiple messages in the uplink information can be flexibly implemented, and the problem that the uplink information transmission resources cannot be flexibly configured in the related art is solved, and the overhead of the uplink control information is reduced.
  • FIG. 1 is a flowchart of a method for sending information according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of an information sending apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the HARQ-ACK feedback corresponding to two downlink data transmissions corresponding to one uplink control channel according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram 1 of an SR and a HARQ-ACK resource overlapped on a partial symbol according to the embodiment
  • FIG. 5 is a second schematic diagram of overlapping SR and HARQ-ACK resources in a partial symbol according to the embodiment
  • FIG. 6 is a schematic diagram 3 of the SR and HARQ-ACK resources overlapped on a part of the symbols provided in this embodiment
  • FIG. 7 is a schematic diagram 4 of overlapping SR and HARQ-ACK resources in a partial symbol according to the embodiment.
  • the network architecture running in the embodiment of the present application includes: a base station and a terminal, where the information exchange between the base station and the terminal is performed.
  • FIG. 1 is a flowchart of a method for sending information according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 The terminal receives the radio resource configured on the network side.
  • Step S104 The terminal acquires a resource set according to the radio resource.
  • Step S106 The terminal sends the uplink information by using one or more resource groups in the resource set.
  • the number of resource groups Y in the resource set is greater than or equal to 2.
  • the dynamic multiplexing of multiple messages in the uplink information can be flexibly implemented, and the problem that the uplink information transmission resources cannot be flexibly configured in the related art is solved, and the overhead of the uplink control information is reduced.
  • the execution body of the foregoing steps may be a terminal, such as a mobile phone, etc., but is not limited thereto.
  • a resource group includes M resource elements, where M is an integer equal to or greater than 2; each resource group is different from other resource groups by at least one resource element.
  • the uplink information includes one of the following: an uplink control information acknowledgement command ACK/non-acknowledgement command NACK message, an uplink scheduling request SR, an ACK/NACK message, and a scheduling request.
  • the first resource element included in the resource group is at least one of: an initial value of the first resource element, and an offset value of the initial value of the first resource element.
  • the initial value of the radio resource or resource element is obtained in accordance with the offset value in conjunction with the first implicit indication.
  • the first implicit indication manner includes: indicating, by using one or more of the following information: a control channel element index of the downlink control channel, a bandwidth Width Part (BWP) index of the downlink system, and a downlink control.
  • BWP bandwidth Width Part
  • the acquiring, by the terminal, the resource set according to the wireless resource includes: the terminal performing randomization processing on the initial value of the first resource element to obtain the first resource value x0; wherein the randomizing manner includes: adopting one or more of the following information
  • the indication is: the physical ID of the cell, the virtual ID of the cell, the index of the slot where the uplink control is located, the symbol index of the uplink control, the pseudo-random sequence, the slot index of the downlink traffic channel, and the symbol index of the downlink service.
  • the method further includes: the terminal obtaining, by using the first resource value x0, the first set of resource values by using the second implicit indication method.
  • the second implicit indication method includes: optionally, in the first resource value set, when the terminal only sends the scheduling request, the terminal uses the first resource value x0, and sends the resource element in the resource group. Schedule a request.
  • the terminal when the terminal only sends the ACK/NACK information, the terminal selects a first resource value in the first resource value set according to the state of the uplink information, and sends the ACK/NACK information in combination with the resource element in the resource group.
  • the terminal when the terminal simultaneously sends the scheduling request and the ACK/NACK information, the terminal sends one of the following resource elements of the scheduling request configured by the network side and part of the resource elements of the ACK/NACK information configured by the network side: scheduling Request and ACK/NACK information, ACK/NACK information.
  • a part of the resource elements of the scheduling request configured by the network side includes at least one of the following: a sequence initial index, a resource block initial index, and a start symbol index.
  • a part of resource elements of the ACK/NACK information configured by the network side includes at least one of: a start time slot position, a start time domain symbol index, a time domain symbol number, a time domain orthogonal mask index, Frequency hop enable indicator.
  • the first resource value is a sequence phase rotation value
  • the first resource value set contains four sequence phase rotation values, defined as ⁇ x0, x1, x2, x3 ⁇ .
  • the policy for the user terminal to select the second implicit indication mode is notified by higher layer signaling.
  • the information bits corresponding to the phase rotation values ⁇ x0, x1, x2, x3 ⁇ are ⁇ '00', '01', '10', '11' ⁇ , or ⁇ '00', '01', respectively. '11', '10' ⁇ , or ⁇ '00', '10', '01', '11' ⁇ .
  • the four sequences obtained from the phase rotation values ⁇ x0, x1, x2, x3 ⁇ are respectively defined as ⁇ x 0 (n) x 1 (n) x 2 (n) x 3 (n) ⁇
  • the method for selecting a sequence when the terminal sends the uplink information includes:
  • b(0),...,b(M bit -1) is an information bit of 0 or 1
  • M bit is the number of bits
  • y(n) is a sequence selected by the terminal
  • x j (n) is a set ⁇ x 0 (n) x 1 (n) x 2 (n) x 3 (n) ⁇ .
  • the terminal when the feedback information corresponding to the data information sent by the network side at the first time position n1 and the second time position n2 is sent at the third time position n3 of the terminal, the terminal The first resource value x0 used for the feedback information of the data at the first time position n1 and the data at the second time position n2 is the same.
  • the feedback information is sent using a sequence corresponding to ⁇ '00', '10' ⁇ ; when the user terminal is only in the second When the control information of the scheduling data is detected at the time position n2, the feedback information is transmitted using the sequence corresponding to ⁇ '00', '01' ⁇ ; when the user terminal detects the scheduling at the first time position n1 and the second time position n2 When the control information of the data is used, the feedback information is transmitted using the sequence corresponding to ⁇ '00', '01', '10', '11' ⁇ .
  • the feedback information is transmitted using ⁇ x0, x2 ⁇ ; when the user terminal only detects the scheduling at the second time position n2 When the control information of the data is used, the feedback information is transmitted using ⁇ x0, x1 ⁇ ; when the user terminal detects the control information of the scheduling data at the first time position n1 and the second time position n2, ⁇ x0, x1, x2, X3 ⁇ Send feedback.
  • the feedback information is transmitted using ⁇ x0, x1 ⁇ ; when the user terminal only detects the scheduling at the second time position n2 When the control information of the data is used, the feedback information is transmitted using ⁇ x0, x2 ⁇ ; when the user terminal detects the control information of the scheduling data at the first time position n1 and the second time position n2, ⁇ x0, x1, x2, X3 ⁇ Send feedback.
  • the terminal overlaps.
  • the HARQ-ACK message is sent by using a resource of the SR on a part of the symbol.
  • the terminal when the time domain resource corresponding to the radio resource of the network configured SR is different from the time domain resource corresponding to the radio resource of the network configured HARQ-ACK, and there is partial symbol overlap, if there is an unoverlapping SR symbol Transmitting, by the terminal, the SR message by using a resource of the SR on the symbol; if there is a non-overlapping HARQ-ACK symbol, the terminal sends the HARQ-ACK message by using a resource of a HARQ-ACK on the symbol.
  • the number of HARQ-ACK bits is 1 bit or 2 bits.
  • the SR is added as 1 bit in the HARQ.
  • the terminal transmits the HARQ-ACK bit and the SR bit only on the HARQ-ACK resource on the overlapping partial symbol, or the terminal is in all HARQ-ACK
  • the HARQ-ACK bit and the SR bit are transmitted on the symbolized HARQ-ACK resource.
  • the number of HARQ-ACK bits is greater than 2 bits.
  • the terminal when the time domain resource corresponding to the radio resource of the network configured SR is different from the time domain resource corresponding to the radio resource of the network configured HARQ-ACK, and there is partial symbol overlap, if the time domain symbol of the SR resource The length is greater than or equal to the symbol length of the HARQ-ACK resource, the terminal discards the transmission of the SR on the overlapping symbol, and transmits the HARQ-ACK on the overlapping symbol; if the time domain symbol length of the SR resource is less than or equal to the symbol of the HARQ-ACK resource The length, the terminal discards the transmission of the HARQ-ACK on the overlapping symbols, and transmits the SR on the overlapping symbols.
  • At least one resource or resource group exists in the radio resource of the HARQ-ACK configured by the network, and the corresponding time domain resource is the same as the time domain resource corresponding to the radio resource of the SR configured by the network.
  • the technical solution of the present invention which is essential or contributes to the prior art, can be embodied in the form of a software product stored in a storage medium (such as a read only memory (ROM, Read). -Only Memory) / (RAM, Random Access Memory), including a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform various embodiments of the present invention Said method.
  • a storage medium such as a read only memory (ROM, Read). -Only Memory) / (RAM, Random Access Memory
  • the embodiment of the present invention further provides an information sending apparatus, which is used to implement the above information sending method, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 2 is a structural block diagram of an information transmitting apparatus according to an embodiment of the present invention. As shown in FIG. 2, the apparatus includes:
  • the receiving module 22 is configured to receive a radio resource configured on the network side;
  • the obtaining module 24 is configured to acquire a resource set according to the wireless resource
  • the sending module 26 is configured to send uplink information by using one or more resource groups in the resource set; wherein the number of resource groups in the resource set is greater than or equal to 2.
  • the resource group contains M resource elements, where M is an integer equal to or greater than 2; each resource group is different from other resource groups by at least one resource element.
  • the uplink information includes one of the following: an uplink control information acknowledgement command ACK/non-acknowledgement command NACK message, an uplink scheduling request, an ACK/NACK message, and a scheduling request.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • a sequence selection based design structure may be employed in 1 or 2 symbols for 1 or 2 bit ACK or NACK transmission.
  • sequence 0 can be used to indicate ACK
  • sequence 1 is NACK
  • the receiving end can judge ACK or NACK according to the peak size.
  • how to determine which sequence resources are used to represent the ACK, which sequences characterize the NACK to maximize performance and avoid the ambiguity caused by the downlink control channel miss detection needs to be solved.
  • the ACK/NACK may be sent by using the resource of the SR, but the resource configuration method used by the two may be different, for example, the SR resource is configured by RRC signaling, and ACK/NACK is determined by RRC signaling and physical layer dynamic signaling. How to determine the resources for simultaneously transmitting SR and ACK/NACK to achieve flexible transmission also needs to be solved.
  • the embodiment provides the following implementation manners:
  • the network is configured to provide a sequence initial cyclic shift (CS, Cyclic Shift) index CS_0 to the user terminal, and the user terminal performs randomization processing on the CS_0, and the randomization formula may be: among them Is a randomization factor associated with the slot index ns, the symbol index 1, and the cell ID.
  • four sequences as ⁇ x 0 (n) x 1 (n) x 2 (n) x 3 (n) ⁇ , where x 0 (n) is a sequence with a cyclic shift index of x 0 , ie the phase is ⁇ 0 .
  • the binary information bits to be transmitted are defined as b(0),...,b(M bit -1), where M bit ⁇ 1,2 ⁇ is the number of bits of information.
  • the sequence sent when the user sends information bits of different states is shown in formula (1):
  • x 1 (x 0 + 3) mod 12
  • x 2 (x 0 + 9) mod 12
  • x 3 (x 0 + 6) mod 12
  • x 1 ( x 0 +9) mod12
  • x 2 (x 0 + 3) mod 12
  • x 3 (x 0 + 6) mod 12.
  • x 1 , x 2 , and x 3 correspond to the sequences x 1 (n), x 2 (n), and x 3 (n), respectively.
  • the sequence selection method given in this embodiment can achieve the largest sequence phase distance between information bits and conform to Gray mapping, and improve transmission performance.
  • the network configures the user terminal with a sequence of initial cyclic shift values CS_0, which is the initial value of the resource or resource element described in the present invention.
  • x 0 (n) is a sequence with a cyclic shift value of x 0 , ie the phase is ⁇ 0 .
  • x 1 (x 0 + 3) mod 12
  • x 2 (x 0 + 9) mod 12
  • x 3 (x 0 + 6) mod 12, or
  • x 1 (x 0 + 9) mod 12
  • x 2 ( x 0 +3) mod12
  • x 3 (x 0 +6) mod12.
  • x 1 , x 2 , and x 3 correspond to the sequences x 1 (n), x 2 (n), and x 3 (n), respectively.
  • FIG. 3 is a schematic diagram of the HARQ-ACK feedback corresponding to two downlink (DL, Down Link) data transmissions corresponding to one uplink control channel in this embodiment.
  • the downlink data in the downlink slot #n and the downlink data in the downlink slot #(n+1) correspond to the short physical uplink control channel (PUCCH, in slot #(n+1),
  • PUCCH physical uplink control channel
  • Each 1-bit HARQ-ACK is fed back at the Physical Uplink Control Channel).
  • the channel resource used by the user may be inconsistent with the understanding of the base station.
  • the base station will determine '00' or '10', where the first bit corresponds to the downlink data on slot #n, and the second bit corresponds to the downlink data on slot # (n+1), so the base station will Triggering the retransmission of the downlink data on slot #(n+1).
  • the base station will determine ⁇ x0, x2 ⁇ as '0' or '1', respectively.
  • the base station user only detects the downlink data on slot #(n+1)
  • the user can select a resource from ⁇ x0, x1 ⁇ to transmit, even if the base station sends data to the user in slot#n.
  • the base station can also identify this situation if it is missed by the user. If the user detects data transmission at both slot#n and slot#(n+1), the user can select a resource from the used resources ⁇ x0, x1, x2, x3 ⁇ for transmission.
  • the four sequence resources are time-domain cyclic shift values ⁇ 0, 3, 9, 6 ⁇ or ⁇ 1, 4, 10, 7 ⁇ or ⁇ 2, 5, 11, 8 ⁇ of the sequence, respectively.
  • the cyclic shift value of the time domain is equal to the rotation value of the phase.
  • the base station is required to configure the initial values of the sequence resources of the two slots to be the same, as in the above example, x0. and whether the data is sent in slot#n and slot#(n+1), the user is configured with 4 resources or Define users to get four resources.
  • the above method configures a fixed-size feedback codebook for the network.
  • the user always follows the 2-bit HARQ-ACK feedback, and once the control channel of a certain slot is missed, it is treated as NACK.
  • Another solution is that the sequence resources allocated by the base station to the two slots are different, and the base station judges the user's transmission information through more blind detection.
  • the resource overhead is large, and the blind detection of the base station is introduced, resulting in complexity. Increased performance and performance.
  • the network configuration user When the network configuration user sends a 1- to 2-bit ACK/NACK message using the short PUCCH, it will be sent in the sequence selection mode. In this case, the base station needs to be configured to give the user 2 or 4 sequences. In order to implement the multiplexing of the SR and the ACK/NACK message, two or four SR resources need to be configured. When the SR and the ACK/NACK message are simultaneously sent, the configured SR resource is used to send the ACK/NACK message.
  • the present embodiment indicates that the network can use RRC signaling to configure the SR with a default channel resource, where the resource mainly includes a starting symbol index, a number of symbols included in the control channel, a starting RB index, and an RB number ( The default can be 1), frequency hopping enable, initial cyclic shift index and other resource elements.
  • the network can use RRC signaling to configure the SR with a default channel resource, where the resource mainly includes a starting symbol index, a number of symbols included in the control channel, a starting RB index, and an RB number ( The default can be 1), frequency hopping enable, initial cyclic shift index and other resource elements.
  • the user obtains the first channel resource set according to a rule defined by the network. That is, the initial CS index is first randomized to obtain a sequence index (a first channel resource value), and then a sequence index set is obtained, which includes 2 or 4 sequence indexes, and the randomization method adopted for the SR at this time.
  • the first and second implicit methods are the same as those used for ACK/NACK, and methods similar to those in Embodiments 1 and 2 can be employed.
  • the user terminal may send an ACK/NACK message on the defined SR resource.
  • the user terminal only uses the cyclic shift index of the SR, and the remaining channel resource elements associated with the short PUCCH are configured to allocate resource elements for ACK/NACK, such as a start symbol index, a number of symbols included in the control channel, and an initial RB. Index, RB number (default can be 1), frequency hopping enable, etc. Since the resource element for transmitting the ACK/NACK can be dynamically changed, the method can more dynamically adjust the resource information for transmitting the SR and the ACK/ACK, such as the length of the PUCCH, to achieve the benefit of saving power or improving coverage.
  • the embodiment indicates that the network can use RRC signaling to configure the SR with a default channel resource, where the resource mainly includes an initial slot index, and the start Symbol index, number of symbols included in the control channel, starting RB index, number of RBs (default 1), frequency hopping enable, cyclic shift (CS) index, orthogonal mask (OCC) index, etc. Resource element.
  • the resource mainly includes an initial slot index, and the start Symbol index, number of symbols included in the control channel, starting RB index, number of RBs (default 1), frequency hopping enable, cyclic shift (CS) index, orthogonal mask (OCC) index, etc.
  • CS cyclic shift
  • OCC orthogonal mask
  • the network also configures a long PUCCH resource for the user to send a 1-2 bit ACK/NACK message, which contains the same resource element as the SR.
  • the user terminal may send an ACK/NACK message on the defined SR resource.
  • the user terminal only uses the cyclic shift index of the SR, the RB index and the start symbol index, and the remaining resource elements are the same as the resource elements configured to send the ACK/NACK, such as the number of symbols included in the control channel, frequency hopping enable, etc. . Since the resource element for transmitting the ACK/NACK can be dynamically changed, the method can more dynamically adjust the resource information for transmitting the SR and the ACK/ACK, such as the length of the PUCCH, to achieve the benefit of saving power or improving coverage.
  • the user notifies the user of the behavior when transmitting the SR and the ACK/NACK simultaneously by using a 1-bit dynamic indication or an RRC configuration or an implicit indication. That is, it is determined whether all resource transmissions of the SR are used at this time, or only resources of part of the SR and resources of part of ACK/NACK are used for transmission.
  • the user obtains two sequence resources from the network, respectively ⁇ x0, x2 ⁇ , which respectively correspond to the bit status '0', '1'. .
  • the network sends data to the user at both slot#n and slot#(n+1), but the user only receives the data on slot#n, the user will select a resource from ⁇ x0,x2 ⁇ to send.
  • the station will judge it as '00' or '10', that is, the missed detection can be judged as NACK at this time, and will not cause data loss.
  • sequence resources ⁇ x0, x1, x2, x3 ⁇ respectively correspond to the sequence cyclic shift ⁇ 0, 3, 6, 9 ⁇ .
  • the sequence resources used in slot #n in this embodiment are required to be identical to the sequence resources corresponding to the states '00', '10' at slot #(n+1).
  • the network notifies the user by means of explicit indication of downlink control information or RRC configuration or implicit indication. If data transmission is detected only on slot #(n+1), the user always transmits according to 2-bit information, and assumes feedback on slot#n Always NACK. More generally, when the data transmission of the user at multiple times feeds back ACK/NACK on the same time-frequency resource, and the user only detects the data transmission at the last transmission time, the user assumes that all the previous time has data. Both are transmitted and treated as NACK.
  • the method of the invention can realize flexible implementation of dynamic multiplexing of SR and ACK/NACK messages.
  • the overhead of the uplink control information can be reduced while avoiding the blurring problem caused by the base station and the UE due to the loss of the downlink control channel.
  • FIG. 4 is a first schematic diagram of the overlapping of SR and HARQ-ACK resources in a partial symbol in this embodiment.
  • the time domain resources allocated by the network to the SR are symbol #n and symbol #n+1, and the time domain resources allocated to the short PUCCH transmitting the HARQ-ACK are symbol #n+1 and symbol #n+2.
  • the user if the user only sends the SR, the user sends the SR information on the resources of the SR. If the user only transmits HARQ-ACK information, the HARQ-ACK is transmitted on the resource allocated to the HARQ-ACK.
  • one method is that the user transmits the SR by using the SR resource on the symbol #n, and transmits the HARQ-ACK by using the SR resource on the symbol #n+1.
  • the HARQ-ACK is transmitted using the HARQ-ACK resource on the symbol #n+2. Or the user only uses the resources of the SR to send the HARQ-ACK on the symbol #n+1.
  • one method is that the user transmits the SR using the resources of the SR on the symbol #n.
  • SR is transmitted as a 1-bit (if multiple SR configurations can be 1 bit or multiple bits) after the HARQ-ACK bit is transmitted on the HARQ-ACK resource.
  • the user only encodes and transmits the SR as a 1-bit (if the multiple SR configurations may be 1 bit or more) on the symbol #n+1 and the symbol #n+2, after the HARQ-ACK bit.
  • the frequency domain resources of the SR and HARQ-ACK resources are not shown in FIG. 4, and specifically, the same RB resources may be used for different symbols, or the symbols may be hopped.
  • FIG. 5 is a second schematic diagram of the overlapping of the SR and the HARQ-ACK resource in the partial symbol in this embodiment.
  • the time domain resources allocated by the network to the SR are symbol #n and symbol #n+1, and the time domain resource allocated to the short PUCCH transmitting the HARQ-ACK is the symbol #n+1.
  • the user if the user only sends the SR, the user sends the SR information on the resources of the SR. If the user only transmits HARQ-ACK information, the HARQ-ACK is transmitted on the resource allocated to the HARQ-ACK.
  • one method is that the user transmits the SR by using the SR resource on the symbol #n, and transmits the HARQ-ACK by using the SR resource on the symbol #n+1. . Or the user only uses the resources of the SR to send the HARQ-ACK on the symbol #n+1.
  • one method is that the user transmits the SR using the resources of the SR on the symbol #n.
  • the SR is attached as a 1-bit to the HARQ-ACK bit and transmitted on the HARQ-ACK resource.
  • the user only encodes and transmits the SR as one bit in the HARQ-ACK bit on the symbol #n+1.
  • FIG. 6 is a third schematic diagram of the overlapping of the SR and the HARQ-ACK resource in the partial symbol in this embodiment.
  • the time domain resources allocated by the network to the SR are symbol #n and symbol #n+1, and the time domain resource allocated to the short PUCCH transmitting the HARQ-ACK is the symbol #n.
  • the user if the user only sends the SR, the user sends the SR information on the resources of the SR. If the user only transmits HARQ-ACK information, the HARQ-ACK is transmitted on the resource allocated to the HARQ-ACK.
  • one method is that the user transmits the SR by using the SR resource on the symbol #n+1, and the HARQ-ACK is transmitted on the symbol #n using the SR resource. . Or the user only sends the HARQ-ACK using the resources of the SR on the symbol #n.
  • one method is that the user transmits the SR using the resources of the SR on the symbol #n+1.
  • the SR is attached as a 1-bit to the HARQ-ACK bit and transmitted on the HARQ-ACK resource.
  • the user only encodes and transmits the SR as a 1-bit affixed to the HARQ-ACK bit on the symbol #n.
  • FIG. 7 is a fourth schematic diagram of the overlapping of the SR and the HARQ-ACK resource in the partial symbol in this embodiment.
  • the time domain resources allocated by the network to the SR are symbols #n to #n+6, and the time domain resources allocated to the short PUCCHs transmitting the HARQ-ACK are symbols #n+6 and #n+7.
  • the user if the user only sends the SR, the user sends the SR information on the resources of the SR. If the user only transmits HARQ-ACK information, the HARQ-ACK is transmitted on the resource allocated to the HARQ-ACK.
  • one method is that the user transmits the SR using the SR resource on the symbols #n to #n+5, and the SR on the symbol #n+6.
  • the resource transmits a HARQ-ACK, and the HARQ-ACK is transmitted on the symbol #n+7 using the HARQ-ACK resource.
  • the user transmits the HARQ-ACK using the resources of the SR only on the symbol #n+6.
  • the user sends the SR by using the resources of the SR on the symbols #n to #n+5, and transmits the HARQ-ACK by using the resources of the HARQ-ACK on the symbols #n+6 and #n+7, that is, the partial SR symbols are discarded to implement the two.
  • Time division multiplexing
  • one method is that the user adopts the time division multiplexing method.
  • the user transmits the SR as a 1-bit affixed to the HARQ-ACK bit on the symbols of the HARQ-ACK on the symbols #n+6 and #n+7.
  • the HARQ-ACK may be discarded on the overlapping symbols, and the SR resources are generated.
  • the network configuration is configured to at least one or a group of resources in the HARQ-ACK resource at least the same as the SR time domain resource configured in the SR configuration.
  • the time domain resource may be one of the following or a combination of the following: a starting symbol index of the time domain, and a symbol number of the time domain.
  • the network configures a resource set to the PUCCH carrying the HARQ-ACK, and the time domain resource of the default first resource in the resource is the same as the time domain resource of the SR. Or the network configures a resource for the HARQ-ACK, and the time domain resource is the same as the time domain resource of the SR, but the HARQ-ACK resource is not in the HARQ-ACK resource set.
  • Embodiments 7 to 11 of the present invention can be arbitrarily combined.
  • the length of the sTTI is less than 14 symbols.
  • DM-RS pilot
  • the pilot overhead is large at this time.
  • the sTTI is configured for Semi-Persistent Scheduling (SPS) operation and the SPS period is 1 sTTI, it is necessary to reduce the pilot overhead, such as downlink demodulation pilots of two consecutive sTTIs.
  • the pattern of the reference signal (DM-RS, Demodulation Reference Signal) is changed from R
  • the transmitting end Due to the randomness of data arrival, when the data arrives at the sTTI without DM-RS, the transmitting end needs to delay for a period of time until the nearest sTTI of the DM-RS can be sent, which obviously increases the transmission delay of the data. Another possibility is that the transmitting end rolls back to send data according to the sTTI with DM-RS, so although the delay is not reduced, the receiving end needs to perform detection according to two possibilities, which increases the processing complexity.
  • the transmitting end transmits data in the sTTI where the DM-RS is not configured
  • the first sTTI is sent according to the sTTI configured with the DM-RS, and if the transmitting end has no data, Then send an empty packet.
  • the method in the foregoing embodiment may be used for uplink or downlink SPS data transmission.
  • a plurality of different DM-RS patterns can be defined on consecutive multiple sTTIs.
  • the network notifies the user of the DM-RS pattern used in the sTTI that activates the SPS, such as using R
  • the transmitting end always sends information in accordance with a DM-RS pattern.
  • the embodiment of the present invention further provides a storage medium, where the storage medium includes a stored program, where the program is executed to execute the information sending method provided by the embodiment of the present invention.
  • the storage medium may be configured to store program code for performing the following steps:
  • the uplink information is sent by using one or more resource groups in the resource set.
  • the number of resource groups in the resource set is greater than or equal to 2.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a read-only memory (ROM), a random access memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • the embodiment of the present invention further provides a processor, which is used to run a program, where the program is executed to perform the steps of the information sending method provided by the embodiment of the present invention.
  • the above program is used to perform the following steps:
  • the number of resource groups in the resource set is greater than or equal to 2.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices.
  • they may be implemented by program code executable by a computing device such that they may be stored in a storage device for execution by the computing device and, in some cases, may be different from
  • the steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信息发送方法、装置、处理器及存储介质,其中,该方法包括:终端接收网络侧配置的无线资源;所述终端根据所述无线资源获取一个资源集合;所述终端采用所述资源集合内的一个或多个资源组发送上行信息;其中,所述资源集合内的资源组个数Y大于或等于2。

Description

信息发送方法、装置、处理器及存储介质
相关申请的交叉引用
本申请基于申请号为201711147183.X、申请日为2017年11月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及但不限于通信领域,尤其涉及一种信息发送方法、装置、处理器及存储介质。
背景技术
随着工业自动化,车联网,远程控制,智能电网,虚拟现实等新兴业务的出现,对其承载的无线通信系统的时延提出了更高要求。比如需要1ms甚至是0.5ms的空口时延。因此第三代合作伙伴项目(3GPP,3rd Generation Partnership Project)分别基于长期演进(LTE,Long Term Evolution)/高级长期研究(LTE-A,LTE-Advanced)系统和新一代即第五代移动通信系统(5G,Fifth-generation)逐步开展了低时延相关议题的研究。
在LTE/LTE-A系统中,传输时间间隔(TTI,Transmission Time Interval)是下行和上行传输调度在时域上的基本单位。为了满足基于LTE系统的低时延业务,当前标准中定义了缩短的TTI调度,每个缩短的TTI可以只包含2个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号。
在相关技术的5G系统中,为了更快的进行下行混合自动重传请求(Hybrid Automatic Repeat request,HARQ),必要时需要实现自包含反馈,此时上行控制符号可能只有1个或者两个时域符号。
相关技术中,为了保持上行控制信号的单载波特性以支持更好的上行覆盖及功率放大器效率,一种解决方案是在1或2个符号中采用基于序列选择的设计结构用于1或2比特的确认指令(Acknowledgement,ACK)或非确认指令(Negative Acknowledgement,NACK)发送。比如,对于1比特的ACK/NACK发送,可以采用序列0表示ACK,序列1表示NACK,接收端可以根据峰值大小判断ACK或NACK。然而如何确定具体采用哪些序列资源表征ACK,哪些序列表征NACK以尽可能提升性能并避免下行控制信道漏检带来的模糊问题需要进一步解决。同时,当ACK/NACK与调度请求(Scheduling Request,SR)同时发送时,也不能灵活配置。
发明内容
有鉴于此,本发明实施例期望提供一种信息发送方法、装置、处理器及存储介质,能够灵活配置上行信息的发送资源。
本发明实施例提供了一种信息发送方法,包括:终端接收网络侧配置的无线资源;所述终端根据所述无线资源获取一个资源集合;所述终端采用所述资源集合内的一个或多个资源组发送上行信息;其中,所述资源集合内的资源组个数大于或等于2。
本发明实施例还提供了一种信息发送装置,包括:接收模块,配置为接收网络侧配置的无线资源;获取模块,配置为根据所述无线资源获取一个资源集合;发送模块,配置为采用所述资源集合内的一个或多个资源组发送上行信息;其中,所述资源集合内的资源组个数大于或等于2。
本发明实施例还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行本发明实施例提供的信息发送方法。
本发明实施例还提供了一种处理器,所述处理器,配置为运行程序,其中,所述程序运行时执行本发明实施例提供的信息发送方法。
本发明实施例还提供了一种信息发送装置,包括:
存储器,配置为保存信息发送的程序;
处理器,配置为运行所述程序,其中,所述程序运行时执行本发明实施例提供的信息发送方法。
通过本发明实施例,可以灵活的实现上行信息中多个消息的动态复用,解决了相关技术中不能灵活配置上行信息的发送资源的问题,降低了上行控制信息的开销。
附图说明
图1是本发明实施例提供的信息发送方法的流程图;
图2是本发明实施例提供的信息发送装置的结构框图;
图3是本发明实施例提供的两个下行链路数据传输对应的HARQ-ACK反馈均对应于一个上行控制信道的示意图;
图4是本实施例提供的SR与HARQ-ACK资源在部分符号上重叠的示意图一;
图5是本实施例提供的SR与HARQ-ACK资源在部分符号上重叠的示意图二;
图6是本实施例提供的SR与HARQ-ACK资源在部分符号上重叠的示意图三;
图7是本实施例提供的SR与HARQ-ACK资源在部分符号上重叠的示意图四。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先 后次序。
本申请实施例运行的网络架构包括:基站、终端,其中,基站和终端之间进行信息交互。
在本实施例中提供了一种运行于上述网络架构的信息发送方法,图1是本发明实施例的信息发送方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,终端接收网络侧配置的无线资源;
步骤S104,终端根据无线资源获取一个资源集合;
步骤S106,终端采用资源集合内的一个或多个资源组发送上行信息;其中,资源集合内的资源组个数Y大于或等于2。
通过上述步骤,可以灵活的实现上行信息中多个消息的动态复用,解决了相关技术中不能灵活配置上行信息的发送资源的问题,降低了上行控制信息的开销。
在实际应用中,上述步骤的执行主体可以为终端,如手机等,但不限于此。
在实际应用中,资源组内包含M个资源元素,其中M为等于或者大于2的整数;每个资源组与其他资源组至少包含一个资源元素不同。
在一实施例中,上行信息包括以下之一:上行控制信息确认指令ACK/非确认指令NACK消息,上行调度请求SR,ACK/NACK消息和调度请求。
在一实施例中,资源组内所包含的第一资源元素为以下至少之一:第一资源元素的初始值,第一资源元素初始值的偏置值。
在一实施例中,无线资源或资源元素的初始值是根据偏置值结合第一隐式指示的方式获得。
在一实施例中,第一隐式指示的方式包括通过以下一个或多个信息进行指示:下行控制信道的控制信道元素索引,下行系统带宽块带宽部分(Band Width Part,BWP)索引,下行控制信道所在时隙或符号索引。
在一实施例中,终端根据无线资源获取一个资源集合包括:终端对第一资源元素的初始值进行随机化处理获得第一资源值x0;其中,随机化的方式包括通过以下一个或多个信息进行指示:小区物理ID,小区虚拟ID,上行控制所在时隙索引,上行控制所在符号索引,伪随机序列,下行业务信道所在时隙索引,下行业务所在符号索引。
在一实施例中,方法还包括:终端利用第一资源值x0通过第二隐式指示方法得到第一资源值集合。
在一实施例中,第二隐式指示方法包括,第一资源值集合内的其他可选地,在终端仅发送调度请求时,终端采用第一资源值x0,结合资源组内的资源元素发送调度请求。
在一实施例中,在终端仅发送ACK/NACK信息时,终端根据上行信息的状态选择第一资源值集合内的一个第一资源值,结合资源组内的资源元素发送ACK/NACK信息。
在一实施例中,在终端同时发送调度请求和ACK/NACK信息时,终端采用网络侧配置的调度请求的部分资源元素和网络侧配置的ACK/NACK信息的部分资源元素发送以下之一:调度请求和ACK/NACK信息,ACK/NACK信息。
在一实施例中,网络侧配置的调度请求的部分资源元素包括以下至少之一:序列初始索引,资源块初始索引,起始符号索引。
在一实施例中,网络侧配置的ACK/NACK信息的部分资源元素包括以下至少之一:起始时隙位置,起始时域符号索引,时域符号数,时域正交掩码索引,跳频使能指示。
示例性地,第一资源值为序列相位旋转值,第一资源值集合含有四个序列的相位旋转值,定义为{x0,x1,x2,x3}。
示例性地,第二隐式指示方式包括:当发送信息比特为1比特时,x1=(x0+N/2)modN,其中N为序列长度;当发送信息比特为2比特时,x1= (x0+N/4)modN,x2=(x0+3*N/4)modN,x3=(x0+N/2)modN,或者,x1=(x0+3*N/4)modN,x2=(x0+N/4)modN,x3=(x0+N/2)modN,N为大于1的整数。
示例性地,第二隐式指示方式包括:x1=(x0+N/4)modN,x2=(x0+3*N/4)modN,x3=(x0+N/2)modN,或者,x1=(x0+3*N/4)modN,x2=(x0+N/4)modN,x3=(x0+N/2)modN,N为大于1的整数。
示例性地,第二隐式指示方式包括:x1=(x0+N/4)modN,x2=(x0+N/2)modN,x3=(x0+3*N/4)modN,或者,x1=(x0+3*N/4)modN,x2=(x0+N/2)modN,x3=(x0+N/4)modN,N为大于1的整数。
示例性地,通过高层信令通知用户终端选择第二隐式指示方式的策略。
示例性地,相位旋转值{x0,x1,x2,x3}对应的信息比特分别为{'00','01','10','11'},或者{'00','01','11','10'},或者{'00','10','01','11'}。
在一实施例中,根据相位旋转值{x0,x1,x2,x3}获得的四个序列分别定义为{x 0(n) x 1(n) x 2(n) x 3(n)},终端发送上行信息时序列的选择方法包括:
当上行信息为1比特时,
Figure PCTCN2018115279-appb-000001
当上行信息为2比特时,
Figure PCTCN2018115279-appb-000002
其中,b(0),...,b(M bit-1)是0或1的信息比特,M bit是比特数目,y(n)为终端选择的一个序列,x j(n)是集合{x 0(n) x 1(n) x 2(n) x 3(n)}的元素。
在一实施例中,当所述网络侧在第一时间位置n1和第二时间位置n2发送的数据信息所对应的反馈信息均在所述终端的第三时间位置n3处发送时,所述终端针对第一时间位置n1处数据和第二时间位置n2处数据的反馈信息所使用的第一资源值x0相同。
在一实施例中,当用户终端只在第一时间位置n1处检测到调度数据的 控制信息时,使用{'00','10'}对应的序列发送反馈信息;当用户终端只在第二时间位置n2处检测到调度数据的控制信息时,使用{'00','01'}对应的序列发送反馈信息;当用户终端在第一时间位置n1和第二时间位置n2处均检测到调度数据的控制信息时,使用{'00','01','10','11'}对应的序列发送反馈信息。
在一实施例中,当用户终端只在第一时间位置n1处检测到调度数据的控制信息时,使用{x0,x2}发送反馈信息;当用户终端只在第二时间位置n2处检测到调度数据的控制信息时,使用{x0,x1}发送反馈信息;当用户终端在第一时间位置n1和第二时间位置n2处均检测到调度数据的控制信息时,使用{x0,x1,x2,x3}发送反馈信息。
在一实施例中,当用户终端只在第一时间位置n1处检测到调度数据的控制信息时,使用{x0,x1}发送反馈信息;当用户终端只在第二时间位置n2处检测到调度数据的控制信息时,使用{x0,x2}发送反馈信息;当用户终端在第一时间位置n1和第二时间位置n2处均检测到调度数据的控制信息时,使用{x0,x1,x2,x3}发送反馈信息。
在一实施例中,当网络配置的调度请求的无线资源对应的时域资源与网络配置的HARQ-ACK的无线资源对应的时域资源不同,且存在部分符号重叠时,所述终端在重叠的部分符号上采用SR的资源发送所述HARQ-ACK消息。
在一实施例中,当网络配置的SR的无线资源对应的时域资源与网络配置的HARQ-ACK的无线资源对应的时域资源不同,且存在部分符号重叠时,如果存在未重叠的SR符号,所述终端在所述符号上采用SR的资源发送所述SR消息;如果存在未重叠的HARQ-ACK符号,所述终端在所述符号上采用HARQ-ACK的资源发送所述HARQ-ACK消息。
示例性地,所述HARQ-ACK比特数为1比特或2比特。
在一实施例中,当网络配置的SR的无线资源对应的时域资源与网络配 置的HARQ-ACK的无线资源对应的时域资源不同且存在部分符号重叠时,将SR作为1比特添加在HARQ-ACK信息比特之后或之前,经编码等处理后,所述终端只在重叠的部分符号上的HARQ-ACK资源上发送所述HARQ-ACK比特和SR比特,或者所述终端在所有HARQ-ACK符号的HARQ-ACK资源上发送所述HARQ-ACK比特和SR比特。所述HARQ-ACK比特数大于2比特。
在一实施例中,当网络配置的SR的无线资源对应的时域资源与网络配置的HARQ-ACK的无线资源对应的时域资源不同,且存在部分符号重叠时,如果SR资源的时域符号长度大于或者等于HARQ-ACK资源的符号长度,所述终端在重叠符号上丢弃SR的发送,在重叠符号上发送HARQ-ACK;如果SR资源的时域符号长度小于或者等于HARQ-ACK资源的符号长度,所述终端在重叠符号上丢弃HARQ-ACK的发送,在重叠符号上发送SR。
在一实施例中,网络配置的HARQ-ACK的无线资源中至少存在一个资源或者资源组,其对应的时域资源与网络配置的SR的无线资源对应的时域资源相同。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(ROM,Read-Only Memory)/(RAM,Random Access Memory)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
本发明实施例还提供了一种信息发送装置,该装置用于实现上述信息发送方法,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置 较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的信息发送装置的结构框图,如图2所示,该装置包括:
接收模块22,配置为接收网络侧配置的无线资源;
获取模块24,配置为根据无线资源获取一个资源集合;
发送模块26,配置为采用资源集合内的一个或多个资源组发送上行信息;其中,资源集合内的资源组个数大于或等于2。
在一实施例中,资源组内包含M个资源元素,其中M为等于或者大于2的整数;每个资源组与其他资源组至少包含一个资源元素不同。
在一实施例中,上行信息包括以下之一:上行控制信息确认指令ACK/非确认指令NACK消息,上行调度请求,ACK/NACK消息和调度请求。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本实施例是根据本申请的可选实施例,用于结合具体的实施方式对本申请进行详细说明:
为了保持上行控制信号的单载波特性以支持更好的上行覆盖及功率放大器效率,可以在1或2个符号中采用基于序列选择的设计结构用于1或2比特的ACK或NACK发送。比如,对于1比特的ACK/NACK发送,可以采用序列0表示ACK,序列1表示NACK,接收端可以根据峰值大小判断ACK或NACK。然而如何确定具体采用哪些序列资源表征ACK,哪些序列表征NACK以尽可能提升性能并避免下行控制信道漏检带来的模糊问题需要解决。同时,当ACK/NACK与调度请求(Scheduling Request,SR)同时发送时,可以采用SR的资源发送ACK/NACK,但两者使用的资源配置方法可能不同,如SR资源由RRC信令配置,而ACK/NACK由RRC信令和物 理层动态信令确定,此时如何确定同时发送SR和ACK/NACK使用的资源以实现灵活的发送同样需要解决。
基于上述相关技术中存在的问题,本实施例提供了如下实施方式:
实施方式1
网络配置给用户终端一个序列的初始循环移位(CS,Cyclic Shift)索引CS_0,用户终端对所述CS_0进行随机化处理,所述随机化公式可以为:
Figure PCTCN2018115279-appb-000003
其中
Figure PCTCN2018115279-appb-000004
是与时隙索引ns,符号索引l,和小区ID相关的随机化因子。根据所述索引可以进一步得到序列的相位为α 0=2π·x 0/N。定义四个序列为{x 0(n) x 1(n) x 2(n) x 3(n)},其中x 0(n)为循环移位索引为x 0的序列,即相位为α 0。定义待发送的二进制信息比特为b(0),...,b(M bit-1),其中M bit∈{1,2}是信息的比特数目。则用户发送不同状态的信息比特时发送的序列为公式(1)所示:
Figure PCTCN2018115279-appb-000005
假定N=12,则当发送的信息为1比特信息时,x 1=(x 0+6)mod12,
当待发送的信息为2比特信息时,x 1=(x 0+3)mod12,x 2=(x 0+9)mod12,x 3=(x 0+6)mod12,或者,x 1=(x 0+9)mod12,x 2=(x 0+3)mod12,x 3=(x 0+6)mod12。其中,x 1,x 2,x 3分别对应序列x 1(n),x 2(n),x 3(n)。
本实施方式中给出的序列选择方法能够实现信息比特之间的序列相位距离最大且符合格雷映射,提高发送性能。
实施方式2
网络配置给用户终端一个序列的初始循环移位值CS_0,即为本发明中所述资源或资源元素的初始值。用户终端对所述CS_0进行随机化处理,所述随机化公式可以为:
Figure PCTCN2018115279-appb-000006
其中
Figure PCTCN2018115279-appb-000007
是与时隙索引 n s,符号索引l,和小区ID相关的随机化因子。根据所述索引可以进一步得到序列的相位为α 0=2π·x 0/N。定义四个序列为{x 0(n) x 1(n) x 2(n) x 3(n)},其中x 0(n)为循环移位值为x 0的序列,即相位为α 0。x 1=(x 0+3)mod12,x 2=(x 0+9)mod12,x 3=(x 0+6)mod12,或者,x 1=(x 0+9)mod12,x 2=(x 0+3)mod12,x 3=(x 0+6)mod12。其中,x 1,x 2,x 3分别对应序列x 1(n),x 2(n),x 3(n)。
定义待发送的信息比特为b(0),...,b(M bit-1),其中M bit∈{1,2}是信息的比特数目,y(n)为所述终端选择的一个序列。则用户发送不同状态的信息比特时发送的序列根据以下规则确定:
当1比特时,
Figure PCTCN2018115279-appb-000008
当2比特时,
Figure PCTCN2018115279-appb-000009
或者1~2bit统一表示为:
Figure PCTCN2018115279-appb-000010
0 3 6 9。
实施方式3
图3是本实施例中两个下行链路(DL,Down Link)数据传输对应的HARQ-ACK反馈均对应于一个上行控制信道的示意图。图3中,下行slot#n中的下行数据和下行slot#(n+1)中的下行数据均对应于slot#(n+1)内的短(short)物理上行链路控制信道(PUCCH,Physical Uplink Control Channel)处反馈各1比特HARQ-ACK。此时,如果存在一个下行数据对应的控制信道没有检测到,用户使用的信道资源可能存在跟基站理解不一致的情况。一种解决方法是,假定用户经过本发明方法得到的四个序列资源分别是{x0,x1,x2,x3},分别对应比特状态'00','01','10','11'。此时如果用户只检测到slot#n上的下行数据,用户可以只从{x0,x2}中选择一个资源进行发送,此时即使基站在slot#(n+1)向用户发送了数据但被用户漏检,此时基站会判定为'00'或'10',其中第1比特对应slot#n上的下行数据,第2比特对应slot# (n+1)上的下行数据,因此基站会触发slot#(n+1)上的下行数据的重传。当然如果基站在slot#(n+1)没有向用户发送数据,此时基站会将{x0,x2}分别判定为'0'或'1'。同理,如果基站用户只检测到slot#(n+1)上的下行数据,用户可以从{x0,x1}中选择一个资源进行发送,此时即使基站在slot#n向用户发送了数据但被用户漏检,基站同样能识别出此种情况。如果用户同时在slot#n和slot#(n+1)检测到数据发送,此时用户可以从所用资源{x0,x1,x2,x3}中选择一个资源进行发送。
特殊的,所述四个序列资源分别是序列的时域循环移位值{0,3,9,6}或者{1,4,10,7}或者{2,5,11,8}。注意:时域的循环移位值等于相位的旋转值。
上述方法中要求基站配置给两个slot的序列资源的初始值相同,如上面示例中x0.并且不论在slot#n和slot#(n+1)是否有数据发送均给用户配置4个资源或者定义用户获取四个资源。
等效的,上述方法为网络配置固定大小的反馈码本,此时用户始终按照2比特HARQ-ACK反馈,一旦某个slot的控制信道漏检则当做NACK处理。
另一种解决方法是,基站分配给两个slot的序列资源不同,基站通过更多的盲检测判断用户的发送信息,此时但会导致资源开销大,还引入了基站的盲检测,导致复杂度提升且性能下降。
实施方式4
当网络配置用户使用short PUCCH发送1~2比特ACK/NACK消息时,将采用序列选择的方式发送,此时基站需要配置给用户2个或4个序列。而为了实现SR与ACK/NACK消息的复用,需要配置2个或4个SR资源,当同时发送SR和ACK/NACK消息时采用所配置的SR资源发送ACK/NACK消息。为了节省SR配置开销,本实施方式指出网络可以采用RRC信令配置给SR一个默认的信道资源,所述资源主要包含起始符号索引,控制信道所含符号数,起始RB索引,RB数(默认可为1),跳频使能, 初始循环移位索引等资源元素。当只有SR发送时,用户采用默认的资源发送SR。
同时,用户根据网络定义的规则获得所述第一信道资源集合。即此处利用初始CS索引首先经过随机化得到序列索引(一个第一信道资源值),然后获得一个序列索引集合,包含2个或4个序列索引,此时针对SR所采用的随机化方法和第一、第二隐式方法与针对ACK/NACK所采用的方法相同,可采用类似实施方式1和2中的方法。
如果用户终端需要同时发送SR和ACK/NACK,用户可以在定义的上述SR资源上发送ACK/NACK消息。或者,用户终端只是用SR的循环移位索引,而其余与short PUCCH相关的信道资源元素采用配置给发送ACK/NACK的资源元素,如起始符号索引,控制信道所含符号数,起始RB索引,RB数(默认可为1),跳频使能等。因为发送ACK/NACK的资源元素可以动态改变,因此该方法可以更加动态的调节发送SR和ACK/ACK的资源信息,比如PUCCH的长度,已达到节省功率或者提高覆盖的好处。
实施方式5
当网络配置用户使用long PUCCH发送1~2比特ACK/NACK消息时,本实施方式指出网络可以采用RRC信令配置给SR一个默认的信道资源,所述资源主要包含起始时隙索引,起始符号索引,控制信道所含符号数,起始RB索引,RB数(默认可为1),跳频使能,循环移位(CS)索引,正交掩码(OCC,Orthogonal Cover Code)索引等资源元素。当只有SR发送时,用户采用默认的资源发送SR。
同时,网络也配置给用户发送1~2比特ACK/NACK消息的long PUCCH资源,其包含的资源元素与SR相同。
如果用户终端需要同时发送SR和ACK/NACK,用户可以在定义的上述SR资源上发送ACK/NACK消息。或者,用户终端只是用SR的循环移位索引,RB索引和起始符号索引,而其余资源元素与配置给发送 ACK/NACK的资源元素相同,如控制信道所含符号数,跳频使能等。因为发送ACK/NACK的资源元素可以动态改变,因此该方法可以更加动态的调节发送SR和ACK/ACK的资源信息,比如PUCCH的长度,已达到节省功率或者提高覆盖的好处。或者,用户采用1比特动态指示或RRC配置或隐式指示的方式通知用户在同时发送SR和ACK/NACK时的行为。即决定此时采用SR的全部资源发送,还是只用部分SR的资源和部分ACK/NACK的资源发送。
实施方式6
如图3所示,在slot#n处如果用户只需要反馈1比特ACK/NACK,用户从网络获取两个序列资源分别是{x0,x2},其中分别对应比特状态'0','1'。在slot#(n+1)处配置用户从网络获取四个序列资源分别是{x0,x1,x2,x3},分别对应比特状态'00','01','10','11'。如果网络在slot#n和slot#(n+1)处均向用户发送数据,但该用户只接收到slot#n上的数据,此时用户会从{x0,x2}中选择一个资源进行发送,此时建站会将其判断为'00'或者'10',即此时可以将漏检判断为NACK,并不会导致数据丢失。
实施例中,序列资源{x0,x1,x2,x3}分别对应序列循环移位{0,3,6,9}。此实施例中要求在slot#n处使用的序列资源与在在slot#(n+1)处状态'00','10'对应的序列资源相同。
网络通过下行控制信息明确指示或者RRC配置或者隐式指示的方式通知用户如果只在slot#(n+1)上检测到数据发送时,用户始终按照2比特信息发送,且假定slot#n上反馈的始终是NACK。更一般的,当用户在多个时刻的数据传输在相同的时频资源上反馈ACK/NACK时,且用户只在最后的传输时刻检测到数据发送时,用户则假定之前的所有时刻均有数据传输且均当做NACK处理。
本发明方法能够实现灵活的实现SR和ACK/NACK消息的动态复用。能够降低上行控制信息的开销同时避免基站和UE因为下行控制信道丢失 而导致的模糊问题。
实施方式7
图4是本实施例SR与HARQ-ACK资源在部分符号上重叠的示意图一。网络配置给SR的时域资源为符号#n和符号#n+1,分配给发送HARQ-ACK的短PUCCH的时域资源为符号#n+1和符号#n+2。此时如果用户只发送SR,则用户在SR的资源上发送SR信息。如果用户只发送HARQ-ACK信息,则在分配给HARQ-ACK的资源上发送HARQ-ACK。
如果用户需要同时发送SR和1或2比特的HARQ-ACK信息,一种方法是,用户在符号#n上采用SR的资源发送SR,在符号#n+1上采用SR的资源发送HARQ-ACK,在符号#n+2上采用HARQ-ACK的资源发送HARQ-ACK。或者用户只在符号#n+1上采用SR的资源发送HARQ-ACK。
如果用户需要同时发送SR和大于2比特的HARQ-ACK信息,一种方法是,用户在符号#n上采用SR的资源发送SR。在符号#n+1和符号#n+2上,将SR作为1比特(如果是多种SR配置可以是1比特或者多个比特)附属在HARQ-ACK比特后在HARQ-ACK的资源上发送。或者用户只在符号#n+1和符号#n+2上,将SR作为1比特(如果是多种SR配置可以是1比特或者多个比特)附属在HARQ-ACK比特后一起编码发送。
图4中并没有表明SR和HARQ-ACK资源的频域资源,具体地可以不同符号采用相同的RB资源,或者符号见存在跳频。
实施方式8
图5是本实施例SR与HARQ-ACK资源在部分符号上重叠的示意图二。网络配置给SR的时域资源为符号#n和符号#n+1,分配给发送HARQ-ACK的短PUCCH的时域资源为符号#n+1。此时如果用户只发送SR,则用户在SR的资源上发送SR信息。如果用户只发送HARQ-ACK信息,则在分配给HARQ-ACK的资源上发送HARQ-ACK。
如果用户需要同时发送SR和1或2比特的HARQ-ACK信息,一种方 法是,用户在符号#n上采用SR的资源发送SR,在符号#n+1上采用SR的资源发送HARQ-ACK。或者用户只在符号#n+1上采用SR的资源发送HARQ-ACK。
如果用户需要同时发送SR和大于2比特的HARQ-ACK信息,一种方法是,用户在符号#n上采用SR的资源发送SR。在符号#n+1上,将SR作为1比特附属在HARQ-ACK比特后在HARQ-ACK的资源上发送。或者用户只在符号#n+1上,将SR作为1比特附属在HARQ-ACK比特后一起编码发送。
实施方式9
图6是本实施例SR与HARQ-ACK资源在部分符号上重叠的示意图三。图6中,网络配置给SR的时域资源为符号#n和符号#n+1,分配给发送HARQ-ACK的短PUCCH的时域资源为符号#n。此时如果用户只发送SR,则用户在SR的资源上发送SR信息。如果用户只发送HARQ-ACK信息,则在分配给HARQ-ACK的资源上发送HARQ-ACK。
如果用户需要同时发送SR和1或2比特的HARQ-ACK信息,一种方法是,用户在符号#n+1上采用SR的资源发送SR,在符号#n上采用SR的资源发送HARQ-ACK。或者用户只在符号#n上采用SR的资源发送HARQ-ACK。
如果用户需要同时发送SR和大于2比特的HARQ-ACK信息,一种方法是,用户在符号#n+1上采用SR的资源发送SR。在符号#n上,将SR作为1比特附属在HARQ-ACK比特后在HARQ-ACK的资源上发送。或者用户只在符号#n上,将SR作为1比特附属在HARQ-ACK比特后一起编码发送。
实施方式10
图7是本实施例SR与HARQ-ACK资源在部分符号上重叠的示意图四。图7中,网络配置给SR的时域资源为符号#n~#n+6,分配给发送HARQ-ACK 的短PUCCH的时域资源为符号#n+6和#n+7。此时如果用户只发送SR,则用户在SR的资源上发送SR信息。如果用户只发送HARQ-ACK信息,则在分配给HARQ-ACK的资源上发送HARQ-ACK。
如果用户需要同时发送SR和1或2比特的HARQ-ACK信息,一种方法是,用户在符号#n~#n+5上采用SR的资源发送SR,在符号#n+6上采用SR的资源发送HARQ-ACK,在符号#n+7上采用HARQ-ACK的资源发送HARQ-ACK。或者用户只在符号#n+6上采用SR的资源发送HARQ-ACK。或者用户在符号#n~#n+5上采用SR的资源发送SR,在符号#n+6和#n+7上采用HARQ-ACK的资源发送HARQ-ACK,即丢掉部分SR符号实现两者时分复用。
如果用户需要同时发送SR和大于2比特的HARQ-ACK信息,一种方法是,用户采用所述时分复用方法。或者,用户在符号#n+6和#n+7上,将SR作为1比特附属在HARQ-ACK比特后在HARQ-ACK的资源上发送。
同理,如果网络配置给HARQ-ACK的时域资源符号数大于2,且长度大于配置给SR资源的时域符号数,则可以在重叠的符号上丢弃HARQ-ACK,而发生SR资源。
实施方式11
为了避免SR资源和HARQ-ACK资源的时域资源部分重叠,网络配置给HARQ-ACK资源中至少一个或一组资源至少跟配置给一种SR配置下的SR时域资源相同。所述时域资源可以是以下之一或以下信息的组合:时域的起始符号索引,时域的符号个数。
网络配置一个资源集合给承载HARQ-ACK的PUCCH,所述资源中的默认第一个资源的时域资源跟SR的时域资源相同。或者网络配置给HARQ-ACK一个资源,其时域资源与SR的时域资源相同,但该HARQ-ACK资源不在所述HARQ-ACK资源集合内。
本发明实施方式7~11中所提方法可以进行任意组合。
实施方式12
在缩短传输时间间隔(sTTI,shortened Transmission Time Interval)中,sTTI的长度小于14个符号。通常,如果每个sTTI都有导频(DM-RS),考虑到sTTI的符号数较少,此时导频开销较大。特别的,当sTTI配置为半静态调度(SPS,Semi-Persistent Scheduling)操作时,且SPS周期为1个sTTI时,降低导频的开销非常必要,比如将连续两个sTTI的下行解调导频参考信号(DM-RS,Demodulation Reference Signal)的图样由R|R改为R|D,其|表示sTTI边界。即,连续两个sTTI中,一个sTTI配置有DM-RS,另外一个sTTI没有配置DM-RS。
由于数据到达的随机性,当数据在没有DM-RS的sTTI到达时,发射端需要延迟一段时间到到有DM-RS的最近的sTTI才能发送,这显然增加了数据的传输时延。另外一种可能是发射端回退到按照有DM-RS的sTTI发送数据,这样虽然没有降低时延,但是需要接收端按照两种可能进行检测,增加了处理实现复杂度。
当sTTI的SPS周期为1个sTTI,当发射端在没有配置DM-RS的sTTI发送数据后,在之后的第1个sTTI按照配置有DM-RS的sTTI发送数据,如果发射端没有数据发送,则发送空包。
上述实施方式中所述方法可以用于上行或者下行SPS数据发送。其中,可以在连续的多个sTTI上定义多个不同的DM-RS图样。
在一实施例中,网络在激活SPS的sTTI内通知用户采用的DM-RS图样,如采用R|R或者R|D。或者,发射端始终按照一种DM-RS图样发送信息。
本发明实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行本发明实施例提供的信息发送方法。
在一实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,接收网络侧配置的无线资源;
S2,根据无线资源获取一个资源集合;
S3,采用资源集合内的一个或多个资源组发送上行信息;其中,资源集合内的资源组个数大于或等于2。
在一实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本发明实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行本发明实施例提供的信息发送方法的步骤。
在一实施例中,上述程序用于执行以下步骤:
S1,接收网络侧配置的无线资源;
S2,根据无线资源获取一个资源集合;
S3,采用资源集合内的一个或多个资源组发送上行信息;
其中,资源集合内的资源组个数大于或等于2。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (39)

  1. 一种信息发送方法,包括:
    终端接收网络侧配置的无线资源;
    所述终端根据所述无线资源获取一个资源集合;
    所述终端采用所述资源集合内的一个或多个资源组发送上行信息;
    其中,所述资源集合内的资源组个数Y大于或等于2。
  2. 根据权利要求1所述的方法,其中,所述资源组内包含M个资源元素,其中M为等于或者大于2的整数;每个资源组与其他资源组至少包含一个资源元素不同。
  3. 根据权利要求1所述的方法,其中,所述上行信息包括以下之一:上行控制信息确认指令ACK/非确认指令NACK消息,上行调度请求SR,ACK/NACK消息和调度请求。
  4. 根据权利要求2所述的方法,其中,所述资源组内所包含的第一资源元素为以下至少之一:第一资源元素的初始值,第一资源元素初始值的偏置值。
  5. 根据权利要求4所述的方法,其中,所述无线资源或资源元素的初始值是根据所述偏置值结合第一隐式指示的方式获得。
  6. 根据权利要求5所述的方法,其中,所述第一隐式指示的方式包括通过以下一个或多个信息进行指示:下行控制信道的控制信道元素索引,下行系统带宽块BWP索引,下行控制信道所在时隙或符号索引。
  7. 根据权利要求4所述的方法,其中,所述终端根据所述无线资源获取一个资源集合包括:
    所述终端对所述第一资源元素的初始值进行随机化处理获得第一资源值x0;其中,所述随机化的方式包括通过以下一个或多个信息进行指示:小区物理ID,小区虚拟ID,上行控制所在时隙索引,上行控制所在符号索 引,伪随机序列,下行业务信道所在时隙索引,下行业务所在符号索引。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    所述终端利用所述第一资源值x0通过第二隐式指示方法得到第一资源值集合。
  9. 根据权利要求8所述的方法,其中,所述第二隐式指示方法包括:
    第一资源值集合内的其他第一资源值是所获得第一资源值x0的固定偏置。
  10. 根据权利要求8所述的方法,其中,在所述终端仅发送调度请求时,所述终端采用所述第一资源值x0,结合所述资源组内的资源元素发送所述调度请求。
  11. 根据权利要求8所述的方法,其中,在所述终端仅发送ACK/NACK信息时,所述终端根据所述上行信息的状态选择所述第一资源值集合内的一个第一资源值,结合所述资源组内的资源元素发送所述ACK/NACK信息。
  12. 根据权利要求8所述的方法,其中,在所述终端同时发送调度请求和ACK/NACK信息时,所述终端采用网络侧配置的所述调度请求的部分资源元素和网络侧配置的所述ACK/NACK信息的部分资源元素发送以下之一:调度请求和ACK/NACK信息,ACK/NACK信息。
  13. 根据权利要求12所述的方法,其中,网络侧配置的所述调度请求的部分资源元素包括以下至少之一:序列初始索引,资源块初始索引,起始符号索引。
  14. 根据权利要求12所述的方法,其中,网络侧配置的所述ACK/NACK信息的部分资源元素包括以下至少之一:
    起始时隙位置,起始时域符号索引,时域符号数,时域正交掩码索引,跳频使能指示。
  15. 根据权利要求8所述的方法,其中,所述第一资源值为序列相位旋转值,所述第一资源值集合含有四个序列的相位旋转值,定义为 {x0,x1,x2,x3}。
  16. 根据权利要求15所述的方法,其中,所述第二隐式指示方式包括:当发送信息比特为1比特时,x1=(x0+N/2)modN,其中N为序列长度;当发送信息比特为2比特时,x1=(x0+N/4)modN,x2=(x0+3*N/4)modN,x3=(x0+N/2)modN,或者,x1=(x0+3*N/4)modN,x2=(x0+N/4)modN,x3=(x0+N/2)modN,N为大于1的整数。
  17. 根据权利要求15所述的方法,其中,所述第二隐式指示方式包括:x1=(x0+N/4)modN,x2=(x0+3*N/4)modN,x3=(x0+N/2)modN,或者,x1=(x0+3*N/4)modN,x2=(x0+N/4)modN,x3=(x0+N/2)modN,N为大于1的整数。
  18. 根据权利要求15所述的方法,其中,所述第二隐式指示方式包括:x1=(x0+N/4)modN,x2=(x0+N/2)modN,x3=(x0+3*N/4)modN,或者,x1=(x0+3*N/4)modN,x2=(x0+N/2)modN,x3=(x0+N/4)modN,N为大于1的整数。
  19. 根据权利要求8所述的方法,其中,通过高层信令通知用户终端选择所述第二隐式指示方式的策略。
  20. 根据权利要求15所述的方法,其中,所述相位旋转值{x0,x1,x2,x3}对应的信息比特分别为{'00','01','10','11'},或者{'00','01','11','10'},或者{'00','10','01','11'}。
  21. 根据权利要求15所述的方法,其中,根据所述相位旋转值{x0,x1,x2,x3}获得的四个序列分别定义为{x 0(n) x 1(n) x 2(n) x 3(n)},所述终端发送上行信息时序列的选择方法包括:
    y(n)=x j(n)
    当所述上行信息为1比特时,j=3·b(0);
    y(n)=x j(n)
    当所述上行信息为2比特时,
    Figure PCTCN2018115279-appb-100001
    其中,b(0),...,b(M bit-1)是0或1的信息比特,M bit是比特数目,y(n)为所述终端选择的一个序列,x j(n)是集合{x 0(n) x 1(n) x 2(n) x 3(n)}的元素。
  22. 根据权利要求7所述的方法,其中,当所述网络侧在第一时间位置n1和第二时间位置n2发送的数据信息所对应的反馈信息均在所述终端的第三时间位置n3处发送时,所述终端针对第一时间位置n1处数据和第二时间位置n2处数据的反馈信息所使用的第一资源值x0相同。
  23. 根据权利要求22所述的方法,其中,当用户终端只在第一时间位置n1处检测到调度数据的控制信息时,使用{'00','10'}对应的序列发送反馈信息;当用户终端只在第二时间位置n2处检测到调度数据的控制信息时,使用{'00','01'}对应的序列发送反馈信息;当用户终端在第一时间位置n1和第二时间位置n2处均检测到调度数据的控制信息时,使用{'00','01','10','11'}对应的序列发送反馈信息。
  24. 根据权利要求22所述的方法,其中,当用户终端只在第一时间位置n1处检测到调度数据的控制信息时,使用{x0,x2}发送反馈信息;当用户终端只在第二时间位置n2处检测到调度数据的控制信息时,使用{x0,x1}发送反馈信息;当用户终端在第一时间位置n1和第二时间位置n2处均检测到调度数据的控制信息时,使用{x0,x1,x2,x3}发送反馈信息。
  25. 根据权利要求22所述的方法,其中,当用户终端只在第一时间位置n1处检测到调度数据的控制信息时,使用{x0,x1}发送反馈信息;当用户终端只在第二时间位置n2处检测到调度数据的控制信息时,使用{x0,x2}发送反馈信息;当用户终端在第一时间位置n1和第二时间位置n2处均检测到调度数据的控制信息时,使用{x0,x1,x2,x3}发送反馈信息。
  26. 根据权利要求3所述的方法,其中,当网络配置的调度请求的无线资源对应的时域资源与网络配置的HARQ-ACK的无线资源对应的时域资源不同且存在部分符号重叠时,所述终端在重叠的部分符号上采用SR的 资源发送所述HARQ-ACK消息。
  27. 根据权利要求3所述的方法,其中,当网络配置的SR的无线资源对应的时域资源与网络配置的HARQ-ACK的无线资源对应的时域资源不同且存在部分符号重叠时,如果存在未重叠的SR符号,所述终端在所述符号上采用SR的资源发送所述SR消息;如果存在未重叠的HARQ-ACK符号,所述终端在所述符号上采用HARQ-ACK的资源发送所述HARQ-ACK消息。
  28. 根据权利要求27所述的方法,其中,所述HARQ-ACK比特数为1比特或2比特。
  29. 根据权利要求3所述的方法,其中,当网络配置的SR的无线资源对应的时域资源与网络配置的HARQ-ACK的无线资源对应的时域资源不同且存在部分符号重叠时,将SR作为1比特添加在HARQ-ACK信息比特之后或之前,经编码等处理后,所述终端只在重叠的部分符号上的HARQ-ACK资源上发送所述HARQ-ACK比特和SR比特,或者所述终端在所有HARQ-ACK符号的HARQ-ACK资源上发送所述HARQ-ACK比特和SR比特。
  30. 根据权利要求29所述的方法,其中,所述HARQ-ACK比特数大于2比特。
  31. 根据权利要求3所述的方法,其中,当网络配置的SR的无线资源对应的时域资源与网络配置的HARQ-ACK的无线资源对应的时域资源不同且存在部分符号重叠时,如果SR资源的时域符号长度大于或者等于HARQ-ACK资源的符号长度,所述终端在重叠符号上丢弃SR的发送,在重叠符号上发送HARQ-ACK;如果SR资源的时域符号长度小于或者等于HARQ-ACK资源的符号长度,所述终端在重叠符号上丢弃HARQ-ACK的发送,在重叠符号上发送SR。
  32. 根据权利要求3所述的方法,其中,网络配置的HARQ-ACK的无 线资源中至少存在一个资源或者资源组,其对应的时域资源与网络配置的SR的无线资源对应的时域资源相同。
  33. 根据权利要求1所述的方法,其中,所述网络侧在第一时间位置n1和第二时间位置n2发送的数据信息所对应的反馈信息均在所述终端的第三时间位置n3处发送时,满足以下至少之一:
    当用户终端只在第一时间位置n1处检测到调度数据的控制信息时,使用{'00','10'}对应的序列发送反馈信息;
    当用户终端只在第二时间位置n2处检测到调度数据的控制信息时,使用{'00','01'}对应的序列发送反馈信息;
    当用户终端在第一时间位置n1和第二时间位置n2处均检测到调度数据的控制信息时,使用{'00','01','10','11'}对应的序列发送反馈信息;
    其中{'00','01','10','11'}为所述一个资源组内的不同资源元素。
  34. 一种信息发送装置,包括:
    接收模块,配置为接收网络侧配置的无线资源;
    获取模块,配置为根据所述无线资源获取一个资源集合;
    发送模块,配置为采用所述资源集合内的一个或多个资源组发送上行信息;
    其中,所述资源集合内的资源组个数Y大于或等于2。
  35. 根据权利要求34所述的装置,其中,所述资源组内包含M个资源元素,其中M为等于或者大于2的整数;每个资源组与其他资源组至少包含一个资源元素不同。
  36. 根据权利要求34所述的装置,其中,所述上行信息包括以下之一:上行控制信息确认指令ACK/非确认指令NACK消息,上行调度请求,ACK/NACK消息和调度请求。
  37. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至33中任一项所述的信息发送方法。
  38. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至33中任一项所述的信息发送方法。
  39. 一种信息发送装置,包括:
    存储器,配置为保存信息发送的程序;
    处理器,配置为运行所述程序,其中,所述程序运行时执行权利要求1至33中任一项所述的信息发送方法。
PCT/CN2018/115279 2017-11-17 2018-11-13 信息发送方法、装置、处理器及存储介质 WO2019096135A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/763,942 US11438900B2 (en) 2017-11-17 2018-11-13 Information transmission method and device, processor, and storage medium
EP18878340.1A EP3713343A4 (en) 2017-11-17 2018-11-13 INFORMATION TRANSFER METHOD AND DEVICE, PROCESSOR AND STORAGE MEDIUM
KR1020207017075A KR102398711B1 (ko) 2017-11-17 2018-11-13 정보 송신 방법, 장치, 프로세서 및 저장 매체
JP2020526590A JP7036308B2 (ja) 2017-11-17 2018-11-13 情報送信方法、装置、プロセッサー及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711147183.XA CN109803393B (zh) 2017-11-17 2017-11-17 信息发送方法及装置
CN201711147183.X 2017-11-17

Publications (1)

Publication Number Publication Date
WO2019096135A1 true WO2019096135A1 (zh) 2019-05-23

Family

ID=66539366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115279 WO2019096135A1 (zh) 2017-11-17 2018-11-13 信息发送方法、装置、处理器及存储介质

Country Status (6)

Country Link
US (1) US11438900B2 (zh)
EP (1) EP3713343A4 (zh)
JP (1) JP7036308B2 (zh)
KR (1) KR102398711B1 (zh)
CN (1) CN109803393B (zh)
WO (1) WO2019096135A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11665693B2 (en) * 2017-06-15 2023-05-30 Panasonic Intellectual Property Corporation Of America Terminal and communication method
CN112399616B (zh) * 2019-08-15 2022-09-09 中国信息通信研究院 一种上行调度资源多配置数据传送方法、设备和系统
US11601977B2 (en) * 2020-04-03 2023-03-07 Qualcomm Incorporated Techniques for collision prioritization based on physical layer priority
US11917627B2 (en) * 2021-04-06 2024-02-27 Qualcomm Incorporated Multiplexing a scheduling request and a hybrid automatic repeat request acknowledgement having different priorities and different physical uplink control channel formats

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283171A (zh) * 2010-11-11 2013-09-04 Lg电子株式会社 无线通信系统中的上行链路控制信息发射/接收方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384078B1 (ko) * 2007-01-10 2014-04-09 삼성전자주식회사 무선통신 시스템에서 애크/내크 채널 자원을 할당하고시그널링하는 방법 및 장치
TWI628933B (zh) * 2009-10-01 2018-07-01 內數位專利控股公司 傳輸上鏈控制資訊的方法及系統
KR101771550B1 (ko) * 2010-10-15 2017-08-29 주식회사 골드피크이노베이션즈 Ack/nack 신호 송수신 방법 및 장치
AR103887A1 (es) * 2015-03-09 2017-06-14 ERICSSON TELEFON AB L M (publ) Canal pucch breve en canal spucch de enlace ascendente
WO2017097581A1 (en) * 2015-12-08 2017-06-15 Nokia Solutions And Networks Oy Hybrid automatic repeat request acknowledgement feedback using periodic and aperiodic physical uplink control channel resources
CN111434163B (zh) * 2017-10-06 2023-11-21 株式会社Ntt都科摩 终端、无线通信方法、基站以及系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283171A (zh) * 2010-11-11 2013-09-04 Lg电子株式会社 无线通信系统中的上行链路控制信息发射/接收方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Rl-1717382, Short PUCCH for UCI up to 2 bits", 3GPP TSG RAN WG1 MEETING 90BIS, 3 October 2017 (2017-10-03), XP051352605 *
See also references of EP3713343A4 *

Also Published As

Publication number Publication date
EP3713343A4 (en) 2021-08-25
US11438900B2 (en) 2022-09-06
EP3713343A1 (en) 2020-09-23
JP2021503237A (ja) 2021-02-04
JP7036308B2 (ja) 2022-03-15
CN109803393A (zh) 2019-05-24
US20200367254A1 (en) 2020-11-19
KR102398711B1 (ko) 2022-05-16
KR20200087213A (ko) 2020-07-20
CN109803393B (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
AU2021212111B2 (en) Uplink transmission method and corresponding equipment
US10673573B2 (en) Uplink transmission method and corresponding equipment
US10601694B2 (en) Method and user equipment for determining control channel resource
CN110582952B (zh) 用于无线通信系统中发送和接收控制信道的方法、装置和系统
US11882547B2 (en) Method and apparatus of operation considering bandwidth part in next generation wireless communication system
CN110168996B (zh) 用于资源块中的物理上行链路控制信道的方法和装置
KR102666201B1 (ko) 무선 통신 시스템에서 데이터 및 제어 정보 송수신 방법 및 장치
JP6949094B2 (ja) ユーザ機器、アクセスネットワークデバイス、ならびにフィードバック情報送信および受信方法
CN115765923A (zh) 发送或接收数据信道和控制信道的方法、装置和系统
KR102083813B1 (ko) 업링크 제어 정보 송신 방법과 수신 방법, 및 관련 장치
WO2019096135A1 (zh) 信息发送方法、装置、处理器及存储介质
WO2017008562A1 (zh) 在上行控制信道上发送信号的方法和装置
US20220216967A1 (en) Control information transmission method, receiving method, device, base station and terminal
US11985660B2 (en) Method and apparatus for transmitting and receiving feedback information in communication system
JP6564052B2 (ja) チャネル状態情報の伝送方法、ユーザ機器、及びアクセス・ネットワーク・デバイス
CN109586875B (zh) 一种发送、接收上行控制信道的方法及装置
WO2018018609A1 (zh) 反馈信息的传输装置、方法以及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020526590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207017075

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018878340

Country of ref document: EP

Effective date: 20200617