WO2017008562A1 - 在上行控制信道上发送信号的方法和装置 - Google Patents

在上行控制信道上发送信号的方法和装置 Download PDF

Info

Publication number
WO2017008562A1
WO2017008562A1 PCT/CN2016/081605 CN2016081605W WO2017008562A1 WO 2017008562 A1 WO2017008562 A1 WO 2017008562A1 CN 2016081605 W CN2016081605 W CN 2016081605W WO 2017008562 A1 WO2017008562 A1 WO 2017008562A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
control channel
sequence
channel
resource
Prior art date
Application number
PCT/CN2016/081605
Other languages
English (en)
French (fr)
Inventor
张淑娟
毕峰
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017008562A1 publication Critical patent/WO2017008562A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/12Generation of orthogonal codes

Definitions

  • the present application relates to, but is not limited to, the field of communications, and in particular, to a method and apparatus for transmitting signals on an uplink control channel.
  • the transmission of some uplink control channels has higher performance requirements, because the transmission result of this information controls the downlink data retransmission, thereby affecting the resource utilization efficiency.
  • the protocol now uses a PRB-Pair (Physical Resource Block-Pair) to transmit ACK/NACK information, which effectively enhances the transmission performance of this information.
  • PRB-Pair Physical Resource Block-Pair
  • multi-user orthogonal multiplexing is achieved by time division and frequency domain code division multiplexing.
  • the demodulation reference signal and the control channel data are time-division multiplexed, if the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols in one slot is an odd number, the number of OFDM symbols occupied by the control channel information bits and the number thereof The number of OFDM symbols occupied by the reference signal cannot be equal, and there will be an idle orthogonal code.
  • the demodulation reference signal and the control channel data are frequency division multiplexed, if the number of subcarriers is an odd number, there is also an idle orthogonal code.
  • the number of OFDM symbols (or the number of subcarriers) occupied by the control channel data tends to be larger than that occupied by the reference signal.
  • the number of OFDM symbols is 6, but considering that the control channel data is transmitted with 4 OFDM symbols to satisfy the transmission performance of the control channel data, the demodulation reference signal can only occupy 2 OFDM symbols, and the multiplexed
  • the number of control channels is 2 in the time domain. At this time, the control channel data has two time-domain idle orthogonal codes, and these idle orthogonal codes that are not used by the control channel data can be used to transmit other signals, and the interference caused to the relevant control channels is limited.
  • the PUCCH Physical Uplink Control Channel
  • the PUCCH Physical Uplink Control Channel format format1/1a/1b is used to transmit the corresponding PDSCH (Physical Downlink).
  • ACK/NACK Response/No Answer
  • SR Service Request
  • the PUCCH format1/1a/1b achieves multi-user multiplexing by orthogonal CDMA (Cyclic Shift) sequences in the frequency domain and multi-user multiplexing by orthogonal code sequences in the time domain.
  • An uplink control channel resource is jointly determined by the CS sequence resource and the orthogonal code sequence resource.
  • PRB physical resource block
  • Embodiments of the present invention provide a method and apparatus for transmitting a signal on an uplink control channel, which can enhance uplink control channel coverage.
  • a method of transmitting a signal on an uplink control channel comprising:
  • the terminal sends a channel measurement signal or a precoding selection signal through a resource formed by the idle orthogonal code and the CS sequence on the physical resource where the corresponding uplink control channel is located, and/or other physical resources determined by the physical resource;
  • the channel measurement signal is a signal that is not subjected to precoding processing, and the precoding selection signal is a precoded signal.
  • the idle orthogonal code satisfies one of the following characteristics:
  • the idle uplink control channel is allocated to the terminal-specific uplink control channel, and the terminal does not send uplink feedback information or uplink request information on the idle uplink control channel in the current transmission period.
  • the demodulation reference signal of the uplink control channel when the uplink control channel reaches multi-user multiplexing in the time domain by the orthogonal code, the demodulation reference signal of the uplink control channel also reaches the multi-user multiplexing in the time domain by the orthogonal code, if the uplink control channel occupies the time domain
  • the number of symbols is not equal to the number of time domain symbols occupied by the demodulation reference signal of the uplink control channel, and the unused orthogonal codes are unused orthogonal codes on all uplink control channels, or demodulation corresponding to all uplink control channels.
  • the unused orthogonal code of the reference signal when the uplink control channel reaches multi-user multiplexing in the time domain by the orthogonal code, the demodulation reference signal of the uplink control channel also reaches the multi-user multiplexing in the time domain by the orthogonal code, if the uplink control channel occupies the time domain
  • the number of symbols is not equal to the number of time domain symbols occupied by the demodul
  • the number of time domain symbols occupied by the uplink control channel is M
  • the number of time domain symbols occupied by the demodulation reference signal of the uplink control channel is N
  • M>N M and N are positive integers, wherein all uplink control If the channel occupies N of the M-dimensional orthogonal codes, the unused orthogonal codes of the uplink control channel are MN orthogonal codes in the M-dimensional orthogonal code.
  • the number of time domain symbols occupied by the uplink control channel is M
  • the number of time domain symbols occupied by the demodulation reference signal of the uplink control channel is N
  • M>N M and N are positive integers
  • the demodulation reference signal corresponding to the channel occupies M of the N-dimensional orthogonal codes
  • the unused orthogonal codes of the demodulation reference signal corresponding to the uplink control channel are NM orthogonal codes in the N-dimensional orthogonal code.
  • the orthogonal code is an orthogonal code that is not used by the uplink control channel, or is an unused orthogonal code of a demodulation reference signal corresponding to an uplink control channel
  • the CS sequence is shifted by a different cyclic sequence of a root sequence. a set of sequences obtained;
  • the CS sequence is a CS sequence occupied on the idle uplink control channel
  • the CS sequence is a CS sequence occupied by a demodulation reference signal on the idle uplink control channel.
  • CS sequence is a sequence set obtained by different cyclic shifts of a root sequence
  • a channel measurement or precoding selection consisting of the one idle orthogonal code and the one CS sequence
  • the CS sequence in the selected resource is a sequence in the set of sequences.
  • the CS sequence in the channel measurement or precoding selection resource is obtained through high-level configuration, or is obtained by downlink control information (DCI, Downlink Control Information) signaling, or according to existing uplink control channel information. owned.
  • DCI Downlink Control Information
  • the terminal receives one or more of the CS sequences in one transmission period;
  • the terminal selects a channel measurement period or a channel measurement or precoding selection according to a channel measurement signal according to a channel measurement signal.
  • Number of resources And at least one of the uplink control channel information and the CS sequence index in the CS sequence set occupied by the channel measurement or precoding selection resource; wherein the channel measurement signal transmission period is two The interval between the complete transmission channel measurement signal transmission process.
  • the channel measurement signal transmission period, the number of channel measurement or precoding selected resources occupied in the one transmission period At least one of them is configured according to a high layer or a fixed value set in advance.
  • the root sequence corresponds to an uplink control channel of the terminal.
  • the root sequence is the same.
  • the set of sequences includes all cyclic shifts of the root sequence
  • the sequence set includes a partial cyclic shift of the root sequence, wherein the cyclic shift interval is equal to a cyclic shift interval of the uplink control channel
  • the minimum cyclic shift of these sets corresponds in turn in Select a sequence set that satisfies one of the following characteristics:
  • the unused orthogonal code is an orthogonal code that is not used by the uplink control channel
  • the signal sent by the sequence in the sequence set and an orthogonal code that is not used by the uplink control channel Minimizing the interference on the signals on the resources occupied by all the uplink control channels and other orthogonal codes that are not used on all control channels;
  • the sequence in the sequence set and the demodulation reference signal corresponding to the uplink control channel a signal transmitted on a resource composed of an unused orthogonal code, a signal on a resource occupied by a demodulation reference signal of all uplink control channels and other unused orthogonal codes of demodulation reference signals corresponding to all uplink control channels The resulting interference is minimal.
  • the unused orthogonal code For M3 if the CS sequences occupy the same between different terminals, the interference caused by the signal transmitted on the orthogonal code M3 resource to the signal transmitted on the orthogonal code M1 resource is orthogonal to the signal pair transmitted on the orthogonal code M3 resource.
  • the interference caused by the signal transmitted on the code M0 or M2 resource is small, and the CS sequence set corresponding to the unused orthogonal code M3 is equal to the set of CS sequences corresponding to all uplink control channels whose orthogonal codes are M1.
  • a cs (n s , l) represents the cyclic shift of the CS sequence
  • a B (n s , l) is a positive integer intermediate variable in the cyclic shift, the range is ⁇ 0 ⁇ N f -1 ⁇
  • n s represents a The slot number in the radio frame, whose value belongs to the set ⁇ 0 ⁇ N slot -1 ⁇ , N slot represents the number of slots in one radio frame; l represents the OFDM symbol number in one slot, and its value belongs to the set ⁇ 0 ⁇ N OFDM -1 ⁇ , N OFDM represents the number of OFDM symbols in one slot; N f represents the length of the CS sequence.
  • n s denotes a slot number in a radio frame, the value of which belongs to the set ⁇ 0 to N slot -1 ⁇
  • N slot represents the number of slots in one radio frame
  • l represents the OFDM symbol number in one slot
  • the value belongs to the set ⁇ 0 ⁇ N OFDM -1 ⁇
  • N OFDM represents the number of OFDM symbols in one slot
  • a B1 is a positive integer intermediate variable whose value belongs to the set ⁇ 0 ⁇ N f -1 ⁇ or belongs to a subset of the set ⁇ 0 ⁇ N f -1 ⁇ , and N f represents the length of the CS sequence; Is the number of subcarriers included in a physical resource block.
  • a B1 a B1 an odd time slot occurs even slot-based hopping.
  • the transmitting the channel measurement signal or the precoding selection signal by using the resource consisting of the idle orthogonal code and the CS sequence includes:
  • the sending signal is:
  • r u,v (n) denotes the root sequence obtained by u,v, N f is a frequency domain spreading factor, and M t is the orthogonal code length used for time domain expansion,
  • w(m) is the orthogonal code length of the time domain extension
  • a 1; if the transmission precoding selection Is the precoding weight of the ith precoding vector on the pth antenna.
  • n is the frequency domain subcarrier number occupied by the uplink control channel
  • the subcarriers on the PRB occupied by the uplink control channel are sequentially numbered, and the n value corresponding to the smallest subcarrier is 0;
  • the orthogonal code is an unused orthogonal code of the uplink control channel or an idle uplink control signal
  • the orthogonal code occupied by the channel, where m is the OFDM symbol number occupied by the uplink control channel, the OFDM symbol sequence number occupied by the uplink control channel, and the minimum symbol index corresponding to m is 0;
  • the orthogonal code is an orthogonal code occupied by the demodulation reference signal corresponding to the uplink control channel
  • m is an OFDM symbol number occupied by the demodulation reference signal of the uplink control channel
  • the OFDM occupied by the demodulation reference signal of the uplink control channel The symbol sequence number, and the m corresponding to the smallest symbol index is 0.
  • the terminal receives an indication of transmitting a channel measurement signal in one of the following manners:
  • the terminal After the terminal receives the physical downlink shared channel (PDSCH) transmission of the terminal, starting a process of transmitting a channel measurement signal on the idle resource;
  • PDSCH physical downlink shared channel
  • the terminal After receiving the indication of the transmission channel measurement signal transmitted through the PDSCH, the terminal starts a process of transmitting a channel measurement signal on the idle resource;
  • the terminal After the terminal synchronizes with the server, periodically starts a process of transmitting a channel measurement signal on the idle resource, where the period is notified by a high layer or is fixed;
  • the terminal After receiving the high layer signaling, the terminal starts a process of transmitting a channel measurement signal on the idle resource according to the high layer signaling;
  • the terminal After receiving the DCI signaling, the terminal starts a process of transmitting a channel measurement signal on the idle resource according to the DCI signaling.
  • the method further includes:
  • the terminal After the terminal initiates a process of transmitting a channel measurement signal on the idle resource, the terminal transmits a corresponding channel measurement signal or precoding selection on one or more channel measurement or precoding selection resources every other transmission interval.
  • a signal wherein a channel measurement or precoding selection resource consists of the one idle orthogonal code and the one CS sequence.
  • the transmission interval is obtained by one of the following ways:
  • the channel measurement period is greater than or equal to The time required for a channel measurement or precoding selection signal transmission process is completed for all terminals sharing this resource.
  • the terminal performs a process of transmitting a channel measurement signal on an idle resource, and completes a complete channel measurement signal or a precoding selection signal transmission process, and the number of channel measurement resources occupied by the terminal is obtained by any one of the following methods:
  • the physical resource is obtained by one of the following methods:
  • the physical resources occupied by the uplink control channel notified by the upper layer are the same;
  • the variables related to the uplink control channel notified by the upper layer and the total number of control channel elements (CCEs) detected by the terminal when the channel measurement signal is transmitted are determined by the total number of CCCs .
  • n s represents the slot number in a radio frame, and its value belongs to the set ⁇ 0 ⁇ Nslot -1 ⁇ , and Nslot represents the number of slots in a radio frame.
  • m is the intermediate variable, and its value is obtained by the following formula:
  • N PUCCH indicates the logical number of the uplink control channel format1/1a/1b
  • c indicates the demodulation reference of the uplink control channel or the uplink control channel.
  • the number of orthogonal code sequences occupied by the signal in the time domain Indicates the number of cyclic shifts occupied by the uplink control channel format1/1a/1b of the hybrid resource of the uplink control channel format1/1a/1b and format2/2a/2b, Indicates a minimum cyclic shift interval of the CS sequence occupied by the uplink control channel;
  • N f represents the length of the CS sequence
  • the uplink control channel resources are configured by the upper layer.
  • the maximum index value of the uplink control channel determined by the lowest CCE index of the DCI indicating the PDSCH transmission parameter, and the N CCE indicates the total number of downlink control channel elements CCE detected by the terminal when the channel measurement signal transmission process is started;
  • the method further includes:
  • the terminal receives a precoding selection result fed back by the base station side, where the precoding selection result includes a precoding vector or a codebook index or a precoding index, and is used to determine physical resources of the first time slot and physical space of the second time slot. Precoding on resources.
  • the terminal receives the precoding selection result fed back by the base station side by:
  • An apparatus for transmitting a signal on an uplink control channel comprising:
  • the first sending module is configured to: send a channel measurement signal by using a resource formed by an idle orthogonal code and a CS sequence on a physical resource where the corresponding uplink control channel is located, and/or other physical resources determined by the physical resource Or precoding the selection signal; wherein the channel measurement signal is a signal that is not subjected to precoding processing, and the precoding selection signal is a precoded signal.
  • the idle orthogonal code satisfies one of the following features:
  • the idle uplink control channel is allocated to the terminal-specific uplink control channel, and the terminal does not send uplink feedback information or uplink request information on the idle uplink control channel in the current transmission period.
  • the demodulation reference signal of the uplink control channel when the uplink control channel reaches multi-user multiplexing in the time domain by the orthogonal code, the demodulation reference signal of the uplink control channel also reaches the multi-user multiplexing in the time domain by the orthogonal code, if the uplink control channel occupies the time domain
  • the number of symbols is not equal to the number of time domain symbols occupied by the demodulation reference signal of the uplink control channel, and the unused orthogonal codes are unused orthogonal codes on all uplink control channels, or demodulation corresponding to all uplink control channels.
  • the unused orthogonal code of the reference signal when the uplink control channel reaches multi-user multiplexing in the time domain by the orthogonal code, the demodulation reference signal of the uplink control channel also reaches the multi-user multiplexing in the time domain by the orthogonal code, if the uplink control channel occupies the time domain
  • the number of symbols is not equal to the number of time domain symbols occupied by the demodul
  • the number of time domain symbols occupied by the uplink control channel is M
  • the number of time domain symbols occupied by the demodulation reference signal of the uplink control channel is N
  • M>N M and N are positive integers, wherein all uplink control If the channel occupies N of the M-dimensional orthogonal codes, the unused orthogonal codes of the uplink control channel are MN orthogonal codes in the M-dimensional orthogonal code.
  • the number of time domain symbols occupied by the uplink control channel is M
  • the number of time domain symbols occupied by the demodulation reference signal of the uplink control channel is N
  • M ⁇ N, M and N are positive integers
  • the demodulation reference signal corresponding to the channel occupies M of the N-dimensional orthogonal codes
  • the unused orthogonal codes of the demodulation reference signal corresponding to the uplink control channel are NM orthogonal codes in the N-dimensional orthogonal code.
  • the orthogonal code is an orthogonal code that is not used by the uplink control channel, or is an unused orthogonal code of a demodulation reference signal corresponding to an uplink control channel
  • the CS sequence is shifted by a different cyclic sequence of a root sequence. a set of sequences obtained;
  • the CS sequence is a CS sequence occupied on the idle uplink control channel
  • the CS sequence is a CS sequence occupied by a demodulation reference signal on the idle uplink control channel.
  • the CS sequence in a channel measurement or precoding selection resource composed of the one idle orthogonal code and the one CS sequence is A sequence in the set of sequences.
  • the CS sequence in the one channel measurement or precoding selection resource is obtained through a high layer configuration, or obtained through DCI signaling, or obtained according to existing uplink control channel information.
  • the CS sequence in the one channel measurement or precoding selection resource is obtained through high layer configuration or DCI signaling, receiving one or more of the CS sequences in one transmission period;
  • the CS sequence in the one channel measurement or precoding selection resource is obtained according to the existing uplink control channel information, according to the channel measurement signal transmission period, the channel measurement occupied in one transmission period, or the precoding selected resource number And at least one of the uplink control channel information and the CS sequence index in the CS sequence set occupied by the channel measurement or precoding selection resource; wherein the channel measurement signal transmission period is two The interval between the complete transmission channel measurement signal transmission process.
  • the channel measurement signal transmission period, the number of channel measurement or precoding selected resources occupied in the one transmission period At least one of them is configured according to a high layer or a fixed value set in advance.
  • the root sequence corresponds to an uplink control channel of the terminal.
  • the root sequence is the same.
  • the set of sequences includes all cyclic shifts of the root sequence
  • the sequence set includes a partial cyclic shift of the root sequence, wherein the cyclic shift interval is equal to a cyclic shift interval of the uplink control channel
  • the unused orthogonal code is an orthogonal code that is not used by the uplink control channel
  • the signal sent by the sequence in the sequence set and an orthogonal code that is not used by the uplink control channel causing minimal interference to signals on resources occupied by all uplink control channels and other orthogonal codes not used on all uplink control channels;
  • the sequence in the sequence set and the demodulation reference signal corresponding to the uplink control channel a signal transmitted on a resource composed of an unused orthogonal code, a signal on a resource occupied by a demodulation reference signal of all uplink control channels and other unused orthogonal codes of demodulation reference signals corresponding to all uplink control channels The resulting interference is minimal.
  • the unused orthogonal code For M3 if the CS sequences occupy the same between different terminals, the interference caused by the signal transmitted on the orthogonal code M3 resource to the signal transmitted on the orthogonal code M1 resource is orthogonal to the signal pair transmitted on the orthogonal code M3 resource.
  • the interference caused by the signal transmitted on the code M0 or M2 resource is small, and the CS sequence set corresponding to the unused orthogonal code M3 is equal to the set of CS sequences corresponding to all uplink control channels whose orthogonal codes are M1.
  • a cs (n s , l) represents the cyclic shift of the CS sequence
  • a B (n s , l) is a positive integer intermediate variable in the cyclic shift, the range is ⁇ 0 ⁇ N f -1 ⁇
  • ns represents a wireless
  • n s denotes a slot number in a radio frame, the value of which belongs to the set ⁇ 0 to N slot -1 ⁇
  • N slot represents the number of slots in one radio frame
  • l represents the OFDM symbol number in one slot
  • the value belongs to the set ⁇ 0 ⁇ N OFDM -1 ⁇
  • N OFDM represents the number of OFDM symbols in one slot
  • a B1 is a positive integer intermediate variable whose value belongs to the set ⁇ 0 ⁇ N f -1 ⁇ or belongs to a subset of the set ⁇ 0 ⁇ N f -1 ⁇ , and N f represents the length of the CS sequence.
  • a B1 a B1 an odd time slot occurs even slot-based hopping.
  • the sending signal is:
  • r u,v (n) denotes the root sequence obtained by u,v, N f is a frequency domain spreading factor, and M t is the orthogonal code length used for time domain expansion,
  • w(m) is the orthogonal code length of the time domain extension
  • a 1; if the transmission precoding selection Is the precoding weight of the ith precoding vector on the pth antenna.
  • n is the frequency domain subcarrier number occupied by the uplink control channel, and the uplink control channel accounts for The subcarriers on the PRB are sequentially numbered, and the n value corresponding to the smallest subcarrier is 0;
  • the orthogonal code is an orthogonal code that is not used by the uplink control channel or an orthogonal code occupied by the idle uplink control channel
  • m is an OFDM symbol number occupied by the uplink control channel, and an OFDM symbol sequence number occupied by the uplink control channel, and The minimum symbol index corresponding to m is 0;
  • the orthogonal code is an orthogonal code occupied by the demodulation reference signal corresponding to the uplink control channel
  • m is an OFDM symbol number occupied by the demodulation reference signal of the uplink control channel
  • the OFDM occupied by the demodulation reference signal of the uplink control channel The symbol sequence number, and the m corresponding to the smallest symbol index is 0.
  • the device further includes: a first receiving module configured to receive an indication of transmitting a channel measurement signal in one of the following manners:
  • the terminal After the terminal synchronizes with the server, periodically starts a process of transmitting a channel measurement signal on the idle resource, where the period is notified by a high layer or is fixed;
  • the device further comprises:
  • a second sending module configured to: send, at every one transmission interval, a corresponding channel measurement signal or a precoding selection signal on one or more channel measurement or precoding selection resources; wherein, one channel measurement or precoding selection resource is selected.
  • the transmission interval is obtained by one of the following ways:
  • the channel measurement period is greater than or equal to the time required for all terminals sharing the resource to complete a channel measurement or precoding selection signal transmission process.
  • the first sending module performs a process of transmitting a channel measurement signal on an idle resource, and completes a complete channel measurement signal or a precoding selection signal transmission process, and the number of channel measurement resources occupied is obtained by any one of the following methods. :
  • the physical resource is obtained by one of the following methods:
  • the physical resources occupied by the uplink control channel notified by the upper layer are the same;
  • the uplink control channel related variable notified by the upper layer and the total number of CCEs detected by the terminal N CCE when the channel measurement signal is transmitted are jointly determined.
  • ns represents a slot number in a radio frame, the value of which belongs to the set ⁇ 0 to N slot -1 ⁇
  • N slot represents the number of slots in a radio frame.
  • N PUCCH indicates the logical number of the uplink control channel format1/1a/1b
  • c indicates the demodulation reference of the uplink control channel or the uplink control channel.
  • the number of orthogonal code sequences occupied by the signal in the time domain Indicates the number of cyclic shifts occupied by the uplink control channel format1/1a/1b of the hybrid resource of the uplink control channel format1/1a/1b and format2/2a/2b, Indicates a minimum cyclic shift interval of the CS sequence occupied by the uplink control channel;
  • N f represents the length of the CS sequence
  • the uplink control channel resources are configured by the upper layer.
  • the maximum index value of the uplink control channel determined by the lowest CCE index of the DCI indicating the PDSCH transmission parameter, and the N CCE indicates the total number of downlink control channel elements CCE detected by the terminal when the channel measurement signal transmission process is started;
  • the device further comprises:
  • a second receiving module configured to receive a precoding selection result fed back by the base station side, where the precoding selection result includes a precoding vector or a codebook index or a precoding index, and is used to determine the first time slot physical resource and the first Precoding on a two-slot physical resource.
  • the second receiving module is configured to receive a precoding selection result of the base station side feedback by:
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method for transmitting a signal on an uplink control channel when the computer executable instructions are executed.
  • precoding for uplink control channel transmission is obtained, thereby achieving uplink control channel coverage enhancement. purpose.
  • Channel measurement or precoding selection signal transmission is performed on the uplink control channel idle resource to minimize interference to the uplink control channel.
  • the channel measurement or precoding selection signal transmission process can be completed by using limited upper layer signaling notification and combining the existing uplink control channel related information of the terminal.
  • the transmitted channel measurement and precoding selection signals can also be used for other purposes and are not limited to precoding selection of the uplink control channel.
  • FIG. 1 is a schematic diagram of transmitting a channel measurement or precoding selection reference signal at intervals of T gap according to Embodiment 2 of the present invention
  • FIGS. 2a, 2b, and 2c are schematic diagrams showing code division multiplexing of a PUCCH channel and channel measurement or precoding selection resource in a normal cyclic prefix (NormalCP) according to Embodiment 3 of the present invention
  • 3a, 3b, and 3c are schematic diagrams of another PUCCH channel and channel measurement or precoding selection resource code division multiplexing according to Embodiment 3 of the present invention.
  • 4a, 4b, and 4c are schematic diagrams showing code division multiplexing of a PUCCH channel and channel measurement or precoding selection resource when the CP is extended according to Embodiment 3 of the present invention
  • FIG. 5a, FIG. 5b and FIG. 5c are schematic diagrams showing another PUCCH channel and channel measurement or precoding selection resource code division multiplexing when the CP is extended according to Embodiment 3 of the present invention
  • FIG. 6 is a schematic diagram of Embodiment 3 of the present invention, when the CP is extended, Schematic diagram of PUCCH channel and channel measurement or precoding selection resource code division multiplexing;
  • FIG. 7 is a sequence of orthogonal code index of length 4 and a corresponding orthogonal code (OCC) sequence according to Embodiment 3 of the present invention.
  • FIG. 9a and FIG. 9b are schematic diagrams of a PUCCH format 1/1a/1b channel and channel measurement or precoding selection in a PRB according to Embodiment 3 of the present invention.
  • FIG. 10 is a schematic diagram of an apparatus for transmitting a signal on an uplink control channel according to an embodiment of the present invention.
  • the terminal starts the channel measurement of the PUCCH format 1/1a/1b channel or the transmission process of the precoding selection signal in one of the following ways:
  • Manner 1 The terminal receives its corresponding PDSCH transmission in the nth subframe, and the terminal starts its channel measurement or precoding selection signal transmission process in the (n+1)th subframe;
  • Manner 2 After the terminal synchronizes with the server, the terminal periodically performs channel measurement or precoding selection signal transmission on the PUCCH format1/1a/1b channel, and the terminal starts channel measurement or precoding selection signal transmission process in subframe n.
  • Manner 3 The higher layer signaling notifies the terminal to start channel measurement or precoding selection signal transmission of the PUCCH format 1/1a/1b channel in the nth subframe;
  • Manner 4 triggering the terminal to start channel measurement or precoding selection signal transmission of the PUCCH format 1/1a/1b channel in the nth subframe by using DCI (Downlink Control Information); for example, the UE is in the nk subframe Received start PUCCH format1/1a/1b
  • DCI Downlink Control Information
  • the terminal starts the channel measurement or the precoding selection signal transmission process of the PUCCH format 1/1a/1b channel in the nth subframe, and the k value is greater than or equal to 1, which is fixed. value.
  • the terminal starts channel measurement or precoding selection signal transmission in the nth subframe, and transmits channel measurement or precoding selection signal in the nth subframe, but the channel measurement or precoding selection resource that can be allocated to one terminal in one TTI is limited. Therefore, the terminal cannot complete all channel measurement or precoding selection signal transmission in one TTI, that is, the base station side cannot obtain all physical channel information, or all possible beam reception performance, so that the base station side cannot obtain optimal precoding or the most The precoding sequence is excellent. In this case, the base station side needs to select channel information based on channel measurement or precoding on multiple TTIs to obtain all physical channel information, or all possible beam reception performance, before obtaining optimal precoding or The optimal precoding sequence is fed back to the terminal.
  • the terminal After the channel measurement or precoding selection is initiated, the terminal sends a channel measurement or precoding selection signal on the channel measurement or precoding selection resource of the nth subframe, and needs to be separated by T gap subframes, that is, in the n+T gap sub-frame.
  • the frame transmits the unsent channel measurement and the precoding selection signal, where T gap represents the minimum interval between the transmission of the channel measurement signals of the terminal, and the unit is the transmission time interval TTI (Transmission Time Interval).
  • TTI Transmission Time Interval
  • the physical port of the terminal is 6, and one channel measurement resource corresponds to one physical port.
  • the terminal needs to occupy 6 channel measurement resources.
  • the base station obtains the physical channel H based on the channel measurement reference signals on the channel measurement resources, thereby obtaining a precoding selection result, and feeding back the precoding selection result to the one subframe frame. Terminal, the primary channel measurement process ends.
  • the channel measurement process of the PUCCH format 1/1a/1b is started periodically, after the channel measurement is started in the nth subframe, part of the channel measurement signal is transmitted every T gap subframe, and the channel measurement is performed three times in one cycle. After the frame, the transmission of all channel measurement signals is completed.
  • the base station side obtains a physical channel measurement based on the channel measurement reference signal on the channel measurement resource on the channel measurement subframe, and obtains a precoding selection result.
  • the precoding selection result is fed back to the terminal in subsequent subframes. Either through high-level signaling feedback or dynamic signaling feedback, where the interval between the last channel measurement subframe and the feedback subframe may be fixed or not fixed.
  • T is the channel measurement period, and a new channel measurement process is started after the period is reached.
  • the channel measurement or precoding selection signal transmission process is initiated in another manner, after a channel measurement or precoding selection is completed, a new channel measurement or precoding is performed after waiting for an event of the start channel measurement or the precoding selection signal transmission process to occur. Select the transmission of the signal.
  • PUCCH format1/1a/1b is multiplexed in the frequency domain by CS, and multiplexed in the time domain by orthogonal codes.
  • the number of symbols in the PUCCH format1/1a/1b time domain and the DMRS (Demodulation Reference Signal, solution) The number of time domain symbols of the reference signal is different.
  • PUCCH format1/1a/1b does not reach the multiplexing limit in the time domain, and there is still, because the channel measurement or precoding selection does not require DMRS, then these residuals can be utilized.
  • Time domain orthogonal code is
  • the same CS can only multiplex up to 3 PUCCH format1/1a/1b channels in the time domain, and the channel measurement or precoding selection signals need not be used.
  • the DMRS is used as the channel estimation reference signal, so the orthogonal code sequence not used in the relevant protocol, that is, [1, 1, -1, -1] can be used. In this case, if the second time slot is short format, it cannot be used. In this sequence, the corresponding channel measurement or precoding selection signal may not be transmitted. If there are other channel measurement or precoding selection subframes, the base station side may also obtain the precoding selection result.
  • the primary channel measurement process requires three channel measurement subframes. If only one subframe is in the short format, the base station side can still obtain suboptimal precoding selection based on the channel measurement signals sent by other channel measurement subframes. result. If all channel measurement or precoding selection subframes of a terminal have SRS (Sounding Reference Signal) transmission, high-level configuration is required to avoid channel measurement or precoding selection in these subframes.
  • SRS Sounding Reference Signal
  • PUCCH format1/1a/1b can only be multiplexed at this time.
  • the sequence used is orthogonal code 0 and Orthogonal code 2, namely [1,1,1,1] and [1,-1,-1,1], at this time the channel measurement or precoding selection resource can use the unused sequence, ie orthogonal code 1 And the orthogonal code 3, that is, [1, -1, 1, -1] and [1, 1, -1, -1], and if it is a short format for the second time slot, [1, e can be used. J2 ⁇ /3 , e j4 ⁇ /3 ], or not.
  • FIG. 2a, 2b, and 2c are schematic diagrams of PUCCH format1/1a/1b channel and channel measurement or precoding selection resource code division multiplexing on a specific PRB-Pair in Normal CP
  • FIG. 2a is a schematic diagram. Schematic diagram of time
  • Figure 2b is Schematic diagram
  • Figure 2c is Schematic diagram.
  • Bi denotes an independent channel measurement or precoding selection resource
  • UEi denotes an independent PUCCH format1/1a/1b channel.
  • a channel measurement or precoding selection resource needs to be shared among multiple terminals, and time division multiplexing between terminals.
  • T gap 6.
  • T gap selects the number of terminals to select resources based on shared channel measurement or precoding and the number of channel measurements or precodings allocated to the terminal at a time. Jointly, the T gap and a B1 information is obtained based on the following formula:
  • n is an index of channel measurement or precoding selection resources occupied by the terminal in one physical resource block pair (PRB-Pair) , It is the uplink control channel index of the code division multiple access multiplexed by the terminal, which is given by the following formula.
  • n s is the slot index.
  • the signal on the channel measurement or precoding selection resource on the PRB-Pair is almost orthogonal to the PUCCH format1/1a/1b channel in the PRB, and the orthogonal code 0 and the orthogonal code 2 are considered.
  • the orthogonal code 1 and the orthogonal code 3 (the orthogonal code sequence index of length 4 and its corresponding orthogonal code sequence are as shown in FIG. 7) have relatively large interference, so the orthogonal code 3 and the orthogonal code 0 are avoided as much as possible.
  • the channel of the orthogonal code 2 occupies the same CS resource.
  • FIG. 3a, 3b, and 3c are schematic diagrams of PUCCH format1/1a/1b channel and channel measurement or precoding selection resource code division multiplexing on another specific PRB-Pair, in FIG. 3a, FIG. Schematic diagram of time, Figure 3b is Schematic diagram, Figure 3c is Schematic diagram.
  • Bi denotes an independent channel measurement or precoding selection resource
  • UEi denotes an independent PUCCH format1/1a/1b channel.
  • channel measurement or precoding selection resources occupying the same CS resource as the orthogonal code 0 and the orthogonal code 2 can be allocated to the low speed user.
  • B0, B2, B4, B6, B8, B10 can be assigned to low-speed users for channel measurement or precoding selection.
  • a B1 belongs to ⁇ 0 to N'-1 ⁇
  • T gap and a B1 are obtained by the following formula:
  • n is an index of channel measurement or precoding selection resources occupied by the terminal in one physical resource block pair, It is the orthogonal code index occupied by the uplink control channel of the terminal.
  • FIG. 4a, 4b, and 4c are schematic diagrams of coexistence code division multiplexing of PUCCH format1/1a/1b channels and channel measurement or precoding selection resources on a specific PRB-Pair when the CP is extended
  • FIG. 4a is a schematic diagram
  • FIG. Schematic diagram of time
  • Figure 4b is Schematic diagram
  • Figure 4c is Schematic diagram.
  • Bi denotes an independent channel measurement or precoding selection resource
  • UEi denotes an independent PUCCH format1/1a/1b channel.
  • the channel measurement or precoding selection resource occupying the orthogonal code 1 may be allocated to the terminal occupying the PUCCH format1/1a/1b channel of the orthogonal code 0, and the channel measurement or precoding selection resource allocation occupying the orthogonal code 3
  • a B1 belongs to ⁇ 0 to N'-1 ⁇
  • the CS resource and the T gap corresponding to the channel measurement or precoding selection resource can be obtained based on the following formula:
  • FIG. 5a, 5b, and 5c are schematic diagrams of coexistence code division multiplexing of PUCCH format1/1a/1b channels and channel measurement or precoding selection resources on another specific PRB-Pair when the CP is extended
  • FIG. 5a is a schematic diagram. Schematic diagram of time
  • Figure 5b is Schematic diagram
  • Figure 5c is Schematic diagram. Where Bi denotes an independent channel measurement or precoding selection resource, and UEi denotes an independent PUCCH format1/1a/1b channel.
  • the channel measurement or precoding selection resource occupying the orthogonal code 1 may be allocated to the terminal occupying the PUCCH format1/1a/1b channel of the orthogonal code 0, and the channel measurement or precoding selection resource allocation occupying the orthogonal code 3 A terminal for a PUCCH format1/1a/1b channel occupying orthogonal code 2.
  • CS resource and T gap corresponding to the channel measurement or precoding selection resource can be obtained based on the following formula:
  • FIG. 6 is when the CP is extended, Another schematic diagram of PUCCHformat1/1a/1b channel and channel measurement or precoding selection resource code division multiplexing. At this time, a B1 belongs to then:
  • the CS sequence resource of the channel measurement or precoding selection resource occupied by the terminal is obtained based on the related information of the existing PUCCH format 1/1a/1b channel of the terminal, and the CS sequence resource of the channel measurement or precoding selected resource occupied by the terminal Another way is through high-level signaling.
  • B0 to B1 are allocated to terminals UE0 to UE1, UE12 to UE13, and UE24 to UE25.
  • UE0 to UE1, UE12 to UE13, and UE24 to UE25 share B0, and B1 channel measurement or precoding selects resources.
  • These shared channel measurement or precoding selection resources can be time division multiplexed between terminals.
  • the base station side selects resources based on the channel measurement or precoding required by the terminal and the channel measurement or precoding selection resources available in one TTI, and notifies the terminal T gap through high layer signaling. Assuming that the channel measurement or precoding selection resource required for each channel primary channel measurement or precoding selection is 6, and the channel measurement or precoding selection resource allocated to the terminal in one subframe is 2, then 3 channel measurements or 3 channel measurements are required. Precoding selects resources, and the terminal can complete all channel measurement or precoding selection signal transmission required for channel measurement or precoding selection signal transmission. There are two ways:
  • the terminal sharing the channel measurement or precoding selection resource occupies the channel measurement or precoding selection resource;
  • T gap is notified by higher layer signaling.
  • the third way of channel measurement or precoding of the CS sequence resources of the selected resource occupied by the terminal is through dynamic signaling.
  • the orthogonal code sequence resources and CS resources of PUCCH format1/1a/1b are obtained by the following formula:
  • the available orthogonal codes for channel measurement or precoding selection resources can be as follows:
  • Corresponding orthogonal code which is based on the above formula
  • the orthogonal code index of length 4 and its corresponding sequence are as shown in FIG. 7.
  • the CS resource of the channel measurement or precoding selection resource is also the CS occupied by PUCCH format1/1a/1b.
  • the resource is obtained by the following formula:
  • the second type [1, 1, -1, -1], if the second time slot is in a short format, the corresponding channel measurement or precoding selection signal is not sent;
  • the orthogonal code sequence corresponding to the demodulation reference signal resource is a DFT (Discrete Fourier Transform) sequence of length 3, and its sequence index based on owned given.
  • the orthogonal code index of length 4 and its corresponding sequence are as shown in FIG.
  • UE0 can schedule a channel measurement or precoding selection signal transmission on a channel occupied by its PUCCH format 1/1a/1b in a subframe in which it does not have PUCCH format1/1a/1b transmission.
  • the demodulation reference signal resources determined by these two resources can also be used for channel measurement of this terminal or transmission of precoding selection signals.
  • the base station should avoid scheduling other terminals to transmit PUCCHformat1/1a/1b channels or channel measurement or precoding selection signals on these resources.
  • the available orthogonal code sequences for channel measurement or precoding selection resources may be as follows:
  • the second type [1,1,-1,-1] and [1,-1,-1,1]. If the second time slot is a short format, the orthogonal code is [1, e j2 ⁇ /3 , e j4 ⁇ /3 ];
  • this Corresponding demodulation reference signal resource corresponding orthogonal code sequence the demodulation reference signal resource corresponding orthogonal code sequence, that is, [1, 1] or [1, -1], the sequence index is based on owned given.
  • each channel measurement resource corresponds to one physical antenna port
  • the transmission signal on one channel measurement or precoding selection resource is:
  • n 0, 1, ..., 12;
  • m', m, n sequentially corresponding to the slot number, the OFDM symbol index occupied by the channel measurement resource in one slot, and the subcarrier index occupied by the channel measurement resource
  • the minimum interval of cyclic shifting of the CS sequence for channel measurement resources, or Or satisfy w(m) is the orthogonal code length of the time domain extension.
  • Different antenna ports correspond to different channel measurement resources, that is, different orthogonal codes and CS resource combinations.
  • a precoding includes a corresponding beam on the selected resource, and the transmitted signal of the pth virtual antenna corresponding to the i th beam is:
  • P Num is PUCCH format1/1a/1b
  • the port corresponds to the number of virtual antenna ports. Is the precoding vector corresponding to the ith beam, Select the minimum interval of resource cyclic shift for channel measurement or precoding, or satisfy Or satisfy
  • the terminal When the terminal receives the optimal precoding feedback from the base station as w precode, opt , the terminal belongs to the PUCCH format1/1a/1b channel when it transmits
  • the transmit signal on the p-th virtual physical antenna of the port can be:
  • the RE ie, the resource indicated by m'MN+mN+i
  • b is the PUCCH format 1/1a/1b control channel data information, that is, the ACK/NACK information.
  • the base station side When performing channel measurement or precoding selection, it is desirable for the base station side to configure a PUCCH format 1/1a/1b port for the terminal, that is,
  • the number of occupied channel measurement or precoding selection resources reaches a certain number, for example, equal to the number of its beams, or the number of physical antenna ports, or a certain number of high layer notifications, when the terminal is at The channel measurement or precoding selection signal is transmitted on all of these occupied resources, and the terminal considers that the transmission process of its primary channel measurement or precoding selection signal ends.
  • the base station side After receiving the number of channel measurement or precoding selection signals, the base station side considers that the channel measurement or precoding selection signal of the terminal is complete, and the base station side measures or pre-based based on the received signals on the resources and the channels on the resources. Encoding selection reference signal, obtaining an optimal precoding result or an optimal precoding result list, and feeding back to the terminal; when performing PUCCH format1/1a/1b transmission, the terminal may select a result based on feedback channel measurement or precoding, for PUCCH format1 The signal transmitted on the /1a/1b channel is precoded to achieve coverage enhancement.
  • the transmitted channel measurement signal or precoding selection signal may also be used for other purposes, and is not limited to precoding selection for the uplink control channel.
  • precoding selection of the downlink channel it is assumed that there is reciprocity between the uplink and downlink channels; or, for the physical resource replacement corresponding to the uplink control channel, the base station side according to the channel measurement signal sent by the terminal or The precoding selection signal obtains that the channel energy of the terminal is lower than a predetermined threshold, and the physical resource replacement process corresponding to the uplink control channel of the terminal is started.
  • the PRB resources occupied by PUCCH format 1/1a/1b are obtained by the following formula:
  • Channel measurement or precoding selects the PRB resource occupied by the resource, one is based on the high-level notification variable only Obtained, at this time, the variable obtained by the channel measurement or precoding selection resource according to the formula (6-8) is obtained.
  • the PRB resource occupied by the channel measurement or precoding selection transmission signal of the first time slot and the PRB resource occupied by the second time slot channel measurement or precoding selection transmission signal satisfy the formula (6), that is, the frequency hopping of different time slots is achieved. purpose.
  • the other is based on high-level notification variables. And in the subframe that triggers channel measurement or precoding selection, the terminal detects the number of CCEs sent by the base station.
  • the physical resource block index measurement channel resources occupied by n PRB obtained by the following formula :
  • n s represents the slot number in a radio frame, and its value belongs to the set ⁇ 0 to N slot -1 ⁇ , and N slot represents the number of slots in one radio frame.
  • m is the intermediate variable, and its value is obtained by the following formula:
  • the occupied PRB resource is obtained.
  • the channel measurement of the first and second time slots of the same subframe or the PRB resource occupied by the precoding selection transmission signal reaches the purpose of frequency hopping.
  • one channel measurement or precoding selection result corresponds to two precodings, one is precoding on the PRB occupied by the first time slot, and the other is precoding on the PRB occupied by the second time slot. If the frequency domain resources occupied by the PRBs occupied by the two slots are the same, a precoding selection result may correspond to only one precoding, and the optimal precoding on the two PRBs is considered to be consistent. If the channel measurement or precoding selection transmission signal is not transmitted on the second time slot, then one channel measurement may have only one precoding, corresponding to the optimal precoding on the first time slot.
  • the terminal occupies a B1 CS resources in a certain period remains constant but the odd slots based on a B1 a B1 even slots of a certain transition occurs, to reach the terminal occupies a channel measurement or pre-coding selection
  • the purpose of resource interference randomization is not limited to:
  • the a B1 of the CS resource occupied by the terminal remains the same in all channel measurement or precoding selection subframes, but the two slots of a channel measurement or precoding selection subframe are hopped to reach the channel occupied by the terminal.
  • Measurement or precoding selects the purpose of resource interference randomization.
  • a hopping mode is a way of traveling, that is, an available CS sequence index corresponding to all available channel measurement or precoding selection resources on the current PRB is listed by way of travel, and an odd time slot is obtained based on a B1 of the even time slot.
  • a B1 as shown in Fig. 4a, there are 24 channel measurement or precoding options available at this time, as shown in Fig. 4a ⁇ B0 ⁇ B23 ⁇ , which is calculated as follows to obtain a B1 of odd time slots:
  • c1 is the number of orthogonal code sequences available for current channel measurement or precoding selection resources.
  • an embodiment of the present invention further provides an apparatus for transmitting a signal on an uplink control channel, where the apparatus includes:
  • the first sending module is configured to: send a channel measurement signal by using a resource formed by an idle orthogonal code and a CS sequence on a physical resource where the corresponding uplink control channel is located, and/or other physical resources determined by the physical resource Or precoding the selection signal; wherein the channel measurement signal is a signal that is not subjected to precoding processing, and the precoding selection signal is a precoded signal.
  • the idle orthogonal code satisfies one of the following features:
  • the idle uplink control channel is allocated to the terminal-specific uplink control channel, and the terminal does not send uplink feedback information or uplink request information on the idle uplink control channel in the current transmission period.
  • the demodulation reference signal of the uplink control channel when the uplink control channel reaches multi-user multiplexing in the time domain by the orthogonal code, the demodulation reference signal of the uplink control channel also reaches the multi-user multiplexing in the time domain by the orthogonal code, if the uplink control channel occupies the time domain
  • the number of symbols is not equal to the number of time domain symbols occupied by the demodulation reference signal of the uplink control channel, and the unused orthogonal codes are unused orthogonal codes on all uplink control channels, or demodulation corresponding to all uplink control channels.
  • the unused orthogonal code of the reference signal when the uplink control channel reaches multi-user multiplexing in the time domain by the orthogonal code, the demodulation reference signal of the uplink control channel also reaches the multi-user multiplexing in the time domain by the orthogonal code, if the uplink control channel occupies the time domain
  • the number of symbols is not equal to the number of time domain symbols occupied by the demodul
  • the number of time domain symbols occupied by the uplink control channel is M
  • the number of time domain symbols occupied by the demodulation reference signal of the uplink control channel is N
  • M>N M and N are positive integers
  • all The uplink control channel occupies N of the M-dimensional orthogonal codes
  • the unused orthogonal codes of the uplink control channel are M-N orthogonal codes in the M-dimensional orthogonal code.
  • the number of time domain symbols occupied by the uplink control channel is M
  • the number of time domain symbols occupied by the demodulation reference signal of the uplink control channel is N
  • M ⁇ N, M and N are positive integers
  • all uplink control channels The corresponding demodulation reference signal occupies M of the N-dimensional orthogonal codes
  • the unused orthogonal codes of the demodulation reference signal corresponding to the uplink control channel are NM orthogonal codes in the N-dimensional orthogonal code.
  • the orthogonal code is an orthogonal code that is not used by the uplink control channel, or is an unused orthogonal code of a demodulation reference signal corresponding to an uplink control channel
  • the CS sequence is shifted by a different cyclic sequence of a root sequence. a set of sequences obtained;
  • the CS sequence is a CS sequence occupied on the idle uplink control channel
  • the CS sequence is a CS sequence occupied by a demodulation reference signal on the idle uplink control channel.
  • the CS sequence in a channel measurement or precoding selection resource composed of the one idle orthogonal code and the one CS sequence is A sequence in the set of sequences.
  • the CS sequence in the one channel measurement or precoding selection resource is obtained through a high layer configuration, or obtained through DCI signaling, or obtained according to existing uplink control channel information.
  • the CS sequence in the one channel measurement or precoding selection resource is obtained through high layer configuration or DCI signaling, receiving one or more of the CS sequences in one transmission period;
  • the CS sequence in the one channel measurement or precoding selection resource is obtained according to the existing uplink control channel information, according to the channel measurement signal transmission period, the channel measurement occupied in one transmission period, or the precoding selected resource number And at least one of the uplink control channel information and the CS sequence index in the CS sequence set occupied by the channel measurement or precoding selection resource; wherein the channel measurement signal transmission period is two The interval between the complete transmission channel measurement signal transmission process.
  • the channel measurement signal transmission period, the number of channel measurement or precoding selected resources occupied in the one transmission period At least one of them is configured according to a high layer or a fixed value set in advance.
  • the root sequence corresponds to an uplink control channel of the terminal.
  • the root sequence is the same.
  • the set of sequences includes all cyclic shifts of the root sequence
  • the sequence set includes a partial cyclic shift of the root sequence, wherein the cyclic shift interval is equal to a cyclic shift interval of the uplink control channel
  • the unused orthogonal code is an orthogonal code that is not used by the uplink control channel
  • the signal sent by the sequence in the sequence set and an orthogonal code that is not used by the uplink control channel causing minimal interference to signals on resources occupied by all uplink control channels and other orthogonal codes not used on all uplink control channels;
  • the sequence in the sequence set and the demodulation reference signal corresponding to the control channel a signal transmitted on a resource composed of an unused orthogonal code, a signal on a resource occupied by a demodulation reference signal of all uplink control channels and other unused orthogonal codes of demodulation reference signals corresponding to all uplink control channels The resulting interference is minimal.
  • the unused orthogonal code For M3 if the CS sequences occupy the same between different terminals, the interference caused by the signal transmitted on the orthogonal code M3 resource to the signal transmitted on the orthogonal code M1 resource is orthogonal to the signal pair transmitted on the orthogonal code M3 resource.
  • the interference caused by the signal transmitted on the code M0 or M2 resource is small, and the CS sequence set corresponding to the unused orthogonal code M3 is equal to the set of CS sequences corresponding to all uplink control channels whose orthogonal codes are M1.
  • a cs (n s , l) represents the cyclic shift of the CS sequence
  • a B (n s , l) is a positive integer intermediate variable in the cyclic shift, the range is ⁇ 0 ⁇ N f -1 ⁇
  • n s represents a The slot number in the radio frame, whose value belongs to the set ⁇ 0 ⁇ N slot -1 ⁇ , N slot represents the number of slots in one radio frame; l represents the OFDM symbol number in one slot, and its value belongs to the set ⁇ 0 ⁇ N OFDM -1 ⁇ , N OFDM represents the number of OFDM symbols in one slot; N f represents the length of the CS sequence.
  • n s denotes a slot number in a radio frame, the value of which belongs to the set ⁇ 0 to N slot -1 ⁇
  • N slot represents the number of slots in one radio frame
  • l represents the OFDM symbol number in one slot
  • the value belongs to the set ⁇ 0 ⁇ N OFDM -1 ⁇
  • N OFDM represents the number of OFDM symbols in one slot
  • a B1 is a positive integer intermediate variable whose value belongs to the set ⁇ 0 ⁇ N f - 1 ⁇ or belongs to a subset of the set ⁇ 0 ⁇ N f -1 ⁇ , and N f represents the length of the CS sequence.
  • a B1 a B1 an odd time slot occurs even slot-based hopping.
  • the sending signal is:
  • w(m) is the orthogonal code length of the time domain extension
  • a 1; if the transmission precoding selection Is the precoding weight of the ith precoding vector on the pth antenna.
  • n is the frequency domain subcarrier number occupied by the uplink control channel, wherein the subcarriers on the PRB occupied by the uplink control channel are sequentially numbered, and the n value corresponding to the smallest subcarrier is 0;
  • the orthogonal code is an orthogonal code that is not used by the uplink control channel or an orthogonal code occupied by the idle uplink control channel
  • m is an OFDM symbol number occupied by the uplink control channel, and an OFDM symbol sequence number occupied by the uplink control channel, and The minimum symbol index corresponding to m is 0;
  • the orthogonal code is an orthogonal code occupied by the demodulation reference signal corresponding to the uplink control channel
  • m is an OFDM symbol number occupied by a demodulation reference signal of the uplink control channel
  • an OFDM symbol occupied by a demodulation reference signal of the uplink control channel The sequence number is sequential, and the m corresponding to the smallest symbol index is 0.
  • the device further comprises:
  • the first receiving module is configured to receive an indication of transmitting a channel measurement signal in one of the following manners:
  • the terminal After the terminal synchronizes with the server, periodically starts a process of transmitting a channel measurement signal on the idle resource, where the period is notified by a high layer or is fixed;
  • the device further includes:
  • a second sending module configured to: send, at every one transmission interval, a corresponding channel measurement signal or a precoding selection signal on one or more channel measurement or precoding selection resources; wherein, one channel measurement or precoding selection resource is selected.
  • the transmission interval is obtained by one of the following ways:
  • the channel measurement period is greater than or equal to the time required for all terminals sharing the resource to complete a channel measurement or precoding selection signal transmission process.
  • the first sending module performs a process of transmitting a channel measurement signal on an idle resource, and completes a complete channel measurement signal or a precoding selection signal transmission process, and the number of channel measurement resources occupied is obtained by any one of the following methods. :
  • the physical resource is obtained by one of the following methods:
  • the physical resources occupied by the uplink control channel notified by the upper layer are the same;
  • ns represents a slot number in a radio frame, the value of which belongs to the set ⁇ 0 to N slot -1 ⁇
  • N slot represents the number of slots in a radio frame.
  • N PUCCH indicates the logical number of the uplink control channel format1/1a/1b
  • c indicates the demodulation reference of the uplink control channel or the uplink control channel.
  • the number of orthogonal code sequences occupied by the signal in the time domain Indicates the number of cyclic shifts occupied by the uplink control channel format1/1a/1b of the hybrid resource of the uplink control channel format1/1a/1b and format2/2a/2b, Indicates a minimum cyclic shift interval of the CS sequence occupied by the uplink control channel;
  • N f represents the length of the CS sequence
  • N CCE indicates the total number of downlink control channel elements CCE detected by the terminal when starting the channel measurement signal transmission process
  • the device further comprises:
  • a second receiving module configured to receive a precoding selection result fed back by the base station side, where the precoding selection result includes a precoding vector or a codebook index or a precoding index, and is used to determine the first time slot physical resource and the first Precoding on a two-slot physical resource.
  • the second receiving module is configured to receive a precoding selection result of the base station side feedback by:
  • the device provided by the embodiment of the present invention obtains channel coding or precoding selection signal transmission on idle resources that are not fully utilized by the uplink control channel, and obtains precoding for uplink control channel transmission, thereby achieving uplink control channel coverage enhancement. the goal of.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method for transmitting a signal on an uplink control channel when the computer executable instructions are executed.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, the application is not limited to any particular combination of hardware and software.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • Each device/function module/function unit in the above embodiment is implemented in the form of a software function module. And when sold or used as a stand-alone product, it can be stored on a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the present invention provides a method and an apparatus for transmitting a signal on an uplink control channel, which can enhance uplink control channel coverage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种在上行控制信道上发送信号的方法,包括:终端在其对应的上行控制信道所在的物理资源上,和/或,由此物理资源确定的其他物理资源上,通过空闲正交码和CS序列构成的资源发送信道测量信号或预编码选择信号;其中,所述信道测量信号是没有进行预编码处理后的信号,所述预编码选择信号是经过预编码处理后的信号。

Description

在上行控制信道上发送信号的方法和装置 技术领域
本申请涉及但不限于通信领域,尤其涉及一种在上行控制信道上发送信号的方法和装置。
背景技术
一些上行控制信道(如传输ACK/NACK(应答/无应答)的上行控制信道)的传输有较高的性能需求,因为此信息的传输结果控制下行数据重传,进而影响资源的利用效率。现在协议用一个PRB-Pair(Physical Resource Block-Pair,物理资源块对)传输ACK/NACK信息,有效增强此信息的传输性能。而且,考虑到此PRB-Pair资源的充分利用,用时域和频域的码分复用方式达到多用户正交复用。当解调参考信号和控制信道数据时分复用时,如果一个时隙内的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号数为奇数,控制信道信息比特占有的OFDM符号数和其参考信号占有的OFDM符号数不能相等,此时就会有空闲正交码。当解调参考信号和控制信道数据频分复用时,如果子载波数为奇数,也会有空闲正交码。
即使是一个时隙内的OFDM符号数(或者子载波数)为偶数,考虑到控制信道的覆盖性能和传输性能,控制信道数据占有的OFDM符号数(或者子载波数)往往大于参考信号占有的OFDM符号数(或者子载波数),此时就会有空闲正交码。比如OFDM符号数为6,但是考虑到用4个OFDM符号发送控制信道数据才能满足此控制信道数据的传输性能,此时解调参考信号就只能占有2个OFDM符号了,此时复用的控制信道个数在时域为2。此时控制信道数据就会有2个时域空闲正交码,就可利用控制信道数据未用的这些闲置正交码进行其他信号的发送,其对相关的控制信道造成的干扰有限。
现在211,213协议中PUCCH(Physical Uplink Control Channel,物理上行控制信道)格式format1/1a/1b用于传输对应PDSCH(Physical Downlink  Shared Channel,物理下行共享信道)的ACK/NACK(应答/无应答)信息,以及SR(Scheduling Request,调度请求)信息。
PUCCH format1/1a/1b通过在频域用正交CS(Cyclic Shift,循环移位)序列达到多用户复用,在时域通过正交码序列达到多用户复用。由CS序列资源和正交码序列资源共同决定一个上行控制信道资源。不同天线通过发射分集,占有不同的上行控制信道资源,达到上行控制信道覆盖增强的目的,此时也降低了一个PRB(Physical Resource Block,物理资源块)上可复用的用户个数。
随着高频和短TTI(Transmission Time Interval,传输时间间隔)的引入,通过发射分集并不能很好地解决PUCCH format1/1a/1b的覆盖问题。而且,随着高频的引入,发射端的天线数目也不断增多。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种在上行控制信道上发送信号的方法和装置,能够使得上行控制信道覆盖增强。
本发明实施例提供了如下技术方案:
一种在上行控制信道上发送信号的方法,包括:
终端在其对应的上行控制信道所在的物理资源上,和/或,由此物理资源确定的其他物理资源上,通过空闲正交码和CS序列构成的资源发送信道测量信号或预编码选择信号;其中,所述信道测量信号是没有进行预编码处理后的信号,所述预编码选择信号是经过预编码处理后的信号。
其中,空闲正交码满足如下特征之一:
上行控制信道未用的正交码;
上行控制信道对应的解调参考信号的未用的正交码;
空闲上行控制信道上占用的正交码;
空闲上行控制信道对应的解调参考信号上占用的正交码;
其中,所述空闲上行控制信道是分配给所述终端专有的上行控制信道,且,在当前传输周期中所述终端在所述空闲上行控制信道上不发送上行反馈信息或者上行请求信息。
其中,当上行控制信道通过正交码在时域达到多用户复用,上行控制信道的解调参考信号也通过正交码在时域达到多用户复用时,如果上行控制信道占有的时域符号数不等于上行控制信道的解调参考信号占有的时域符号数,则所述未用正交码是所有上行控制信道上未用的正交码,或者为所有上行控制信道对应的解调参考信号的未用的正交码。
其中,如果上行控制信道占有的时域符号数为M,上行控制信道的解调参考信号占有的时域符号数为N,且M>N,M和N均为正整数,其中,所有上行控制信道占用M维正交码中的N个,则上行控制信道未用的正交码为M维正交码中的M-N个正交码。
其中,如果上行控制信道占有的时域符号数为M,上行控制信道的解调参考信号占有的时域符号数为N,且M>N,M和N均为正整数,其中,所有上行控制信道对应的解调参考信号占用N维正交码中的M个,则上行控制信道对应的解调参考信号的未用的正交码为N维正交码中的N-M个正交码。
其中,
当所述正交码是所述上行控制信道未用的正交码,或者为上行控制信道对应的解调参考信号的未用的正交码时,CS序列是由一个根序列的不同循环移位得到的序列集合;
当所述正交码是空闲上行控制信道上占用的正交码,CS序列是所述空闲上行控制信道上占有的CS序列;
当所述正交码是空闲上行控制信道对应的解调参考信号上占用的正交码,CS序列是所述空闲上行控制信道上解调参考信号占有的CS序列。
其中,当CS序列是由一个根序列的不同循环移位得到的序列集合时,由所述一个空闲正交码和所述一个CS序列构成的一个信道测量或预编码选 择资源中的CS序列为所述序列集合中的一个序列。
其中,所述一个信道测量或预编码选择资源中的CS序列是通过高层配置得到的,或者,通过下行控制信息(DCI,Downlink Control Information)信令得到的,或者根据已有的上行控制信道信息得到的。
其中,
如果所述一个信道测量或预编码选择资源中的CS序列是通过高层配置或者DCI信令得到的,则所述终端在一个传输周期内接收一个或者多个所述CS序列;
如果所述一个信道测量或预编码选择资源中的CS序列是根据已有的上行控制信道信息得到的,则所述终端根据信道测量信号发送周期、一个传输周期内占有的信道测量或预编码选择资源的个数
Figure PCTCN2016081605-appb-000001
中的至少一个和传输周期内占有的上行控制信道信息,得到信道测量或预编码选择资源占有的所述CS序列集合中的CS序列索引;其中,所述信道测量信号发送周期为所述终端两次完整信道测量信号发送过程之间的间隔。
其中,所述信道测量信号发送周期、所述一个传输周期内占有的信道测量或预编码选择资源的个数
Figure PCTCN2016081605-appb-000002
中的至少一个是根据高层配置的或者为预先设置的固定值。
其中,当所述CS序列是由一个根序列的不同循环移位得到的序列集合时,所述根序列的不同循环移位满足正交特性,且所述根序列和终端的上行控制信道对应的根序列相同。
其中,所述序列集合满足如下特征之一:
所述序列集合包含所述根序列的所有循环移位;
所述序列集合包含所述根序列的部分循环移位,其中,循环移位的间隔等于上行控制信道的循环移位间隔
Figure PCTCN2016081605-appb-000003
其中,当所述循环移位的间隔等于上行控制信道的循环移位间隔
Figure PCTCN2016081605-appb-000004
将所述根序列的所有循环移位序列分为
Figure PCTCN2016081605-appb-000005
个集合,这些集合的最小循环移位依次对应
Figure PCTCN2016081605-appb-000006
Figure PCTCN2016081605-appb-000007
个集合中选择满足如下特征之一的序列集合:
如果所述未用正交码为所述上行控制信道未用的正交码,则由所述序列集合中的序列和所述上行控制信道未用的一个正交码构成的资源上发送的信号,对所有上行控制信道和所有控制信道上未用的其他正交码所占有的资源上的信号造成的干扰最小;
如果所述未用正交码为所述上行控制信道对应的解调参考信号的未用的正交码,则由所述序列集合中的序列和所述上行控制信道对应的解调参考信号的未用的一个正交码构成的资源上发送的信号,对所有上行控制信道的解调参考信号和所有上行控制信道对应的解调参考信号的其他未用正交码所占有的资源上的信号造成的干扰最小。
其中,当所述序列集合包含所述根序列的所有循环移位,如果序列长度为Nf,则所述序列集合中的所有循环移位构成Nf个不同的正交序列。
其中,如果终端的上行物理信道在上行控制信道占有的M个时域符号上发生变化,其中M维的正交码中上行控制信道占用正交码M0、M1和M2,未用的正交码为M3,如果不同终端之间占有CS序列相同时,正交码M3资源上发送的信号对正交码M1资源上发送的信号造成的干扰相比正交码M3资源上发送的信号对正交码M0或者M2资源上发送的信号造成的干扰小,则未用的正交码M3对应的CS序列集合等于正交码为M1的所有上行控制信道对应的CS序列构成的集合。
其中,所述CS序列
Figure PCTCN2016081605-appb-000008
与所述终端的PUCCH format1/1a/1b对应的CS序列中的u和v一致;
其中,
Figure PCTCN2016081605-appb-000009
acs(ns,l)表示CS序列的循环移位,aB(ns,l)是循环移位中的正整数中间变量,范围为{0~Nf-1},ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot表示一个无线帧内的时隙数;l表示一个时隙内的OFDM符号编号,其值属于集合{0~NOFDM-1},NOFDM表示一个时隙内的OFDM符号数;Nf表示CS序列的长度。
其中,
Figure PCTCN2016081605-appb-000010
其中,
Figure PCTCN2016081605-appb-000011
表示小区间循环移位,其满足如下特征之一:
与所述终端的上行控制信道对应的小区级循环移位
Figure PCTCN2016081605-appb-000012
相同;
与所述终端的上行控制信道的解调参考信号对应的小区级循环移位
Figure PCTCN2016081605-appb-000013
相同;
其中,ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot表示一个无线帧内的时隙数;l表示一个时隙内的OFDM符号编号,其值属于集合{0~NOFDM-1},NOFDM表示一个时隙内的OFDM符号数;
其中,aB1是一个正整数中间变量,其值属于集合{0~Nf-1}或者属于集合{0~Nf-1}的子集,Nf表示CS序列的长度;
Figure PCTCN2016081605-appb-000014
是一个物理资源块包含的子载波个数。
其中,奇数时隙的aB1基于偶数时隙的aB1发生跳变。
其中,所述通过空闲正交码和CS序列构成的资源发送信道测量信号或预编码选择信号,包括:
所述发送信号为:
Figure PCTCN2016081605-appb-000015
其中,
Figure PCTCN2016081605-appb-000016
ru,v(n)表示由u,v得到的根序列,Nf是频域扩展因子,Mt是时域扩展所用正交码长度,
Figure PCTCN2016081605-appb-000017
为信道测量或预编码选择资源循环移位的最小间隔,或者满足
Figure PCTCN2016081605-appb-000018
或者满足
Figure PCTCN2016081605-appb-000019
表示向下取整;w(m)是时域扩展的正交码长度;
如果发送信道测量信号,则a=1;如果所述发送预编码选择
Figure PCTCN2016081605-appb-000020
是第i个预编码向量在第p个天线上的预编码权值。
其中,信道测量发送信号z(j)对应的信道测量参考信号为
Figure PCTCN2016081605-appb-000021
n=0,1,...,Nf-1,m=0,1,...Mt-1;
其中,n为上行控制信道占有的频域子载波编号,所述上行控制信道占有的PRB上的子载波顺序编号,且最小子载波对应的n值为0;
如果正交码是所述上行控制信道未用的正交码或者是空闲上行控制信 道占用的正交码,m为上行控制信道占有的OFDM符号编号,上行控制信道占有的OFDM符号顺序编号,且最小符号索引对应的m为0;
如果正交码是所述上行控制信道对应的解调参考信号上占用的正交码,m为上行控制信道的解调参考信号占有的OFDM符号编号,上行控制信道的解调参考信号占有的OFDM符号顺序编号,且最小符号索引对应的m为0。
其中,所述终端以如下方式之一接收到发送信道测量信号的指示:
所述终端接到所述终端的物理下行共享信道(PDSCH)传输后,启动在所述空闲资源上发送信道测量信号的过程;
所述终端接到通过PDSCH传输的发送信道测量信号的指示后,启动在所述空闲资源上发送信道测量信号的过程;
所述终端与服务器同步之后,周期地启动在所述空闲资源上发送信道测量信号的过程,其中,所述周期由高层通知或者是固定的;
所述终端在接收到高层信令后,根据所述高层信令,启动在所述空闲资源上发送信道测量信号的过程;
所述终端在接收到DCI信令后,根据所述DCI信令,启动在所述空闲资源上发送信道测量信号的过程。
其中,所述方法还包括:
所述终端启动在所述空闲资源上发送信道测量信号的过程之后,所述终端每隔一个传输间隔,在一个或多个信道测量或预编码选择资源上发送对应的信道测量信号或预编码选择信号;其中,一个信道测量或预编码选择资源由所述一个空闲正交码和所述一个CS序列构成。
其中,所述传输间隔是通过以下方式之一获得的:
通过高层信令通知得到的;
根据终端对应的上行控制信道的已有信息和/或所述空闲资源上发送信道测量信号过程的信息得到的;
其中,当所述传输间隔为1传输时间间隔时,信道测量周期大于或等 于共用此资源的所有终端都完成一次信道测量或预编码选择信号发送过程需要的时间。
其中,所述终端进行在空闲资源上发送信道测量信号的过程,完成一次完整信道测量信号或预编码选择信号发送过程,所占的信道测量资源的数量是通过如下任一方式得到的:
通过接收的高层信令得到的;
与物理端口的总数相同;
与预编码向量总数相同。
其中,所述物理资源是通过以下方式之一得到的:
与高层通知的上行控制信道占有的物理资源相同;
由高层通知的上行控制信道相关的变量以及启动信道测量信号的发送过程时终端检测的控制信道单元(CCE,Control Channel Element)总数NCCE共同决定。
其中,当所述物理资源由高层通知的上行控制信道相关的变量以及启动信道测量信号的发送过程时终端检测的CCE总数NCCE共同决定时,信道测量资源所占的物理资源块索引nPRB由如下公式得到:
Figure PCTCN2016081605-appb-000022
其中,ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot表示一个无线帧内的时隙数,
Figure PCTCN2016081605-appb-000023
是上行系统带宽,以物理资源块为单位,m是中间变量,其值由下面的公式得到:
Figure PCTCN2016081605-appb-000024
其中,
Figure PCTCN2016081605-appb-000025
表示在每个时隙中上行控制信道format2/2a/2b占有的物理资源块数,NPUCCH表示上行控制信道format1/1a/1b的逻辑编号,c表示上行控制信道或者上行控制信道的解调参考信号在时域占有的正交码序列的个数,
Figure PCTCN2016081605-appb-000026
表示在上行控制信道format1/1a/1b和format2/2a/2b混合资源的上 行控制信道format1/1a/1b占有的循环移位个数,
Figure PCTCN2016081605-appb-000027
表示上行控制信道占有的CS序列的最小循环移位间隔;
其中,m1,m2由如下公式得到:
Figure PCTCN2016081605-appb-000028
Figure PCTCN2016081605-appb-000029
Figure PCTCN2016081605-appb-000030
其中,
Figure PCTCN2016081605-appb-000031
是用于指示上行控制物理资源的中间变量,
Figure PCTCN2016081605-appb-000032
表示在所述混合资源上上行控制信道format1/1a/1b可用的循环移位最大个数加一,其中
Figure PCTCN2016081605-appb-000033
Nf表示CS序列的长度,
Figure PCTCN2016081605-appb-000034
表示当上行控制信道资源由高层配置的
Figure PCTCN2016081605-appb-000035
和下行指示PDSCH传输参数的DCI所占的最低CCE索引共同决定的上行控制信道的最大索引值,NCCE表示终端在启动信道测量信号发送过程时检测的下行控制信道元素CCE的总数;
Figure PCTCN2016081605-appb-000036
表示向下取整,
Figure PCTCN2016081605-appb-000037
表示向上取整。
其中,所述方法还包括:
所述终端接收基站侧反馈的预编码选择结果;其中,所述预编码选择结果包括预编码向量或者码本索引或者预编码索引,用于确定第一时隙物理资源上和第二时隙物理资源上的预编码。
其中,所述终端通过如下方式接收基站侧反馈的预编码选择结果:
通过高层信令接收;或者,
在PDSCH对应的DCI信令中获取。
一种在上行控制信道上发送信号的装置,包括:
第一发送模块,设置为:在对应的上行控制信道所在的物理资源上,和/或,由此物理资源确定的其他物理资源上,通过空闲正交码和CS序列构成的资源发送信道测量信号或预编码选择信号;其中,所述信道测量信号是没有进行预编码处理后的信号,所述预编码选择信号是经过预编码处理后的信号。
其中,所述空闲正交码满足如下特征之一:
上行控制信道未用的正交码;
上行控制信道对应的解调参考信号的未用的正交码;
空闲上行控制信道上占用的正交码;
空闲上行控制信道对应的解调参考信号上占用的正交码;
其中,所述空闲上行控制信道是分配给终端专有的上行控制信道,且,在当前传输周期中所述终端在所述空闲上行控制信道上不发送上行反馈信息或者上行请求信息。
其中,当上行控制信道通过正交码在时域达到多用户复用,上行控制信道的解调参考信号也通过正交码在时域达到多用户复用时,如果上行控制信道占有的时域符号数不等于上行控制信道的解调参考信号占有的时域符号数,则所述未用正交码是所有上行控制信道上未用的正交码,或者为所有上行控制信道对应的解调参考信号的未用的正交码。
其中,如果上行控制信道占有的时域符号数为M,上行控制信道的解调参考信号占有的时域符号数为N,且M>N,M和N均为正整数,其中,所有上行控制信道占用M维正交码中的N个,则上行控制信道未用的正交码为M维正交码中的M-N个正交码。
其中,如果上行控制信道占有的时域符号数为M,上行控制信道的解调参考信号占有的时域符号数为N,且M<N,M和N均为正整数,其中,所有上行控制信道对应的解调参考信号占用N维正交码中的M个,则上行控制信道对应的解调参考信号的未用的正交码为N维正交码中的N-M个正交码。
其中,
当所述正交码是所述上行控制信道未用的正交码,或者为上行控制信道对应的解调参考信号的未用的正交码时,CS序列是由一个根序列的不同循环移位得到的序列集合;
当所述正交码是空闲上行控制信道上占用的正交码,CS序列是所述空闲上行控制信道上占有的CS序列;
当所述正交码是空闲上行控制信道对应的解调参考信号上占用的正交码,CS序列是所述空闲上行控制信道上解调参考信号占有的CS序列。
其中,当CS序列是由一个根序列的不同循环移位得到的序列集合时,由所述一个空闲正交码和所述一个CS序列构成的一个信道测量或预编码选择资源中的CS序列为所述序列集合中的一个序列。
其中,所述一个信道测量或预编码选择资源中的CS序列是通过高层配置得到的,或者,通过DCI信令得到的,或者根据已有的上行控制信道信息得到的。
其中,
如果所述一个信道测量或预编码选择资源中的CS序列是通过高层配置或者DCI信令得到的,则在一个传输周期内接收一个或者多个所述CS序列;
如果所述一个信道测量或预编码选择资源中的CS序列是根据已有的上行控制信道信息得到的,则根据信道测量信号发送周期、一个传输周期内占有的信道测量或预编码选择资源的个数
Figure PCTCN2016081605-appb-000038
中的至少一个和传输周期内占有的上行控制信道信息,得到信道测量或预编码选择资源占有的所述CS序列集合中的CS序列索引;其中,所述信道测量信号发送周期为所述终端两次完整信道测量信号发送过程之间的间隔。
其中,所述信道测量信号发送周期、所述一个传输周期内占有的信道测量或预编码选择资源的个数
Figure PCTCN2016081605-appb-000039
中的至少一个是根据高层配置的或者为预先设置的固定值。
其中,当所述CS序列是由一个根序列的不同循环移位得到的序列集合时,所述根序列的不同循环移位满足正交特性,且所述根序列和终端的上行控制信道对应的根序列相同。
其中,所述序列集合满足如下特征之一:
所述序列集合包含所述根序列的所有循环移位;
所述序列集合包含所述根序列的部分循环移位,其中,循环移位的间隔等于上行控制信道的循环移位间隔
Figure PCTCN2016081605-appb-000040
其中,当所述循环移位的间隔等于上行控制信道的循环移位间隔
Figure PCTCN2016081605-appb-000041
将根序列的所有循环移位序列分为
Figure PCTCN2016081605-appb-000042
个集合,这些集合的最小循环移位依次对应
Figure PCTCN2016081605-appb-000043
Figure PCTCN2016081605-appb-000044
个集合中选择满足如下特征之一的序列集合:
如果所述未用正交码为所述上行控制信道未用的正交码,则由所述序列集合中的序列和所述上行控制信道未用的一个正交码构成的资源上发送的信号,对所有上行控制信道和所有上行控制信道上未用的其他正交码所占有的资源上的信号造成的干扰最小;
如果所述未用正交码为所述上行控制信道对应的解调参考信号的未用的正交码,则由所述序列集合中的序列和所述上行控制信道对应的解调参考信号的未用的一个正交码构成的资源上发送的信号,对所有上行控制信道的解调参考信号和所有上行控制信道对应的解调参考信号的其他未用正交码所占有的资源上的信号造成的干扰最小。
其中,当所述序列集合包含所述根序列的所有循环移位,如果序列长度为Nf,则所述序列集合中的所有循环移位构成Nf个不同的正交序列。
其中,如果终端的上行物理信道在上行控制信道占有的M个时域符号上发生变化,其中M维的正交码中上行控制信道占用正交码M0、M1和M2,未用的正交码为M3,如果不同终端之间占有CS序列相同时,正交码M3资源上发送的信号对正交码M1资源上发送的信号造成的干扰相比正交码M3资源上发送的信号对正交码M0或者M2资源上发送的信号造成的干扰小,则未用的正交码M3对应的CS序列集合等于正交码为M1的所有上行控制信道对应的CS序列构成的集合。
其中,所述CS序列
Figure PCTCN2016081605-appb-000045
与所述终端的PUCCH format1/1a/1b对应的CS序列中的u和v一致;
其中,
Figure PCTCN2016081605-appb-000046
acs(ns,l)表示CS序列的循环移位,aB(ns,l)是循环移位中的正整数中间变量,范围为{0~Nf-1},ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot表示一个无线帧内的时隙数;l表示一个时隙内的OFDM 符号编号,其值属于集合{0~NOFDM-1},NOFDM表示一个时隙内的OFDM符号数;Nf表示CS序列的长度。
其中,
Figure PCTCN2016081605-appb-000047
其中,
Figure PCTCN2016081605-appb-000048
表示小区间循环移位,其满足如下特征之一:
与所述终端的上行控制信道对应的小区级循环移位
Figure PCTCN2016081605-appb-000049
相同;
与所述终端的上行控制信道的解调参考信号对应的小区级循环移位
Figure PCTCN2016081605-appb-000050
相同;
其中,ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot表示一个无线帧内的时隙数;l表示一个时隙内的OFDM符号编号,其值属于集合{0~NOFDM-1},NOFDM表示一个时隙内的OFDM符号数;
其中,aB1是一个正整数中间变量,其值属于集合{0~Nf-1}或者属于集合{0~Nf-1}的子集,Nf表示CS序列的长度。
其中,奇数时隙的aB1基于偶数时隙的aB1发生跳变。
其中,
所述发送信号为:
Figure PCTCN2016081605-appb-000051
其中,
Figure PCTCN2016081605-appb-000052
ru,v(n)表示由u,v得到的根序列,Nf是频域扩展因子,Mt是时域扩展所用正交码长度,
Figure PCTCN2016081605-appb-000053
为信道测量或预编码选择资源循环移位的最小间隔,或者满足
Figure PCTCN2016081605-appb-000054
或者满足
Figure PCTCN2016081605-appb-000055
表示向下取整;w(m)是时域扩展的正交码长度;
如果发送信道测量信号,则a=1;如果所述发送预编码选择
Figure PCTCN2016081605-appb-000056
是第i个预编码向量在第p个天线上的预编码权值。
其中,信道测量发送信号z(j)对应的信道测量参考信号为
Figure PCTCN2016081605-appb-000057
n=0,1,...,Nf-1,m=0,1,...Mt-1;
其中,n为上行控制信道占有的频域子载波编号,所述上行控制信道占 有的PRB上的子载波顺序编号,且最小子载波对应的n值为0;
如果正交码是所述上行控制信道未用的正交码或者是空闲上行控制信道占用的正交码,m为上行控制信道占有的OFDM符号编号,上行控制信道占有的OFDM符号顺序编号,且最小符号索引对应的m为0;
如果正交码是所述上行控制信道对应的解调参考信号上占用的正交码,m为上行控制信道的解调参考信号占有的OFDM符号编号,上行控制信道的解调参考信号占有的OFDM符号顺序编号,且最小符号索引对应的m为0。
其中,所述装置还包括:第一接收模块,设置为以如下方式之一接收到发送信道测量信号的指示:
接到所述终端的PDSCH传输后,启动在所述空闲资源上发送信道测量信号的过程;
接到通过PDSCH传输的发送信道测量信号的指示后,启动在所述空闲资源上发送信道测量信号的过程;
在所述终端与服务器同步之后,周期地启动在所述空闲资源上发送信道测量信号的过程,其中,所述周期由高层通知或者是固定的;
在接收到高层信令后,根据所述高层信令,启动在所述空闲资源上发送信道测量信号的过程;
在接收到DCI信令后,根据所述DCI信令,启动在所述空闲资源上发送信道测量信号的过程。
其中,所述装置还包括:
第二发送模块,设置为:每隔一个传输间隔,在一个或多个信道测量或预编码选择资源上发送对应的信道测量信号或预编码选择信号;其中,一个信道测量或预编码选择资源由所述一个空闲正交码和所述一个CS序列构成。
其中,所述传输间隔是通过以下方式之一获得的:
通过高层信令通知得到的;
根据终端对应的上行控制信道的已有信息和/或所述空闲资源上发送信道测量信号过程的信息得到的;
其中,当所述传输间隔为1传输时间间隔时,信道测量周期大于或等于共用此资源的所有终端都完成一次信道测量或预编码选择信号发送过程需要的时间。
其中,所述第一发送模块进行在空闲资源上发送信道测量信号的过程,完成一次完整信道测量信号或预编码选择信号发送过程,所占的信道测量资源的数量是通过如下任一方式得到的:
通过接收的高层信令得到的;
与物理端口的总数相同;
与预编码向量总数相同。
其中,所述物理资源是通过以下方式之一得到的:
与高层通知的上行控制信道占有的物理资源相同;
由高层通知的上行控制信道相关的变量以及启动信道测量信号的发送过程时终端检测的CCE总数NCCE共同决定的。
其中,当所述物理资源由高层通知的上行控制信道相关的变量以及启动信道测量信号的发送过程时终端检测的CCE总数NCCE共同决定时,信道测量资源所占的物理资源块索引nPRB由如下公式得到:
Figure PCTCN2016081605-appb-000058
其中,ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot表示一个无线帧内的时隙数,
Figure PCTCN2016081605-appb-000059
是上行系统带宽,以物理资源块为单位,m是中间变量,其值由下面的公式得到:
Figure PCTCN2016081605-appb-000060
其中,
Figure PCTCN2016081605-appb-000061
表示在每个时隙中上行控制信道format2/2a/2b占有的物理资源块数,NPUCCH表示上行控制信道format1/1a/1b的逻辑编号,c表示上行 控制信道或者上行控制信道的解调参考信号在时域占有的正交码序列的个数,
Figure PCTCN2016081605-appb-000062
表示在上行控制信道format1/1a/1b和format2/2a/2b混合资源的上行控制信道format1/1a/1b占有的循环移位个数,
Figure PCTCN2016081605-appb-000063
表示上行控制信道占有的CS序列的最小循环移位间隔;
其中,m1,m2由如下公式得到:
Figure PCTCN2016081605-appb-000064
Figure PCTCN2016081605-appb-000065
Figure PCTCN2016081605-appb-000066
其中,
Figure PCTCN2016081605-appb-000067
是用于指示上行控制物理资源的中间变量,
Figure PCTCN2016081605-appb-000068
表示在所述混合资源上上行控制信道format1/1a/1b可用的循环移位最大个数加一,其中
Figure PCTCN2016081605-appb-000069
Nf表示CS序列的长度,
Figure PCTCN2016081605-appb-000070
表示当上行控制信道资源由高层配置的
Figure PCTCN2016081605-appb-000071
和下行指示PDSCH传输参数的DCI所占的最低CCE索引共同决定的上行控制信道的最大索引值,NCCE表示终端在启动信道测量信号发送过程时检测的下行控制信道元素CCE的总数;
Figure PCTCN2016081605-appb-000072
表示向下取整,
Figure PCTCN2016081605-appb-000073
表示向上取整。
其中,所述装置还包括:
第二接收模块,设置为接收基站侧反馈的预编码选择结果;其中,所述预编码选择结果包括预编码向量或者码本索引或者预编码索引,用于确定第一时隙物理资源上和第二时隙物理资源上的预编码。
其中,所述第二接收模块是设置为通过如下方式接收基站侧反馈的预编码选择结果:
通过高层信令接收;或者,
在PDSCH对应的DCI信令中获取。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述在上行控制信道上发送信号的方法。
在本发明实施例中,通过在上行控制信道未充分利用的闲置资源上进行信道测量或预编码选择信号的发送,得到用于上行控制信道传输时的预编码,从而达到上行控制信道覆盖增强的目的。
在上行控制信道闲置资源上进行信道测量或预编码选择信号发送,最大程度降低对上行控制信道的干扰。
通过有限的高层信令通知,结合终端已有的上行控制信道相关信息,即可完成此信道测量或预编码选择信号发送过程。
发送的信道测量和预编码选择信号还可以用于其他用途,并不局限于上行控制信道的预编码选择。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例二提供的以Tgap为间隔发送信道测量或预编码选择参考信号的示意图;
图2a、图2b及图2c为本发明实施例三提供的在常规循环前缀(NormalCP)时,一种PUCCH信道和信道测量或预编码选择资源码分复用的示意图;
图3a、图3b及图3c为本发明实施例三提供的在Normal CP时,另一种PUCCH信道和信道测量或预编码选择资源码分复用的示意图;
图4a、图4b及图4c为本发明实施例三提供的在扩展CP时,一种PUCCH信道和信道测量或预编码选择资源码分复用的示意图;
图5a、图5b及图5c为本发明实施例三提供的在扩展CP时,另一种PUCCH信道和信道测量或预编码选择资源码分复用的示意图;
图6为本发明实施例三提供的在扩展CP时,在
Figure PCTCN2016081605-appb-000074
时,PUCCH信道和信道测量或预编码选择资源码分复用的示意图;
图7为本发明实施例三提供的长度为4的正交码索引与对应的正交码(OCC,Orthogonal Cover Code)序列;
图8为本发明实施例三提供的长度为3的正交码索引与对应的正交码 序列;
图9a及图9b为本发明实施例三提供的一个PRB内PUCCH format1/1a/1b信道和信道测量或预编码选择的示意图;
图10为本发明实施例提供的在上行控制信道上发送信号的装置的示意图。
本发明的实施方式
下面将结合附图及具体实施例对本申请作进一步的详细描述。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
实施例一
终端以以下方式之一启动PUCCH format1/1a/1b信道的信道测量或预编码选择信号的发送过程:
方式一:终端在第n子帧收到其对应的PDSCH传输,终端在第n+1子帧启动其信道测量或预编码选择信号的发送过程;
方式二:终端与服务器同步之后,通过高层信令得到终端周期进行PUCCH format1/1a/1b信道的信道测量或预编码选择信号的发送,终端在子帧n启动信道测量或预编码选择信号发送过程,其中,n满足n mod T=m,其中,T为进行信道测量或预编码选择的周期,m为子帧偏移,m∈{0,1,...,T-1},周期T可以是根据系统带宽决定的固定值,也可以是高层信令通知的值,m由高层信令通知;此时,周期T要大于所有共用此信道测量或预编码选择资源的终端完成一次信道测量或预编码选择需要的最小时长;
方式三:由高层信令通知终端在第n子帧启动PUCCH format1/1a/1b信道的信道测量或预编码选择信号的发送;
方式四:通过动态信令DCI(Downlink Control Information,下行控制信息)触发终端在第n子帧启动PUCCH format1/1a/1b信道的信道测量或预编码选择信号的发送;比如UE在第n-k子帧收到启动PUCCH format1/1a/1b 信道的信道测量或预编码选择信号发送过程的DCI信令,终端在第n子帧启动PUCCH format1/1a/1b信道的信道测量或预编码选择信号发送过程,k值大于或等于1,为固定值。
实施例二
终端在第n子帧启动信道测量或预编码选择信号的发送,在第n子帧发送信道测量或预编码选择信号,但是由于一个TTI内能分给一个终端的信道测量或预编码选择资源有限,使得终端在一个TTI内不能完成全部信道测量或预编码选择信号的发送,即基站侧不能获得全部的物理信道信息,或者全部可能波束的接收性能,从而基站侧不能获得最优预编码或者最优预编码序列,此时基站侧需要基于多个TTI上的信道测量或预编码选择参考信号信息,才能获取全部的物理信道信息,或者全部可能波束的接收性能,然后才能得到最优预编码或者最优预编码序列,将其反馈给终端。
终端在信道测量或预编码选择启动之后,在第n子帧的所述信道测量或预编码选择资源上发送信道测量或预编码选择信号,需要间隔Tgap个子帧,即在n+Tgap子帧发送未发完的信道测量和预编码选择信号,其中,Tgap表示终端两次信道测量信号发送之间的最小间隔,单位为传输周期TTI(Transmission Time Interval,传输时间间隔)。
比如,终端的物理端口为6,一个信道测量资源对应一个物理端口,终端需要占有6个信道测量资源,但是一个TTI内分配给此终端的信道测量资源只有2个,那么终端需要在3个信道测量子帧之后,才能完成全部信道测量信号的发送,基站基于这些信道测量资源上的信道测量参考信号,得到物理信道H,进而得到预编码选择结果,在一定子帧将预编码选择结果反馈给终端,一次信道测量过程结束。
一次信道测量或预编码选择启动之后,只进行一次信道测量或预编码选择信号发送过程。
如图1所示,当周期启动PUCCH format1/1a/1b的信道测量过程,在第n个子帧启动信道测量后,每隔Tgap个子帧发送部分信道测量信号,一个周期内3次信道测量子帧之后,完成全部信道测量信号的发送。基站侧基于这些信道测量子帧上的信道测量资源上的信道测量参考信号,得到物理信 道测量,进而得到预编码选择结果。在随后的子帧将预编码选择结果反馈给终端。或者通过高层信令反馈,或者通过动态信令反馈,其中,最后一个信道测量子帧和反馈子帧之间的间隔可以是固定的,也可以不固定。T为信道测量周期,周期到了之后新的一次信道测量过程启动。
如果是以其他方式启动信道测量或预编码选择信号发送过程,完成一次信道测量或预编码选择之后,要等待启动信道测量或预编码选择信号发送过程的事件发生才进行新的信道测量或预编码选择信号的发送。
实施例三
相关技术中,PUCCH format1/1a/1b是在频域通过CS复用,在时域通过正交码复用,由于PUCCH format1/1a/1b时域的符号个数和DMRS(Demodulation Reference Signal,解调参考信号)的时域符号个数不同,PUCCH format1/1a/1b在时域并没有达到复用的极限,还有剩余,由于信道测量或预编码选择不需要DMRS,此时可以利用这些剩余时域正交码。
对于Normal CP(常规循环前缀),由于时域DMRS一个时隙只有3个,所以同一CS在时域最多只能复用3个PUCCH format1/1a/1b信道,而信道测量或预编码选择信号无需DMRS作为信道估计参考信号,所以可以用相关协议中未用的正交码序列,即[1,1,-1,-1],此时如果遇到第2时隙是短格式,就不可使用此序列,可以选择不发送相应的信道测量或预编码选择信号,如果有其他信道测量或预编码选择子帧,则基站侧同样可以得到预编码选择结果。比如实施例二中,一次信道测量过程需要3个信道测量子帧,如果只有1个子帧是短格式,那么基站侧依然可以基于其他信道测量子帧发送的信道测量信号得到次优的预编码选择结果。如果一个终端的所有信道测量或预编码选择子帧都有SRS(Sounding Reference Signal,信道探测参考信号)的发送,此时就需要高层配置,避免在这些子帧进行信道测量或预编码选择。
对于扩展CP(Cyclic Prefix,循环前缀),此时由于DMRS在时域只能复用2个,所以PUCCH format1/1a/1b此时只能复用2个,用的序列是正交码0和正交码2,即[1,1,1,1]和[1,-1,-1,1],此时信道测量或预编码选择资源就可以用未用的序列,即正交码1和正交码3,即[1,-1,1,-1]和[1,1,-1,-1],此 时对于第2时隙如果是短格式,就可以用[1,ej2π/3,ej4π/3],或者不发。
图2a、图2b及图2c是Normal CP时,一个特定PRB-Pair上的PUCCH format1/1a/1b信道和信道测量或预编码选择资源码分复用的示意图,图2a是
Figure PCTCN2016081605-appb-000075
时的示意图,图2b是
Figure PCTCN2016081605-appb-000076
的示意图,图2c是
Figure PCTCN2016081605-appb-000077
的示意图。其中,Bi表示一个独立的信道测量或预编码选择资源,UEi表示一个独立的PUCCH format1/1a/1b信道。此时
Figure PCTCN2016081605-appb-000078
aB1属于
Figure PCTCN2016081605-appb-000079
其中,
Figure PCTCN2016081605-appb-000080
表示所述终端占有的CS序列的最小循环移位间隔,N′表示上行控制信道对应的最大循环移位加一,即N'=Nf或者
Figure PCTCN2016081605-appb-000081
其中,Nf表示CS序列长度,
Figure PCTCN2016081605-appb-000082
表示上行控制信道format1/1a/1b和上行控制信道format2/2a/2b混合资源上,上行控制信道format1/1a/1b可用的循环移位个数。
一个信道测量或预编码选择资源需要在多个终端之间共用,终端之间时分复用。
Figure PCTCN2016081605-appb-000083
表示一个TTI内分给一个UE的信道测量或预编码选择资源数,当
Figure PCTCN2016081605-appb-000084
表示一个TTI内分给一个UE的信道测量或预编码选择资源数为1,那么图2a中{UE0,UE12,UE24}就需要共用B0,此时Tgap=3;当
Figure PCTCN2016081605-appb-000085
表示一个TTI内分给一个UE的信道测量或预编码选择资源为2,那么此时{UE0~UE1,UE12~UE13,UE24~UE25}需要共用信道测量或预编码选择资源B0,B1,此时Tgap=6。总之,Tgap根据共用信道测量或预编码选择资源的终端数和一次分配给终端的信道测量或预编码选择个数
Figure PCTCN2016081605-appb-000086
共同决定,基于如下公式得到Tgap和aB1信息:
Figure PCTCN2016081605-appb-000087
Figure PCTCN2016081605-appb-000088
其中,aB1为循环移位角的中间变量,如权利要求16所示,
Figure PCTCN2016081605-appb-000089
为信道测量或预编码选择资源循环移位的最小间隔,如权利要求14所示,n是所述终端在一个物理资源块对(PRB-Pair)中占有的信道测量或者预编码选择资源的索引,
Figure PCTCN2016081605-appb-000090
是终端占有的码分多址复用的上行控制信道索引,由如下公式给出,
其中,对于偶数时隙:
Figure PCTCN2016081605-appb-000091
对于奇数时隙:
Figure PCTCN2016081605-appb-000092
其中,
Figure PCTCN2016081605-appb-000093
对于Normal CP,d=2,c=3,对于扩展CP,d=0,c=2;
Figure PCTCN2016081605-appb-000094
是一个物理资源块包含的子载波数,ns是时隙索引,
Figure PCTCN2016081605-appb-000095
代表PUCCH format 1/1a/1b的信道资源总索引。此时,此PRB-Pair上的信道测量或预编码选择资源上的信号对此PRB内的PUCCH format1/1a/1b信道几乎是正交的,而且考虑到正交码0、正交码2对于正交码1、正交码3(长度为4的正交码序列索引和其对应正交码序列如图7所示)的干扰比较大,所以尽量避免使正交码3和正交码0、正交码2的信道占有相同的CS资源。
图3a、图3b及图3c是Normal CP时,另一种特定PRB-Pair上的PUCCH format1/1a/1b信道和信道测量或预编码选择资源码分复用的示意图,图3a是
Figure PCTCN2016081605-appb-000096
时的示意图,图3b是
Figure PCTCN2016081605-appb-000097
的示意图,图3c是
Figure PCTCN2016081605-appb-000098
的示意图。其中,Bi表示一个独立的信道测量或预编码选择资源,UEi表示一个独立的PUCCH format1/1a/1b信道。此时可以将和正交码0、正交码2占有相同CS资源的信道测量或预编码选择资源分配给低速用户。比如图3b,可以将B0,B2,B4,B6,B8,B10分配给低速用户做信道测量或预编码选择。此时
Figure PCTCN2016081605-appb-000099
aB1属于{0~N′-1},Tgap和aB1由如下公式得到:
Figure PCTCN2016081605-appb-000100
Figure PCTCN2016081605-appb-000101
其中,n是所述终端在一个物理资源块对中占有的信道测量或者预编码选择资源的索引,
Figure PCTCN2016081605-appb-000102
是终端的上行控制信道占有的正交码索引。
图4a、图4b及图4c是扩展CP时,一种特定PRB-Pair上的PUCCH format1/1a/1b信道和信道测量或预编码选择资源共存码分复用的示意图, 图4a是
Figure PCTCN2016081605-appb-000103
时的示意图,图4b是
Figure PCTCN2016081605-appb-000104
的示意图,图4c是
Figure PCTCN2016081605-appb-000105
的示意图。其中,Bi表示一个独立的信道测量或预编码选择资源,UEi表示一个独立的PUCCH format1/1a/1b信道。此时可以将占有正交码1的信道测量或预编码选择资源分配给占有正交码0的PUCCH format1/1a/1b信道的终端,将占有正交码3的信道测量或预编码选择资源分配给占有正交码2的PUCCH format1/1a/1b信道的终端,aB1属于{0~N′-1},
Figure PCTCN2016081605-appb-000106
此时信道测量或预编码选择资源对应的CS资源和Tgap可以基于如下公式得到:
Figure PCTCN2016081605-appb-000107
此时
Figure PCTCN2016081605-appb-000108
Figure PCTCN2016081605-appb-000109
的倍数;
Figure PCTCN2016081605-appb-000110
此时
Figure PCTCN2016081605-appb-000111
图5a、图5b及图5c是扩展CP时,另一种特定PRB-Pair上的PUCCH format1/1a/1b信道和信道测量或预编码选择资源共存码分复用的示意图,图5a是
Figure PCTCN2016081605-appb-000112
时的示意图,图5b是
Figure PCTCN2016081605-appb-000113
的示意图,图5c是
Figure PCTCN2016081605-appb-000114
的示意图。其中,Bi表示一个独立的信道测量或预编码选择资源,UEi表示一个独立的PUCCH format1/1a/1b信道。此时可以将占有正交码1的信道测量或预编码选择资源分配给占有正交码0的PUCCH format1/1a/1b信道的终端,将占有正交码3的信道测量或预编码选择资源分配给占有正交码2的PUCCH format1/1a/1b信道的终端。
aB1属于
Figure PCTCN2016081605-appb-000115
Figure PCTCN2016081605-appb-000116
那么信道测量或预编码选择资源对应的CS资源和Tgap可以基于如下公式得到:
Figure PCTCN2016081605-appb-000117
Figure PCTCN2016081605-appb-000118
此时,对于
Figure PCTCN2016081605-appb-000119
的PUCCH format1/1a/1b所占有的CS资源信息,可选地改为基于如下公式得到:
Figure PCTCN2016081605-appb-000120
图6是扩展CP时,
Figure PCTCN2016081605-appb-000121
的另一种PUCCHformat1/1a/1b信道和信道测量或预编码选择资源码分复用的示意图。此时,aB1属于
Figure PCTCN2016081605-appb-000122
则:
Figure PCTCN2016081605-appb-000123
Figure PCTCN2016081605-appb-000124
上述方式中,终端占有的信道测量或预编码选择资源的CS序列资源是基于终端已有的PUCCH format1/1a/1b信道的相关信息得到,终端占有的信道测量或预编码选择资源的CS序列资源的另一种方式是通过高层信令通知。
通过高层信令,将一个或者多个,或者当前传输周期内全部信道测量或预编码选择资源分配给一个终端,用于其在信道测量或预编码选择子帧进行信道测量或预编码选择信号的发送。如图2a,将B0~B1分配给终端UE0~UE1,UE12~UE13,UE24~UE25,此时,UE0~UE1,UE12~UE13,UE24~UE25共用B0,B1信道测量或预编码选择资源,这些终端之间可以时分复用这些共用的信道测量或预编码选择资源。此时基站侧基于终端所需的信道测量或预编码选择资源和一个TTI内可用的信道测量或预编码选择资源,通过高层信令通知终端Tgap。假设每个终端一次信道测量或预编码选择需要的信道测量或预编码选择资源为6,而一个子帧内分配给此终端的信道测量或预编码选择资源为2,那么需要3个信道测量或预编码选择资源,终端才可完成一次信道测量或预编码选择信号发送过程所需的全部信道测量或预编码选择信号的发送,此时有以下两种方式:
方式一:如图9a,Tgap=1,UE0在连续三个子帧完成信道测量或预编码选择信号的发送之后,,UE1在接下来连续的两个子帧进行信道测量或预编码选择信号的发送,共用此信道测量或预编码选择资源的终端分时顺序占有此信道测量或预编码选择资源;
方式二:如图9b,Tgap=2,UE0和UE1复用前6个子帧,偶数子帧分配给UE0,奇数子帧分配给UE1。UE12和UE13、UE24和UE25的复用方式类似。
另外,也可以有其他分配方式,比如不同终端需要的信道测量或预编码选择资源不同,Tgap通过高层信令通知。
终端占有的信道测量或预编码选择资源的CS序列资源的第三种方式是通过动态信令通知。
实施例四
在相关LTE系统中,PUCCH format1/1a/1b的正交码序列资源和CS资源由如下公式得到:
Figure PCTCN2016081605-appb-000125
Figure PCTCN2016081605-appb-000126
Figure PCTCN2016081605-appb-000127
Figure PCTCN2016081605-appb-000128
Figure PCTCN2016081605-appb-000129
其中,对于偶数时隙:
Figure PCTCN2016081605-appb-000130
对于奇数时隙:
Figure PCTCN2016081605-appb-000131
其中,
Figure PCTCN2016081605-appb-000132
对于Normal CP,d=2,对于扩展CP,d=0;其中,
Figure PCTCN2016081605-appb-000133
依次表示PUCCH format1/1a/1b信道对 应的正交码以及正交码序列的循环移位,这两者共同决定了一个PUCCH format1/1a/1b控制信道资源。
Figure PCTCN2016081605-appb-000134
由高层信令通知,
Figure PCTCN2016081605-appb-000135
代表PUCCH format1/1a/1b的信道资源总索引。
在本实施例中,如果终端的
Figure PCTCN2016081605-appb-000136
是半静态配置的,此时Tgap=1。如果是Normal CP,可用的信道测量或预编码选择资源的正交码可以是如下的三种:
第一种:
Figure PCTCN2016081605-appb-000137
对应的正交码,即基于如上公式得到的
Figure PCTCN2016081605-appb-000138
对应的正交码序列,长度为4的正交码索引和其对应的序列如图7所示,此时信道测量或预编码选择资源的CS资源也为此PUCCH format1/1a/1b占有的CS资源,即由如下公式得到:
Figure PCTCN2016081605-appb-000139
第二种:[1,1,-1,-1],如果第二时隙是短格式,对应信道测量或预编码选择信号不发;
第三种:此
Figure PCTCN2016081605-appb-000140
对应的解调参考信号资源对应的正交码序列,所述解调参考信号资源对应的正交码序列,是长度为3的DFT(Discrete Fourier Transform,离散傅里叶变换)序列,其序列索引基于
Figure PCTCN2016081605-appb-000141
得到的
Figure PCTCN2016081605-appb-000142
给定。长度为4的正交码索引和其对应的序列如图8所示。
如图2a,此时UE0在其没有PUCCH format1/1a/1b发送的子帧内,基站可以调度其在其PUCCH format1/1a/1b占有的信道上进行信道测量或预编码选择信号的发送,同时由
Figure PCTCN2016081605-appb-000143
基于公式(1~5)得到
Figure PCTCN2016081605-appb-000144
Figure PCTCN2016081605-appb-000145
由这两个资源决定的解调参考信号资源也可以用于此终端的信道测量或预编码选择信号的发送。此时,基站要避免在这些资源上调度其他终端发送PUCCHformat1/1a/1b信道或者信道测量或预编码选择信号。
如果是扩展CP,可用的信道测量或预编码选择资源的正交码序列可以是如下的三种:
第一种:
Figure PCTCN2016081605-appb-000146
对应的正交码;
第二种:[1,1,-1,-1]和[1,-1,-1,1],如果第二时隙是短格式,则正交码为[1,ej2π/3,ej4π/3];
第三种:此
Figure PCTCN2016081605-appb-000147
对应的解调参考信号资源对应的正交码序列;所述解调参考信号资源对应的正交码序列,即[1,1]或者[1,-1],其序列索引基于
Figure PCTCN2016081605-appb-000148
得到的
Figure PCTCN2016081605-appb-000149
给定。
实施例五
在本实施例中,每个信道测量资源对应一个物理天线端口,在一个信道测量或预编码选择资源上的发送信号为:
Figure PCTCN2016081605-appb-000150
m′=0,1,m=0,...1/2/3,n=0,1,...,12;
其中,
Figure PCTCN2016081605-appb-000151
m′,m,n依次对应时隙号、一个时隙内的信道测量资源占有的OFDM符号索引、信道测量资源占有的子载波索引,
Figure PCTCN2016081605-appb-000152
为信道测量资源的CS序列循环移位的最小间隔,或者满足
Figure PCTCN2016081605-appb-000153
或者满足
Figure PCTCN2016081605-appb-000154
w(m)是时域扩展的正交码长度。不同的天线端口对应不同的信道测量资源,即不同的正交码和CS资源组合。
在另一个实施例中,一个预编码选择资源上对应一个波束,此时对应第i个波束的第p个虚拟天线的发送信号为:
Figure PCTCN2016081605-appb-000155
m′=0,1,m=0,...1/2/3,n=0,1,...,12,p=0,1,...,PNum
其中,PNum是PUCCH format1/1a/1b
Figure PCTCN2016081605-appb-000156
端口对应虚拟天线端口个数,
Figure PCTCN2016081605-appb-000157
是第i个波束对应的预编码向量,
Figure PCTCN2016081605-appb-000158
为信道测量或预编码选择资源循环移位的最小间隔,或者满足
Figure PCTCN2016081605-appb-000159
或者满足
Figure PCTCN2016081605-appb-000160
当终端接收到基站反馈的最优预编码为wprecode,opt,则终端在发送PUCCH format1/1a/1b信道时,其属于
Figure PCTCN2016081605-appb-000161
端口的第p个虚拟物理天线上的 发送信号可以为:
Figure PCTCN2016081605-appb-000162
或者,
Figure PCTCN2016081605-appb-000163
m′=0,1,m=0,...1/2/3,n=0,1,...,12,p=0,1,...,PNum
其中,
Figure PCTCN2016081605-appb-000164
是根据
Figure PCTCN2016081605-appb-000165
以及反馈的最优预编码列表得到的。当此RE(即m'MN+mN+i指示的资源)为PUCCH format 1/1a/1b控制信道数据资源时,b为PUCCH format 1/1a/1b控制信道数据信息,即为ACK/NACK信息,当此RE为解调参考信号资源时,b=1。
在进行信道测量或预编码选择时,期望基站侧给终端配置一个PUCCH format1/1a/1b端口,即
Figure PCTCN2016081605-appb-000166
实施例六
终端启动信道测量或预编码选择信号发送过程之后,占有的信道测量或预编码选择资源个数达到一定数量,比如等于其波束数,或者物理天线端口数,或者高层通知的一定数量,当终端在所有这些占有的资源上发送了信道测量或预编码选择信号,终端认为其一次信道测量或预编码选择信号的发送过程结束。
基站侧在收到所述数量的信道测量或预编码选择信号之后,认为此终端的信道测量或预编码选择信号发送完成,基站侧基于这些资源上的接收信号和这些资源上的信道测量或预编码选择参考信号,得到最优预编码结果或者最优预编码结果列表,反馈给终端;终端在进行PUCCH format1/1a/1b传输时,可基于反馈的信道测量或预编码选择结果,对PUCCH format1/1a/1b信道上发送的信号进行预编码达到覆盖增强的目的。
在另一个实施例中,发送的信道测量信号或预编码选择信号,还可以用于其它用途,并不局限于用于上行控制信道的预编码选择。比如用于下行信道的预编码选择,此时假设上下行信道之间具有互易性;或者,用于上行控制信道对应的物理资源更换,基站侧根据终端发送的信道测量信号或 预编码选择信号得到此终端的信道能量低于预定门限,就可启动此终端的上行控制信道对应的物理资源的更换过程。
实施例七
在相关LTE系统中,PUCCH format 1/1a/1b所占的PRB资源通过如下公式得到:
Figure PCTCN2016081605-appb-000167
Figure PCTCN2016081605-appb-000168
Figure PCTCN2016081605-appb-000169
其中,
Figure PCTCN2016081605-appb-000170
是相关LTE系统中PUCCH format 2/2a/2b在一个时隙中占有的资源块数,
Figure PCTCN2016081605-appb-000171
是上行系统带宽,单位是资源块。
信道测量或预编码选择资源占有的PRB资源,一种是仅根据高层通知变量
Figure PCTCN2016081605-appb-000172
得到,此时由此变量根据公式(6~8)得到信道测量或预编码选择资源占有的PRB资源。此时第1时隙的信道测量或预编码选择发送信号占有的PRB资源和第2时隙信道测量或预编码选择发送信号占有的PRB资源满足公式(6),即达到不同时隙跳频的目的。
另一种是基于高层通知变量
Figure PCTCN2016081605-appb-000173
以及在触发信道测量或预编码选择的子帧,终端检测基站发送的CCE的个数。
当所述物理资源由高层通知上行控制信道相关的变量以及启动信道测量信号的发送过程时终端检测的CCE总数NCCE共同决定时,信道测量资源所占的物理资源块索引nPRB由如下公式得到:
Figure PCTCN2016081605-appb-000174
其中,ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot 表示一个无线帧内的时隙数,
Figure PCTCN2016081605-appb-000175
是上行系统带宽,以物理资源块为单位,m是中间变量,其值由下面的公式得到:
Figure PCTCN2016081605-appb-000176
其中,
Figure PCTCN2016081605-appb-000177
Figure PCTCN2016081605-appb-000178
Figure PCTCN2016081605-appb-000179
然后,基于上述公式得到占有的PRB资源,此时同一子帧第一、二时隙的信道测量或预编码选择发送信号占有的PRB资源达到跳频的目的。
此时一个信道测量或预编码选择结果对应两个预编码,一个是第一时隙占有的PRB上的预编码,一个是第二时隙占有的PRB上的预编码。如果两个时隙占有的PRB占有的频域资源相同,此时一个预编码选择结果可以只对应一个预编码,认为这两个PRB上的最优预编码一致。如果第二时隙上信道测量或预编码选择发送信号没有发送,那么此时一个信道测量可以只有一个预编码,对应第一时隙上最优预编码。
实施例八
在本实施例中,终端占有的CS资源aB1在一定周期内保持不变但是奇数时隙的aB1基于偶数时隙的aB1发生一定的跳变,达到终端占有的信道测量或预编码选择资源干扰随机化的目的。
比如,终端占有的CS资源的aB1在所有信道测量或预编码选择子帧相同保持不变,但是对于一个信道测量或预编码选择子帧的两个时隙发生跳变,达到终端占有的信道测量或预编码选择资源干扰随机化的目的。
一种跳变方式是行进列出的方式,即将当前PRB上所有可用的信道测量或预编码选择资源对应的可用CS序列索引按行进列出的方式,基于偶数时隙的aB1得到奇数时隙的aB1,如图4a,此时可用的信道测量或预编码选 择有24个,如图4a所示{B0~B23},将其按如下公式计算得到奇数时隙的aB1
Figure PCTCN2016081605-appb-000180
其中,d=3,c1是当前信道测量或预编码选择资源可用的正交码序列的个数。
另外,如图10所示,本发明实施例还提供一种在上行控制信道上发送信号的装置,所述装置包括:
第一发送模块,设置为:在对应的上行控制信道所在的物理资源上,和/或,由此物理资源确定的其他物理资源上,通过空闲正交码和CS序列构成的资源发送信道测量信号或预编码选择信号;其中,所述信道测量信号是没有进行预编码处理后的信号,所述预编码选择信号是经过预编码处理后的信号。
其中,所述空闲正交码满足如下特征之一:
上行控制信道未用的正交码;
上行控制信道对应的解调参考信号的未用的正交码;
空闲上行控制信道上占用的正交码;
空闲上行控制信道对应的解调参考信号上占用的正交码;
其中,所述空闲上行控制信道是分配给终端专有的上行控制信道,且,在当前传输周期中所述终端在所述空闲上行控制信道上不发送上行反馈信息或者上行请求信息。
其中,当上行控制信道通过正交码在时域达到多用户复用,上行控制信道的解调参考信号也通过正交码在时域达到多用户复用时,如果上行控制信道占有的时域符号数不等于上行控制信道的解调参考信号占有的时域符号数,则所述未用正交码是所有上行控制信道上未用的正交码,或者为所有上行控制信道对应的解调参考信号的未用的正交码。
其中,如果上行控制信道占有的时域符号数为M,上行控制信道的解调参考信号占有的时域符号数为N,且M>N,M和N均为正整数,其中所有 上行控制信道占用M维正交码中的N个,则上行控制信道未用的正交码为M维正交码中的M-N个正交码。
其中,如果上行控制信道占有的时域符号数为M,上行控制信道的解调参考信号占有的时域符号数为N,且M<N,M和N均为正整数,其中所有上行控制信道对应的解调参考信号占用N维正交码中的M个,则上行控制信道对应的解调参考信号的未用的正交码为N维正交码中的N-M个正交码。
其中,
当所述正交码是所述上行控制信道未用的正交码,或者为上行控制信道对应的解调参考信号的未用的正交码时,CS序列是由一个根序列的不同循环移位得到的序列集合;
当所述正交码是空闲上行控制信道上占用的正交码,CS序列是所述空闲上行控制信道上占有的CS序列;
当所述正交码是空闲上行控制信道对应的解调参考信号占用的正交码,CS序列是所述空闲上行控制信道上解调参考信号占有的CS序列。
其中,当CS序列是由一个根序列的不同循环移位得到的序列集合时,由所述一个空闲正交码和所述一个CS序列构成的一个信道测量或预编码选择资源中的CS序列为所述序列集合中的一个序列。
其中,所述一个信道测量或预编码选择资源中的CS序列是通过高层配置得到的,或者,通过DCI信令得到的,或者根据已有的上行控制信道信息得到的。
其中,
如果所述一个信道测量或预编码选择资源中的CS序列是通过高层配置或者DCI信令得到的,则在一个传输周期内接收一个或者多个所述CS序列;
如果所述一个信道测量或预编码选择资源中的CS序列是根据已有的上行控制信道信息得到的,则根据信道测量信号发送周期、一个传输周期内占有的信道测量或预编码选择资源的个数
Figure PCTCN2016081605-appb-000181
中的至少一个和传输周期内 占有的上行控制信道信息,得到信道测量或预编码选择资源占有的所述CS序列集合中的CS序列索引;其中,所述信道测量信号发送周期为所述终端两次完整信道测量信号发送过程之间的间隔。
其中,所述信道测量信号发送周期、所述一个传输周期内占有的信道测量或预编码选择资源的个数
Figure PCTCN2016081605-appb-000182
中的至少一个是根据高层配置的或者为预先设置的固定值。
其中,当所述CS序列是由一个根序列的不同循环移位得到的序列集合时,所述根序列的不同循环移位满足正交特性,且所述根序列和终端的上行控制信道对应的根序列相同。
其中,所述序列集合满足如下特征之一:
所述序列集合包含所述根序列的所有循环移位;
所述序列集合包含所述根序列的部分循环移位,其中,循环移位的间隔等于上行控制信道的循环移位间隔
Figure PCTCN2016081605-appb-000183
其中,当所述循环移位的间隔等于上行控制信道的循环移位间隔
Figure PCTCN2016081605-appb-000184
将根序列的所有循环移位序列分为
Figure PCTCN2016081605-appb-000185
个集合,这些集合的最小循环移位依次对应
Figure PCTCN2016081605-appb-000186
Figure PCTCN2016081605-appb-000187
个集合中选择满足如下特征之一的序列集合:
如果所述未用正交码为所述上行控制信道未用的正交码,则由所述序列集合中的序列和所述上行控制信道未用的一个正交码构成的资源上发送的信号,对所有上行控制信道和所有上行控制信道上未用的其他正交码所占有的资源上的信号造成的干扰最小;
如果所述未用正交码为所述上行控制信道对应的解调参考信号的未用的正交码,则由所述序列集合中的序列和所述上述控制信道对应的解调参考信号的未用的一个正交码构成的资源上发送的信号,对所有上行控制信道的解调参考信号和所有上行控制信道对应的解调参考信号的其他未用正交码所占有的资源上的信号造成的干扰最小。
其中,当所述序列集合包含所述根序列的所有循环移位,如果序列长度为Nf,则所述序列集合中的所有循环移位构成Nf个不同的正交序列。
其中,如果终端的上行物理信道在上行控制信道占有的M个时域符号上发生变化,其中M维的正交码中上行控制信道占用正交码M0、M1和M2,未用的正交码为M3,如果不同终端之间占有CS序列相同时,正交码M3资源上发送的信号对正交码M1资源上发送的信号造成的干扰相比正交码M3资源上发送的信号对正交码M0或者M2资源上发送的信号造成的干扰小,则未用的正交码M3对应的CS序列集合等于正交码为M1的所有上行控制信道对应的CS序列构成的集合。
其中,所述CS序列
Figure PCTCN2016081605-appb-000188
为CG-CAZAC序列,与所述终端的PUCCHformat1/1a/1b对应的CS序列中的u和v一致;
其中,
Figure PCTCN2016081605-appb-000189
acs(ns,l)表示CS序列的循环移位,aB(ns,l)是循环移位中的正整数中间变量,范围为{0~Nf-1},ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot表示一个无线帧内的时隙数;l表示一个时隙内的OFDM符号编号,其值属于集合{0~NOFDM-1},NOFDM表示一个时隙内的OFDM符号数;Nf表示CS序列的长度。
其中,
Figure PCTCN2016081605-appb-000190
其中,
Figure PCTCN2016081605-appb-000191
表示小区间循环移位,其满足如下特征之一:
与所述终端的上行控制信道对应的小区级循环移位
Figure PCTCN2016081605-appb-000192
相同;
与所述终端的上行控制信道的解调参考信号对应的小区级循环移位
Figure PCTCN2016081605-appb-000193
相同;
其中,ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot表示一个无线帧内的时隙数;l表示一个时隙内的OFDM符号编号,其值属于集合{0~NOFDM-1},NOFDM表示一个时隙内的OFDM符号数;
其中,aB1是一个正整数中间变量,其值属于集合{0~Nf-1}或者属于集合{0~Nf-1}的子集,Nf表示CS序列的长度。
其中,奇数时隙的aB1基于偶数时隙的aB1发生跳变。
其中,
所述发送信号为:
Figure PCTCN2016081605-appb-000194
其中,
Figure PCTCN2016081605-appb-000195
表示由u,v得到的根序列,Nf是频域扩展因子,Mt是时域扩展所用正交码长度,
Figure PCTCN2016081605-appb-000196
为信道测量或预编码选择资源循环移位的最小间隔,或者满足
Figure PCTCN2016081605-appb-000197
或者满足
Figure PCTCN2016081605-appb-000198
表示向下取整;w(m)是时域扩展的正交码长度;
如果发送信道测量信号,则a=1;如果所述发送预编码选择
Figure PCTCN2016081605-appb-000199
是第i个预编码向量在第p个天线上的预编码权值。
其中,信道测量发送信号z(j)对应的信道测量参考信号为
Figure PCTCN2016081605-appb-000200
n=0,1,...,Nf-1,m=0,1,...Mt-1,;
其中,n为上行控制信道占有的频域子载波编号,其中,所述上行控制信道占有的PRB上的子载波顺序编号,且最小子载波对应的n值为0;
如果正交码是所述上行控制信道未用的正交码或者是空闲上行控制信道占用的正交码,m为上行控制信道占有的OFDM符号编号,上行控制信道占有的OFDM符号顺序编号,且最小符号索引对应的m为0;
如果正交码是所述上行控制信道对应的解调参考信号占用的正交码,m为上行控制信道的解调参考信号占有的OFDM符号编号,上行控制信道的解调参考信号占有的OFDM符号顺序编号,且最小符号索引对应的m为0。
其中,所述装置还包括:
第一接收模块,设置为以如下方式之一接收到发送信道测量信号的指示:
接到所述终端的PDSCH传输后,启动在所述空闲资源上发送信道测量信号的过程;
接到通过PDSCH传输的发送信道测量信号的指示后,启动在所述空闲资源上发送信道测量信号的过程;
在所述终端与服务器同步之后,周期地启动在所述空闲资源上发送信道测量信号的过程,其中,所述周期由高层通知的或者是固定的;
在接收到高层信令后,根据所述高层信令,启动在所述空闲资源上发送信道测量信号的过程;
在接收到DCI信令后,根据所述DCI信令,启动在所述空闲资源上发送信道测量信号的过程。
可选的,所述装置还包括:
第二发送模块,设置为:每隔一个传输间隔,在一个或多个信道测量或预编码选择资源上发送对应的信道测量信号或预编码选择信号;其中,一个信道测量或预编码选择资源由所述一个空闲正交码和所述一个CS序列构成。
其中,所述传输间隔是通过以下方式之一获得的:
通过高层信令通知得到的;
根据终端对应的上行控制信道的已有信息和/或所述空闲资源上发送信道测量信号过程的信息得到的;
其中,当所述传输间隔为1传输时间间隔时,信道测量周期大于或等于共用此资源的所有终端都完成一次信道测量或预编码选择信号发送过程需要的时间。
其中,所述第一发送模块进行在空闲资源上发送信道测量信号的过程,完成一次完整信道测量信号或预编码选择信号发送过程,所占的信道测量资源的数量是通过如下任一方式得到的:
通过接收的高层信令得到的;
与物理端口的总数相同;
与预编码向量总数相同。
其中,所述物理资源是通过以下方式之一得到的:
与高层通知的上行控制信道占有的物理资源相同;
由高层通知的上行控制信道相关的变量以及启动信道测量信号的发送 过程时终端检测的CCE总数NCCE共同决定的。
其中,当所述物理资源由高层通知的上行控制信道相关的变量以及启动信道测量信号的发送过程时终端检测的CCE总数NCCE共同决定时,信道测量资源所占的物理资源块索引nPRB由如下公式得到:
Figure PCTCN2016081605-appb-000201
其中,ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot表示一个无线帧内的时隙数,
Figure PCTCN2016081605-appb-000202
是上行系统带宽,以物理资源块为单位,m是中间变量,其值由下面的公式得到:
Figure PCTCN2016081605-appb-000203
其中,
Figure PCTCN2016081605-appb-000204
表示在每个时隙中上行控制信道format2/2a/2b占有的物理资源块数,NPUCCH表示上行控制信道format1/1a/1b的逻辑编号,c表示上行控制信道或者上行控制信道的解调参考信号在时域占有的正交码序列的个数,
Figure PCTCN2016081605-appb-000205
表示在上行控制信道format1/1a/1b和format2/2a/2b混合资源的上行控制信道format1/1a/1b占有的循环移位个数,
Figure PCTCN2016081605-appb-000206
表示上行控制信道占有的CS序列的最小循环移位间隔;
其中,m1,m2由如下公式得到:
Figure PCTCN2016081605-appb-000207
Figure PCTCN2016081605-appb-000208
Figure PCTCN2016081605-appb-000209
其中,
Figure PCTCN2016081605-appb-000210
是用于指示上行控制物理资源的中间变量,
Figure PCTCN2016081605-appb-000211
表示在所述混合资源上上行控制信道format1/1a/1b可用的循环移位最大个数加一,其中
Figure PCTCN2016081605-appb-000212
Nf表示CS序列的长度,
Figure PCTCN2016081605-appb-000213
表示当上行控制信道资源由高层配置的
Figure PCTCN2016081605-appb-000214
和下行指示PDSCH传输参数的DCI所占的最低CCE索引共同决定的上行控制信道的最大索引值,NCCE表示终端在启动信道测量 信号发送过程时检测的下行控制信道元素CCE的总数;
Figure PCTCN2016081605-appb-000215
表示向下取整,
Figure PCTCN2016081605-appb-000216
表示向上取整。
其中,所述装置还包括:
第二接收模块,设置为接收基站侧反馈的预编码选择结果;其中,所述预编码选择结果包括预编码向量或者码本索引或者预编码索引,用于确定第一时隙物理资源上和第二时隙物理资源上的预编码。
其中,所述第二接收模块是设置为通过如下方式接收基站侧反馈的预编码选择结果:
通过高层信令接收;或者,
在PDSCH对应的DCI信令中获取。
本发明实施例提供的装置,通过在上行控制信道未充分利用的闲置资源上进行信道测量或预编码选择信号的发送,得到用于上行控制信道传输时的预编码,从而达到上行控制信道覆盖增强的目的。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述在上行控制信道上发送信号的方法。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现 并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器、磁盘或光盘等。
以上所述,仅为本申请的可选实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求所述的保护范围为准。
工业实用性
本申请实施例提供一种上行控制信道上发送信号的方法及装置,能够增强上行控制信道覆盖。

Claims (31)

  1. 一种在上行控制信道上发送信号的方法,包括:
    终端在其对应的上行控制信道所在的物理资源上,和/或,由此物理资源确定的其他物理资源上,通过空闲正交码和循环移位CS序列构成的资源发送信道测量信号或预编码选择信号;其中,所述信道测量信号是没有进行预编码处理后的信号,所述预编码选择信号是经过预编码处理后的信号。
  2. 根据权利要求1所述的方法,其中,所述空闲正交码满足如下特征之一:
    上行控制信道未用的正交码;
    上行控制信道对应的解调参考信号的未用的正交码;
    空闲上行控制信道上占用的正交码;
    空闲上行控制信道对应的解调参考信号上占用的正交码;
    其中,所述空闲上行控制信道是分配给所述终端专有的上行控制信道,且,在当前传输周期中所述终端在所述空闲上行控制信道上不发送上行反馈信息或者上行请求信息。
  3. 根据权利要求2所述的方法,其中,当上行控制信道通过正交码在时域达到多用户复用,上行控制信道的解调参考信号也通过正交码在时域达到多用户复用时,如果上行控制信道占有的时域符号数不等于上行控制信道的解调参考信号占有的时域符号数,则所述未用正交码是所有上行控制信道上未用的正交码,或者为所有上行控制信道对应的解调参考信号的未用的正交码。
  4. 根据权利要求3所述的方法,其中,如果上行控制信道占有的时域符号数为M,上行控制信道的解调参考信号占有的时域符号数为N,且M>N,M和N均为正整数,其中,所有上行控制信道占用M维正交码中的N个,则上行控制信道未用的正交码为M维正交码中的M-N个正交码。
  5. 根据权利要求3所述的方法,其中,如果上行控制信道占有的时域符号数为M,上行控制信道的解调参考信号占有的时域符号数为N,且M<N,M和N均为正整数,其中,所有上行控制信道对应的解调参考信号 占用N维正交码中的M个,则上行控制信道对应的解调参考信号的未用的正交码为N维正交码中的N-M个正交码。
  6. 根据权利要求2所述的方法,其中,
    当所述正交码是所述上行控制信道未用的正交码,或者为上行控制信道对应的解调参考信号的未用的正交码时,CS序列是由一个根序列的不同循环移位得到的序列集合;
    当所述正交码是空闲上行控制信道上占用的正交码,CS序列是所述空闲上行控制信道上占有的CS序列;
    当所述正交码是空闲上行控制信道对应的解调参考信号上占用的正交码,CS序列是所述空闲上行控制信道上解调参考信号占有的CS序列。
  7. 根据权利要求6所述的方法,其中,当CS序列是由一个根序列的不同循环移位得到的序列集合时,由所述一个空闲正交码和所述一个CS序列构成的一个信道测量或预编码选择资源中的CS序列为所述序列集合中的一个序列。
  8. 根据权利要求7所述的方法,其中,所述一个信道测量或预编码选择资源中的CS序列是通过高层配置得到的,或者,通过下行控制信息DCI信令得到的,或者根据已有的上行控制信道信息得到的。
  9. 根据权利要求8所述的方法,其中,
    如果所述一个信道测量或预编码选择资源中的CS序列是通过高层配置或者DCI信令得到的,则所述终端在一个传输周期内接收一个或者多个所述CS序列;
    如果所述一个信道测量或预编码选择资源中的CS序列是根据已有的上行控制信道信息得到的,则所述终端根据信道测量信号发送周期、一个传输周期内占有的信道测量或预编码选择资源的个数
    Figure PCTCN2016081605-appb-100001
    中的至少一个和传输周期内占有的上行控制信道信息,得到信道测量或预编码选择资源占有的所述CS序列集合中的CS序列索引;其中,所述信道测量信号发送周期为所述终端两次完整信道测量信号发送过程之间的间隔。
  10. 根据权利要求9所述的方法,其中,
    所述信道测量信号发送周期、所述一个传输周期内占有的信道测量或预编码选择资源的个数
    Figure PCTCN2016081605-appb-100002
    中的至少一个是根据高层配置的或者为预先设置的固定值。
  11. 根据权利要求6所述的方法,其中,当所述CS序列是由一个根序列的不同循环移位得到的序列集合时,所述根序列的不同循环移位满足正交特性,且所述根序列和终端的上行控制信道对应的根序列相同。
  12. 根据权利要求11所述的方法,其中,所述序列集合满足如下特征之一:
    所述序列集合包含所述根序列的所有循环移位;
    所述序列集合包含所述根序列的部分循环移位,其中,循环移位的间隔等于上行控制信道的循环移位间隔
    Figure PCTCN2016081605-appb-100003
  13. 根据权利要求12所述的方法,其中,
    当所述循环移位的间隔等于上行控制信道的循环移位间隔
    Figure PCTCN2016081605-appb-100004
    将所述根序列的所有循环移位序列分为
    Figure PCTCN2016081605-appb-100005
    个集合,这些集合的最小循环移位依次对应
    Figure PCTCN2016081605-appb-100006
    Figure PCTCN2016081605-appb-100007
    个集合中选择满足如下特征之一的序列集合:
    如果所述未用正交码为所述上行控制信道未用的正交码,则由所述序列集合中的序列和所述上行控制信道未用的一个正交码构成的资源上发送的信号,对所有上行控制信道和所有上行控制信道上未用的其他正交码所占有的资源上的信号造成的干扰最小;
    如果所述未用正交码为所述上行控制信道对应的解调参考信号的未用的正交码,则由所述序列集合中的序列和所述上行控制信道对应的解调参考信号的未用的一个正交码构成的资源上发送的信号,对所有上行控制信道的解调参考信号和所有上行控制信道对应的解调参考信号的其他未用正交码所占有的资源上的信号造成的干扰最小。
  14. 根据权利要求12所述的方法,其中,当所述序列集合包含所述根序列的所有循环移位,如果序列长度为Nf,则所述序列集合中的所有循环移位构成Nf个不同的正交序列。
  15. 根据权利要求12所述的方法,其中,如果终端的上行物理信道在 上行控制信道占有的M个时域符号上发生变化,其中M维的正交码中上行控制信道占用正交码M0、M1和M2,未用的正交码为M3,如果不同终端之间占有CS序列相同时,正交码M3资源上发送的信号对正交码M1资源上发送的信号造成的干扰相比正交码M3资源上发送的信号对正交码M0或者M2资源上发送的信号造成的干扰小,则未用的正交码M3对应的CS序列集合等于正交码为M1的所有上行控制信道对应的CS序列构成的集合。
  16. 根据权利要求7所述的方法,其中,所述CS序列
    Figure PCTCN2016081605-appb-100008
    与所述终端的物理上行控制信道PUCCH格式format1/1a/1b对应的CS序列中的u和v一致;
    其中,
    Figure PCTCN2016081605-appb-100009
    acs(ns,l)表示CS序列的循环移位,aB(ns,1)是循环移位中的正整数中间变量,范围为{0~Nf-1},ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot表示一个无线帧内的时隙数;l表示一个时隙内的正交频分复用OFDM符号编号,其值属于集合{0~NOFDM-1},NOFDM表示一个时隙内的OFDM符号数;Nf表示CS序列的长度。
  17. 根据权利要求16所述的方法,其中,
    Figure PCTCN2016081605-appb-100010
    其中,
    Figure PCTCN2016081605-appb-100011
    表示小区间循环移位,其满足如下特征之一:
    与所述终端的上行控制信道对应的小区级循环移位
    Figure PCTCN2016081605-appb-100012
    相同;
    与所述终端的上行控制信道的解调参考信号对应的小区级循环移位
    Figure PCTCN2016081605-appb-100013
    相同;
    其中,ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot表示一个无线帧内的时隙数;l表示一个时隙内的OFDM符号编号,其值属于集合{0~NOFDM-1},NOFDM表示一个时隙内的OFDM符号数;
    其中,aB1是一个正整数中间变量,其值属于集合{0~Nf-1}或者属于集合{0~Nf-1}的子集,Nf表示CS序列的长度;
    Figure PCTCN2016081605-appb-100014
    是一个物理资源块包含的子载波个数。
  18. 根据权利要求17所述的方法,其中,奇数时隙的aB1基于偶数时隙 的aB1发生跳变。
  19. 根据权利要求1所述的方法,其中,所述终端以如下方式之一接收到发送信道测量信号的指示:
    所述终端接到所述终端的物理下行共享信道PDSCH传输后,启动在所述空闲资源上发送信道测量信号的过程;
    所述终端接到通过物理下行共享信道PDSCH传输的发送信道测量信号的指示后,启动在所述空闲资源上发送信道测量信号的过程;
    所述终端与服务器同步之后,周期地启动在所述空闲资源上发送信道测量信号的过程,其中,所述周期由高层通知或者是固定的;
    所述终端在接收到高层信令后,根据所述高层信令,启动在所述空闲资源上发送信道测量信号的过程;
    所述终端在接收到下行控制信息DCI信令后,根据所述DCI信令,启动在所述空闲资源上发送信道测量信号的过程。
  20. 根据权利要求1所述的方法,所述方法还包括:
    所述终端启动在所述空闲资源上发送信道测量信号的过程之后,所述终端每隔一个传输间隔,在一个或多个信道测量或预编码选择资源上发送对应的信道测量信号或预编码选择信号;其中,一个信道测量或预编码选择资源由所述一个空闲正交码和所述一个CS序列构成。
  21. 根据权利要求20所述的方法,其中,所述传输间隔是通过以下方式之一获得的:
    通过高层信令通知得到的;
    根据终端对应的上行控制信道的已有信息和/或所述空闲资源上发送信道测量信号过程的信息得到的;
    其中,当所述传输间隔为1传输时间间隔时,信道测量周期大于或等于共用此资源的所有终端都完成一次信道测量或预编码选择信号发送过程需要的时间。
  22. 根据权利要求1所述的方法,其中,所述终端进行在空闲资源上发 送信道测量信号的过程,完成一次完整信道测量信号或预编码选择信号发送过程,所占的信道测量资源的数量是通过如下任一方式得到的:
    通过接收的高层信令得到的;
    与物理端口的总数相同;
    与预编码向量总数相同。
  23. 根据权利要求1所述的方法,其中,所述物理资源是通过以下方式之一得到的:
    与高层通知的上行控制信道占有的物理资源相同;
    由高层通知的上行控制信道相关的变量以及启动信道测量信号的发送过程时终端检测的控制信道单元CCE总数NCCE共同决定。
  24. 根据权利要求23所述的方法,其中,当所述物理资源由高层通知的上行控制信道相关的变量以及启动信道测量信号的发送过程时终端检测的CCE总数NCCE共同决定时,信道测量资源所占的物理资源块索引nPRB由如下公式得到:
    Figure PCTCN2016081605-appb-100015
    其中,ns表示一个无线帧中时隙号,其值属于集合{0~Nslot-1},Nslot表示一个无线帧内的时隙数,
    Figure PCTCN2016081605-appb-100016
    是上行系统带宽,以物理资源块为单位,m是中间变量,其值由下面的公式得到:
    Figure PCTCN2016081605-appb-100017
    其中,
    Figure PCTCN2016081605-appb-100018
    表示在每个时隙中上行控制信道格式format2/2a/2b占有的物理资源块数,NPUCCH表示上行控制信道format1/1a/1b的逻辑编号,c表示上行控制信道或者上行控制信道的解调参考信号在时域占有的正交码序列的个数,
    Figure PCTCN2016081605-appb-100019
    表示在上行控制信道format1/1a/1b和format2/2a/2b混合资源的上行控制信道format1/1a/1b占有的循环移位个数,
    Figure PCTCN2016081605-appb-100020
    表示上行控制信道占有的CS序列的最小循环移位间隔;
    其中,m1,m2由如下公式得到:
    Figure PCTCN2016081605-appb-100021
    Figure PCTCN2016081605-appb-100022
    Figure PCTCN2016081605-appb-100023
    其中,
    Figure PCTCN2016081605-appb-100024
    是用于指示上行控制物理资源的中间变量,
    Figure PCTCN2016081605-appb-100025
    表示在所述混合资源上上行控制信道format1/1a/1b可用的循环移位最大个数加一,其中
    Figure PCTCN2016081605-appb-100026
    Nf表示CS序列的长度,
    Figure PCTCN2016081605-appb-100027
    表示当上行控制信道资源由高层配置的
    Figure PCTCN2016081605-appb-100028
    和下行指示物理下行共享信道PDSCH传输参数的下行控制信息DCI所占的最低控制信道单元CCE索引共同决定的上行控制信道的最大索引值,NCCE表示终端在启动信道测量信号发送过程时检测的下行控制信道元素CCE的总数;
    Figure PCTCN2016081605-appb-100029
    表示向下取整,
    Figure PCTCN2016081605-appb-100030
    表示向上取整。
  25. 根据权利要求1所述的方法,所述方法还包括:所述终端接收基站侧反馈的预编码选择结果;其中,所述预编码选择结果包括预编码向量或者码本索引或者预编码索引,用于确定第一时隙物理资源上和第二时隙物理资源上的预编码。
  26. 根据权利要求25所述的方法,其中,所述终端通过如下方式接收基站侧反馈的预编码选择结果:
    通过高层信令接收;或者,
    在物理下行共享信道PDSCH对应的下行控制信息DCI信令中获取。
  27. 一种在上行控制信道上发送信号的装置,包括:
    第一发送模块,设置为:在对应的上行控制信道所在的物理资源上,和/或,由此物理资源确定的其他物理资源上,通过空闲正交码和循环移位CS序列构成的资源发送信道测量信号或预编码选择信号;其中,所述信道测量信号是没有进行预编码处理后的信号,所述预编码选择信号是经过预编码处理后的信号。
  28. 根据权利要求27所述的装置,所述装置还包括:第一接收模块,设置为以如下方式之一接收到发送信道测量信号的指示:
    接到所述终端的物理下行共享信道PDSCH传输后,启动在所述空闲资源上发送信道测量信号的过程;
    接到通过物理下行共享信道PDSCH传输的发送信道测量信号的指示后,启动在所述空闲资源上发送信道测量信号的过程;
    在所述终端与服务器同步之后,周期地启动在所述空闲资源上发送信道测量信号的过程,其中,所述周期由高层通知或者是固定的;
    在接收到高层信令后,根据所述高层信令,启动在所述空闲资源上发送信道测量信号的过程;
    在接收到下行控制信息DCI信令后,根据所述DCI信令,启动在所述空闲资源上发送信道测量信号的过程。
  29. 根据权利要求27所述的装置,所述装置还包括:
    第二发送模块,设置为:每隔一个传输间隔,在一个或多个信道测量或预编码选择资源上发送对应的信道测量信号或预编码选择信号;其中,一个信道测量或预编码选择资源由所述一个空闲正交码和所述一个CS序列构成。
  30. 根据权利要求27所述的装置,所述装置还包括:第二接收模块,设置为接收基站侧反馈的预编码选择结果;其中,所述预编码选择结果包括预编码向量或者码本索引或者预编码索引,用于确定第一时隙物理资源上和第二时隙物理资源上的预编码。
  31. 根据权利要求30所述的装置,其中,所述第二接收模块是设置为通过如下方式接收基站侧反馈的预编码选择结果:
    通过高层信令接收;或者,
    在物理下行共享信道PDSCH对应的下行控制信息DCI信令中获取。
PCT/CN2016/081605 2015-07-14 2016-05-10 在上行控制信道上发送信号的方法和装置 WO2017008562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510412289.2A CN106358296A (zh) 2015-07-14 2015-07-14 在上行控制信道上发送信号的方法和装置
CN201510412289.2 2015-07-14

Publications (1)

Publication Number Publication Date
WO2017008562A1 true WO2017008562A1 (zh) 2017-01-19

Family

ID=57756816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081605 WO2017008562A1 (zh) 2015-07-14 2016-05-10 在上行控制信道上发送信号的方法和装置

Country Status (2)

Country Link
CN (1) CN106358296A (zh)
WO (1) WO2017008562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111266A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 解调参考信号的配置方法、通信装置及通信节点

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365910B (zh) * 2017-01-26 2020-03-10 华为技术有限公司 一种信号的发射方法,接收方法及设备
CA3051981C (en) * 2017-01-31 2022-10-04 Nokia Technologies Oy Multiplexing uplink control channel signalling
US10834733B2 (en) * 2017-02-01 2020-11-10 Qualcomm Incorporated Mask for reference signal measurements
CN108633021B (zh) 2017-03-23 2024-01-19 华为技术有限公司 一种上行控制信道的资源映射方法及装置
EP3469726B1 (en) * 2017-06-27 2022-09-07 Telefonaktiebolaget LM Ericsson (PUBL) Determination of complex weight vectors for a radio transceiver device
CN109327290B (zh) * 2017-07-31 2022-05-13 中国移动通信有限公司研究院 探测参考信号的发送方法、装置、终端、基站及通信设备
CN109586875B (zh) * 2017-09-29 2021-03-23 华为技术有限公司 一种发送、接收上行控制信道的方法及装置
CN109787728B (zh) * 2017-11-13 2020-10-23 华为技术有限公司 一种上行传输方法及终端
MX2020005164A (es) 2017-11-16 2020-08-20 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo para transmitir informacion de control, dispositivo de red y dispositivo terminal.
CN112865942B (zh) 2017-12-11 2023-05-05 中兴通讯股份有限公司 参考信号的传输方法及装置
WO2020014989A1 (en) * 2018-07-20 2020-01-23 Nec Corporation Methods, devices and computer readable media for uplink channel measurement
WO2020168494A1 (en) * 2019-02-20 2020-08-27 Qualcomm Incorporated Scheme for associating a reference signal with an uplink control channel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100002664A1 (en) * 2008-07-02 2010-01-07 Interdigital Patent Holdings, Inc. Method and apparatus for avoiding a collision between a scheduling request and a periodic rank indicator report or a periodic channel quality indicator/precoding matrix indicator report
CN103024907A (zh) * 2011-09-23 2013-04-03 中兴通讯股份有限公司 资源分配方法及装置
TW201342829A (zh) * 2012-03-19 2013-10-16 Research In Motion Ltd 用於裝置中共存干擾減輕之實體層回授

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100002664A1 (en) * 2008-07-02 2010-01-07 Interdigital Patent Holdings, Inc. Method and apparatus for avoiding a collision between a scheduling request and a periodic rank indicator report or a periodic channel quality indicator/precoding matrix indicator report
CN103024907A (zh) * 2011-09-23 2013-04-03 中兴通讯股份有限公司 资源分配方法及装置
TW201342829A (zh) * 2012-03-19 2013-10-16 Research In Motion Ltd 用於裝置中共存干擾減輕之實體層回授

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOROLA: "Persistent Scheduling of CQI/PMI PUCCH Resources", 3GPP TSG RAN1#51, R1-074598, 9 November 2007 (2007-11-09), XP050108085 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111266A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 解调参考信号的配置方法、通信装置及通信节点
CN108111266B (zh) * 2017-05-05 2022-08-19 中兴通讯股份有限公司 解调参考信号的配置方法、通信装置及通信节点

Also Published As

Publication number Publication date
CN106358296A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2017008562A1 (zh) 在上行控制信道上发送信号的方法和装置
JP7447222B2 (ja) 無線通信システムの制御チャネルの伝送及び受信方法、装置及びシステム
JP6088592B2 (ja) アップリンクレファレンス信号のためのシーケンスホッピング及び直交カバーリングコードの適用
CN109327302B (zh) 用于自适应配置的时分双工通信系统的信道状态信息
CN108777608B (zh) 发送/接收参考信号的方法、用户设备和基站
RU2594982C2 (ru) Конфигурация пространства поиска для канала управления
EP2730041B1 (en) System and method for signaling and transmitting uplink reference signals
US20170353985A1 (en) Method of transceiving for device to device communication
CN101917765B (zh) 一种测量参考信号的配置方法及系统
JP5567688B2 (ja) 無線通信システムにおける参照信号シーケンス生成方法及び装置
CN115276735A (zh) 下行链路控制信道的传输结构和格式
WO2019062399A1 (zh) 一种信息传输方法及装置
JP5932554B2 (ja) 無線通信方法、無線通信システム、無線基地局及びユーザ端末
US20140286255A1 (en) Uplink demodulation reference signals in advanced wireless communication systems
US11363473B2 (en) Systems and methods for adaptive SRS transmit antenna selection
KR20170142994A (ko) 단말 간 신호를 전송하는 방법 및 이를 위한 장치
KR102004267B1 (ko) 상향링크 신호 또는 하향링크 신호 송수신 방법 및 이를 위한 장치
EP3396999B1 (en) Method, device and user equipment for configuring reference signal
WO2012060434A1 (ja) 移動局装置、基地局装置、方法および集積回路
KR20140017563A (ko) 장치-대-장치 통신 방법 및 장치
JP2013520067A (ja) 無線通信システムにおけるデータ送信方法及び装置
JP2013510539A (ja) 無線通信システムにおける非周期的サウンディング参照信号送信方法及び装置
WO2012150664A1 (ja) 基地局装置、移動端末装置、通信システム及び通信方法
CN108702685B (zh) 传输模式的信息的传输方法、网络设备、终端设备和系统
JP2013511203A (ja) 無線通信システムにおける非周期的サウンディング参照信号送信方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16823709

Country of ref document: EP

Kind code of ref document: A1