WO2020168494A1 - Scheme for associating a reference signal with an uplink control channel - Google Patents

Scheme for associating a reference signal with an uplink control channel Download PDF

Info

Publication number
WO2020168494A1
WO2020168494A1 PCT/CN2019/075598 CN2019075598W WO2020168494A1 WO 2020168494 A1 WO2020168494 A1 WO 2020168494A1 CN 2019075598 W CN2019075598 W CN 2019075598W WO 2020168494 A1 WO2020168494 A1 WO 2020168494A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
resource
control channel
uplink control
message
Prior art date
Application number
PCT/CN2019/075598
Other languages
French (fr)
Inventor
Qiaoyu Li
Chao Wei
Yu Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/075598 priority Critical patent/WO2020168494A1/en
Priority to PCT/CN2020/074430 priority patent/WO2020168923A1/en
Publication of WO2020168494A1 publication Critical patent/WO2020168494A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • the following relates generally to wireless communications, and more specifically to scheme for associating a reference signal with an uplink control channel.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a base station and a UE may communicate using beamformed transmissions, where transmissions may have a spatial or directional component that improves signal strength and communication quality.
  • a transmitting device may calculate a spatial precoder, apply the spatial precoder to a set of information, and transmit the precoded information in a message based on the calculated precoder.
  • Conventional precoding techniques are deficient.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support associating a reference signal with an uplink control channel.
  • the described techniques provide for associating an uplink control channel resource used for transmitting an uplink message with a reference signal resource used for calculating a spatial precoder for the uplink message.
  • a base station may associate the uplink control channel resource and the reference signal resource and signal an indicator of the association to a UE.
  • the UE may use the association to receive the reference signal on the reference signal resource.
  • the UE may use the reference signal to calculate the precoder for the uplink message, may generate the uplink message using the precoder, and may transmit the uplink message to the base station on the uplink control channel resource.
  • Various methods are described for associating the uplink control channel resource and the reference signal resource.
  • the base station may transmit a radio resource control (RRC) message to the UE indicating an association between the uplink control channel resource and the reference signal resource.
  • RRC radio resource control
  • the RRC message may also indicate an uplink control channel resource or a reference signal resource scheduled for the UE. The UE may then use the scheduled uplink control channel resource or reference signal resource and the association to determine the other resource.
  • the base station may transmit downlink control information (DCI) to the UE indicating an association between the uplink control channel resource and the reference signal resource.
  • DCI downlink control information
  • the base station may trigger or configure channel state information (CSI) feedback to be included in the uplink message, where the triggering may be initiated via a downlink message (e.g., an RRC message or DCI) which may indicate a reference signal for the CSI feedback and may indicate the uplink control channel resource for transmitting the CSI feedback.
  • a downlink message e.g., an RRC message or DCI
  • the downlink message may indicate that the reference signal for CSI should be used for calculating the precoder for the uplink message, while, in other cases, the downlink message may indicate that the reference signal for calculating the precoder may be different than the reference signal used for CSI.
  • the base station may schedule a downlink channel and acknowledgement/negative acknowledgement (ACK/NACK) feedback via a DCI message, where the DCI message may indicate the uplink control channel resource for transmitting the ACK/NACK feedback (e.g., via the uplink message) and may indicate the reference signal resource to be used for calculating the precoder for the uplink message.
  • ACK/NACK acknowledgement/negative acknowledgement
  • a method of wireless communication at a UE is described.
  • the method may include identifying an association between a reference signal resource and an uplink control channel resource, receiving a first reference signal within the reference signal resource, calculating a spatial precoder based on the first reference signal, precoding information based on the spatial precoder, and transmitting, using the uplink control channel resource, an uplink message generated based on the precoded information.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify an association between a reference signal resource and an uplink control channel resource, receive a first reference signal within the reference signal resource, calculate a spatial precoder based on the first reference signal, precode information based on the spatial precoder, and transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
  • the apparatus may include means for identifying an association between a reference signal resource and an uplink control channel resource, receiving a first reference signal within the reference signal resource, calculating a spatial precoder based on the first reference signal, precoding information based on the spatial precoder, and transmitting, using the uplink control channel resource, an uplink message generated based on the precoded information.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to identify an association between a reference signal resource and an uplink control channel resource, receive a first reference signal within the reference signal resource, calculate a spatial precoder based on the first reference signal, precode information based on the spatial precoder, and transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for generating a channel estimate for the uplink control channel resource based on the first reference signal, where the spatial precoder may be calculated based on the channel estimate.
  • identifying the association may include operations, features, means, or instructions for receiving a downlink message that configures the UE with the uplink control channel resource and indicates that an identifier of the reference signal resource may be associated with an identifier of the uplink control channel resource.
  • identifying the association may include operations, features, means, or instructions for receiving a downlink message that triggers or configures the first reference signal and indicates that a reference signal identifier for the first reference signal may be associated with an identifier for the uplink control channel resource.
  • identifying the association may include operations, features, means, or instructions for receiving a downlink message that triggers the UE to provide CSI feedback in the uplink message for a second reference signal using the uplink control channel resource and indicates an identifier of the first reference signal, where the first reference signal may be different than the second reference signal, and identifying that the reference signal resource may be associated with the uplink control channel resource based on the downlink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a slot offset and a quasi co-location (QCL) relationship for the second reference signal based on the downlink message, and monitoring for the first reference signal within the reference signal resource based on the slot offset and the QCL relationship for the second reference signal.
  • QCL quasi co-location
  • the second reference signal may be a periodic reference signal.
  • identifying the association may include operations, features, means, or instructions for receiving a downlink message that triggers the UE to provide CSI feedback in the uplink message for the first reference signal using the uplink control channel resource, where the first reference signal may be a periodic reference signal, and identifying that the reference signal resource may be associated with the uplink control channel resource based on the downlink message.
  • the downlink message may be an RRC message.
  • identifying the association may include operations, features, means, or instructions for receiving a downlink message that schedules a downlink data channel and the uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within the uplink message and indicates the reference signal resource, and identifying that the reference signal resource may be associated with the uplink control channel resource based on the downlink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a QCL relationship for a demodulation reference signal (DMRS) of a downlink control channel carrying the downlink message, determining a slot offset based on the uplink control channel resource, and monitoring for the first reference signal within the reference signal resource based on the slot offset and the QCL relationship for the DMRS.
  • DMRS demodulation reference signal
  • identifying the association may include operations, features, means, or instructions for receiving a downlink message that triggers the UE to provide CSI feedback within the uplink message for a second reference signal using the uplink control channel resource and indicates the reference signal resource, where the second reference signal may be different than the first reference signal, and identifying that the reference signal resource may be associated with the uplink control channel resource based on the downlink message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a slot offset and a QCL relationship for the second reference signal based on the downlink message, and monitoring for the first reference signal within the reference signal resource based on the slot offset and the QCL relationship for the second reference signal.
  • identifying the association may include operations, features, means, or instructions for receiving a downlink message that triggers the UE to provide CSI feedback for the reference signal resource within the uplink message using the uplink control channel resource, and identifying that the reference signal resource may be associated with the uplink control channel resource based on the downlink message.
  • the downlink message may be DCI.
  • the association may be identified based least in part on the reference signal resource being a most recently configured or triggered reference signal resource.
  • the association may be identified based least in part on the reference signal resource being stored in memory.
  • the first reference signal may be a periodic reference signal, an aperiodic reference signal, or a CSI reference signal (CSI-RS) .
  • CSI-RS CSI reference signal
  • a method of wireless communication at a base station may include identifying an association between a reference signal resource and an uplink control channel resource, transmitting, to a UE, a first reference signal within the reference signal resource, and monitoring the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify an association between a reference signal resource and an uplink control channel resource, transmit, to a UE, a first reference signal within the reference signal resource, and monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
  • the apparatus may include means for identifying an association between a reference signal resource and an uplink control channel resource, transmitting, to a UE, a first reference signal within the reference signal resource, and monitoring the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to identify an association between a reference signal resource and an uplink control channel resource, transmit, to a UE, a first reference signal within the reference signal resource, and monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
  • identifying the association may include operations, features, means, or instructions for transmitting a downlink message that configures the UE with the uplink control channel resource and indicates that an identifier of the reference signal resource may be associated with an identifier of the uplink control channel resource.
  • identifying the association may include operations, features, means, or instructions for transmitting a downlink message that triggers or configures the first reference signal and indicates that a reference signal identifier for the first reference signal may be associated with an identifier for the uplink control channel resource.
  • identifying the association may include operations, features, means, or instructions for transmitting a downlink message that triggers the UE to provide CSI feedback in the uplink message for a second reference signal using the uplink control channel resource and indicates an identifier of the first reference signal, where the first reference signal may be different than the second reference signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a slot offset and a QCL relationship for the second reference signal, where the first reference signal may be transmitted within the reference signal resource based on the slot offset and the QCL relationship for the second reference signal.
  • the second reference signal may be a periodic reference signal.
  • identifying the association may include operations, features, means, or instructions for transmitting a downlink message that triggers the UE to provide CSI feedback in the uplink message for the first reference signal using the uplink control channel resource, where the first reference signal may be a periodic reference signal.
  • the downlink message may be an RRC message.
  • identifying the association may include operations, features, means, or instructions for transmitting a downlink message that schedules a downlink data channel and the uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within the uplink message and indicates the reference signal resource.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a QCL relationship for a DMRS of a downlink control channel carrying the downlink message, and determining a slot offset based on the uplink control channel resource, where the first reference signal may be transmitted within the reference signal resource based on the slot offset and the QCL relationship for the DMRS.
  • identifying the association may include operations, features, means, or instructions for transmitting a downlink message that triggers the UE to provide CSI feedback within the uplink message for a second reference signal using the uplink control channel resource and indicates the reference signal resource, where the second reference signal may be different than the first reference signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a slot offset and a QCL relationship for the second reference signal, where the first reference signal may be transmitted within the reference signal resource based on the slot offset and the QCL relationship for the second reference signal.
  • identifying the association may include operations, features, means, or instructions for transmitting a downlink message that triggers the UE to provide CSI feedback for the reference signal resource within the uplink message using the uplink control channel resource.
  • the downlink message may be DCI.
  • the association may be identified based least in part on the reference signal resource being a most recently configured or triggered reference signal resource.
  • the association may be identified based least in part on the reference signal resource being stored in memory.
  • the first reference signal may be a periodic reference signal, an aperiodic reference signal, or a CSI-RS.
  • FIG. 1 illustrates an example of a wireless communications system that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a slot offset scheme that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of a process flow that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates an example of a process flow that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • FIGs. 7 and 8 show block diagrams of devices that support associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • FIG. 9 shows a block diagram of a communications manager that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • FIG. 10 shows a diagram of a system including a device that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • FIGs. 11 and 12 show block diagrams of devices that support associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • FIG. 13 shows a block diagram of a communications manager that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • FIG. 14 shows a diagram of a system including a device that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • FIGs. 15 through 22 show flowcharts illustrating methods that support associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the techniques described herein may include schemes for associating an uplink control channel resource and a reference signal resource.
  • a base station may configure the association between the uplink control channel resource and the reference signal resource and signal the association to a user equipment (UE) .
  • the UE may use the association to receive the reference signal on the reference signal resource.
  • the UE may use the reference signal to calculate the precoder for the uplink message, generate the uplink message using the precoder, and transmit the uplink message to the base station on the uplink control channel resource.
  • Various methods are described for associating the uplink control channel resource and the reference signal resource.
  • Wireless communications devices operating in a wireless communications network may transmit and/or receive downlink and uplink transmissions using beamformed communications, where such transmissions may have a spatial or directional component that improves signal strength and communication quality.
  • a transmitting device may calculate a spatial precoder, apply the spatial precoder to a set of information, and transmit (e.g., directionally transmit) the precoded information in a message based on the calculated precoder.
  • Calculating a spatial precoder may include selecting a number of spatial layers to use, steering a beam in a particular direction, or the like.
  • the base station may configure the UE with a precoding codebook, and the UE may select a particular entry in the codebook based on a channel estimate for an uplink channel.
  • the UE may determine the channel estimate by measuring a reference signal transmitted by a base station, and ranges for a measured channel estimate may correspond to respective entries in the precoding codebook.
  • the UE may select the codebook entry corresponding to in which range the measured channel estimate falls.
  • the UE may use the channel estimate to select a codebook entry and precode information for transmission using a transmit beam steered in the direction of the base station based on the selected codebook entry.
  • Some conventional wireless communications systems may not provide a spatial transmission scheme for some uplink transmissions, such as physical uplink control channel (PUCCH) transmissions.
  • PUCCH physical uplink control channel
  • conventional systems may not provide configurations designating reference signals that may be measured to calculate a spatial precoder for an uplink control channel.
  • a UE and a base station may implement techniques to enable transmission diversity (e.g., including spatial transmission diversity) for uplink control channel transmissions.
  • the techniques herein may describe schemes for associating a reference signal resource with an uplink control channel resource in order to enable transmission diversity.
  • a base station may associate a reference signal resource to an uplink control channel resource and may indicate the association to a UE in a downlink message.
  • the UE may therefore monitor for and receive a reference signal transmitted by the base station in the reference signal resource and, in some cases, perform a measurement based on the reference signal.
  • the UE may use the reference signal to calculate a spatial precoder for an uplink transmission (e.g., containing channel state information (CSI) or other feedback) to the base station, where the uplink transmission may use the uplink control channel resource.
  • the UE may then generate the uplink message using the precoder and transmit the uplink message on the uplink control channel resource.
  • CSI channel state information
  • an association scheme for relating the reference signal resource and the uplink control channel resource may consider different reference signal types (e.g., periodic CSI reference signals (CSI-RS) and aperiodic CSI-RS, among others) , and different PUCCH uses (e.g., transmitting uplink control information for acknowledgement/negative acknowledgement (ACK/NACK) feedback and uplink control information for CSI feedback, among others) .
  • CSI-RS periodic CSI reference signals
  • ACK/NACK uplink control information for ACK/NACK
  • the base station may configure multiple associations between multiple reference signal resources and corresponding uplink control channel resources. In some cases, the base station may configure the association between the uplink control channel resource and the reference signal resource as a part of an RRC configuration. In some examples, the base station may configure the association between the uplink control channel resource and the reference signal resource via an indication included in DCI (e.g., a DCI message) .
  • DCI e.g., a DCI message
  • the base station may include an indication of an additional reference signal in the downlink message containing the association information.
  • the UE may then use the additional reference signal to calculate the spatial precoder for the uplink message.
  • the UE may implement techniques for determining quasi-co-location (QCL) information and a slot offset for the additional reference signal.
  • QCL quasi-co-location
  • the base station may signal or otherwise configure the UE (e.g., via the downlink message) to use the most recently configured or triggered reference signal to calculate the precoder for the uplink message.
  • the resources for the reference signal may be predefined and stored in the memory of the UE.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to a slot offset scheme, process flow diagrams, apparatus diagrams, system diagrams, and flowcharts that relate to scheme for associating a reference signal with an uplink control channel.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
  • ultra-reliable e.g., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas.
  • Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology.
  • Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) .
  • the UEs 115 described herein may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
  • Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
  • the geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell.
  • each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
  • the term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of devices.
  • MTC machine-type communication
  • NB-IoT narrowband Internet-of-Things
  • eMBB enhanced mobile broadband
  • the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client.
  • a UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC massive machine type communications
  • Some UEs 115 may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
  • critical functions e.g., mission critical functions
  • a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) .
  • P2P peer-to-peer
  • D2D device-to-device
  • One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105.
  • groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications.
  • D2D communications are carried out between UEs 115 without the involvement of a base
  • Base stations 105 may communicate with the core network 130 and with one another.
  • base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) .
  • Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • the MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC.
  • User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Stream
  • At least some of the network devices may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) .
  • Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) .
  • TRP transmission/reception point
  • various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
  • Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band.
  • SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
  • ISM bands 5 GHz industrial, scientific, and medical bands
  • Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • EHF extremely high frequency
  • wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz ISM band.
  • wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data.
  • LBT listen-before-talk
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these.
  • Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas.
  • MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams.
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • MU-MIMO multiple-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • some signals e.g. synchronization signals, reference signals, beam selection signals, or other control signals
  • Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality.
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions.
  • a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
  • the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) .
  • a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023.
  • SFN system frame number
  • Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms.
  • a subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods.
  • a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) .
  • TTI transmission time interval
  • a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols.
  • a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling.
  • Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example.
  • some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
  • carrier refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125.
  • a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology.
  • Each physical layer channel may carry user data, control information, or other signaling.
  • a carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • E-UTRA absolute radio frequency channel number
  • Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • the organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • communications over a carrier may be organized according to TTIs or slots, each of which may include user data as well as control information or signaling to support decoding the user data.
  • a carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier.
  • acquisition signaling e.g., synchronization signals or system information, etc.
  • control signaling that coordinates operation for the carrier.
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) .
  • each served UE 115 may be configured for operating over portions or all of the carrier bandwidth.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) .
  • the more resource elements that a UE 115 receives and the higher the order of the modulation scheme the higher the data rate may be for the UE 115.
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
  • a spatial resource e.g., spatial layers
  • Devices of the wireless communications system 100 may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths.
  • the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
  • Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both FDD and TDD component carriers.
  • wireless communications system 100 may utilize enhanced component carriers (eCCs) .
  • eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration.
  • an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) .
  • An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) .
  • An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
  • an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers.
  • a shorter symbol duration may be associated with increased spacing between adjacent subcarriers.
  • a device such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) .
  • a TTI in eCC may consist of one or multiple symbol periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
  • Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others.
  • the flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums.
  • NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
  • a UE 115 and a base station 105 may communicate using beamformed communications, where such transmissions may have a spatial or directional component that improves signal strength and communication quality.
  • a transmitting device e.g., a UE 115 or a base station 105
  • may calculate a spatial precoder apply the spatial precoder to a set of information, and transmit (e.g., directionally transmit) the precoded information in a message based on the calculated precoder.
  • Some conventional wireless communications systems may not provide a spatial transmission scheme for some uplink transmissions, such as PUCCH transmissions.
  • conventional systems may not provide configurations designating reference signals that may be measured to calculate a spatial precoder for an uplink control channel (e.g., PUCCH) .
  • a UE 115 and a base station 105 may implement techniques to enable transmission diversity (e.g., including spatial transmission diversity) for uplink control channel transmissions by using a reference signal to calculate a precoder for an uplink message.
  • the techniques may include schemes for associating a reference signal resource (e.g., for precoder information) with an uplink control channel resource (e.g., for transmitting the uplink message) .
  • a base station 105 may transmit an indication of the association to a UE 115, and the UE 115 may use the association to receive the reference signal for precoder calculations.
  • the UE 115 may calculate the precoder for the uplink message, may generate the uplink message using the precoder, and may transmit the uplink message on the uplink control channel resources to the base station 105.
  • the base station 105 may use various methods for associating the reference signal resource and the uplink control channel resource.
  • the base station 105 may transmit an RRC message to the UE 115 indicating the association and indicating either an uplink control channel resource or reference signal resource scheduled for the UE 115.
  • the UE 115 may then use the scheduled resource (e.g., uplink control channel resource or reference signal resource) with the association to determine the other resource.
  • the base station 105 may trigger or configure CSI feedback (e.g., to be included in the uplink message) via a downlink message (e.g., RRC message or DCI message) , which may indicate a reference signal for the CSI feedback and uplink control channel resources for transmitting the uplink message.
  • a downlink message e.g., RRC message or DCI message
  • the downlink message may indicate that the reference signal for CSI should be used for calculating the precoder for the CSI feedback, while, in other cases, the downlink message may indicate that the reference signal for calculating the precoder may be different than the reference signal used for CSI.
  • the UE 115 may implement techniques for determining QCL information and a slot offset for the different reference signal.
  • the base station 105 may schedule a downlink channel and ACK/NACK feedback via a DCI message, where the DCI message may indicate uplink control channel resources for transmitting the ACK/NACK feedback (e.g., via the uplink message) and may indicate a reference signal to be used for calculating the precoder for the uplink message.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communication system 100 and may include a UE 115-aand a base station 105-a, which may be examples of a UE 115 and a base station 105 described with reference to FIG. 1.
  • base station 105-a may signal or otherwise configure UE 115-a to identify and receive a reference signal that may be used to determine precoding information for an uplink message.
  • a base station 105 may signal downlink transmissions to a UE 115, such as physical downlink control channel (PDCCH) transmissions and physical downlink shared channel (PDSCH) transmissions.
  • the UE 115 may signal uplink transmissions to the base station 105, such as PUCCH transmissions and physical uplink shared channel (PUSCH) transmissions.
  • the base station 105 and the UE 115 may communicate using beamformed communications, where transmissions may have a spatial or directional component that improves signal strength and communication quality.
  • a transmitting device may calculate a spatial precoder, apply the spatial precoder to a set of information, and transmit (e.g., directionally transmit) the precoded information in a message based on the calculated precoder.
  • a UE 115 and a base station 105 may implement techniques to enable transmission diversity (e.g., including spatial transmission diversity) for uplink control channel transmissions.
  • UE 115-a may first measure a reference signal from base station 105-a to measure the uplink control channel.
  • Conventional systems may not provide configurations designating reference signals to be used by a UE 115 to calculate a spatial precoder for the uplink control channel (e.g., PUCCH) . Therefore, the techniques herein may further describe schemes for linking a reference signal resource to an uplink control channel resource and using a reference signal received in the reference signal resource to calculate a spatial precoder.
  • These techniques may consider, for example, different reference signal types (e.g., periodic CSI-RS and aperiodic CSI-RS, among others) , and different PUCCH uses (e.g., transmitting uplink control information for ACK/NACK feedback and uplink control information for CSI feedback, among others) .
  • different reference signal types e.g., periodic CSI-RS and aperiodic CSI-RS, among others
  • PUCCH uses e.g., transmitting uplink control information for ACK/NACK feedback and uplink control information for CSI feedback, among others.
  • periodic CSI feedback and an associated periodic CSI-RS may be RRC configured or triggered and may use an uplink control channel (e.g., PUCCH) for feedback transmissions.
  • Aperiodic CSI feedback may be RRC configured and may be triggered by DCI (e.g., a downlink message on a PDCCH) , where the CSI feedback may be transmitted over a PUCCH.
  • DCI e.g., a downlink message on a PDCCH
  • Downlink channel feedback e.g., ACK/NACK feedback
  • the downlink channel transmission (e.g., PDSCH) may be scheduled by a DCI message, where the DCI message may indicate a PUCCH resource ID regarding ACK/NACK feedback for the PDSCH.
  • base station 105-a may transmit a downlink message 205 to UE 115-a.
  • the downlink message 205 may include an indication of an association 220 between resources for a reference signal 210 (e.g., a CSI-RS) and uplink control channel resources (e.g., PUCCH resources) for a corresponding uplink message 215 (e.g., an uplink control message including CSI or ACK/NACK feedback) .
  • association 220 may be referred to as a link, relationship, correlation, etc.
  • the reference signal 210 may be an example of a periodic or an aperiodic reference signal.
  • the association 220 may, in some cases, be an association or link between an identifier (ID) of the uplink control channel resource (e.g., a PUCCH resource ID) and an ID of the reference signal resource (e.g., a periodic CSI-RS resource ID or an aperiodic CSI-RS resource ID) .
  • ID an identifier of the uplink control channel resource
  • ID of the reference signal resource e.g., a periodic CSI-RS resource ID or an aperiodic CSI-RS resource ID
  • UE 115-a may receive the reference signal 210 on the indicated reference signal resource and, in some cases, perform a measurement based on the reference signal 210.
  • UE 115-a may calculate a spatial precoder for uplink message 215 based on the reference signal 210 and precode information for the uplink message 215 using the calculated precoder.
  • UE 115-a may then transmit the precoded information in the uplink message 215 to base station 105-a on the uplink control channel resource (e.g., PUCCH resource) .
  • base station 105-a may configure multiple associations between multiple reference signal resources and corresponding uplink control channel resources.
  • base station 105-a may configure the association 220 between the uplink control channel resource and the reference signal resource as a part of an RRC configuration.
  • the downlink message 220 may be an example of an RRC message, such as an RRC connection establishment message, an RRC connection reconfiguring message, or another type of RRC message.
  • base station 105-a may configure the association 220 between the uplink control channel resource and the reference signal resource via an indication included in DCI (e.g., a DCI message) .
  • DCI e.g., a DCI message
  • the downlink message 205 may be an example of a downlink control channel transmission (e.g., PDCCH transmission) carrying DCI.
  • UE 115-a may not be configured to receive an appropriate reference signal for determining a spatial precoder for the uplink message 215.
  • a reference signal may be transmitted using a different number of ports than the uplink message 215.
  • UE 115-a may not be configured to receive a reference signal to use for the spatial precoder calculation, such as if the downlink message 205 were to include DCI scheduling ACK/NACK feedback for the uplink message 215.
  • base station 105-a may include an indication of an additional reference signal (e.g., reference signal 210) in the downlink message 205.
  • UE 115-a may then use the additional reference signal 210 to calculate the spatial precoder for the uplink message 215.
  • UE 115-a may implement techniques for determining QCL information and a slot offset for the additional reference signal.
  • base station 105-a may signal or otherwise configure UE 115-a (e.g., via downlink message 205) to use the most recently configured or triggered reference signal (e.g., CSI-RS) to calculate the precoder for uplink message 215.
  • the resources for reference signal 210 may be predefined and stored in the memory of UE 115-a, such that UE 115-a may monitor the defined resources to receive reference signal 210 and calculate the precoder.
  • the reference signal for calculating a PUCCH precoder may be stored in memory (e.g., which may not be based on a recently triggered, configured, or received reference signal) .
  • a configuration for the pre-configured reference signal may be predefined and stored in memory at UE 115-a.
  • FIG. 3 illustrates an example of a slot offset scheme 300 that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • slot offset scheme 300 may implement aspects of wireless communication systems 100 or 200 and may be implemented by a UE 115 and a base station 105, which may be examples of a UE 115 and a base station 105 described with reference to FIGs. 1 and 2.
  • the UE 115 may implement slot offset scheme 300 to receive reference signal transmissions from the base station 105.
  • a UE 115 may not be configured with a reference signal which it can use to determine a spatial precoder for an uplink message 315.
  • a reference signal e.g., second reference signal 310
  • the UE 115 may not be configured with a reference signal to use for a spatial precoder calculation, such when a downlink message 320 includes DCI scheduling ACK/NACK feedback for the uplink message 315.
  • the base station 105 may include an indication of an additional reference signal (e.g., a first reference signal 305) in the downlink message 320. The UE 115 may then use the additional reference signal 305 to calculate a spatial precoder for the uplink message 315.
  • the base station may transmit a first reference signal 305 to the UE 115 and indicate a second reference signal 310 to the UE 115 in the downlink message 320.
  • the UE 115 may use the first reference signal 305 to calculate a spatial precoder for the uplink control channel transmission and may generate a CSI report based on the second reference signal 310. Therefore, the first reference signal 305 may be a reference signal that the UE 115 measures to calculate a spatial precoder.
  • the UE 115 may use the calculated spatial precoder to precode information and transmit the precoded information in the uplink message 315.
  • the information included in the uplink message 315 may include CSI information generated based on measuring the second reference signal 310.
  • the uplink message 315 may be an example of a CSI or an ACK/NACK feedback message.
  • the base station 105 may additionally indicate another periodic or aperiodic CSI-RS resource ID (e.g., corresponding to the first reference signal 305) , and the UE 115 may use this additional CSI-RS to calculate the PUCCH precoder.
  • the base station 105 when the base station 105 transmits DCI to trigger CSI feedback via PUCCH (e.g., via uplink message 315) , the base station 105 may additionally indicate another periodic or aperiodic CSI-RS resource ID (e.g., corresponding to the first reference signal 305) , and the UE 115 may use the additional CSI-RS to calculate the PUCCH precoder.
  • the base station 105 may additionally indicate another periodic or aperiodic CSI-RS resource ID (e.g., corresponding to the first reference signal 305) , and the UE 115 may use the additional CSI-RS to calculate the PUCCH precoder.
  • the base station 105 may indicate for the UE 115 to use the first reference signal 305 when triggering CSI reporting or when scheduled uplink control channel resources for ACK/NACK feedback.
  • the UE 115 may look into RRC configurations for a reference signal resource ID and time-frequency occupation information for the first reference signal 305.
  • some RRC configurations may not include QCL assumption information and slot offset information (e.g., a slot offset 320) .
  • the UE 115 may therefore not have a configuration for the QCL and slot offset information to receive the first reference signal 305.
  • the UE 115 may use QCL information and a slot offset 320 of the second reference signal 310 to locate resources for the first reference signal 305.
  • the UE 115 may use the QCL information and slot-offset of the second CSI-RS, which is used to calculate CSI feedback, as the QCL and slot offset of the first CSI-RS, which is used to calculate a PUCCH spatial precoder.
  • the UE 115 may therefore implement techniques to obtain QCL and slot offset information for the first reference signal 305 (e.g., the additional reference signal) .
  • the UE 115 may use the QCL and slot offset information of the second reference signal 310. This may occur, for example, when the base station 105 triggers periodic CSI feedback using PUCCH or when the UE 115 is triggered by DCI for CSI feedback via PUCCH (e.g., there are two reference signals) .
  • the first reference signal 305 is a periodic signal (e.g., periodic CSI-RS)
  • the UE 115 may identify information for a slot offset 320, as well as the QCL information, associated with the second reference signal 310 in an RRC configuration signaled from the base station 105 to configure the second reference signal 310.
  • the base station 105 may additionally indicate another periodic or aperiodic CSI-RS resource ID (e.g., corresponding to the first reference signal 305) , and the UE may use the periodic or aperiodic CSI-RS corresponding to that ID to calculate the PUCCH spatial precoder.
  • the first reference signal 305 is an aperiodic signal (e.g., aperiodic CSI-RS)
  • the UE 115 may identify information for the slot offset 320 and the QCL association in a DCI message triggering the CSI feedback corresponding to the second reference signal 310.
  • the base station 105 may indicate another periodic CSI-RS or aperiodic CSI-RS resource ID (e.g., corresponding to the first reference signal 305) .
  • the base station 105 may transmit DCI to schedule a downlink channel resource and an uplink control channel resource (e.g., PUCCH resource) for the UE 115, where the UE 115 may transmit ACK/NACK feedback for the downlink channel resource in uplink message 315 on the uplink control channel resource.
  • the base station 105 may transmit an ID for a first reference signal 305 to the UE 115, and the UE 115 may use the first reference signal 305 to calculate a spatial precoder for the uplink message 315.
  • the UE 115 may only measure a single CSI-RS (e.g., not including the second reference signal 310) , but the UE 115 may still not have QCL information or slot offset information for the first reference signal 305 (e.g., CSI-RS) .
  • the slot offset 320 and the QCL information may be predefined and stored in memory within the UE 115.
  • the UE 115 may be configured with a number of symbols or slots preceding the PUCCH resources scheduled for uplink message 315, as the slot offset 320.
  • the UE 115 may be configured to use QCL information for receiving the first reference signal 305 that is the same as the QCL information as a demodulation reference signal (DMRS) of a PDCCH carrying the DCI that schedules the PUCCH resources for uplink message 315.
  • DMRS demodulation reference signal
  • uplink message 315 may contain ACK/NACK or CSI feedback. Therefore, the QCL of the CSI-RS may be the same as the QCL of the DMRS in the PDCCH carrying the DCI.
  • slot offset 320 and the QCL information may be stored in memory within the UE 115.
  • FIG. 4 illustrates an example of a process flow 400 that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • process flow 400 may implement aspects of wireless communication systems 100 or 200. Further, process flow 400 may be implemented by a UE 115-b and a base station 105-b, which may be examples of a UE 115 and a base station 105 described with reference to FIGs. 1–3.
  • the operations between UE 115-b and base station 105-b may be transmitted in a different order than the order shown, or the operations performed by base station 105-b and UE 115-b may be performed in different orders or at different times. Certain operations may also be left out of the process flow 400, or other operations may be added to the process flow 400. It is to be understood that while base station 105-b and UE 115-b are shown performing a number of the operations of process flow 400, any wireless device may perform the operations shown.
  • base station 105-b may transmit an RRC message (e.g., a downlink message) to UE 115-b.
  • RRC message e.g., a downlink message
  • UE 115-b may identify an association between a reference signal resource and an uplink control channel resource.
  • UE 115-b may identify the association based on receiving the RRC message.
  • the RRC message may be an example of an RRC message as described with reference to FIGs. 2 and 3.
  • base station 105-b may transmit the reference signal to UE 115-b within the reference signal resource.
  • UE 115-b may calculate the spatial precoder based on the reference signal received at 410.
  • UE 115-b may generate a channel estimate for the PUCCH resource based on the reference signal, where the spatial precoder may be calculated based on the channel estimate.
  • UE 115-b may precode information for the uplink message based on the calculated spatial precoder.
  • UE 115-b may transmit the uplink message (e.g., CSI feedback) to base station 105-b, where UE 115-b may generate the uplink message based on the precoded information and may transmit the uplink message on the indicated uplink control channel resource.
  • uplink message e.g., CSI feedback
  • base station 105-b may transmit the uplink message (e.g., CSI feedback) to base station 105-b, where UE 115-b may generate the uplink message based on the precoded information and may transmit the uplink message on the indicated uplink control channel resource.
  • the following may describe different techniques or variations of configuring the association between the reference signal resource and the uplink control channel resource.
  • the RRC message may configure UE 115-b with an uplink control channel (e.g., PUCCH) resource or configure or trigger a reference signal, where the RRC message may indicate that an ID of a reference signal resource is associated with an ID of the uplink control channel resource.
  • base station 105-b may associate PUCCH resource IDs with reference signal resource IDs and may include the associated IDs in the RRC message.
  • UE 115-b may receive the RRC message and identify an association between the reference signal resource and the uplink control channel resource.
  • UE 115-b may be configured to transmit an uplink message on the uplink control channel resource. Accordingly, UE 115-b may receive a reference signal on the reference signal resource and may calculate a spatial precoder for the uplink message based on the reference signal.
  • the RRC message at 405 may configure UE 115-b with the uplink control channel resource and indicate that an ID of the reference signal resource is associated with an ID of the uplink control channel resource (e.g., the PUCCH resource for the uplink message) .
  • base station 105-b may configure PUCCH resources (e.g., via an RRC configuration) for one or more uplink messages (e.g., including the uplink message to be sent by UE 115-b) .
  • the configuring may include configuring associations between resource IDs for one or more reference signals (e.g., periodic and/or aperiodic reference signals) and resource IDs for the PUCCH resources.
  • base station 105-b may notify UE 115-b regarding the RRC configuration via the RRC message at 405, or the RRC configuration may be received in another message from base station 105-b.
  • UE 115-b may monitor for a reference signal within the resources corresponding to the periodic and/or aperiodic CSI-RS resource IDs at 410 in response to the RRC messaging configuring the PUCCH resources.
  • UE 115-b may measure one or more reference signals corresponding to the periodic CSI-RS and/or aperiodic CSI-RS resource ID indicated in the RRC message to generate a channel estimate then calculate a spatial precoder using the channel estimate at 415.
  • UE 115-b may then generate an uplink message by precoding control information at 420, using the calculated spatial precoder.
  • UE 115-b may then transmit the generated uplink message at 425. Therefore, UE 115-b may receive a reference signal within the uplink control channel resource corresponding to the resource ID indicated in the RRC message and transmit the uplink message in the uplink control channel resource corresponding to the resource ID indicated in the RRC message.
  • the RRC message at 405 may trigger or configure the reference signal and may indicate that a reference signal ID for the reference signal is associated with an ID for the uplink control channel resource (e.g., the PUCCH resource for the uplink message) .
  • base station 105-b may configure an aperiodic CSI-RS or trigger a periodic CSI-RS, where the configuring may include configuring associations between resource IDs for corresponding PUCCH resources and resource IDs for the one or more reference signal resources.
  • base station 105-b may indicate the reference signal configuration or triggering to UE 115-b via the RRC message at 405.
  • UE 115-b at 410 may monitor resources corresponding to the periodic and/or aperiodic CSI-RS resource IDs indicated in the RRC message in response to the RRC message configuring the aperiodic CSI-RS or triggering the periodic CSI-RS.
  • UE 115-b may measure one or more reference signals corresponding to the P-CSI-RS and/or AP-CSI-RS resource ID indicated in the RRC message to generate a channel estimate, then calculate a spatial precoder using the channel estimate at 415.
  • UE 115-b may then generate an uplink message by precoding control information at 420, using the calculated spatial precoder.
  • UE 115-b may then transmit the generated uplink message at 425. Therefore, UE 115-b may receive a reference signal within the reference signal resource corresponding to the resource ID indicated in the RRC message and transmit an uplink message using the uplink resources corresponding to the associated uplink control channel resource ID indicated in the RRC message.
  • UE 115-b may receive the RRC message at 405 which indicates a PUCCH resource and triggers UE 115-b to provide periodic CSI feedback using the indicated PUCCH resource.
  • the RRC message also indicates a periodic CSI-RS and/or aperiodic CSI-RS resource ID for a different reference signal that UE 115-b is to use for calculating a spatial precoder.
  • UE 115-b may monitor for the periodic CSI-RS in response to the RRC triggering to generate CSI feedback at 410.
  • UE 115-b may measure the reference signals corresponding to the periodic CSI-RS and/or aperiodic CSI-RS resource ID indicated in the RRC message to generate a channel estimate, and then calculate the spatial precoder using the channel estimate at 415. UE 115-b may then generate an uplink message by precoding control information (e.g., the CSI feedback and/or control other information) at 420, using the calculated spatial precoder. At 425, UE 115-b may transmit the generated uplink message to base station 105-b.
  • precoding control information e.g., the CSI feedback and/or control other information
  • UE 115-b may determine the resources for receiving the reference signal using the resource ID for the reference signal resource indicated in the RRC message and transmitting the uplink message within the uplink resources corresponding to the associated uplink control channel resource ID indicated in the RRC message.
  • the third example is additionally described in FIG. 6.
  • the RRC message sent by base station 105-b may trigger UE 115-b to provide CSI feedback for the reference signal (e.g., provide periodic CSI reference signal feedback) , where the feedback may be transmitted via the uplink message and using the uplink control channel resource indicated in the RRC message.
  • UE 115-b may determine that the reference signal resource is associated with the uplink control channel resource based on the RRC message.
  • the UE 115-b may implicitly determine to use the reference signal associated with the CSI feedback (e.g., the triggered periodic CSI-RS) to calculate the precoder based on the RRC message indicating the resource for the reference signal within the RRC message (e.g., using a reference signal resource ID, such as a CSI-RS ID) .
  • the RRC message may, in some cases, not include an explicit indication of the association between the reference signal resource and the uplink control channel resource.
  • the RRC message may indicate a location of the uplink control channel resource (e.g., via a PUCCH resource ID) on which to transmit the CSI feedback.
  • UE 115-b may at 410 monitor resources corresponding to the periodic CSI-RS in response to the RRC message triggering the periodic CSI-RS.
  • UE 115-b may measure one or more reference signals corresponding to the periodic CSI-RS to generate a channel estimate, then UE 115-b may calculate a spatial precoder using the channel estimate at 415.
  • UE 115-b may then generate an uplink message by precoding the control information (e.g., CSI feedback and/or other control information) at 420, using the calculated spatial precoder.
  • UE 115-b may then transmit the generated uplink message at 425.
  • FIG. 5 illustrates an example of a process flow 500 that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • process flow 500 may implement aspects of wireless communication systems 100 or 200. Additionally, process flow 500 may implement aspects of slot offset scheme 300. Further, process flow 500 may be implemented by a UE 115-c and a base station 105-c, which may be examples of a UE 115 and a base station 105 described with reference to FIGs. 1–4.
  • the operations between UE 115-c and base station 105-c may be transmitted in a different order than the order shown, or the operations performed by base station 105-c and UE 115-c may be performed in different orders or at different times. Certain operations may also be left out of the process flow 500, or other operations may be added to the process flow 500. It is to be understood that while base station 105-c and UE 115-c are shown performing a number of the operations of process flow 500, any wireless device may perform the operations shown.
  • base station 105-c may transmit a DCI message (e.g., a downlink message within a PDCCH) to UE 115-c.
  • UE 115-c may identify an association between a reference signal resource and an uplink control channel resource.
  • UE 115-b may identify the association based on receiving the DCI message.
  • the DCI message may be an example of DCI as described with reference to FIGs. 2 and 3.
  • base station 105-c may transmit the reference signal to UE 115-c within the reference signal resource.
  • UE 115-c may calculate the spatial precoder based on the reference signal received at 510. In some cases, UE 115-c may generate a channel estimate for the PUCCH resource based on the reference signal, where the spatial precoder may be calculated based on the channel estimate. At 520, UE 115-c may precode information for the uplink message based on the calculated spatial precoder.
  • UE 115-c may transmit the uplink message (e.g., CSI or ACK/NACK feedback) to base station 105-c, where UE 115-c may generate the uplink message based on the precoded information and may transmit the uplink message on the indicated PUCCH resource.
  • uplink message e.g., CSI or ACK/NACK feedback
  • base station 105-c may transmit the uplink message based on the precoded information and may transmit the uplink message on the indicated PUCCH resource.
  • the following may describe different techniques or variations of configuring the association between the reference signal resource and the uplink control channel resource.
  • the DCI message may configure UE 115-c with an uplink control channel (e.g., PUCCH) resource and may indicate that an ID of a reference signal resource is associated with an ID of the uplink control channel resource.
  • base station 105-c may associate PUCCH resource IDs with reference signal resource IDs, and may include the associated IDs in the DCI message.
  • UE 115-c may receive the DCI message and identify an association between the reference signal resource and the uplink control channel resource.
  • UE 115-c may be configured to transmit an uplink message on the uplink control channel resource. Accordingly, UE 115-c may receive a reference signal on the reference signal resource and may calculate a spatial precoder for the uplink message based on the reference signal.
  • the DCI message at 505 may schedule a downlink data channel (e.g., PDSCH) and may schedule the PUCCH resource such that UE 115-c may provide acknowledgement feedback (e.g., ACK/NACK feedback) for the downlink data channel within the uplink message.
  • the DCI message may schedule a PDSCH resource (e.g., for a data transmission) and may schedule ACK/NACK feedback for the PDSCH in the PUCCH resource.
  • the DCI message may indicate the reference signal resource.
  • the DCI message may indicate a reference signal resource ID (e.g., for a periodic or an aperiodic reference signal, such as CSI-RS) for UE 115-b to receive and use to calculate the precoder.
  • UE 115-c may identify the QCL information of a DMRS of the PDCCH carrying the DCI message and determine a slot offset based on the PUCCH resource. UE 115-c may then monitor for the reference signal within the reference signal resource at 510 based on the slot offset and using the QCL information of the DMRS.
  • UE 115-c may store, in memory, a defined slot offset and an indication to determine a QCL relationship from a DMRS, where the slot offset and the QCL relationship may enable UE 115-c to monitor for the reference signal on the reference signal resource.
  • the slot offset may be a number of symbols or slots preceding the PUCCH resource.
  • UE 115-c may measure the reference signal corresponding to the CSI-RS resource ID indicated in the DCI to generate a channel estimate. UE 115-c may then calculate a spatial precoder using the channel estimate at 515. UE 115-c may then generate an uplink message by precoding control information (e.g., the acknowledgement feedback and/or other control information) at 520, and using the calculated spatial precoder. UE 115-c may then transmit the generated uplink message at 525.
  • precoding control information e.g., the acknowledgement feedback and/or other control information
  • UE 115-c may receive the DCI message at 505 which indicates a PUCCH resource and triggers UE 115-c to provide CSI feedback using the indicated PUCCH resource.
  • the DCI may also indicate a periodic CSI-RS and/or aperiodic CSI-RS resource ID for a different reference signal that UE 115-c is to use for calculating a spatial precoder.
  • UE 115-c may monitor for the CSI-RS in response to the DCI triggering to generate CSI feedback at 510.
  • UE 115-c may measure one or more reference signals corresponding to the periodic CSI-RS and/or aperiodic CSI-RS resource ID indicated in the DCI message to generate a channel estimate and then calculate the spatial precoder using the channel estimate at 515. UE 115-c may then generate an uplink message by precoding control information (e.g., the CSI feedback and/or other control information) at 520, using the calculated spatial precoder. At 525, UE 115-c may transmit the generated uplink message to base station 105-c. Therefore, UE 115-c may use the resource ID for the reference signal resource in the DCI message and the associated uplink control channel resource ID from the reference signal configuration to determine the resources for receiving the reference signal and transmitting the uplink message, respectively. This second example is additionally described in FIG. 6.
  • the DCI message 505 sent by base station 105-c may trigger UE 115-c to provide CSI feedback for the reference signal (e.g., periodic or aperiodic reference signal, such as CSI-RS) in the uplink message, using the uplink control channel resource.
  • the reference signal e.g., periodic or aperiodic reference signal, such as CSI-RS
  • UE 115-c may identify that the reference signal resource is associated with the PUCCH resource based on the DCI message.
  • the UE 115-c may implicitly determine to use the reference signal associated with the CSI feedback (e.g., CSI-RS) for calculating the precoder based on the DCI message indicating the resource for the reference signal (e.g., using a reference signal resource ID, such as a CSI-RS ID) .
  • the DCI message may, in some cases, not include an explicit indication of the association between the reference signal resource and the uplink control channel resource.
  • the CSI feedback triggered in this third example may be periodic or aperiodic.
  • the DCI message may indicate a location of the uplink control channel resource (e.g., via a PUCCH resource ID) on which to transmit the CSI feedback.
  • UE 115-c may monitor resources corresponding to the CSI-RS at 510 in response to the DCI message triggering the CSI feedback.
  • UE 115-c may measure one or more reference signals corresponding to the CSI-RS to generate a channel estimate, then UE 115-c may calculate a spatial precoder using the channel estimate at 515.
  • UE 115-c may then generate an uplink message by precoding control information (e.g., CSI feedback and/or other control information) at 520, using the calculated spatial precoder.
  • UE 115-c may then transmit the generated uplink message at 525.
  • FIG. 6 illustrates an example of a process flow 600 that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • process flow 600 may implement aspects of wireless communication systems 100 or 200. Additionally, process flow 600 may implement aspects of slot offset scheme 300. Further, process flow 600 may be implemented by a UE 115-d and a base station 105-d, which may be examples of a UE 115 and a base station 105 described with reference to FIGs. 1–5.
  • the operations between UE 115-d and base station 105-d may be transmitted in a different order than the order shown, or the operations performed by base station 105-d and UE 115-d may be performed in different orders or at different times. Certain operations may also be left out of the process flow 600, or other operations may be added to the process flow 600. It is to be understood that while base station 105-d and UE 115-d are shown performing a number of the operations of process flow 600, any wireless device may perform the operations shown.
  • base station 105-d may transmit a downlink message to UE 115-d.
  • UE 115-d may identify an association between a reference signal resource and an uplink control channel resource. In some cases, UE 115-d may identify the association based on receiving the downlink message.
  • the downlink message may be an example of an RRC message as described with reference to FIGs. 2–4.
  • the downlink message may be an example of DCI as described with reference to FIGs. 2, 3, and 5.
  • base station 105-d may transmit a first reference signal to UE 115-d within the reference signal resource, where the first reference signal may be a reference signal used for calculating a spatial precoder.
  • base station 105-d may transmit a second reference signal to UE 115-d, where the second reference signal may be a reference signal used for determining CSI feedback.
  • UE 115-d may calculate the spatial precoder based on the first reference signal received at 610. In some cases, UE 115-d may generate a channel estimate for the PUCCH resource based on the first reference signal, where the spatial precoder may be calculated based on the channel estimate. At 625, UE 115-d may precode information (e.g., CSI feedback) for the uplink message based on the calculated spatial precoder.
  • CSI feedback e.g., CSI feedback
  • UE 115-d may transmit the uplink message to base station 105-d, where UE 115-d may generate the uplink message based on the precoded information and may transmit the uplink message on the indicated PUCCH resource.
  • the following may describe different techniques or variations of configuring the association between the reference signal resource and the uplink control channel resource.
  • the downlink message may configure UE 115-d with an uplink control channel (e.g., PUCCH) resource and may indicate that an ID of a reference signal resource is associated with an ID of the uplink control channel resource.
  • base station 105-d may associate PUCCH resource IDs with reference signal resource IDs and may include the associated IDs in the downlink message.
  • UE 115-d may receive the downlink message and identify an association between the reference signal resource and the uplink control channel resource.
  • UE 115-d may be configured to transmit an uplink message on the uplink control channel resource. Accordingly, UE 115-d may receive a first reference signal on the reference signal resource and may calculate a spatial precoder for the uplink message based on the first reference signal.
  • the downlink message sent by base station 105-d may trigger UE 115-d to provide CSI feedback for a second reference signal in the uplink message using the PUCCH resource, where the first reference signal may be different than the second reference signal.
  • the downlink message may trigger CSI feedback in the uplink message and may specify a certain CSI-RS (e.g., the second reference signal) to use for the CSI feedback (e.g., via a reference signal resource ID or CSI-RS ID) .
  • the downlink message may indicate an ID of the first reference signal (e.g., for the spatial precoder) , and UE 115-d may identify that the reference signal resource is associated with the uplink control channel resource based on the downlink message.
  • the downlink message may indicate that UE 115-d is to use an additional reference signal (e.g., the first reference signal, such as a periodic or an aperiodic CSI-RS) for calculating the precoder, where the reference signal may be different from the reference signal associated with the CSI feedback (e.g., the second reference signal or CSI-RS) .
  • the downlink message may indicate the resource for the first reference signal, as well as resource for the second reference signal, using reference signal resource IDs (e.g., CSI-RS IDs) .
  • the downlink message may indicate a location of the uplink control channel resource (e.g., via a PUCCH resource ID) on which to transmit the CSI feedback.
  • UE 115-d may determine a slot offset and a QCL relationship for the second reference signal based on the downlink message, where the slot offset and the QCL relationship may enable UE 115-d to monitor for the first reference signal on the reference signal resource. Accordingly, UE 115-d may monitor for the first reference signal within the reference signal resource, based on the slot offset and the QCL relationship for the second reference signal. For example, UE 115-d may be configured by the downlink message (e.g., an RRC or DCI message) to determine the slot offset and the QCL relationship of the second reference signal (e.g., DCI has QCL information) , and may use this information to monitor for the first reference signal.
  • the downlink message e.g., an RRC or DCI message
  • UE 115-d may contain within its memory a defined slot offset and an indication to determine a QCL relationship from a DMRS of a DCI message scheduling CSI feedback (e.g., the downlink message) , and may use this information to monitor for the first reference signal.
  • the slot offset may be a number of symbols or slots preceding the PUCCH resource.
  • the downlink message may be an RRC message.
  • UE 115-d may receive the RRC message at 605 which indicates a PUCCH resource and triggers UE 115-d to provide periodic CSI feedback using the indicated PUCCH resource.
  • the RRC message also indicates a periodic CSI-RS and/or aperiodic CSI-RS resource ID for a different reference signal (e.g., the first reference signal transmitted at 615) that UE 115-d is to use for calculating a spatial precoder.
  • UE 115-d may monitor for the periodic CSI-RS in response to the RRC triggering to generate CSI feedback at 610.
  • UE 115-d may use the slot offset and QCL information of the second reference signal (e.g., CSI-RS for generating CSI feedback) as the slot offset and QCL information for receiving the first reference signal (e.g., use the same slot offset and QCL information to receive both the first and second reference signals) .
  • the second reference signal e.g., CSI-RS for generating CSI feedback
  • the slot offset and QCL information for receiving the first reference signal e.g., use the same slot offset and QCL information to receive both the first and second reference signals
  • UE 115-d may determine the slot offset and QCL information of the second reference signal for generating CSI feedback to be received at 615 (e.g., DMRS of PDCCH carrying the DCI has slot offset and/or QCL information) , and use that same slot offset and QCL information to receive the first reference signal (e.g., P-CSI-RS or AP-CSI-RS for calculating a spatial precoder) at 610.
  • the first reference signal e.g., P-CSI-RS or AP-CSI-RS for calculating a spatial precoder
  • the second reference signal may be transmitted prior the first reference signal.
  • UE 115-d may measure the first reference signal corresponding to the periodic CSI-RS and/or aperiodic CSI-RS resource ID indicated in the RRC message using the same slot offset and QCL information as the second reference signal for generating a channel estimate, and then calculate the spatial precoder using the channel estimate at 620. UE 115-d may then generate an uplink message by precoding control information (e.g., the CSI feedback and/or other control information) at 625, using the calculated spatial precoder. At 630, UE 115-d may transmit the generated uplink message to base station 105-d.
  • precoding control information e.g., the CSI feedback and/or other control information
  • the downlink message may be PDCCH transmission carrying DCI.
  • UE 115-d may receive the DCI at 605 which indicates a PUCCH resource and triggers UE 115-d to provide periodic CSI feedback using the indicated PUCCH resource.
  • the DCI may also indicate a periodic CSI-RS and/or aperiodic CSI-RS resource ID for a different reference signal (e.g., the first reference signal transmitted at 615) that UE 115-d is to use for calculating a spatial precoder.
  • UE 115-d may monitor for the periodic CSI-RS in response to the RRC triggering to generate CSI feedback at 610.
  • UE 115-d may use the slot offset and QCL information of the second reference signal for the first reference signal. For example, UE 115-d may determine the slot offset and QCL information of the second reference signal at 615, and use that slot offset and QCL information to receive the first reference signal at 610. It is noted that the second reference signal may be transmitted prior the first reference signal. At 615, UE 115-d may measure the first reference signal corresponding to the periodic CSI-RS and/or aperiodic CSI-RS resource ID indicated in the RRC message using the same slot offset and QCL information as the second reference for generating a channel estimate, and then calculate the spatial precoder using the channel estimate at 620.
  • UE 115-d may then generate an uplink message by precoding control information (e.g., the CSI feedback and/or other control information) at 625, using the calculated spatial precoder.
  • UE 115-d may transmit the generated uplink message to base station 105-d.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the device 705 may be an example of aspects of a UE 115 as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 720.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to scheme for associating a reference signal with an uplink control channel, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communications manager 715 may identify an association between a reference signal resource and an uplink control channel resource, receive a first reference signal within the reference signal resource, calculate a spatial precoder based on the first reference signal, precode information based on the spatial precoder, and transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
  • the communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
  • the communications manager 715 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 715 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 715, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 715, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 720 may transmit signals generated by other components of the device 705.
  • the transmitter 720 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the transmitter 720 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a device 705, or a UE 115 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 845.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to scheme for associating a reference signal with an uplink control channel, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may be an example of aspects of the communications manager 715 as described herein.
  • the communications manager 815 may include an association component 820, a reference signal receiving component 825, a spatial precoder calculating component 830, a precoding component 835, and an uplink message transmitting component 840.
  • the communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
  • the association component 820 may identify an association between a reference signal resource and an uplink control channel resource.
  • the reference signal receiving component 825 may receive a first reference signal within the reference signal resource.
  • the spatial precoder calculating component 830 may calculate a spatial precoder based on the first reference signal.
  • the precoding component 835 may precode information based on the spatial precoder.
  • the uplink message transmitting component 840 may transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
  • the transmitter 845 may transmit signals generated by other components of the device 805.
  • the transmitter 845 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 845 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10.
  • the transmitter 845 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a communications manager 905 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein.
  • the communications manager 905 may include an association component 910, a reference signal receiving component 915, a spatial precoder calculating component 920, a precoding component 925, an uplink message transmitting component 930, and a slot offset and QCL component 935. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the association component 910 may identify an association between a reference signal resource and an uplink control channel resource. In some examples, the association component 910 may receive a downlink message that configures the UE with the uplink control channel resource and indicates that an identifier of the reference signal resource is associated with an identifier of the uplink control channel resource. In some examples, the association component 910 may receive a downlink message that triggers or configures the first reference signal and indicates that a reference signal identifier for the first reference signal is associated with an identifier for the uplink control channel resource.
  • the association component 910 may receive a downlink message that triggers the UE to provide CSI feedback in the uplink message for a second reference signal using the uplink control channel resource and indicates an identifier of the first reference signal, where the first reference signal is different than the second reference signal. In some examples, the association component 910 may identify that the reference signal resource is associated with the uplink control channel resource based on the downlink message.
  • the association component 910 may receive a downlink message that triggers the UE to provide CSI feedback in the uplink message for the first reference signal using the uplink control channel resource, where the first reference signal is a periodic reference signal. In some examples, the association component 910 may receive a downlink message that schedules a downlink data channel and the uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within the uplink message and indicates the reference signal resource.
  • the association component 910 may receive a downlink message that triggers the UE to provide CSI feedback within the uplink message for a second reference signal using the uplink control channel resource and indicates the reference signal resource, where the second reference signal is different than the first reference signal. In some examples, the association component 910 may receive a downlink message that triggers the UE to provide CSI feedback for the reference signal resource within the uplink message using the uplink control channel resource. In some examples, the association component 910 may identify that the reference signal resource is associated with the uplink control channel resource based on the downlink message. In some cases, the second reference signal is a periodic reference signal. In some cases, the downlink message is an RRC message. In some cases, the downlink message is DCI.
  • the association is identified based least in part on the reference signal resource being a most recently configured or triggered reference signal resource.
  • the association is identified based least in part on the reference signal resource being stored in memory.
  • the reference signal receiving component 915 may receive a first reference signal within the reference signal resource.
  • the first reference signal is a periodic reference signal, an aperiodic reference signal, or a CSI-RS.
  • the spatial precoder calculating component 920 may calculate a spatial precoder based on the first reference signal.
  • the precoding component 925 may precode information based on the spatial precoder.
  • the precoding component 925 may generate a channel estimate for the uplink control channel resource based on the first reference signal, where the spatial precoder is calculated based on the channel estimate.
  • the uplink message transmitting component 930 may transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
  • the slot offset and QCL component 935 may determine a slot offset and a QCL relationship for the second reference signal based on the downlink message. In some examples, the slot offset and QCL component 935 may monitor for the first reference signal within the reference signal resource based on the slot offset and the QCL relationship for the second reference signal. In some examples, the slot offset and QCL component 935 may determine a QCL relationship for a DMRS of a downlink control channel carrying the downlink message. In some examples, the slot offset and QCL component 935 may determine a slot offset based on the uplink control channel resource. In some examples, the slot offset and QCL component 935 may monitor for the first reference signal within the reference signal resource based on the slot offset and the QCL relationship for the DMRS.
  • FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein.
  • the device 1005 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1010, an I/O controller 1015, a transceiver 1020, an antenna 1025, memory 1030, and a processor 1040. These components may be in electronic communication via one or more buses (e.g., bus 1045) .
  • buses e.g., bus 1045
  • the communications manager 1010 may identify an association between a reference signal resource and an uplink control channel resource, receive a first reference signal within the reference signal resource, calculate a spatial precoder based on the first reference signal, precode information based on the spatial precoder, and transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
  • the I/O controller 1015 may manage input and output signals for the device 1005.
  • the I/O controller 1015 may also manage peripherals not integrated into the device 1005.
  • the I/O controller 1015 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1015 may utilize an operating system such as MS- MS- OS/ or another known operating system.
  • the I/O controller 1015 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1015 may be implemented as part of a processor.
  • a user may interact with the device 1005 via the I/O controller 1015 or via hardware components controlled by the I/O controller 1015.
  • the transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1030 may include random access memory (RAM) and read only memory (ROM) .
  • the memory 1030 may store computer-readable, computer-executable code 1035 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1030 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1040 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1040.
  • the processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting scheme for associating a reference signal with an uplink control channel) .
  • the code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 11 shows a block diagram 1100 of a device 1105 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of aspects of a base station 105 as described herein.
  • the device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1120.
  • the device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to scheme for associating a reference signal with an uplink control channel, etc. ) . Information may be passed on to other components of the device 1105.
  • the receiver 1110 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14.
  • the receiver 1110 may utilize a single antenna or a set of antennas.
  • the communications manager 1115 may identify an association between a reference signal resource and an uplink control channel resource, transmit, to a UE, a first reference signal within the reference signal resource, and monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
  • the communications manager 1115 may be an example of aspects of the communications manager 1410 described herein.
  • the communications manager 1115 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1115, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • the functions of the communications manager 1115, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • the communications manager 1115 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 1115, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 1115, or its sub-components may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • the transmitter 1120 may transmit signals generated by other components of the device 1105.
  • the transmitter 1120 may be collocated with a receiver 1110 in a transceiver module.
  • the transmitter 1120 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14.
  • the transmitter 1120 may utilize a single antenna or a set of antennas.
  • FIG. 12 shows a block diagram 1200 of a device 1205 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of aspects of a device 1105, or a base station 105 as described herein.
  • the device 1205 may include a receiver 1210, a communications manager 1215, and a transmitter 1235.
  • the device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to scheme for associating a reference signal with an uplink control channel, etc. ) . Information may be passed on to other components of the device 1205.
  • the receiver 1210 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14.
  • the receiver 1210 may utilize a single antenna or a set of antennas.
  • the communications manager 1215 may be an example of aspects of the communications manager 1115 as described herein.
  • the communications manager 1215 may include an association manager 1220, a reference signal transmitting component 1225, and an uplink control channel monitoring component 1230.
  • the communications manager 1215 may be an example of aspects of the communications manager 1410 described herein.
  • the association manager 1220 may identify an association between a reference signal resource and an uplink control channel resource.
  • the reference signal transmitting component 1225 may transmit, to a UE, a first reference signal within the reference signal resource.
  • the uplink control channel monitoring component 1230 may monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
  • the transmitter 1235 may transmit signals generated by other components of the device 1205.
  • the transmitter 1235 may be collocated with a receiver 1210 in a transceiver module.
  • the transmitter 1235 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14.
  • the transmitter 1235 may utilize a single antenna or a set of antennas.
  • FIG. 13 shows a block diagram 1300 of a communications manager 1305 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the communications manager 1305 may be an example of aspects of a communications manager 1115, acommunications manager 1215, or a communications manager 1410 described herein.
  • the communications manager 1305 may include an association manager 1310, a reference signal transmitting component 1315, an uplink control channel monitoring component 1320, and a slot offset and QCL manager 1325. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the association manager 1310 may identify an association between a reference signal resource and an uplink control channel resource. In some examples, the association manager 1310 may transmit a downlink message that configures the UE with the uplink control channel resource and indicates that an identifier of the reference signal resource is associated with an identifier of the uplink control channel resource. In some examples, the association manager 1310 may transmit a downlink message that triggers or configures the first reference signal and indicates that a reference signal identifier for the first reference signal is associated with an identifier for the uplink control channel resource.
  • the association manager 1310 may transmit a downlink message that triggers the UE to provide CSI feedback in the uplink message for a second reference signal using the uplink control channel resource and indicates an identifier of the first reference signal, where the first reference signal is different than the second reference signal. In some examples, the association manager 1310 may transmit a downlink message that triggers the UE to provide CSI feedback in the uplink message for the first reference signal using the uplink control channel resource, where the first reference signal is a periodic reference signal.
  • the association manager 1310 may transmit a downlink message that schedules a downlink data channel and the uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within the uplink message and indicates the reference signal resource. In some examples, the association manager 1310 may transmit a downlink message that triggers the UE to provide CSI feedback within the uplink message for a second reference signal using the uplink control channel resource and indicates the reference signal resource, where the second reference signal is different than the first reference signal. In some examples, the association manager 1310 may transmit a downlink message that triggers the UE to provide CSI feedback for the reference signal resource within the uplink message using the uplink control channel resource. In some cases, the second reference signal is a periodic reference signal. In some cases, the downlink message is an RRC message. In some cases, the downlink message is DCI.
  • the association is identified based least in part on the reference signal resource being a most recently configured or triggered reference signal resource. In some cases, the association is identified based least in part on the reference signal resource being stored in memory.
  • the reference signal transmitting component 1315 may transmit, to a UE, a first reference signal within the reference signal resource.
  • the first reference signal is a periodic reference signal, an aperiodic reference signal, or a CSI-RS.
  • the uplink control channel monitoring component 1320 may monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
  • the slot offset and QCL manager 1325 may determine a slot offset and a QCL relationship for the second reference signal, where the first reference signal is transmitted within the reference signal resource based on the slot offset and the QCL relationship for the second reference signal. In some examples, the slot offset and QCL manager 1325 may determine a QCL relationship for a DMRS of a downlink control channel carrying the downlink message. In some examples, the slot offset and QCL manager 1325 may determine a slot offset based on the uplink control channel resource, where the first reference signal is transmitted within the reference signal resource based on the slot offset and the QCL relationship for the DMRS.
  • FIG. 14 shows a diagram of a system 1400 including a device 1405 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the device 1405 may be an example of or include the components of device 1105, device 1205, or a base station 105 as described herein.
  • the device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1410, a network communications manager 1415, a transceiver 1420, an antenna 1425, memory 1430, a processor 1440, and an inter-station communications manager 1445. These components may be in electronic communication via one or more buses (e.g., bus 1450) .
  • buses e.g., bus 1450
  • the communications manager 1410 may identify an association between a reference signal resource and an uplink control channel resource, transmit, to a UE, a first reference signal within the reference signal resource, and monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
  • the network communications manager 1415 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1415 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1420 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1420 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1420 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1425. However, in some cases the device may have more than one antenna 1425, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1430 may include RAM, ROM, or a combination thereof.
  • the memory 1430 may store computer-readable code 1435 including instructions that, when executed by a processor (e.g., the processor 1440) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1440
  • the memory 1430 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1440 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1440 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1440.
  • the processor 1440 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1430) to cause the device 1405 to perform various functions (e.g., functions or tasks supporting scheme for associating a reference signal with an uplink control channel) .
  • the inter-station communications manager 1445 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1445 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1445 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between base stations 105.
  • the code 1435 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1435 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1435 may not be directly executable by the processor 1440 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may identify an association between a reference signal resource and an uplink control channel resource.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by an association component as described with reference to FIGs. 7 through 10.
  • the UE may receive a first reference signal within the reference signal resource.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a reference signal receiving component as described with reference to FIGs. 7 through 10.
  • the UE may calculate a spatial precoder based on the first reference signal.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a spatial precoder calculating component as described with reference to FIGs. 7 through 10.
  • the UE may precode information based on the spatial precoder.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a precoding component as described with reference to FIGs. 7 through 10.
  • the UE may transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by an uplink message transmitting component as described with reference to FIGs. 7 through 10.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive a downlink message that configures the UE with an uplink control channel resource and indicates that an identifier of a reference signal resource is associated with an identifier of the uplink control channel resource.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by an association component as described with reference to FIGs. 7 through 10.
  • the UE may identify an association between the reference signal resource and the uplink control channel resource.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by an association component as described with reference to FIGs. 7 through 10.
  • the UE may receive a first reference signal within the reference signal resource.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a reference signal receiving component as described with reference to FIGs. 7 through 10.
  • the UE may calculate a spatial precoder based on the first reference signal.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a spatial precoder calculating component as described with reference to FIGs. 7 through 10.
  • the UE may precode information based on the spatial precoder.
  • the operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a precoding component as described with reference to FIGs. 7 through 10.
  • the UE may transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
  • the operations of 1630 may be performed according to the methods described herein. In some examples, aspects of the operations of 1630 may be performed by an uplink message transmitting component as described with reference to FIGs. 7 through 10.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive a downlink message that triggers the UE to provide CSI feedback in an uplink message for a second reference signal using an uplink control channel resource and indicates an identifier of a first reference signal, where the first reference signal is different than the second reference signal.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by an association component as described with reference to FIGs. 7 through 10.
  • the UE may identify an association between the reference signal resource and the uplink control channel resource.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by an association component as described with reference to FIGs. 7 through 10.
  • the UE may identify that the reference signal resource is associated with the uplink control channel resource based on the downlink message.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by an association component as described with reference to FIGs. 7 through 10.
  • the UE may receive a first reference signal within the reference signal resource.
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a reference signal receiving component as described with reference to FIGs. 7 through 10.
  • the UE may calculate a spatial precoder based on the first reference signal.
  • the operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a spatial precoder calculating component as described with reference to FIGs. 7 through 10.
  • the UE may precode information based on the spatial precoder.
  • the operations of 1730 may be performed according to the methods described herein. In some examples, aspects of the operations of 1730 may be performed by a precoding component as described with reference to FIGs. 7 through 10.
  • the UE may transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
  • the operations of 1735 may be performed according to the methods described herein. In some examples, aspects of the operations of 1735 may be performed by an uplink message transmitting component as described with reference to FIGs. 7 through 10.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 7 through 10.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may receive a downlink message that schedules a downlink data channel and an uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within an uplink message and indicates a reference signal resource.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by an association component as described with reference to FIGs. 7 through 10.
  • the UE may identify an association between the reference signal resource and the uplink control channel resource.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by an association component as described with reference to FIGs. 7 through 10.
  • the UE may identify that the reference signal resource is associated with the uplink control channel resource based on the downlink message.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by an association component as described with reference to FIGs. 7 through 10.
  • the UE may receive a first reference signal within the reference signal resource.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a reference signal receiving component as described with reference to FIGs. 7 through 10.
  • the UE may calculate a spatial precoder based on the first reference signal.
  • the operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a spatial precoder calculating component as described with reference to FIGs. 7 through 10.
  • the UE may precode information based on the spatial precoder.
  • the operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by a precoding component as described with reference to FIGs. 7 through 10.
  • the UE may transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
  • the operations of 1835 may be performed according to the methods described herein. In some examples, aspects of the operations of 1835 may be performed by an uplink message transmitting component as described with reference to FIGs. 7 through 10.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 11 through 14.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may identify an association between a reference signal resource and an uplink control channel resource.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by an association manager as described with reference to FIGs. 11 through 14.
  • the base station may transmit, to a UE, a first reference signal within the reference signal resource.
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a reference signal transmitting component as described with reference to FIGs. 11 through 14.
  • the base station may monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by an uplink control channel monitoring component as described with reference to FIGs. 11 through 14.
  • FIG. 20 shows a flowchart illustrating a method 2000 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the operations of method 2000 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 2000 may be performed by a communications manager as described with reference to FIGs. 11 through 14.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit a downlink message that configures the UE with an uplink control channel resource and indicates that an identifier of a reference signal resource is associated with an identifier of the uplink control channel resource.
  • the operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by an association manager as described with reference to FIGs. 11 through 14.
  • the base station may identify an association between the reference signal resource and the uplink control channel resource.
  • the operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by an association manager as described with reference to FIGs. 11 through 14.
  • the base station may transmit, to a UE, a first reference signal within the reference signal resource.
  • the operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by a reference signal transmitting component as described with reference to FIGs. 11 through 14.
  • the base station may monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
  • the operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by an uplink control channel monitoring component as described with reference to FIGs. 11 through 14.
  • FIG. 21 shows a flowchart illustrating a method 2100 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the operations of method 2100 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 2100 may be performed by a communications manager as described with reference to FIGs. 11 through 14.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit a downlink message that triggers the UE to provide CSI feedback in an uplink message for a second reference signal using an uplink control channel resource and indicates an identifier of a first reference signal, where the first reference signal is different than the second reference signal.
  • the operations of 2105 may be performed according to the methods described herein. In some examples, aspects of the operations of 2105 may be performed by an association manager as described with reference to FIGs. 11 through 14.
  • the base station may identify an association between the reference signal resource and the uplink control channel resource.
  • the operations of 2110 may be performed according to the methods described herein. In some examples, aspects of the operations of 2110 may be performed by an association manager as described with reference to FIGs. 11 through 14.
  • the base station may transmit, to a UE, a first reference signal within the reference signal resource.
  • the operations of 2115 may be performed according to the methods described herein. In some examples, aspects of the operations of 2115 may be performed by a reference signal transmitting component as described with reference to FIGs. 11 through 14.
  • the base station may monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
  • the operations of 2120 may be performed according to the methods described herein. In some examples, aspects of the operations of 2120 may be performed by an uplink control channel monitoring component as described with reference to FIGs. 11 through 14.
  • FIG. 22 shows a flowchart illustrating a method 2200 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
  • the operations of method 2200 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 2200 may be performed by a communications manager as described with reference to FIGs. 11 through 14.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may transmit a downlink message that schedules a downlink data channel and an uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within an uplink message and indicates a reference signal resource.
  • the operations of 2205 may be performed according to the methods described herein. In some examples, aspects of the operations of 2205 may be performed by an association manager as described with reference to FIGs. 11 through 14.
  • the base station may identify an association between the reference signal resource and the uplink control channel resource.
  • the operations of 2210 may be performed according to the methods described herein. In some examples, aspects of the operations of 2210 may be performed by an association manager as described with reference to FIGs. 11 through 14.
  • the base station may transmit, to a UE, a first reference signal within the reference signal resource.
  • the operations of 2215 may be performed according to the methods described herein. In some examples, aspects of the operations of 2215 may be performed by a reference signal transmitting component as described with reference to FIGs. 11 through 14.
  • the base station may monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
  • the operations of 2220 may be performed according to the methods described herein. In some examples, aspects of the operations of 2220 may be performed by an uplink control channel monitoring component as described with reference to FIGs. 11 through 14.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GP
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
  • the wireless communications systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • magnetic disk storage or other magnetic storage devices
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described to enable a user equipment (UE) to receive a reference signal used for calculating a precoder for an uplink message. A base station may send a downlink message to the UE indicating a relationship between a resource for the reference signal and a resource for the uplink message. In some cases, the downlink message may be a radio resource control message or a downlink control information message that configures the UE to report channel state information feedback or other feedback. The downlink message may indicate that the reference signal is a reference signal used for the feedback or may indicate that the reference signal is an additional reference signal. The UE may receive the indicated reference signal, calculate the precoder, generate the uplink message using the precoder, and transmit the uplink message to the base station on the indicated uplink resource.

Description

SCHEME FOR ASSOCIATING A REFERENCE SIGNAL WITH AN UPLINK CONTROL CHANNEL BACKGROUND
The following relates generally to wireless communications, and more specifically to scheme for associating a reference signal with an uplink control channel.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A base station and a UE may communicate using beamformed transmissions, where transmissions may have a spatial or directional component that improves signal strength and communication quality. For example, a transmitting device may calculate a spatial precoder, apply the spatial precoder to a set of information, and transmit the precoded information in a message based on the calculated precoder. Conventional precoding techniques are deficient.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support associating a reference signal with an uplink control channel. Generally, the described techniques provide for associating an uplink control channel resource used for transmitting an uplink message with a reference signal resource used for  calculating a spatial precoder for the uplink message. A base station may associate the uplink control channel resource and the reference signal resource and signal an indicator of the association to a UE. The UE may use the association to receive the reference signal on the reference signal resource. After receiving the reference signal, the UE may use the reference signal to calculate the precoder for the uplink message, may generate the uplink message using the precoder, and may transmit the uplink message to the base station on the uplink control channel resource. Various methods are described for associating the uplink control channel resource and the reference signal resource.
In some cases, the base station may transmit a radio resource control (RRC) message to the UE indicating an association between the uplink control channel resource and the reference signal resource. In some examples, the RRC message may also indicate an uplink control channel resource or a reference signal resource scheduled for the UE. The UE may then use the scheduled uplink control channel resource or reference signal resource and the association to determine the other resource. In some examples, the base station may transmit downlink control information (DCI) to the UE indicating an association between the uplink control channel resource and the reference signal resource.
In some examples, the base station may trigger or configure channel state information (CSI) feedback to be included in the uplink message, where the triggering may be initiated via a downlink message (e.g., an RRC message or DCI) which may indicate a reference signal for the CSI feedback and may indicate the uplink control channel resource for transmitting the CSI feedback. In some cases, the downlink message may indicate that the reference signal for CSI should be used for calculating the precoder for the uplink message, while, in other cases, the downlink message may indicate that the reference signal for calculating the precoder may be different than the reference signal used for CSI. In some examples, the base station may schedule a downlink channel and acknowledgement/negative acknowledgement (ACK/NACK) feedback via a DCI message, where the DCI message may indicate the uplink control channel resource for transmitting the ACK/NACK feedback (e.g., via the uplink message) and may indicate the reference signal resource to be used for calculating the precoder for the uplink message.
A method of wireless communication at a UE is described. The method may include identifying an association between a reference signal resource and an uplink control  channel resource, receiving a first reference signal within the reference signal resource, calculating a spatial precoder based on the first reference signal, precoding information based on the spatial precoder, and transmitting, using the uplink control channel resource, an uplink message generated based on the precoded information.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify an association between a reference signal resource and an uplink control channel resource, receive a first reference signal within the reference signal resource, calculate a spatial precoder based on the first reference signal, precode information based on the spatial precoder, and transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for identifying an association between a reference signal resource and an uplink control channel resource, receiving a first reference signal within the reference signal resource, calculating a spatial precoder based on the first reference signal, precoding information based on the spatial precoder, and transmitting, using the uplink control channel resource, an uplink message generated based on the precoded information.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to identify an association between a reference signal resource and an uplink control channel resource, receive a first reference signal within the reference signal resource, calculate a spatial precoder based on the first reference signal, precode information based on the spatial precoder, and transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for generating a channel estimate for the uplink control channel resource based on the first reference signal, where the spatial precoder may be calculated based on the channel estimate.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations,  features, means, or instructions for receiving a downlink message that configures the UE with the uplink control channel resource and indicates that an identifier of the reference signal resource may be associated with an identifier of the uplink control channel resource.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for receiving a downlink message that triggers or configures the first reference signal and indicates that a reference signal identifier for the first reference signal may be associated with an identifier for the uplink control channel resource.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for receiving a downlink message that triggers the UE to provide CSI feedback in the uplink message for a second reference signal using the uplink control channel resource and indicates an identifier of the first reference signal, where the first reference signal may be different than the second reference signal, and identifying that the reference signal resource may be associated with the uplink control channel resource based on the downlink message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a slot offset and a quasi co-location (QCL) relationship for the second reference signal based on the downlink message, and monitoring for the first reference signal within the reference signal resource based on the slot offset and the QCL relationship for the second reference signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second reference signal may be a periodic reference signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for receiving a downlink message that triggers the UE to provide CSI feedback in the uplink message for the first reference signal using the uplink control channel resource, where the first reference signal may be a periodic reference signal,  and identifying that the reference signal resource may be associated with the uplink control channel resource based on the downlink message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the downlink message may be an RRC message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for receiving a downlink message that schedules a downlink data channel and the uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within the uplink message and indicates the reference signal resource, and identifying that the reference signal resource may be associated with the uplink control channel resource based on the downlink message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a QCL relationship for a demodulation reference signal (DMRS) of a downlink control channel carrying the downlink message, determining a slot offset based on the uplink control channel resource, and monitoring for the first reference signal within the reference signal resource based on the slot offset and the QCL relationship for the DMRS.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for receiving a downlink message that triggers the UE to provide CSI feedback within the uplink message for a second reference signal using the uplink control channel resource and indicates the reference signal resource, where the second reference signal may be different than the first reference signal, and identifying that the reference signal resource may be associated with the uplink control channel resource based on the downlink message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a slot offset and a QCL relationship for the second reference signal based on the downlink message, and monitoring for the first reference signal within the reference signal resource based on the slot offset and the QCL relationship for the second reference signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for receiving a downlink message that triggers the UE to provide CSI feedback for the reference signal resource within the uplink message using the uplink control channel resource, and identifying that the reference signal resource may be associated with the uplink control channel resource based on the downlink message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the downlink message may be DCI.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the association may be identified based least in part on the reference signal resource being a most recently configured or triggered reference signal resource.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the association may be identified based least in part on the reference signal resource being stored in memory.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first reference signal may be a periodic reference signal, an aperiodic reference signal, or a CSI reference signal (CSI-RS) .
A method of wireless communication at a base station is described. The method may include identifying an association between a reference signal resource and an uplink control channel resource, transmitting, to a UE, a first reference signal within the reference signal resource, and monitoring the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify an association between a reference signal resource and an uplink control channel resource, transmit, to a UE, a first reference signal within the reference signal resource, and monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for identifying an association between a reference signal resource and an uplink control channel resource, transmitting, to a UE, a first reference signal within the reference signal resource, and monitoring the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to identify an association between a reference signal resource and an uplink control channel resource, transmit, to a UE, a first reference signal within the reference signal resource, and monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for transmitting a downlink message that configures the UE with the uplink control channel resource and indicates that an identifier of the reference signal resource may be associated with an identifier of the uplink control channel resource.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for transmitting a downlink message that triggers or configures the first reference signal and indicates that a reference signal identifier for the first reference signal may be associated with an identifier for the uplink control channel resource.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for transmitting a downlink message that triggers the UE to provide CSI feedback in the uplink message for a second reference signal using the uplink control channel resource and indicates an identifier of the first reference signal, where the first reference signal may be different than the second reference signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a slot offset and a QCL relationship for the second reference signal, where the  first reference signal may be transmitted within the reference signal resource based on the slot offset and the QCL relationship for the second reference signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second reference signal may be a periodic reference signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for transmitting a downlink message that triggers the UE to provide CSI feedback in the uplink message for the first reference signal using the uplink control channel resource, where the first reference signal may be a periodic reference signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the downlink message may be an RRC message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for transmitting a downlink message that schedules a downlink data channel and the uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within the uplink message and indicates the reference signal resource.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a QCL relationship for a DMRS of a downlink control channel carrying the downlink message, and determining a slot offset based on the uplink control channel resource, where the first reference signal may be transmitted within the reference signal resource based on the slot offset and the QCL relationship for the DMRS.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for transmitting a downlink message that triggers the UE to provide CSI feedback within the uplink message for a second reference signal using the uplink control channel resource and indicates the reference signal resource, where the second reference signal may be different than the first reference signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a slot offset and a QCL relationship for the second reference signal, where the first reference signal may be transmitted within the reference signal resource based on the slot offset and the QCL relationship for the second reference signal.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the association may include operations, features, means, or instructions for transmitting a downlink message that triggers the UE to provide CSI feedback for the reference signal resource within the uplink message using the uplink control channel resource.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the downlink message may be DCI.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the association may be identified based least in part on the reference signal resource being a most recently configured or triggered reference signal resource.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the association may be identified based least in part on the reference signal resource being stored in memory.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first reference signal may be a periodic reference signal, an aperiodic reference signal, or a CSI-RS.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a slot offset scheme that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of a process flow that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
FIG. 6 illustrates an example of a process flow that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
FIGs. 7 and 8 show block diagrams of devices that support associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
FIG. 9 shows a block diagram of a communications manager that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
FIG. 10 shows a diagram of a system including a device that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
FIGs. 11 and 12 show block diagrams of devices that support associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
FIG. 13 shows a block diagram of a communications manager that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
FIG. 14 shows a diagram of a system including a device that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
FIGs. 15 through 22 show flowcharts illustrating methods that support associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
The techniques described herein may include schemes for associating an uplink control channel resource and a reference signal resource. A base station may configure the association between the uplink control channel resource and the reference signal resource and signal the association to a user equipment (UE) . The UE may use the association to receive the reference signal on the reference signal resource. After receiving the reference signal, the UE may use the reference signal to calculate the precoder for the uplink message, generate the uplink message using the precoder, and transmit the uplink message to the base station on the uplink control channel resource. Various methods are described for associating the uplink control channel resource and the reference signal resource.
Wireless communications devices operating in a wireless communications network (e.g., a New Radio (NR) network) may transmit and/or receive downlink and uplink transmissions using beamformed communications, where such transmissions may have a spatial or directional component that improves signal strength and communication quality. For example, a transmitting device may calculate a spatial precoder, apply the spatial precoder to a set of information, and transmit (e.g., directionally transmit) the precoded information in a message based on the calculated precoder. Calculating a spatial precoder may include selecting a number of spatial layers to use, steering a beam in a particular direction, or the like. In an example, the base station may configure the UE with a precoding codebook, and the UE may select a particular entry in the codebook based on a channel estimate for an uplink channel. The UE may determine the channel estimate by measuring a reference signal transmitted by a base station, and ranges for a measured channel estimate may correspond to respective entries in the precoding codebook. In an example, the UE may select the codebook entry corresponding to in which range the measured channel estimate falls. For example, the UE may use the channel estimate to select a codebook entry and precode information for transmission using a transmit beam steered in the direction of the base station based on the selected codebook entry.
Some conventional wireless communications systems may not provide a spatial transmission scheme for some uplink transmissions, such as physical uplink control channel (PUCCH) transmissions. For example, conventional systems may not provide configurations designating reference signals that may be measured to calculate a spatial precoder for an uplink control channel. To improve spatial diversity for uplink communications, a UE and a base station may implement techniques to enable transmission diversity (e.g., including spatial transmission diversity) for uplink control channel transmissions. The techniques herein may describe schemes for associating a reference signal resource with an uplink control channel resource in order to enable transmission diversity.
For example, a base station may associate a reference signal resource to an uplink control channel resource and may indicate the association to a UE in a downlink message. The UE may therefore monitor for and receive a reference signal transmitted by the base station in the reference signal resource and, in some cases, perform a measurement based on the reference signal. Following reception of the reference signal, the UE may use the reference signal to calculate a spatial precoder for an uplink transmission (e.g., containing channel state information (CSI) or other feedback) to the base station, where the uplink transmission may use the uplink control channel resource. The UE may then generate the uplink message using the precoder and transmit the uplink message on the uplink control channel resource. Some examples of an association scheme for relating the reference signal resource and the uplink control channel resource may consider different reference signal types (e.g., periodic CSI reference signals (CSI-RS) and aperiodic CSI-RS, among others) , and different PUCCH uses (e.g., transmitting uplink control information for acknowledgement/negative acknowledgement (ACK/NACK) feedback and uplink control information for CSI feedback, among others) .
In some examples, the base station may configure multiple associations between multiple reference signal resources and corresponding uplink control channel resources. In some cases, the base station may configure the association between the uplink control channel resource and the reference signal resource as a part of an RRC configuration. In some examples, the base station may configure the association between the uplink control channel resource and the reference signal resource via an indication included in DCI (e.g., a DCI message) .
In some examples, the base station may include an indication of an additional reference signal in the downlink message containing the association information. The UE may then use the additional reference signal to calculate the spatial precoder for the uplink message. In some cases, the UE may implement techniques for determining quasi-co-location (QCL) information and a slot offset for the additional reference signal.
In some cases, the base station may signal or otherwise configure the UE (e.g., via the downlink message) to use the most recently configured or triggered reference signal to calculate the precoder for the uplink message. In some examples, the resources for the reference signal may be predefined and stored in the memory of the UE.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to a slot offset scheme, process flow diagrams, apparatus diagrams, system diagrams, and flowcharts that relate to scheme for associating a reference signal with an uplink control channel.
FIG. 1 illustrates an example of a wireless communications system 100 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, or communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Base stations 105 described herein may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or some other suitable terminology. Wireless communications system 100 may include base stations 105 of different types (e.g., macro or small cell base stations) . The UEs 115 described herein  may be able to communicate with various types of base stations 105 and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like.
Each base station 105 may be associated with a particular geographic coverage area 110 in which communications with various UEs 115 is supported. Each base station 105 may provide communication coverage for a respective geographic coverage area 110 via communication links 125, and communication links 125 between a base station 105 and a UE 115 may utilize one or more carriers. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Downlink transmissions may also be called forward link transmissions while uplink transmissions may also be called reverse link transmissions.
The geographic coverage area 110 for a base station 105 may be divided into sectors making up a portion of the geographic coverage area 110, and each sector may be associated with a cell. For example, each base station 105 may provide communication coverage for a macro cell, a small cell, a hot spot, or other types of cells, or various combinations thereof. In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, and overlapping geographic coverage areas 110 associated with different technologies may be supported by the same base station 105 or by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous LTE/LTE-A/LTE-A Pro or NR network in which different types of base stations 105 provide coverage for various geographic coverage areas 110.
The term “cell” refers to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) , and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) ) operating via the same or a different carrier. In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., machine-type communication (MTC) , narrowband Internet-of-Things (NB-IoT) , enhanced mobile broadband (eMBB) , or others) that may provide access for different types of  devices. In some cases, the term “cell” may refer to a portion of a geographic coverage area 110 (e.g., a sector) over which the logical entity operates.
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client. A UE 115 may also be a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may also refer to a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or an MTC device, or the like, which may be implemented in various articles such as appliances, vehicles, meters, or the like.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices, and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay that information to a central server or application program that can make use of the information or present the information to humans interacting with the program or application. Some UEs 115 may be designed to collect information or enable automated behavior of machines. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for UEs 115 include entering a  power saving “deep sleep” mode when not engaging in active communications, or operating over a limited bandwidth (e.g., according to narrowband communications) . In some cases, UEs 115 may be designed to support critical functions (e.g., mission critical functions) , and a wireless communications system 100 may be configured to provide ultra-reliable communications for these functions.
In some cases, a UE 115 may also be able to communicate directly with other UEs 115 (e.g., using a peer-to-peer (P2P) or device-to-device (D2D) protocol) . One or more of a group of UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105, or be otherwise unable to receive transmissions from a base station 105. In some cases, groups of UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some cases, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between UEs 115 without the involvement of a base station 105.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., via an S1, N2, N3, or other interface) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) or indirectly (e.g., via core network 130) .
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may manage non-access stratum (e.g., control plane) functions such as mobility, authentication, and bearer management for UEs 115 served by base stations 105 associated with the EPC. User IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the  network operators IP services. The operators IP services may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched (PS) Streaming Service.
At least some of the network devices, such as a base station 105, may include subcomponents such as an access network entity, which may be an example of an access node controller (ANC) . Each access network entity may communicate with UEs 115 through a number of other access network transmission entities, which may be referred to as a radio head, a smart radio head, or a transmission/reception point (TRP) . In some configurations, various functions of each access network entity or base station 105 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 105) .
Wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band, since the wavelengths range from approximately one decimeter to one meter in length. UHF waves may be blocked or redirected by buildings and environmental features. However, the waves may penetrate structures sufficiently for a macro cell to provide service to UEs 115 located indoors. Transmission of UHF waves may be associated with smaller antennas and shorter range (e.g., less than 100 km) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
Wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band. The SHF region includes bands such as the 5 GHz industrial, scientific, and medical (ISM) bands, which may be used opportunistically by devices that may be capable of tolerating interference from other users.
Wireless communications system 100 may also operate in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, wireless communications system 100 may support millimeter wave (mmW) communications between UEs 115 and base stations 105, and EHF antennas of the respective devices may be even smaller and more closely spaced than UHF antennas. In some cases, this may facilitate use of antenna arrays within a UE 115. However,  the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. Techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
In some cases, wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz ISM band. When operating in unlicensed radio frequency spectrum bands, wireless devices such as base stations 105 and UEs 115 may employ listen-before-talk (LBT) procedures to ensure a frequency channel is clear before transmitting data. In some cases, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, peer-to-peer transmissions, or a combination of these. Duplexing in unlicensed spectrum may be based on frequency division duplexing (FDD) , time division duplexing (TDD) , or a combination of both.
In some examples, base station 105 or UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. For example, wireless communications system 100 may use a transmission scheme between a transmitting device (e.g., a base station 105) and a receiving device (e.g., a UE 115) , where the transmitting device is equipped with multiple antennas and the receiving device is equipped with one or more antennas. MIMO communications may employ multipath signal propagation to increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers, which may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream, and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams. Different spatial layers may be associated with different antenna ports used for channel measurement  and reporting. MIMO techniques include single-user MIMO (SU-MIMO) where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105 or a UE 115) to shape or steer an antenna beam (e.g., a transmit beam or receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying certain amplitude and phase offsets to signals carried via each of the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In one example, a base station 105 may use multiple antennas or antenna arrays to conduct beamforming operations for directional communications with a UE 115. For instance, some signals (e.g. synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions, which may include a signal being transmitted according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by the base station 105 or a receiving device, such as a UE 115) a beam direction for subsequent transmission and/or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based at least in in part on a signal that was transmitted in different beam directions. For  example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions, and the UE 115 may report to the base station 105 an indication of the signal it received with a highest signal quality, or an otherwise acceptable signal quality. Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) , or transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115, which may be an example of a mmW receiving device) may try multiple receive beams when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at a plurality of antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive beams or receive directions. In some examples a receiving device may use a single receive beam to receive along a single beam direction (e.g., when receiving a data signal) . The single receive beam may be aligned in a beam direction determined based at least in part on listening according to different receive beam directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio, or otherwise acceptable signal quality based at least in part on listening according to multiple beam directions) .
In some cases, the antennas of a base station 105 or UE 115 may be located within one or more antenna arrays, which may support MIMO operations, or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some cases, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a  UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
In some cases, wireless communications system 100 may be a packet-based network that operate according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or core network 130 supporting radio bearers for user plane data. At the Physical layer, transport channels may be mapped to physical channels.
In some cases, UEs 115 and base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. HARQ feedback is one technique of increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., signal-to-noise conditions) . In some cases, a wireless device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
Time intervals in LTE or NR may be expressed in multiples of a basic time unit, which may, for example, refer to a sampling period of T s= 1/30,720,000 seconds. Time intervals of a communications resource may be organized according to radio frames each having a duration of 10 milliseconds (ms) , where the frame period may be expressed as T f= 307,200 T s. The radio frames may be identified by a system frame number (SFN) ranging from 0 to 1023. Each frame may include 10 subframes numbered from 0 to 9, and each subframe may have a duration of 1 ms. A subframe may be further divided into 2 slots each having a duration of 0.5 ms, and each slot may contain 6 or 7 modulation symbol  periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . Excluding the cyclic prefix, each symbol period may contain 2048 sampling periods. In some cases, a subframe may be the smallest scheduling unit of the wireless communications system 100, and may be referred to as a transmission time interval (TTI) . In other cases, a smallest scheduling unit of the wireless communications system 100 may be shorter than a subframe or may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) or in selected component carriers using sTTIs) .
In some wireless communications systems, a slot may further be divided into multiple mini-slots containing one or more symbols. In some instances, a symbol of a mini-slot or a mini-slot may be the smallest unit of scheduling. Each symbol may vary in duration depending on the subcarrier spacing or frequency band of operation, for example. Further, some wireless communications systems may implement slot aggregation in which multiple slots or mini-slots are aggregated together and used for communication between a UE 115 and a base station 105.
The term “carrier” refers to a set of radio frequency spectrum resources having a defined physical layer structure for supporting communications over a communication link 125. For example, a carrier of a communication link 125 may include a portion of a radio frequency spectrum band that is operated according to physical layer channels for a given radio access technology. Each physical layer channel may carry user data, control information, or other signaling. A carrier may be associated with a pre-defined frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) , and may be positioned according to a channel raster for discovery by UEs 115. Carriers may be downlink or uplink (e.g., in an FDD mode) , or be configured to carry downlink and uplink communications (e.g., in a TDD mode) . In some examples, signal waveforms transmitted over a carrier may be made up of multiple sub-carriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
The organizational structure of the carriers may be different for different radio access technologies (e.g., LTE, LTE-A, LTE-A Pro, NR) . For example, communications over a carrier may be organized according to TTIs or slots, each of which may include user data as  well as control information or signaling to support decoding the user data. A carrier may also include dedicated acquisition signaling (e.g., synchronization signals or system information, etc. ) and control signaling that coordinates operation for the carrier. In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, control information transmitted in a physical control channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region or common search space and one or more UE-specific control regions or UE-specific search spaces) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of predetermined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 MHz) . In some examples, each served UE 115 may be configured for operating over portions or all of the carrier bandwidth. In other examples, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a predefined portion or range (e.g., set of subcarriers or RBs) within a carrier (e.g., “in-band” deployment of a narrowband protocol type) .
In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. In MIMO systems, a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers) , and  the use of multiple spatial layers may further increase the data rate for communications with a UE 115.
Devices of the wireless communications system 100 (e.g., base stations 105 or UEs 115) may have a hardware configuration that supports communications over a particular carrier bandwidth, or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 and/or UEs 115 that support simultaneous communications via carriers associated with more than one different carrier bandwidth.
Wireless communications system 100 may support communication with a UE 115 on multiple cells or carriers, a feature which may be referred to as carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both FDD and TDD component carriers.
In some cases, wireless communications system 100 may utilize enhanced component carriers (eCCs) . An eCC may be characterized by one or more features including wider carrier or frequency channel bandwidth, shorter symbol duration, shorter TTI duration, or modified control channel configuration. In some cases, an eCC may be associated with a carrier aggregation configuration or a dual connectivity configuration (e.g., when multiple serving cells have a suboptimal or non-ideal backhaul link) . An eCC may also be configured for use in unlicensed spectrum or shared spectrum (e.g., where more than one operator is allowed to use the spectrum) . An eCC characterized by wide carrier bandwidth may include one or more segments that may be utilized by UEs 115 that are not capable of monitoring the whole carrier bandwidth or are otherwise configured to use a limited carrier bandwidth (e.g., to conserve power) .
In some cases, an eCC may utilize a different symbol duration than other component carriers, which may include use of a reduced symbol duration as compared with symbol durations of the other component carriers. A shorter symbol duration may be associated with increased spacing between adjacent subcarriers. A device, such as a UE 115 or base station 105, utilizing eCCs may transmit wideband signals (e.g., according to frequency channel or carrier bandwidths of 20, 40, 60, 80 MHz, etc. ) at reduced symbol durations (e.g., 16.67 microseconds) . A TTI in eCC may consist of one or multiple symbol  periods. In some cases, the TTI duration (that is, the number of symbol periods in a TTI) may be variable.
Wireless communications system 100 may be an NR system that may utilize any combination of licensed, shared, and unlicensed spectrum bands, among others. The flexibility of eCC symbol duration and subcarrier spacing may allow for the use of eCC across multiple spectrums. In some examples, NR shared spectrum may increase spectrum utilization and spectral efficiency, specifically through dynamic vertical (e.g., across the frequency domain) and horizontal (e.g., across the time domain) sharing of resources.
In some wireless communications networks (e.g., an NR network) , a UE 115 and a base station 105 may communicate using beamformed communications, where such transmissions may have a spatial or directional component that improves signal strength and communication quality. For example, a transmitting device (e.g., a UE 115 or a base station 105) may calculate a spatial precoder, apply the spatial precoder to a set of information, and transmit (e.g., directionally transmit) the precoded information in a message based on the calculated precoder. Some conventional wireless communications systems may not provide a spatial transmission scheme for some uplink transmissions, such as PUCCH transmissions. For example, conventional systems may not provide configurations designating reference signals that may be measured to calculate a spatial precoder for an uplink control channel (e.g., PUCCH) .
To improve spatial diversity for uplink communications, a UE 115 and a base station 105 may implement techniques to enable transmission diversity (e.g., including spatial transmission diversity) for uplink control channel transmissions by using a reference signal to calculate a precoder for an uplink message. The techniques may include schemes for associating a reference signal resource (e.g., for precoder information) with an uplink control channel resource (e.g., for transmitting the uplink message) . A base station 105 may transmit an indication of the association to a UE 115, and the UE 115 may use the association to receive the reference signal for precoder calculations. After receiving the reference signal, the UE 115 may calculate the precoder for the uplink message, may generate the uplink message using the precoder, and may transmit the uplink message on the uplink control channel resources to the base station 105. The base station 105 may use various methods for associating the reference signal resource and the uplink control channel resource.
In some cases, the base station 105 may transmit an RRC message to the UE 115 indicating the association and indicating either an uplink control channel resource or reference signal resource scheduled for the UE 115. The UE 115 may then use the scheduled resource (e.g., uplink control channel resource or reference signal resource) with the association to determine the other resource. In some examples, the base station 105 may trigger or configure CSI feedback (e.g., to be included in the uplink message) via a downlink message (e.g., RRC message or DCI message) , which may indicate a reference signal for the CSI feedback and uplink control channel resources for transmitting the uplink message. In some cases, the downlink message may indicate that the reference signal for CSI should be used for calculating the precoder for the CSI feedback, while, in other cases, the downlink message may indicate that the reference signal for calculating the precoder may be different than the reference signal used for CSI. In some cases, the UE 115 may implement techniques for determining QCL information and a slot offset for the different reference signal. In some examples, the base station 105 may schedule a downlink channel and ACK/NACK feedback via a DCI message, where the DCI message may indicate uplink control channel resources for transmitting the ACK/NACK feedback (e.g., via the uplink message) and may indicate a reference signal to be used for calculating the precoder for the uplink message.
FIG. 2 illustrates an example of a wireless communications system 200 that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communication system 100 and may include a UE 115-aand a base station 105-a, which may be examples of a UE 115 and a base station 105 described with reference to FIG. 1. In some cases, base station 105-a may signal or otherwise configure UE 115-a to identify and receive a reference signal that may be used to determine precoding information for an uplink message.
base station 105 may signal downlink transmissions to a UE 115, such as physical downlink control channel (PDCCH) transmissions and physical downlink shared channel (PDSCH) transmissions. Similarly, the UE 115 may signal uplink transmissions to the base station 105, such as PUCCH transmissions and physical uplink shared channel (PUSCH) transmissions. In some cases, the base station 105 and the UE 115 may communicate using beamformed communications, where transmissions may have a spatial or directional component that improves signal strength and communication quality. For example,  a transmitting device may calculate a spatial precoder, apply the spatial precoder to a set of information, and transmit (e.g., directionally transmit) the precoded information in a message based on the calculated precoder.
Some conventional wireless communications systems may not provide a spatial transmission scheme for some uplink transmissions, such as PUCCH transmissions. To improve spatial diversity for uplink communications, a UE 115 and a base station 105, such as UE 115-a and base station 105-a, may implement techniques to enable transmission diversity (e.g., including spatial transmission diversity) for uplink control channel transmissions.
In order to calculate a spatial precoder for an uplink control channel (e.g., PUCCH) transmission, UE 115-a may first measure a reference signal from base station 105-a to measure the uplink control channel. Conventional systems may not provide configurations designating reference signals to be used by a UE 115 to calculate a spatial precoder for the uplink control channel (e.g., PUCCH) . Therefore, the techniques herein may further describe schemes for linking a reference signal resource to an uplink control channel resource and using a reference signal received in the reference signal resource to calculate a spatial precoder. These techniques may consider, for example, different reference signal types (e.g., periodic CSI-RS and aperiodic CSI-RS, among others) , and different PUCCH uses (e.g., transmitting uplink control information for ACK/NACK feedback and uplink control information for CSI feedback, among others) .
As described herein, periodic CSI feedback and an associated periodic CSI-RS may be RRC configured or triggered and may use an uplink control channel (e.g., PUCCH) for feedback transmissions. Aperiodic CSI feedback may be RRC configured and may be triggered by DCI (e.g., a downlink message on a PDCCH) , where the CSI feedback may be transmitted over a PUCCH. Downlink channel feedback (e.g., ACK/NACK feedback) may use PUCCH resources configured by RRC for feedback transmissions. In some cases, the downlink channel transmission (e.g., PDSCH) may be scheduled by a DCI message, where the DCI message may indicate a PUCCH resource ID regarding ACK/NACK feedback for the PDSCH.
In one example, base station 105-a may transmit a downlink message 205 to UE 115-a. The downlink message 205 may include an indication of an association 220 between  resources for a reference signal 210 (e.g., a CSI-RS) and uplink control channel resources (e.g., PUCCH resources) for a corresponding uplink message 215 (e.g., an uplink control message including CSI or ACK/NACK feedback) . In some examples, association 220 may be referred to as a link, relationship, correlation, etc. The reference signal 210 may be an example of a periodic or an aperiodic reference signal. The association 220 may, in some cases, be an association or link between an identifier (ID) of the uplink control channel resource (e.g., a PUCCH resource ID) and an ID of the reference signal resource (e.g., a periodic CSI-RS resource ID or an aperiodic CSI-RS resource ID) .
UE 115-a may receive the reference signal 210 on the indicated reference signal resource and, in some cases, perform a measurement based on the reference signal 210. UE 115-a may calculate a spatial precoder for uplink message 215 based on the reference signal 210 and precode information for the uplink message 215 using the calculated precoder. UE 115-a may then transmit the precoded information in the uplink message 215 to base station 105-a on the uplink control channel resource (e.g., PUCCH resource) . In some examples, base station 105-a may configure multiple associations between multiple reference signal resources and corresponding uplink control channel resources.
In some cases, base station 105-a may configure the association 220 between the uplink control channel resource and the reference signal resource as a part of an RRC configuration. For example, the downlink message 220 may be an example of an RRC message, such as an RRC connection establishment message, an RRC connection reconfiguring message, or another type of RRC message. Some examples of configuring the association 220 via an RRC message are described with reference to FIG. 4.
In some examples, base station 105-a may configure the association 220 between the uplink control channel resource and the reference signal resource via an indication included in DCI (e.g., a DCI message) . For example, the downlink message 205 may be an example of a downlink control channel transmission (e.g., PDCCH transmission) carrying DCI. Some examples of configuring the association 220 via a DCI message are described with reference to FIG. 5.
In some cases, UE 115-a may not be configured to receive an appropriate reference signal for determining a spatial precoder for the uplink message 215. For example, a reference signal may be transmitted using a different number of ports than the uplink  message 215. Or, in another example, UE 115-a may not be configured to receive a reference signal to use for the spatial precoder calculation, such as if the downlink message 205 were to include DCI scheduling ACK/NACK feedback for the uplink message 215. In these examples, base station 105-a may include an indication of an additional reference signal (e.g., reference signal 210) in the downlink message 205. UE 115-a may then use the additional reference signal 210 to calculate the spatial precoder for the uplink message 215. In some cases, UE 115-a may implement techniques for determining QCL information and a slot offset for the additional reference signal. Some examples of using an additional reference signal 210 for calculating the spatial precoder are described with reference to FIG. 3.
In some cases, base station 105-a may signal or otherwise configure UE 115-a (e.g., via downlink message 205) to use the most recently configured or triggered reference signal (e.g., CSI-RS) to calculate the precoder for uplink message 215. Additionally, or alternatively, the resources for reference signal 210 may be predefined and stored in the memory of UE 115-a, such that UE 115-a may monitor the defined resources to receive reference signal 210 and calculate the precoder. In some cases, the reference signal for calculating a PUCCH precoder may be stored in memory (e.g., which may not be based on a recently triggered, configured, or received reference signal) . For example, a configuration for the pre-configured reference signal may be predefined and stored in memory at UE 115-a.
FIG. 3 illustrates an example of a slot offset scheme 300 that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. In some examples, slot offset scheme 300 may implement aspects of  wireless communication systems  100 or 200 and may be implemented by a UE 115 and a base station 105, which may be examples of a UE 115 and a base station 105 described with reference to FIGs. 1 and 2. In some examples, the UE 115 may implement slot offset scheme 300 to receive reference signal transmissions from the base station 105.
In some cases, a UE 115 may not be configured with a reference signal which it can use to determine a spatial precoder for an uplink message 315. For example, a reference signal (e.g., second reference signal 310) may be transmitted using a different number of ports than the number of ports that are used to transmit the uplink message 315. Or, in another example, the UE 115 may not be configured with a reference signal to use for a spatial precoder calculation, such when a downlink message 320 includes DCI scheduling  ACK/NACK feedback for the uplink message 315. In these examples, the base station 105 may include an indication of an additional reference signal (e.g., a first reference signal 305) in the downlink message 320. The UE 115 may then use the additional reference signal 305 to calculate a spatial precoder for the uplink message 315.
In some examples, the base station may transmit a first reference signal 305 to the UE 115 and indicate a second reference signal 310 to the UE 115 in the downlink message 320. The UE 115 may use the first reference signal 305 to calculate a spatial precoder for the uplink control channel transmission and may generate a CSI report based on the second reference signal 310. Therefore, the first reference signal 305 may be a reference signal that the UE 115 measures to calculate a spatial precoder. The UE 115 may use the calculated spatial precoder to precode information and transmit the precoded information in the uplink message 315. In some cases, the information included in the uplink message 315 may include CSI information generated based on measuring the second reference signal 310. As described herein, the uplink message 315 may be an example of a CSI or an ACK/NACK feedback message. In some cases, when triggering a periodic CSI-RS or configuring an aperiodic CSI-RS via RRC configuration, the base station 105 may additionally indicate another periodic or aperiodic CSI-RS resource ID (e.g., corresponding to the first reference signal 305) , and the UE 115 may use this additional CSI-RS to calculate the PUCCH precoder. In some examples, when the base station 105 transmits DCI to trigger CSI feedback via PUCCH (e.g., via uplink message 315) , the base station 105 may additionally indicate another periodic or aperiodic CSI-RS resource ID (e.g., corresponding to the first reference signal 305) , and the UE 115 may use the additional CSI-RS to calculate the PUCCH precoder.
As described, the base station 105 may indicate for the UE 115 to use the first reference signal 305 when triggering CSI reporting or when scheduled uplink control channel resources for ACK/NACK feedback. In some cases, the UE 115 may look into RRC configurations for a reference signal resource ID and time-frequency occupation information for the first reference signal 305. However, some RRC configurations may not include QCL assumption information and slot offset information (e.g., a slot offset 320) . The UE 115 may therefore not have a configuration for the QCL and slot offset information to receive the first reference signal 305. In some cases, the UE 115 may use QCL information and a slot offset 320 of the second reference signal 310 to locate resources for the first reference signal 305. The UE 115 may use the QCL information and slot-offset of the second CSI-RS, which is  used to calculate CSI feedback, as the QCL and slot offset of the first CSI-RS, which is used to calculate a PUCCH spatial precoder. The UE 115 may therefore implement techniques to obtain QCL and slot offset information for the first reference signal 305 (e.g., the additional reference signal) .
In some cases, the UE 115 may use the QCL and slot offset information of the second reference signal 310. This may occur, for example, when the base station 105 triggers periodic CSI feedback using PUCCH or when the UE 115 is triggered by DCI for CSI feedback via PUCCH (e.g., there are two reference signals) . For example, if the first reference signal 305 is a periodic signal (e.g., periodic CSI-RS) , the UE 115 may identify information for a slot offset 320, as well as the QCL information, associated with the second reference signal 310 in an RRC configuration signaled from the base station 105 to configure the second reference signal 310. When the UE 115 is triggered for periodic CSI feedback over RRC (e.g., for the second reference signal 310) , the base station 105 may additionally indicate another periodic or aperiodic CSI-RS resource ID (e.g., corresponding to the first reference signal 305) , and the UE may use the periodic or aperiodic CSI-RS corresponding to that ID to calculate the PUCCH spatial precoder. If the first reference signal 305 is an aperiodic signal (e.g., aperiodic CSI-RS) , the UE 115 may identify information for the slot offset 320 and the QCL association in a DCI message triggering the CSI feedback corresponding to the second reference signal 310. When the UE 115 is triggered by DCI to report CSI feedback via PUCCH, the base station 105 may indicate another periodic CSI-RS or aperiodic CSI-RS resource ID (e.g., corresponding to the first reference signal 305) .
In some other examples, the base station 105 may transmit DCI to schedule a downlink channel resource and an uplink control channel resource (e.g., PUCCH resource) for the UE 115, where the UE 115 may transmit ACK/NACK feedback for the downlink channel resource in uplink message 315 on the uplink control channel resource. The base station 105 may transmit an ID for a first reference signal 305 to the UE 115, and the UE 115 may use the first reference signal 305 to calculate a spatial precoder for the uplink message 315. Therefore, in this example, the UE 115 may only measure a single CSI-RS (e.g., not including the second reference signal 310) , but the UE 115 may still not have QCL information or slot offset information for the first reference signal 305 (e.g., CSI-RS) . In some examples where the UE 115 is scheduled with PUCCH resources for ACK/NACK feedback, the slot offset 320 and the QCL information may be predefined and stored in  memory within the UE 115. For example, the UE 115 may be configured with a number of symbols or slots preceding the PUCCH resources scheduled for uplink message 315, as the slot offset 320. In some cases, the UE 115 may be configured to use QCL information for receiving the first reference signal 305 that is the same as the QCL information as a demodulation reference signal (DMRS) of a PDCCH carrying the DCI that schedules the PUCCH resources for uplink message 315. In some examples, uplink message 315 may contain ACK/NACK or CSI feedback. Therefore, the QCL of the CSI-RS may be the same as the QCL of the DMRS in the PDCCH carrying the DCI. Additionally, or alternatively, slot offset 320 and the QCL information may be stored in memory within the UE 115.
FIG. 4 illustrates an example of a process flow 400 that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. In some examples, process flow 400 may implement aspects of  wireless communication systems  100 or 200. Further, process flow 400 may be implemented by a UE 115-b and a base station 105-b, which may be examples of a UE 115 and a base station 105 described with reference to FIGs. 1–3.
In the following description of the process flow 400, the operations between UE 115-b and base station 105-b may be transmitted in a different order than the order shown, or the operations performed by base station 105-b and UE 115-b may be performed in different orders or at different times. Certain operations may also be left out of the process flow 400, or other operations may be added to the process flow 400. It is to be understood that while base station 105-b and UE 115-b are shown performing a number of the operations of process flow 400, any wireless device may perform the operations shown.
At 405, base station 105-b may transmit an RRC message (e.g., a downlink message) to UE 115-b. UE 115-b may identify an association between a reference signal resource and an uplink control channel resource. In some cases, UE 115-b may identify the association based on receiving the RRC message. In some cases, the RRC message may be an example of an RRC message as described with reference to FIGs. 2 and 3.
At 410, base station 105-b may transmit the reference signal to UE 115-b within the reference signal resource. At 415, UE 115-b may calculate the spatial precoder based on the reference signal received at 410. In some cases, UE 115-b may generate a channel estimate for the PUCCH resource based on the reference signal, where the spatial precoder  may be calculated based on the channel estimate. At 420, UE 115-b may precode information for the uplink message based on the calculated spatial precoder.
At 425, UE 115-b may transmit the uplink message (e.g., CSI feedback) to base station 105-b, where UE 115-b may generate the uplink message based on the precoded information and may transmit the uplink message on the indicated uplink control channel resource. The following may describe different techniques or variations of configuring the association between the reference signal resource and the uplink control channel resource.
In some examples, the RRC message may configure UE 115-b with an uplink control channel (e.g., PUCCH) resource or configure or trigger a reference signal, where the RRC message may indicate that an ID of a reference signal resource is associated with an ID of the uplink control channel resource. For example, base station 105-b may associate PUCCH resource IDs with reference signal resource IDs and may include the associated IDs in the RRC message. In some cases, UE 115-b may receive the RRC message and identify an association between the reference signal resource and the uplink control channel resource. In some examples, UE 115-b may be configured to transmit an uplink message on the uplink control channel resource. Accordingly, UE 115-b may receive a reference signal on the reference signal resource and may calculate a spatial precoder for the uplink message based on the reference signal.
In a first example of configuring an association between the reference signal resource and the uplink control channel resource, the RRC message at 405 may configure UE 115-b with the uplink control channel resource and indicate that an ID of the reference signal resource is associated with an ID of the uplink control channel resource (e.g., the PUCCH resource for the uplink message) . For example, base station 105-b may configure PUCCH resources (e.g., via an RRC configuration) for one or more uplink messages (e.g., including the uplink message to be sent by UE 115-b) . In some cases, the configuring may include configuring associations between resource IDs for one or more reference signals (e.g., periodic and/or aperiodic reference signals) and resource IDs for the PUCCH resources. In some examples, base station 105-b may notify UE 115-b regarding the RRC configuration via the RRC message at 405, or the RRC configuration may be received in another message from base station 105-b.
In the first example, UE 115-b may monitor for a reference signal within the resources corresponding to the periodic and/or aperiodic CSI-RS resource IDs at 410 in response to the RRC messaging configuring the PUCCH resources. UE 115-b may measure one or more reference signals corresponding to the periodic CSI-RS and/or aperiodic CSI-RS resource ID indicated in the RRC message to generate a channel estimate then calculate a spatial precoder using the channel estimate at 415. UE 115-b may then generate an uplink message by precoding control information at 420, using the calculated spatial precoder. UE 115-b may then transmit the generated uplink message at 425. Therefore, UE 115-b may receive a reference signal within the uplink control channel resource corresponding to the resource ID indicated in the RRC message and transmit the uplink message in the uplink control channel resource corresponding to the resource ID indicated in the RRC message.
In a second example of configuring an association between the reference signal resource and the uplink control channel resource, the RRC message at 405 may trigger or configure the reference signal and may indicate that a reference signal ID for the reference signal is associated with an ID for the uplink control channel resource (e.g., the PUCCH resource for the uplink message) . For example, base station 105-b may configure an aperiodic CSI-RS or trigger a periodic CSI-RS, where the configuring may include configuring associations between resource IDs for corresponding PUCCH resources and resource IDs for the one or more reference signal resources. In some examples, base station 105-b may indicate the reference signal configuration or triggering to UE 115-b via the RRC message at 405.
In the second example, UE 115-b at 410 may monitor resources corresponding to the periodic and/or aperiodic CSI-RS resource IDs indicated in the RRC message in response to the RRC message configuring the aperiodic CSI-RS or triggering the periodic CSI-RS. UE 115-b may measure one or more reference signals corresponding to the P-CSI-RS and/or AP-CSI-RS resource ID indicated in the RRC message to generate a channel estimate, then calculate a spatial precoder using the channel estimate at 415. UE 115-b may then generate an uplink message by precoding control information at 420, using the calculated spatial precoder. UE 115-b may then transmit the generated uplink message at 425. Therefore, UE 115-b may receive a reference signal within the reference signal resource corresponding to the resource ID indicated in the RRC message and transmit an uplink message using the uplink resources  corresponding to the associated uplink control channel resource ID indicated in the RRC message.
In a third example of configuring an association between the reference signal resource and the uplink control channel resource, UE 115-b may receive the RRC message at 405 which indicates a PUCCH resource and triggers UE 115-b to provide periodic CSI feedback using the indicated PUCCH resource. The RRC message also indicates a periodic CSI-RS and/or aperiodic CSI-RS resource ID for a different reference signal that UE 115-b is to use for calculating a spatial precoder. UE 115-b may monitor for the periodic CSI-RS in response to the RRC triggering to generate CSI feedback at 410. UE 115-b may measure the reference signals corresponding to the periodic CSI-RS and/or aperiodic CSI-RS resource ID indicated in the RRC message to generate a channel estimate, and then calculate the spatial precoder using the channel estimate at 415. UE 115-b may then generate an uplink message by precoding control information (e.g., the CSI feedback and/or control other information) at 420, using the calculated spatial precoder. At 425, UE 115-b may transmit the generated uplink message to base station 105-b. Therefore, UE 115-b may determine the resources for receiving the reference signal using the resource ID for the reference signal resource indicated in the RRC message and transmitting the uplink message within the uplink resources corresponding to the associated uplink control channel resource ID indicated in the RRC message. The third example is additionally described in FIG. 6.
In a fourth example of configuring an association between the reference signal resource and the uplink control channel resource, the RRC message sent by base station 105-b may trigger UE 115-b to provide CSI feedback for the reference signal (e.g., provide periodic CSI reference signal feedback) , where the feedback may be transmitted via the uplink message and using the uplink control channel resource indicated in the RRC message. In some cases, UE 115-b may determine that the reference signal resource is associated with the uplink control channel resource based on the RRC message. For example, the UE 115-b may implicitly determine to use the reference signal associated with the CSI feedback (e.g., the triggered periodic CSI-RS) to calculate the precoder based on the RRC message indicating the resource for the reference signal within the RRC message (e.g., using a reference signal resource ID, such as a CSI-RS ID) . In this example, the RRC message may, in some cases, not include an explicit indication of the association between the reference signal resource and the uplink control channel resource. Additionally, the RRC message may  indicate a location of the uplink control channel resource (e.g., via a PUCCH resource ID) on which to transmit the CSI feedback.
In the fourth example, UE 115-b may at 410 monitor resources corresponding to the periodic CSI-RS in response to the RRC message triggering the periodic CSI-RS. UE 115-b may measure one or more reference signals corresponding to the periodic CSI-RS to generate a channel estimate, then UE 115-b may calculate a spatial precoder using the channel estimate at 415. UE 115-b may then generate an uplink message by precoding the control information (e.g., CSI feedback and/or other control information) at 420, using the calculated spatial precoder. UE 115-b may then transmit the generated uplink message at 425.
FIG. 5 illustrates an example of a process flow 500 that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. In some examples, process flow 500 may implement aspects of  wireless communication systems  100 or 200. Additionally, process flow 500 may implement aspects of slot offset scheme 300. Further, process flow 500 may be implemented by a UE 115-c and a base station 105-c, which may be examples of a UE 115 and a base station 105 described with reference to FIGs. 1–4.
In the following description of the process flow 500, the operations between UE 115-c and base station 105-c may be transmitted in a different order than the order shown, or the operations performed by base station 105-c and UE 115-c may be performed in different orders or at different times. Certain operations may also be left out of the process flow 500, or other operations may be added to the process flow 500. It is to be understood that while base station 105-c and UE 115-c are shown performing a number of the operations of process flow 500, any wireless device may perform the operations shown.
At 505, base station 105-c may transmit a DCI message (e.g., a downlink message within a PDCCH) to UE 115-c. UE 115-c may identify an association between a reference signal resource and an uplink control channel resource. In some cases, UE 115-b may identify the association based on receiving the DCI message. In some cases, the DCI message may be an example of DCI as described with reference to FIGs. 2 and 3. At 510, base station 105-c may transmit the reference signal to UE 115-c within the reference signal resource.
At 515, UE 115-c may calculate the spatial precoder based on the reference signal received at 510. In some cases, UE 115-c may generate a channel estimate for the PUCCH  resource based on the reference signal, where the spatial precoder may be calculated based on the channel estimate. At 520, UE 115-c may precode information for the uplink message based on the calculated spatial precoder.
At 525, UE 115-c may transmit the uplink message (e.g., CSI or ACK/NACK feedback) to base station 105-c, where UE 115-c may generate the uplink message based on the precoded information and may transmit the uplink message on the indicated PUCCH resource. The following may describe different techniques or variations of configuring the association between the reference signal resource and the uplink control channel resource.
In some examples, the DCI message may configure UE 115-c with an uplink control channel (e.g., PUCCH) resource and may indicate that an ID of a reference signal resource is associated with an ID of the uplink control channel resource. For example, base station 105-c may associate PUCCH resource IDs with reference signal resource IDs, and may include the associated IDs in the DCI message. In some cases, UE 115-c may receive the DCI message and identify an association between the reference signal resource and the uplink control channel resource. In some examples, UE 115-c may be configured to transmit an uplink message on the uplink control channel resource. Accordingly, UE 115-c may receive a reference signal on the reference signal resource and may calculate a spatial precoder for the uplink message based on the reference signal.
In a first example of configuring an association between the reference signal resource and the uplink control channel resource via a DCI message transmitted on PDCCH, the DCI message at 505 may schedule a downlink data channel (e.g., PDSCH) and may schedule the PUCCH resource such that UE 115-c may provide acknowledgement feedback (e.g., ACK/NACK feedback) for the downlink data channel within the uplink message. For example, the DCI message may schedule a PDSCH resource (e.g., for a data transmission) and may schedule ACK/NACK feedback for the PDSCH in the PUCCH resource. Additionally, the DCI message may indicate the reference signal resource. In some examples, the DCI message may indicate a reference signal resource ID (e.g., for a periodic or an aperiodic reference signal, such as CSI-RS) for UE 115-b to receive and use to calculate the precoder. In some cases, UE 115-c may identify the QCL information of a DMRS of the PDCCH carrying the DCI message and determine a slot offset based on the PUCCH resource. UE 115-c may then monitor for the reference signal within the reference signal resource at  510 based on the slot offset and using the QCL information of the DMRS. For example, UE 115-c may store, in memory, a defined slot offset and an indication to determine a QCL relationship from a DMRS, where the slot offset and the QCL relationship may enable UE 115-c to monitor for the reference signal on the reference signal resource. In some examples, the slot offset may be a number of symbols or slots preceding the PUCCH resource.
In the first example, UE 115-c may measure the reference signal corresponding to the CSI-RS resource ID indicated in the DCI to generate a channel estimate. UE 115-c may then calculate a spatial precoder using the channel estimate at 515. UE 115-c may then generate an uplink message by precoding control information (e.g., the acknowledgement feedback and/or other control information) at 520, and using the calculated spatial precoder. UE 115-c may then transmit the generated uplink message at 525.
In a second example of configuring an association between the reference signal resource and the uplink control channel resource, UE 115-c may receive the DCI message at 505 which indicates a PUCCH resource and triggers UE 115-c to provide CSI feedback using the indicated PUCCH resource. The DCI may also indicate a periodic CSI-RS and/or aperiodic CSI-RS resource ID for a different reference signal that UE 115-c is to use for calculating a spatial precoder. UE 115-c may monitor for the CSI-RS in response to the DCI triggering to generate CSI feedback at 510. UE 115-c may measure  one  or  more reference signals corresponding to the periodic CSI-RS and/or aperiodic CSI-RS resource ID indicated in the DCI message to generate a channel estimate and then calculate the spatial precoder using the channel estimate at 515. UE 115-c may then generate an uplink message by precoding control information (e.g., the CSI feedback and/or other control information) at 520, using the calculated spatial precoder. At 525, UE 115-c may transmit the generated uplink message to base station 105-c. Therefore, UE 115-c may use the resource ID for the reference signal resource in the DCI message and the associated uplink control channel resource ID from the reference signal configuration to determine the resources for receiving the reference signal and transmitting the uplink message, respectively. This second example is additionally described in FIG. 6.
In a third example of configuring an association between the reference signal resource and the uplink control channel resource via a DCI message, the DCI message 505 sent by base station 105-c may trigger UE 115-c to provide CSI feedback for the reference  signal (e.g., periodic or aperiodic reference signal, such as CSI-RS) in the uplink message, using the uplink control channel resource. In some cases, UE 115-c may identify that the reference signal resource is associated with the PUCCH resource based on the DCI message. For example, the UE 115-c may implicitly determine to use the reference signal associated with the CSI feedback (e.g., CSI-RS) for calculating the precoder based on the DCI message indicating the resource for the reference signal (e.g., using a reference signal resource ID, such as a CSI-RS ID) . In this example, the DCI message may, in some cases, not include an explicit indication of the association between the reference signal resource and the uplink control channel resource. In some cases, the CSI feedback triggered in this third example may be periodic or aperiodic. Additionally, the DCI message may indicate a location of the uplink control channel resource (e.g., via a PUCCH resource ID) on which to transmit the CSI feedback.
In the third example, UE 115-c may monitor resources corresponding to the CSI-RS at 510 in response to the DCI message triggering the CSI feedback. UE 115-c may measure one or more reference signals corresponding to the CSI-RS to generate a channel estimate, then UE 115-c may calculate a spatial precoder using the channel estimate at 515. UE 115-c may then generate an uplink message by precoding control information (e.g., CSI feedback and/or other control information) at 520, using the calculated spatial precoder. UE 115-c may then transmit the generated uplink message at 525.
FIG. 6 illustrates an example of a process flow 600 that supports associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. In some examples, process flow 600 may implement aspects of  wireless communication systems  100 or 200. Additionally, process flow 600 may implement aspects of slot offset scheme 300. Further, process flow 600 may be implemented by a UE 115-d and a base station 105-d, which may be examples of a UE 115 and a base station 105 described with reference to FIGs. 1–5.
In the following description of the process flow 600, the operations between UE 115-d and base station 105-d may be transmitted in a different order than the order shown, or the operations performed by base station 105-d and UE 115-d may be performed in different orders or at different times. Certain operations may also be left out of the process flow 600, or other operations may be added to the process flow 600. It is to be understood that while  base station 105-d and UE 115-d are shown performing a number of the operations of process flow 600, any wireless device may perform the operations shown.
At 605, base station 105-d may transmit a downlink message to UE 115-d. UE 115-d may identify an association between a reference signal resource and an uplink control channel resource. In some cases, UE 115-d may identify the association based on receiving the downlink message. In a first example, the downlink message may be an example of an RRC message as described with reference to FIGs. 2–4. In a second example, the downlink message may be an example of DCI as described with reference to FIGs. 2, 3, and 5.
At 610, base station 105-d may transmit a first reference signal to UE 115-d within the reference signal resource, where the first reference signal may be a reference signal used for calculating a spatial precoder. At 615, base station 105-d may transmit a second reference signal to UE 115-d, where the second reference signal may be a reference signal used for determining CSI feedback.
At 620, UE 115-d may calculate the spatial precoder based on the first reference signal received at 610. In some cases, UE 115-d may generate a channel estimate for the PUCCH resource based on the first reference signal, where the spatial precoder may be calculated based on the channel estimate. At 625, UE 115-d may precode information (e.g., CSI feedback) for the uplink message based on the calculated spatial precoder.
At 630, UE 115-d may transmit the uplink message to base station 105-d, where UE 115-d may generate the uplink message based on the precoded information and may transmit the uplink message on the indicated PUCCH resource. The following may describe different techniques or variations of configuring the association between the reference signal resource and the uplink control channel resource.
In some examples, the downlink message may configure UE 115-d with an uplink control channel (e.g., PUCCH) resource and may indicate that an ID of a reference signal resource is associated with an ID of the uplink control channel resource. For example, base station 105-d may associate PUCCH resource IDs with reference signal resource IDs and may include the associated IDs in the downlink message. In some cases, UE 115-d may receive the downlink message and identify an association between the reference signal resource and the uplink control channel resource. In some examples, UE 115-d may be configured to transmit an uplink message on the uplink control channel resource.  Accordingly, UE 115-d may receive a first reference signal on the reference signal resource and may calculate a spatial precoder for the uplink message based on the first reference signal.
In some examples, the downlink message sent by base station 105-d may trigger UE 115-d to provide CSI feedback for a second reference signal in the uplink message using the PUCCH resource, where the first reference signal may be different than the second reference signal. For example, the downlink message may trigger CSI feedback in the uplink message and may specify a certain CSI-RS (e.g., the second reference signal) to use for the CSI feedback (e.g., via a reference signal resource ID or CSI-RS ID) . In some cases, the downlink message may indicate an ID of the first reference signal (e.g., for the spatial precoder) , and UE 115-d may identify that the reference signal resource is associated with the uplink control channel resource based on the downlink message. For example, the downlink message may indicate that UE 115-d is to use an additional reference signal (e.g., the first reference signal, such as a periodic or an aperiodic CSI-RS) for calculating the precoder, where the reference signal may be different from the reference signal associated with the CSI feedback (e.g., the second reference signal or CSI-RS) . As such, the downlink message may indicate the resource for the first reference signal, as well as resource for the second reference signal, using reference signal resource IDs (e.g., CSI-RS IDs) . Additionally, the downlink message may indicate a location of the uplink control channel resource (e.g., via a PUCCH resource ID) on which to transmit the CSI feedback.
In some cases, UE 115-d may determine a slot offset and a QCL relationship for the second reference signal based on the downlink message, where the slot offset and the QCL relationship may enable UE 115-d to monitor for the first reference signal on the reference signal resource. Accordingly, UE 115-d may monitor for the first reference signal within the reference signal resource, based on the slot offset and the QCL relationship for the second reference signal. For example, UE 115-d may be configured by the downlink message (e.g., an RRC or DCI message) to determine the slot offset and the QCL relationship of the second reference signal (e.g., DCI has QCL information) , and may use this information to monitor for the first reference signal. Additionally, or alternatively, UE 115-d may contain within its memory a defined slot offset and an indication to determine a QCL relationship from a DMRS of a DCI message scheduling CSI feedback (e.g., the downlink message) , and may use this information to monitor for the first reference signal. In some examples, the slot offset may be a number of symbols or slots preceding the PUCCH resource.
In a first example, which may be related to the third example of FIG. 4, the downlink message may be an RRC message. UE 115-d may receive the RRC message at 605 which indicates a PUCCH resource and triggers UE 115-d to provide periodic CSI feedback using the indicated PUCCH resource. The RRC message also indicates a periodic CSI-RS and/or aperiodic CSI-RS resource ID for a different reference signal (e.g., the first reference signal transmitted at 615) that UE 115-d is to use for calculating a spatial precoder. UE 115-d may monitor for the periodic CSI-RS in response to the RRC triggering to generate CSI feedback at 610.
In some cases, UE 115-d may use the slot offset and QCL information of the second reference signal (e.g., CSI-RS for generating CSI feedback) as the slot offset and QCL information for receiving the first reference signal (e.g., use the same slot offset and QCL information to receive both the first and second reference signals) . For example, UE 115-d may determine the slot offset and QCL information of the second reference signal for generating CSI feedback to be received at 615 (e.g., DMRS of PDCCH carrying the DCI has slot offset and/or QCL information) , and use that same slot offset and QCL information to receive the first reference signal (e.g., P-CSI-RS or AP-CSI-RS for calculating a spatial precoder) at 610. It is noted that the second reference signal may be transmitted prior the first reference signal. At 610, UE 115-d may measure the first reference signal corresponding to the periodic CSI-RS and/or aperiodic CSI-RS resource ID indicated in the RRC message using the same slot offset and QCL information as the second reference signal for generating a channel estimate, and then calculate the spatial precoder using the channel estimate at 620. UE 115-d may then generate an uplink message by precoding control information (e.g., the CSI feedback and/or other control information) at 625, using the calculated spatial precoder. At 630, UE 115-d may transmit the generated uplink message to base station 105-d.
In a second example, which may be related to the second example of FIG. 5, the downlink message may be PDCCH transmission carrying DCI. UE 115-d may receive the DCI at 605 which indicates a PUCCH resource and triggers UE 115-d to provide periodic CSI feedback using the indicated PUCCH resource. The DCI may also indicate a periodic CSI-RS and/or aperiodic CSI-RS resource ID for a different reference signal (e.g., the first reference signal transmitted at 615) that UE 115-d is to use for calculating a spatial precoder. UE 115-d may monitor for the periodic CSI-RS in response to the RRC triggering to generate CSI feedback at 610.
In some cases, UE 115-d may use the slot offset and QCL information of the second reference signal for the first reference signal. For example, UE 115-d may determine the slot offset and QCL information of the second reference signal at 615, and use that slot offset and QCL information to receive the first reference signal at 610. It is noted that the second reference signal may be transmitted prior the first reference signal. At 615, UE 115-d may measure the first reference signal corresponding to the periodic CSI-RS and/or aperiodic CSI-RS resource ID indicated in the RRC message using the same slot offset and QCL information as the second reference for generating a channel estimate, and then calculate the spatial precoder using the channel estimate at 620. UE 115-d may then generate an uplink message by precoding control information (e.g., the CSI feedback and/or other control information) at 625, using the calculated spatial precoder. At 630, UE 115-d may transmit the generated uplink message to base station 105-d.
FIG. 7 shows a block diagram 700 of a device 705 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The device 705 may be an example of aspects of a UE 115 as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 720. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to scheme for associating a reference signal with an uplink control channel, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The receiver 710 may utilize a single antenna or a set of antennas.
The communications manager 715 may identify an association between a reference signal resource and an uplink control channel resource, receive a first reference signal within the reference signal resource, calculate a spatial precoder based on the first reference signal, precode information based on the spatial precoder, and transmit, using the uplink control channel resource, an uplink message generated based on the precoded information. The communications manager 715 may be an example of aspects of the communications manager 1010 described herein.
The communications manager 715, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 715, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 715, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 715, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 715, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 720 may transmit signals generated by other components of the device 705. In some examples, the transmitter 720 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 720 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The transmitter 720 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a device 805 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The device 805 may be an example of aspects of a device 705, or a UE 115 as described herein. The device 805 may include a receiver 810, a communications manager 815, and a transmitter 845. The device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data  channels, and information related to scheme for associating a reference signal with an uplink control channel, etc. ) . Information may be passed on to other components of the device 805. The receiver 810 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The receiver 810 may utilize a single antenna or a set of antennas.
The communications manager 815 may be an example of aspects of the communications manager 715 as described herein. The communications manager 815 may include an association component 820, a reference signal receiving component 825, a spatial precoder calculating component 830, a precoding component 835, and an uplink message transmitting component 840. The communications manager 815 may be an example of aspects of the communications manager 1010 described herein.
The association component 820 may identify an association between a reference signal resource and an uplink control channel resource. The reference signal receiving component 825 may receive a first reference signal within the reference signal resource. The spatial precoder calculating component 830 may calculate a spatial precoder based on the first reference signal. The precoding component 835 may precode information based on the spatial precoder. The uplink message transmitting component 840 may transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
The transmitter 845 may transmit signals generated by other components of the device 805. In some examples, the transmitter 845 may be collocated with a receiver 810 in a transceiver module. For example, the transmitter 845 may be an example of aspects of the transceiver 1020 described with reference to FIG. 10. The transmitter 845 may utilize a single antenna or a set of antennas.
FIG. 9 shows a block diagram 900 of a communications manager 905 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The communications manager 905 may be an example of aspects of a communications manager 715, a communications manager 815, or a communications manager 1010 described herein. The communications manager 905 may include an association component 910, a reference signal receiving component 915, a spatial precoder calculating component 920, a precoding component 925, an uplink message transmitting component 930, and a slot offset and QCL component 935. Each of these  modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The association component 910 may identify an association between a reference signal resource and an uplink control channel resource. In some examples, the association component 910 may receive a downlink message that configures the UE with the uplink control channel resource and indicates that an identifier of the reference signal resource is associated with an identifier of the uplink control channel resource. In some examples, the association component 910 may receive a downlink message that triggers or configures the first reference signal and indicates that a reference signal identifier for the first reference signal is associated with an identifier for the uplink control channel resource. In some examples, the association component 910 may receive a downlink message that triggers the UE to provide CSI feedback in the uplink message for a second reference signal using the uplink control channel resource and indicates an identifier of the first reference signal, where the first reference signal is different than the second reference signal. In some examples, the association component 910 may identify that the reference signal resource is associated with the uplink control channel resource based on the downlink message.
In some examples, the association component 910 may receive a downlink message that triggers the UE to provide CSI feedback in the uplink message for the first reference signal using the uplink control channel resource, where the first reference signal is a periodic reference signal. In some examples, the association component 910 may receive a downlink message that schedules a downlink data channel and the uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within the uplink message and indicates the reference signal resource.
In some examples, the association component 910 may receive a downlink message that triggers the UE to provide CSI feedback within the uplink message for a second reference signal using the uplink control channel resource and indicates the reference signal resource, where the second reference signal is different than the first reference signal. In some examples, the association component 910 may receive a downlink message that triggers the UE to provide CSI feedback for the reference signal resource within the uplink message using the uplink control channel resource. In some examples, the association component 910 may identify that the reference signal resource is associated with the uplink control channel  resource based on the downlink message. In some cases, the second reference signal is a periodic reference signal. In some cases, the downlink message is an RRC message. In some cases, the downlink message is DCI.
In some cases, the association is identified based least in part on the reference signal resource being a most recently configured or triggered reference signal resource.
In some cases, the association is identified based least in part on the reference signal resource being stored in memory. The reference signal receiving component 915 may receive a first reference signal within the reference signal resource. In some cases, the first reference signal is a periodic reference signal, an aperiodic reference signal, or a CSI-RS.
The spatial precoder calculating component 920 may calculate a spatial precoder based on the first reference signal. The precoding component 925 may precode information based on the spatial precoder. In some examples, the precoding component 925 may generate a channel estimate for the uplink control channel resource based on the first reference signal, where the spatial precoder is calculated based on the channel estimate. The uplink message transmitting component 930 may transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
The slot offset and QCL component 935 may determine a slot offset and a QCL relationship for the second reference signal based on the downlink message. In some examples, the slot offset and QCL component 935 may monitor for the first reference signal within the reference signal resource based on the slot offset and the QCL relationship for the second reference signal. In some examples, the slot offset and QCL component 935 may determine a QCL relationship for a DMRS of a downlink control channel carrying the downlink message. In some examples, the slot offset and QCL component 935 may determine a slot offset based on the uplink control channel resource. In some examples, the slot offset and QCL component 935 may monitor for the first reference signal within the reference signal resource based on the slot offset and the QCL relationship for the DMRS.
FIG. 10 shows a diagram of a system 1000 including a device 1005 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The device 1005 may be an example of or include the components of device 705, device 805, or a UE 115 as described herein. The device 1005 may include components for bi-directional voice and data communications including  components for transmitting and receiving communications, including a communications manager 1010, an I/O controller 1015, a transceiver 1020, an antenna 1025, memory 1030, and a processor 1040. These components may be in electronic communication via one or more buses (e.g., bus 1045) .
The communications manager 1010 may identify an association between a reference signal resource and an uplink control channel resource, receive a first reference signal within the reference signal resource, calculate a spatial precoder based on the first reference signal, precode information based on the spatial precoder, and transmit, using the uplink control channel resource, an uplink message generated based on the precoded information.
The I/O controller 1015 may manage input and output signals for the device 1005. The I/O controller 1015 may also manage peripherals not integrated into the device 1005. In some cases, the I/O controller 1015 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1015 may utilize an operating system such as 
Figure PCTCN2019075598-appb-000001
MS-
Figure PCTCN2019075598-appb-000002
MS-
Figure PCTCN2019075598-appb-000003
OS/
Figure PCTCN2019075598-appb-000004
or another known operating system. In other cases, the I/O controller 1015 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 1015 may be implemented as part of a processor. In some cases, a user may interact with the device 1005 via the I/O controller 1015 or via hardware components controlled by the I/O controller 1015.
The transceiver 1020 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1020 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1020 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1025. However, in some cases the device may have more than one antenna 1025, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1030 may include random access memory (RAM) and read only memory (ROM) . The memory 1030 may store computer-readable, computer-executable code  1035 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1030 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1040 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1040 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1040. The processor 1040 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1030) to cause the device 1005 to perform various functions (e.g., functions or tasks supporting scheme for associating a reference signal with an uplink control channel) .
The code 1035 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1035 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1035 may not be directly executable by the processor 1040 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 11 shows a block diagram 1100 of a device 1105 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The device 1105 may be an example of aspects of a base station 105 as described herein. The device 1105 may include a receiver 1110, a communications manager 1115, and a transmitter 1120. The device 1105 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1110 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to scheme for associating a reference signal with an uplink control channel, etc. ) . Information may be passed on to other components of the device 1105. The receiver 1110 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14. The receiver 1110 may utilize a single antenna or a set of antennas.
The communications manager 1115 may identify an association between a reference signal resource and an uplink control channel resource, transmit, to a UE, a first reference signal within the reference signal resource, and monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal. The communications manager 1115 may be an example of aspects of the communications manager 1410 described herein.
The communications manager 1115, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 1115, or its sub-components may be executed by a general-purpose processor, a DSP, an ASIC, a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 1115, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 1115, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 1115, or its sub-components, may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 1120 may transmit signals generated by other components of the device 1105. In some examples, the transmitter 1120 may be collocated with a receiver 1110 in a transceiver module. For example, the transmitter 1120 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14. The transmitter 1120 may utilize a single antenna or a set of antennas.
FIG. 12 shows a block diagram 1200 of a device 1205 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The device 1205 may be an example of aspects of a device 1105, or a  base station 105 as described herein. The device 1205 may include a receiver 1210, a communications manager 1215, and a transmitter 1235. The device 1205 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1210 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to scheme for associating a reference signal with an uplink control channel, etc. ) . Information may be passed on to other components of the device 1205. The receiver 1210 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14. The receiver 1210 may utilize a single antenna or a set of antennas.
The communications manager 1215 may be an example of aspects of the communications manager 1115 as described herein. The communications manager 1215 may include an association manager 1220, a reference signal transmitting component 1225, and an uplink control channel monitoring component 1230. The communications manager 1215 may be an example of aspects of the communications manager 1410 described herein.
The association manager 1220 may identify an association between a reference signal resource and an uplink control channel resource. The reference signal transmitting component 1225 may transmit, to a UE, a first reference signal within the reference signal resource. The uplink control channel monitoring component 1230 may monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
The transmitter 1235 may transmit signals generated by other components of the device 1205. In some examples, the transmitter 1235 may be collocated with a receiver 1210 in a transceiver module. For example, the transmitter 1235 may be an example of aspects of the transceiver 1420 described with reference to FIG. 14. The transmitter 1235 may utilize a single antenna or a set of antennas.
FIG. 13 shows a block diagram 1300 of a communications manager 1305 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The communications manager 1305 may be an example of aspects of a communications manager 1115, acommunications manager 1215, or a communications manager 1410 described herein. The communications manager  1305 may include an association manager 1310, a reference signal transmitting component 1315, an uplink control channel monitoring component 1320, and a slot offset and QCL manager 1325. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The association manager 1310 may identify an association between a reference signal resource and an uplink control channel resource. In some examples, the association manager 1310 may transmit a downlink message that configures the UE with the uplink control channel resource and indicates that an identifier of the reference signal resource is associated with an identifier of the uplink control channel resource. In some examples, the association manager 1310 may transmit a downlink message that triggers or configures the first reference signal and indicates that a reference signal identifier for the first reference signal is associated with an identifier for the uplink control channel resource.
In some examples, the association manager 1310 may transmit a downlink message that triggers the UE to provide CSI feedback in the uplink message for a second reference signal using the uplink control channel resource and indicates an identifier of the first reference signal, where the first reference signal is different than the second reference signal. In some examples, the association manager 1310 may transmit a downlink message that triggers the UE to provide CSI feedback in the uplink message for the first reference signal using the uplink control channel resource, where the first reference signal is a periodic reference signal.
In some examples, the association manager 1310 may transmit a downlink message that schedules a downlink data channel and the uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within the uplink message and indicates the reference signal resource. In some examples, the association manager 1310 may transmit a downlink message that triggers the UE to provide CSI feedback within the uplink message for a second reference signal using the uplink control channel resource and indicates the reference signal resource, where the second reference signal is different than the first reference signal. In some examples, the association manager 1310 may transmit a downlink message that triggers the UE to provide CSI feedback for the reference signal resource within the uplink message using the uplink control channel resource.  In some cases, the second reference signal is a periodic reference signal. In some cases, the downlink message is an RRC message. In some cases, the downlink message is DCI.
In some cases, the association is identified based least in part on the reference signal resource being a most recently configured or triggered reference signal resource. In some cases, the association is identified based least in part on the reference signal resource being stored in memory.
The reference signal transmitting component 1315 may transmit, to a UE, a first reference signal within the reference signal resource. In some cases, the first reference signal is a periodic reference signal, an aperiodic reference signal, or a CSI-RS. The uplink control channel monitoring component 1320 may monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
The slot offset and QCL manager 1325 may determine a slot offset and a QCL relationship for the second reference signal, where the first reference signal is transmitted within the reference signal resource based on the slot offset and the QCL relationship for the second reference signal. In some examples, the slot offset and QCL manager 1325 may determine a QCL relationship for a DMRS of a downlink control channel carrying the downlink message. In some examples, the slot offset and QCL manager 1325 may determine a slot offset based on the uplink control channel resource, where the first reference signal is transmitted within the reference signal resource based on the slot offset and the QCL relationship for the DMRS.
FIG. 14 shows a diagram of a system 1400 including a device 1405 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The device 1405 may be an example of or include the components of device 1105, device 1205, or a base station 105 as described herein. The device 1405 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1410, a network communications manager 1415, a transceiver 1420, an antenna 1425, memory 1430, a processor 1440, and an inter-station communications manager 1445. These components may be in electronic communication via one or more buses (e.g., bus 1450) .
The communications manager 1410 may identify an association between a reference signal resource and an uplink control channel resource, transmit, to a UE, a first reference signal within the reference signal resource, and monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal.
The network communications manager 1415 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1415 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1420 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1420 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1420 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1425. However, in some cases the device may have more than one antenna 1425, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1430 may include RAM, ROM, or a combination thereof. The memory 1430 may store computer-readable code 1435 including instructions that, when executed by a processor (e.g., the processor 1440) cause the device to perform various functions described herein. In some cases, the memory 1430 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1440 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1440 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1440. The processor 1440 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1430) to cause the device 1405 to  perform various functions (e.g., functions or tasks supporting scheme for associating a reference signal with an uplink control channel) .
The inter-station communications manager 1445 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1445 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1445 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between base stations 105.
The code 1435 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1435 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1435 may not be directly executable by the processor 1440 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 15 shows a flowchart illustrating a method 1500 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may identify an association between a reference signal resource and an uplink control channel resource. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by an association component as described with reference to FIGs. 7 through 10.
At 1510, the UE may receive a first reference signal within the reference signal resource. The operations of 1510 may be performed according to the methods described  herein. In some examples, aspects of the operations of 1510 may be performed by a reference signal receiving component as described with reference to FIGs. 7 through 10.
At 1515, the UE may calculate a spatial precoder based on the first reference signal. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a spatial precoder calculating component as described with reference to FIGs. 7 through 10.
At 1520, the UE may precode information based on the spatial precoder. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a precoding component as described with reference to FIGs. 7 through 10.
At 1525, the UE may transmit, using the uplink control channel resource, an uplink message generated based on the precoded information. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by an uplink message transmitting component as described with reference to FIGs. 7 through 10.
FIG. 16 shows a flowchart illustrating a method 1600 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1605, the UE may receive a downlink message that configures the UE with an uplink control channel resource and indicates that an identifier of a reference signal resource is associated with an identifier of the uplink control channel resource. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by an association component as described with reference to FIGs. 7 through 10.
At 1610, the UE may identify an association between the reference signal resource and the uplink control channel resource. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by an association component as described with reference to FIGs. 7 through 10.
At 1615, the UE may receive a first reference signal within the reference signal resource. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a reference signal receiving component as described with reference to FIGs. 7 through 10.
At 1620, the UE may calculate a spatial precoder based on the first reference signal. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a spatial precoder calculating component as described with reference to FIGs. 7 through 10.
At 1625, the UE may precode information based on the spatial precoder. The operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a precoding component as described with reference to FIGs. 7 through 10.
At 1630, the UE may transmit, using the uplink control channel resource, an uplink message generated based on the precoded information. The operations of 1630 may be performed according to the methods described herein. In some examples, aspects of the operations of 1630 may be performed by an uplink message transmitting component as described with reference to FIGs. 7 through 10.
FIG. 17 shows a flowchart illustrating a method 1700 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1705, the UE may receive a downlink message that triggers the UE to provide CSI feedback in an uplink message for a second reference signal using an uplink control channel resource and indicates an identifier of a first reference signal, where the first reference signal is different than the second reference signal. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by an association component as described with reference to FIGs. 7 through 10.
At 1710, the UE may identify an association between the reference signal resource and the uplink control channel resource. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by an association component as described with reference to FIGs. 7 through 10.
At 1715, the UE may identify that the reference signal resource is associated with the uplink control channel resource based on the downlink message. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by an association component as described with reference to FIGs. 7 through 10.
At 1720, the UE may receive a first reference signal within the reference signal resource. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a reference signal receiving component as described with reference to FIGs. 7 through 10.
At 1725, the UE may calculate a spatial precoder based on the first reference signal. The operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a spatial precoder calculating component as described with reference to FIGs. 7 through 10.
At 1730, the UE may precode information based on the spatial precoder. The operations of 1730 may be performed according to the methods described herein. In some examples, aspects of the operations of 1730 may be performed by a precoding component as described with reference to FIGs. 7 through 10.
At 1735, the UE may transmit, using the uplink control channel resource, an uplink message generated based on the precoded information. The operations of 1735 may be  performed according to the methods described herein. In some examples, aspects of the operations of 1735 may be performed by an uplink message transmitting component as described with reference to FIGs. 7 through 10.
FIG. 18 shows a flowchart illustrating a method 1800 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 7 through 10. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1805, the UE may receive a downlink message that schedules a downlink data channel and an uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within an uplink message and indicates a reference signal resource. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by an association component as described with reference to FIGs. 7 through 10.
At 1810, the UE may identify an association between the reference signal resource and the uplink control channel resource. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by an association component as described with reference to FIGs. 7 through 10.
At 1815, the UE may identify that the reference signal resource is associated with the uplink control channel resource based on the downlink message. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by an association component as described with reference to FIGs. 7 through 10.
At 1820, the UE may receive a first reference signal within the reference signal resource. The operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a reference signal receiving component as described with reference to FIGs. 7 through 10.
At 1825, the UE may calculate a spatial precoder based on the first reference signal. The operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a spatial precoder calculating component as described with reference to FIGs. 7 through 10.
At 1830, the UE may precode information based on the spatial precoder. The operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by a precoding component as described with reference to FIGs. 7 through 10.
At 1835, the UE may transmit, using the uplink control channel resource, an uplink message generated based on the precoded information. The operations of 1835 may be performed according to the methods described herein. In some examples, aspects of the operations of 1835 may be performed by an uplink message transmitting component as described with reference to FIGs. 7 through 10.
FIG. 19 shows a flowchart illustrating a method 1900 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The operations of method 1900 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 11 through 14. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1905, the base station may identify an association between a reference signal resource and an uplink control channel resource. The operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by an association manager as described with reference to FIGs. 11 through 14.
At 1910, the base station may transmit, to a UE, a first reference signal within the reference signal resource. The operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be  performed by a reference signal transmitting component as described with reference to FIGs. 11 through 14.
At 1915, the base station may monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal. The operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by an uplink control channel monitoring component as described with reference to FIGs. 11 through 14.
FIG. 20 shows a flowchart illustrating a method 2000 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The operations of method 2000 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 2000 may be performed by a communications manager as described with reference to FIGs. 11 through 14. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 2005, the base station may transmit a downlink message that configures the UE with an uplink control channel resource and indicates that an identifier of a reference signal resource is associated with an identifier of the uplink control channel resource. The operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by an association manager as described with reference to FIGs. 11 through 14.
At 2010, the base station may identify an association between the reference signal resource and the uplink control channel resource. The operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by an association manager as described with reference to FIGs. 11 through 14.
At 2015, the base station may transmit, to a UE, a first reference signal within the reference signal resource. The operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be  performed by a reference signal transmitting component as described with reference to FIGs. 11 through 14.
At 2020, the base station may monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal. The operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by an uplink control channel monitoring component as described with reference to FIGs. 11 through 14.
FIG. 21 shows a flowchart illustrating a method 2100 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The operations of method 2100 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 2100 may be performed by a communications manager as described with reference to FIGs. 11 through 14. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 2105, the base station may transmit a downlink message that triggers the UE to provide CSI feedback in an uplink message for a second reference signal using an uplink control channel resource and indicates an identifier of a first reference signal, where the first reference signal is different than the second reference signal. The operations of 2105 may be performed according to the methods described herein. In some examples, aspects of the operations of 2105 may be performed by an association manager as described with reference to FIGs. 11 through 14.
At 2110, the base station may identify an association between the reference signal resource and the uplink control channel resource. The operations of 2110 may be performed according to the methods described herein. In some examples, aspects of the operations of 2110 may be performed by an association manager as described with reference to FIGs. 11 through 14.
At 2115, the base station may transmit, to a UE, a first reference signal within the reference signal resource. The operations of 2115 may be performed according to the methods described herein. In some examples, aspects of the operations of 2115 may be  performed by a reference signal transmitting component as described with reference to FIGs. 11 through 14.
At 2120, the base station may monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal. The operations of 2120 may be performed according to the methods described herein. In some examples, aspects of the operations of 2120 may be performed by an uplink control channel monitoring component as described with reference to FIGs. 11 through 14.
FIG. 22 shows a flowchart illustrating a method 2200 that supports scheme for associating a reference signal with an uplink control channel in accordance with aspects of the present disclosure. The operations of method 2200 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 2200 may be performed by a communications manager as described with reference to FIGs. 11 through 14. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 2205, the base station may transmit a downlink message that schedules a downlink data channel and an uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within an uplink message and indicates a reference signal resource. The operations of 2205 may be performed according to the methods described herein. In some examples, aspects of the operations of 2205 may be performed by an association manager as described with reference to FIGs. 11 through 14.
At 2210, the base station may identify an association between the reference signal resource and the uplink control channel resource. The operations of 2210 may be performed according to the methods described herein. In some examples, aspects of the operations of 2210 may be performed by an association manager as described with reference to FIGs. 11 through 14.
At 2215, the base station may transmit, to a UE, a first reference signal within the reference signal resource. The operations of 2215 may be performed according to the methods described herein. In some examples, aspects of the operations of 2215 may be  performed by a reference signal transmitting component as described with reference to FIGs. 11 through 14.
At 2220, the base station may monitor the uplink control channel resource for an uplink message that includes information precoded based on the first reference signal. The operations of 2220 may be performed according to the methods described herein. In some examples, aspects of the operations of 2220 may be performed by an uplink control channel monitoring component as described with reference to FIGs. 11 through 14.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE, LTE-A, and LTE-A Pro are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, LTE-A Pro, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio  technologies mentioned herein as well as other systems and radio technologies. While aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR applications.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell may be associated with a lower-powered base station, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells, and may also support communications using one or multiple component carriers.
The wireless communications systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then  the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an exemplary step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (41)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    identifying an association between a reference signal resource and an uplink control channel resource;
    receiving a first reference signal within the reference signal resource;
    calculating a spatial precoder based at least in part on the first reference signal;
    precoding information based at least in part on the spatial precoder; and
    transmitting, using the uplink control channel resource, an uplink message generated based at least in part on the precoded information.
  2. The method of claim 1, further comprising:
    generating a channel estimate for the uplink control channel resource based at least in part on the first reference signal, wherein the spatial precoder is calculated based at least in part on the channel estimate.
  3. The method of claim 1, wherein identifying the association comprises:
    receiving a downlink message that configures the UE with the uplink control channel resource and indicates that an identifier of the reference signal resource is associated with an identifier of the uplink control channel resource.
  4. The method of claim 1, wherein identifying the association comprises:
    receiving a downlink message that triggers or configures the first reference signal and indicates that a reference signal identifier for the first reference signal is associated with an identifier for the uplink control channel resource.
  5. The method of claim 1, wherein identifying the association comprises:
    receiving a downlink message that triggers the UE to provide channel state information feedback in the uplink message for a second reference signal using the uplink control channel resource and indicates an identifier of the first reference signal, wherein the first reference signal is different than the second reference signal; and
    identifying that the reference signal resource is associated with the uplink control channel resource based at least in part on the downlink message.
  6. The method of claim 5, further comprising:
    determining a slot offset and a quasi co-location relationship for the second reference signal based at least in part on the downlink message; and
    monitoring for the first reference signal within the reference signal resource based at least in part on the slot offset and the quasi co-location relationship for the second reference signal.
  7. The method of claim 5, wherein the second reference signal is a periodic reference signal.
  8. The method of claim 1, wherein identifying the association comprises:
    receiving a downlink message that triggers the UE to provide channel state information feedback in the uplink message for the first reference signal using the uplink control channel resource, wherein the first reference signal is a periodic reference signal; and
    identifying that the reference signal resource is associated with the uplink control channel resource based at least in part on the downlink message.
  9. The method of any of claims 3 to 8, wherein the downlink message is a radio resource control (RRC) message.
  10. The method of claim 1, wherein identifying the association comprises:
    receiving a downlink message that schedules a downlink data channel and the uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within the uplink message and indicates the reference signal resource; and
    identifying that the reference signal resource is associated with the uplink control channel resource based at least in part on the downlink message.
  11. The method of claim 10, further comprising:
    determining a quasi co-location relationship for a demodulation reference signal of a downlink control channel carrying the downlink message;
    determining a slot offset based at least in part on the uplink control channel resource; and
    monitoring for the first reference signal within the reference signal resource based at least in part on the slot offset and the quasi co-location relationship for the demodulation reference signal.
  12. The method of claim 1, wherein identifying the association comprises:
    receiving a downlink message that triggers the UE to provide channel state information feedback within the uplink message for a second reference signal using the uplink control channel resource and indicates the reference signal resource, wherein the second reference signal is different than the first reference signal; and
    identifying that the reference signal resource is associated with the uplink control channel resource based at least in part on the downlink message.
  13. The method of claim 12, further comprising:
    determining a slot offset and a quasi co-location relationship for the second reference signal based at least in part on the downlink message; and
    monitoring for the first reference signal within the reference signal resource based at least in part on the slot offset and the quasi co-location relationship for the second reference signal.
  14. The method of claim 1, wherein identifying the association comprises:
    receiving a downlink message that triggers the UE to provide channel state information feedback for the reference signal resource within the uplink message using the uplink control channel resource; and
    identifying that the reference signal resource is associated with the uplink control channel resource based at least in part on the downlink message.
  15. The method of any of claims 10 to 14, wherein the downlink message is downlink control information (DCI) .
  16. The method of claim 1, wherein the association is identified based least in part on the reference signal resource being a most recently configured or triggered reference signal resource.
  17. The method of claim 1, wherein the association is identified based least in part on the reference signal resource being stored in memory.
  18. The method of claim 1, wherein the first reference signal is a periodic reference signal, an aperiodic reference signal, or a channel state information reference signal (CSI-RS) .
  19. A method for wireless communication at a base station, comprising:
    identifying an association between a reference signal resource and an uplink control channel resource;
    transmitting, to a user equipment (UE) , a first reference signal within the reference signal resource; and
    monitoring the uplink control channel resource for an uplink message that comprises information precoded based at least in part on the first reference signal.
  20. The method of claim 19, wherein identifying the association comprises:
    transmitting a downlink message that configures the UE with the uplink control channel resource and indicates that an identifier of the reference signal resource is associated with an identifier of the uplink control channel resource.
  21. The method of claim 19, wherein identifying the association comprises:
    transmitting a downlink message that triggers or configures the first reference signal and indicates that a reference signal identifier for the first reference signal is associated with an identifier for the uplink control channel resource.
  22. The method of claim 19, wherein identifying the association comprises:
    transmitting a downlink message that triggers the UE to provide channel state information feedback in the uplink message for a second reference signal using the uplink control channel resource and indicates an identifier of the first reference signal, wherein the first reference signal is different than the second reference signal.
  23. The method of claim 22, further comprising:
    determining a slot offset and a quasi co-location relationship for the second reference signal, wherein the first reference signal is transmitted within the reference signal  resource based at least in part on the slot offset and the quasi co-location relationship for the second reference signal.
  24. The method of claim 22, wherein the second reference signal is a periodic reference signal.
  25. The method of claim 19, wherein identifying the association comprises:
    transmitting a downlink message that triggers the UE to provide channel state information feedback in the uplink message for the first reference signal using the uplink control channel resource, wherein the first reference signal is a periodic reference signal.
  26. The method of any of claims 20 to 25, wherein the downlink message is a radio resource control (RRC) message.
  27. The method of claim 19, wherein identifying the association comprises:
    transmitting a downlink message that schedules a downlink data channel and the uplink control channel resource for the UE to provide acknowledgement feedback for the downlink data channel within the uplink message and indicates the reference signal resource.
  28. The method of claim 27, further comprising:
    determining a quasi co-location relationship for a demodulation reference signal of a downlink control channel carrying the downlink message; and
    determining a slot offset based at least in part on the uplink control channel resource, wherein the first reference signal is transmitted within the reference signal resource based at least in part on the slot offset and the quasi co-location relationship for the demodulation reference signal.
  29. The method of claim 19, wherein identifying the association comprises:
    transmitting a downlink message that triggers the UE to provide channel state information feedback within the uplink message for a second reference signal using the uplink control channel resource and indicates the reference signal resource, wherein the second reference signal is different than the first reference signal.
  30. The method of claim 29, further comprising:
    determining a slot offset and a quasi co-location relationship for the second reference signal, wherein the first reference signal is transmitted within the reference signal  resource based at least in part on the slot offset and the quasi co-location relationship for the second reference signal.
  31. The method of claim 19, wherein identifying the association comprises:
    transmitting a downlink message that triggers the UE to provide channel state information feedback for the reference signal resource within the uplink message using the uplink control channel resource.
  32. The method of any of claims 27 to 31, wherein the downlink message is downlink control information (DCI) .
  33. The method of claim 19, wherein the association is identified based least in part on the reference signal resource being a most recently configured or triggered reference signal resource.
  34. The method of claim 19, wherein the association is identified based least in part on the reference signal resource being stored in memory.
  35. The method of claim 19, wherein the first reference signal is a periodic reference signal, an aperiodic reference signal, or a channel state information reference signal (CSI-RS) .
  36. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory in electronic communication with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify an association between a reference signal resource and an uplink control channel resource;
    receive a first reference signal within the reference signal resource;
    calculate a spatial precoder based at least in part on the first reference signal;
    precode information based at least in part on the spatial precoder; and
    transmit, using the uplink control channel resource, an uplink message generated based at least in part on the precoded information.
  37. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory in electronic communication with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify an association between a reference signal resource and an uplink control channel resource;
    transmit, to a user equipment (UE) , a first reference signal within the reference signal resource; and
    monitor the uplink control channel resource for an uplink message that comprises information precoded based at least in part on the first reference signal.
  38. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for identifying an association between a reference signal resource and an uplink control channel resource;
    means for receiving a first reference signal within the reference signal resource;
    means for calculating a spatial precoder based at least in part on the first reference signal;
    means for precoding information based at least in part on the spatial precoder; and
    means for transmitting, using the uplink control channel resource, an uplink message generated based at least in part on the precoded information.
  39. An apparatus for wireless communication at a base station, comprising:
    means for identifying an association between a reference signal resource and an uplink control channel resource;
    means for transmitting, to a user equipment (UE) , a first reference signal within the reference signal resource; and
    means for monitoring the uplink control channel resource for an uplink message that comprises information precoded based at least in part on the first reference signal.
  40. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    identify an association between a reference signal resource and an uplink control channel resource;
    receive a first reference signal within the reference signal resource;
    calculate a spatial precoder based at least in part on the first reference signal;
    precode information based at least in part on the spatial precoder; and
    transmit, using the uplink control channel resource, an uplink message generated based at least in part on the precoded information.
  41. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    identify an association between a reference signal resource and an uplink control channel resource;
    transmit, to a user equipment (UE) , a first reference signal within the reference signal resource; and
    monitor the uplink control channel resource for an uplink message that comprises information precoded based at least in part on the first reference signal.
PCT/CN2019/075598 2019-02-20 2019-02-20 Scheme for associating a reference signal with an uplink control channel WO2020168494A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/075598 WO2020168494A1 (en) 2019-02-20 2019-02-20 Scheme for associating a reference signal with an uplink control channel
PCT/CN2020/074430 WO2020168923A1 (en) 2019-02-20 2020-02-06 Scheme for associating a reference signal with an uplink control channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075598 WO2020168494A1 (en) 2019-02-20 2019-02-20 Scheme for associating a reference signal with an uplink control channel

Publications (1)

Publication Number Publication Date
WO2020168494A1 true WO2020168494A1 (en) 2020-08-27

Family

ID=72143719

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/075598 WO2020168494A1 (en) 2019-02-20 2019-02-20 Scheme for associating a reference signal with an uplink control channel
PCT/CN2020/074430 WO2020168923A1 (en) 2019-02-20 2020-02-06 Scheme for associating a reference signal with an uplink control channel

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074430 WO2020168923A1 (en) 2019-02-20 2020-02-06 Scheme for associating a reference signal with an uplink control channel

Country Status (1)

Country Link
WO (2) WO2020168494A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583568A (en) * 2020-12-12 2021-03-30 河南工学院 Remote control method and system for acid mine wastewater treatment based on new wireless system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100265901A1 (en) * 2009-04-10 2010-10-21 Koo Ja Ho Method for transmitting channel state information in a wireless communication system
CN101969337A (en) * 2010-09-30 2011-02-09 中兴通讯股份有限公司 Method, base station and user equipment for transmitting information in uplink mode
WO2016153163A1 (en) * 2015-03-22 2016-09-29 Lg Electronics Inc. Method and apparatus for transmitting feedback of multi-feedback chain-based channel status information for 3d mimo in a wireless communication system
CN106358296A (en) * 2015-07-14 2017-01-25 中兴通讯股份有限公司 Method and device for transmitting signals on uplink control channel
CN108111277A (en) * 2017-08-11 2018-06-01 中兴通讯股份有限公司 The configuration of uplink signal transmission, the sending method of uplink signal, apparatus and system
EP3422624A1 (en) * 2016-02-26 2019-01-02 Baicells Technologies Co. Ltd. Method of transmitting sounding reference signal, device, chip, and terminal
CN109246042A (en) * 2017-08-25 2019-01-18 华为技术有限公司 A kind of method, equipment and the system of signal transmission

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100265901A1 (en) * 2009-04-10 2010-10-21 Koo Ja Ho Method for transmitting channel state information in a wireless communication system
CN101969337A (en) * 2010-09-30 2011-02-09 中兴通讯股份有限公司 Method, base station and user equipment for transmitting information in uplink mode
WO2016153163A1 (en) * 2015-03-22 2016-09-29 Lg Electronics Inc. Method and apparatus for transmitting feedback of multi-feedback chain-based channel status information for 3d mimo in a wireless communication system
CN106358296A (en) * 2015-07-14 2017-01-25 中兴通讯股份有限公司 Method and device for transmitting signals on uplink control channel
EP3422624A1 (en) * 2016-02-26 2019-01-02 Baicells Technologies Co. Ltd. Method of transmitting sounding reference signal, device, chip, and terminal
CN108111277A (en) * 2017-08-11 2018-06-01 中兴通讯股份有限公司 The configuration of uplink signal transmission, the sending method of uplink signal, apparatus and system
CN109246042A (en) * 2017-08-25 2019-01-18 华为技术有限公司 A kind of method, equipment and the system of signal transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112583568A (en) * 2020-12-12 2021-03-30 河南工学院 Remote control method and system for acid mine wastewater treatment based on new wireless system
CN112583568B (en) * 2020-12-12 2022-09-16 河南工学院 Remote control method and system for acid mine wastewater treatment based on new wireless system

Also Published As

Publication number Publication date
WO2020168923A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
EP3718239B1 (en) Reference signal transmission window and timing considerations
WO2020019136A1 (en) Configuration of sounding reference signal resource for multi-panel uplink transmission
US10602453B2 (en) Uplink power control in wireless systems
WO2020198977A1 (en) Reporting configurations for channel and interference measurement
US11856432B2 (en) Acknowledgement design for multi-transmission configuration indicator state transmission
WO2019158080A1 (en) Techniques for activating or deactivating semi-persistent configuration for channel state indicator resource sets
WO2020132280A1 (en) Pucch carrying harq-a for multi-trp with non-ideal backhaul
US11172457B2 (en) Transmission configuration indication state ordering for an initial control resource set
US11595952B2 (en) Aperiodic channel state information sharing across user equipment
WO2020132198A1 (en) Transmission configuration indication determination for a shared data channel
US11489562B2 (en) Signaling to assist waveform selection
US10993215B2 (en) SPDCCH reuse indication constraint under DMRS sharing
US11258547B2 (en) Techniques for performing retransmission based on a beam sweep
US11228931B2 (en) On-demand physical layer reporting by a UE
US20190223159A1 (en) Control channel mapping within search space for wireless systems
WO2019242677A1 (en) Signaling design for non-linear precoding schemes
US10863520B2 (en) Reference signal tone location shift
WO2020168923A1 (en) Scheme for associating a reference signal with an uplink control channel
US11804883B2 (en) Transmission diversity enhancement for uplink control channel
US11711842B2 (en) Aggregation factor associations in uplink and downlink transmissions
WO2021081869A1 (en) Reference signal resource association options for enhanced sounding
US20210307054A1 (en) Aperiodic channel state information reference signal rate matching
WO2019218296A1 (en) Ue specific beamforming for narrowband communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915827

Country of ref document: EP

Kind code of ref document: A1