CN108365910B - 一种信号的发射方法,接收方法及设备 - Google Patents

一种信号的发射方法,接收方法及设备 Download PDF

Info

Publication number
CN108365910B
CN108365910B CN201710064247.3A CN201710064247A CN108365910B CN 108365910 B CN108365910 B CN 108365910B CN 201710064247 A CN201710064247 A CN 201710064247A CN 108365910 B CN108365910 B CN 108365910B
Authority
CN
China
Prior art keywords
cyclic shift
signaling
sequence
mod
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710064247.3A
Other languages
English (en)
Other versions
CN108365910A (zh
Inventor
曲秉玉
李雪茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201710064247.3A priority Critical patent/CN108365910B/zh
Priority to PCT/CN2018/074043 priority patent/WO2018137669A1/zh
Priority to EP18744019.3A priority patent/EP3553979A4/en
Priority to BR112019015253A priority patent/BR112019015253A2/pt
Publication of CN108365910A publication Critical patent/CN108365910A/zh
Priority to US16/522,140 priority patent/US10992405B2/en
Application granted granted Critical
Publication of CN108365910B publication Critical patent/CN108365910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0074Code shifting or hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/12Generation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques
    • H04J2011/0006Combination with other multiplexing techniques with CDM/CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J2013/165Joint allocation of code together with frequency or time

Abstract

本发明实施例公开了一种信号的接收方法,发射方法及设备,涉及通信领域,解决了在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题。具体方案为:基站从序列指标集合中确定目标根指标;其中,序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=‑i(mod K),Ai、Bi为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure DDA0001219708440000011
的整数,
Figure DDA0001219708440000012
表示下取整,K是ZC序列的长度;基站根据目标根指标生成信号序列;基站接收上行信号;基站根据信号序列对上行信号进行处理。本发明实施例用于信号的传输过程中。

Description

一种信号的发射方法,接收方法及设备
技术领域
本发明实施例涉及通信领域,尤其涉及一种信号的发射方法、接收方法及设备。
背景技术
在无线通信系统中,用户设备(User Equipment,UE)向基站发送导频序列,基站可以通过对导频序列的检测,获知UE的信道状态信息,并利用该信道状态信息对该UE发送的数据进行检测。ZC(Zadoff‐Chu)序列是常幅度零自相关的序列。将ZC序列生成的序列调制在频域上,然后经过离散傅里叶反变换(Inverse Discrete Fourier Transform,IDFT)后,得到的时域的序列具有较低的峰均比(Peak average power ratio,PAPR)。因此,相比于使用具有较高峰均比的序列,使用ZC序列生成的序列作为导频序列有助于提高UE的发射机功率效率。ZC序列生成的序列可以是该ZC序列本身,或是将该ZC序列通过截断或者循环扩充生成的序列。目前,ZC序列已被广泛应用于长期演进(Long Term Evolution,LTE)无线通信系统中作为导频序列。具体的可以应用于LTE中的上行信号,例如,利用ZC序列生成的序列作为上行探测参考信号(Sounding Reference Signals,SRS),以及上行解调参考信号(DeModulation Reference Signal,DMRS)。ZC序列生成的序列也可以作为上行控制信道的调制序列,即采用ZC序列生成的序列对待发送的符号进行序列调制,并将序列调制后的信息承载在上行控制信道的时频资源上。在LTE系统中,ZC序列也可以用于生成前导码。前导码用于UE发起上行随机接入,使基站获取UE的上行定时信息,帮助UE达到上行同步。
根据一个根指标,可以确定频域上的一个ZC序列。进一步,通过对由该ZC序列生成的序列进行不同的循环移位,可以得到不同的序列。将频域上的一个ZC序列生成的序列进行循环移位的含义是将该ZC序列生成的序列进行IDFT变换得到的时域的序列进行(时域的)循环移位。令序列z(n)(n=0,...,N-1)表示一个由ZC序列生成的长度为N的频域的序列,则由ZC序列生成的序列的性质可知:将该频域的序列z(n)(n=0,...,N-1)首先进行IDFT变换得到对应的时域的序列,再对该时域的序列进行l个单位的循环移位,等效于首先在频域上对该序列z(n)进行相位旋转得到序列
Figure BDA0001219708420000011
然后对该相位旋转后的序列
Figure BDA0001219708420000012
进行IDFT变换。其中,l是实数。针对同一个生成的序列,当两个循环移位值(l1,l2)之间满足l1 mod N≠l2 mod N时,由该生成的序列根据循环移位值l1,l2分别进行循环移位后的两个(时域的)序列之间是正交的。其中,mod为模运算符,模N之后的余数范围为0~N‐1。因此,在现有技术中,基站可以为不同的UE分配同一个ZC序列的根指标,同时分配满足l1 mod N≠l2 mod N的循环移位值(l1,l2)。这样,不同的UE可以在相同的时频域资源上,发射根据相同的ZC序列的根指标和基站分配给自己的循环移位值生成的序列,如上行SRS、上行DMRS、上行控制信道的调制序列或前导码,且不会产生用户间干扰,从而达到在相同时频域资源上复用多个UE的目的。
现有技术中至少存在如下问题:在实际应用场景中,UE接收信号的中心频率和基站发射信号的中心频率之间会存在频率偏差。当频率偏差相较于基站和UE通信使用的子载波间隔比较大时,该频率偏差会导致根据基站分配给UE的根指标得到的序列在时域上有额外的循环移位,因此,基站需要预留更多的循环移位值给该UE。这样,在频率偏差相较于基站和UE通信使用的子载波间隔比较大时,为了保证采用相同时频域资源发射序列的不同UE之间不会产生干扰,则会导致能够分配的循环移位值的数量减少,即导致支持通过循环移位正交码分复用的UE数比较少,使得上行资源的利用率降低。
发明内容
本发明实施例提供一种信号的发射方法、接收方法及设备,解决了在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题。
为达到上述目的,本发明实施例采用如下技术方案:
本发明实施例的第一方面,提供一种信号的接收方法,包括:
基站从序列指标集合中确定目标根指标;其中,序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),Ai、Bi为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure BDA0001219708420000021
的整数,
Figure BDA0001219708420000022
表示下取整,K是ZC序列的长度;基站根据目标根指标生成信号序列;基站接收上行信号;基站根据信号序列对上行信号进行处理。
本发明是实施例提供的信号的接收方法,基站根据从序列指标集合中确定出的目标根指标生成信号序列,并根据生成的信号序列对接收的上行信号进行处理。由于序列指标集合为{A1,B1,A2,B2,…,As,Bs},且s是大于或等于1且小于或等于
Figure BDA0001219708420000023
的整数,其并不包含
Figure BDA0001219708420000024
以及
Figure BDA0001219708420000025
或者s是大于或等于1且小于或等于
Figure BDA0001219708420000026
的整数中比
Figure BDA0001219708420000027
更小的正整数,从而解决了在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题。
结合第一方面,在一种可能的实现方式中,信号序列是由目标ZC序列生成的序列,目标ZC序列的根指标是目标根指标。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,s是预定义的;或者,该信息的接收方法还可以包括:基站发送第一信令,该第一信令包含s。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的接收方法还可以包括:基站向UE发送第二信令,该第二信令包含循环移位值,循环移位值与UE相关联。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,基站根据目标根指标生成信号序列,具体的可以包括:基站根据目标根指标和循环移位值生成信号序列。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的接收方法还可以包括:基站向UE发送第三信令,该第三信令包含循环移位值的信息,循环移位值的信息与UE相关联。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,循环移位值是根据循环移位值集合确定的,循环移位值集合中的任意两个循环移位值的间隔大于或等于D;其中,D是满足
Figure BDA0001219708420000028
的正实数,τ是正实数,n是正整数,q是小于或等于s的正整数,Aq或Bq是目标根指标,N是上行信号的序列的长度。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,τ是预先义的;或者,该信号的接收方法还可以包括:基站发送第四信令,该第四信令包含τ。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,n是预定义的;或者,该信号的接收方法还可以包括:基站发送第五信令,该第五信令包含n。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的接收方法还可以包括:基站发送第六信令,该第六信令包含D。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上行信号为上行控制信道的信号,或者上行参考信号。
本发明实施例的第二方面,提供一种信号的发射方法,包括:
UE从序列指标集合中确定目标根指标;其中,序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),Ai、Bi为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure BDA0001219708420000031
的整数,
Figure BDA0001219708420000032
表示下取整,K是ZC序列的长度;UE根据目标根指标生成上行信号;UE发送上行信号。
本发明实施例提供的信号的发射方法,UE根据从序列指标集合中确定出的目标根指标生成上行信号,并发送上行信号。由于序列指标集合为{A1,B1,A2,B2,…,As,Bs},且s是大于或等于1且小于或等于
Figure BDA0001219708420000033
的整数,其并不包含
Figure BDA0001219708420000034
以及
Figure BDA0001219708420000035
或者s是大于或等于1且小于或等于
Figure BDA0001219708420000036
的整数中比
Figure BDA0001219708420000037
更小的正整数,从而解决了在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题。
结合第二方面,在一种可能的实现方式中,上行信号的序列是由目标ZC序列生成的序列,目标ZC序列的根指标是目标根指标。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,s是预定义的;或者,该信号的发射方法还可以包括:UE接收第一信令,第一信令包含s,UE根据第一信令确定序列指标集合。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第二信令,第二信令包含循环移位值,循环移位值与UE相关联。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,UE根据目标根指标生成上行信号,具体的可以包括:UE根据目标根指标和循环移位值生成上行信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第三信令,第三信令包含循环移位值的信息,循环移位值的信息与UE相关联。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,循环移位值是根据循环移位值集合确定的,循环移位值集合中的任意两个循环移位值的间隔大于或等于D;其中,D是满足
Figure BDA0001219708420000038
的正实数,τ是正实数,n是正整数,q是小于或等于s的正整数,Aq或Bq是目标根指标,N是上行信号的序列的长度。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,τ是预定义的;或者,该信号的发射方法还可以包括:UE接收第四信令,第四信令包含τ,UE根据τ、q和n确定循环移位值;根据目标根指标生成上行信号,包括:根据循环移位值和目标根指标生成上行信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,n是预定义的;或者,该信号的发射方法还可以包括:UE接收第五信令,第五信令包含n,UE根据τ、q和n确定循环移位值;根据目标根指标生成上行信号,包括:根据循环移位值和目标根指标生成上行信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第六信令,第六信令包含D;UE根据D确定循环移位值;根据目标根指标生成上行信号,包括:根据循环移位值和目标根指标生成上行信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上行信号为上行控制信道的信号,或者上行参考信号。
本发明实施例的第三方面,提供一种信号的发射方法,包括:
UE确定根指标q;UE根据q和循环移位值生成上行信号,循环移位值是UE根据循环移位值集合确定的,循环移位值集合为:
Figure BDA0001219708420000041
其中,循环移位值集合是根据q确定的,D是正实数,α0是实数,是初始循环移位信息,
Figure BDA0001219708420000042
表示下取整,N是上行信号的序列的长度;UE发送上行信号。
本发明实施例提供的信号的发射方法,生成前导码的ZC序列的根指标q没有必须大于一个值的取值限制,例如已有技术中生成前导码的ZC序列的根指标必须大于最大时延扩展。因此,本发明实施例的方法增加了可用的根指标的个数,从而增加了前导码的个数。例如,在已有技术中,当考虑到基站与UE有频率偏差时,q=1不可以使用。而在本发明实施例的方法中,即使基站与UE有频率偏差,q=1也可以使用。一般的,可以选取比较小的正整数的q值对应的ZC序列的根指标q或者K-q。此外,针对选择的一个根指标q,UE可以使用的循环移位值,以及基站可以分配的循环移位值是根据集合
Figure BDA0001219708420000043
确定的,其中D是根据q所确定的值。通过根据q合理确定D的取值,可以确保UE由于频率偏差和时延扩展带来的循环移位能够在基站分配的循环移位间隔内,不会在基站分配的循环移位间隔外再占用额外的循环移位,从而可以保证没有用户间干扰。而在已有技术中,根指标q的选取必须满足大于一个值的取值限制,且针对这样选择的一个根指标q,可以使用的循环移位值只能取该集合中的一部分元素,才可以保证没有用户间干扰。因此,本发明实施例的方法增加了可用的循环移位值的个数,从而进一步增加了前导码序列的个数。
结合第三方面,在一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第一信令,第一信令包含q对应的D;UE根据D和q确定循环移位值集合。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,不同的q对应的D不相同。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第二信令,第二信令包含最大时延扩展τ;UE根据q和τ确定循环移位值集合;其中,用于确定循环移位值集合的D是满足
Figure BDA0001219708420000044
的正实数,或者,用于确定循环移位值集合的D是满足
Figure BDA0001219708420000051
的正实数,其中,τ为正实数,n是正整数,K是ZC序列的长度。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第三信令,第三信令包含循环移位值集合。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第四信令,第四信令包含初始循环移位信息。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),i为1或2。
本发明实施例的第四方面,提供一种信号的接收方法,包括:
基站确定根指标q;基站根据q和循环移位值生成信号序列,循环移位值是基站根据循环移位值集合确定的,循环移位值集合为:
Figure BDA0001219708420000052
其中,循环移位值集合是根据q确定的,D是正实数,α0是实数,是初始循环移位信息,
Figure BDA0001219708420000053
表示下取整,N是上行信号的序列的长度;基站接收上行信号;基站根据信号序列对上行信号进行处理。
本发明实施例提供的信号的接收方法,生成前导码的ZC序列的根指标q没有必须大于一个值的取值限制,例如已有技术中生成前导码的ZC序列的根指标必须大于最大时延扩展。因此,本发明实施例的方法增加了可用的根指标的个数,从而增加了前导码的个数。例如,在已有技术中,当考虑到基站与UE有频率偏差时,q=1不可以使用。而在本发明实施例的方法中,即使基站与UE有频率偏差,q=1也可以使用。一般的,可以选取比较小的正整数的q值对应的ZC序列的根指标q或者K-q。此外,针对选择的一个根指标q,UE可以使用的循环移位值,以及基站可以分配的循环移位值是根据集合
Figure BDA0001219708420000054
确定的,其中D是根据q所确定的值。通过根据q合理确定D的取值,可以确保UE由于频率偏差和时延扩展带来的循环移位能够在基站分配的循环移位间隔内,不会在基站分配的循环移位间隔外再占用额外的循环移位,从而可以保证没有用户间干扰。而在已有技术中,根指标q的选取必须满足大于一个值的取值限制,且针对这样选择的一个根指标q,可以使用的循环移位值只能取该集合中的一部分元素,才可以保证没有用户间干扰。因此,本发明实施例的方法增加了可用的循环移位值的个数,从而进一步增加了前导码序列的个数。
结合第四方面,另一种可能的实现方式中,该信号的接收方法还可以包括:基站发送第一信令,第一信令包含q对应的D。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,不同的q对应的D不相同。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的接收方法还可以包括:基站发送第二信令,第二信令包含τ,τ用于UE确定循环移位值集合;其中,用于确定循环移位值集合的D是满足
Figure BDA0001219708420000055
的正实数,或者,用于确定循环移位值集合的D是满足
Figure BDA0001219708420000061
的正实数,其中,τ为正实数,n是正整数,K是ZC序列的长度。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的接收方法还可以包括:基站发送第三信令,第三信令包含循环移位值集合。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的接收方法还可以包括:基站发送第四信令,第四信令包含初始循环移位信息。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),i为1或2。
本发明实施例的第五方面,提供一种基站,包括:
确定单元,用于从序列指标集合中确定目标根指标;其中,序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),Ai、Bi为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure BDA0001219708420000062
的整数,
Figure BDA0001219708420000063
表示下取整,K是ZC序列的长度;生成单元,用于根据确定单元确定的目标根指标生成信号序列;接收单元,用于接收上行信号;处理单元,用于根据生成单元生成的信号序列对接收单元接收到的上行信号进行处理。
结合第五方面,在一种可能的实现方式中,信号序列是由目标ZC序列生成的序列,目标ZC序列的根指标是目标根指标。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,s是预定义的;或者,基站还包括:发送单元,用于发送第一信令,第一信令包含s。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元,还用于向用户设备UE发送第二信令,第二信令包含循环移位值,循环移位值与UE相关联。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,生成单元,具体用于根据目标根指标和循环移位值生成信号序列。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元,还用于向UE发送第三信令,第三信令包含循环移位值的信息,循环移位值的信息与UE相关联。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,循环移位值是根据循环移位值集合确定的,循环移位值集合中的任意两个循环移位值的间隔大于或等于D;其中,D是满足
Figure BDA0001219708420000064
的正实数,τ是正实数,n是正整数,q是小于或等于s的正整数,Aq或Bq是目标根指标,N是上行信号的序列的长度。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,τ是预先义的;或者,发送单元,还用于发送第四信令,第四信令包含τ。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,n是预定义的;或者,发送单元,还用于发送第五信令,第五信令包含n。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元,还用于发送第六信令,第六信令包含D。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,上行信号为上行控制信道的信号,或者上行参考信号。
本发明实施例的第六方面,提供一种用户设备UE,包括:
确定单元,用于从序列指标集合中确定目标根指标;其中,序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),Ai、Bi为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure BDA0001219708420000071
的整数,
Figure BDA0001219708420000072
表示下取整,K是ZC序列的长度;生成单元,用于根据确定单元确定的目标根指标生成上行信号;发送单元,用于发送生成单元生成的上行信号。
结合第六方面,在一种可能的实现方式中,上行信号的序列是由目标ZC序列生成的序列,目标ZC序列的根指标是目标根指标。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,s是预定义的;或者,UE还包括:接收单元,用于接收第一信令,第一信令包含s,UE根据第一信令确定序列指标集合。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:接收单元,用于接收第二信令,第二信令包含循环移位值,循环移位值与UE相关联。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,生成单元,具体用于根据目标根指标和循环移位值生成上行信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:接收单元,用于接收第三信令,第三信令包含循环移位值的信息,循环移位值的信息与UE相关联。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,循环移位值是根据循环移位值集合确定的,循环移位值集合中的任意两个循环移位值的间隔大于或等于D;其中,D是满足
Figure BDA0001219708420000073
的正实数,τ是正实数,n是正整数,q是小于或等于s的正整数,Aq或Bq是目标根指标,N是上行信号的序列的长度。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,τ是预定义的;或者,接收单元,还用于接收第四信令,第四信令包含τ,确定单元,还用于根据τ、q和n确定循环移位值;生成单元,具体用于根据确定单元确定出的循环移位值和目标根指标生成上行信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,n是预定义的;或者,接收单元,还用于接收第五信令,第五信令包含n,确定单元,还用于根据τ、q和n确定循环移位值;生成单元,具体用于根据确定单元确定出的循环移位值和目标根指标生成上行信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,接收单元,还用于接收第六信令,第六信令包含D;确定单元,还用于根据接收单元接收到的D确定循环移位值;生成单元,具体用于根据确定单元确定出的循环移位值和目标根指标生成上行信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,上行信号为上行控制信道的信号,或者上行参考信号。
本发明实施例的第七方面,提供一种用户设备UE,包括:
确定单元,用于确定根指标q;生成单元,用于根据确定单元确定出的q,以及循环移位值生成上行信号,循环移位值是UE根据循环移位值集合确定的,循环移位值集合为:
Figure BDA0001219708420000081
其中,循环移位值集合是根据q确定的,D是正实数,α0是实数,是初始循环移位信息,
Figure BDA0001219708420000082
表示下取整,N是上行信号的序列的长度;发送单元,用于发送生成单元生成的上行信号。
结合第七方面,在一种可能的实现方式中,还包括:接收单元;接收单元,用于接收第一信令,第一信令包含q对应的D;确定单元,还用于根据接收单元接收到的D和确定单元确定出的q确定循环移位值集合。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,不同的q对应的D不相同。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:接收单元;接收单元,用于接收第二信令,第二信令包含τ;确定单元,还用于根据确定单元确定出的q和接收单元接收到的τ确定循环移位值集合;其中,用于确定循环移位值集合的D是满足
Figure BDA0001219708420000083
的正实数,或者,用于确定循环移位值集合的D是满足
Figure BDA0001219708420000084
的正实数,其中,τ为正实数,n是正整数,K是ZC序列的长度。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:接收单元;接收单元,用于接收第三信令,第三信令包含循环移位值集合。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,接收单元,还用于接收第四信令,第四信令包含初始循环移位信息。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),i为1或2。
本发明实施例的第八方面,提供一种基站,包括:
确定单元,用于确定根指标q;生成单元,用于根据确定单元确定出的q,以及循环移位值生成信号序列,循环移位值是基站根据循环移位值集合确定的,循环移位值集合为:
Figure BDA0001219708420000085
其中,循环移位值集合是根据q确定的,D是正实数,α0是实数,是初始循环移位信息,
Figure BDA0001219708420000086
表示下取整,N是上行信号的序列的长度;接收单元,用于接收上行信号;处理单元,用于根据生成单元生成的信号序列对接收单元接收到的上行信号进行处理。
结合第八方面,在一种可能的实现方式中,还包括:发送单元,用于发送第一信令,第一信令包含q对应的D。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,不同的q对应的D不相同。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:发送单元,用于发送第二信令,第二信令包含τ,τ用于用户设备UE确定循环移位值集合;其中,用于确定循环移位值集合的D是满足
Figure BDA0001219708420000087
的正实数,或者,用于确定循环移位值集合的D是满足
Figure BDA0001219708420000091
的正实数,其中,τ为正实数,n是正整数,K是ZC序列的长度。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:发送单元,用于发送第三信令,第三信令包含循环移位值集合。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元,还用于发送第四信令,第四信令包含初始循环移位信息。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),i为1或2。
本发明实施例的第九方面,提供一种基站,该基站可以包括:至少一个处理器,存储器、收发器、总线;
至少一个处理器与存储器、收发器通过通信总线连接,存储器用于存储计算机执行指令,当基站运行时,处理器执行存储器存储的计算机执行指令,以使基站执行第一方面或第一方面的可能的实现方式中,或者第四方面或第四方面的可能的实现方式中任一所述的信号的接收方法。
本发明实施例的第十方面,提供一种UE,该UE可以包括:至少一个处理器、存储器、收发器、总线;
至少一个处理器与存储器、收发器通过通信总线连接,存储器用于存储计算机执行指令,当UE运行时,处理器执行存储器存储的计算机执行指令,以使UE执行第二方面或第二方面的可能的实现方式中,或者第三方面或第三方面的可能的实现方式中任一所述的信号的发射方法。
本发明实施例的第十一方面,提供一种计算机存储介质,用于存储上述基站所用的计算机软件指令,该计算机软件指令包含用于执行上述信号的接收方法所设计的程序。
本发明实施例的第十二方面,提供一种计算机存储介质,用于存储上述UE所用的计算机软件指令,该计算机软件指令包含用于执行上述信号的发射方法所设计的程序。
附图说明
图1为本发明实施例提供的一种应用本发明实施例的系统架构的简化示意图;
图2为本发明实施例提供的一种基站的组成示意图;
图3为本发明实施例提供的一种UE的组成示意图;
图4为本发明实施例提供的一种信号的传输方法的流程图;
图5为本发明实施例提供的一种序列映射的示意图;
图6为本发明实施例提供的另一种信号的传输方法的流程图;
图7为本发明实施例提供的另一种基站的组成示意图;
图8为本发明实施例提供的另一种基站的组成示意图;
图9为本发明实施例提供的另一种UE的组成示意图;
图10为本发明实施例提供的另一种UE的组成示意图。
具体实施方式
基站可以通过为不同的UE分配同一个ZC序列的根指标,同时分配满足l1 mod N≠l2 mod N的循环移位值(l1,l2),达到在相同的时频域资源上复用多个UE的目的。但是,在实际应用场景中,UE接收信号的中心频率和基站发射信号的中心频率之间会存在频率偏差,且当UE的能力较差,或UE处于高速运动状态,或其他情况(如由于需要长的循环前缀(Cyclic Prefix,CP)而采用小的子载波间隔)时,该频率偏差相较于基站和UE通信使用的子载波间隔会比较大,这样,会导致根据基站分配给UE的根指标得到的序列在时域上有额外的循环移位,因此,基站需要预留更多的循环移位值给该UE。
例如,基站分配给UE1的根指标
Figure BDA0001219708420000101
循环移位值l=0,且预定义了由ZC序列(该ZC序列的根指标为
Figure BDA0001219708420000102
)生成的序列的长度N=61。当UE1接收信号的中心频率和基站发射信号的中心频率之间存在τ=±1个子载波间隔的频率偏差时,由于该频率偏差在时域上带来的额外的循环移位将占用2个循环移位位置,这2个循环移位位置需预留给该UE1。因此,基站在为其他UE分配循环移位值时,由于该UE1的频率偏差带来的额外的循环移位,即占用的2个循环移位位置将不可以再进行分配。从而导致能够分配的循环移位值的数量减少,即导致支持通过循环移位正交码分复用的UE数比较少,使得上行资源的利用率降低。
为了解决在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题,本发明实施例提供一种信号的发射方法、接收方法及设备。其基本原理是:基站从序列指标集合中确定目标根指标,并根据目标根指标生成信号序列,基站接收上行信号,并根据生成的信号序列对上行信号进行处理。其中,序列指标集合为{A1,B1,A2,B2,…,As,Bs},其中,Ai=i(mod K),Bi=-i(mod K),Ai、Bi为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure BDA0001219708420000103
的整数,
Figure BDA0001219708420000104
表示下取整,K是ZC序列的长度。基站根据从序列指标集合中确定出的目标根指标生成信号序列,并根据生成的信号序列对接收的上行信号进行处理,由于序列指标集合为{A1,B1,A2,B2,…,As,Bs},且s是大于或等于1且小于或等于
Figure BDA0001219708420000105
的整数,其并不包含
Figure BDA0001219708420000106
以及
Figure BDA0001219708420000107
或者s是大于或等于1且小于或等于
Figure BDA0001219708420000108
的整数中比
Figure BDA0001219708420000109
更小的正整数,从而解决了在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题。
使用根指标
Figure BDA00012197084200001010
将导致在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少。具体说明如下:
假设基站发射信号的中心频率与基站所管理的小区中所有UE接收信号的中心频率之间频率偏差范围为[-rΔf,rΔf],其中,△f是基站和UE通信使用的子载波间隔。假设基站确定的目标根指标为q,基站根据目标根指标q生成的(频域)信号序列的长度为N。则最大频率偏差rΔf将导致该(频域)信号序列经过IDFT变化后的时域的序列循环移位
Figure BDA00012197084200001011
个时间单位(每个时间单位是
Figure BDA00012197084200001012
秒,其中T是该时域的序列的时间长度),最大频率偏差‐rΔf将导致该(频域)信号序列经过IDFT变化后的时域的序列循环移位
Figure BDA00012197084200001013
个时间单位,其中,n为
Figure BDA00012197084200001014
或者
Figure BDA00012197084200001015
假设UE的信道时延扩展导致的上述时域的序列的循环移位范围为[0,τ]。则在UE接收信号的中心频率和基站发射信号的中心频率之间存在频率偏差,且存在时延扩展时,若要保证使用相同目标根指标q生成上行信号并且在相同的时频资源上发送生成的上行信号的不同UE之间不会存在干扰,则需保证不同UE的循环移位值的间隔D满足
Figure BDA0001219708420000111
对于任意两个循环移位值l1,l2,循环移位值的间距D定义为D=min{(l1-l2)modN,N-(l1-l2)modN},其中,min{x,y}表示取x和y中的最小值。假设K是偶数,n=1,则根据上述不等式,当q为比较小的正整数,使得
Figure BDA0001219708420000112
比较小时,例如
Figure BDA0001219708420000113
D值就比较小,这是因为频偏导致的循环移位值和多径时延导致循环值可能会有重叠,从而可以使用很多不同的循环移位值,其之间的间隔至少为D。使用根指标
Figure BDA0001219708420000114
或者比较大的其他根指标,会导致
Figure BDA0001219708420000115
比较大,例如大于τ的情况产生,正频偏导致的
Figure BDA0001219708420000116
和负频偏导致的
Figure BDA0001219708420000117
是和多径时延导致的循环移位值不同的额外的循环移位值,不能分配给其他用户而只能预留,其中0<τ'<τ,τ是时延导致的最大的循环移位值,可以由基站配置或则信令通知,意味着支持通过循环移位正交码分复用的UE的个数受限,不能使用为正负频偏导预留的循环移位值。大大降低了上行时频资源的使用效率。
另外,在已有技术中,UE在上行失步,即上行传输与基站不同步时,UE需发送前导码给基站,以便基站根据前导码确定UE的上行定时信息,帮助UE进行上行同步。其中,前导码是由ZC序列生成的时域的序列。一个前导码可以由时域的一个ZC序列(具有时域上的根指标u)根据循环移位值生成,也可以由该时域的ZC序列对应的频域上的ZC序列(具有频域上的根指标p)根据前面所述的方法生成。两种方法是等效的,并且,若已知时域上的ZC序列的根指标u,则对应的频域根指标p是满足(pu)mod K=1的最小非负整数。其中,K是上述时域的ZC序列以及对应的频域的ZC序列的长度。不失一般性的,本文件中,以由频域上的ZC序列生成前导码为例进行说明。UE可以根据预定义的规则或者接收基站的信令确定ZC序列的根指标以及循环移位值,从而生成前导码。由于UE上行失步,前导码的CP比较长。为了解决CP过长带来的能量效率太低的问题,UE发送前导码使用的子载波间隔往往很小。因此,当UE发送信号的中心频率与基站接收信号的中心频率具有频率偏差时,该频率偏差相对于基站和UE通信使用的子载波间隔往往比较大。为了使基站获取准确的上行定时信息,ZC序列的根指标需要保证由于频率偏差引起的额外的循环移位与时延扩展带来的循环移位可以区分。因此,LTE系统约束了用于生成前导码的ZC序列的根指标q在满足0≤q<K/2时必须大于一个值,如根指标q必须大于最大时延扩展带来的循环移位。因此,在已有技术中,用于生成前导码的ZC序列的根指标比较有限。此外,针对每一个可用的ZC序列的根指标,基站需要为不同的UE分配不同的循环移位值。为了保证不同UE间不会存在干扰,由一个UE的频率偏差引起的循环移位以及时延扩展带来的循环移位都需要为该UE保留,而不能分配给其他UE。因此,可以使用的循环移位值也比较有限。综上所述,在已有技术中,可以使用的前导码序列个数比较有限。
在某些场景中,虽然UE处于上行失步状态,但只需要完成少量信息的传输,而不需要基站获得上行定时信息。在这些场景下,直接使用已有技术将导致可用的前导码个数非常有限。例如,UE由于移动需要切换到其他小区,或者切换到本小区的其他接收发送站点(Transmiter and Receiver Point,TRP)覆盖的区域。此时UE的需求在于发送一个前导码,使基站知道自己在网络中的位置,所以不需要上行定时信息。此时,生成前导码的ZC序列的根指标不需要保证频率偏差引起的额外的循环移位与时延扩展带来的循环移位可以区分。因此,在这些场景下,直接使用已有技术将导致可用的前导码序列个数非常有限。
为了解决在UE处于上行失步状态下,需要进行上行数据传输而不需要基站获得上行定时信息时,直接使用已有技术导致的可用的前导码个数非常有限的问题,本发明实施例提供另一种信号的发射方法、接收方法。其基本原理是:UE确定根指标q;UE根据q和循环移位值生成上行信号,循环移位值是UE根据循环移位值集合确定的,循环移位值集合为:
Figure BDA0001219708420000121
其中,循环移位值集合是根据q确定的,D是正实数,α0是实数,是初始循环移位信息,
Figure BDA0001219708420000122
表示下取整,N是上行信号的序列的长度。
本发明实施例的方法中,生成前导码的ZC序列的根指标q没有必须大于一个值的取值限制,例如已有技术中生成前导码的ZC序列的根指标必须大于最大时延扩展。因此,本发明实施例的方法增加了可用的根指标的个数,从而增加了前导码的个数。例如,在已有技术中,q=1不可以使用。而在本发明实施例的方法中,q=1可以使用。一般的,可以选取比较小的正整数的q值对应的ZC序列的根指标q或者K-q。此外,针对选择的一个根指标q,UE可以使用的循环移位值是根据集合
Figure BDA0001219708420000123
确定的,其中D是根据q所确定的值。UE从该集合中确定循环移位值的方法有多种。例如,UE可以根据预定义的规则从该集合中选择循环移位值,例如,UE根据集合中的所有循环移位值的顺序,按照预定义的规则选取循环移位值。或者,UE可以接收基站发送的信令,该信令中包含了UE的循环移位值。该信令能够包含集合中的循环移位值的任何一个。通过根据q合理确定D的取值,可以确保UE由于频率偏差和时延扩展带来的循环移位能够在基站分配的循环移位间隔内,从而不会在基站分配的循环移位间隔外再占用额外的循环移位,从而可以保证没有用户间干扰。而在已有技术中,根指标q的选取必须满足大于一个值的取值限制,且针对这样选择的一个根指标q,可以使用的循环移位值只能取该集合中的一部分元素,才可以保证没有用户间干扰。因此,本发明实施例的方法增加了可用的循环移位值的个数,从而进一步增加了前导码的个数。
下面将结合附图对本发明实施例的实施方式进行详细描述。
图1示出的是可以应用本发明实施例的系统架构的简化示意图。如图1所示,该系统架构可以包括:基站11和UE 12。
其中,基站11可以是无线通信的基站(Base Station,BS)或基站控制器等。基站11具体的可以包括用户面基站和控制面基站。基站11是一种部署在无线接入网中用以为UE12提供无线通信功能的装置,其主要功能有:进行无线资源的管理、互联网协议(InternetProtocol,IP)头的压缩及用户数据流的加密、用户设备附着时进行移动管理实体(MobileManagement Entity,MME)的选择、路由用户面数据至服务网关(Service Gateway,SGW)、寻呼消息的组织和发送、广播消息的组织和发送、以移动性或调度为目的的测量及测量报告的配置等等。基站11可以包括各种形式的宏基站、微基站、中继站、接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的基站(Evolved NodeB,eNB或eNodeB),在第3代移动通信技术(the thirdGeneration Telecommunication,3G)系统系统中,称为基站(Node B),在下一代无线通信系统中,称为gNB等等。随着通信技术的演进,“基站”这一名称可能会变化。此外,在其它可能的情况下,基站11可以是其它为UE 12提供无线通信功能的装置。为方便描述,本发明实施例中,为UE 12提供无线通信功能的装置称为基站11。
UE 12可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(如,Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal CommunicationService,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,WirelessLocal Loop)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(MobileStation)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)。作为一种实施例,如图1中所示,本发明的网络架构包括的UE 12为手机。
图2为本发明实施例提供的一种基站的组成示意图,如图2所示,基站可以包括至少一个处理器21,存储器22、收发器23、总线24。
下面结合图2对基站的各个构成部件进行具体的介绍:
处理器21是基站的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器21是一个中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,处理器21可以通过运行或执行存储在存储器22内的软件程序,以及调用存储在存储器22内的数据,执行基站的各种功能。
在具体的实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,基站可以包括多个处理器,例如图2中所示的处理器21和处理器25。这些处理器中的每一个可以是一个单核处理器(single‐CPU),也可以是一个多核处理器(multi‐CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器22可以是只读存储器(Read‐Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(ElectricallyErasable Programmable Read‐Only Memory,EEPROM)、只读光盘(Compact Disc Read‐Only Memory,CD‐ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器22可以是独立存在,通过总线24与处理器21相连接。存储器22也可以和处理器21集成在一起。
其中,所述存储器22用于存储执行本发明方案的软件程序,并由处理器21来控制执行。
收发器23,用于与其他设备或通信网络通信,如以太网,无线接入网(radioaccess network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。收发器23可以包括基带处理器的全部或部分,以及还可选择性地包括RF处理器。RF处理器用于收发RF信号,基带处理器则用于实现由RF信号转换的基带信号或即将转换为RF信号的基带信号的处理。
总线24,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图2中示出的设备结构并不构成对基站的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图3为本发明实施例提供的一种UE的组成示意图。如图3所示,该UE可以包括至少一个处理器31、存储器32、收发器33和总线34。
下面结合图3对UE的各个构成部件进行具体的介绍:
处理器31可以是一个处理器,也可以是多个处理元件的统称。例如,处理器31可以是一个通用CPU,也可以是ASIC,或一个或多个用于控制本发明方案程序执行的集成电路,例如:一个或多个DSP,或,一个或者多个FPGA。其中,处理器31可以通过运行或执行存储在存储器32内的软件程序,以及调用存储在存储器32内的数据,执行UE的各种功能。
在具体的实现中,作为一种实施例,处理器31可以包括一个或多个CPU。例如,如图3所示,处理器31包括CPU0和CPU1。
在具体实现中,作为一种实施例,UE可以包括多个处理器。例如,如图3所示,包括处理器31和处理器35。这些处理器中的每一个可以是一个single‐CPU,也可以是一个multi‐CPU。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器32可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD‐ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器32可以是独立存在,通过总线34与处理器31相连接。存储器32也可以和处理器31集成在一起。
收发器33,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。收发器33可以包括接收单元实现接收功能,以及发送单元实现发送功能。
总线34,可以是ISA总线、PCI总线或EISA总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图3中示出的设备结构并不构成对UE的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。尽管未示出,UE还可以包括电池、摄像头、蓝牙模块、GPS模块、显示屏等,在此不再赘述。
图4为本发明实施例提供的一种信号的传输方法的流程图,如图4所示,该方法可以包括:
401、UE从序列指标集合中确定目标根指标。
其中,序列指标集合可以为{A1,B1,A2,B2,…,As,Bs}。或者,序列指标集合也可以为{A1,B1,A2,B2,…,As,Bs}的子集,具体的,子集中Ai、Bi是成对出现的。例如,序列指标集合为{A1,B1,A2,B2},或者序列指标集合为{A1,B1,A4,B4,As,Bs}。其中,Ai=i(mod K),Bi=-i(modK),Ai、Bi为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure BDA0001219708420000151
的整数,
Figure BDA0001219708420000152
表示下取整,K是ZC序列的长度。示例性的,K是ZC序列的长度指的是ZC序列包含的元素的个数为K。例如,ZC序列为z(n)(n=0,...,K-1),其包含的元素个数为K,那么该ZC序列的长度为K。
需要说明的是,在本发明实施例中,Ai=i(mod K)指的是Ai和i在mod K下的意义是相等的,即Ai mod K=imod K。同样的,Bi=-i(mod K)指的是Bi和-i在mod K下的意义是相等的,即Bi mod K=-imod K。另外,在本发明实施例中,上行信号可以为上行控制信道的信号,或者上行参考信号。上行参考信号可以包括以下至少一种:上行DMRS、上行SRS。
示例性的,在本发明实施例中,UE确定目标根指标的具体过程可以为:
首先,UE确定序列指标集合。
用于确定序列指标集合的参数s可以是预定义的。或者,UE可以接收基站发送的第一信令,该第一信令包含参数s。其中,基站可以通过第一信令显式的或隐式的向UE通知s。显式的向UE通知s指的是直接在第一信令中包含s的取值,隐式的向UE通知s指的是在第一信令中包含与s相关的参数,该参数用于确定的s的取值。
其次,当UE需要向基站发送上行信号时,UE可以从序列指标集合中确定目标根指标。
UE可以根据预定义的规则从序列指标集合中确定出目标根指标。另外,当i较小时,根指标为Ai和Bi的ZC序列生成的序列经过IDFT处理后,其时域的序列的PAPR也比较小。因此,UE可以优先选取i取值较小的Ai或Bi作为目标根指标,这样可以使得在时域上发送的信号的PAPR较小,有利于提高UE的发送机效率。
402、UE根据目标根指标生成上行信号。
在本发明实施例中,上行信号的序列是由目标ZC序列生成的序列,目标ZC序列的根指标是目标根指标。
示例性的,在本发明实施例中,UE根据目标根指标生成上行信号的具体过程可以为:
首先,UE根据步骤401中确定出的目标根指标生成目标ZC序列。令Aq或Bq为UE从序列指标集合中确定的目标根指标。为方便起见,令Aq mod K=q'或Bq mod K=q'。
其中,UE根据确定出的目标根指标,可以根据以下公式生成频域上的目标ZC序列。
当K为奇数时,
Figure BDA0001219708420000153
其中,n=0,...,K-1
当K为偶数时,
Figure BDA0001219708420000154
其中,n=0,...,K-1
其中,Zq'(n)表示生成的在频域上的目标ZC序列,K表示ZC序列的长度。
其次,UE根据由长度为K的目标ZC序列Zq'(n),(n=0,...,K-1),生成长度为N的序列
Figure BDA0001219708420000155
其中,长度为N的序列
Figure BDA0001219708420000156
可以是目标ZC序列本身,或者是由目标ZC序列截断或循环扩充得到的序列,因此,N与K的关系可以是N=K,或者N<K,或者N>K。例如,若N>K,则根据目标ZC序列经过循环扩充生成的长度为N的序列为
Figure BDA0001219708420000161
最后,UE根据循环移位值α和上述长度为N的序列
Figure BDA0001219708420000162
生成长度为N的上行信号的序列。
一种实现方式中,UE将序列
Figure BDA0001219708420000163
进行IDFT变换,得到对应的时域的序列,对该时域的序列进行α个单位的循环移位,得到上行信号的序列经过IDFT变换后的时域的序列。另外一种实现方式中,UE根据循环移位值,直接根据公式
Figure BDA0001219708420000164
得到上行信号的序列。
在一种实现方法中,循环移位值α可以是预定义的固定值,或者是通过预定义的方法从多个取值中确定的一个值。
或者,UE也可以根据目标根指标和循环移位值,直接生成上行信号的序列,而不生成中间参数:目标ZC序列。
UE在得到上行信号的序列之后,如图5所示,可以将长度为N的上行信号的序列按照子载波指标的顺序映射到等间隔分布的N个子载波上。其中,在本发明实施例中,UE可以按照子载波指标由大到小的顺序,也可以按照子载波指标由小到大的顺序将长度为N的生成的序列映射到等间隔分布的N个子载波上,本发明实施例在此不做具体限制。图5中是以按照子载波指标由小到大的顺序将长度为N的生成的序列映射到等间隔分布的N个子载波上为例示出的。
进一步的,在一种可能的实现方式中,在UE生成上行信号之前,UE可以接收基站发送的包含循环移位值的第二信令,并根据该循环移位值和目标根指标生成上行信号的序列,从而生成上行信号。其中,基站可以通过第二信令显式的或隐式的向UE通知循环移位值。显式的向UE通知循环移位值指的是直接在第二信令中包含循环移位值的取值,隐式的向UE通知循环移位值指的是在第二信令中包含与循环移位值相关的参数,该参数用于确定的循环移位值的取值。
在另一种可能的实现方式中,在UE生成上行信号之前,UE可以接收基站发送的包含循环移位值的信息的第三信令,以便于根据该循环移位值的信息和目标根指标生成上行信号。即UE可以根据接收到的循环移位值的信息先确定循环移位值,然后根据确定出的循环移位值和目标根指标生成上行信号。
其中,第三信令具体的可以包含循环移位值的指示信息。如,总的循环移位值被分为X份,第三信令包含使用第a份,其中a是大于等于1小于等于X的整数。a的取值可以是基站根据循环移位值确定。其中,基站根据循环移位值集合确定循环移位值,该循环移位值集合中的任意两个循环移位值的间隔大于或等于D。其中,D是满足
Figure BDA0001219708420000165
的正实数,τ是正实数,n是正整数,q是小于或等于s的正整数,Aq或Bq是目标根指标,N是上行信号的序列的长度。例如,基站可以根据选择的循环移位值α和D,确定a的取值为为
Figure BDA0001219708420000166
其中,α0为初始循环移位值。UE则可以根据包含使用第a份的第三信令和D确定基站选择的循环移位值。例如,UE可以根据a和D,确定循环移位值为α=α0+(a-1)D。α0可以是通过预定义的方法确定的值,或者基站通过第三信令或其它信令指示给UE的。基站或者UE可以使用α=α0+(a-1)D,或者
Figure BDA0001219708420000167
来根据α确定a,或者根据a确定α。
在本发明实施例的第一种实现中,D是预定义的一个取值。
在本发明实施例的第二种实现中,UE可以接收基站发送的第六信令,该第六信令包含D。相应的,UE可以根据第三信令中包含使用第a份和第六信令中包含的D确定循环移位值。其中,基站可以通过第六信令显式的或隐式的向UE通知D。显式的向UE通知D指的是直接在第六信令中包含D的取值,隐式的向UE通知D指的是在第六信令中包含与D相关的参数,该参数用于确定的D的取值。
在本发明实施例的第三种实现中,UE可以接收基站发送的第四信令,该第四信令包含用于确定D的τ。相应的,UE可以根据τ,q和n确定D,然后根据确定出的D和第三信令中包含的使用第a份确定循环移位值。其中,τ也可以是预定义的。其中,基站可以通过第四信令显式的或隐式的向UE通知τ。显式的向UE通知τ指的是直接在第四信令中包含τ的取值,隐式的向UE通知τ指的是在第四信令中包含与τ相关的参数,该参数用于确定τ的取值。
在本发明实施例的第四种实现中,UE可以接收基站发送的第五信令,该第五信令包含用于确定D的n。相应的,UE可以根据τ,q和n确定D,然后根据确定出的D和第三信令中包含的使用第a份确定循环移位值。其中,n也可以是预定义的。其中,基站可以通过第五信令显式的或隐式的向UE通知n。显式的向UE通知n指的是直接在第一信令中包含n的取值,隐式的向UE通知n指的是在第一信令中包含与n相关的参数,该参数用于确定的n的取值。
需要说明的是,在本发明实施例中,第三信令、第四信令、第五信令和第六信令可以是同一个信令。
403、UE发送上行信号。
404、基站从序列指标集合中确定目标根指标。
示例性的,在本发明实施例中,基站确定目标根指标的具体过程可以为:
首先,基站确定序列指标集合。
其中,序列指标集合可以为{A1,B1,A2,B2,…,As,Bs}。或者,序列指标集合也可以为{A1,B1,A2,B2,…,As,Bs}的子集,具体的,子集中Ai、Bi是成对出现的。例如,序列指标集合为{A1,B1,A2,B2},或者序列指标集合为{A1,B1,A4,B4,As,Bs}。其中,Ai=i(mod K),Bi=-i(modK),Ai、Bi为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure BDA0001219708420000171
的整数,
Figure BDA0001219708420000172
表示下取整,K是ZC序列的长度。
用于确定序列指标集合的参数s可以是预定义的;或者,是基站确定出的。并且,当s不是预定义的时,基站需向UE发送第一信令,以用于向UE指示s。
例如,基站确定s的具体过程可以为:基站获取最大频率偏差和最大时延扩展,并根据最大频率偏差和最大时延扩展确定s。
其中,最大频率偏差为基站发射信号的中心频率与基站所管理的小区中所有UE接收信号的中心频率之间最大的频率偏差。最大频率偏差可以是预定义的;或者,是基站估计得到的;或者,是基站根据UE发送的上行DMRS或上行SRS所采用的子载波间隔确定的,例如,若子载波间隔较大,则系统对UE的频率偏差敏感程度较低,因此所能允许的最大频率偏差相对较大,因此可以根据UE发送的上行DMRS或上行SRS所采用的子载波间隔确定的最大频率偏差。
最大时延扩展指的是由多径引起的时延扩展导致的循环移位值的最大值。时延扩展导致的循环移位值的最大值可以是由基站估计得到的,或者也可以是预定义的,或者是由基站根据服务的小区的半径等信息确定的。
基站可以根据不等式
Figure BDA0001219708420000181
确定s,s为满足不等式的q的最大值,q是大于等于零小于等于K/2的一个整数。n为
Figure BDA0001219708420000182
或者
Figure BDA0001219708420000183
r等于最大频率偏差与基站和UE通信使用的子载波间隔△f的比值。N为预设的信号序列的长度,K是ZC序列的长度,N≥K。τ为最大时延扩展。D为不同UE采用相同根指标的ZC序列时的循环移位值之间的间隔。
假设基站发射信号的中心频率与基站所管理的小区中所有UE接收信号的中心频率之间频率偏差范围为[-rΔf,r△f],基站确定的目标根指标为q,q是大于等于零小于等于K/2的一个整数。则最大频率偏差rΔf将导致经过IDFT变化后的时域的序列循环移位
Figure BDA0001219708420000184
个时间单位,最大频率偏差‐rΔf将导致经过IDFT变化后的时域的序列循环移位
Figure BDA0001219708420000185
个时间单位假设。假设时延扩展导致的循环移位值的范围为[0,τ]。若需在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差,且存在时延扩展时,保证不同UE之间不会存在干扰,则需保证
Figure BDA0001219708420000186
这样,便可以通过求解不等式,得到满足该不等式的所有q,从而得到s,以确保为UE分配的ZC序列的根指标,即使在频率偏差相较于基站和UE通信使用的子载波间隔比较大时,也能确保由于频率偏差和时延扩展带来的循环移位能够在基站分配的循环移位间隔内,从而不会在基站分配的循环移位间隔外再占用额外的循环移位。
基站确定s的方法有多种。例如,若基站已经根据某些准则确定了间隔D,则基站可以根据上述不等式,求解s。如,当n=1,N=K,D=N/4,τ=N/12时,则根据上述不等式可以求得
Figure BDA0001219708420000187
假设N=24,则可以得到s=2,因此,基站确定的序列指标集合为{1,K-1,2,K-2}或者{1,K-1,2,K-2}的子集,其中任意一个序列指标x可以被另外一个指标y代替,只要y满足x=y(mod K)。再例如,基站可以根据当前可以使用的多个根指标,联合确定s和间隔D,使s和D满足不等式
Figure BDA0001219708420000188
通过确定s,基站可以确定序列指标集合。
其次,基站从序列指标集合中确定目标根指标。
405、基站根据目标根指标生成信号序列。
在本发明实施例中,信号序列是由目标ZC序列生成的序列,目标ZC序列的根指标是目标根指标。
示例性的,在本发明实施例中,基站根据目标根指标生成信息序列的具体过程可以为:
首先,基站根据目标根指标生成目标ZC序列。
需要说明的是,步骤405中根据目标根指标生成目标ZC序列的具体实现过程,与本发明实施例步骤402中根据目标根指标生成目标ZC序列的具体实现过程类似,本发明实施例在此不再详细赘述。
然后,基站将目标ZC序列本身作为ZC序列生成的序列,或者对目标ZC序列进行截断或循环扩充得到目标ZC序列生成的序列。进一步,基站根据目标ZC序列生成的序列和循环移位值,得到信号序列。基站根据循环移位值和目标ZC序列生成的序列得到信号序列的具体实现过程,与本发明实施例步骤402中的具体实现过程类似,本发明实施例在此不再详细赘述。
或者,基站根据目标根序列和循环移位值,直接生成信号序列,而不生成中间变量:目标ZC序列。
进一步的,为了使得不同的UE可以复用相同的时频域资源,且不产生干扰,在一种可能的实现方式中,基站可以向UE发送第二信令,该第二信令包含循环移位值,该循环移位值与UE相关联,以便于UE可以根据循环移位值和确定出的目标根指标用于生成上行信号。
在另一种可能的实现方式中,基站可以向UE发送第三信令,该第三信令包含循环移位值的信息,该循环移位值的信息与UE相关联,以便于UE可以根据循环移位值的信息和确定出的目标根指标生成上行信号。其中,循环移位值是根据循环移位值集合确定的,循环移位值集合中的任意两个循环移位值的间隔大于或等于D,且D是满足
Figure BDA0001219708420000191
的正实数。D是预定义的,或者,是基站可以通过第六信令通知UE的,或者基站可以向UE发送第四信令,该第四信令包含用于确定D的τ,或者,基站可以向UE发送第五信令,该第五信令包含用于确定D的n。当基站通过第五信令指示n时,在基站通过第五信令通知n之前,基站可以根据频率偏差确定n。当基站通过第四信令指示τ时,在基站通过第五信令信令通知τ之前,基站可以根据时延扩展确定τ。τ也可以是预定义的。n也可以是预定义的。第三信令中包含的循环移位值的信息的确定方法与与本发明实施例步骤402中的具体实现过程类似,本发明实施例在此不再详细赘述。
406、基站接收上行信号。
407、基站根据信号序列对上行信号进行处理。
其中,在基站接收到来自UE的上行信号之后,可以根据生成的信号序列对上行信号做处理。示例性的基站根据信号序列对上行信号进行处理可以用于获得信道估计结果,或者用于进行信号检测。示例性的,基站可以根据信号序列对上行信号做相关。例如,基站根据信号序列对上行信号做相关为:令x(n)表示生成的信号序列,y(n)表示基站接收的上行信号,其中,n=0,...,N-1,例如N个子载波上接收到的信号,则基站可以对上行信号做如下处理:
Figure BDA0001219708420000192
其中,x(n)*表示x(n)的共轭。
需要说明的是,在本发明实施例中,第一信令、第二信令、第三信令、第四信令、第五信令和第六信令可以是高层信令,如无线资源控制(Radio Resource Control,RRC);或者是多址接入控制信令(Multiple Access Control Control Element,MAC CE);或者是承载下行控制信息(Downlink Control Information,DCI)的下行控制信令。
本发明实施例提供的信号的传输方法,基站根据从序列指标集合中确定出的目标根指标生成信号序列,并根据生成的信号序列对接收的上行信号进行处理。由于序列指标集合为{A1,B1,A2,B2,…,As,Bs},且s是大于或等于1且小于或等于
Figure BDA0001219708420000193
的整数,其并不包含
Figure BDA0001219708420000194
以及
Figure BDA0001219708420000195
时的根指标,或者s是大于或等于1且小于或等于
Figure BDA0001219708420000196
的整数中比
Figure BDA0001219708420000197
更小的正整数,从而解决了在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题。
进一步,本发明实施例提供的方法还通过不等式
Figure BDA0001219708420000198
约束了根指标和间隔D之间的关系。一方面,根据上述不等式联合确定s(满足上述不等式的q的上限)和间隔D,可以确保UE由于频率偏差和时延扩展带来的总的循环移位能够在间隔D内,从而不会在循环移位间隔外再占用额外的循环移位,从而可以保证不同的UE间不会存在干扰。另外一方面,可以进一步限制s的取值,如1,2或者3等较小的数值。此时,使用集合{A1,B1,A2,B2,…,As,Bs}中的任何一个根指标,都可以使得满足上述不等式的间隔D较小。在总的可以使用的循环移位值个数固定的情况下,较小的D意味着可以分配给不同UE的循环移位值较多。因此,本发明实施例可以支持的通过循环移位正交码分复用的UE数更多。若较小的q对应的根指标当前不可分配,则基站根据本发明实施例,可以优先分配其他相对较小的q值,此时满足上述不等式的D相对较小,则相对于
Figure BDA0001219708420000201
以及
Figure BDA0001219708420000202
时的根指标,本发明方法仍然可以提高通过循环移位正交码分复用的UE数。
图6为本发明实施例提供的另一种信号的传输方法的流程图,如图6所示,该方法可以包括:
501、UE确定根指标q。
其中,根指标q指的是频域根指标,也即根指标为q的ZC序列经过IDFT变换后生成的ZC序列的根指标p,是满足pq=1(mod K)的最小的非负整数,K是ZC序列的长度。在本发明实施例中,方法的叙述是以频域根指标q为基础进行的。但可选的,方法的叙述也可以根据对应的时域根指标p进行。
502、UE根据q和循环移位值生成上行信号。
其中,循环移位值是UE根据循环移位值集合确定的。该循环移位值集合是
Figure BDA0001219708420000203
循环移位值集合是根据q确定的,D是正实数,α0是实数,是初始循环移位信息,
Figure BDA0001219708420000204
表示下取整,N是上行信号的序列的长度。q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),i为1或2。当然,q也可以属于集合{A1,B1,A2,B2,…,As,Bs},或者,{A1,B1,A2,B2,…,As,Bs}的子集,子集中Ai、Bi是成对出现的。其中,Ai=i(mod K),Bi=-i(mod K),Ai、Bi为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure BDA0001219708420000205
的整数,
Figure BDA0001219708420000206
表示下取整。UE从循环移位值集合中确定循环移位值的方法有多种。例如,UE可以根据预定义的规则从该集合中选择循环移位值,例如,UE根据集合中的所有循环移位值的顺序,按照预定义的规则选取循环移位值。或者,UE可以接收基站发送的信令,该信令中包含了UE的循环移位值。该信令能够包含集合中的循环移位值的任何一个。
进一步的,在本发明是实施例中,在UE根据q和循环移位值生成上行信号之前,UE可以通过以下方式先循环移位值集合:
方式一:UE可以接收基站发送的第一信令,该第一信令包含q对应的D。相应的,UE可以根据D确定循环移位值集合。且,在本发明实施例中,至少存在两个不同的q,它们对应的D不相同。在一种实现的方法中,第一信令可以通知多个q分别对应的D。例如,第一信令可以通知(q1,D1),(q2,D2),(q3,D3)。UE根据预定义的规则确定在本次发送上行信号使用的根指标q∈{q1,q2,q3},从而得知本次使用的间隔D。或者,每个根指标q对应的D的可能的取值是预先定义的一个或者多个值,例如可以通过一个表格进行预定义,则第一信令可以包含一个q对应的D的多个可能的取值中的一个。
示例性的,该第一信令可以是RRC,或者是MAC CE,或者是承载DCI的下行控制信令。
方式二:UE可以接收基站发送的第二信令,该第二信令包含τ,其中,τ是与最大时延扩展有关的参数,例如,是最大时延扩展带来的循环移位值。相应的,UE可以根据q和τ确定循环移位值集合。
其中,当0≤q mod K<K/2时,用于确定循环移位值集合的D是满足
Figure BDA0001219708420000211
的正实数;
当K/2≤q mod K<K时,用于确定循环移位值集合的D是满足
Figure BDA0001219708420000212
的正实数。n是正整数,K是ZC序列的长度。在一种实现方式下,n是预定义的。在另外一种实现方式下,n可以通过信令由基站通知UE的。
示例性的,该第二信令可以是RRC,或者是MAC CE,或者是承载DCI的下行控制信令。
方式三:UE可以接收基站发送的第三信令,该第三信令包含q对应的循环移位值集合
Figure BDA0001219708420000213
示例性的,该第三信令可以是RRC,或者是MAC CE,或者是承载DCI的下行控制信令。
另外,在本发明实施例中,确定循环移位值集合需要初始循环移位信息。初始循环移位信息可以是预定义的,或者,UE可以接收基站发送的第四信令,该第四信令包含初始循环移位信息。示例性的,该第四信令可以是RRC,或者是MAC CE,或者是承载DCI的下行控制信令。
503、UE发送上行信号。
504、基站确定根指标q。
505、基站根据q和循环移位值生成信号序列。
另外,基站可以通过以下方式向UE发送用于确定循环移位值集合的参数:
方式一:基站向UE发送第一信令,该第一信令包含q对应的D。不同的q对应的D不相同。
方式二:基站向UE发送第二信令,该第二信令包含τ。
基站确定τ的方法可以有多种。例如,τ可以是预定义的,或者是基站估计得到的,或者是基站根据所服务的小区的半径等信息得到的。
方式三:基站向UE发送第三信令,该第三信令包含q对应的循环移位值集合
Figure BDA0001219708420000214
另外,在本发明实施例中,确定循环移位值集合需要初始循环移位信息。初始循环移位信息可以是预定义的,或者,基站向UE发送第四信令,该第四信令包含初始循环移位信息。
506、基站接收上行信号。
507、基站根据信号序列对上行信号进行处理。
需要说明的是,本发明实施例中步骤501‐步骤507的具体描述与本发明另一实施例中步骤401‐步骤407相应内容的具体描述类似,对于本发明实施例中步骤501‐步骤507的具体描述,可以参考另一实施例中步骤401‐步骤407相应内容的具体描述,本发明实施例在此不再一一赘述。
在本发明实施例的方法中,生成前导码的ZC序列的根指标q没有必须大于一个值的取值限制,例如已有技术中生成前导码的ZC序列的根指标必须大于最大时延扩展。因此,本发明实施例的方法增加了可用的根指标的个数,从而增加了前导码的个数。例如,在已有技术中,当考虑到基站与UE有频率偏差时,q=1不可以使用。而在本发明实施例的方法中,即使基站与UE有频率偏差,q=1也可以使用。一般的,可以选取比较小的正整数的q值对应的ZC序列的根指标q或者K-q。此外,针对选择的一个根指标q,UE可以使用的循环移位值,以及基站可以分配的循环移位值根据集合
Figure BDA0001219708420000221
确定的,其中D是根据q所确定的值。通过根据q合理确定D的取值,可以确保UE由于频率偏差和时延扩展带来的循环移位能够在基站分配的循环移位间隔内,不会在基站分配的循环移位间隔外再占用额外的循环移位,从而可以保证没有用户间干扰。而在已有技术中,根指标q的选取必须满足大于一个值的取值限制,且针对这样选择的一个根指标q,可以使用的循环移位值只能取该集合中的一部分元素,才可以保证没有用户间干扰。因此,本发明实施例的方法增加了可用的循环移位值的个数,从而进一步增加了前导码序列的个数。
进一步,针对本发明实施例中选择的一个根指标q,UE可以使用的循环移位值,以及基站可以分配的循环移位值是集合
Figure BDA0001219708420000222
的全部元素,意味着在相同的时频资源上,支持通过循环移位正交码分复用的UE数更多,提高了上行时频资源的使用效率。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站、UE为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对基站、UE进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图7示出了上述和实施例中涉及的基站的一种可能的组成示意图,如图7所示,该基站可以包括:确定单元61、生成单元62、接收单元63、处理单元64。
其中,确定单元61,用于支持基站执行图4所示的信号的传输方法中的步骤404,图6所示的信号的传输方法中的步骤504。
生成单元62,用于支持基站执行图4所示的信号的传输方法中的步骤405,图6所示的信号的传输方法中的步骤505。
接收单元63,用于支持基站执行图4所示的信号的传输方法中的步骤406,图6所示的信号的传输方法中的步骤506。
处理单元64,用于支持基站执行图4所示的信号的传输方法中的步骤407,图6所示的信号的传输方法中的步骤507。
在本发明实施例中,进一步的,如图7所示,该基站还可以包括:发送单元65。
发送单元65,用于支持基站执行图4和图5对应的实施例中发送第一信令、第二信令、第三信令、第四信令、第五信令和第六信令的过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本发明实施例提供的基站,用于执行上述信号的传输方法,因此可以达到与上述信号的传输方法相同的效果。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的基站的另一种可能的组成示意图。如图8所示,该基站包括:处理模块71和通信模块72。
处理模块71用于对基站的动作进行控制管理,例如,处理模块71用于支持基站执行图4中的步骤404、步骤405、步骤407,图6中的步骤504、步骤505、步骤507、和/或用于本文所描述的技术的其它过程。通信模块72用于支持基站与其他网络实体的通信,例如与图1、图3、图9或图10中示出的功能模块或网络实体之间的通信。基站还可以包括存储模块73,用于存储服务器的程序代码和数据。
其中,处理模块71可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块72可以是收发器、收发电路或通信接口等。存储模块73可以是存储器。
当处理模块71为处理器,通信模块72为收发器,存储模块73为存储器时,本发明实施例所涉及的基站可以为图2所示的基站。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述和实施例中涉及的UE的一种可能的组成示意图,如图9所示,该UE可以包括:确定单元81、生成单元82、发送单元83。
其中,确定单元81,用于支持UE执行图4所示的信号的传输方法中的步骤401,图6所示的信号的传输方法中的步骤501。
生成单元82,用于支持UE执行图4所示的信号的传输方法中的步骤402,图6所示的信号的传输方法中的步骤502。
发送单元83,用于支持UE执行图4所示的信号的传输方法中的步骤403,图6所示的信号的传输方法中的步骤503。
进一步的,如图9所示,该UE还可以包括:接收单元84。
接收单元84,用于支持UE执行图4和图5对应的实施例中接收第一信令、第二信令、第三信令、第四信令、第五信令和第六信令的过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本发明实施例提供的UE,用于执行上述信号的传输方法,因此可以达到与上述信号的传输方法相同的效果。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的UE的另一种可能的组成示意图。如图10所示,该UE包括:处理模块91和通信模块92。
处理模块91用于对UE的动作进行控制管理。通信模块92用于支持UE与其他网络实体的通信,例如与图1、图2、图7或图8中示出的功能模块或网络实体之间的通信。UE还可以包括存储模块93,用于存储终端的程序代码和数据。
其中,处理模块91可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块92可以是收发器、收发电路或通信接口等。存储模块93可以是存储器。
当处理模块91为处理器,通信模块92为收发器,存储模块93为存储器时,本发明实施例所涉及的终端设备可以为图3所示的终端设备。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read‐Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何在本发明揭露的技术范围内的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (99)

1.一种信号的接收方法,其特征在于,包括:
基站从序列指标集合中确定目标根指标;其中,所述序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),所述Ai、所述Bi为ZC序列的根指标,所述i为大于或等于1且小于或等于所述s的整数,所述s是大于或等于1且小于或等于
Figure FDA0002239061840000011
的整数,
Figure FDA0002239061840000012
表示下取整,所述K是所述ZC序列的长度,所述Ai=i(mod K)表示Ai mod K=i mod K,所述Bi=-i(mod K)表示Bi mod K=-i mod K;
所述基站根据所述目标根指标生成信号序列;
所述基站接收上行信号;
所述基站根据所述信号序列对所述上行信号进行处理。
2.根据权利要求1所述的方法,其特征在于,所述信号序列是由目标ZC序列生成的序列,所述目标ZC序列的根指标是所述目标根指标。
3.根据权利要求1或2所述的方法,其特征在于,
所述s是预定义的;或者,
所述方法还包括:所述基站发送第一信令,所述第一信令包含所述s。
4.根据权利要求1-2中任一项所述的方法,其特征在于,还包括:
所述基站向用户设备UE发送第二信令,所述第二信令包含循环移位值,所述循环移位值与所述UE相关联。
5.根据权利要求3所述的方法,其特征在于,还包括:
所述基站向用户设备UE发送第二信令,所述第二信令包含循环移位值,所述循环移位值与所述UE相关联。
6.根据权利要求4所述的方法,其特征在于,所述基站根据所述目标根指标生成信号序列,包括:
所述基站根据所述目标根指标和所述循环移位值生成所述信号序列。
7.根据权利要求5所述的方法,其特征在于,所述基站根据所述目标根指标生成信号序列,包括:
所述基站根据所述目标根指标和所述循环移位值生成所述信号序列。
8.根据权利要求1-2中任一项所述的方法,其特征在于,还包括:
所述基站向UE发送第三信令,所述第三信令包含循环移位值的信息,所述循环移位值的信息与所述UE相关联。
9.根据权利要求3所述的方法,其特征在于,还包括:
所述基站向UE发送第三信令,所述第三信令包含循环移位值的信息,所述循环移位值的信息与所述UE相关联。
10.根据权利要求8所述的方法,其特征在于,所述循环移位值是根据循环移位值集合确定的,所述循环移位值集合中的任意两个循环移位值的间隔大于或等于D;
其中,所述D是满足
Figure FDA0002239061840000021
的正实数,所述τ是正实数,所述n是正整数,所述q是小于或等于所述s的正整数,Aq或Bq是所述目标根指标,所述N是所述上行信号的序列的长度。
11.根据权利要求9所述的方法,其特征在于,所述循环移位值是根据循环移位值集合确定的,所述循环移位值集合中的任意两个循环移位值的间隔大于或等于D;
其中,所述D是满足
Figure FDA0002239061840000022
的正实数,所述τ是正实数,所述n是正整数,所述q是小于或等于所述s的正整数,Aq或Bq是所述目标根指标,所述N是所述上行信号的序列的长度。
12.根据权利要求10-11任一项所述的方法,其特征在于,
所述τ是预先义的;或者,所述方法还包括:所述基站发送第四信令,所述第四信令包含所述τ。
13.根据权利要求10-11任一项所述的方法,其特征在于,
所述n是预定义的;或者,所述方法还包括:所述基站发送第五信令,所述第五信令包含所述n。
14.根据权利要求12所述的方法,其特征在于,
所述n是预定义的;或者,所述方法还包括:所述基站发送第五信令,所述第五信令包含所述n。
15.根据权利要求10-11任一项所述的方法,其特征在于,所述方法还包括:
所述基站发送第六信令,所述第六信令包含所述D。
16.根据权利要求1-2、5-7、9-11、14中任一项所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
17.根据权利要求3所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
18.根据权利要求4所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
19.根据权利要求8所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
20.根据权利要求12所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
21.根据权利要求13所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
22.根据权利要求15所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
23.一种信号的发射方法,其特征在于,包括:
用户设备UE从序列指标集合中确定目标根指标;其中,所述序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),所述Ai、所述Bi为ZC序列的根指标,所述i为大于或等于1且小于或等于所述s的整数,所述s是大于或等于1且小于或等于
Figure FDA0002239061840000031
的整数,
Figure FDA0002239061840000032
表示下取整,所述K是所述ZC序列的长度,所述Ai=i(mod K)表示Ai mod K=i modK,所述Bi=-i(mod K)表示Bi mod K=-i mod K;
所述UE根据所述目标根指标生成上行信号;
所述UE发送所述上行信号。
24.根据权利要求23所述的方法,其特征在于,所述上行信号的序列是由目标ZC序列生成的序列,所述目标ZC序列的根指标是所述目标根指标。
25.根据权利要求23或24所述的方法,其特征在于,
所述s是预定义的;或者,
所述方法还包括:所述UE接收第一信令,所述第一信令包含所述s,所述UE根据所述第一信令确定所述序列指标集合。
26.根据权利要求23-24中任一项所述的方法,其特征在于,所述方法还包括:
所述UE接收第二信令,所述第二信令包含循环移位值,所述循环移位值与所述UE相关联。
27.根据权利要求25所述的方法,其特征在于,所述方法还包括:
所述UE接收第二信令,所述第二信令包含循环移位值,所述循环移位值与所述UE相关联。
28.根据权利要求26所述的方法,其特征在于,所述UE根据所述目标根指标生成上行信号,包括:
所述UE根据所述目标根指标和所述循环移位值生成所述上行信号。
29.根据权利要求23-24中任一项所述的方法,其特征在于,所述方法还包括:
所述UE接收第三信令,所述第三信令包含循环移位值的信息,所述循环移位值的信息与所述UE相关联。
30.根据权利要求25所述的方法,其特征在于,所述方法还包括:
所述UE接收第三信令,所述第三信令包含循环移位值的信息,所述循环移位值的信息与所述UE相关联。
31.根据权利要求29所述的方法,其特征在于,所述循环移位值是根据循环移位值集合确定的,所述循环移位值集合中的任意两个循环移位值的间隔大于或等于D;
其中,所述D是满足
Figure FDA0002239061840000033
的正实数,所述τ是正实数,所述n是正整数,所述q是小于或等于所述s的正整数,Aq或Bq是所述目标根指标,所述N是所述上行信号的序列的长度。
32.根据权利要求31所述的方法,其特征在于,
所述τ是预定义的;或者,
所述方法还包括:所述UE接收第四信令,所述第四信令包含所述τ,所述UE根据所述τ、所述q和所述n确定所述循环移位值;所述根据所述目标根指标生成上行信号,包括:根据所述循环移位值和所述目标根指标生成所述上行信号。
33.根据权利要求31所述的方法,其特征在于,
所述n是预定义的;或者,
所述方法还包括:所述UE接收第五信令,所述第五信令包含所述n,所述UE根据所述τ、所述q和所述n确定所述循环移位值;所述根据所述目标根指标生成上行信号,包括:根据所述循环移位值和所述目标根指标生成所述上行信号。
34.根据权利要求31所述的方法,其特征在于,所述方法还包括:
所述UE接收第六信令,所述第六信令包含所述D;
所述UE根据所述D确定所述循环移位值;
所述根据所述目标根指标生成上行信号,包括:根据所述循环移位值和所述目标根指标生成所述上行信号。
35.根据权利要求23-24、27、30、32-34中任一项所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
36.根据权利要求25所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
37.根据权利要求26所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
38.根据权利要求28所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
39.根据权利要求29所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
40.根据权利要求31所述的方法,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
41.一种信号的发射方法,其特征在于,包括:
用户设备UE从序列指标集合中确定根指标q;其中,所述序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),所述Ai、所述Bi为ZC序列的根指标,所述i为大于或等于1且小于或等于所述s的整数,所述s是大于或等于1且小于或等于
Figure FDA0002239061840000042
的整数,
Figure FDA0002239061840000043
表示下取整,所述K是所述ZC序列的长度,所述Ai=i(mod K)表示Ai mod K=i modK,所述Bi=-i(mod K)表示Bi mod K=-i mod K;
所述UE根据所述q和循环移位值生成上行信号,所述循环移位值是所述UE根据循环移位值集合确定的,所述循环移位值集合为:
Figure FDA0002239061840000041
其中,所述循环移位值集合是根据所述q确定的,所述D是正实数,所述α0是实数,是初始循环移位信息,
Figure FDA0002239061840000052
表示下取整,所述N是所述上行信号的序列的长度;
所述UE发送所述上行信号。
42.根据权利要求41所述的方法,其特征在于,还包括:
所述UE接收第一信令,所述第一信令包含所述q对应的所述D;
所述UE根据所述D和所述q确定所述循环移位值集合。
43.根据权利要求42所述的方法,其特征在于,不同的所述q对应的所述D不相同。
44.根据权利要求41所述的方法,其特征在于,还包括:
所述UE接收第二信令,所述第二信令包含τ;
所述UE根据所述q和所述τ确定所述循环移位值集合;
其中,用于确定所述循环移位值集合的所述D是满足
Figure FDA0002239061840000053
的正实数,或者
用于确定所述循环移位值集合的所述D是满足
Figure FDA0002239061840000054
的正实数,其中,所述τ为正实数,所述n是正整数,所述K是所述ZC序列的长度。
45.根据权利要求41所述的方法,其特征在于,还包括:
所述UE接收第三信令,所述第三信令包含所述循环移位值集合。
46.根据权利要求41-45中任一项所述的方法,其特征在于,还包括:
所述UE接收第四信令,所述第四信令包含所述初始循环移位信息。
47.根据权利要求41-45中任一项所述的方法,其特征在于,所述q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),所述i为1或2。
48.根据权利要求46所述的方法,其特征在于,所述q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),所述i为1或2。
49.一种信号的接收方法,其特征在于,包括:
基站从序列指标集合中确定根指标q;其中,所述序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),所述Ai、所述Bi为ZC序列的根指标,所述i为大于或等于1且小于或等于所述s的整数,所述s是大于或等于1且小于或等于
Figure FDA0002239061840000055
的整数,
Figure FDA0002239061840000056
表示下取整,所述K是所述ZC序列的长度,所述Ai=i(mod K)表示Ai mod K=i mod K,所述Bi=-i(mod K)表示Bi mod K=-i mod K;
所述基站根据所述q和循环移位值生成信号序列,所述循环移位值是所述基站根据循环移位值集合确定的,所述循环移位值集合为:
Figure FDA0002239061840000051
其中,所述循环移位值集合是根据所述q确定的,所述D是正实数,所述α0是实数,是初始循环移位信息,
Figure FDA0002239061840000061
表示下取整,所述N是上行信号的序列的长度;
所述基站接收上行信号;
所述基站根据所述信号序列对所述上行信号进行处理。
50.根据权利要求49所述的方法,其特征在于,还包括:
所述基站发送第一信令,所述第一信令包含所述q对应的所述D。
51.根据权利要求50所述的方法,其特征在于,不同的所述q对应的所述D不相同。
52.根据权利要求49所述的方法,其特征在于,还包括:
所述基站发送第二信令,所述第二信令包含τ,所述τ用于用户设备UE确定所述循环移位值集合;
其中,用于确定所述循环移位值集合的所述D是满足
Figure FDA0002239061840000062
的正实数,或者
用于确定所述循环移位值集合的所述D是满足
Figure FDA0002239061840000063
的正实数,其中,所述τ为正实数,所述n是正整数,所述K是ZC序列的长度。
53.根据权利要求49所述的方法,其特征在于,还包括:
所述基站发送第三信令,所述第三信令包含所述循环移位值集合。
54.根据权利要求49-53中任一项所述的方法,其特征在于,还包括:
所述基站发送第四信令,所述第四信令包含所述初始循环移位信息。
55.根据权利要求49-53中任一项所述的方法,其特征在于,所述q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),所述i为1或2。
56.根据权利要求54所述的方法,其特征在于,所述q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),所述i为1或2。
57.一种基站,其特征在于,包括:
确定单元,用于从序列指标集合中确定目标根指标;其中,所述序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),所述Ai、所述Bi为ZC序列的根指标,所述i为大于或等于1且小于或等于所述s的整数,所述s是大于或等于1且小于或等于
Figure FDA0002239061840000064
的整数,
Figure FDA0002239061840000065
表示下取整,所述K是所述ZC序列的长度,所述Ai=i(mod K)表示Ai mod K=i modK,所述Bi=-i(mod K)表示Bi mod K=-i mod K;
生成单元,用于根据所述确定单元确定的所述目标根指标生成信号序列;
接收单元,用于接收上行信号;
处理单元,用于根据所述生成单元生成的所述信号序列对所述接收单元接收到的所述上行信号进行处理。
58.根据权利要求57所述的基站,其特征在于,所述信号序列是由目标ZC序列生成的序列,所述目标ZC序列的根指标是所述目标根指标。
59.根据权利要求57或58所述的基站,其特征在于,
所述s是预定义的;或者,
所述基站还包括:发送单元,用于发送第一信令,所述第一信令包含所述s。
60.根据权利要求59所述的基站,其特征在于,
所述发送单元,还用于向用户设备UE发送第二信令,所述第二信令包含循环移位值,所述循环移位值与所述UE相关联。
61.根据权利要求60所述的基站,其特征在于,
所述生成单元,具体用于根据所述目标根指标和所述循环移位值生成所述信号序列。
62.根据权利要求59所述的基站,其特征在于,
所述发送单元,还用于向UE发送第三信令,所述第三信令包含循环移位值的信息,所述循环移位值的信息与所述UE相关联。
63.根据权利要求62所述的基站,其特征在于,所述循环移位值是根据循环移位值集合确定的,所述循环移位值集合中的任意两个循环移位值的间隔大于或等于D;
其中,所述D是满足
Figure FDA0002239061840000071
的正实数,所述τ是正实数,所述n是正整数,所述q是小于或等于所述s的正整数,Aq或Bq是所述目标根指标,所述N是所述上行信号的序列的长度。
64.根据权利要求63所述的基站,其特征在于,
所述τ是预先义的;或者,所述发送单元,还用于发送第四信令,所述第四信令包含所述τ。
65.根据权利要求63或64所述的基站,其特征在于,
所述n是预定义的;或者,所述发送单元,还用于发送第五信令,所述第五信令包含所述n。
66.根据权利要求63所述的基站,其特征在于,
所述发送单元,还用于发送第六信令,所述第六信令包含所述D。
67.根据权利要求57-58、60-64、66中任一项所述的基站,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
68.根据权利要求59所述的基站,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
69.根据权利要求65所述的基站,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
70.一种用户设备UE,其特征在于,包括:
确定单元,用于从序列指标集合中确定目标根指标;其中,所述序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),所述Ai、所述Bi为ZC序列的根指标,所述i为大于或等于1且小于或等于所述s的整数,所述s是大于或等于1且小于或等于
Figure FDA0002239061840000072
的整数,
Figure FDA0002239061840000073
表示下取整,所述K是所述ZC序列的长度,所述Ai=i(mod K)表示Ai mod K=i modK,所述Bi=-i(mod K)表示Bi mod K=-i mod K;
生成单元,用于根据所述确定单元确定的所述目标根指标生成上行信号;
发送单元,用于发送所述生成单元生成的所述上行信号。
71.根据权利要求70所述的UE,其特征在于,所述上行信号的序列是由目标ZC序列生成的序列,所述目标ZC序列的根指标是所述目标根指标。
72.根据权利要求70或71所述的UE,其特征在于,
所述s是预定义的;或者,
所述UE还包括:接收单元,用于接收第一信令,所述第一信令包含所述s,所述UE根据所述第一信令确定所述序列指标集合。
73.根据权利要求70或71所述的UE,其特征在于,还包括:
接收单元,用于接收第二信令,所述第二信令包含循环移位值,所述循环移位值与所述UE相关联。
74.根据权利要求73所述的UE,其特征在于,
所述生成单元,具体用于根据所述目标根指标和所述循环移位值生成所述上行信号。
75.根据权利要求70或71所述的UE,其特征在于,还包括:
接收单元,用于接收第三信令,所述第三信令包含循环移位值的信息,所述循环移位值的信息与所述UE相关联。
76.根据权利要求75所述的UE,其特征在于,所述循环移位值是根据循环移位值集合确定的,所述循环移位值集合中的任意两个循环移位值的间隔大于或等于D;
其中,所述D是满足
Figure FDA0002239061840000081
的正实数,所述τ是正实数,所述n是正整数,所述q是小于或等于所述s的正整数,Aq或Bq是所述目标根指标,所述N是所述上行信号的序列的长度。
77.根据权利要求76所述的UE,其特征在于,
所述τ是预定义的;或者,
所述接收单元,还用于接收第四信令,所述第四信令包含所述τ,所述确定单元,还用于根据所述τ、所述q和所述n确定所述循环移位值;所述生成单元,具体用于根据所述确定单元确定出的所述循环移位值和所述目标根指标生成所述上行信号。
78.根据权利要求76所述的UE,其特征在于,
所述n是预定义的;或者,
所述接收单元,还用于接收第五信令,所述第五信令包含所述n,所述确定单元,还用于根据所述τ、所述q和所述n确定所述循环移位值;所述生成单元,具体用于根据所述确定单元确定出的所述循环移位值和所述目标根指标生成所述上行信号。
79.根据权利要求76所述的UE,其特征在于,
所述接收单元,还用于接收第六信令,所述第六信令包含所述D;
所述确定单元,还用于根据所述接收单元接收到的所述D确定所述循环移位值;
所述生成单元,具体用于根据所述确定单元确定出的所述循环移位值和所述目标根指标生成所述上行信号。
80.根据权利要求70-71、74、76-79中任一项所述的UE,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
81.根据权利要求72所述的UE,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
82.根据权利要求73所述的UE,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
83.根据权利要求75所述的UE,其特征在于,所述上行信号为上行控制信道的信号,或者上行参考信号。
84.一种用户设备UE,其特征在于,包括:
确定单元,用于从序列指标集合中确定根指标q;其中,所述序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),所述Ai、所述Bi为ZC序列的根指标,所述i为大于或等于1且小于或等于所述s的整数,所述s是大于或等于1且小于或等于
Figure FDA0002239061840000091
的整数,
Figure FDA0002239061840000092
表示下取整,所述K是所述ZC序列的长度,所述Ai=i(mod K)表示Ai mod K=i modK,所述Bi=-i(mod K)表示Bi mod K=-i mod K;
生成单元,用于根据所述确定单元确定出的所述q,以及循环移位值生成上行信号,所述循环移位值是所述UE根据循环移位值集合确定的,所述循环移位值集合为:
Figure FDA0002239061840000093
其中,所述循环移位值集合是根据所述q确定的,所述D是正实数,所述α0是实数,是初始循环移位信息,
Figure FDA0002239061840000094
表示下取整,所述N是所述上行信号的序列的长度;
发送单元,用于发送所述生成单元生成的所述上行信号。
85.根据权利要求84所述的UE,其特征在于,还包括:接收单元;
所述接收单元,用于接收第一信令,所述第一信令包含所述q对应的所述D;
所述确定单元,还用于根据所述接收单元接收到的所述D和所述确定单元确定出的所述q确定所述循环移位值集合。
86.根据权利要求85所述的UE,其特征在于,不同的所述q对应的所述D不相同。
87.根据权利要求84所述的UE,其特征在于,还包括:接收单元;
所述接收单元,用于接收第二信令,所述第二信令包含τ;
所述确定单元,还用于根据所述确定单元确定出的所述q和所述接收单元接收到的所述τ确定所述循环移位值集合;
其中,用于确定所述循环移位值集合的所述D是满足
Figure FDA0002239061840000101
的正实数,或者
用于确定所述循环移位值集合的所述D是满足
Figure FDA0002239061840000102
的正实数,其中,所述τ为正实数,所述n是正整数,所述K是ZC序列的长度。
88.根据权利要求84所述的UE,其特征在于,还包括:接收单元;
所述接收单元,用于接收第三信令,所述第三信令包含所述循环移位值集合。
89.根据权利要求85-88中任一项所述的UE,其特征在于,
所述接收单元,还用于接收第四信令,所述第四信令包含所述初始循环移位信息。
90.根据权利要求84-88中任一项所述的UE,其特征在于,所述q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),所述i为1或2。
91.根据权利要求89所述的UE,其特征在于,所述q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),所述i为1或2。
92.一种基站,其特征在于,包括:
确定单元,用于从序列指标集合中确定根指标q;其中,所述序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),所述Ai、所述Bi为ZC序列的根指标,所述i为大于或等于1且小于或等于所述s的整数,所述s是大于或等于1且小于或等于
Figure FDA0002239061840000103
的整数,
Figure FDA0002239061840000104
表示下取整,所述K是所述ZC序列的长度,所述Ai=i(mod K)表示Ai mod K=i modK,所述Bi=-i(mod K)表示Bi mod K=-i mod K;
生成单元,用于根据所述确定单元确定出的所述q,以及循环移位值生成信号序列,所述循环移位值是所述基站根据循环移位值集合确定的,所述循环移位值集合为:
Figure FDA0002239061840000105
其中,所述循环移位值集合是根据所述q确定的,所述D是正实数,所述α0是实数,是初始循环移位信息,
Figure FDA0002239061840000106
表示下取整,所述N是上行信号的序列的长度;
接收单元,用于接收上行信号;
处理单元,用于根据所述生成单元生成的所述信号序列对所述接收单元接收到的所述上行信号进行处理。
93.根据权利要求92所述的基站,其特征在于,还包括:
发送单元,用于发送第一信令,所述第一信令包含所述q对应的所述D。
94.根据权利要求93所述的基站,其特征在于,不同的所述q对应的所述D不相同。
95.根据权利要求92所述的基站,其特征在于,还包括:
发送单元,用于发送第二信令,所述第二信令包含τ,所述τ用于用户设备UE确定所述循环移位值集合;
其中,用于确定所述循环移位值集合的所述D是满足
Figure FDA0002239061840000111
的正实数,或者
用于确定所述循环移位值集合的所述D是满足
Figure FDA0002239061840000112
的正实数,其中,所述τ为正实数,所述n是正整数,所述K是所述ZC序列的长度。
96.根据权利要求92所述的基站,其特征在于,还包括:
发送单元,用于发送第三信令,所述第三信令包含所述循环移位值集合。
97.根据权利要求93-96中任一项所述的基站,其特征在于,
所述发送单元,还用于发送第四信令,所述第四信令包含所述初始循环移位信息。
98.根据权利要求93-96中任一项所述的基站,其特征在于,所述q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),所述i为1或2。
99.根据权利要求97所述的基站,其特征在于,所述q属于集合{A1,B1,A2,B2},其中,Ai=i(mod K),Bi=-i(mod K),所述i为1或2。
CN201710064247.3A 2017-01-26 2017-01-26 一种信号的发射方法,接收方法及设备 Active CN108365910B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201710064247.3A CN108365910B (zh) 2017-01-26 2017-01-26 一种信号的发射方法,接收方法及设备
PCT/CN2018/074043 WO2018137669A1 (zh) 2017-01-26 2018-01-24 一种信号的发射方法,接收方法及设备
EP18744019.3A EP3553979A4 (en) 2017-01-26 2018-01-24 SIGNAL TRANSMISSION METHOD, RECEIVING METHOD AND DEVICE
BR112019015253A BR112019015253A2 (pt) 2017-01-26 2018-01-24 método de transmissão de sinal, método de recebimento de sinal e dispositivo
US16/522,140 US10992405B2 (en) 2017-01-26 2019-07-25 Signal transmission method, signal receiving method, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710064247.3A CN108365910B (zh) 2017-01-26 2017-01-26 一种信号的发射方法,接收方法及设备

Publications (2)

Publication Number Publication Date
CN108365910A CN108365910A (zh) 2018-08-03
CN108365910B true CN108365910B (zh) 2020-03-10

Family

ID=62978096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710064247.3A Active CN108365910B (zh) 2017-01-26 2017-01-26 一种信号的发射方法,接收方法及设备

Country Status (5)

Country Link
US (1) US10992405B2 (zh)
EP (1) EP3553979A4 (zh)
CN (1) CN108365910B (zh)
BR (1) BR112019015253A2 (zh)
WO (1) WO2018137669A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830211A (zh) 2018-08-10 2020-02-21 华为技术有限公司 一种同步信号的传输方法和装置
CN111526571B (zh) * 2019-02-01 2021-08-03 华为技术有限公司 一种参考信号传输的方法和装置
CN113965441B (zh) * 2021-10-20 2023-10-27 江苏科技大学 基于随机步进频ofdm的雷达通信一体化信号生成和接收方法
CN115065373B (zh) * 2022-04-21 2023-12-12 海能达通信股份有限公司 多时隙收发信机和多时隙通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1971097A2 (en) * 2007-03-16 2008-09-17 LG Electronics Inc. Method of generating random access preambles in wireless communication system
CN101336003A (zh) * 2008-08-05 2008-12-31 中兴通讯股份有限公司 生成前导序列的方法及确定循环移位步长的方法
CN102340472A (zh) * 2010-07-23 2012-02-01 普天信息技术研究院有限公司 生成频域zc序列的方法及基于zc序列的随机接入方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014200534B2 (en) * 2007-04-30 2014-12-11 Huawei Technologies Co., Ltd. Method, apparatus and mobile communication system of determining a set of zero correlation zone lengths
WO2008149314A2 (en) * 2007-06-07 2008-12-11 Nokia Corporation Apparatus, method and computer program product providing flexible preamble sequence allocation
CN101345577B (zh) 2008-08-21 2014-03-12 中兴通讯股份有限公司 生成前导序列的方法及确定循环移位的方法
CN101841507B (zh) * 2009-03-20 2015-01-28 中兴通讯股份有限公司 主同步信道序列的生成方法、装置及其多天线发送方法
CN102316601B (zh) * 2011-09-28 2014-05-07 北京北方烽火科技有限公司 一种随机接入信道的前导序列检测方法和装置
CN107006034A (zh) 2015-04-24 2017-08-01 华为技术有限公司 上行随机接入的方法及相关设备
CN106358296A (zh) * 2015-07-14 2017-01-25 中兴通讯股份有限公司 在上行控制信道上发送信号的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1971097A2 (en) * 2007-03-16 2008-09-17 LG Electronics Inc. Method of generating random access preambles in wireless communication system
CN101336003A (zh) * 2008-08-05 2008-12-31 中兴通讯股份有限公司 生成前导序列的方法及确定循环移位步长的方法
CN102340472A (zh) * 2010-07-23 2012-02-01 普天信息技术研究院有限公司 生成频域zc序列的方法及基于zc序列的随机接入方法

Also Published As

Publication number Publication date
CN108365910A (zh) 2018-08-03
BR112019015253A2 (pt) 2020-04-14
EP3553979A1 (en) 2019-10-16
US20190349109A1 (en) 2019-11-14
US10992405B2 (en) 2021-04-27
WO2018137669A1 (zh) 2018-08-02
EP3553979A4 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
US10979194B2 (en) Resource indication method, user equipment, and network device
US10972320B2 (en) Reference signal transmission method and transmission apparatus
CN108512642B (zh) 确定参考信号序列的方法、终端设备、网络设备
CN108347778B (zh) 通信方法及装置
CN109392129B (zh) 一种资源分配的方法,终端以及网络设备
US8811309B2 (en) Implicit resource allocation using shifted synchronization sequence
US20200119882A1 (en) Reference signal transmission method and transmission apparatus
JP2020516134A (ja) 参照信号送信方法、装置、およびシステム
TWI764919B (zh) 傳輸信號的方法和裝置
WO2018018628A1 (zh) 参考信号序列的映射方法、配置方法、基站和用户设备
US10992405B2 (en) Signal transmission method, signal receiving method, and device
CN107734672B (zh) 一种通信接入的方法和设备
JP2022511296A (ja) 構成情報の伝送方法および端末機器
WO2014183680A1 (zh) 一种传输下行信号的方法、装置及终端设备
CN113615300A (zh) 用于随机接入过程的方法、终端设备和基站
WO2018171792A1 (zh) 一种参考信号传输方法、装置及系统
CN112242892A (zh) 一种物理上行控制信道的资源配置方法及装置
CN113330709A (zh) 终端设备、网络设备及其中的方法
JP6918929B2 (ja) 信号伝送方法及び装置
JP2022525727A (ja) 伝送帯域幅の決定方法、デバイス、及び記憶媒体
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
US10681692B2 (en) Transmission resource mapping method and device
CN111787613B (zh) 一种数据传输方法、装置和设备
WO2020088250A1 (zh) 一种上行资源请求的通信处理方法和相关设备
WO2018072180A1 (zh) 传输上行数据的方法、网络侧设备和终端设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant