WO2018137669A1 - 一种信号的发射方法,接收方法及设备 - Google Patents

一种信号的发射方法,接收方法及设备 Download PDF

Info

Publication number
WO2018137669A1
WO2018137669A1 PCT/CN2018/074043 CN2018074043W WO2018137669A1 WO 2018137669 A1 WO2018137669 A1 WO 2018137669A1 CN 2018074043 W CN2018074043 W CN 2018074043W WO 2018137669 A1 WO2018137669 A1 WO 2018137669A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic shift
base station
sequence
signaling
signal
Prior art date
Application number
PCT/CN2018/074043
Other languages
English (en)
French (fr)
Inventor
曲秉玉
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18744019.3A priority Critical patent/EP3553979A4/en
Priority to BR112019015253A priority patent/BR112019015253A2/pt
Publication of WO2018137669A1 publication Critical patent/WO2018137669A1/zh
Priority to US16/522,140 priority patent/US10992405B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0074Code shifting or hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/12Generation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques
    • H04J2011/0006Combination with other multiplexing techniques with CDM/CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J2013/165Joint allocation of code together with frequency or time

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a signal transmitting method, a receiving method, and a device.
  • a user equipment transmits a pilot sequence to a base station, and the base station can learn channel state information of the UE by detecting the pilot sequence, and use the channel state information to send data to the UE.
  • the ZC (Zadoff-Chu) sequence is a sequence of constant amplitude zero autocorrelation.
  • the sequence generated by the ZC sequence is modulated in the frequency domain, and then subjected to Inverse Discrete Fourier Transform (IDFT), and the obtained time domain sequence has a lower peak-to-average ratio (Peak average power ratio, PAPR). ).
  • IDFT Inverse Discrete Fourier Transform
  • the sequence generated by the ZC sequence may be the ZC sequence itself, or a sequence generated by truncating or cyclically expanding the ZC sequence.
  • ZC sequences have been widely used as pilot sequences in Long Term Evolution (LTE) wireless communication systems. Specifically, it can be applied to an uplink signal in LTE, for example, a sequence generated by using a ZC sequence as an uplink sounding reference signal (SRS), and an uplink demodulation reference signal (DMRS).
  • SRS uplink sounding reference signal
  • DMRS uplink demodulation reference signal
  • the sequence generated by the ZC sequence can also be used as a modulation sequence of the uplink control channel, that is, the sequence to be transmitted by the sequence generated by the ZC sequence is sequence-modulated, and the sequence-modulated information is carried on the time-frequency resource of the uplink control channel.
  • ZC sequences can also be used to generate preambles. The preamble is used by the UE to initiate uplink random access, so that the base station acquires uplink timing information of the UE, and helps the UE achieve uplink synchronization.
  • a ZC sequence in the frequency domain can be determined. Further, different sequences can be obtained by performing different cyclic shifts on the sequences generated by the ZC sequence.
  • the meaning of cyclically shifting a sequence generated by one ZC sequence in the frequency domain is to perform a (time domain) cyclic shift of the time domain sequence obtained by IDFT transforming the sequence generated by the ZC sequence.
  • the nature of the sequence generated by the ZC sequence shows that the frequency domain is
  • l is a real number.
  • the base station may allocate the root indicator of the same ZC sequence to different UEs, and simultaneously allocate a cyclic shift value (l 1 , l 2 ) satisfying l 1 mod N ⁇ l 2 mod N .
  • different UEs can transmit a sequence generated according to the root indicator of the same ZC sequence and the cyclic shift value allocated by the base station to the same time-frequency domain resource, such as uplink SRS, uplink DMRS, and uplink control channel modulation. Sequence or preamble, and does not cause inter-user interference, thereby achieving the purpose of multiplexing multiple UEs on the same time-frequency domain resource.
  • the frequency offset may cause an additional cyclic shift in the time domain according to the sequence obtained by the root indicator allocated by the base station to the UE. Therefore, the base station needs Reserve more cyclic shift values to the UE.
  • a cyclic shift that can be allocated is caused.
  • the number of values is reduced, that is, the number of UEs supporting orthogonal code division multiplexing by cyclic shift is relatively small, so that the utilization of uplink resources is reduced.
  • Embodiments of the present invention provide a method for transmitting a signal, a receiving method, and a device, which solve the problem that a frequency deviation existing between a center frequency of a UE received signal and a center frequency of a base station transmitting signal is compared with a subcarrier used by a base station and a UE for communication.
  • the interval is relatively large, the problem of the number of UEs that are orthogonally code-multiplexed by cyclic shifting is small.
  • the embodiment of the present invention adopts the following technical solutions:
  • a first aspect of the embodiments of the present invention provides a method for receiving a signal, including:
  • the present invention is a method for receiving a signal according to an embodiment.
  • the base station generates a signal sequence according to the target root indicator determined from the sequence indicator set, and processes the received uplink signal according to the generated signal sequence. Since the sequence index set is ⁇ A 1 , B 1 , A 2 , B 2 , ..., A s , B s ⁇ , and s is greater than or equal to 1 and less than or equal to Integer, it does not contain as well as Or s is greater than or equal to 1 and less than or equal to Integer ratio a smaller positive integer, thereby solving the frequency deviation existing between the center frequency of the received signal of the UE and the center frequency of the base station transmitting signal, and supporting the cyclic shift when compared with the subcarrier spacing used by the base station and the UE for communication.
  • the signal sequence is a sequence generated by the target ZC sequence
  • the root indicator of the target ZC sequence is the target root indicator
  • s is predefined; or the receiving method of the information may further include: the base station sends the first signaling, the first signaling Contains s.
  • the method for receiving the signal may further include: the base station sending the second signaling to the UE, where the second signaling includes a cyclic shift value, The cyclic shift value is associated with the UE.
  • the base station generates a signal sequence according to the target root indicator, and specifically includes: the base station generates a signal sequence according to the target root indicator and the cyclic shift value.
  • the method for receiving the signal may further include: the base station sends a third signaling to the UE, where the third signaling includes a cyclic shift value.
  • the third signaling includes a cyclic shift value.
  • Information the information of the cyclic shift value is associated with the UE.
  • the cyclic shift value is determined according to the cyclic shift value set, and any two cyclic shift values in the cyclic shift value set
  • the interval is greater than or equal to D; wherein D is satisfied
  • the positive real number, ⁇ is a positive real number, n is a positive integer, q is a positive integer less than or equal to s, A q or B q is the target root indicator, and N is the length of the sequence of the uplink signal.
  • is pre-defined; or the receiving method of the signal may further include: the base station sends fourth signaling, the fourth signaling Contains ⁇ .
  • n is predefined; or the receiving method of the signal may further include: the base station sends a fifth signaling, the fifth signaling Contains n.
  • the method for receiving the signal may further include: the base station sends the sixth signaling, where the sixth signaling includes D.
  • the uplink signal is a signal of an uplink control channel, or an uplink reference signal.
  • a second aspect of the embodiments of the present invention provides a method for transmitting a signal, including:
  • the UE In the method for transmitting a signal according to the embodiment of the present invention, the UE generates an uplink signal according to the target root indicator determined from the sequence indicator set, and sends an uplink signal. Since the sequence index set is ⁇ A 1 , B 1 , A 2 , B 2 , ..., A s , B s ⁇ , and s is greater than or equal to 1 and less than or equal to Integer, it does not contain as well as Or s is greater than or equal to 1 and less than or equal to Integer ratio a smaller positive integer, thereby solving the frequency deviation existing between the center frequency of the received signal of the UE and the center frequency of the base station transmitting signal, and supporting the cyclic shift when compared with the subcarrier spacing used by the base station and the UE for communication.
  • the sequence of the uplink signal is a sequence generated by the target ZC sequence
  • the root indicator of the target ZC sequence is the target root indicator
  • the method for transmitting the signal may further include: receiving, by the UE, first signaling, where the first signaling includes s.
  • the UE determines a sequence indicator set according to the first signaling.
  • the method for transmitting the signal may further include: the UE receives the second signaling, where the second signaling includes a cyclic shift value, and the cyclic shift The value is associated with the UE.
  • the UE generates an uplink signal according to the target root indicator, which may include: the UE generates an uplink signal according to the target root indicator and the cyclic shift value.
  • the method for transmitting the signal may further include: receiving, by the UE, third signaling, where the third signaling includes information about a cyclic shift value, and looping The information of the shift value is associated with the UE.
  • the cyclic shift value is determined according to the cyclic shift value set, and any two cyclic shift values in the cyclic shift value set
  • the interval is greater than or equal to D; wherein D is satisfied
  • the positive real number, ⁇ is a positive real number, n is a positive integer, q is a positive integer less than or equal to s, A q or B q is the target root indicator, and N is the length of the sequence of the uplink signal.
  • is predefined; or, the method for transmitting the signal may further include: receiving, by the UE, fourth signaling, where the fourth signaling includes ⁇ , the UE determines a cyclic shift value according to ⁇ , q, and n; and generates an uplink signal according to the target root indicator, including: generating an uplink signal according to the cyclic shift value and the target root indicator.
  • n is predefined; or the transmitting method of the signal may further include: receiving, by the UE, fifth signaling, where the fifth signaling includes n, the UE determines a cyclic shift value according to ⁇ , q, and n; and generates an uplink signal according to the target root indicator, including: generating an uplink signal according to the cyclic shift value and the target root indicator.
  • the method for transmitting the signal may further include: the UE receives the sixth signaling, the sixth signaling includes D; and the UE determines the cyclic shift according to D a bit value; generating an uplink signal according to the target root indicator, comprising: generating an uplink signal according to the cyclic shift value and the target root indicator.
  • the uplink signal is a signal of an uplink control channel, or an uplink reference signal.
  • a third aspect of the embodiments of the present invention provides a method for transmitting a signal, including:
  • the UE determines the root indicator q; the UE generates an uplink signal according to the q and the cyclic shift value, and the cyclic shift value is determined by the UE according to the cyclic shift value set, and the cyclic shift value set is:
  • the set of cyclic shift values is determined according to q, D is a positive real number, and ⁇ 0 is a real number, which is an initial cyclic shift information. Indicates rounding down, N is the length of the sequence of the uplink signal; the UE transmits the uplink signal.
  • the root index q of the ZC sequence for generating the preamble does not have to be greater than the value limit of a value.
  • the root index of the ZC sequence for generating the preamble in the prior art must be greater than the maximum delay. Expansion. Therefore, the method of the embodiment of the present invention increases the number of available root indicators, thereby increasing the number of preambles.
  • the root index q or Kq of the ZC sequence corresponding to the q value of the smaller positive integer may be selected.
  • the cyclic shift value that the UE can use, and the cyclic shift value that the base station can allocate are based on the set Determined, where D is the value determined according to q.
  • the selection of the root indicator q must satisfy the value limit greater than one value, and for a root indicator q thus selected, the cyclic shift value that can be used can only take a part of the elements in the set. Ensure no inter-user interference. Therefore, the method of the embodiment of the present invention increases the number of available cyclic shift values, thereby further increasing the number of preamble sequences.
  • the method for transmitting the signal may further include: the UE receives the first signaling, where the first signaling includes D corresponding to q; and the UE determines a cyclic shift value according to D and q. set.
  • the method for transmitting the signal may further include: the UE receives the second signaling, where the second signaling includes a maximum delay spread ⁇ ; q and ⁇ determine a set of cyclic shift values; wherein the D used to determine the set of cyclic shift values is satisfied The positive real number, or the D used to determine the set of cyclic shift values is satisfied Positive real number, where ⁇ is a positive real number, n is a positive integer, and K is the length of the ZC sequence.
  • the method for transmitting the signal may further include: the UE receiving the third signaling, where the third signaling includes the cyclic shift value set.
  • the method for transmitting the signal may further include: receiving, by the UE, fourth signaling, where the fourth signaling includes initial cyclic shift information.
  • a fourth aspect of the embodiments of the present invention provides a method for receiving a signal, including:
  • the base station determines the root indicator q; the base station generates a signal sequence according to the q and the cyclic shift value, and the cyclic shift value is determined by the base station according to the cyclic shift value set, and the cyclic shift value set is:
  • the set of cyclic shift values is determined according to q, D is a positive real number, and ⁇ 0 is a real number, which is an initial cyclic shift information.
  • the representation is rounded down, N is the length of the sequence of the uplink signal; the base station receives the uplink signal; and the base station processes the uplink signal according to the signal sequence.
  • the root index q of the ZC sequence for generating the preamble does not have to be greater than the value limit of a value.
  • the root index of the ZC sequence for generating the preamble in the prior art must be greater than the maximum delay. Expansion. Therefore, the method of the embodiment of the present invention increases the number of available root indicators, thereby increasing the number of preambles.
  • the root index q or Kq of the ZC sequence corresponding to the q value of the smaller positive integer may be selected.
  • the cyclic shift value that the UE can use, and the cyclic shift value that the base station can allocate are based on the set Determined, where D is the value determined according to q.
  • the selection of the root indicator q must satisfy the value limit greater than one value, and for a root indicator q thus selected, the cyclic shift value that can be used can only take a part of the elements in the set. Ensure no inter-user interference. Therefore, the method of the embodiment of the present invention increases the number of available cyclic shift values, thereby further increasing the number of preamble sequences.
  • the method for receiving the signal may further include: the base station sends the first signaling, where the first signaling includes D corresponding to q.
  • the method for receiving the signal may further include: the base station sends the second signaling, where the second signaling includes ⁇ , and the ⁇ is used by the UE to determine the loop. a set of shift values; wherein the D used to determine the set of cyclic shift values is satisfied The positive real number, or the D used to determine the set of cyclic shift values is satisfied Positive real number, where ⁇ is a positive real number, n is a positive integer, and K is the length of the ZC sequence.
  • the method for receiving the signal may further include: the base station sends the third signaling, where the third signaling includes the cyclic shift value set.
  • the method for receiving the signal may further include: the base station sends the fourth signaling, where the fourth signaling includes initial cyclic shift information.
  • a fifth aspect of the embodiments of the present invention provides a base station, including:
  • the signal sequence is a sequence generated by the target ZC sequence
  • the root indicator of the target ZC sequence is the target root indicator
  • s is predefined; or, the base station further includes: a sending unit, configured to send the first signaling, where the first signaling includes s .
  • the sending unit is further configured to send the second signaling to the user equipment UE, where the second signaling includes a cyclic shift value, and the cyclic shift The value is associated with the UE.
  • the generating unit is specifically configured to generate a signal sequence according to the target root indicator and the cyclic shift value.
  • the sending unit is further configured to send, to the UE, third signaling, where the third signaling includes information about a cyclic shift value, and cyclically shifting The information of the value is associated with the UE.
  • the cyclic shift value is determined according to the cyclic shift value set, and any two cyclic shift values in the cyclic shift value set
  • the interval is greater than or equal to D; wherein D is satisfied
  • the positive real number, ⁇ is a positive real number, n is a positive integer, q is a positive integer less than or equal to s, A q or B q is the target root indicator, and N is the length of the sequence of the uplink signal.
  • is pre-defined; or, the sending unit is further configured to send fourth signaling, where the fourth signaling includes ⁇ .
  • n is predefined; or, the sending unit is further configured to send the fifth signaling, where the fifth signaling includes n.
  • the sending unit is further configured to send the sixth signaling, where the sixth signaling includes D.
  • the uplink signal is a signal of an uplink control channel, or an uplink reference signal.
  • a sixth aspect of the embodiments of the present invention provides a user equipment UE, including:
  • the sequence of the uplink signal is a sequence generated by the target ZC sequence
  • the root indicator of the target ZC sequence is the target root indicator
  • s is predefined; or, the UE further includes: a receiving unit, configured to receive the first signaling, where the first signaling includes s The UE determines the sequence indicator set according to the first signaling.
  • the method further includes: a receiving unit, configured to receive the second signaling, where the second signaling includes a cyclic shift value, a cyclic shift value, and The UE is associated.
  • the generating unit is specifically configured to generate an uplink signal according to the target root indicator and the cyclic shift value.
  • the method further includes: a receiving unit, configured to receive third signaling, where the third signaling includes information about a cyclic shift value, and cyclically shifting The information of the value is associated with the UE.
  • the cyclic shift value is determined according to the cyclic shift value set, and any two cyclic shift values in the cyclic shift value set
  • the interval is greater than or equal to D; wherein D is satisfied
  • the positive real number, ⁇ is a positive real number, n is a positive integer, q is a positive integer less than or equal to s, A q or B q is the target root indicator, and N is the length of the sequence of the uplink signal.
  • is predefined; or, the receiving unit is further configured to receive fourth signaling, where the fourth signaling includes ⁇ , determining unit And is further configured to determine a cyclic shift value according to ⁇ , q, and n; and the generating unit is configured to generate an uplink signal according to the cyclic shift value determined by the determining unit and the target root indicator.
  • n is predefined; or, the receiving unit is further configured to receive the fifth signaling, where the fifth signaling includes n, the determining unit And is further configured to determine a cyclic shift value according to ⁇ , q, and n; and the generating unit is configured to generate an uplink signal according to the cyclic shift value determined by the determining unit and the target root indicator.
  • the receiving unit is further configured to receive the sixth signaling, where the sixth signaling includes D, and the determining unit is further configured to receive according to the receiving unit The D determines the cyclic shift value; and the generating unit is configured to generate an uplink signal according to the cyclic shift value and the target root indicator determined by the determining unit.
  • the uplink signal is a signal of an uplink control channel, or an uplink reference signal.
  • a seventh aspect of the embodiments of the present invention provides a user equipment UE, including:
  • a determining unit configured to determine a root indicator q
  • a generating unit configured to generate an uplink signal according to the determined q and the cyclic shift value, where the cyclic shift value is determined by the UE according to the cyclic shift value set, and the cyclic shift
  • the set of values is: Wherein, the set of cyclic shift values is determined according to q, D is a positive real number, and ⁇ 0 is a real number, which is an initial cyclic shift information.
  • the representation is rounded down, N is the length of the sequence of the uplink signal, and the transmitting unit is configured to send the uplink signal generated by the generating unit.
  • the method further includes: a receiving unit, a receiving unit, configured to receive the first signaling, where the first signaling includes D corresponding to q, and the determining unit is further configured to receive, according to the receiving unit The received D and the determined q determine the set of cyclic shift values.
  • the method further includes: a receiving unit, a receiving unit, configured to receive the second signaling, the second signaling includes the ⁇ , and the determining unit is further used Determining a set of cyclic shift values according to q determined by the determining unit and ⁇ received by the receiving unit; wherein D for determining the set of cyclic shift values is satisfied The positive real number, or the D used to determine the set of cyclic shift values is satisfied Positive real number, where ⁇ is a positive real number, n is a positive integer, and K is the length of the ZC sequence.
  • the method further includes: a receiving unit, a receiving unit, configured to receive the third signaling, where the third signaling includes a cyclic shift value set.
  • the receiving unit is further configured to receive fourth signaling, where the fourth signaling includes initial cyclic shift information.
  • An eighth aspect of the embodiments of the present invention provides a base station, including:
  • a determining unit configured to determine a root indicator q
  • a generating unit configured to generate a signal sequence according to the determined q, and the cyclic shift value, wherein the cyclic shift value is determined by the base station according to the cyclic shift value set, and the cyclic shift
  • the set of values is: Wherein, the set of cyclic shift values is determined according to q, D is a positive real number, and ⁇ 0 is a real number, which is an initial cyclic shift information.
  • the representation is rounded down, N is the length of the sequence of the uplink signal, the receiving unit is configured to receive the uplink signal, and the processing unit is configured to process the uplink signal received by the receiving unit according to the signal sequence generated by the generating unit.
  • the method further includes: a sending unit, configured to send the first signaling, where the first signaling includes D corresponding to q.
  • the method further includes: a sending unit, configured to send the second signaling, where the second signaling includes ⁇ , where the user equipment determines the loop. a set of shift values; wherein the D used to determine the set of cyclic shift values is satisfied The positive real number, or the D used to determine the set of cyclic shift values is satisfied Positive real number, where ⁇ is a positive real number, n is a positive integer, and K is the length of the ZC sequence.
  • the method further includes: a sending unit, configured to send the third signaling, where the third signaling includes a cyclic shift value set.
  • the sending unit is further configured to send fourth signaling, where the fourth signaling includes initial cyclic shift information.
  • a ninth aspect of the embodiments of the present invention provides a base station, where the base station may include: at least one processor, a memory, a transceiver, and a bus;
  • At least one processor is coupled to the memory and the transceiver via a communication bus, the memory is configured to store a computer to execute instructions, and when the base station is in operation, the processor executes the memory stored computer to execute instructions to enable the base station to perform the first aspect or the first aspect
  • the method for receiving a signal according to any one of the fourth aspect or the possible implementation of the fourth aspect.
  • a tenth aspect of the embodiments of the present invention provides a UE, where the UE may include: at least one processor, a memory, a transceiver, and a bus;
  • At least one processor is coupled to the memory and the transceiver via a communication bus, the memory is configured to store computer execution instructions, and when the UE is running, the processor executes the memory stored computer execution instructions to enable the UE to perform the second aspect or the second aspect
  • the method for transmitting a signal according to any of the third aspect or the possible implementation of the third aspect.
  • a computer storage medium for storing computer software instructions for use by the base station, the computer software instructions comprising a program designed to perform the method for receiving the signals.
  • a computer storage medium for storing computer software instructions for use by the UE, the computer software instructions comprising a program designed to perform a transmitting method of the above signals.
  • FIG. 1 is a simplified schematic diagram of a system architecture to which an embodiment of the present invention is applied according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for transmitting a signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of sequence mapping according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of another method for transmitting a signal according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another UE according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another UE according to an embodiment of the present invention.
  • the base station may allocate a cyclic shift value (l 1 , l 2 ) satisfying l 1 mod N ⁇ l 2 mod N by assigning a root indicator of the same ZC sequence to different UEs, and achieving the same time-frequency domain resource.
  • a cyclic shift value (l 1 , l 2 ) satisfying l 1 mod N ⁇ l 2 mod N by assigning a root indicator of the same ZC sequence to different UEs, and achieving the same time-frequency domain resource.
  • the frequency offset may be larger than the subcarrier spacing used by the base station and the UE for communication, and thus, the root allocated to the UE according to the base station is caused.
  • the sequence obtained by the indicator has an additional cyclic shift in the time domain, so the base station needs to reserve more cyclic shift values for the UE.
  • the additional cyclic shift caused by the frequency deviation in the time domain will occupy 2 cycles. Shift position, these 2 cyclic shift positions need to be reserved for the UE1.
  • the base station allocates a cyclic shift value to other UEs, the additional cyclic shift due to the frequency deviation of the UE1, that is, the occupied two cyclic shift positions, may not be allocated any more.
  • the number of cyclic shift values that can be allocated is reduced, that is, the number of UEs supporting orthogonal code division multiplexing by cyclic shift is relatively small, so that the utilization of uplink resources is reduced.
  • the present invention provides a method for transmitting a signal, a receiving method, and a device.
  • the basic principle is: the base station determines the target root indicator from the sequence indicator set, and generates a signal sequence according to the target root indicator, the base station receives the uplink signal, and processes the uplink signal according to the generated signal sequence.
  • the sequence indicator set is ⁇ A 1 , B 1 , A 2 , B 2 , . . .
  • the representation is rounded down and K is the length of the ZC sequence.
  • the base station generates a signal sequence according to the target root indicator determined from the sequence indicator set, and processes the received uplink signal according to the generated signal sequence, because the sequence indicator set is ⁇ A 1 , B 1 , A 2 , B 2 ,...
  • a s , B s ⁇ , and s is greater than or equal to 1 and less than or equal to Integer, it does not contain as well as Or s is greater than or equal to 1 and less than or equal to Integer ratio a smaller positive integer, thereby solving the frequency deviation existing between the center frequency of the received signal of the UE and the center frequency of the base station transmitting signal, and supporting the cyclic shift when compared with the subcarrier spacing used by the base station and the UE for communication.
  • the frequency deviation existing between the center frequency of the signal received by the UE and the center frequency of the base station transmission signal is compared to that of the subcarrier spacing used by the base station and the UE for communication, and the orthogonal code division multiplexing by cyclic shift is supported.
  • the number of UEs is small.
  • the specific instructions are as follows:
  • the frequency deviation between the center frequency of the base station transmitting signal and the center frequency of all UE received signals in the cell managed by the base station is [-r ⁇ f, r ⁇ f], where ⁇ f is the subcarrier spacing used by the base station and the UE for communication.
  • the target root indicator determined by the base station is q
  • the length of the (frequency domain) signal sequence generated by the base station according to the target root indicator q is N.
  • the maximum frequency deviation r ⁇ f will result in a cyclic shift of the time domain of the (frequency domain) signal sequence after IDFT change Time units (each time unit is Seconds, where T is the length of time of the sequence of the time domain), the maximum frequency deviation -r ⁇ f will result in a cyclic shift of the time domain of the (frequency domain) signal sequence after IDFT change Time units, where n is or It is assumed that the cyclic shift range of the above-described time domain sequence caused by the channel delay spread of the UE is [0, ⁇ ].
  • the bit value which can be configured or signaled by the base station, means that the number of UEs supporting orthogonal code division multiplexing by cyclic shift is limited, and the cyclic shift value reserved for positive and negative frequency partial derivatives cannot be used. The efficiency of using uplink time-frequency resources is greatly reduced.
  • the UE when the UE is out of synchronization in the uplink, that is, when the uplink transmission is not synchronized with the base station, the UE needs to send the preamble to the base station, so that the base station determines the uplink timing information of the UE according to the preamble, and helps the UE perform uplink synchronization.
  • the preamble is a sequence of time domains generated by the ZC sequence.
  • a preamble may be generated by a ZC sequence in the time domain (with a root indicator u in the time domain) according to a cyclic shift value, or may be a ZC sequence in the frequency domain corresponding to the ZC sequence of the time domain (having a frequency domain)
  • a preamble generated by a ZC sequence in the frequency domain is taken as an example for description.
  • the UE may determine a root indicator of the ZC sequence and a cyclic shift value according to a predefined rule or signaling of the receiving base station, thereby generating a preamble. Since the UE is out of synchronization, the CP of the preamble is relatively long. In order to solve the problem that the energy efficiency caused by the CP is too low, the subcarrier spacing used by the UE to transmit the preamble is often small.
  • the root indicator of the ZC sequence needs to ensure that the cyclic shift caused by the frequency offset and the cyclic shift caused by the delay spread can be distinguished. Therefore, the LTE system constrains that the root index q of the ZC sequence used to generate the preamble must be greater than one value when satisfying 0 ⁇ q ⁇ K/2, for example, the root index q must be greater than the cyclic shift due to the maximum delay spread.
  • the root index of the ZC sequence used to generate the preamble is relatively limited.
  • the base station needs to assign different cyclic shift values to different UEs.
  • the cyclic shift caused by the frequency deviation of one UE and the cyclic shift caused by the delay spread need to be reserved for the UE, but cannot be allocated to other UEs. Therefore, the cyclic shift values that can be used are also relatively limited.
  • the number of preamble sequences that can be used is relatively limited.
  • the UE In some scenarios, although the UE is in an uplink out-of-synchronization state, only a small amount of information needs to be transmitted, and the base station is not required to obtain uplink timing information. In these scenarios, direct use of existing techniques will result in very limited number of preambles available. For example, the UE needs to switch to another cell due to mobility, or switch to an area covered by another Transmitter and Receiver Point (TRP) of the local cell. At this time, the UE needs to send a preamble to make the base station know its location in the network, so no uplink timing information is needed.
  • TRP Transmitter and Receiver Point
  • the root index of the ZC sequence for generating the preamble does not need to ensure that the additional cyclic shift caused by the frequency offset can be distinguished from the cyclic shift caused by the delay spread. Therefore, in these scenarios, the direct use of the prior art will result in a very limited number of preamble sequences available.
  • the embodiment of the present invention provides another A method for transmitting a signal and a method for receiving the same.
  • the basic principle is: the UE determines the root indicator q; the UE generates an uplink signal according to the q and the cyclic shift value, and the cyclic shift value is determined by the UE according to the cyclic shift value set, and the cyclic shift value set is:
  • the set of cyclic shift values is determined according to q, D is a positive real number, and ⁇ 0 is a real number, which is an initial cyclic shift information. Indicates rounding down, where N is the length of the sequence of upstream signals.
  • the root index q of the ZC sequence for generating the preamble does not have to be greater than the value limit of a value.
  • the root indicator of the ZC sequence for generating the preamble in the prior art must be greater than the maximum delay spread. Therefore, the method of the embodiment of the present invention increases the number of available root indicators, thereby increasing the number of preambles.
  • the root index q or Kq of the ZC sequence corresponding to the q value of the smaller positive integer may be selected.
  • the cyclic shift value that the UE can use is based on the set Determined, where D is the value determined according to q.
  • D is the value determined according to q.
  • the UE may select a cyclic shift value from the set according to a predefined rule.
  • the UE selects a cyclic shift value according to a predefined rule according to the order of all cyclic shift values in the set.
  • the UE may receive signaling sent by the base station, where the signaling includes a cyclic shift value of the UE.
  • the signaling can include any of the cyclic shift values in the set.
  • the method of the embodiment of the present invention increases the number of available cyclic shift values, thereby further increasing the number of preambles.
  • FIG. 1 is a simplified schematic diagram of a system architecture to which embodiments of the present invention may be applied.
  • the system architecture may include: a base station 11 and a UE 12.
  • the base station 11 may be a base station (BS) or a base station controller for wireless communication.
  • the base station 11 may specifically include a user plane base station and a control plane base station.
  • the base station 11 is a device deployed in the radio access network to provide wireless communication functions for the UE 12. Its main functions are: management of radio resources, compression of an Internet Protocol (IP) header, and user data flow. Encryption, selection of the Mobile Management Entity (MME) when the user equipment is attached, routing of user plane data to the Service Gateway (SGW), organization and transmission of paging messages, organization and transmission of broadcast messages, Configuration of measurement and measurement reports for mobility or scheduling purposes, and so on.
  • the base station 11 can include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station functions may vary, for example, in an LTE system, called an evolved base station (Evolved NodeB, eNB or eNodeB), in the third generation.
  • Evolved NodeB evolved NodeB
  • eNB evolved base station
  • gNB next generation wireless communication system
  • base station 11 may be other means of providing wireless communication functionality to UE 12.
  • a base station 11 a device that provides a wireless communication function for the UE 12 is referred to as a base station 11.
  • the UE 12 may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, Radio Access Network, RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent.
  • the network architecture of the present invention includes a UE 12 that is a mobile phone.
  • FIG. 2 is a schematic diagram of a composition of a base station according to an embodiment of the present invention.
  • the base station may include at least one processor 21, a memory 22, a transceiver 23, and a bus 24.
  • the processor 21 is a control center of the base station, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 21 is a central processing unit (CPU), may be an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • microprocessors Digital Signal Processors, DSPs
  • FPGAs Field Programmable Gate Arrays
  • the processor 21 can perform various functions of the base station by running or executing a software program stored in the memory 22 and calling data stored in the memory 22.
  • processor 21 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the base station can include multiple processors, such as processor 21 and processor 25 shown in FIG.
  • processors can be a single core processor (CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the memory 22 can be a Read-Only Memory (ROM) or other type of static storage device that can store static information and instructions, a Random Access Memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an Electrically Erasable Programmable Read-Only Memory (EEPROM), a Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • the memory 22 can exist independently and is coupled to the processor 21 via a bus 24.
  • the memory 22 can also be integrated with the processor 21.
  • the memory 22 is used to store a software program that executes the solution of the present invention, and is controlled by the processor 21.
  • the transceiver 23 is configured to communicate with other devices or communication networks, such as an Ethernet, a radio access network (RAN), a Wireless Local Area Networks (WLAN), and the like.
  • Transceiver 23 may include all or part of a baseband processor, and may also optionally include an RF processor.
  • the RF processor is used to transmit and receive RF signals
  • the baseband processor is used to implement processing of a baseband signal converted by an RF signal or a baseband signal to be converted into an RF signal.
  • the bus 24 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 2, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 2 does not constitute a limitation to a base station, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • FIG. 3 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the UE may include at least one processor 31, memory 32, transceiver 33, and bus 34.
  • the processor 31 can be a processor or a collective name for a plurality of processing elements.
  • processor 31 may be a general purpose CPU, or an ASIC, or one or more integrated circuits for controlling the execution of the program of the present invention, such as one or more DSPs, or one or more FPGAs.
  • the processor 31 can perform various functions of the UE by running or executing a software program stored in the memory 32 and calling data stored in the memory 32.
  • processor 31 may include one or more CPUs.
  • the processor 31 includes a CPU 0 and a CPU 1.
  • the UE may include multiple processors.
  • a processor 31 and a processor 35 are included.
  • Each of these processors can be a single-CPU or a multi-CPU.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • Memory 32 may be a ROM or other type of static storage device that may store static information and instructions, RAM or other types of dynamic storage devices that may store information and instructions, or may be EEPROM, CD-ROM or other optical disk storage, optical disk storage. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other media accessed, but not limited to this.
  • Memory 32 may be present independently and coupled to processor 31 via bus 34. The memory 32 can also be integrated with the processor 31.
  • the transceiver 33 is configured to communicate with other devices or communication networks, such as Ethernet, RAN, WLAN, and the like.
  • the transceiver 33 may include a receiving unit to implement a receiving function, and a transmitting unit to implement a transmitting function.
  • the bus 34 can be an ISA bus, a PCI bus or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 3, but it does not mean that there is only one bus or one type of bus.
  • the device structure shown in FIG. 3 does not constitute a limitation to the UE, and may include more or less components than those illustrated, or some components may be combined, or different component arrangements.
  • the UE may further include a battery, a camera, a Bluetooth module, a GPS module, a display screen, and the like, and details are not described herein.
  • FIG. 4 is a flowchart of a method for transmitting a signal according to an embodiment of the present invention. As shown in FIG. 4, the method may include:
  • the UE determines a target root indicator from the sequence indicator set.
  • the sequence indicator set may be ⁇ A 1 , B 1 , A 2 , B 2 , . . . , A s , B s ⁇ .
  • the sequence indicator set may also be a subset of ⁇ A 1 , B 1 , A 2 , B 2 , . . . , A s , B s ⁇ .
  • the subsets A i and B i appear in pairs.
  • the set of sequence indicators is ⁇ A 1 , B 1 , A 2 , B 2 ⁇
  • the set of sequence indicators is ⁇ A 1 , B 1 , A 4 , B 4 , A s , B s ⁇ .
  • K is the length of the ZC sequence.
  • K is the length of the ZC sequence referring to the number of elements contained in the ZC sequence being K.
  • the uplink signal may be a signal of an uplink control channel or an uplink reference signal.
  • the uplink reference signal may include at least one of the following: an uplink DMRS, an uplink SRS.
  • the specific process for the UE to determine the target root indicator may be:
  • the UE determines a set of sequence indicators.
  • the parameter s used to determine the set of sequence indices can be predefined.
  • the UE may receive the first signaling sent by the base station, where the first signaling includes the parameter s.
  • the base station may notify the UE of s explicitly or implicitly by using the first signaling. Explicitly notifying the UE that s refers to directly including the value of s in the first signaling, and implicitly notifying the UE that s refers to including the parameter related to s in the first signaling, and the parameter is used for Determine the value of s.
  • the UE may determine the target root indicator from the sequence indicator set.
  • the UE may determine the target root indicator from the set of sequence indicators according to a predefined rule.
  • the sequence generated by the ZC sequence whose root index is A i and B i is processed by IDFT, and the PAPR of the sequence in the time domain is also relatively small. Therefore, the UE can preferentially select A i or B i with a smaller value of i as the target root indicator, so that the PAPR of the signal transmitted in the time domain is smaller, which is beneficial to improving the transmitter efficiency of the UE.
  • the UE generates an uplink signal according to the target root indicator.
  • the sequence of the uplink signal is a sequence generated by the target ZC sequence
  • the root indicator of the target ZC sequence is the target root indicator
  • the specific process for the UE to generate an uplink signal according to the target root indicator may be:
  • the UE generates a target ZC sequence according to the target root indicator determined in step 401.
  • a q or B q be the target root indicator determined by the UE from the sequence indicator set.
  • the UE may generate a target ZC sequence in the frequency domain according to the following formula according to the determined target root indicator.
  • Z q ' (n) represents the generated target ZC sequence in the frequency domain
  • K represents the length of the ZC sequence
  • the UE will sequence The IDFT transform is performed to obtain a sequence of the corresponding time domain, and the sequence of the time domain is cyclically shifted by ⁇ units, and a sequence of the time domain after the IDFT transform of the sequence of the uplink signal is obtained.
  • the UE directly according to the formula according to the cyclic shift value Get the sequence of the upstream signal.
  • the cyclic shift value a may be a predefined fixed value or a value determined from a plurality of values by a predefined method.
  • the UE may directly generate a sequence of uplink signals according to the target root indicator and the cyclic shift value without generating an intermediate parameter: the target ZC sequence.
  • the UE may map the sequence of the uplink signals of length N to the equally spaced N subcarriers in the order of the subcarrier indices.
  • the UE may map the generated sequence of length N to N equally spaced intervals according to the order of the subcarrier indicators from large to small, or in descending order of the subcarrier index.
  • the embodiment of the present invention is not specifically limited herein.
  • the generated sequence of length N is mapped to the equally spaced N subcarriers in descending order of subcarrier indices.
  • the UE may receive the second signaling that is sent by the base station and includes the cyclic shift value, and generate an uplink signal according to the cyclic shift value and the target root indicator.
  • the sequence thus generates an upstream signal.
  • the base station may notify the UE of the cyclic shift value explicitly or implicitly by using the second signaling.
  • Explicitly notifying the UE of the cyclic shift value refers to directly including the value of the cyclic shift value in the second signaling, and implicitly notifying the UE that the cyclic shift value refers to the inclusion in the second signaling
  • the UE may receive the third signaling that is sent by the base station and includes information about the cyclic shift value, so as to facilitate the information according to the cyclic shift value and the target root indicator. Generate an upstream signal. That is, the UE may first determine a cyclic shift value according to the received information of the cyclic shift value, and then generate an uplink signal according to the determined cyclic shift value and the target root indicator.
  • the third signaling may specifically include indication information of a cyclic shift value.
  • the total cyclic shift value is divided into X shares, and the third signaling includes using the a-th copy, where a is an integer greater than or equal to 1 and less than or equal to X.
  • the value of a may be determined by the base station according to the cyclic shift value.
  • the base station determines a cyclic shift value according to the cyclic shift value set, where an interval of any two cyclic shift values in the cyclic shift value set is greater than or equal to D.
  • the base station can determine the value of a according to the selected cyclic shift values ⁇ and D. Where ⁇ 0 is the initial cyclic shift value.
  • ⁇ 0 may be a value determined by a predefined method, or the base station indicates to the UE by means of third signaling or other signaling.
  • D is a predefined value.
  • the UE may receive the sixth signaling sent by the base station, where the sixth signaling includes D.
  • the UE may determine the cyclic shift value according to the D included in the third signaling and the third signaling included in the third signaling.
  • the base station may notify the UE of D explicitly or implicitly through the sixth signaling. Explicitly notifying the UE that D refers to directly including the value of D in the sixth signaling, and implicitly notifying the UE that D refers to including the parameter related to D in the sixth signaling, and the parameter is used for Determine the value of D.
  • the UE may receive fourth signaling sent by the base station, where the fourth signaling includes ⁇ for determining D.
  • the UE can determine D according to ⁇ , q and n, and then determine the cyclic shift value according to the determined use D and the use of the a part included in the third signaling.
  • can also be predefined.
  • the base station may notify the UE of ⁇ explicitly or implicitly through the fourth signaling. Explicitly notifying the UE that ⁇ refers to the value of ⁇ directly included in the fourth signaling, and implicitly notifying the UE that ⁇ refers to including a parameter related to ⁇ in the fourth signaling, the parameter is used for Determine the value of ⁇ .
  • the UE may receive the fifth signaling sent by the base station, where the fifth signaling includes n for determining D.
  • the UE can determine D according to ⁇ , q and n, and then determine the cyclic shift value according to the determined use D and the use of the a part included in the third signaling.
  • n can also be predefined.
  • the base station may notify the UE of n explicitly or implicitly through the fifth signaling. Explicitly notifying the UE that n refers to directly including the value of n in the first signaling, and implicitly notifying the UE that n refers to including the parameter related to n in the first signaling, and the parameter is used for Determine the value of n.
  • the third signaling, the fourth signaling, the fifth signaling, and the sixth signaling may be the same signaling.
  • the UE sends an uplink signal.
  • the base station determines a target root indicator from the sequence indicator set.
  • the specific process for the base station to determine the target root indicator may be:
  • the base station determines a set of sequence indicators.
  • the sequence indicator set may be ⁇ A 1 , B 1 , A 2 , B 2 , . . . , A s , B s ⁇ .
  • the sequence indicator set may also be a subset of ⁇ A 1 , B 1 , A 2 , B 2 , . . . , A s , B s ⁇ .
  • the subsets A i and B i appear in pairs.
  • the set of sequence indicators is ⁇ A 1 , B 1 , A 2 , B 2 ⁇
  • the set of sequence indicators is ⁇ A 1 , B 1 , A 4 , B 4 , A s , B s ⁇ .
  • the parameter s used to determine the set of sequence indices may be predefined; or it may be determined by the base station. Moreover, when s is not predefined, the base station needs to send the first signaling to the UE for indicating s to the UE.
  • the specific process by which the base station determines s may be: the base station acquires the maximum frequency offset and the maximum delay spread, and determines s according to the maximum frequency offset and the maximum delay spread.
  • the maximum frequency deviation is the maximum frequency deviation between the center frequency of the base station transmitting signal and the center frequency of all UE received signals in the cell managed by the base station.
  • the maximum frequency deviation may be predefined; or it is estimated by the base station; or, the base station determines according to the subcarrier spacing used by the uplink DMRS or the uplink SRS sent by the UE, for example, if the subcarrier spacing is large, the system pairs
  • the frequency deviation sensitivity of the UE is low, so the maximum frequency deviation that can be allowed is relatively large, so the maximum frequency deviation determined according to the subcarrier spacing used by the uplink DMRS or the uplink SRS sent by the UE may be determined.
  • the maximum delay spread refers to the maximum value of the cyclic shift value caused by the delay spread caused by multipath.
  • the maximum value of the cyclic shift value caused by the delay spread may be estimated by the base station, or may be predefined, or determined by the base station based on information such as the radius of the served cell.
  • Base station can be based on inequality It is determined that s, s is the maximum value of q satisfying the inequality, and q is an integer greater than or equal to zero and less than or equal to K/2.
  • n is or r is equal to the ratio of the maximum frequency deviation to the subcarrier spacing ⁇ f used by the base station and the UE for communication.
  • N is the length of the preset signal sequence, and K is the length of the ZC sequence, N ⁇ K.
  • is the maximum delay spread.
  • D is the interval between cyclic shift values when ZC sequences of the same root indicator are used by different UEs.
  • the frequency deviation between the center frequency of the base station transmitting signal and the center frequency of all UE receiving signals in the cell managed by the base station is [-r ⁇ f, r ⁇ f], and the target root indicator determined by the base station is q, and q is greater than or equal to zero or less than or equal to K.
  • An integer of /2 the maximum frequency deviation r ⁇ f will result in a cyclic shift of the time domain after the IDFT change.
  • the maximum frequency deviation -r ⁇ f will result in a cyclic shift of the time domain after the IDFT change
  • Time unit assumptions It is assumed that the range of the cyclic shift value caused by the delay spread is [0, ⁇ ].
  • the base station determines the target root indicator from the set of sequence indicators.
  • the base station generates a signal sequence according to the target root indicator.
  • the signal sequence is a sequence generated by the target ZC sequence
  • the root indicator of the target ZC sequence is the target root indicator
  • the specific process for the base station to generate the information sequence according to the target root indicator may be:
  • the base station generates a target ZC sequence based on the target root indicator.
  • step 405 the specific implementation process of generating the target ZC sequence according to the target root indicator in step 405 is similar to the specific implementation process of generating the target ZC sequence according to the target root indicator in step 402 of the embodiment of the present invention, and the embodiment of the present invention does not More details will be described.
  • the base station uses the target ZC sequence itself as a sequence generated by the ZC sequence, or truncates or cyclically expands the target ZC sequence to obtain a sequence generated by the target ZC sequence. Further, the base station obtains a signal sequence according to the sequence generated by the target ZC sequence and the cyclic shift value.
  • the specific implementation process of the signal sequence obtained by the base station according to the cyclic shift value and the sequence generated by the target ZC sequence is similar to the specific implementation process in the step 402 of the embodiment of the present invention, and the embodiments of the present invention are not described in detail herein.
  • the base station directly generates a signal sequence based on the target root sequence and the cyclic shift value without generating an intermediate variable: the target ZC sequence.
  • the base station may send the second signaling to the UE, where the second signaling includes a cyclic shift, in order to enable the different UEs to multiplex the same time-frequency domain resources without interference.
  • a bit value, the cyclic shift value being associated with the UE, so that the UE can be used to generate an uplink signal according to the cyclic shift value and the determined target root indicator.
  • the base station may send, to the UE, third signaling, where the third signaling includes information of a cyclic shift value, where the information of the cyclic shift value is associated with the UE, so that the UE can
  • the information of the cyclic shift value and the determined target root indicator generate an uplink signal.
  • the cyclic shift value is determined according to the cyclic shift value set, and the interval between any two cyclic shift values in the cyclic shift value set is greater than or equal to D, and D is satisfied. Positive number.
  • D is predefined, or, the base station may notify the UE by using the sixth signaling, or the base station may send the fourth signaling to the UE, where the fourth signaling includes ⁇ for determining D, or the base station may send the UE to the UE.
  • a fifth signaling is sent, the fifth signaling including n for determining D.
  • the base station may determine n according to the frequency offset before the base station notifies n by the fifth signaling.
  • the base station indicates ⁇ through the fourth signaling
  • the base station may determine ⁇ according to the delay spread before the base station notifies ⁇ through the fifth signaling.
  • can also be predefined.
  • n can also be predefined.
  • the method for determining the information of the cyclic shift value included in the third signaling is similar to the specific implementation process in the step 402 of the embodiment of the present invention, and the embodiments of the present invention are not described in detail herein.
  • the base station receives an uplink signal.
  • the base station processes the uplink signal according to the signal sequence.
  • the uplink signal may be processed according to the generated signal sequence.
  • An exemplary base station processing the uplink signal based on the signal sequence can be used to obtain channel estimation results or for signal detection.
  • the base station can correlate the uplink signals according to the signal sequence.
  • the signals received on the N subcarriers can be processed by the base station as follows:
  • the first signaling, the second signaling, the third signaling, the fourth signaling, the fifth signaling, and the sixth signaling may be high layer signaling, such as radio resources. Control (Radio Resource Control, RRC); or Multiple Access Control Control Element (MAC CE); or downlink control signaling carrying Downlink Control Information (DCI).
  • RRC Radio Resource Control
  • MAC CE Multiple Access Control Control Element
  • DCI Downlink Control Information
  • the base station In the signal transmission method provided by the embodiment of the present invention, the base station generates a signal sequence according to the target root indicator determined from the sequence indicator set, and processes the received uplink signal according to the generated signal sequence. Since the sequence index set is ⁇ A 1 , B 1 , A 2 , B 2 , ..., A s , B s ⁇ , and s is greater than or equal to 1 and less than or equal to Integer, it does not contain as well as Root indicator of time, or s is greater than or equal to 1 and less than or equal to Integer ratio a smaller positive integer, thereby solving the frequency deviation existing between the center frequency of the received signal of the UE and the center frequency of the base station transmitting signal, and supporting the cyclic shift when compared with the subcarrier spacing used by the base station and the UE for communication.
  • the method provided by the embodiment of the present invention further passes the inequality Constrains the relationship between the root indicator and the interval D.
  • jointly determining s (the upper limit of q satisfying the above inequality) and the interval D according to the above inequality can ensure that the total cyclic shift of the UE due to frequency deviation and delay spread can be within the interval D, thereby not being An additional cyclic shift is taken outside the cyclic shift interval to ensure that there is no interference between different UEs.
  • the value of s can be further limited, such as a smaller value such as 1, 2 or 3.
  • the interval D satisfying the above inequality can be made small.
  • a smaller D means that more cyclic shift values can be allocated to different UEs. Therefore, the number of UEs that can be orthogonally code-multiplexed by cyclic shift can be supported by embodiments of the present invention. If the root indicator corresponding to the smaller q is currently unassignable, the base station may preferentially allocate other relatively small q values according to the embodiment of the present invention.
  • the D satisfying the above inequality is relatively small, and the base station is relatively small.
  • the method of the present invention can still improve the number of UEs that are cyclically shifted by orthogonal code division multiplexing.
  • FIG. 6 is a flowchart of another method for transmitting a signal according to an embodiment of the present invention. As shown in FIG. 6, the method may include:
  • the UE determines the root indicator q.
  • K is the length of the ZC sequence.
  • the description of the method is based on the frequency domain root index q. Alternatively, the description of the method can also be performed according to the corresponding time domain root indicator p.
  • the UE generates an uplink signal according to the q and the cyclic shift value.
  • the cyclic shift value is determined by the UE according to the cyclic shift value set.
  • the set of cyclic shift values is The set of cyclic shift values is determined according to q, D is a positive real number, and ⁇ 0 is a real number, which is an initial cyclic shift information. Indicates rounding down, where N is the length of the sequence of upstream signals.
  • q can also belong to the set ⁇ A 1 , B 1 , A 2 , B 2 ,..., A s , B s ⁇ , or, ⁇ A 1 , B 1 , A 2 , B 2 ,..., A s , B A subset of s ⁇ , the subsets A i , B i appear in pairs.
  • a i i(mod K)
  • B i -i(mod K)
  • a i , B i are the root indices of the ZC sequence
  • i is an integer greater than or equal to 1 and less than or equal to s
  • s is greater than Or equal to 1 and less than or equal to Integer, Indicates the rounding.
  • the UE may select a cyclic shift value from the set according to a predefined rule. For example, the UE selects a cyclic shift value according to a predefined rule according to the order of all cyclic shift values in the set.
  • the UE may receive signaling sent by the base station, where the signaling includes a cyclic shift value of the UE.
  • the signaling can include any of the cyclic shift values in the set.
  • the UE may first cyclically shift the value set by:
  • the UE may receive the first signaling sent by the base station, where the first signaling includes D corresponding to q.
  • the UE can determine a set of cyclic shift values according to D.
  • the first signaling may notify each of the plurality of q corresponding Ds. For example, the first signaling may inform (q 1 , D 1 ), (q 2 , D 2 ), (q 3 , D 3 ).
  • the UE determines the root indicator q ⁇ ⁇ q 1 , q 2 , q 3 ⁇ used for transmitting the uplink signal according to a predefined rule, so as to know the interval D used this time.
  • the possible value of D corresponding to each root indicator q is a predefined one or more values, for example, may be predefined by a table, and the first signaling may include multiple possibilities of a corresponding D of q One of the values.
  • the first signaling may be RRC, or a MAC CE, or downlink control signaling that carries DCI.
  • the UE may receive the second signaling sent by the base station, where the second signaling includes ⁇ , where ⁇ is a parameter related to the maximum delay spread, for example, a cyclic shift value brought by the maximum delay spread. Accordingly, the UE can determine the set of cyclic shift values based on q and ⁇ .
  • n is a positive integer and K is the length of the ZC sequence. In one implementation, n is predefined. In another implementation manner, n may be notified by the base station to the UE by signaling.
  • the second signaling may be RRC, or a MAC CE, or downlink control signaling that carries DCI.
  • the UE may receive the third signaling sent by the base station, where the third signaling includes a cyclic shift value set corresponding to q
  • the third signaling may be RRC, or a MAC CE, or downlink control signaling that carries DCI.
  • determining the cyclic shift value set requires initial cyclic shift information.
  • the initial cyclic shift information may be predefined, or the UE may receive the fourth signaling sent by the base station, where the fourth signaling includes initial cyclic shift information.
  • the fourth signaling may be RRC, or a MAC CE, or downlink control signaling that carries DCI.
  • the UE sends an uplink signal.
  • the base station determines a root indicator q.
  • the base station generates a signal sequence according to the q and the cyclic shift value.
  • the base station may send parameters for determining a set of cyclic shift values to the UE in the following manner:
  • Manner 1 The base station sends the first signaling to the UE, where the first signaling includes D corresponding to q.
  • the D corresponding to different q is not the same.
  • Manner 2 The base station sends a second signaling to the UE, where the second signaling includes ⁇ .
  • may be predefined, or estimated by the base station, or obtained by the base station based on information such as the radius of the served cell.
  • Manner 3 The base station sends a third signaling to the UE, where the third signaling includes a cyclic shift value set corresponding to q
  • determining the cyclic shift value set requires initial cyclic shift information.
  • the initial cyclic shift information may be predefined, or the base station sends a fourth signaling to the UE, the fourth signaling including initial cyclic shift information.
  • the base station receives an uplink signal.
  • the base station processes the uplink signal according to the signal sequence.
  • steps 501 to 507 in the embodiment of the present invention is similar to the specific description of the corresponding content in the step 401 to the step 407 in another embodiment of the present invention.
  • steps 501 to 507 in the embodiment of the present invention For a detailed description, refer to the detailed description of the corresponding content in the step 401-step 407 in another embodiment, and the embodiments of the present invention are not described herein again.
  • the root index q of the ZC sequence for generating the preamble does not have to be greater than the value limit of a value.
  • the root indicator of the ZC sequence for generating the preamble in the prior art must be greater than the maximum delay spread. Therefore, the method of the embodiment of the present invention increases the number of available root indicators, thereby increasing the number of preambles.
  • the root index q or Kq of the ZC sequence corresponding to the q value of the smaller positive integer may be selected.
  • the selection of the root indicator q must satisfy the value limit greater than one value, and for a root indicator q thus selected, the cyclic shift value that can be used can only take a part of the elements in the set. Ensure no inter-user interference. Therefore, the method of the embodiment of the present invention increases the number of available cyclic shift values, thereby further increasing the number of preamble sequences.
  • a cyclic shift value that the UE can use, and a cyclic shift value that the base station can allocate are a set. All the elements mean that the number of UEs supporting cyclic code division orthogonal code division multiplexing is more on the same time-frequency resource, and the use efficiency of uplink time-frequency resources is improved.
  • each network element such as a base station and a UE, in order to implement the above functions, includes hardware structures and/or software modules corresponding to each function.
  • a network element such as a base station and a UE
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may divide the function modules of the base station and the UE according to the foregoing method.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 7 is a schematic diagram showing a possible composition of the base station involved in the foregoing and the embodiment.
  • the base station may include: determining unit 61, generating Unit 62, receiving unit 63, and processing unit 64.
  • the determining unit 61 is configured to support the base station to perform step 404 in the method for transmitting the signal shown in FIG. 4, and step 504 in the method for transmitting the signal shown in FIG. 6.
  • the generating unit 62 is configured to support step 405 in the method for transmitting the signal shown in FIG. 4 by the base station, and step 505 in the method for transmitting the signal shown in FIG. 6.
  • the receiving unit 63 is configured to support the base station to perform step 406 in the method for transmitting the signal shown in FIG. 4, and step 506 in the method for transmitting the signal shown in FIG. 6.
  • the processing unit 64 is configured to support step 407 in the method for transmitting the signal shown in FIG. 4 by the base station, and step 507 in the method for transmitting the signal shown in FIG. 6.
  • the base station may further include: a sending unit 65.
  • the sending unit 65 is configured to support the base station to perform the first signaling, the second signaling, the third signaling, the fourth signaling, the fifth signaling, and the sixth signaling, in the embodiment corresponding to FIG. 4 and FIG. process.
  • the base station provided by the embodiment of the present invention is configured to perform the transmission method of the foregoing signal, so that the same effect as the transmission method of the above signal can be achieved.
  • FIG. 8 shows another possible composition diagram of the base station involved in the above embodiment.
  • the base station includes a processing module 71 and a communication module 72.
  • the processing module 71 is configured to perform control and management on the action of the base station.
  • the processing module 71 is configured to support the base station to perform step 404, step 405, and step 407 in FIG. 4, step 504, step 505, step 507, and FIG. / or other processes for the techniques described herein.
  • Communication module 72 is used to support communication between the base station and other network entities, such as with the functional modules or network entities shown in FIG. 1, FIG. 3, FIG. 9, or FIG.
  • the base station may further include a storage module 73 for storing program code and data of the server.
  • the processing module 71 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 72 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 73 can be a memory.
  • the base station involved in the embodiment of the present invention may be the base station shown in FIG.
  • FIG. 9 is a schematic diagram showing a possible composition of the UE involved in the foregoing embodiment.
  • the UE may include: determining unit 81, generating Unit 82, transmitting unit 83.
  • the determining unit 81 is configured to support step 401 in the method for transmitting the signal shown in FIG. 4, and step 501 in the method for transmitting the signal shown in FIG. 6.
  • the generating unit 82 is configured to support step 402 in the method for transmitting the signal shown in FIG. 4, and step 502 in the method for transmitting the signal shown in FIG.
  • the transmitting unit 83 is configured to support step 403 in the method for transmitting the signal shown in FIG. 4, and step 503 in the method for transmitting the signal shown in FIG. 6.
  • the UE may further include: a receiving unit 84.
  • the receiving unit 84 is configured to support the UE to perform the first signaling, the second signaling, the third signaling, the fourth signaling, the fifth signaling, and the sixth signaling in the embodiment corresponding to FIG. 4 and FIG. process.
  • the UE provided by the embodiment of the present invention is configured to perform the transmission method of the foregoing signal, so that the same effect as the transmission method of the above signal can be achieved.
  • FIG. 10 shows another possible composition diagram of the UE involved in the above embodiment.
  • the UE includes a processing module 91 and a communication module 92.
  • the processing module 91 is configured to control and manage the action of the UE.
  • the communication module 92 is for supporting communication between the UE and other network entities, such as communication with the functional modules or network entities shown in FIG. 1, FIG. 2, FIG. 7, or FIG.
  • the UE may further include a storage module 93 for storing program codes and data of the terminal.
  • the processing module 91 can be a processor or a controller. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 92 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 93 can be a memory.
  • the terminal device When the processing module 91 is a processor, the communication module 92 is a transceiver, and the storage module 93 is a memory, the terminal device according to the embodiment of the present invention may be the terminal device shown in FIG.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used.
  • the combination may be integrated into another device, or some features may be ignored or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a readable storage medium.
  • the technical solution of the embodiments of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a device (which may be a microcontroller, chip, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

本发明实施例公开了一种信号的接收方法,发射方法及设备,涉及通信领域,解决了在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题。具体方案为:基站从序列指标集合中确定目标根指标;其中,序列指标集合为{A1,B1,A2,B2,…,As,Bs},Ai=i(mod K),Bi=-i(mod K),Ai、Bi为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于LK/2」-1的整数,L 」表示下取整,K是ZC序列的长度;基站根据目标根指标生成信号序列;基站接收上行信号;基站根据信号序列对上行信号进行处理。本发明实施例用于信号的传输过程中。

Description

一种信号的发射方法,接收方法及设备
本申请要求于2017年01月26日提交中国专利局、申请号为201710064247.3、申请名称为“一种信号的发射方法,接收方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,尤其涉及一种信号的发射方法、接收方法及设备。
背景技术
在无线通信系统中,用户设备(User Equipment,UE)向基站发送导频序列,基站可以通过对导频序列的检测,获知UE的信道状态信息,并利用该信道状态信息对该UE发送的数据进行检测。ZC(Zadoff-Chu)序列是常幅度零自相关的序列。将ZC序列生成的序列调制在频域上,然后经过离散傅里叶反变换(Inverse Discrete Fourier Transform,IDFT)后,得到的时域的序列具有较低的峰均比(Peak average power ratio,PAPR)。因此,相比于使用具有较高峰均比的序列,使用ZC序列生成的序列作为导频序列有助于提高UE的发射机功率效率。ZC序列生成的序列可以是该ZC序列本身,或是将该ZC序列通过截断或者循环扩充生成的序列。目前,ZC序列已被广泛应用于长期演进(Long Term Evolution,LTE)无线通信系统中作为导频序列。具体的可以应用于LTE中的上行信号,例如,利用ZC序列生成的序列作为上行探测参考信号(Sounding Reference Signals,SRS),以及上行解调参考信号(DeModulation Reference Signal,DMRS)。ZC序列生成的序列也可以作为上行控制信道的调制序列,即采用ZC序列生成的序列对待发送的符号进行序列调制,并将序列调制后的信息承载在上行控制信道的时频资源上。在LTE系统中,ZC序列也可以用于生成前导码。前导码用于UE发起上行随机接入,使基站获取UE的上行定时信息,帮助UE达到上行同步。
根据一个根指标,可以确定频域上的一个ZC序列。进一步,通过对由该ZC序列生成的序列进行不同的循环移位,可以得到不同的序列。将频域上的一个ZC序列生成的序列进行循环移位的含义是将该ZC序列生成的序列进行IDFT变换得到的时域的序列进行(时域的)循环移位。令序列z(n)(n=0,...,N-1)表示一个由ZC序列生成的长度为N的频域的序列,则由ZC序列生成的序列的性质可知:将该频域的序列z(n)(n=0,...,N-1)首先进行IDFT变换得到对应的时域的序列,再对该时域的序列进行 l个单位的循环移位,等效于首先在频域上对该序列z(n)进行相位旋转得到序列
Figure PCTCN2018074043-appb-000001
然后对该相位旋转后的序列
Figure PCTCN2018074043-appb-000002
进行IDFT变换。其中,l是实数。针对同一个生成的序列,当两个循环移位值(l 1,l 2)之间满足l 1mod N≠l 2mod N时,由该生成的序列根据循环移位值l 1,l 2分别进行循环移位后的两个(时域的)序列之间是正交的。其中,mod为模运算符,模N之后的余数范围为0~N-1。因此,在现有技术中,基站可以为不同的UE分配同一个ZC序列的根指标,同时分配满足l 1mod N≠l 2mod N的循环移位值(l 1,l 2)。这样,不同的UE可以在相同的时频域资源上,发射根据相同的ZC序列的根指标和基站分配给自己的循 环移位值生成的序列,如上行SRS、上行DMRS、上行控制信道的调制序列或前导码,且不会产生用户间干扰,从而达到在相同时频域资源上复用多个UE的目的。
现有技术中至少存在如下问题:在实际应用场景中,UE接收信号的中心频率和基站发射信号的中心频率之间会存在频率偏差。当频率偏差相较于基站和UE通信使用的子载波间隔比较大时,该频率偏差会导致根据基站分配给UE的根指标得到的序列在时域上有额外的循环移位,因此,基站需要预留更多的循环移位值给该UE。这样,在频率偏差相较于基站和UE通信使用的子载波间隔比较大时,为了保证采用相同时频域资源发射序列的不同UE之间不会产生干扰,则会导致能够分配的循环移位值的数量减少,即导致支持通过循环移位正交码分复用的UE数比较少,使得上行资源的利用率降低。
发明内容
本发明实施例提供一种信号的发射方法、接收方法及设备,解决了在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题。
为达到上述目的,本发明实施例采用如下技术方案:
本发明实施例的第一方面,提供一种信号的接收方法,包括:
基站从序列指标集合中确定目标根指标;其中,序列指标集合为{A 1,B 1,A 2,B 2,…,A s,B s},A i=i(mod K),B i=-i(mod K),A i、B i为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于 的整数,
Figure PCTCN2018074043-appb-000004
表示下取整,K是ZC序列的长度;基站根据目标根指标生成信号序列;基站接收上行信号;基站根据信号序列对上行信号进行处理。
本发明是实施例提供的信号的接收方法,基站根据从序列指标集合中确定出的目标根指标生成信号序列,并根据生成的信号序列对接收的上行信号进行处理。由于序列指标集合为{A 1,B 1,A 2,B 2,…,A s,B s},且s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000005
的整数,其并不包含
Figure PCTCN2018074043-appb-000006
以及
Figure PCTCN2018074043-appb-000007
或者s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000008
的整数中比
Figure PCTCN2018074043-appb-000009
更小的正整数,从而解决了在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题。
结合第一方面,在一种可能的实现方式中,信号序列是由目标ZC序列生成的序列,目标ZC序列的根指标是目标根指标。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,s是预定义的;或者,该信息的接收方法还可以包括:基站发送第一信令,该第一信令包含s。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的接收方法还可以包括:基站向UE发送第二信令,该第二信令包含循环移位值,循环移位值与UE相关联。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,基站根据目标根指标生成信号序列,具体的可以包括:基站根据目标根指标和循环移位值生成信号序列。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的接 收方法还可以包括:基站向UE发送第三信令,该第三信令包含循环移位值的信息,循环移位值的信息与UE相关联。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,循环移位值是根据循环移位值集合确定的,循环移位值集合中的任意两个循环移位值的间隔大于或等于D;其中,D是满足
Figure PCTCN2018074043-appb-000010
的正实数,τ是正实数,n是正整数,q是小于或等于s的正整数,A q或B q是目标根指标,N是上行信号的序列的长度。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,τ是预先义的;或者,该信号的接收方法还可以包括:基站发送第四信令,该第四信令包含τ。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,n是预定义的;或者,该信号的接收方法还可以包括:基站发送第五信令,该第五信令包含n。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的接收方法还可以包括:基站发送第六信令,该第六信令包含D。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,上行信号为上行控制信道的信号,或者上行参考信号。
本发明实施例的第二方面,提供一种信号的发射方法,包括:
UE从序列指标集合中确定目标根指标;其中,序列指标集合为{A 1,B 1,A 2,B 2,…,A s,B s},A i=i(mod K),B i=-i(mod K),A i、B i为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000011
的整数,
Figure PCTCN2018074043-appb-000012
表示下取整,K是ZC序列的长度;UE根据目标根指标生成上行信号;UE发送上行信号。
本发明实施例提供的信号的发射方法,UE根据从序列指标集合中确定出的目标根指标生成上行信号,并发送上行信号。由于序列指标集合为{A 1,B 1,A 2,B 2,…,A s,B s},且s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000013
的整数,其并不包含
Figure PCTCN2018074043-appb-000014
以及
Figure PCTCN2018074043-appb-000015
或者s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000016
的整数中比
Figure PCTCN2018074043-appb-000017
更小的正整数,从而解决了在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题。
结合第二方面,在一种可能的实现方式中,上行信号的序列是由目标ZC序列生成的序列,目标ZC序列的根指标是目标根指标。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,s是预定义的;或者,该信号的发射方法还可以包括:UE接收第一信令,第一信令包含s,UE根据第一信令确定序列指标集合。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第二信令,第二信令包含循环移位值,循环移位值与UE相关联。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,UE根据目标根指标生成上行信号,具体的可以包括:UE根据目标根指标和循环移位值生成上行信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的发 射方法还可以包括:UE接收第三信令,第三信令包含循环移位值的信息,循环移位值的信息与UE相关联。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,循环移位值是根据循环移位值集合确定的,循环移位值集合中的任意两个循环移位值的间隔大于或等于D;其中,D是满足
Figure PCTCN2018074043-appb-000018
的正实数,τ是正实数,n是正整数,q是小于或等于s的正整数,A q或B q是目标根指标,N是上行信号的序列的长度。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,τ是预定义的;或者,该信号的发射方法还可以包括:UE接收第四信令,第四信令包含τ,UE根据τ、q和n确定循环移位值;根据目标根指标生成上行信号,包括:根据循环移位值和目标根指标生成上行信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,n是预定义的;或者,该信号的发射方法还可以包括:UE接收第五信令,第五信令包含n,UE根据τ、q和n确定循环移位值;根据目标根指标生成上行信号,包括:根据循环移位值和目标根指标生成上行信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第六信令,第六信令包含D;UE根据D确定循环移位值;根据目标根指标生成上行信号,包括:根据循环移位值和目标根指标生成上行信号。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,上行信号为上行控制信道的信号,或者上行参考信号。
本发明实施例的第三方面,提供一种信号的发射方法,包括:
UE确定根指标q;UE根据q和循环移位值生成上行信号,循环移位值是UE根据循环移位值集合确定的,循环移位值集合为:
Figure PCTCN2018074043-appb-000019
其中,循环移位值集合是根据q确定的,D是正实数,α 0是实数,是初始循环移位信息,
Figure PCTCN2018074043-appb-000020
表示下取整,N是上行信号的序列的长度;UE发送上行信号。
本发明实施例提供的信号的发射方法,生成前导码的ZC序列的根指标q没有必须大于一个值的取值限制,例如已有技术中生成前导码的ZC序列的根指标必须大于最大时延扩展。因此,本发明实施例的方法增加了可用的根指标的个数,从而增加了前导码的个数。例如,在已有技术中,当考虑到基站与UE有频率偏差时,q=1不可以使用。而在本发明实施例的方法中,即使基站与UE有频率偏差,q=1也可以使用。一般的,可以选取比较小的正整数的q值对应的ZC序列的根指标q或者K-q。此外,针对选择的一个根指标q,UE可以使用的循环移位值,以及基站可以分配的循环移位值是根据集合
Figure PCTCN2018074043-appb-000021
确定的,其中D是根据q所确定的值。通过根据q合理确定D的取值,可以确保UE由于频率偏差和时延扩展带来的循环移位能够在基站分配的循环移位间隔内,不会在基站分配的循环移位间隔外再占用额外的循环移位,从而可以保证没有用户间干扰。而在已有技术中,根指标q的选取必须满足大于一个值的取值限制,且针对这样选择的一个根指标q,可以使用的循环移位值只能取该集合中的一部分元素,才可以保证没有用户间干扰。因此,本 发明实施例的方法增加了可用的循环移位值的个数,从而进一步增加了前导码序列的个数。
结合第三方面,在一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第一信令,第一信令包含q对应的D;UE根据D和q确定循环移位值集合。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,不同的q对应的D不相同。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第二信令,第二信令包含最大时延扩展τ;UE根据q和τ确定循环移位值集合;其中,用于确定循环移位值集合的D是满足
Figure PCTCN2018074043-appb-000022
的正实数,或者,用于确定循环移位值集合的D是满足
Figure PCTCN2018074043-appb-000023
的正实数,其中,τ为正实数,n是正整数,K是ZC序列的长度。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第三信令,第三信令包含循环移位值集合。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的发射方法还可以包括:UE接收第四信令,第四信令包含初始循环移位信息。
结合第三方面和上述可能的实现方式,在另一种可能的实现方式中,q属于集合{A 1,B 1,A 2,B 2},其中,A i=i(mod K),B i=-i(mod K),i为1或2。
本发明实施例的第四方面,提供一种信号的接收方法,包括:
基站确定根指标q;基站根据q和循环移位值生成信号序列,循环移位值是基站根据循环移位值集合确定的,循环移位值集合为:
Figure PCTCN2018074043-appb-000024
其中,循环移位值集合是根据q确定的,D是正实数,α 0是实数,是初始循环移位信息,
Figure PCTCN2018074043-appb-000025
表示下取整,N是上行信号的序列的长度;基站接收上行信号;基站根据信号序列对上行信号进行处理。
本发明实施例提供的信号的接收方法,生成前导码的ZC序列的根指标q没有必须大于一个值的取值限制,例如已有技术中生成前导码的ZC序列的根指标必须大于最大时延扩展。因此,本发明实施例的方法增加了可用的根指标的个数,从而增加了前导码的个数。例如,在已有技术中,当考虑到基站与UE有频率偏差时,q=1不可以使用。而在本发明实施例的方法中,即使基站与UE有频率偏差,q=1也可以使用。一般的,可以选取比较小的正整数的q值对应的ZC序列的根指标q或者K-q。此外,针对选择的一个根指标q,UE可以使用的循环移位值,以及基站可以分配的循环移位值是根据集合
Figure PCTCN2018074043-appb-000026
确定的,其中D是根据q所确定的值。通过根据q合理确定D的取值,可以确保UE由于频率偏差和时延扩展带来的循环移位能够在基站分配的循环移位间隔内,不会在基站分配的循环移位间隔外再占用额外的循环移位,从而可以保证没有用户间干扰。而在已有技术中,根指标q的选取必须满足大于一个值的取值限制,且针对这样选择的一个根指标q,可以使用的循环移位值只能取该集合中的一部分元素,才可以保证没有用户间干扰。因此,本 发明实施例的方法增加了可用的循环移位值的个数,从而进一步增加了前导码序列的个数。
结合第四方面,另一种可能的实现方式中,该信号的接收方法还可以包括:基站发送第一信令,第一信令包含q对应的D。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,不同的q对应的D不相同。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的接收方法还可以包括:基站发送第二信令,第二信令包含τ,τ用于UE确定循环移位值集合;其中,用于确定循环移位值集合的D是满足
Figure PCTCN2018074043-appb-000027
的正实数,或者,用于确定循环移位值集合的D是满足
Figure PCTCN2018074043-appb-000028
的正实数,其中,τ为正实数,n是正整数,K是ZC序列的长度。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的接收方法还可以包括:基站发送第三信令,第三信令包含循环移位值集合。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,该信号的接收方法还可以包括:基站发送第四信令,第四信令包含初始循环移位信息。
结合第四方面和上述可能的实现方式,在另一种可能的实现方式中,q属于集合{A 1,B 1,A 2,B 2},其中,A i=i(mod K),B i=-i(mod K),i为1或2。
本发明实施例的第五方面,提供一种基站,包括:
确定单元,用于从序列指标集合中确定目标根指标;其中,序列指标集合为{A 1,B 1,A 2,B 2,…,A s,B s},A i=i(mod K),B i=-i(mod K),A i、B i为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000029
的整数,
Figure PCTCN2018074043-appb-000030
表示下取整,K是ZC序列的长度;生成单元,用于根据确定单元确定的目标根指标生成信号序列;接收单元,用于接收上行信号;处理单元,用于根据生成单元生成的信号序列对接收单元接收到的上行信号进行处理。
结合第五方面,在一种可能的实现方式中,信号序列是由目标ZC序列生成的序列,目标ZC序列的根指标是目标根指标。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,s是预定义的;或者,基站还包括:发送单元,用于发送第一信令,第一信令包含s。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元,还用于向用户设备UE发送第二信令,第二信令包含循环移位值,循环移位值与UE相关联。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,生成单元,具体用于根据目标根指标和循环移位值生成信号序列。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元,还用于向UE发送第三信令,第三信令包含循环移位值的信息,循环移位值的信息与UE相关联。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,循环移位值是根据循环移位值集合确定的,循环移位值集合中的任意两个循环移位值的间隔大于 或等于D;其中,D是满足
Figure PCTCN2018074043-appb-000031
的正实数,τ是正实数,n是正整数,q是小于或等于s的正整数,A q或B q是目标根指标,N是上行信号的序列的长度。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,τ是预先义的;或者,发送单元,还用于发送第四信令,第四信令包含τ。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,n是预定义的;或者,发送单元,还用于发送第五信令,第五信令包含n。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元,还用于发送第六信令,第六信令包含D。
结合第五方面和上述可能的实现方式,在另一种可能的实现方式中,上行信号为上行控制信道的信号,或者上行参考信号。
本发明实施例的第六方面,提供一种用户设备UE,包括:
确定单元,用于从序列指标集合中确定目标根指标;其中,序列指标集合为{A 1,B 1,A 2,B 2,…,A s,B s},A i=i(mod K),B i=-i(mod K),A i、B i为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000032
的整数,
Figure PCTCN2018074043-appb-000033
表示下取整,K是ZC序列的长度;生成单元,用于根据确定单元确定的目标根指标生成上行信号;发送单元,用于发送生成单元生成的上行信号。
结合第六方面,在一种可能的实现方式中,上行信号的序列是由目标ZC序列生成的序列,目标ZC序列的根指标是目标根指标。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,s是预定义的;或者,UE还包括:接收单元,用于接收第一信令,第一信令包含s,UE根据第一信令确定序列指标集合。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:接收单元,用于接收第二信令,第二信令包含循环移位值,循环移位值与UE相关联。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,生成单元,具体用于根据目标根指标和循环移位值生成上行信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:接收单元,用于接收第三信令,第三信令包含循环移位值的信息,循环移位值的信息与UE相关联。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,循环移位值是根据循环移位值集合确定的,循环移位值集合中的任意两个循环移位值的间隔大于或等于D;其中,D是满足
Figure PCTCN2018074043-appb-000034
的正实数,τ是正实数,n是正整数,q是小于或等于s的正整数,A q或B q是目标根指标,N是上行信号的序列的长度。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,τ是预定义的;或者,接收单元,还用于接收第四信令,第四信令包含τ,确定单元,还用于根据τ、q和n确定循环移位值;生成单元,具体用于根据确定单元确定出的循环移位值和目标根指标生成上行信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,n是预定义的;或者,接收单元,还用于接收第五信令,第五信令包含n,确定单元,还用于根 据τ、q和n确定循环移位值;生成单元,具体用于根据确定单元确定出的循环移位值和目标根指标生成上行信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,接收单元,还用于接收第六信令,第六信令包含D;确定单元,还用于根据接收单元接收到的D确定循环移位值;生成单元,具体用于根据确定单元确定出的循环移位值和目标根指标生成上行信号。
结合第六方面和上述可能的实现方式,在另一种可能的实现方式中,上行信号为上行控制信道的信号,或者上行参考信号。
本发明实施例的第七方面,提供一种用户设备UE,包括:
确定单元,用于确定根指标q;生成单元,用于根据确定单元确定出的q,以及循环移位值生成上行信号,循环移位值是UE根据循环移位值集合确定的,循环移位值集合为:
Figure PCTCN2018074043-appb-000035
其中,循环移位值集合是根据q确定的,D是正实数,α 0是实数,是初始循环移位信息,
Figure PCTCN2018074043-appb-000036
表示下取整,N是上行信号的序列的长度;发送单元,用于发送生成单元生成的上行信号。
结合第七方面,在一种可能的实现方式中,还包括:接收单元;接收单元,用于接收第一信令,第一信令包含q对应的D;确定单元,还用于根据接收单元接收到的D和确定单元确定出的q确定循环移位值集合。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,不同的q对应的D不相同。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:接收单元;接收单元,用于接收第二信令,第二信令包含τ;确定单元,还用于根据确定单元确定出的q和接收单元接收到的τ确定循环移位值集合;其中,用于确定循环移位值集合的D是满足
Figure PCTCN2018074043-appb-000037
的正实数,或者,用于确定循环移位值集合的D是满足
Figure PCTCN2018074043-appb-000038
的正实数,其中,τ为正实数,n是正整数,K是ZC序列的长度。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:接收单元;接收单元,用于接收第三信令,第三信令包含循环移位值集合。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,接收单元,还用于接收第四信令,第四信令包含初始循环移位信息。
结合第七方面和上述可能的实现方式,在另一种可能的实现方式中,q属于集合{A 1,B 1,A 2,B 2},其中,A i=i(mod K),B i=-i(mod K),i为1或2。
本发明实施例的第八方面,提供一种基站,包括:
确定单元,用于确定根指标q;生成单元,用于根据确定单元确定出的q,以及循环移位值生成信号序列,循环移位值是基站根据循环移位值集合确定的,循环移位值集合为:
Figure PCTCN2018074043-appb-000039
其中,循环移位值集合是根据q确定的,D是正实数,α 0是实数,是初始循环移位信息,
Figure PCTCN2018074043-appb-000040
表示下取整, N是上行信号的序列的长度;接收单元,用于接收上行信号;处理单元,用于根据生成单元生成的信号序列对接收单元接收到的上行信号进行处理。
结合第八方面,在一种可能的实现方式中,还包括:发送单元,用于发送第一信令,第一信令包含q对应的D。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,不同的q对应的D不相同。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:发送单元,用于发送第二信令,第二信令包含τ,τ用于用户设备UE确定循环移位值集合;其中,用于确定循环移位值集合的D是满足
Figure PCTCN2018074043-appb-000041
的正实数,或者,用于确定循环移位值集合的D是满足
Figure PCTCN2018074043-appb-000042
的正实数,其中,τ为正实数,n是正整数,K是ZC序列的长度。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,还包括:发送单元,用于发送第三信令,第三信令包含循环移位值集合。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,发送单元,还用于发送第四信令,第四信令包含初始循环移位信息。
结合第八方面和上述可能的实现方式,在另一种可能的实现方式中,q属于集合{A 1,B 1,A 2,B 2},其中,A i=i(mod K),B i=-i(mod K),i为1或2。
本发明实施例的第九方面,提供一种基站,该基站可以包括:至少一个处理器,存储器、收发器、总线;
至少一个处理器与存储器、收发器通过通信总线连接,存储器用于存储计算机执行指令,当基站运行时,处理器执行存储器存储的计算机执行指令,以使基站执行第一方面或第一方面的可能的实现方式中,或者第四方面或第四方面的可能的实现方式中任一所述的信号的接收方法。
本发明实施例的第十方面,提供一种UE,该UE可以包括:至少一个处理器、存储器、收发器、总线;
至少一个处理器与存储器、收发器通过通信总线连接,存储器用于存储计算机执行指令,当UE运行时,处理器执行存储器存储的计算机执行指令,以使UE执行第二方面或第二方面的可能的实现方式中,或者第三方面或第三方面的可能的实现方式中任一所述的信号的发射方法。
本发明实施例的第十一方面,提供一种计算机存储介质,用于存储上述基站所用的计算机软件指令,该计算机软件指令包含用于执行上述信号的接收方法所设计的程序。
本发明实施例的第十二方面,提供一种计算机存储介质,用于存储上述UE所用的计算机软件指令,该计算机软件指令包含用于执行上述信号的发射方法所设计的程序。
附图说明
图1为本发明实施例提供的一种应用本发明实施例的系统架构的简化示意图;
图2为本发明实施例提供的一种基站的组成示意图;
图3为本发明实施例提供的一种UE的组成示意图;
图4为本发明实施例提供的一种信号的传输方法的流程图;
图5为本发明实施例提供的一种序列映射的示意图;
图6为本发明实施例提供的另一种信号的传输方法的流程图;
图7为本发明实施例提供的另一种基站的组成示意图;
图8为本发明实施例提供的另一种基站的组成示意图;
图9为本发明实施例提供的另一种UE的组成示意图;
图10为本发明实施例提供的另一种UE的组成示意图。
具体实施方式
基站可以通过为不同的UE分配同一个ZC序列的根指标,同时分配满足l 1mod N≠l 2mod N的循环移位值(l 1,l 2),达到在相同的时频域资源上复用多个UE的目的。但是,在实际应用场景中,UE接收信号的中心频率和基站发射信号的中心频率之间会存在频率偏差,且当UE的能力较差,或UE处于高速运动状态,或其他情况(如由于需要长的循环前缀(Cyclic Prefix,CP)而采用小的子载波间隔)时,该频率偏差相较于基站和UE通信使用的子载波间隔会比较大,这样,会导致根据基站分配给UE的根指标得到的序列在时域上有额外的循环移位,因此,基站需要预留更多的循环移位值给该UE。
例如,基站分配给UE1的根指标
Figure PCTCN2018074043-appb-000043
循环移位值l=0,且预定义了由ZC序列(该ZC序列的根指标为
Figure PCTCN2018074043-appb-000044
)生成的序列的长度N=61。当UE1接收信号的中心频率和基站发射信号的中心频率之间存在τ=±1个子载波间隔的频率偏差时,由于该频率偏差在时域上带来的额外的循环移位将占用2个循环移位位置,这2个循环移位位置需预留给该UE1。因此,基站在为其他UE分配循环移位值时,由于该UE1的频率偏差带来的额外的循环移位,即占用的2个循环移位位置将不可以再进行分配。从而导致能够分配的循环移位值的数量减少,即导致支持通过循环移位正交码分复用的UE数比较少,使得上行资源的利用率降低。
为了解决在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题,本发明实施例提供一种信号的发射方法、接收方法及设备。其基本原理是:基站从序列指标集合中确定目标根指标,并根据目标根指标生成信号序列,基站接收上行信号,并根据生成的信号序列对上行信号进行处理。其中,序列指标集合为{A 1,B 1,A 2,B 2,…,A s,B s},其中,A i=i(mod K),B i=-i(mod K),A i、B i为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000045
的整数,
Figure PCTCN2018074043-appb-000046
表示下取整,K是ZC序列的长度。基站根据从序列指标集合中确定出的目标根指标生成信号序列,并根据生成的信号序列对接收的上行信号进行处理,由于序列指标集合为{A 1,B 1,A 2,B 2,…,A s,B s},且s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000047
的整数,其并不包含
Figure PCTCN2018074043-appb-000048
以及
Figure PCTCN2018074043-appb-000049
或者s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000050
的整数中比
Figure PCTCN2018074043-appb-000051
更小的正整数,从而解决了在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE 通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题。
使用根指标
Figure PCTCN2018074043-appb-000052
将导致在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少。具体说明如下:
假设基站发射信号的中心频率与基站所管理的小区中所有UE接收信号的中心频率之间频率偏差范围为[-rΔf,rΔf],其中,Δf是基站和UE通信使用的子载波间隔。假设基站确定的目标根指标为q,基站根据目标根指标q生成的(频域)信号序列的长度为N。则最大频率偏差rΔf将导致该(频域)信号序列经过IDFT变化后的时域的序列循环移位
Figure PCTCN2018074043-appb-000053
个时间单位(每个时间单位是
Figure PCTCN2018074043-appb-000054
秒,其中T是该时域的序列的时间长度),最大频率偏差-rΔf将导致该(频域)信号序列经过IDFT变化后的时域的序列循环移位
Figure PCTCN2018074043-appb-000055
个时间单位,其中,n为
Figure PCTCN2018074043-appb-000056
或者
Figure PCTCN2018074043-appb-000057
假设UE的信道时延扩展导致的上述时域的序列的循环移位范围为[0,τ]。则在UE接收信号的中心频率和基站发射信号的中心频率之间存在频率偏差,且存在时延扩展时,若要保证使用相同目标根指标q生成上行信号并且在相同的时频资源上发送生成的上行信号的不同UE之间不会存在干扰,则需保证不同UE的循环移位值的间隔D满足
Figure PCTCN2018074043-appb-000058
对于任意两个循环移位值l 1,l 2,循环移位值的间距D定义为D=min{(l 1-l 2)mod N,N-(l 1-l 2)mod N},其中,min{x,y}表示取x和y中的最小值。假设K是偶数,n=1,则根据上述不等式,当q为比较小的正整数,使得
Figure PCTCN2018074043-appb-000059
比较小时,例如
Figure PCTCN2018074043-appb-000060
D值就比较小,这是因为频偏导致的循环移位值和多径时延导致循环值可能会有重叠,从而可以使用很多不同的循环移位值,其之间的间隔至少为D。使用根指标
Figure PCTCN2018074043-appb-000061
或者比较大的其他根指标,会导致
Figure PCTCN2018074043-appb-000062
比较大,例如大于τ的情况产生,正频偏导致的
Figure PCTCN2018074043-appb-000063
和负频偏导致的
Figure PCTCN2018074043-appb-000064
是和多径时延导致的循环移位值不同的额外的循环移位值,不能分配给其他用户而只能预留,其中0<τ'<τ,τ是时延导致的最大的循环移位值,可以由基站配置或则信令通知,意味着支持通过循环移位正交码分复用的UE的个数受限,不能使用为正负频偏导预留的循环移位值。大大降低了上行时频资源的使用效率。
另外,在已有技术中,UE在上行失步,即上行传输与基站不同步时,UE需发送前导码给基站,以便基站根据前导码确定UE的上行定时信息,帮助UE进行上行同步。其中,前导码是由ZC序列生成的时域的序列。一个前导码可以由时域的一个ZC序列(具有时域上的根指标u)根据循环移位值生成,也可以由该时域的ZC序列对应的频域上的ZC序列(具有频域上的根指标p)根据前面所述的方法生成。两种方法是等效的,并且,若已知时域上的ZC序列的根指标u,则对应的频域根指标p是满足(pu)mod  K=1的最小非负整数。其中,K是上述时域的ZC序列以及对应的频域的ZC序列的长度。不失一般性的,本文件中,以由频域上的ZC序列生成前导码为例进行说明。UE可以根据预定义的规则或者接收基站的信令确定ZC序列的根指标以及循环移位值,从而生成前导码。由于UE上行失步,前导码的CP比较长。为了解决CP过 长带来的能量效率太低的问题,UE发送前导码使用的子载波间隔往往很小。因此,当UE发送信号的中心频率与基站接收信号的中心频率具有频率偏差时,该频率偏差相对于基站和UE通信使用的子载波间隔往往比较大。为了使基站获取准确的上行定时信息,ZC序列的根指标需要保证由于频率偏差引起的额外的循环移位与时延扩展带来的循环移位可以区分。因此,LTE系统约束了用于生成前导码的ZC序列的根指标q在满足0≤q<K/2时必须大于一个值,如根指标q必须大于最大时延扩展带来的循环移位。因此,在已有技术中,用于生成前导码的ZC序列的根指标比较有限。此外,针对每一个可用的ZC序列的根指标,基站需要为不同的UE分配不同的循环移位值。为了保证不同UE间不会存在干扰,由一个UE的频率偏差引起的循环移位以及时延扩展带来的循环移位都需要为该UE保留,而不能分配给其他UE。因此,可以使用的循环移位值也比较有限。综上所述,在已有技术中,可以使用的前导码序列个数比较有限。
在某些场景中,虽然UE处于上行失步状态,但只需要完成少量信息的传输,而不需要基站获得上行定时信息。在这些场景下,直接使用已有技术将导致可用的前导码个数非常有限。例如,UE由于移动需要切换到其他小区,或者切换到本小区的其他接收发送站点(Transmitter and Receiver Point,TRP)覆盖的区域。此时UE的需求在于发送一个前导码,使基站知道自己在网络中的位置,所以不需要上行定时信息。此时,生成前导码的ZC序列的根指标不需要保证频率偏差引起的额外的循环移位与时延扩展带来的循环移位可以区分。因此,在这些场景下,直接使用已有技术将导致可用的前导码序列个数非常有限。
为了解决在UE处于上行失步状态下,需要进行上行数据传输而不需要基站获得上行定时信息时,直接使用已有技术导致的可用的前导码个数非常有限的问题,本发明实施例提供另一种信号的发射方法、接收方法。其基本原理是:UE确定根指标q;UE根据q和循环移位值生成上行信号,循环移位值是UE根据循环移位值集合确定的,循环移位值集合为:
Figure PCTCN2018074043-appb-000065
其中,循环移位值集合是根据q确定的,D是正实数,α 0是实数,是初始循环移位信息,
Figure PCTCN2018074043-appb-000066
表示下取整,N是上行信号的序列的长度。
本发明实施例的方法中,生成前导码的ZC序列的根指标q没有必须大于一个值的取值限制,例如已有技术中生成前导码的ZC序列的根指标必须大于最大时延扩展。因此,本发明实施例的方法增加了可用的根指标的个数,从而增加了前导码的个数。例如,在已有技术中,q=1不可以使用。而在本发明实施例的方法中,q=1可以使用。一般的,可以选取比较小的正整数的q值对应的ZC序列的根指标q或者K-q。此外,针对选择的一个根指标q,UE可以使用的循环移位值是根据集合
Figure PCTCN2018074043-appb-000067
确定的,其中D是根据q所确定的值。UE从该集合中确定循环移位值的方法有多种。例如,UE可以根据预定义的规则从该集合中选择循环移位值,例如,UE根据集合中的所有循环移位值的顺序,按照预定义的规则选取循环移位值。或者,UE可以接收基站发送的信令,该信令中包含了UE的循环移位值。该信令能够包含集合中的循环移位值的任何一个。通过根据q合理确定D 的取值,可以确保UE由于频率偏差和时延扩展带来的循环移位能够在基站分配的循环移位间隔内,从而不会在基站分配的循环移位间隔外再占用额外的循环移位,从而可以保证没有用户间干扰。而在已有技术中,根指标q的选取必须满足大于一个值的取值限制,且针对这样选择的一个根指标q,可以使用的循环移位值只能取该集合中的一部分元素,才可以保证没有用户间干扰。因此,本发明实施例的方法增加了可用的循环移位值的个数,从而进一步增加了前导码的个数。
下面将结合附图对本发明实施例的实施方式进行详细描述。
图1示出的是可以应用本发明实施例的系统架构的简化示意图。如图1所示,该系统架构可以包括:基站11和UE 12。
其中,基站11可以是无线通信的基站(Base Station,BS)或基站控制器等。基站11具体的可以包括用户面基站和控制面基站。基站11是一种部署在无线接入网中用以为UE 12提供无线通信功能的装置,其主要功能有:进行无线资源的管理、互联网协议(Internet Protocol,IP)头的压缩及用户数据流的加密、用户设备附着时进行移动管理实体(Mobile Management Entity,MME)的选择、路由用户面数据至服务网关(Service Gateway,SGW)、寻呼消息的组织和发送、广播消息的组织和发送、以移动性或调度为目的的测量及测量报告的配置等等。基站11可以包括各种形式的宏基站、微基站、中继站、接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的基站(Evolved NodeB,eNB或eNodeB),在第3代移动通信技术(the third Generation Telecommunication,3G)系统中,称为基站(Node B),在下一代无线通信系统中,称为gNB等等。随着通信技术的演进,“基站”这一名称可能会变化。此外,在其它可能的情况下,基站11可以是其它为UE 12提供无线通信功能的装置。为方便描述,本发明实施例中,为UE 12提供无线通信功能的装置称为基站11。
UE 12可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(如,Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)。作为一种实施例,如图1中所示,本发明的网络架构包括的UE 12为手机。
图2为本发明实施例提供的一种基站的组成示意图,如图2所示,基站可以包括至少一个处理器21,存储器22、收发器23、总线24。
下面结合图2对基站的各个构成部件进行具体的介绍:
处理器21是基站的控制中心,可以是一个处理器,也可以是多个处理元件的统称。 例如,处理器21是一个中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
其中,处理器21可以通过运行或执行存储在存储器22内的软件程序,以及调用存储在存储器22内的数据,执行基站的各种功能。
在具体的实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,基站可以包括多个处理器,例如图2中所示的处理器21和处理器25。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器22可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器22可以是独立存在,通过总线24与处理器21相连接。存储器22也可以和处理器21集成在一起。
其中,所述存储器22用于存储执行本发明方案的软件程序,并由处理器21来控制执行。
收发器23,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。收发器23可以包括基带处理器的全部或部分,以及还可选择性地包括RF处理器。RF处理器用于收发RF信号,基带处理器则用于实现由RF信号转换的基带信号或即将转换为RF信号的基带信号的处理。
总线24,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图2中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图2中示出的设备结构并不构成对基站的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图3为本发明实施例提供的一种UE的组成示意图。如图3所示,该UE可以包括至少一个处理器31、存储器32、收发器33和总线34。
下面结合图3对UE的各个构成部件进行具体的介绍:
处理器31可以是一个处理器,也可以是多个处理元件的统称。例如,处理器31 可以是一个通用CPU,也可以是ASIC,或一个或多个用于控制本发明方案程序执行的集成电路,例如:一个或多个DSP,或,一个或者多个FPGA。其中,处理器31可以通过运行或执行存储在存储器32内的软件程序,以及调用存储在存储器32内的数据,执行UE的各种功能。
在具体的实现中,作为一种实施例,处理器31可以包括一个或多个CPU。例如,如图3所示,处理器31包括CPU0和CPU1。
在具体实现中,作为一种实施例,UE可以包括多个处理器。例如,如图3所示,包括处理器31和处理器35。这些处理器中的每一个可以是一个single-CPU,也可以是一个multi-CPU。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器32可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM、CD-ROM或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器32可以是独立存在,通过总线34与处理器31相连接。存储器32也可以和处理器31集成在一起。
收发器33,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。收发器33可以包括接收单元实现接收功能,以及发送单元实现发送功能。
总线34,可以是ISA总线、PCI总线或EISA总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图3中示出的设备结构并不构成对UE的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。尽管未示出,UE还可以包括电池、摄像头、蓝牙模块、GPS模块、显示屏等,在此不再赘述。
图4为本发明实施例提供的一种信号的传输方法的流程图,如图4所示,该方法可以包括:
401、UE从序列指标集合中确定目标根指标。
其中,序列指标集合可以为{A 1,B 1,A 2,B 2,…,A s,B s}。或者,序列指标集合也可以为{A 1,B 1,A 2,B 2,…,A s,B s}的子集,具体的,子集中A i、B i是成对出现的。例如,序列指标集合为{A 1,B 1,A 2,B 2},或者序列指标集合为{A 1,B 1,A 4,B 4,A s,B s}。其中,A i=i(mod K),B i=-i(mod K),A i、B i为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000068
的整数,
Figure PCTCN2018074043-appb-000069
表示下取整,K是ZC序列的长度。示例性的,K是ZC序列的长度指的是ZC序列包含的元素的个数为K。例如,ZC序列为z(n)(n=0,...,K-1),其包含的元素个数为K,那么该ZC序列的长度为K。
需要说明的是,在本发明实施例中,A i=i(mod K)指的是A i和i在mod K下的意义是相等的,即A imod K=i mod K。同样的,B i=-i(mod K)指的是B i和-i在mod K下的意义是相等的,即B imod K=-i mod K。另外,在本发明实施例中,上行信号可以为上 行控制信道的信号,或者上行参考信号。上行参考信号可以包括以下至少一种:上行DMRS、上行SRS。
示例性的,在本发明实施例中,UE确定目标根指标的具体过程可以为:
首先,UE确定序列指标集合。
用于确定序列指标集合的参数s可以是预定义的。或者,UE可以接收基站发送的第一信令,该第一信令包含参数s。其中,基站可以通过第一信令显式的或隐式的向UE通知s。显式的向UE通知s指的是直接在第一信令中包含s的取值,隐式的向UE通知s指的是在第一信令中包含与s相关的参数,该参数用于确定的s的取值。
其次,当UE需要向基站发送上行信号时,UE可以从序列指标集合中确定目标根指标。
UE可以根据预定义的规则从序列指标集合中确定出目标根指标。另外,当i较小时,根指标为A i和B i的ZC序列生成的序列经过IDFT处理后,其时域的序列的PAPR也比较小。因此,UE可以优先选取i取值较小的A i或B i作为目标根指标,这样可以使得在时域上发送的信号的PAPR较小,有利于提高UE的发送机效率。
402、UE根据目标根指标生成上行信号。
在本发明实施例中,上行信号的序列是由目标ZC序列生成的序列,目标ZC序列的根指标是目标根指标。
示例性的,在本发明实施例中,UE根据目标根指标生成上行信号的具体过程可以为:
首先,UE根据步骤401中确定出的目标根指标生成目标ZC序列。令A q或B q为UE从序列指标集合中确定的目标根指标。为方便起见,令A q mod K=q'或B q mod K=q'。
其中,UE根据确定出的目标根指标,可以根据以下公式生成频域上的目标ZC序列。
当K为奇数时,
Figure PCTCN2018074043-appb-000070
其中,n=0,...,K-1
当K为偶数时,
Figure PCTCN2018074043-appb-000071
其中,n=0,...,K-1
其中,Z q'(n)表示生成的在频域上的目标ZC序列,K表示ZC序列的长度。
其次,UE根据由长度为K的目标ZC序列Z q'(n),(n=0,...,K-1),生成长度为N的序列
Figure PCTCN2018074043-appb-000072
其中,长度为N的序列
Figure PCTCN2018074043-appb-000073
可以是目标ZC序列本身,或者是由目标ZC序列截断或循环扩充得到的序列,因此,N与K的关系可以是N=K,或者N<K,或者N>K。例如,若N>K,则根据目标ZC序列经过循环扩充生成的长度为N的序列为
Figure PCTCN2018074043-appb-000074
最后,UE根据循环移位值α和上述长度为N的序列
Figure PCTCN2018074043-appb-000075
生成长度为N的上行信号的序列。
一种实现方式中,UE将序列
Figure PCTCN2018074043-appb-000076
进行IDFT变换,得到对应的时域的序列,对该时域的序列进行α个单位的循环移位,得到上行信号的序列经过IDFT变换后的时域的序列。另外一种实现方式中,UE根据循环移位值,直接根据公式
Figure PCTCN2018074043-appb-000077
得到上 行信号的序列。
在一种实现方法中,循环移位值α可以是预定义的固定值,或者是通过预定义的方法从多个取值中确定的一个值。
或者,UE也可以根据目标根指标和循环移位值,直接生成上行信号的序列,而不生成中间参数:目标ZC序列。
UE在得到上行信号的序列之后,如图5所示,可以将长度为N的上行信号的序列按照子载波指标的顺序映射到等间隔分布的N个子载波上。其中,在本发明实施例中,UE可以按照子载波指标由大到小的顺序,也可以按照子载波指标由小到大的顺序将长度为N的生成的序列映射到等间隔分布的N个子载波上,本发明实施例在此不做具体限制。图5中是以按照子载波指标由小到大的顺序将长度为N的生成的序列映射到等间隔分布的N个子载波上为例示出的。
进一步的,在一种可能的实现方式中,在UE生成上行信号之前,UE可以接收基站发送的包含循环移位值的第二信令,并根据该循环移位值和目标根指标生成上行信号的序列,从而生成上行信号。其中,基站可以通过第二信令显式的或隐式的向UE通知循环移位值。显式的向UE通知循环移位值指的是直接在第二信令中包含循环移位值的取值,隐式的向UE通知循环移位值指的是在第二信令中包含与循环移位值相关的参数,该参数用于确定的循环移位值的取值。
在另一种可能的实现方式中,在UE生成上行信号之前,UE可以接收基站发送的包含循环移位值的信息的第三信令,以便于根据该循环移位值的信息和目标根指标生成上行信号。即UE可以根据接收到的循环移位值的信息先确定循环移位值,然后根据确定出的循环移位值和目标根指标生成上行信号。
其中,第三信令具体的可以包含循环移位值的指示信息。如,总的循环移位值被分为X份,第三信令包含使用第a份,其中a是大于等于1小于等于X的整数。a的取值可以是基站根据循环移位值确定。其中,基站根据循环移位值集合确定循环移位值,该循环移位值集合中的任意两个循环移位值的间隔大于或等于D。其中,D是满足
Figure PCTCN2018074043-appb-000078
的正实数,τ是正实数,n是正整数,q是小于或等于s的正整数,A q或B q是目标根指标,N是上行信号的序列的长度。例如,基站可以根据选择的循环移位值α和D,确定a的取值为
Figure PCTCN2018074043-appb-000079
其中,α 0为初始循环移位值。UE则可以根据包含使用第a份的第三信令和D确定基站选择的循环移位值。例如,UE可以根据a和D,确定循环移位值为α=α 0+(a-1)D。α 0可以是通过预定义的方法确定的值,或者基站通过第三信令或其它信令指示给UE的。基站或者UE可以使用α=α 0+(a-1)D,或者
Figure PCTCN2018074043-appb-000080
来根据α确定a,或者根据a确定α。
在本发明实施例的第一种实现中,D是预定义的一个取值。
在本发明实施例的第二种实现中,UE可以接收基站发送的第六信令,该第六信令包含D。相应的,UE可以根据第三信令中包含使用第a份和第六信令中包含的D确定循环移位值。其中,基站可以通过第六信令显式的或隐式的向UE通知D。显式的向UE通知D指的是直接在第六信令中包含D的取值,隐式的向UE通知D指的是在第六信令中包含与D相关的参数,该参数用于确定的D的取值。
在本发明实施例的第三种实现中,UE可以接收基站发送的第四信令,该第四信令 包含用于确定D的τ。相应的,UE可以根据τ,q和n确定D,然后根据确定出的D和第三信令中包含的使用第a份确定循环移位值。其中,τ也可以是预定义的。其中,基站可以通过第四信令显式的或隐式的向UE通知τ。显式的向UE通知τ指的是直接在第四信令中包含τ的取值,隐式的向UE通知τ指的是在第四信令中包含与τ相关的参数,该参数用于确定τ的取值。
在本发明实施例的第四种实现中,UE可以接收基站发送的第五信令,该第五信令包含用于确定D的n。相应的,UE可以根据τ,q和n确定D,然后根据确定出的D和第三信令中包含的使用第a份确定循环移位值。其中,n也可以是预定义的。其中,基站可以通过第五信令显式的或隐式的向UE通知n。显式的向UE通知n指的是直接在第一信令中包含n的取值,隐式的向UE通知n指的是在第一信令中包含与n相关的参数,该参数用于确定的n的取值。
需要说明的是,在本发明实施例中,第三信令、第四信令、第五信令和第六信令可以是同一个信令。
403、UE发送上行信号。
404、基站从序列指标集合中确定目标根指标。
示例性的,在本发明实施例中,基站确定目标根指标的具体过程可以为:
首先,基站确定序列指标集合。
其中,序列指标集合可以为{A 1,B 1,A 2,B 2,…,A s,B s}。或者,序列指标集合也可以为{A 1,B 1,A 2,B 2,…,A s,B s}的子集,具体的,子集中A i、B i是成对出现的。例如,序列指标集合为{A 1,B 1,A 2,B 2},或者序列指标集合为{A 1,B 1,A 4,B 4,A s,B s}。其中,A i=i(mod K),B i=-i(mod K),A i、B i为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000081
的整数,
Figure PCTCN2018074043-appb-000082
表示下取整,K是ZC序列的长度。
用于确定序列指标集合的参数s可以是预定义的;或者,是基站确定出的。并且,当s不是预定义的时,基站需向UE发送第一信令,以用于向UE指示s。
例如,基站确定s的具体过程可以为:基站获取最大频率偏差和最大时延扩展,并根据最大频率偏差和最大时延扩展确定s。
其中,最大频率偏差为基站发射信号的中心频率与基站所管理的小区中所有UE接收信号的中心频率之间最大的频率偏差。最大频率偏差可以是预定义的;或者,是基站估计得到的;或者,是基站根据UE发送的上行DMRS或上行SRS所采用的子载波间隔确定的,例如,若子载波间隔较大,则系统对UE的频率偏差敏感程度较低,因此所能允许的最大频率偏差相对较大,因此可以根据UE发送的上行DMRS或上行SRS所采用的子载波间隔确定的最大频率偏差。
最大时延扩展指的是由多径引起的时延扩展导致的循环移位值的最大值。时延扩展导致的循环移位值的最大值可以是由基站估计得到的,或者也可以是预定义的,或者是由基站根据服务的小区的半径等信息确定的。
基站可以根据不等式
Figure PCTCN2018074043-appb-000083
确定s,s为满足不等式的q的最大值,q是大于等于零小于等于K/2的一个整数。n为
Figure PCTCN2018074043-appb-000084
或者
Figure PCTCN2018074043-appb-000085
r等于最大频率偏差与基站 和UE通信使用的子载波间隔Δf的比值。N为预设的信号序列的长度,K是ZC序列的长度,N≥K。τ为最大时延扩展。D为不同UE采用相同根指标的ZC序列时的循环移位值之间的间隔。
假设基站发射信号的中心频率与基站所管理的小区中所有UE接收信号的中心频率之间频率偏差范围为[-rΔf,rΔf],基站确定的目标根指标为q,q是大于等于零小于等于K/2的一个整数。则最大频率偏差rΔf将导致经过IDFT变化后的时域的序列循环移位
Figure PCTCN2018074043-appb-000086
个时间单位,最大频率偏差-rΔf将导致经过IDFT变化后的时域的序列循环移位
Figure PCTCN2018074043-appb-000087
个时间单位假设。假设时延扩展导致的循环移位值的范围为[0,τ]。若需在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差,且存在时延扩展时,保证不同UE之间不会存在干扰,则需保证
Figure PCTCN2018074043-appb-000088
这样,便可以通过求解不等式,得到满足该不等式的所有q,从而得到s,以确保为UE分配的ZC序列的根指标,即使在频率偏差相较于基站和UE通信使用的子载波间隔比较大时,也能确保由于频率偏差和时延扩展带来的循环移位能够在基站分配的循环移位间隔内,从而不会在基站分配的循环移位间隔外再占用额外的循环移位。
基站确定s的方法有多种。例如,若基站已经根据某些准则确定了间隔D,则基站可以根据上述不等式,求解s。如,当n=1,N=K,D=N/4,τ=N/12时,则根据上述不等式可以求得
Figure PCTCN2018074043-appb-000089
假设N=24,则可以得到s=2,因此,基站确定的序列指标集合为{1,K-1,2,K-2}或者{1,K-1,2,K-2}的子集,其中任意一个序列指标x可以被另外一个指标y代替,只要y满足x=y(mod K)。再例如,基站可以根据当前可以使用的多个根指标,联合确定s和间隔D,使s和D满足不等式
Figure PCTCN2018074043-appb-000090
通过确定s,基站可以确定序列指标集合。
其次,基站从序列指标集合中确定目标根指标。
405、基站根据目标根指标生成信号序列。
在本发明实施例中,信号序列是由目标ZC序列生成的序列,目标ZC序列的根指标是目标根指标。
示例性的,在本发明实施例中,基站根据目标根指标生成信息序列的具体过程可以为:
首先,基站根据目标根指标生成目标ZC序列。
需要说明的是,步骤405中根据目标根指标生成目标ZC序列的具体实现过程,与本发明实施例步骤402中根据目标根指标生成目标ZC序列的具体实现过程类似,本发明实施例在此不再详细赘述。
然后,基站将目标ZC序列本身作为ZC序列生成的序列,或者对目标ZC序列进行截断或循环扩充得到目标ZC序列生成的序列。进一步,基站根据目标ZC序列生成的序列和循环移位值,得到信号序列。基站根据循环移位值和目标ZC序列生成的序列得到信号序列的具体实现过程,与本发明实施例步骤402中的具体实现过程类似,本发明实施例在此不再详细赘述。
或者,基站根据目标根序列和循环移位值,直接生成信号序列,而不生成中间变量:目标ZC序列。
进一步的,为了使得不同的UE可以复用相同的时频域资源,且不产生干扰,在一种可能的实现方式中,基站可以向UE发送第二信令,该第二信令包含循环移位值,该循环移位值与UE相关联,以便于UE可以根据循环移位值和确定出的目标根指标用于生成上行信号。
在另一种可能的实现方式中,基站可以向UE发送第三信令,该第三信令包含循环移位值的信息,该循环移位值的信息与UE相关联,以便于UE可以根据循环移位值的信息和确定出的目标根指标生成上行信号。其中,循环移位值是根据循环移位值集合确定的,循环移位值集合中的任意两个循环移位值的间隔大于或等于D,且D是满足
Figure PCTCN2018074043-appb-000091
的正实数。D是预定义的,或者,是基站可以通过第六信令通知UE的,或者基站可以向UE发送第四信令,该第四信令包含用于确定D的τ,或者,基站可以向UE发送第五信令,该第五信令包含用于确定D的n。当基站通过第五信令指示n时,在基站通过第五信令通知n之前,基站可以根据频率偏差确定n。当基站通过第四信令指示τ时,在基站通过第五信令通知τ之前,基站可以根据时延扩展确定τ。τ也可以是预定义的。n也可以是预定义的。第三信令中包含的循环移位值的信息的确定方法与本发明实施例步骤402中的具体实现过程类似,本发明实施例在此不再详细赘述。
406、基站接收上行信号。
407、基站根据信号序列对上行信号进行处理。
其中,在基站接收到来自UE的上行信号之后,可以根据生成的信号序列对上行信号做处理。示例性的基站根据信号序列对上行信号进行处理可以用于获得信道估计结果,或者用于进行信号检测。示例性的,基站可以根据信号序列对上行信号做相关。例如,基站根据信号序列对上行信号做相关为:令x(n)表示生成的信号序列,y(n)表示基站接收的上行信号,其中,n=0,...,N-1,例如N个子载波上接收到的信号,则基站可以对上行信号做如下处理:
Figure PCTCN2018074043-appb-000092
其中,x(n) *表示x(n)的共轭。
需要说明的是,在本发明实施例中,第一信令、第二信令、第三信令、第四信令、第五信令和第六信令可以是高层信令,如无线资源控制(Radio Resource Control,RRC);或者是多址接入控制信令(Multiple Access Control Control Element,MAC CE);或者是承载下行控制信息(Downlink Control Information,DCI)的下行控制信令。
本发明实施例提供的信号的传输方法,基站根据从序列指标集合中确定出的目标根指标生成信号序列,并根据生成的信号序列对接收的上行信号进行处理。由于序列指标集合为{A 1,B 1,A 2,B 2,…,A s,B s},且s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000093
的整数,其并不包含
Figure PCTCN2018074043-appb-000094
以及
Figure PCTCN2018074043-appb-000095
时的根指标,或者s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000096
的整数中比
Figure PCTCN2018074043-appb-000097
更小的正整数,从而解决了在UE接收信号的中心频率和基站发射信号的中心频率之间存在的频率偏差相较于基站和UE通信使用的子载波间隔比较大时,支持通过循环移位正交码分复用的UE数较少的问题。
进一步,本发明实施例提供的方法还通过不等式
Figure PCTCN2018074043-appb-000098
约束了根指标和 间隔D之间的关系。一方面,根据上述不等式联合确定s(满足上述不等式的q的上限)和间隔D,可以确保UE由于频率偏差和时延扩展带来的总的循环移位能够在间隔D内,从而不会在循环移位间隔外再占用额外的循环移位,从而可以保证不同的UE间不会存在干扰。另外一方面,可以进一步限制s的取值,如1,2或者3等较小的数值。此时,使用集合{A 1,B 1,A 2,B 2,…,A s,B s}中的任何一个根指标,都可以使得满足上述不等式的间隔D较小。在总的可以使用的循环移位值个数固定的情况下,较小的D意味着可以分配给不同UE的循环移位值较多。因此,本发明实施例可以支持的通过循环移位正交码分复用的UE数更多。若较小的q对应的根指标当前不可分配,则基站根据本发明实施例,可以优先分配其他相对较小的q值,此时满足上述不等式的D相对较小,则相对于
Figure PCTCN2018074043-appb-000099
以及
Figure PCTCN2018074043-appb-000100
时的根指标,本发明方法仍然可以提高通过循环移位正交码分复用的UE数。
图6为本发明实施例提供的另一种信号的传输方法的流程图,如图6所示,该方法可以包括:
501、UE确定根指标q。
其中,根指标q指的是频域根指标,也即根指标为q的ZC序列经过IDFT变换后生成的ZC序列的根指标p,是满足pq=1(mod K)的最小的非负整数,K是ZC序列的长度。在本发明实施例中,方法的叙述是以频域根指标q为基础进行的。但可选的,方法的叙述也可以根据对应的时域根指标p进行。
502、UE根据q和循环移位值生成上行信号。
其中,循环移位值是UE根据循环移位值集合确定的。该循环移位值集合是
Figure PCTCN2018074043-appb-000101
循环移位值集合是根据q确定的,D是正实数,α 0是实数,是初始循环移位信息,
Figure PCTCN2018074043-appb-000102
表示下取整,N是上行信号的序列的长度。q属于集合{A 1,B 1,A 2,B 2},其中,A i=i(mod K),B i=-i(mod K),i为1或2。当然,q也可以属于集合{A 1,B 1,A 2,B 2,…,A s,B s},或者,{A 1,B 1,A 2,B 2,…,A s,B s}的子集,子集中A i、B i是成对出现的。其中,A i=i(mod K),B i=-i(mod K),A i、B i为ZC序列的根指标,i为大于或等于1且小于或等于s的整数,s是大于或等于1且小于或等于
Figure PCTCN2018074043-appb-000103
的整数,
Figure PCTCN2018074043-appb-000104
表示下取整。UE从循环移位值集合中确定循环移位值的方法有多种。例如,UE可以根据预定义的规则从该集合中选择循环移位值,例如,UE根据集合中的所有循环移位值的顺序,按照预定义的规则选取循环移位值。或者,UE可以接收基站发送的信令,该信令中包含了UE的循环移位值。该信令能够包含集合中的循环移位值的任何一个。
进一步的,在本发明是实施例中,在UE根据q和循环移位值生成上行信号之前,UE可以通过以下方式先循环移位值集合:
方式一:UE可以接收基站发送的第一信令,该第一信令包含q对应的D。相应的,UE可以根据D确定循环移位值集合。且,在本发明实施例中,至少存在两个不同的q,它们对应的D不相同。在一种实现的方法中,第一信令可以通知多个q分别对应的D。例如,第一信令可以通知(q 1,D 1),(q 2,D 2),(q 3,D 3)。UE根据预定义的规则确定在本次发送上行信号使用的根指标q∈{q 1,q 2,q 3},从而得知本次使用的间隔D。或者,每个根指标 q对应的D的可能的取值是预先定义的一个或者多个值,例如可以通过一个表格进行预定义,则第一信令可以包含一个q对应的D的多个可能的取值中的一个。
示例性的,该第一信令可以是RRC,或者是MAC CE,或者是承载DCI的下行控制信令。
方式二:UE可以接收基站发送的第二信令,该第二信令包含τ,其中,τ是与最大时延扩展有关的参数,例如,是最大时延扩展带来的循环移位值。相应的,UE可以根据q和τ确定循环移位值集合。
其中,当0≤qmod K<K/2时,用于确定循环移位值集合的D是满足
Figure PCTCN2018074043-appb-000105
的正实数;
当K/2≤q mod K<K时,用于确定循环移位值集合的D是满足
Figure PCTCN2018074043-appb-000106
的正实数。n是正整数,K是ZC序列的长度。在一种实现方式下,n是预定义的。在另外一种实现方式下,n可以通过信令由基站通知UE的。
示例性的,该第二信令可以是RRC,或者是MAC CE,或者是承载DCI的下行控制信令。
方式三:UE可以接收基站发送的第三信令,该第三信令包含q对应的循环移位值集合
Figure PCTCN2018074043-appb-000107
示例性的,该第三信令可以是RRC,或者是MAC CE,或者是承载DCI的下行控制信令。
另外,在本发明实施例中,确定循环移位值集合需要初始循环移位信息。初始循环移位信息可以是预定义的,或者,UE可以接收基站发送的第四信令,该第四信令包含初始循环移位信息。示例性的,该第四信令可以是RRC,或者是MAC CE,或者是承载DCI的下行控制信令。
503、UE发送上行信号。
504、基站确定根指标q。
505、基站根据q和循环移位值生成信号序列。
另外,基站可以通过以下方式向UE发送用于确定循环移位值集合的参数:
方式一:基站向UE发送第一信令,该第一信令包含q对应的D。不同的q对应的D不相同。
方式二:基站向UE发送第二信令,该第二信令包含τ。
基站确定τ的方法可以有多种。例如,τ可以是预定义的,或者是基站估计得到的,或者是基站根据所服务的小区的半径等信息得到的。
方式三:基站向UE发送第三信令,该第三信令包含q对应的循环移位值集合
Figure PCTCN2018074043-appb-000108
另外,在本发明实施例中,确定循环移位值集合需要初始循环移位信息。初始循环移位信息可以是预定义的,或者,基站向UE发送第四信令,该第四信令包含初始循环移位信息。
506、基站接收上行信号。
507、基站根据信号序列对上行信号进行处理。
需要说明的是,本发明实施例中步骤501-步骤507的具体描述与本发明另一实施例中步骤401-步骤407相应内容的具体描述类似,对于本发明实施例中步骤501-步骤507的具体描述,可以参考另一实施例中步骤401-步骤407相应内容的具体描述,本发明实施例在此不再一一赘述。
在本发明实施例的方法中,生成前导码的ZC序列的根指标q没有必须大于一个值的取值限制,例如已有技术中生成前导码的ZC序列的根指标必须大于最大时延扩展。因此,本发明实施例的方法增加了可用的根指标的个数,从而增加了前导码的个数。例如,在已有技术中,当考虑到基站与UE有频率偏差时,q=1不可以使用。而在本发明实施例的方法中,即使基站与UE有频率偏差,q=1也可以使用。一般的,可以选取比较小的正整数的q值对应的ZC序列的根指标q或者K-q。此外,针对选择的一个根指标q,UE可以使用的循环移位值,以及基站可以分配的循环移位值根据集合
Figure PCTCN2018074043-appb-000109
确定的,其中D是根据q所确定的值。通过根据q合理确定D的取值,可以确保UE由于频率偏差和时延扩展带来的循环移位能够在基站分配的循环移位间隔内,不会在基站分配的循环移位间隔外再占用额外的循环移位,从而可以保证没有用户间干扰。而在已有技术中,根指标q的选取必须满足大于一个值的取值限制,且针对这样选择的一个根指标q,可以使用的循环移位值只能取该集合中的一部分元素,才可以保证没有用户间干扰。因此,本发明实施例的方法增加了可用的循环移位值的个数,从而进一步增加了前导码序列的个数。
进一步,针对本发明实施例中选择的一个根指标q,UE可以使用的循环移位值,以及基站可以分配的循环移位值是集合
Figure PCTCN2018074043-appb-000110
的全部元素,意味着在相同的时频资源上,支持通过循环移位正交码分复用的UE数更多,提高了上行时频资源的使用效率。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如基站、UE为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对基站、UE进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图7示出了上述和实施例中涉及的基站的一种可能的组成示意图,如图7所示,该基站可以包括:确定单元61、生成单元62、接收单元63、处理单元64。
其中,确定单元61,用于支持基站执行图4所示的信号的传输方法中的步骤404, 图6所示的信号的传输方法中的步骤504。
生成单元62,用于支持基站执行图4所示的信号的传输方法中的步骤405,图6所示的信号的传输方法中的步骤505。
接收单元63,用于支持基站执行图4所示的信号的传输方法中的步骤406,图6所示的信号的传输方法中的步骤506。
处理单元64,用于支持基站执行图4所示的信号的传输方法中的步骤407,图6所示的信号的传输方法中的步骤507。
在本发明实施例中,进一步的,如图7所示,该基站还可以包括:发送单元65。
发送单元65,用于支持基站执行图4和图5对应的实施例中发送第一信令、第二信令、第三信令、第四信令、第五信令和第六信令的过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本发明实施例提供的基站,用于执行上述信号的传输方法,因此可以达到与上述信号的传输方法相同的效果。
在采用集成的单元的情况下,图8示出了上述实施例中所涉及的基站的另一种可能的组成示意图。如图8所示,该基站包括:处理模块71和通信模块72。
处理模块71用于对基站的动作进行控制管理,例如,处理模块71用于支持基站执行图4中的步骤404、步骤405、步骤407,图6中的步骤504、步骤505、步骤507、和/或用于本文所描述的技术的其它过程。通信模块72用于支持基站与其他网络实体的通信,例如与图1、图3、图9或图10中示出的功能模块或网络实体之间的通信。基站还可以包括存储模块73,用于存储服务器的程序代码和数据。
其中,处理模块71可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块72可以是收发器、收发电路或通信接口等。存储模块73可以是存储器。
当处理模块71为处理器,通信模块72为收发器,存储模块73为存储器时,本发明实施例所涉及的基站可以为图2所示的基站。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述和实施例中涉及的UE的一种可能的组成示意图,如图9所示,该UE可以包括:确定单元81、生成单元82、发送单元83。
其中,确定单元81,用于支持UE执行图4所示的信号的传输方法中的步骤401,图6所示的信号的传输方法中的步骤501。
生成单元82,用于支持UE执行图4所示的信号的传输方法中的步骤402,图6所示的信号的传输方法中的步骤502。
发送单元83,用于支持UE执行图4所示的信号的传输方法中的步骤403,图6所示的信号的传输方法中的步骤503。
进一步的,如图9所示,该UE还可以包括:接收单元84。
接收单元84,用于支持UE执行图4和图5对应的实施例中接收第一信令、第二信令、第三信令、第四信令、第五信令和第六信令的过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本发明实施例提供的UE,用于执行上述信号的传输方法,因此可以达到与上述信号的传输方法相同的效果。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的UE的另一种可能的组成示意图。如图10所示,该UE包括:处理模块91和通信模块92。
处理模块91用于对UE的动作进行控制管理。通信模块92用于支持UE与其他网络实体的通信,例如与图1、图2、图7或图8中示出的功能模块或网络实体之间的通信。UE还可以包括存储模块93,用于存储终端的程序代码和数据。
其中,处理模块91可以是处理器或控制器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块92可以是收发器、收发电路或通信接口等。存储模块93可以是存储器。
当处理模块91为处理器,通信模块92为收发器,存储模块93为存储器时,本发明实施例所涉及的终端设备可以为图3所示的终端设备。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光 盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何在本发明揭露的技术范围内的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种信号的发射方法,其特征在于,包括:
    用户设备UE确定根指标q;
    所述UE根据所述q和循环移位值生成上行信号,所述循环移位值是所述UE根据循环移位值集合确定的,所述循环移位值集合为:
    Figure PCTCN2018074043-appb-100001
    其中,所述循环移位值集合是根据所述q确定的,所述D是正实数,所述α 0是实数,是初始循环移位信息,
    Figure PCTCN2018074043-appb-100002
    表示下取整,所述N是所述上行信号的序列的长度;
    所述UE发送所述上行信号。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述UE接收第一信令,所述第一信令包含所述q对应的所述D;
    所述UE根据所述D和所述q确定所述循环移位值集合。
  3. 根据权利要求2所述的方法,其特征在于,不同的所述q对应的所述D不相同。
  4. 根据权利要求1所述的方法,其特征在于,还包括:
    所述UE接收第二信令,所述第二信令包含τ;
    所述UE根据所述q和所述τ确定所述循环移位值集合;
    其中,用于确定所述循环移位值集合的所述D是满足
    Figure PCTCN2018074043-appb-100003
    的正实数,或者
    用于确定所述循环移位值集合的所述D是满足
    Figure PCTCN2018074043-appb-100004
    的正实数,其中,所述τ为正实数,所述n是正整数,所述K是所述ZC序列的长度。
  5. 根据权利要求1所述的方法,其特征在于,还包括:
    所述UE接收第三信令,所述第三信令包含所述循环移位值集合。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,还包括:
    所述UE接收第四信令,所述第四信令包含所述初始循环移位信息。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述q属于集合{A 1,B 1,A 2,B 2},其中,A i=i(mod K),B i=-i(mod K),所述i为1或2。
  8. 一种信号的接收方法,其特征在于,包括:
    基站确定根指标q;
    所述基站根据所述q和循环移位值生成信号序列,所述循环移位值是所述基站根据循环移位值集合确定的,所述循环移位值集合为:
    Figure PCTCN2018074043-appb-100005
    其中,所述循环移位值集合是根据所述q确定的,所述D是正实数,所述α 0是实数,是初始循环移位信息,
    Figure PCTCN2018074043-appb-100006
    表示下取整,所述N是所述上行信号的序列的长度;
    所述基站接收上行信号;
    所述基站根据所述信号序列对所述上行信号进行处理。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    所述基站发送第一信令,所述第一信令包含所述q对应的所述D。
  10. 根据权利要求9所述的方法,其特征在于,不同的所述q对应的所述D不相同。
  11. 根据权利要求8所述的方法,其特征在于,还包括:
    所述基站发送第二信令,所述第二信令包含τ,所述τ用于用户设备UE确定所述循环移位值集合;
    其中,用于确定所述循环移位值集合的所述D是满足
    Figure PCTCN2018074043-appb-100007
    的正实数,或者
    用于确定所述循环移位值集合的所述D是满足
    Figure PCTCN2018074043-appb-100008
    的正实数,其中,所述τ为正实数,所述n是正整数,所述K是所述ZC序列的长度。
  12. 根据权利要求8所述的方法,其特征在于,还包括:
    所述基站发送第三信令,所述第三信令包含所述循环移位值集合。
  13. 根据权利要求8-12中任一项所述的方法,其特征在于,还包括:
    所述基站发送第四信令,所述第四信令包含所述初始循环移位信息。
  14. 根据权利要求8-13中任一项所述的方法,其特征在于,所述q属于集合{A 1,B 1,A 2,B 2},其中,A i=i(mod K),B i=-i(mod K),所述i为1或2。
  15. 一种用户设备UE,其特征在于,包括:
    确定单元,用于确定根指标q;
    生成单元,用于根据所述确定单元确定出的所述q,以及循环移位值生成上行信号,所述循环移位值是所述UE根据循环移位值集合确定的,所述循环移位值集合为:
    Figure PCTCN2018074043-appb-100009
    其中,所述循环移位值集合是根据所述q确定的,所述D是正实数,所述α 0是实数,是初始循环移位信息,
    Figure PCTCN2018074043-appb-100010
    表示下取整,所述N是所述上行信号的序列的长度;
    发送单元,用于发送所述生成单元生成的所述上行信号。
  16. 根据权利要求15所述的UE,其特征在于,还包括:接收单元;
    所述接收单元,用于接收第一信令,所述第一信令包含所述q对应的所述D;
    所述确定单元,还用于根据所述接收单元接收到的所述D和所述确定单元确定出的所述q确定所述循环移位值集合。
  17. 根据权利要求16所述的UE,其特征在于,不同的所述q对应的所述D不相同。
  18. 根据权利要求15所述的UE,其特征在于,还包括:接收单元;
    所述接收单元,用于接收第二信令,所述第二信令包含τ;
    所述确定单元,还用于根据所述确定单元确定出的所述q和所述接收单元接收到的所述τ确定所述循环移位值集合;
    其中,用于确定所述循环移位值集合的所述D是满足
    Figure PCTCN2018074043-appb-100011
    的正 实数,或者
    用于确定所述循环移位值集合的所述D是满足
    Figure PCTCN2018074043-appb-100012
    的正实数,其中,所述τ为正实数,所述n是正整数,所述K是所述ZC序列的长度。
  19. 根据权利要求15所述的UE,其特征在于,还包括:接收单元;
    所述接收单元,用于接收第三信令,所述第三信令包含所述循环移位值集合。
  20. 根据权利要求16-19中任一项所述的UE,其特征在于,
    所述接收单元,还用于接收第四信令,所述第四信令包含所述初始循环移位信息。
  21. 根据权利要求15-20中任一项所述的UE,其特征在于,所述q属于集合{A 1,B 1,A 2,B 2},其中,A i=i(mod K),B i=-i(mod K),所述i为1或2。
  22. 一种基站,其特征在于,包括:
    确定单元,用于确定根指标q;
    生成单元,用于根据所述确定单元确定出的所述q,以及循环移位值生成信号序列,所述循环移位值是所述基站根据循环移位值集合确定的,所述循环移位值集合为:
    Figure PCTCN2018074043-appb-100013
    其中,所述循环移位值集合是根据所述q确定的,所述D是正实数,所述α 0是实数,是初始循环移位信息,
    Figure PCTCN2018074043-appb-100014
    表示下取整,所述N是所述上行信号的序列的长度;
    接收单元,用于接收上行信号;
    处理单元,用于根据所述生成单元生成的所述信号序列对所述接收单元接收到的所述上行信号进行处理。
  23. 根据权利要求22所述的基站,其特征在于,还包括:
    发送单元,用于发送第一信令,所述第一信令包含所述q对应的所述D。
  24. 根据权利要求23所述的基站,其特征在于,不同的所述q对应的所述D不相同。
  25. 根据权利要求22所述的基站,其特征在于,还包括:
    发送单元,用于发送第二信令,所述第二信令包含τ,所述τ用于用户设备UE确定所述循环移位值集合;
    其中,用于确定所述循环移位值集合的所述D是满足
    Figure PCTCN2018074043-appb-100015
    的正实数,或者
    用于确定所述循环移位值集合的所述D是满足
    Figure PCTCN2018074043-appb-100016
    的正实数,其中,所述τ为正实数,所述n是正整数,所述K是所述ZC序列的长度。
  26. 根据权利要求22所述的基站,其特征在于,还包括:
    发送单元,用于发送第三信令,所述第三信令包含所述循环移位值集合。
  27. 根据权利要求23-26中任一项所述的基站,其特征在于,
    所述发送单元,还用于发送第四信令,所述第四信令包含所述初始循环移位信息。
  28. 根据权利要求22-27中任一项所述的基站,其特征在于,所述q属于集合{A 1,B 1,A 2,B 2},其中,A i=i(mod K),B i=-i(mod K),所述i为1或2。
PCT/CN2018/074043 2017-01-26 2018-01-24 一种信号的发射方法,接收方法及设备 WO2018137669A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18744019.3A EP3553979A4 (en) 2017-01-26 2018-01-24 SIGNAL TRANSMISSION METHOD, RECEIVING METHOD AND DEVICE
BR112019015253A BR112019015253A2 (pt) 2017-01-26 2018-01-24 método de transmissão de sinal, método de recebimento de sinal e dispositivo
US16/522,140 US10992405B2 (en) 2017-01-26 2019-07-25 Signal transmission method, signal receiving method, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710064247.3 2017-01-26
CN201710064247.3A CN108365910B (zh) 2017-01-26 2017-01-26 一种信号的发射方法,接收方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/522,140 Continuation US10992405B2 (en) 2017-01-26 2019-07-25 Signal transmission method, signal receiving method, and device

Publications (1)

Publication Number Publication Date
WO2018137669A1 true WO2018137669A1 (zh) 2018-08-02

Family

ID=62978096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074043 WO2018137669A1 (zh) 2017-01-26 2018-01-24 一种信号的发射方法,接收方法及设备

Country Status (5)

Country Link
US (1) US10992405B2 (zh)
EP (1) EP3553979A4 (zh)
CN (1) CN108365910B (zh)
BR (1) BR112019015253A2 (zh)
WO (1) WO2018137669A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615704B (zh) * 2018-08-10 2022-03-08 华为技术有限公司 一种同步信号的传输方法和装置
CN111526571B (zh) * 2019-02-01 2021-08-03 华为技术有限公司 一种参考信号传输的方法和装置
CN113965441B (zh) * 2021-10-20 2023-10-27 江苏科技大学 基于随机步进频ofdm的雷达通信一体化信号生成和接收方法
CN115065373B (zh) * 2022-04-21 2023-12-12 海能达通信股份有限公司 多时隙收发信机和多时隙通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345577A (zh) * 2008-08-21 2009-01-14 中兴通讯股份有限公司 生成前导序列的方法及确定循环移位的方法
CN101841507A (zh) * 2009-03-20 2010-09-22 中兴通讯股份有限公司 主同步信道序列的生成方法、装置及其多天线发送方法
CN102316601A (zh) * 2011-09-28 2012-01-11 北京北方烽火科技有限公司 一种随机接入信道的前导序列检测方法和装置
AU2014200534A1 (en) * 2007-04-30 2014-02-20 Huawei Technologies Co., Ltd. Method, apparatus and mobile communication system of determining a set of zero correlation zone lengths
CN106358296A (zh) * 2015-07-14 2017-01-25 中兴通讯股份有限公司 在上行控制信道上发送信号的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1971097B1 (en) * 2007-03-16 2014-03-12 LG Electronics Inc. Method of generating random access preambles in wireless communication system
US20100284350A1 (en) * 2007-06-07 2010-11-11 Nokia Corporation Apparatus, method and computer program product providing flexible preamble sequence allocation
CN101336003B (zh) * 2008-08-05 2012-04-18 中兴通讯股份有限公司 生成前导序列的方法及确定循环移位步长的方法
CN102340472B (zh) * 2010-07-23 2015-01-14 普天信息技术研究院有限公司 生成频域zc序列的方法及基于zc序列的随机接入方法
CN107006034A (zh) * 2015-04-24 2017-08-01 华为技术有限公司 上行随机接入的方法及相关设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014200534A1 (en) * 2007-04-30 2014-02-20 Huawei Technologies Co., Ltd. Method, apparatus and mobile communication system of determining a set of zero correlation zone lengths
CN101345577A (zh) * 2008-08-21 2009-01-14 中兴通讯股份有限公司 生成前导序列的方法及确定循环移位的方法
CN101841507A (zh) * 2009-03-20 2010-09-22 中兴通讯股份有限公司 主同步信道序列的生成方法、装置及其多天线发送方法
CN102316601A (zh) * 2011-09-28 2012-01-11 北京北方烽火科技有限公司 一种随机接入信道的前导序列检测方法和装置
CN106358296A (zh) * 2015-07-14 2017-01-25 中兴通讯股份有限公司 在上行控制信道上发送信号的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3553979A4

Also Published As

Publication number Publication date
US20190349109A1 (en) 2019-11-14
BR112019015253A2 (pt) 2020-04-14
CN108365910B (zh) 2020-03-10
EP3553979A1 (en) 2019-10-16
EP3553979A4 (en) 2020-01-29
CN108365910A (zh) 2018-08-03
US10992405B2 (en) 2021-04-27

Similar Documents

Publication Publication Date Title
CN108347778B (zh) 通信方法及装置
WO2018054263A1 (zh) 发送或接收物理下行控制信道的方法和设备
WO2018127021A1 (zh) 一种资源指示方法、用户设备及网络设备
US10992405B2 (en) Signal transmission method, signal receiving method, and device
WO2018228500A1 (zh) 一种调度信息传输方法及装置
TW201824912A (zh) 數據傳輸方法和裝置
WO2017113085A1 (zh) 用于随机接入的方法和装置
WO2015176517A1 (zh) 设备到设备的资源配置方法、网络设备及用户设备
JP7228046B2 (ja) 端末デバイス、ネットワークデバイスおよびその方法
JP2019535186A (ja) データ通信方法、端末、および基地局
WO2014183680A1 (zh) 一种传输下行信号的方法、装置及终端设备
WO2017118396A1 (zh) 上行传输资源分配方法、基站和用户设备
WO2020164639A1 (zh) 一种随机接入方法、设备及系统
WO2018171792A1 (zh) 一种参考信号传输方法、装置及系统
CN116260564A (zh) 用于选择用于子prb传输的子载波的系统和方法
WO2018228243A1 (zh) 一种发送解调参考信号的方法和装置、解调方法和装置
WO2019191901A1 (en) Method and devices for resource allocation in a wireless communication system
TW201826747A (zh) 資源映射的方法和通訊設備
WO2020063929A1 (zh) 一种发现参考信号发送方法及装置
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
TWI652921B (zh) 用戶設備及虛擬載波的操作方法
WO2018202161A1 (zh) 通信方法、终端设备和网络设备
US11382077B2 (en) PUCCH transmission method, terminal and network-side device
WO2020043103A1 (zh) 一种信号发送、接收方法及装置
WO2019185065A1 (zh) 一种确定资源的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018744019

Country of ref document: EP

Effective date: 20190710

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019015253

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019015253

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190724