WO2018127021A1 - 一种资源指示方法、用户设备及网络设备 - Google Patents

一种资源指示方法、用户设备及网络设备 Download PDF

Info

Publication number
WO2018127021A1
WO2018127021A1 PCT/CN2017/120281 CN2017120281W WO2018127021A1 WO 2018127021 A1 WO2018127021 A1 WO 2018127021A1 CN 2017120281 W CN2017120281 W CN 2017120281W WO 2018127021 A1 WO2018127021 A1 WO 2018127021A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
reference signal
measurement result
configuration information
downlink reference
Prior art date
Application number
PCT/CN2017/120281
Other languages
English (en)
French (fr)
Inventor
李俊超
吴宁
唐浩
李新县
栗忠峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17889793.0A priority Critical patent/EP3554155B1/en
Priority to JP2019536924A priority patent/JP2020504546A/ja
Publication of WO2018127021A1 publication Critical patent/WO2018127021A1/zh
Priority to US16/504,024 priority patent/US10979194B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a resource indication method, a user equipment, and a network device.
  • 5G fifth-generation networks
  • NR new Radio
  • the subcarrier spacing currently supported by the NR includes 15*2 n kHz ( n ⁇ ⁇ -2, -1, ..., 5 ⁇ , corresponding to the subcarrier spacing [3.75 kHz, 480 kHz]).
  • the choice of subcarrier spacing corresponding to system parameters depends on a compromise between spectral efficiency and frequency offset resistance.
  • CP Cyclic Prefix
  • one symbol includes a symbol part and a CP part. Under the same CP overhead, the smaller the subcarrier spacing, the longer the symbol part, the longer the OFDM symbol period, and the system spectral efficiency. The higher the resistance, the weaker the Doppler shift and phase noise.
  • the NR supports multiplexing of different system parameters in a bandwidth by means of Frequency Division Multiplexing (FDM) and/or Time Division Multiplexing (TDM).
  • FDM Frequency Division Multiplexing
  • TDM Time Division Multiplexing
  • the resource indication methods under various resource allocation types given in the Long Term Evolution (LTE) standard are for system parameters corresponding to a subcarrier spacing of 15 kHz.
  • the resource allocated for the user equipment is a contiguous virtual resource block (VRB), and the mapping manner of the VRB to the physical resource block (PRB) may be centralized. It can also be distributed.
  • the resource indication method in the resource allocation type is indicated by Downlink Control Information (DCI), and one bit in the DCI format is used to indicate whether the mapping mode is centralized or distributed, and the resource indicator bit in the DCI format is used. Indicates the starting resource block allocated for the user equipment and the length of the continuously allocated resource block.
  • DCI Downlink Control Information
  • the resource indication method for the system parameter corresponding to the 15 kHz can indicate the resource allocation situation in the single system parameter scenario, and cannot indicate the resource allocation situation in the multiple system parameter coexistence scenario.
  • the embodiment of the invention provides a resource indication method, a user equipment, and a network device, which can indicate resource allocation situations in a plurality of system parameter coexistence scenarios.
  • a first aspect of the embodiments of the present invention provides a resource allocation method, including:
  • the network device sends configuration information to the user equipment, where the configuration information includes allocation information of frequency domain resources of the plurality of first system parameters, and the user equipment receives configuration information sent by the network device, where the at least one of the plurality of first system parameters is first. Transmitting information corresponding to the physical channel and/or information corresponding to the physical signal on at least one resource element of the time-frequency resource corresponding to the frequency domain resource of the system parameter;
  • the first system parameter includes at least one of a first subcarrier spacing size, a cyclic prefix length, a transmission time interval length, a symbol length, and a symbol number.
  • the frequency domain resources of the plurality of first system parameters are indicated by the configuration information, so that the resource allocation situation in the multiple system parameter coexistence scenarios can be indicated.
  • the network device allocates a frequency domain resource to the multiple first system parameters before sending the configuration information to the user equipment, to obtain the multiple first system parameters.
  • the allocation information of the frequency domain resource so that the network device sends the configuration information to the user equipment.
  • the frequency domain resource of the first system parameter is determined by allocation information of a frequency domain resource of the first system parameter, the first system parameter, and a second system parameter, where the The second system parameter includes a second subcarrier spacing size, and the user equipment may determine the first system parameter according to the allocation information of the frequency domain resource of the first system parameter, the first system parameter, and the second system parameter.
  • the frequency domain resource that is, the frequency domain resource allocated by the network device to the first system parameter, so that the user equipment subsequently utilizes the frequency domain resource.
  • the multiple first system parameters are system parameters supported by the network device, and the second system parameters are reference system parameters that divide system frequency domain resources.
  • the configuration information further includes an identifier of the second system parameter, where the identifier of the second system parameter is used to identify a reference system parameter that divides a system frequency domain resource.
  • the configuration information further includes an identifier of the first system parameter, configured to notify the user equipment of allocation information of frequency domain resources corresponding to each first system parameter, and establish allocation information and The correspondence between a system parameter.
  • the configuration information is public-level downlink control information
  • the cyclic redundancy check of the common-level downlink control information is scrambled by a cell public identifier, or the public-level downlink control information is
  • the freeze bit is the cell public identifier, so that the user equipment performs descrambling or decoding by using the cell public identifier, thereby obtaining allocation information of frequency domain resources corresponding to each first system parameter.
  • the configuration information is public-level downlink control information
  • the cyclic redundancy check of the common-level downlink control information is scrambled by the identifier of the first system parameter, or the public
  • the freeze bit of the downlink control information is an identifier of the first system parameter, so that the user equipment performs descrambling or decoding by using the identifier of the first system parameter, thereby obtaining the first system supported by the user equipment.
  • the size of the common level downlink control information may be reduced, and the blind detection complexity or decoding complexity of the user equipment may be reduced.
  • the configuration information is the public-level downlink control information, which can reduce signaling overhead to a certain extent.
  • the configuration information is high layer signaling
  • the high layer signaling is carried by dedicated radio resource control signaling, system message, random access response message, message 4, or media access control control element.
  • a second aspect of the embodiments of the present invention provides a mapping method from a virtual resource block to a physical resource block, including:
  • the network device sends the scheduling information to the user equipment, where the scheduling information includes the first virtual resource block corresponding to the at least one first system parameter and the mapping indication information; the user equipment receives the scheduling information sent by the network device, and performs resource block mapping according to the scheduling information. At least one physical resource block corresponding to the first system parameter, and transmitting information corresponding to the physical channel and/or information corresponding to the physical signal on the physical resource block.
  • the first virtual resource block corresponding to the mapping mode and the at least one first system parameter is indicated by the scheduling information, so that the user equipment performs resource block mapping according to the scheduling information, so as to implement the scenario of coexistence of multiple system parameters.
  • the first virtual resource block corresponding to the at least one first system parameter includes a number of the first virtual resource block corresponding to each first system parameter, so that the user equipment clearly knows each A first virtual resource block corresponding to a system parameter.
  • the user equipment uses a centralized mapping manner according to the first virtual resource block corresponding to each first system parameter.
  • the first virtual resource block corresponding to each first system parameter is mapped to a corresponding physical resource block.
  • mapping manner indicated by the mapping indication information is a new type of distributed mapping
  • the user equipment first uses the first virtual resource block corresponding to each first system parameter to adopt a distributed mapping manner.
  • a third aspect of the embodiments of the present invention provides a user equipment, including:
  • a receiving unit configured to receive configuration information sent by the network device, where the configuration information includes allocation information of frequency domain resources of the multiple first system parameters;
  • a sending unit configured to transmit information corresponding to the physical channel and/or physical signal corresponding to at least one of the time-frequency resources corresponding to the frequency domain resource of the at least one of the plurality of first system parameters Information;
  • the first system parameter includes at least one of a first subcarrier spacing size, a cyclic prefix length, a transmission time interval length, a symbol length, and a symbol number.
  • the user equipment provided by the third aspect of the embodiments of the present invention is used to implement the functions performed by the user equipment in the resource indication method provided by the first aspect of the embodiments of the present invention.
  • a fourth aspect of the embodiments of the present invention provides a user equipment, including:
  • a sending unit configured to send configuration information to the user equipment, where the configuration information includes allocation information of frequency domain resources of the plurality of first system parameters, and frequency domain of at least one of the plurality of first system parameters At least one resource element of the time-frequency resource corresponding to the resource is used by the user equipment to transmit information corresponding to the physical channel and/or information corresponding to the physical signal;
  • the first system parameter includes at least one of a first subcarrier spacing size, a cyclic prefix length, a transmission time interval length, a symbol length, and a symbol number.
  • the network device provided by the fourth aspect of the embodiments of the present invention is used to implement the functions performed by the network device in the resource indication method provided by the first aspect of the embodiments of the present invention.
  • a fifth aspect of the embodiments of the present invention provides another user equipment, including a processor and a communication module, where the user equipment is used to implement the functions performed by the user equipment in the resource indication method provided by the first aspect of the embodiments of the present invention.
  • a sixth aspect of the embodiments of the present invention provides another network device, including a processor and a transceiver, where the network device is used to implement the functions performed by the network device in the resource indication method provided by the first aspect of the embodiments of the present invention.
  • the configuration information of the allocation information of the frequency domain resources including the plurality of first system parameters is sent to the user equipment by the network device, to indicate the frequency domain resources corresponding to the plurality of first system parameters, so that the user equipment is
  • the information corresponding to the physical channel and/or the information corresponding to the physical signal is transmitted on the at least one resource element of the time-frequency resource corresponding to the required frequency domain resource, so as to indicate the resource allocation situation in the coexistence scenario of multiple system parameters.
  • FIG. 1 is a schematic diagram of a network architecture to which an embodiment of the present invention is applied;
  • FIG. 1a is a diagram showing an example of a resource block group numerator set in downlink resource allocation type 1;
  • FIG. 2 is a schematic diagram of communication of a resource indication method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a format of downlink control information according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another format of downlink control information according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of frequency band division information obtained by the user equipment based on FIG. 3;
  • FIG. 6 is a schematic diagram of frequency band division information obtained by a user equipment based on FIG. 4;
  • FIG. 7 is a schematic flowchart of a method for mapping from a virtual resource block to a physical resource block according to an embodiment of the present disclosure
  • FIG. 7a is a schematic diagram of a centralized resource allocation process with a downlink bandwidth of 5 MHz;
  • FIG. 7b is a schematic diagram of a distributed resource allocation process with a downlink bandwidth of 5 MHz;
  • FIG. 8 is a schematic diagram of an exemplary mapping provided by the embodiment shown in FIG. 7; FIG.
  • FIG. 9 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 10b is a schematic structural diagram of another network device according to an embodiment of the present invention.
  • the network architecture diagram may be a network architecture of an LTE communication system, or may be a Universal Mobile Telecommunications System (UMTS) terrestrial radio access network (UMTS Terrestrial Radio Access Network (UTRAN) architecture, or Global System for Mobile Communications (GSM)/Enhanced Data Rate for GSM Evolution (EDGE) system radio access network (GSM EDGE)
  • UMTS Universal Mobile Telecommunications System
  • UTRAN Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rate for GSM Evolution
  • GSM EDGE Global System for Mobile Communications
  • the Radio Access Network (GERAN) architecture can also be a 5G communication system architecture.
  • the network architecture diagram includes a Mobility Management Entity (MME)/Serving Gate Way (SGW), a base station, and a User Equipment (UE).
  • MME Mobility Management Entity
  • SGW Serving Gate Way
  • UE User Equipment
  • the MME is a key control node in the 3GPP LTE and belongs to the core network element, and is mainly responsible for the signaling processing part, that is, the control plane function, including access control, mobility management, attach and detach, session management function, and gateway selection. And other functions.
  • the SGW is an important network element of the core network element in the 3GPP LTE. It is mainly responsible for the user plane function of user data forwarding, that is, routing and forwarding of data packets under the control of the MME.
  • the base station is configured to communicate with the user equipment, and may be a base station (Base Transceiver Station, BTS) in a GSM system or Code Division Multiple Access (CDMA), or a base station in a WCDMA system (
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • the Node B, NB may also be an Evolutionary Node B (eNB) in the LTE system, or may be a base station in the 5G system and a base station of the future communication system.
  • the base station is mainly responsible for radio resource management, quality of service (QoS) management, data compression, and encryption on the air interface side.
  • QoS quality of service
  • the base station is mainly responsible for forwarding control plane signaling to the MME and forwarding user plane service data to the SGW.
  • the user equipment is a device that accesses the network side through the base station, and may include, but is not limited to, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, Personal Digital Assistant (PDA), a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, and the like.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the S1 interface shown in Figure 1 is a standard interface between the base station and the core network.
  • the base station is connected to the MME through the S1-MME interface, and is used for control signaling transmission; the base station is connected to the SGW through the S1-U interface, and is used for transmission of user data.
  • the S1-MME interface and the S1-U interface are collectively referred to as an S1 interface.
  • the X2 interface shown in Figure 1 is a standard interface between a base station and a base station, and is used to implement interworking between base stations.
  • the Uu interface shown in Figure 1 is a standard interface between the user equipment and the base station, and the user equipment accesses the LTE/5G network through the Uu interface.
  • the virtual resource block is used by the Media Access Control (MAC) layer during scheduling, and is a logical concept.
  • MAC Media Access Control
  • the physical resource block is a concept that the physical layer needs to use when actually mapping. It belongs to the concept of actual physical meaning.
  • the system parameter is a possible name of the numerology and does not constitute a limitation on the embodiment of the present invention. It can be understood that other names of numerology in the standard or protocol may also fall within the protection scope of the embodiments of the present invention.
  • the downlink resource allocation includes three types of resource allocation types: 0 to 3.
  • the three resource allocation types correspond to three resource indication methods.
  • the Downlink Control Information (DCI) format 1/2/2A/2B/2C indicates the resource block group allocated to the UE by a bitmap (Resource Block). Group, RBG).
  • Bitmap total Bit Indicates the downlink bandwidth
  • P indicates the size of the RBG
  • N RBG indicates the number of bits included in the bitmap, and also indicates the number of RBGs, that is, one RBG per bit.
  • RBG 0 represents the highest bit
  • RBG N RBG -1 represents the lowest bit, and so on. If an RBG is assigned to a UE, the corresponding bit in the bitmap is set to 1, otherwise it is set to 0.
  • Resource allocation type 0 supports non-contiguous RB allocation on the frequency domain.
  • RBG subset p (0 ⁇ p ⁇ P) contains all RBGs starting from RBG p with an interval of P.
  • the Virtual Resource Block (VRB) assigned to a UE must come from the same subset. As shown in FIG. 1a, 25 RBs are divided into two subsets (subset 0 and subset 1), and subset 0 includes all RBGs starting from RBG 0 with an interval of 2; subset 1 includes starting from RBG1 with an interval of 2 of all RBGs.
  • DCI format 1/2/2A/2B/2C indicates the VRB allocated to the UE through 3 fields (note: unlike resource allocation type 0, here is VRB, not RBG).
  • Resource allocation type 1 supports non-contiguous RB allocation on the frequency domain.
  • the resources allocated to the UE are a continuous VRB, and the VRBs may be centralized or distributed.
  • DCI format 1A/1B/1D there is one bit (corresponding to a Localized/Distributed VRB Assignment Identification field) to indicate whether to use a centralized VRB (whose bit is 0) or to use distributed VRB.
  • resource allocation is represented by a Resource Indicated Value (RIV). From this value, the starting RB (RB start ) assigned to the UE and the length of the continuously allocated RB (L CRBs ) can be derived.
  • Resource allocation type 2 only supports the allocation of consecutive VRBs.
  • the uplink resource allocation includes two types of resource allocation types: 0 to 1.
  • the two resource allocation types correspond to two resource indication methods.
  • the processing of the uplink resource allocation type 0 is basically the same as the processing of the downlink resource allocation type 2 for the DCI format 1A/1B/1D, and the uplink data transmission uses the uplink system bandwidth. Rather than downlink system bandwidth Calculation.
  • the resource allocation information in the uplink resource allocation type 1 indicates that the UE is allocated two RB sets, and each set includes one or more consecutive RBGs of size P.
  • P represents the number of consecutive RBs included in the RBG.
  • the Resource Block Assignment field in DCI format 0/4 indicates a combined index r, r specifies the index s 0 and s 1 -1 of the start RBG and the end RBG of the RB set 1. And the starting RBG of the RB set 2 and the indexes s 2 and s 3 -1 of the ending RBG.
  • the embodiment of the present invention provides a resource indication method, a user equipment, and a network device, which are applicable to scenarios in which a plurality of system parameters coexist, and can indicate resource allocation situations in a plurality of system parameter coexistence scenarios.
  • the user equipment in the embodiment of the present invention may include, but is not limited to, a cellular phone, a cordless phone, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, and a future 5G network. Terminal equipment, etc.
  • the network device in the embodiment of the present invention may be a base station or a core network element in the schematic diagram of the network architecture shown in FIG.
  • the resource indication method, user equipment, and network device provided by the embodiments of the present invention are described in detail below.
  • FIG. 2 is a schematic diagram of communication of a resource indication method according to an embodiment of the present invention, including steps 201-203.
  • the network device sends configuration information to the user equipment, where the configuration information includes allocation information of frequency domain resources of the multiple first system parameters.
  • the plurality of first system parameters are system parameters supported by the network device, and any one of the plurality of first system parameters includes a subcarrier spacing size, a cyclic prefix CP type, and a time unit. At least one of the number of symbols corresponding to the type.
  • the CP type is determined according to the CP overhead, and the time unit type may be a subframe in an LTE system, a time slot in the NR system, a minislot, an aggregation slot, and an aggregation microslot.
  • One symbol includes a symbol part and a CP part. In the case where the CP overhead is the same, the smaller the subcarrier spacing, the longer the symbol part, that is, the number of symbols corresponding to the time unit type.
  • the number of symbols corresponding to the subcarrier spacing size, the CP type, and the time unit type is three elements of the system parameter, and any one of the elements can reflect the system parameters.
  • the subcarrier spacing size supported by the NR may include 15*2 n kHz ( n ⁇ ⁇ -2, -1, . . . , 5 ⁇ corresponding to the subcarrier spacing [3.75 kHz, 480 kHz]), in the embodiment of the present invention.
  • the range of values of n may not be limited to -2 to 5.
  • the multiple first system parameters may include multiple subcarrier spacing sizes different from each other, such as 15 kHz, 30 kHz, etc., and may also include two or more identical
  • the subcarrier spacing size includes, for example, two 15 kHz and the like.
  • the network device allocates frequency domain resources to the multiple first system parameters, and obtains allocation information of the frequency domain resources of the multiple first system parameters, before sending the configuration information to the user equipment.
  • the method for the network device to allocate frequency domain resources to the multiple first system parameters is not limited herein, and the network device determines an allocation method. In the allocation process, two or more first system parameters are used. The same frequency domain resource may be allocated, or the frequency domain resources to which multiple first system parameters are allocated may be different.
  • the network device may divide the system frequency domain resource (system bandwidth) according to a reference system parameter.
  • the reference system parameter is named as the second system parameter.
  • the second system parameter includes a subcarrier spacing size, and the subcarrier spacing size of the second system parameter may be a default subcarrier spacing size, or may be set autonomously by the network device, and the specific value is 15*2 n kHz. one of the.
  • the identifier of the second system parameter may be notified to the user equipment, that is, the sub-carrier spacing size of the second system parameter is notified, and if the sub-carrier spacing size is the default sub-carrier spacing size, the network device does not need to notify The user equipment defaults to a subcarrier spacing size.
  • the default subcarrier spacing size can be predefined for the network device and the user equipment, the two parties know by default, for example, the default subcarrier spacing size is 15 kHz of the initial access, or supported by the data channel under the sub 6 GHz.
  • the maximum subcarrier spacing is 60 kHz.
  • the network device notifies the user equipment of the identifier of the second system parameter by using a high layer or physical layer signaling.
  • the high layer signaling may include a primary information block (MIB), a system information block (SIB), a random access response message (Msg. 2), a message 4 (Msg. 4), and the like.
  • Layer signaling may include DCI or the like.
  • the network device may send the configuration information to the user equipment by using the Uu interface shown in FIG. 1 , where the configuration information includes frequency domain resource allocation information of the multiple first system parameters, and is used to indicate the multiple Frequency domain resources of the first system parameter.
  • the configuration information further includes an identifier of the second system parameter, so that the user equipment System band resource partitioning is performed according to the second system parameter.
  • the configuration information further includes an identifier of the multiple first system parameters, specifically, an identifier of each first system parameter, where different first system parameters correspond to different identifiers, where
  • the configuration information is used to indicate allocation information of frequency domain resources corresponding to different first system parameters, and the correspondence between different first system parameters and allocation information of frequency domain resources may be one-to-one, that is, different A system parameter occupies different frequency domain resources; the correspondence between different first system parameters and frequency domain resource allocation information may be many-to-one, that is, two or more first system parameters may occupy the same frequency domain Resources.
  • the configuration information is common level downlink control information, and the common level may be a cell level or a UE group level.
  • the common downlink control information is a common downlink control information that needs to be detected by the user in the cell user or the UE group, and is located in the common search space of the downlink control channel and the search space of the UE group.
  • the data In order to maximize the accuracy of the data received by the receiver, the data needs to be error-detected before the receiver receives the data, and the receiver actually receives the data if and only if the result of the detection is correct.
  • There are many ways to detect such as parity check, Internet check and Cyclic Redundancy Check (CRC).
  • CRC Cyclic Redundancy Check
  • the embodiment of the invention uses the CRC to detect the common level downlink control information.
  • CRC is a hash function that generates a short fixed-digit check code based on data such as network packets or computer files. It is mainly used to detect or verify errors that may occur after data transmission or storage.
  • the CRC of the common-level downlink control information is scrambled by the cell or the UE group public identifier.
  • the common identifier of the cell is a common information of a user in a cell that is pre-defined or configured by the high-layer signaling, including a physical cell identity (PCI), a hyper-cell identity, and a wireless network temporary identifier. (Radio Network Temporary Identity, RNTI), etc.
  • the UE group public identity is information common to users in the UE group.
  • the CRC of the common-level downlink control information is scrambled by the identifier of the first system parameter.
  • the scrambling is performed by the identifier of the first system parameter, that is, the identifier of the first system parameter may be indirectly indicated.
  • the identifier of each of the plurality of first system parameters is different, and the identifier of each first system parameter corresponds to a common level downlink control information, that is, the CRC of each common level downlink control information is corresponding.
  • the identification of the first system parameter is scrambled.
  • the user equipment only needs to descramble with the identifier of the first system parameter that it supports, and the user equipment supports the
  • the first system parameter may be one or two or more. Since the CRC is scrambled by the identifier of the first system parameter, the configuration information does not need to indicate the identifier of the first system parameter again, and the size of the common-level downlink control information can be reduced, and the UE is reduced. Blind check complexity.
  • the freeze bit of the common-level downlink control information is the cell public identifier.
  • a part of the N channels with better channel quality is selected as the information transmission channel, and the remaining part is used as a frozen bit transmission channel, which is usually used for transmitting fixed information.
  • the decoding process will not converge, that is, the decoding cannot be performed correctly.
  • the freeze bit of the common level downlink control information is an identifier of the first system parameter.
  • the freeze bit of each common level downlink control information is the identifier of the corresponding first system parameter.
  • the configuration information is high layer signaling, and the high layer signaling is performed by a dedicated radio resource control (RRC) signaling, a system message, and a random access response message (Msg.2). ), Message 4 (Msg. 4) or MAC Control Element (MAC CE) bearer.
  • RRC radio resource control
  • Msg.2 Message 4
  • MAC CE MAC Control Element
  • System messages are public messages, similar to broadcast messages.
  • the contention-based random access has four messages Msg.1 to Msg.4, and the Msg.2 is a random access response message sent by the base station to the UE according to the random access preamble (Msg.1) sent by the UE.
  • Msg.2 Msg.4 is a Contention Resolution (Msg. 4) that the base station transmits to the UE according to the Scheduled Transmission Containing (Msg.1) sent by the UE.
  • the MAC CE is a control element or control particle of the media access control layer.
  • the configuration information will be described below using two examples, both of which are described using the downlink resource allocation type 2, but the two examples are consecutive allocation of RBs instead of VRBs.
  • Example 1 please refer to FIG. 3, which is a schematic diagram of a downlink control information format according to an embodiment of the present invention. As shown in FIG. 3, the CRC in the DCI format is scrambled by the cell public identity.
  • the first field in FIG. 3 is used to indicate the identifier of the second system parameter, and the number of bits occupied by the domain is
  • K represents the total number of first system parameters supported by the network device.
  • a method for reducing the cost is that the value of K is related to the operating frequency of the system: for a sub 6 GHz operating frequency point, the first system parameter supported by the network device includes a corresponding subcarrier spacing of 15, 30, 60 kHz, The value of K is 3, and the number of bits occupied by the domain is 2.
  • the second field in FIG. 3 is the area indicated by the left oblique line
  • the third field is the area indicated by the lattice line
  • the N+1th field is the area indicated by the right oblique line.
  • Each of the domains from the second domain to the N+1th domain includes two subdomains.
  • the first sub-domain of the domain represents the identifier of the first system parameter corresponding to the first sub-band, and the number of occupied bits is
  • K represents the total number of first system parameters supported by the network device
  • the second sub-domain of the domain represents resource allocation information 1 of the first system parameter corresponding to the first sub-band, and the number of occupied bits is among them Indicates the downlink system bandwidth.
  • the second sub-domain of the domain is the resource indication value RIV, which is used to indicate the start RB (RB start ) of the first sub-band and the length of the continuously allocated RB (L CRBs ), that is, the first indication Resource allocation information 1 of the first system parameter corresponding to the subband.
  • RIV resource indication value
  • the configuration information includes an identifier of the first system parameter (an identifier of each first system parameter), an identifier of the second system parameter, and a CRC thereof is scrambled by a cell public identifier.
  • FIG. 4 is a schematic diagram of another downlink control information format according to an embodiment of the present invention.
  • the CRC in the DCI format is scrambled by the identifier n of the first system parameter.
  • the first system parameter of the identifier n may represent an identifier of a certain one of the plurality of first system parameters.
  • the first field in FIG. 4 is used to indicate the identifier of the second system parameter, and the number of bits occupied by the domain is
  • K represents the total number of first system parameters supported by the network device.
  • a method for reducing the cost is that the value of K is related to the operating frequency of the system: for a sub 6 GHz operating frequency point, the first system parameter supported by the network device includes a corresponding subcarrier spacing of 15, 30, 60 kHz, The value of K is 3, and the number of bits occupied by the domain is 2.
  • the second field in FIG. 4 is used to indicate resource allocation information n of the first system parameter corresponding to the first sub-band, and the number of bits occupied by the domain is
  • the field is a resource indication value RIV for indicating the starting RB (RB start ) of the first sub-band and the length (L CRBs ) of consecutively allocated RBs.
  • RIV resource indication value for indicating the starting RB (RB start ) of the first sub-band and the length (L CRBs ) of consecutively allocated RBs.
  • a DCI corresponds to a CRC scrambled by the identifier of the first system parameter
  • a DCI corresponds to resource allocation information of a first system parameter, according to the identifier of the first system parameter in the scrambled CRC. Determine the corresponding resource allocation information.
  • the configuration information includes an identifier of the second system parameter, and a CRC thereof is scrambled by the identifier of the first system parameter.
  • the resource allocation information in FIG. 3 and FIG. 4 is allocation information of frequency domain resources, and is continuous in the frequency domain based on the downlink resource allocation type 2.
  • the resources indicated by the resource allocation information vary, depending on the specific resource allocation type, and may be continuous or non-contiguous in the frequency domain.
  • the user equipment receives the configuration information sent by the network device.
  • the frequency domain resource allocation information of the first system parameter, the first system parameter, and the second system parameter are used to determine a frequency domain resource of the first system parameter, and at this time, determining the multiple first systems The frequency domain resource of any one of the first system parameters.
  • the frequency domain resources of each first system parameter can be determined, thereby determining the frequency domain resources of the plurality of first system parameters.
  • the user equipment divides the system frequency domain resources according to the second system parameter. For example, if the sub-carrier spacing corresponding to the second system parameter is 60 kHz, the user equipment divides the system frequency domain resources according to 60 kHz. And numbered from 0 to N-1.
  • the domain resource that is, the frequency domain resource allocated by the network device for the first system parameter.
  • the first system parameter is one of the plurality of first system parameters.
  • the configuration information is the public-level downlink control information
  • the user equipment when the user equipment receives the DCI, perform corresponding blind detection according to the scrambling manner; or the user equipment receives the DCI. , according to its frozen bit for decoding.
  • the user equipment blindly checks the DCI by using the cell common identifier to obtain each domain shown in FIG. 3.
  • the user equipment determines the second system parameter according to the first domain, and performs system frequency domain resource division and numbering according to the second system parameter. Since the number of bits indicating the identity of each first system parameter is the same, both are
  • the plurality of first system parameters supported by the network device may be numbered according to a predefined rule, for example, from small to large according to the subcarrier spacing, and if it is supported by 15, 30, 60 kHz, then "00" indicates 15 kHz, and "01” indicates 30 kHz, "10” represents 60 kHz, and if the second system parameter is also 60 kHz, the first field is "10".
  • the user equipment determines an identifier of the first system parameter corresponding to the first sub-band; the user equipment is further based on the second sub-domain in the second domain The value of the bit determines the start of the first subband And the length of consecutively allocated RBs That is, the allocation information of the frequency domain resources of the first system parameter corresponding to the first sub-band is determined. If Then there is Otherwise there is
  • the user equipment sequentially determines, according to the third domain, the four domains, the identifiers of the first system parameters corresponding to the second subband, the three subbands, and the initial RBs and consecutive allocations of the respective subbands according to the foregoing method.
  • the length of the RB is the length of the RB.
  • the user equipment calculates a starting RB (RB start ) of the first system parameter and a length of the continuously allocated RB (L CRBs ) according to the identifier of the first system parameter corresponding to each sub-band. For example, if the sub-carrier spacing of the second system parameter is 60 kHz, and the first system parameter used by a certain sub-band corresponds to a sub-carrier spacing of 30 kHz, then
  • FIG. 5 is a schematic diagram of bandwidth allocation information obtained by the user equipment according to FIG. 3, which respectively indicates allocation information of frequency domain resources of a first system parameter corresponding to a subcarrier spacing of 15, 60, and 30 kHz, and the second system parameter.
  • the subcarrier spacing is 60KHz.
  • the user equipment blindly checks the DCI by the identifier of the first system parameter that it supports, if and only if the identifier of the first system parameter required by the user equipment is the second
  • the user equipment can correctly blindly check the DCI, and obtain the domains shown in FIG. 4.
  • the user equipment determines the second system parameter according to the first domain, and performs system frequency domain resource division and numbering according to the second system parameter. In the case of a correct blind check, the user equipment determines allocation information of frequency domain resources of the first system parameter it supports according to the second domain.
  • FIG. 6 is a schematic diagram of the frequency band division information obtained by the user equipment based on FIG. 4, where the sub-carrier spacing of the second system parameter is 60 KHz, and the sub-carrier spacing of the first system parameter supported by the user equipment is 30 KHz.
  • the user equipment only acquires the starting RB of the sub-band corresponding to 30 KHz and the length of the continuously allocated RB. If there is no additional signaling indication, the user equipment considers the remaining frequency bands as blank resources.
  • Example 2 Compared with Example 1, the DCI in Example 2 is relatively small, which can reduce the blind detection complexity of the UE to some extent. If the UE needs to obtain allocation information of frequency domain resources of other first system parameters, it is required to try multiple identifiers of the first system parameters, and the number of detections is increased to some extent.
  • the user equipment may determine frequency domain resources of one or more first system parameters as needed. For example, for FIG. 5, the user equipment may determine a frequency domain resource of the plurality of first system parameters, and for FIG. 6, the user equipment may determine a frequency domain resource of a first system parameter that is supported by the user equipment, where The number of supported first system parameters may be one or two or more.
  • the user equipment transmits information and/or a physical signal corresponding to the physical channel on at least one of the time-frequency resources corresponding to the frequency domain resource of the at least one of the plurality of first system parameters. Corresponding information;
  • the user equipment After determining the frequency domain resource of the at least one first system parameter, the user equipment transmits the information corresponding to the physical channel and/or the information corresponding to the physical signal on the at least one resource element of the time-frequency resource corresponding to the frequency domain resource. .
  • the understanding of the frequency domain resource of the at least one first system parameter is: for FIG. 6, if the user equipment supports a first system parameter, the frequency domain resource corresponding to the first system parameter is The user equipment supports two or more first system parameters, and is a frequency domain resource corresponding to the two or more first system parameters; for FIG. 5, the frequency domain resource of the at least one first system parameter A frequency domain resource corresponding to the plurality of first system parameters.
  • one subframe includes two slots, one slot includes seven symbols, and one resource block (RB) is composed of 12 subcarriers in the frequency domain and one slot in the time domain.
  • the lateral direction of the RE represents the time domain resource
  • the vertical direction represents the frequency domain resource.
  • the user equipment performs uplink or downlink information transmission on the at least one resource element.
  • the information may be information corresponding to a physical channel, or may be information corresponding to a physical signal, or may be information corresponding to a physical channel and information corresponding to a physical signal.
  • the resource element corresponding to the physical channel is used to carry information from a higher layer, and the physical channel may include a physical uplink/downlink control channel, a physical uplink/downlink shared channel, a physical random access channel, a physical broadcast channel, and a physical multicast channel.
  • the resource element corresponding to the physical signal is used for physical layer transmission, and does not carry information from a higher layer, and the physical signal may include a reference signal, a synchronization signal, and a discovery signal.
  • the user equipment blindly detects or decodes the corresponding frequency domain resource allocation information by using the first system parameter supported by the user equipment, determining the corresponding frequency domain resource, and the time frequency corresponding to the frequency domain resource Information corresponding to the physical channel and/or information corresponding to the physical signal is transmitted on at least one of the resource elements.
  • the configuration information of the allocation information of the frequency domain resources including the plurality of first system parameters is sent to the user equipment by the network device, to indicate the frequency domain resources corresponding to the plurality of first system parameters, so that the user equipment is
  • the information corresponding to the physical channel and/or the information corresponding to the physical signal is transmitted on the at least one resource element of the time-frequency resource corresponding to the required frequency domain resource, so as to indicate the resource allocation situation in the coexistence scenario of multiple system parameters.
  • RB resources In the LTE system, dynamic scheduling of RB resources is implemented on the eNB side.
  • the "RB resources" herein are actually VRBs (Virtual RBs) instead of PRBs.
  • VRB Virtual RBs
  • the location of the PRB can be explicitly derived through VRB.
  • the simple one-to-one correspondence is the centralized resource allocation, and the latter complex point mapping is the distributed resource allocation.
  • Centralized resource allocation can improve the rate of the UE and the throughput of the entire cell; distributed resource allocation can improve the transmission reliability.
  • the downlink VRB has two resource mapping modes: a centralized VRB resource mapping mode and a distributed VRB resource mapping mode.
  • the VRB pair does not have a one-to-one correspondence with the PRB pair, the consecutive VRB sequence numbers are mapped to the discontinuous PRB sequence numbers, and the two slots in one subframe also have different mapping relationships. (As shown in Figure 7b), this method is used to achieve "distributed" resource allocation. Whether the continuous VRB pair is mapped to the discontinuous PRB pair or the PRB pair is separated, the resource transmission of the two RBs of one PRB pair has a certain frequency interval (can be regarded as slot-based frequency hopping) (hopping)), the purpose is to achieve the diversity effect on the frequency.
  • FIG. 7b is a schematic diagram of a distributed resource allocation process with a downlink bandwidth of 5 MHz. This figure is only used to help understand the distributed process, and does not represent the mapping position of the actual PRB as shown in FIG. 7b. This picture is simple and intuitive, and can describe the process very well. Let's talk about this mapping relationship from the perspective of the protocol, or how to get the actual mapping position of the PRB pair from the VRB pair.
  • Step 1 Interleaving, including (1) determining the values of N gap and P, and the number of VRB pairs, where N gap is used to represent the frequency offset value between one RB pair, measured by the number of RBs. Unit, different system bandwidth, this value is different, once the system bandwidth is determined, this value is determined; P is used to indicate the size of the RBG, its value is related to the system bandwidth; (2) determine the VRB interleave matrix : "horizontal"; (3) determine the PRB corresponding to the VRB: "column".
  • Step 2 Frequency hopping between time slots, including corresponding VRB numbers, and RBs on odd time slots are offset in the VRB interleaving unit on the basis of even time slots.
  • each parameter in the above VRB to PRB distributed mapping depends on the system bandwidth. For scenarios where multiple system parameters coexist, the OFDM symbol frequency domain width is different due to different subcarrier spacing, and the RB number cannot be uniformly unified. In this case, using the above distributed mapping will result in confusion of RB numbers corresponding to different system parameters.
  • An intuitive solution is that the above-described distribution is only carried out within the bandwidth occupied by the same system parameters, without cross-system parameters. However, this requires the UE to clearly know the frequency domain resource location corresponding to each system parameter, including the frequency domain starting RB and the frequency domain width.
  • the embodiments of the present invention provide a mapping method from a virtual resource block to a physical resource block, a network device, and a user equipment, which are applicable to scenarios in which multiple system parameters coexist, and can indicate resource allocation in a plurality of system parameter coexistence scenarios. .
  • mapping method is a specific refinement process of step 203 in the embodiment shown in FIG. 2.
  • FIG. 7 is a schematic diagram of communication of a method for mapping from a virtual resource block to a physical resource block according to an embodiment of the present invention, including steps 301-302;
  • the network device sends scheduling information to the user equipment, where the scheduling information includes a first virtual resource block corresponding to the at least one first system parameter, and mapping indication information.
  • the scheduling information may be a DCI, where the format of the DCI includes a mapping mode indication bit, where the bit indicates mapping indication information, and is used to indicate that the user equipment performs resource block mapping according to the indicated mapping manner, and the indicated mapping manner It can be a centralized mapping, or a new type of distributed mapping.
  • the new distributed mapping is a centralized mapping and a centralized mapping.
  • the first virtual resource block corresponding to the at least one first system parameter includes the number of the first virtual resource block corresponding to each of the first system parameters.
  • the first system parameter includes a first system parameter corresponding to two subcarrier spacings of 15 kHz and a first system parameter corresponding to a subcarrier spacing of 30 kHz, and the two subcarrier spacings are corresponding to the first system parameter corresponding to 15 kHz.
  • the first virtual resource block is numbered 0 to 19 and 20 to 49, and the first virtual resource block corresponding to the first system parameter corresponding to the subcarrier spacing of 30 kHz is numbered from 0 to 39.
  • the user equipment receives the scheduling information sent by the network device.
  • the user equipment performs resource block mapping according to the scheduling information to obtain a physical resource block corresponding to the at least one first system parameter.
  • the user equipment uses a centralized mapping manner according to the number of the first virtual resource block corresponding to each first system parameter, and each first The first virtual resource block corresponding to the system parameter is mapped to the corresponding physical resource block.
  • the sub-carrier spacing The first virtual resource block corresponding to the first system parameter of size 30 kHz is numbered from 0 to 39, and the number of occupied RBs is 40; n VRB, 2 represents the number of the second virtual resource block. As shown in FIG. 8, the first virtual resource block corresponding to the first system parameter with the subcarrier spacing size of 30 kHz is numbered from 0 to 39, and the second virtual resource block is numbered from 0 to 39; the subcarrier spacing is The numbers of the first virtual resource blocks corresponding to the two first system parameters of 15 kHz are 0 to 19, 20 to 49, respectively, and the numbers mapped to the second virtual resource block are consecutive 0 to 49.
  • the physical resource block number corresponding to the first system parameter having a subcarrier spacing of 30 kHz is 0 to 39.
  • step 303 is performed in a bandwidth, which may be a system bandwidth, a continuous bandwidth within the system bandwidth, or a segment of a plurality of consecutive bandwidths connected from a low frequency to a high frequency. Continuous bandwidth.
  • the user equipment transmits information corresponding to a physical channel and/or information corresponding to a physical signal on the physical resource block.
  • the user equipment transmits information corresponding to the physical channel and/or information corresponding to the physical signal on part or all of the resource blocks of the physical resource block.
  • the mapping between the distributed mapping mode and the centralized mapping mode may be adopted, which is applicable to a scenario in which at least one system parameter coexists, and can indicate resource allocation in at least one system parameter coexistence scenario.
  • FIG. 9 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • the user equipment 900 includes a receiving unit 901 and a sending unit 902:
  • the receiving unit 901 is configured to receive configuration information sent by the network device, where the configuration information includes allocation information of frequency domain resources of the multiple first system parameters;
  • the sending unit 902 is further configured to: transmit information and/or physical information corresponding to the physical channel on the at least one resource element of the time-frequency resource corresponding to the frequency domain resource of the at least one of the plurality of first system parameters Information corresponding to the signal;
  • the first system parameter includes at least one of a first subcarrier spacing size, a cyclic prefix length, a transmission time interval length, a symbol length, and a symbol number.
  • the frequency domain resource of the first system parameter is determined by allocation information of a frequency domain resource of the first system parameter, the first system parameter, and a second system parameter, where the The second system parameter includes a second subcarrier spacing size.
  • the plurality of first system parameters are system parameters supported by the network device, and the second system parameter is a reference system parameter that divides system frequency domain resources.
  • the configuration information further includes an identifier of the second system parameter.
  • the configuration information further includes an identifier of the first system parameter.
  • the configuration information is public-level downlink control information
  • the cyclic redundancy check of the common-level downlink control information is scrambled by a cell public identifier, or the public-level downlink control information is The freeze bit is the cell public identity.
  • the configuration information is public-level downlink control information
  • the cyclic redundancy check of the common-level downlink control information is scrambled by the identifier of the first system parameter, or the public
  • the freeze bit of the level downlink control information is an identifier of the first system parameter.
  • the configuration information is high layer signaling
  • the high layer signaling is carried by dedicated radio resource control signaling, system message, random access response message, message 4, or media access control control element.
  • the receiving unit 901 is configured to execute 202 in the embodiment shown in FIG. 2, and is also used to execute 302 in the embodiment shown in FIG. 7.
  • the sending unit 902 is configured to perform the implementation shown in FIG. 203 in the example is also used to execute 304 in the embodiment shown in FIG.
  • the user equipment 900 further includes a processing unit 903 for performing 303 in the embodiment shown in FIG.
  • the processing unit 903 may be a processor or a controller, and may be, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the receiving unit 901 and the transmitting unit 902 may be a transceiver, a transceiver circuit, a communication module, or the like.
  • the user equipment involved in the embodiment of the present invention may be the user equipment shown in FIG. 9b.
  • the user equipment 910 includes a power source 911, a user interface 912, a communication module 913, a processor 914, a display system 919, a sensing system 916, and an audio system 917.
  • the user equipment 910 may represent the user equipment described in FIG. 1, and may also represent electronic devices such as a motor vehicle, a non-motor vehicle, other communication devices on the road, smart home appliances, and the like, and the user shown in FIG. 9b.
  • the structure of the device does not constitute a limitation on the embodiments of the present invention.
  • the power supply 911 provides power guarantee for implementing various functions of the user equipment 910.
  • User interface 912 is used for user equipment 910 to connect with other devices or devices to enable communication or data transmission by other devices or devices with user equipment 910.
  • the communication module 913 is configured to implement communication or data transmission between the user equipment 910 and a network device such as a base station or a satellite, and is used to implement communication or data transmission between the user equipment 910 and other user equipment, and is used in the embodiment of the present invention.
  • the communication module 913 is for implementing the functions of the receiving unit 901 and the transmitting unit 902 shown in FIG. 9a.
  • the processor 914 can implement or execute various exemplary logical blocks, modules and circuits described in connection with the present disclosure, which are used in the embodiment of the present invention.
  • the processor 914 is used to implement the processing unit 903 shown in FIG. 9a.
  • Display system 919 is used for output display of information and for receiving user input operations.
  • Sensing system 916 includes various sensors such as temperature sensors, distance sensors, and the like.
  • Audio system 917 is used for the output of audio signals.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the network device 1000 includes a sending unit 1001:
  • the sending unit 1001 is configured to send configuration information to the user equipment, where the configuration information includes allocation information of frequency domain resources of the plurality of first system parameters, and frequency of at least one of the plurality of first system parameters At least one resource element of the time-frequency resource corresponding to the domain resource is used by the user equipment to transmit information corresponding to the physical channel and/or information corresponding to the physical signal;
  • the first system parameter includes at least one of a first subcarrier spacing size, a cyclic prefix length, a transmission interval length, a symbol length, and a symbol number.
  • the network device 1000 further includes a processing unit 1002, configured to allocate frequency domain resources for the plurality of first system parameters, and obtain allocation information of frequency domain resources of the plurality of first system parameters.
  • the sending unit 1001 is configured to execute 201 in the embodiment shown in FIG. 2, and is also used to execute 301 in the embodiment shown in FIG.
  • the processing unit 1002 may be a processor or a controller, such as a CPU, a general purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the transmitting unit 1001 may be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the network device involved in the embodiment of the present invention may be the network device shown in FIG. 10b.
  • the network device 1010 includes a processor 1011, a transceiver 1012, and an antenna. It should be noted that, in actual application, the transceiver 1012 is not limited to two, and the antenna is not limited to two. The structure of the network device 1010 does not constitute a limitation on the embodiment of the present invention.
  • the processor 1011 mainly includes four components: a cell controller, a voice channel controller, a signaling channel controller, and a multi-channel interface for expansion.
  • the processor 1011 is responsible for all mobile communication interface management, primarily the allocation, release and management of wireless channels.
  • the processor 1011 is applied to the embodiment of the present invention for implementing the functions of the processing unit 1002 shown in FIG. 10a.
  • the transceiver 1012 includes a receiver and a transmitter. For the user equipment, uplink data can be transmitted through the transmitter, and downlink data can be received through the receiver.
  • the transceiver 1012 is applied to the embodiment of the present invention for implementing the function of the transmitting unit 1001 shown in FIG. 10a.
  • the present invention further provides a resource indication system, including the user equipment shown in FIG. 9a and the network device shown in FIG. 10a, or the user equipment shown in FIG. 9b and the network device shown in FIG. 10b.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种资源指示方法、用户设备及网络设备,其中方法包括如下步骤:网络设备向用户设备发送配置信息,配置信息包括多个第一系统参数的频域资源的分配信息,用户设备接收网络设备发送的配置信息,并在多个第一系统参数中的至少一个系统参数的频域资源对应的时频资源中的至少一个资源元素上传输物理信道对应的信息和/或物理信号对应的信息。本发明实施例能够指示多个系统参数共存场景下的资源分配情况。

Description

一种资源指示方法、用户设备及网络设备
本申请要求于2017年1月6日提交中国专利局、申请号为201710010466.3、申请名称为“一种资源指示方法、用户设备及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体涉及一种资源指示方法、用户设备及网络设备。
背景技术
随着通信技术的发展,第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)已开展第五代网络(5 th Generation,5G)新空口标准(New Radio,NR)标准的制定,灵活支持多种系统参数(numerology)是NR的重要特性之一。
不同系统参数,其对应正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的子载波间隔有所不同。NR目前支持的子载波间隔包括15*2 n kHz(n∈{-2,-1,…,5},对应于子载波间隔[3.75kHz,480kHz])。系统参数对应的子载波间隔的选择取决于频谱效率和抗频偏能力的折中。对于基于循环前缀(Cyclic Prefix,CP)的OFDM系统,一个符号包括符号部分和CP部分,在相同的CP开销下,子载波间隔越小,符号部分越长,OFDM符号周期越长,系统频谱效率越高,抗多普勒频移和相噪能力越弱。
在NR中,不同的业务,不同的场景对系统参数的需求不同。NR支持在一段带宽中可以通过频分复用(Frequency Division Multiplexing,FDM)和/或时分复用(Time Division Multiplexing,TDM)的方式复用不同的系统参数。在RAN1#87会议中,也同意将多个系统参数动态地复用于同一段带宽中作为研究重点。
目前,长期演进(Long Term Evolution,LTE)标准中给出的各种资源分配类型下的资源指示方法均针对子载波间隔为15kHz对应的系统参数。例如,对于下行资源分配类型2,为用户设备分配的资源为一段连续的虚拟资源块(Virtual Resource Block,VRB),VRB到物理资源块(Physical Resource Block,PRB)的映射方式可以是集中式,也可以是分布式。该资源分配类型下的资源指示方法通过下行控制信息(Downlink Control Information,DCI)来指示,采用DCI格式中的一个比特来指示映射方式是集中式还是分布式,采用DCI格式中的资源指示位来指示为用户设备分配的起始资源块以及连续分配的资源块的长度。
但是,针对15kHz对应的系统参数的资源指示方法能够指示单系统参数场景下的资源分配情况,不能指示多个系统参数共存场景下的资源分配情况。
发明内容
本发明实施例提供一种资源指示方法、用户设备及网络设备,能够指示多个系统参数共存场景下的资源分配情况。
本发明实施例第一方面提供一种资源分配方法,包括:
网络设备向用户设备发送配置信息,该配置信息包括多个第一系统参数的频域资源的 分配信息;用户设备接收网络设备发送的配置信息,在多个第一系统参数中的至少一个第一系统参数的频域资源对应的时频资源中的至少一个资源元素上传输物理信道对应的信息和/或物理信号对应的信息;
其中,第一系统参数包括第一子载波间隔大小、循环前缀长度、传输时间间隔长度、符号长度和符号数等参数中的至少一种。
本发明实施例第一方面,通过配置信息指示多个第一系统参数的频域资源,从而能够指示多个系统参数共存场景下的资源分配情况。
在一种可能实现的方式中,所述网络设备在向所述用户设备发送所述配置信息之前,为所述多个第一系统参数分配频域资源,得到所述多个第一系统参数的频域资源的分配信息,以便所述网络设备向所述用户设备发送所述配置信息。
在一种可能实现的方式中,所述第一系统参数的频域资源由所述第一系统参数的频域资源的分配信息、所述第一系统参数以及第二系统参数确定,所述第二系统参数包括第二子载波间隔大小,所述用户设备可根据所述第一系统参数的频域资源的分配信息、所述第一系统参数以及第二系统参数确定所述第一系统参数的频域资源,即确定所述网络设备为所述第一系统参数分配的频域资源,以便所述用户设备后续利用该频域资源。
在一种可能实现的方式中,所述多个第一系统参数为所述网络设备所支持的系统参数,所述第二系统参数为划分系统频域资源的参考系统参数。
在一种可能实现的方式中,所述配置信息还包括所述第二系统参数的标识,所述第二系统参数的标识用于识别划分系统频域资源的参考系统参数。
在一种可能实现的方式中,所述配置信息还包括所述第一系统参数的标识,用于告知所述用户设备各个第一系统参数对应的频域资源的分配信息,建立分配信息与第一系统参数之间的对应关系。
在一种可能实现的方式中,所述配置信息为公共级下行控制信息,所述公共级下行控制信息的循环冗余校验通过小区公共标识进行加扰,或所述公共级下行控制信息的冻结位为所述小区公共标识,以便所述用户设备通过所述小区公共标识进行解扰或译码,从而获得各个第一系统参数对应的频域资源的分配信息。
在一种可能实现的方式中,所述配置信息为公共级下行控制信息,所述公共级下行控制信息的循环冗余校验通过所述第一系统参数的标识进行加扰,或所述公共级下行控制信息的冻结位为所述第一系统参数的标识,以便所述用户设备通过所述第一系统参数的标识进行解扰或译码,从而获得所述用户设备所支持的第一系统参数对应的频域资源的分配信息。可以减少所述公共级下行控制信息的大小,降低所述用户设备的盲检复杂度或译码复杂度。
所述配置信息为所述公共级下行控制信息,可以在一定程度上,减少信令开销。
在一种可能实现的方式中,所述配置信息为高层信令,所述高层信令由专用无线资源控制信令、系统消息、随机接入响应消息、消息4或媒体访问控制控制元素承载。
本发明实施例第二方面提供一种从虚拟资源块到物理资源块的映射方法,包括:
网络设备向用户设备发送调度信息,该调度信息包括至少一个第一系统参数对应的第一虚拟资源块以及映射指示信息;用户设备接收网络设备发送的调度信息,根据该调度信 息进行资源块映射得到至少一个第一系统参数对应的物理资源块,并在该物理资源块上传输物理信道对应的信息和/或物理信号对应的信息。
本发明实施例第二方面,通过调度信息指示映射方式和至少一个第一系统参数对应的第一虚拟资源块,以便用户设备根据调度信息进行资源块映射,实现对多个系统参数共存场景下的资源分配情况的指示。
在一种可能实现的方式中,所述至少一个第一系统参数对应的第一虚拟资源块包括各个第一系统参数对应的第一虚拟资源块的编号,以便所述用户设备清楚地知道各个第一系统参数对应的第一虚拟资源块。
在一种可能实现的方式中,若所述映射指示信息所指示的映射方式为集中式映射,则所述用户设备通过集中式映射方式,根据各个第一系统参数对应的第一虚拟资源块的编号,将各个第一系统参数对应的第一虚拟资源块映射到对应的物理资源块上。
在一种可能实现的方式中,若所述映射指示信息所指示的映射方式为新型分布式映射,则所述用户设备首先将各个第一系统参数对应的第一虚拟资源块通过分布式映射方式映射到第二虚拟资源块,即n VRB,2=M(n VRB,1),M表示分布式映射方式,包括交织和时隙间跳频中的至少一种;n VRB,1表示第一虚拟资源块的编号,其取值为0到N VRB,1-1,N VRB,1=N RB,N RB为给定第一系统参数在时频资源的频域上所占用的RB数;再次,所述用户设备将各个第一系统参数对应的第二虚拟资源块通过集中式映射方式映射到物理资源块,即n PRB=n VRB,2
本发明实施例第三方面提供一种用户设备,包括:
接收单元,用于接收网络设备发送的配置信息,所述配置信息包括多个第一系统参数的频域资源的分配信息;
发送单元,用于在所述多个第一系统参数中的至少一个第一系统参数的频域资源对应的时频资源中的至少一个资源元素上传输物理信道对应的信息和/或物理信号对应的信息;
其中,第一系统参数包括第一子载波间隔大小、循环前缀长度、传输时间间隔长度、符号长度和符号数等参数中的至少一种。
本发明实施例第三方面提供的用户设备用于实现本发明实施例第一方面提供的资源指示方法中的用户设备所执行的功能。
本发明实施例第四方面提供一种用户设备,包括:
发送单元,用于向用户设备发送配置信息,所述配置信息包括多个第一系统参数的频域资源的分配信息,所述多个第一系统参数中的至少一个第一系统参数的频域资源对应的时频资源中的至少一个资源元素用于所述用户设备传输物理信道对应的信息和/或物理信号对应的信息;
其中,第一系统参数包括第一子载波间隔大小、循环前缀长度、传输时间间隔长度、符号长度和符号数等参数中的至少一种。
本发明实施例第四方面提供的网络设备用于实现本发明实施例第一方面提供的资源指示方法中的网络设备所执行的功能。
本发明实施例第五方面提供另一种用户设备,包括处理器、通信模块,所述用户设备用于实现本发明实施例第一方面提供的资源指示方法中的用户设备所执行的功能。
本发明实施例第六方面提供另一种网络设备,包括处理器、收发器,所述网络设备用 于实现本发明实施例第一方面提供的资源指示方法中的网络设备所执行的功能。
在本发明实施例中,通过网络设备向用户设备发送包括多个第一系统参数的频域资源的分配信息的配置信息,来指示多个第一系统参数对应的频域资源,以便用户设备在所需的频域资源对应的时频资源中的至少一个资源元素上传输物理信道对应的信息和/或物理信号对应的信息,实现对多个系统参数共存场景下的资源分配情况的指示。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为应用本发明实施例的网络架构示意图;
图1a为下行资源分配类型1中的资源块组分子集示例图;
图2为本发明实施例提供的资源指示方法的通信示意图;
图3为本发明实施例提供的一种下行控制信息的格式示意图;
图4为本发明实施例提供的另一种下行控制信息的格式示意图;
图5为用户设备基于图3获得的频带划分信息示意图;
图6为用户设备基于图4获得的频带划分信息示意图;
图7为本发明实施例提供的一种从虚拟资源块到物理资源块的映射方法的流程示意图;
图7a为下行带宽为5MHz的集中式资源分配过程示意图;
图7b为下行带宽为5MHz的分布式资源分配过程示意图;
图8为图7所示实施例提供的一种示例性映射示意图;
图9a为本发明实施例提供的一种用户设备的结构示意图;
图9b为本发明实施例提供的一种用户设备的结构示意图;
图10a为本发明实施例提供的一种网络设备的结构示意图;
图10b为本发明实施例提供的另一种网络设备的结构示意图。
具体实施方式
请参见图1,为应用本发明实施例的网络架构示意图,该网络架构示意图可以是LTE通信系统的网络架构,也可以是通用移动通信系统(Universal Mobile Telecommunications System,UMTS)陆地无线接入网(UMTS Terrestrial Radio Access Network,UTRAN)架构,或者全球移动通信系统(Global System for Mobile Communications,GSM)/增强型数据速率GSM演进(Enhanced Data Rate for GSM Evolution,EDGE)系统的无线接入网(GSM EDGE Radio Access Network,GERAN)架构,还可以是5G通信系统架构。该网络架构示意图包括移动性管理实体(Mobility Management Entity,MME)/服务网关(Serving Gate Way,SGW)、基站和用户设备(User Equipment,UE)。需要说明的是,图1所示的MME/SGW、基站和UE的形态和数量用于举例说明,并不构成对本发明实施例的限定。
其中,MME是3GPP LTE中的关键控制节点,属于核心网网元,主要负责信令处理部 分,即控制面功能,包括接入控制、移动性管理、附着与去附着、会话管理功能以及网关选择等功能。SGW是3GPP LTE中核心网网元的重要网元,主要负责用户数据转发的用户面功能,即在MME的控制下进行数据包的路由和转发。
其中,基站用于与用户设备进行通信,可以是GSM系统或码分多址接入(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(Node B,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB),还可以是5G系统中的基站以及未来通信系统的基站。基站主要负责空口侧的无线资源管理、服务质量(Quality of Service,QoS)管理、数据压缩和加密等功能。针对核心网侧,基站主要负责向MME转发控制面信令以及向SGW转发用户面业务数据。
其中,用户设备是通过基站接入网络侧的设备,可以包括但不限于蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备等。
图1所示的S1接口,为基站与核心网之间的标准接口。其中,基站通过S1-MME接口与MME连接,用于控制信令的传输;基站通过S1-U接口与SGW连接,用于用户数据的传输。其中,S1-MME接口和S1-U接口统称为S1接口。
图1所示的X2接口,为基站与基站的标准接口,用于实现基站之间的互通。
图1所示的Uu接口,为用户设备与基站之间的标准接口,用户设备通过Uu接口接入到LTE/5G网络。
下面将对本发明实施例涉及的名词进行解释:
(1)虚拟资源块,是媒体访问控制(Media Access Control,MAC)层在调度的时候使用的,属于逻辑上的概念。
(2)物理资源块,是物理层在实际映射的时候需要使用的,属于实际物理意义上的概念。
(3)系统参数,是numerology的一种可能的名称而已,并不够构成对本发明实施例的限定。可以理解的是,在标准或协议中对numerology的其它名称也可以落入本发明实施例的保护范围。
在LTE标准中,下行资源分配包括资源分配类型0~2三种,三种资源分配类型对应着三种资源指示方法,具体的:
(1)在下行资源分配类型0中,下行控制信息(Downlink Control Information,DCI)格式1/2/2A/2B/2C通过一个位图(bitmap)来指示分配给UE的资源块组(Resource Block Group,RBG)。bitmap共包含
Figure PCTCN2017120281-appb-000001
比特,
Figure PCTCN2017120281-appb-000002
表示下行带宽,P表示RBG的大小,N RBG表示bitmap包含的比特数,也表示RBG的个数,即每1比特对应1个RBG。RBG 0表示最高位,RBG N RBG-1表示最低位,依此类推。如果某个RBG分配给某个UE,则bitmap中对应比特置为1,否则置为0。资源分配类型0支持频域上的非连续RB分配。
(2)在下行资源分配类型1中,所有的RBG被分为P个子集,P为RBG的大小。每 个RBG子集p(0≤p≤P)包含从RBG p开始,间隔为P的所有RBG。分配给某个UE的虚拟资源块(Virtual Resource Block,VRB)必须来自于同一个子集。如图1a所示,25个RB被分为两个子集(子集0和子集1),子集0包含从RBG 0开始,间隔为2的所有RBG;子集1包含从RBG1开始,间隔为2的所有RBG。
在资源分配类型1中,DCI format 1/2/2A/2B/2C通过3个域来指示分配给UE的VRB(注意:与资源分配类型0不同,这里是VRB,而不是RBG)。资源分配类型1支持频域上的非连续RB分配。
(3)在下行资源分配类型2中,分配给UE的资源为一段连续的VRB,其VRB可以是集中式的,也可以是分布式的。对于DCI格式1A/1B/1D而言,有一个比特(对应集中式(Localized)/分布式(Distributed)VRB分配标识字段)用于指示是使用集中式VRB(该比特为0)还是使用分布式VRB。对于DCI格式1A/1B/1D而言,资源分配由一个资源指示值(Resource Indicate Value,RIV)来表示。通过这个值,可以推导出分配给UE的起始RB(RB start)以及连续分配的RB的长度(L CRBs)。资源分配类型2只支持连续VRB的分配。
相应的,上行资源分配包括资源分配类型0~1两种,两种资源分配类型对应着两种资源指示方法,具体的:
(1)上行资源分配类型0的处理与用于DCI格式1A/1B/1D的下行资源分配类型2的处理基本一样,而上行数据传输使用的是上行系统带宽
Figure PCTCN2017120281-appb-000003
而不是下行系统带宽
Figure PCTCN2017120281-appb-000004
进行计算。
(2)上行资源分配类型1中的资源分配信息指示给UE分配2个RB集合,每个集合包含1个或多个连续的大小为P的RBG。P表示RBG中包含的连续的RB个数。DCI格式0/4中的资源分配(Resource block assignment)字段表示的是一个组合索引(combinatorial index)r,r指定了RB集合1的起始RBG和结束RBG的索引s 0和s 1-1,以及RB集合2的起始RBG和结束RBG的索引s 2和s 3-1。
上述各种资源分配类型和资源指示方法均针对子载波间隔为15kHz对应的系统参数,但是对于多个系统参数共存的场景,不能指示。
鉴于此,本发明实施例提供一种资源指示方法、用户设备及网络设备,适用于多个系统参数共存的场景,能够指示多个系统参数共存场景下的资源分配情况。
本发明实施例中的用户设备可以包括但不限于蜂窝电话、无绳电话、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备等。本发明实施例中的网络设备可以是图1所示网络架构示意图中的基站或核心网网元。
下面将对本发明实施例提供的资源指示方法、用户设备及网络设备进行详细介绍。
请参见图2,为本发明实施例提供的资源指示方法的通信示意图,包括步骤201-步骤203。
201,网络设备向用户设备发送配置信息,所述配置信息包括多个第一系统参数的频域资源的分配信息;
其中,所述多个第一系统参数为所述网络设备所支持的系统参数,所述多个第一系统 参数中的任意一个第一系统参数包括子载波间隔大小、循环前缀CP类型和时间单元类型对应的符号数量中的至少一种。其中,所述CP类型根据CP开销确定,所述时间单元类型可以是LTE系统中的子帧,NR系统中的时隙、微时隙、聚合时隙、聚合微时隙。一个符号包括符号部分和CP部分,在CP开销相同的情况下,子载波间隔越小,符号部分越长,即时间单元类型对应的符号数量越多。可以理解的是,子载波间隔大小、CP类型和时间单元类型对应的符号数量为系统参数的三个要素,任意一个要素均可以反映系统参数。目前,NR支持的子载波间隔大小可以包括15*2 n kHz(n∈{-2,-1,…,5},对应于子载波间隔[3.75kHz,480kHz]),在本发明实施例中,n的取值范围可以不限于-2至5。
需要说明的是,以子载波间隔大小为例,所述多个第一系统参数可以包括多个互不相同的子载波间隔大小,例如15kHz,30kHz等,也可以包括两个或两个以上相同的子载波间隔大小,例如包括两个15kHz等。
可选的,所述网络设备在向所述用户设备发送配置信息之前,为所述多个第一系统参数分配频域资源,得到所述多个第一系统参数的频域资源的分配信息。具体所述网络设备为所述多个第一系统参数分配频域资源的方法在此不作限定,由所述网络设备确定分配方法,在分配过程中,两个或两个以上的第一系统参数可以被分配相同的频域资源,也可以多个第一系统参数被分配的频域资源均不相同。
所述网络设备在分配过程中,可根据一个参考系统参数对系统频域资源(系统带宽)进行划分,在本发明实施例中将该参考系统参数命名为第二系统参数。所述第二系统参数包括子载波间隔大小,所述第二系统参数的子载波间隔大小可以为默认子载波间隔大小,也可以由所述网络设备自主设定,具体数值为15*2 nkHz中的一个。所述第二系统参数的标识可以通知给所述用户设备,即通知所述第二系统参数的子载波间隔大小,若该子载波间隔大小为默认子载波间隔大小,则所述网络设备不用告知所述用户设备默认子载波间隔大小。因为默认子载波间隔大小可以为所述网络设备和所述用户设备预定义的,双方默认知晓的,例如,默认子载波间隔大小采用初始接入的15kHz,或采用sub 6GHz下数据信道所支持的最大子载波间隔60kHz。
可选的,所述网络设备通过高层或物理层信令告知所述用户设备所述第二系统参数的标识。其中,高层信令可以包括主要信息块(Master Information Block,MIB)、系统消息块(System Information Block,SIB)、随机接入响应消息(Msg.2)、消息4(Msg.4)等,物理层信令可以包括DCI等。
所述网络设备可通过图1所示的Uu接口向所述用户设备发送所述配置信息,所述配置信息包括所述多个第一系统参数的频域资源分配信息,用于指示所述多个第一系统参数的频域资源。
在一种可能实现的方式中,若所述第二系统参数的子载波间隔大小不为默认子载波间隔大小,则所述配置信息还包括所述第二系统参数的标识,以便所述用户设备根据所述第二系统参数进行系统频带资源划分。
在一种可能实现的方式中,所述配置信息还包括所述多个第一系统参数的标识,具体是包括每个第一系统参数的标识,不同的第一系统参数对应不同的标识,此时,所述配置 信息用于指示不同的第一系统参数对应的频域资源的分配信息,不同的第一系统参数与频域资源的分配信息的对应关系可以是一对一,即不同的第一系统参数占用不同的频域资源;不同的第一系统参数与频域资源的分配信息的对应关系可以是多对一,即两个或两个以上的第一系统参数可以占用相同的频域资源。
在一种可能实现的方式中,所述配置信息为公共级下行控制信息,所述公共级可以是小区级或UE组级。所述公共级下行控制信息为小区用户或UE组内用户都需要检测的共有的下行控制信息,分别位于下行控制信道公共搜索空间和UE组搜索空间内。
为尽量提高接收方收到数据的正确率,在接收方接收数据之前需要对数据进行差错检测,当且仅当检测的结果为正确时接收方才真正收下数据。检测的方式有多种,常见的有奇偶校验、因特网校验和循环冗余校验(Cyclic Redundancy Check,CRC)等。本发明实施例采用CRC对所述公共级下行控制信息进行检测。CRC是一种根据网络数据包或电脑文件等数据产生简短固定位数校验码的一种散列函数,主要用来检测或校验数据传输或者保存后可能出现的错误。
可选的,所述公共级下行控制信息的CRC通过小区或UE组公共标识进行加扰。其中,所述小区公共标识为预定义或通过高层信令配置的小区内用户共有的信息,包括物理小区标识(Physical Cell Identity,PCI)、超小区标识(hyper-cell Identity)、无线网络临时标识(Radio Network Temporary Identity,RNTI)等,UE组公共标识为UE组内用户共有的信息。
可选的,所述公共级下行控制信息的CRC通过所述第一系统参数的标识进行加扰。通过所述第一系统参数的标识进行加扰,即可以间接地指示所述第一系统参数的标识。所述多个第一系统参数中的每个第一系统参数的标识不同,每个第一系统参数的标识对应着一个公共级下行控制信息,即每个公共级下行控制信息的CRC采用对应的第一系统参数的标识进行加扰。此时,虽然所述公共级下行控制信息的数量较多,但是对于所述用户设备而言,只需用其所支持的第一系统参数的标识解扰即可,所述用户设备所支持的第一系统参数可能为一个,也可能为两个或两个以上。由于CRC通过所述第一系统参数的标识进行加扰,那么此时所述配置信息无需再次指示所述第一系统参数的标识,可以减小所述公共级下行控制信息的大小,降低UE的盲检复杂度。
可选的,所述公共级下行控制信息的冻结位为所述小区公共标识。其中冻结位为极化(Polar)码构造方法中,从N个信道中选择信道质量较好的一部分作为信息传输信道,剩余部分作为冻结位传输信道,通常用于传输固定信息。译码时,若冻结位不对应,会造成译码过程不收敛,也即无法正确译码。
可选的,所述公共级下行控制信息的冻结位为所述第一系统参数的标识。同理,每个公共级下行控制信息的冻结位为对应的第一系统参数的标识。
在一种可能实现的方式中,所述配置信息为高层信令,所述高层信令由专用无线资源控制(Radio Resource Control,RRC)信令、系统消息、随机接入响应消息(Msg.2)、消息4(Msg.4)或MAC控制元素(Control Element,MAC CE)承载。其中,由RRC信令承载时,针对不同的UE,其配置信息有所不同。系统消息为公共消息,与广播消息类似。在LTE系统中,基于竞争的随机接入有4条消息Msg.1~Msg.4,Msg.2为基站根据UE发送的随机接入前导(Msg.1)向UE发送的随机接入响应消息(Msg.2),Msg.4为基站根据UE 发送的Scheduled Transmission Containing(Msg.1)向UE发送的Contention Resolution(Msg.4)。MAC CE为媒体访问控制层的控制元素或控制粒子。
下面将用两个例子对所述配置信息进行说明,这两个例子均采用下行资源分配类型2进行说明,不过这两个例子是连续分配RB,而不是VRB。
例1,请参见图3,为本发明实施例提供的一种下行控制信息格式的示意图。如图3所示,DCI格式中的CRC通过小区公共标识进行加扰。
图3中的第一个域用于表示所述第二系统参数的标识,该域占用的比特数为
Figure PCTCN2017120281-appb-000005
其中K表示所述网络设备所支持的第一系统参数的总数。一种降低开销的方法是K的取值和系统工作频点相关:如对于sub 6GHz工作频点,所述网络设备所支持的第一系统参数包括对应子载波间隔为15、30、60KHz,此时K的取值为3,该域占用的比特数为2。
图3中的第二域为左斜线所示的区域,第三个域为格子线所示的区域,第N+1个域为右斜线所示的区域。从第二个域到第N+1个域中的每个域均包括两个子域。
以第二个域为例,该域的第一个子域表示第一个子频带对应的第一系统参数的标识,占用的比特数为
Figure PCTCN2017120281-appb-000006
其中K表示所述网络设备所支持的第一系统参数的总数;该域的第二子域表示第一个子频带对应的第一系统参数的资源分配信息1,占用的比特数为
Figure PCTCN2017120281-appb-000007
其中
Figure PCTCN2017120281-appb-000008
表示下行系统带宽,该域的第二子域为资源指示值RIV,用于表示第一个子频带的起始RB(RB start)以及连续分配的RB的长度(L CRBs),即指示第一个子频带对应的第一系统参数的资源分配信息1。其它域以此类推,在此不再赘述。
基于图3,所述配置信息包括所述第一系统参数的标识(每个第一系统参数的标识)、所述第二系统参数的标识,其CRC通过小区公共标识进行加扰。
例2,请参见图4,为本发明实施例提供的另一种下行控制信息格式的示意图。如图4所示,DCI格式中的CRC通过第一系统参数的标识n进行加扰。其中,标识n的第一系统参数可以表示所述多个第一系统参数中的某个第一系统参数的标识。
图4中的第一个域用于表示所述第二系统参数的标识,该域占用的比特数为
Figure PCTCN2017120281-appb-000009
其中K表示所述网络设备所支持的第一系统参数的总数。一种降低开销的方法是K的取值和系统工作频点相关:如对于sub 6GHz工作频点,所述网络设备所支持的第一系统参数包括对应子载波间隔为15、30、60KHz,此时K的取值为3,该域占用的比特数为2。
图4中的第二个域用于表示第一个子频带对应的第一系统参数的资源分配信息n,该域占用的比特数为
Figure PCTCN2017120281-appb-000010
该域为资源指示值RIV,用于指示第一个子频带的起始RB(RB start)以及连续分配的RB的长度(L CRBs)。需要说明的是,一个DCI对应着一个通过第一系统参数的标识进行加扰的CRC,一个DCI对应着一个第一系统参数的资源分配信息,根据加扰的CRC中的第一系统参数的标识确定对应的资源分配信息。
基于图4,所述配置信息包括所述第二系统参数的标识,其CRC通过所述第一系统参数的标识进行加扰。
图3和图4中的资源分配信息为频域资源的分配信息,基于下行资源分配类型2,在频域上连续。对于其它资源分配类型,资源分配信息所指示的资源有所变化,根据具体的 资源分配类型而定,在频域上可以连续,也可以非连续。
202,所述用户设备接收所述网络设备发送的所述配置信息;
所述第一系统参数的频域资源的分配信息、所述第一系统参数以及第二系统参数用于确定所述第一系统参数的频域资源,此时是确定所述多个第一系统参数中的任意一个第一系统参数的频域资源。以此类推,可确定每个第一系统参数的频域资源,进而确定所述多个第一系统参数的频域资源。
所述用户设备根据所述第二系统参数对系统频域资源进行划分,例如,所述第二系统参数对应的子载波间隔大小为60kHz,则所述用户设备根据60kHz对系统频域资源进行划分并编号为0~N-1。
所述用户设备根据所述第一系统参数的频域资源的分配信息、所述第一系统参数以及根据所述第二系统参数进行划分后的系统频域资源确定所述第一系统参数的频域资源,即确定所述网络设备为所述第一系统参数分配的频域资源。其中,所述第一系统参数为所述多个第一系统参数中的一个。
若所述配置信息为所述公共级下行控制信息,则所述用户设备在接收到所述DCI时,根据其加扰方式进行相应的盲检;或所述用户设备在接收到所述DCI时,根据其冻结位进行译码。
基于图3所示的例1,所述用户设备通过所述小区公共标识盲检所述DCI,获得图3所示的各个域。所述用户设备根据第一个域确定所述第二系统参数,并根据所述第二系统参数进行系统频域资源划分并编号。由于表示每个第一系统参数的标识的比特数相同,均为
Figure PCTCN2017120281-appb-000011
所述网络设备所支持的多个第一系统参数可按照预定义规则进行编号,例如按照子载波间隔从小到大编号,假设支持15、30、60kHz,那么“00”表示15kHz,“01”表示30kHz,“10”表示60kHz,若所述第二系统参数也为60kHz,则第一个域为“10”。
所述用户设备根据第二个域中第一个子域
Figure PCTCN2017120281-appb-000012
比特的数值确定1第一个子频带对应的第一系统参数的标识;所述用户设备进一步根据第二个域中第二个子域
Figure PCTCN2017120281-appb-000013
比特的数值确定第一个子频带的起始
Figure PCTCN2017120281-appb-000014
以及连续分配的RB的长度
Figure PCTCN2017120281-appb-000015
即确定第一个子频带对应的第一系统参数的频域资源的分配信息。若
Figure PCTCN2017120281-appb-000016
则有
Figure PCTCN2017120281-appb-000017
反之则有
Figure PCTCN2017120281-appb-000018
所述用户设备按照上述方法依次根据第三个域、四个域…分别确定第二个子频带、三个子频带…对应的第一系统参数的标识,以及各个子频带各自的起始RB和连续分配的RB的长度。
所述用户设备根据各个子频带对应的第一系统参数的标识计算各个子频带对应的第一系统参数的起始RB(RB start)以及连续分配的RB的长度(L CRBs)。例如,假设所述第二系统参数的子载波间隔为60KHz,某个子频带使用的第一系统参数对应子载波间隔为30KHz,则有
Figure PCTCN2017120281-appb-000019
可参见图5,为用户设备基于图3获得的频带划分信息示意图,分别指示子载波间隔为15、60、30kHz对应的第一系统参数的频域资源的分配信息,所述第二系统系统参数的 子载波间隔为60KHz。
基于图4所示的例2,所述用户设备通过所述其所支持的第一系统参数的标识盲检DCI,当且仅当所述用户设备所需的第一系统参数的标识与第二个域对应的第一系统参数的标识相同时,所述用户设备才能正确地盲检DCI,获得图4所示的各个域。所述用户设备根据第一个域确定所述第二系统参数,并根据所述第二系统参数进行系统频域资源划分并编号。在正确盲检的情况下,所述用户设备根据第二个域确定其所支持的第一系统参数的频域资源的分配信息。
可参见图6,为用户设备基于图4获得的频带划分信息示意图,所述第二系统系统参数的子载波间隔为60KHz,所述用户设备所支持的第一系统参数的子载波间隔大小为30KHz,所述用户设备只获取30KHz对应的子频带的起始RB和连续分配的RB的长度。如果没有额外的信令指示,所述用户设备视其余频带为空白资源。
例2与例1相比,例2中的DCI相对较小,可以在一定程度上降低UE的盲检复杂度。若UE需要获取其它第一系统参数的频域资源的分配信息,需要尝试多个第一系统参数的标识,在一定程度上增加了检测次数。
所述用户设备可根据需要确定一个或一个以上第一系统参数的频域资源。例如,对于图5,所述用户设备可确定所述多个第一系统参数的频域资源,对于图6,所述用户设备可确定其所支持的第一系统参数的频域资源,其所支持的第一系统参数的数量可能为一个,也可能为两个或两个以上。
203,所述用户设备在所述多个第一系统参数中的至少一个第一系统参数的频域资源对应的时频资源中的至少一个资源元素上传输物理信道对应的信息和/或物理信号对应的信息;
所述用户设备在确定至少一个第一系统参数的频域资源后,在所述频域资源对应的时频资源中的至少一个资源元素上传输物理信道对应的信息和/或物理信号对应的信息。其中,对所述至少一个第一系统参数的频域资源的理解是,对于图6,若所述用户设备支持一个第一系统参数,则为该第一系统参数对应的频域资源,若所述用户设备支持两个或两个以上第一系统参数,则为这两个或两个以上第一系统参数对应的频域资源;对于图5,所述至少一个第一系统参数的频域资源为所述多个第一系统参数对应的频域资源。
通常,一个子帧包括2个时隙(slot),一个时隙包括7个符号,一个资源块(Resource Block,RB)是由频域上的12个子载波以及时域上的一个时隙组成的,一个RB包括7*12=84个RE。RE的横向方向表示时域资源,纵向方向表示频域资源。所述用户设备在确定所述至少一个第一系统参数对应的频域资源后,根据所述至少一个第一系统参数对应的频域资源确定所述至少一个第一系统参数对应的时频资源,此时所述至少一个第一系统参数对应的时频资源包括至少一个资源元素。
所述用户设备在所述至少一个资源元素上进行上行或下行的信息传输。所述信息可以是物理信道对应的信息,也可以是物理信号对应的信息,还可以是物理信道对应的信息和物理信号对应的信息。
其中,物理信道对应的资源元素用于承载来自高层的信息,物理信道可以包括物理上/下行控制信道、物理上/下行共享信道、物理随机接入信道、物理广播信道、物理组播信道。
其中,物理信号对应的资源元素用于物理层传输,不承载来自高层的信息,物理信号可以包括参考信号、同步信号、发现信号。
可选的,所述用户设备在通过其所支持的第一系统参数盲检出或译码对应的频域资源分配信息时,确定对应的频域资源,并在该频域资源对应的时频资源中的至少一个资源元素上传输物理信道对应的信息和/或物理信号对应的信息。
在本发明实施例中,通过网络设备向用户设备发送包括多个第一系统参数的频域资源的分配信息的配置信息,来指示多个第一系统参数对应的频域资源,以便用户设备在所需的频域资源对应的时频资源中的至少一个资源元素上传输物理信道对应的信息和/或物理信号对应的信息,实现对多个系统参数共存场景下的资源分配情况的指示。
LTE系统里,RB资源的动态调度是在eNB侧实现的,这里的“RB资源”实际上是特指VRB(Virtual RB)而不是PRB。VRB和PRB之间,存在着不同的映射关系:最简单的映射关系就是VRB的位置和PRB的位置是相同的,它们之间是一一对应的;另外一种复杂点的关系就是VRB和PRB并不是一一对应的,但是可以依赖某种的映射关系,通过VRB可以明确的推出PRB的位置。前一种一一对应的简单关系就是集中式的资源分配,而后面一种复杂点的映射关系,就是分布式的资源分配。
eNB侧在调度资源的时候,可以根据不同的场景使用不同的分配方式。集中式的资源分配,可以提升UE的速率及整个小区的吞吐量;分布式的资源分配,可以提高传输可靠性。
下行VRB有两种资源映射方式:集中式的VRB资源映射方式和分布式的VRB资源映射方式。在集中式的资源映射方式中,VRB对和PRB对是一一对应的,即VRB的位置就是PRB的位置,RB资源块序号n PRB=n VRB,范围是0到
Figure PCTCN2017120281-appb-000020
图7a就是5MHz带宽下,集中式分配VRB资源时,PRB和VRB的位置关系。
在分布式的资源映射方式中,VRB对和PRB对不是一一对应的,连续的VRB序号将映射到不连续的PRB序号上,并且一个子帧内的2个时隙也有着不同的映射关系(如图7b所示),通过这种方法来达到“分布式”的资源分配。无论是将连续的VRB对映射到不连续的PRB对上,还是分开每个PRB对,使一个PRB对的两个RB的资源传输带有一定的频率间隔(可以看成基于时隙的跳频(hopping)),目的都是为了达到频率上的分集效应。
图7b是下行带宽为5MHz的分布式资源分配过程示意图,这个图只是用来帮助理解分布式的过程,不代表实际PRB的映射位置就与图7b画的一致。这张图简洁直观,可以很好的描述这个过程,下面从协议的角度具体说说这种映射关系,或者说如何从VRB对得到PRB对的实际映射位置。
步骤一:交织(interleaving),包括(1)确定N gap、P的值,以及VRB对个数,其中,N gap用来表示一个RB对之间的频率偏移值,以RB个数为计量单位,不同的系统带宽,这个值是不同的,一旦系统带宽确定下来,这个值也就确定了;P的用来表示RBG的大小,其取值与系统带宽有关;(2)确定VRB交织矩阵:“横放”;(3)确定VRB对应的PRB:“列取”。
步骤二:时隙间的跳频,包括对应同一VRB编号,奇数时隙上的RB会在偶数时隙的 基础上,在VRB交织单元内偏移
Figure PCTCN2017120281-appb-000021
上述VRB到PRB的分布式映射中各参数的选择取决于系统带宽。对于多个系统参数共存的场景,由于不同子载波间隔,OFDM符号频域宽度不同,无法统一进行RB编号。在这种情况下,采用上述分布式映射,会造成不同系统参数对应的RB编号的错乱。一种直观的解决方案是上述分布式只在相同系统参数占用的带宽内进行,而不跨系统参数进行。然而,这就需要UE清楚地知晓各个系统参数对应的频域资源位置,包括频域起始RB以及频域宽度。
鉴于此,本发明实施例提供一种从虚拟资源块到物理资源块的映射方法、网络设备及用户设备,适用于多个系统参数共存的场景,能够指示多个系统参数共存场景下的资源分配。
需要说明的是,该映射方法为图2所示实施例中的步骤203的具体细化过程。
请参见图7,为本发明实施例提供的一种从虚拟资源块到物理资源块的映射方法的通信示意图,包括步骤301-步骤302;
301,网络设备向用户设备发送调度信息,所述调度信息包括至少一个第一系统参数对应的第一虚拟资源块以及映射指示信息;
其中,所述至少一个第一系统参数的解释可参见步骤203对其的解释,在此不再赘述。
所述调度信息可以为DCI,所述DCI的格式中包括映射方式指示位,该位表示映射指示信息,用于指示所述用户设备按照所指示的映射方式进行资源块映射,所指示的映射方式可以为集中式映射,或新型分布式映射,该新型分布式映射为先分布式映射后集中式映射。
所述至少一个第一系统参数对应的第一虚拟资源块包括各个第一系统参数对应的第一虚拟资源块的编号,可参见图8,为图7所示实施例提供的一种示例性映射示意图,所述至少一个第一系统参数包括两个子载波间隔为15kHz对应的第一系统参数和子载波间隔为30kHz对应的第一系统参数,两个子载波间隔为15kHz对应的第一系统参数所对应的第一虚拟资源块的编号分别为0到19以及20到49,子载波间隔为30kHz对应的第一系统参数所对应的第一虚拟资源块的编号为0到39。
302,所述用户设备接收所述网络设备发送的所述调度信息;
303,所述用户设备根据所述调度信息进行资源块映射得到所述至少一个第一系统参数对应的物理资源块;
具体的,若所述映射指示信息所指示的映射方式为集中式映射,则所述用户设备通过集中式映射方式,根据各个第一系统参数对应的第一虚拟资源块的编号,将各个第一系统参数对应的第一虚拟资源块映射到对应的物理资源块上。
若所述映射指示信息所指示的映射方式为新型分布式映射,则所述用户设备首先将各个第一系统参数对应的第一虚拟资源块通过分布式映射方式映射到第二虚拟资源块,即n VRB,2=M(n VRB,1),M表示分布式映射方式,包括交织和时隙间跳频中的至少一种;n VRB,1表示第一虚拟资源块的编号,其取值为0到N VRB,1-1,N VRB,1=N RB,N RB为给定第一系统参数在时频资源的频域上所占用的RB数,例如图8所示,子载波间隔大小为30kHz的第一系统参数对应的第一虚拟资源块的编号为0到39,占用的RB数为40个;n VRB,2表示第二虚 拟资源块的编号。如图8所示,子载波间隔大小为30kHz的第一系统参数对应的第一虚拟资源块的编号为0到39,映射到第二虚拟资源块的编号为0到39;子载波间隔大小为15kHz的两个第一系统参数对应的第一虚拟资源块的编号分别为0到19、20到49,映射到第二虚拟资源块的编号为连续的0到49。
再次,所述用户设备将各个第一系统参数对应的第二虚拟资源块通过集中式映射方式映射到物理资源块,即n PRB=n VRB,2。如图8所示,子载波间隔大小为15kHz的两个第一系统参数对应的物理资源块非连续且统一编号为0到49。子载波间隔大小为30kHz的第一系统参数对应的物理资源块编号为0到39。
需要说明的是,步骤303是在一段带宽内进行的,该带宽可以是系统带宽,也可以是系统带宽内的一段连续带宽,或者是多段连续带宽按照从低频到高频的方式联系起来的一段连续带宽。
304,所述用户设备在所述物理资源块上传输物理信道对应的信息和/或物理信号对应的信息;
所述用户设备在所述物理资源块的部分或全部资源块上传输物理信道对应的信息和/或物理信号对应的信息。
在本发明实施例中,可采用分布式映射方式与集中式映射方式相结合的方式进行映射,适用于至少一个系统参数共存的场景,能够指示至少一个系统参数共存场景下的资源分配。
请参见图9a,为本发明实施例提供的一种用户设备的结构示意图,该用户设备900包括接收单元901和发送单元902:
接收单元901,用于接收网络设备发送的配置信息,所述配置信息包括多个第一系统参数的频域资源的分配信息;
发送单元902,还用于在所述多个第一系统参数中的至少一个第一系统参数的频域资源对应的时频资源中的至少一个资源元素上传输物理信道对应的信息和/或物理信号对应的信息;
其中,第一系统参数包括第一子载波间隔大小、循环前缀长度、传输时间间隔长度、符号长度和符号数等参数中的至少一种。
在一种可能实现的方式中,所述第一系统参数的频域资源由所述第一系统参数的频域资源的分配信息、所述第一系统参数以及第二系统参数确定,所述第二系统参数包括第二子载波间隔大小。
在一种可能实现的方式中,述多个第一系统参数为所述网络设备所支持的系统参数,所述第二系统参数为划分系统频域资源的参考系统参数。
在一种可能实现的方式中,所述配置信息还包括所述第二系统参数的标识。
在一种可能实现的方式中,所述配置信息还包括所述第一系统参数的标识。
在一种可能实现的方式中,所述配置信息为公共级下行控制信息,所述公共级下行控制信息的循环冗余校验通过小区公共标识进行加扰,或所述公共级下行控制信息的冻结位为所述小区公共标识。
在一种可能实现的方式中,所述配置信息为公共级下行控制信息,所述公共级下行控 制信息的循环冗余校验通过所述第一系统参数的标识进行加扰,或所述公共级下行控制信息的冻结位为所述第一系统参数的标识。
在一种可能实现的方式中,所述配置信息为高层信令,所述高层信令由专用无线资源控制信令、系统消息、随机接入响应消息、消息4或媒体访问控制控制元素承载。
需要说明的是,所述接收单元901用于执行图2所示实施例中的202,还用于执行图7所示实施例中的302;所述发送单元902用于执行图2所示实施例中的203,还用于执行图7所示实施例中的304。所述用户设备900还包括处理单元903,用于执行图7所示实施例中的303。
其中,处理单元903可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。接收单元901和发送单元902可以是收发器、收发电路或通信模块等。
当处理单元902为处理器,接收单元901和发送单元902为通信模块时,本发明实施例所涉及的用户设备可以为图9b所示的用户设备。
参阅图9b所示,该用户设备910包括:电源911、用户接口912、通信模块913、处理器914、显示系统919、传感系统916和音频系统917。需要说明的是,该用户设备910可以表示图1中所述的用户设备,也可以表示机动车辆、非机动车辆、道路上的其它通信设备、智能家电设备等电子设备,图9b所示的用户设备的结构并不构成对本发明实施例的限定。
其中,电源911为用户设备910各项功能的实现提供电力保障。用户接口912用于用户设备910与其它设备或装置相连接,实现其它设备或装置与用户设备910的通信或数据传输。通信模块913用于实现用户设备910与基站、卫星等网络设备之间的通信或数据传输,还用于实现用户设备910与其它用户设备之间的通信或数据传输,应用于本发明实施例中,通信模块913用于实现图9a所示的接收单元901和发送单元902的功能。处理器914可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路,应用于本发明实施例中,处理器914用于实现图9a所示的处理单元903的功能。显示系统919用于信息的输出显示以及接收用户输入的操作。传感系统916包括各种传感器,例如温度传感器、距离传感器等。音频系统917用于音频信号的输出。
请参见图10a,为本发明实施例提供的一种网络设备的结构示意图,该网络设备1000包括发送单元1001:
发送单元1001,用于向用户设备发送配置信息,所述配置信息包括多个第一系统参数的频域资源的分配信息,所述多个第一系统参数中的至少一个第一系统参数的频域资源对应的时频资源中的至少一个资源元素用于所述用户设备传输物理信道对应的信息和/或物理信号对应的信息;
其中,第一系统参数包括第一子载波间隔大小、循环前缀长度、传输时间间隔长度、 符号长度和符号数等参数中的至少一种。
所述网络设备1000还包括处理单元1002,用于为所述多个第一系统参数分配频域资源,得到所述多个第一系统参数的频域资源的分配信息。
需要说明的是,所述发送单元1001用于执行图2所示实施例中的201,还用于执行图7所示实施例中的301。
其中,处理单元1002可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。发送单元1001可以是收发器、收发电路或通信接口等。
当处理单元1002为处理器,发送单元1001为收发器时,本发明实施例所涉及的网络设备可以为图10b所示的网络设备。
参阅图10b所示,该网络设备1010包括:处理器1011、收发器1012以及天线。需要说明的是,实际应用中收发器1012不限于两个,天线也不限于两个,该网络设备1010的结构并不构成对本发明实施例的限定。
其中,处理器1011主要包括四个部件:小区控制器、话音信道控制器、信令信道控制器和用于扩充的多路端接口。处理器1011负责所有的移动通信接口管理,主要是无线信道的分配、释放和管理。处理器1011应用于本发明实施例中,用于实现图10a所示的处理单元1002的功能。收发器1012包括接收机和发射机,对于用户设备而言,可以通过发射机进行上行数据的发射,通过接收机对下行数据进行接收。收发器1012应用于本发明实施例中,用于实现图10a所示的发送单元1001的功能。
本发明实例还提供一种资源指示系统,包括图9a所示的用户设备和图10a所示的网络设备,或包括图9b所示的用户设备和图10b所示的网络设备。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来请求相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (41)

  1. [援引加入(细则20.6) 19.03.2018] 
    1、一种资源指示方法,其特征在于,包括-用户设备接收网络设备发送的配置信息,所述配置信息包括多个第一系统参数的频域资源的分配信息;所述用户设备在所述多个第一系统参数中的至少一个第一系统参数的频域资源对应的时频资源中的至少一个资源元素上传输物理信道对应的信息和/或物理信号对应的信息;其中,第一系统参数包括第一子载波间隔大小、循环前缀长度、传输时间间隔长度、符号长度和符号数等参数中的至少一种。
    2、根据权利要求1所述的方法,其特征在于,所述第一系统参数的频域资源由所述第一系统参数的频域资源的分配信息、所述第一系统参数以及第二系统参数确定,所述第二系统参数包括第二子载波间隔大小。
    3、根据权利要求2所述的方法,其特征在于,所述多个第一系统参数为所述网络设备所支持的系统参数,所述第二系统参数为划分系统频域资源的参考系统参数。
    4、根据权利要求1-3任一项所述的方法,其特征在于,所述配置信息还包括所述第二系统参数的标识。
    5、根据权利要求1-4任一项所述的方法,其特征在于,所述配置信息还包括所述第一系统参数的标识。
    6、根据权利要求5所述的方法,其特征在于,所述配置信息为公共级下行控制信息,所述公共级下行控制信息的循环冗余校验通过小区公共标识进行加扰,或所述公共级下行控制信息的冻结位为所述小区公共标识。
    7、根据权利要求1-4任一项所述的方法,其特征在于,所述配置信息为公共级下行控制信息,所述公共级下行控制信息的循环冗余校验通过所述第一系统参数的标识进行加扰,或所述公共级下行控制信息的冻结位为所述第一系统参数的标识。
    8、根据权利要求1-5任一项所述的方法,其特征在于,所述配置信息为高层信令,所述高层信令由专用无线资源控制信令、系统消息、随机接入响应消息、消息4或媒体访问控制控制元素承载。
    9、一种资源指示方法,其特征在于,包括:网络设备向用户设备发送配置信息,所述配置信息包括多个第一系统参数的频域资源的分配信息,所述多个第一系统参数中的至少一个第一系统参数的频域资源对应的时频资源中的至少一个资源元素用于所述用户设备传输物理信道对应的信息和/或物理信号对应的信息;其中,第一系统参数包括第一子载波间隔大小、循环前缀长度、传输时间间隔长度、符号长度和符号数等参数中的至少一种。
    10、根据权利要求9所述的方法,其特征在于,所述网络设备向用户设备发送配置信息之前,还包括:所述网络设备为所述多个第一系统参数分配频域资源,得到所述多个第一系统参数的频域资源的分配信息。
    11、根据权利要求9或10所述的方法,其特征在于,所述第一系统参数的频域资源由所述第一系统参数的频域资源的分配信息、所述第一系统参数以及第二系统参数确定,所述第二系统参数包括第二子载波间隔大小。
    12、根据权利要求11所述的方法,其特征在于,所述多个第一系统参数为所述网络设备所支持的系统参数,所述第二系统参数为划分系统频域资源的参考系统参数。
    13、根据权利要求9-12任一项所述的方法,其特征在于,所述配置信息还包括所述第二系统参数的标识。
    14、根据权利要求9-13任一项所述的方法,其特征在于,所述配置信息还包括所述第一系统参数的标识。
    15、根据权利要求14所述的方法,其特征在于,所述配置信息为公共级下行控制信息,所述公共级下行控制信息的循环冗余校验通过小区公共标识进行加扰,或所述公共级下行控制信息的冻结位为所述小区公共标识。
    16、根据权利要求9-13任一项所述的方法,其特征在于,所述配置信息为公共级下行控制信息,所述公共级下行控制信息的循环冗余校验通过所述第一系统参数的标识进行加扰,或所述公共级下行控制信息的冻结位为所述第一系统参数的标识。
    17、根据权利要求9-14任一项所述的方法,其特征在于,所述配置信息为高层信令,所述高层信令由专用无线资源控制信令、系统消息、随机接入响应消息、消息4或媒体访问控制控制元素承载。
    18、一种用户设备,其特征在于,包括:接收单元,用于接收网络设备发送的配置信息,所述配置信息包括多个第一系统参数的频域资源的分配信息;发送单元,用于在所述多个第一系统参数中的至少一个第一系统参数的频域资源对应的时频资源中的至少一个资源元素上传输物理信道对应的信息和/或物理信号对应的信息;其中,第一系统参数包括第一子载波间隔大小、循环前缀长度、传输时间间隔长度、符号长度和符号数等参数中的至少一种。
    19、根据权利要求18所述的用户设备,其特征在于,所述第一系统参数的频域资源由所述第一系统参数的频域资源的分配信息、所述第一系统参数以及第二系统参数确定,所述第二系统参数包括第二子载波间隔大小。
    20、根据权利要求17-19任一项所述的用户设备,其特征在于,所述多个第一系统参数为所述网络设备所支持的系统参数,所述第二系统参数为划分系统频域资源的参考系统参数。
    21、根据权利要求17-20任一项所述的用户设备,其特征在于,所述配置信息还包括所述第二系统参数的标识。
    22、根据权利要求17-21任一项所述的用户设备,其特征在于,所述配置信息还包括所述第一系统参数的标识。
    23、根据权利要求22所述的用户设备,其特征在于,所述配置信息为公共级下行控制信息,所述公共级下行控制信息的循环冗余校验通过小区公共标识进行加扰,或所述公共级下行控制信息的冻结位为所述小区公共标识。
    24、根据权利要求18-21任一项所述的用户设备,其特征在于,所述配置信息为公共级下行控制信息,所述公共级下行控制信息的循环冗余校验通过所述第一系统参数的标识进行加扰,或所述公共级下行控制信息的冻结位为所述第一系统参数的标识。
    25、根据权利要求18-24任一项所述的用户设备,其特征在于,所述配置信息为高层信令,所述高层信令由专用无线资源控制信令、系统消息、随机接入响应消息、消息4或媒体访问控制控制元素承载。
    26、一种网络设备,其特征在于,包括:发送单元,用于向用户设备发送配置信息,所述配置信息包括多个第一系统参数的频域资源的分配信息,所述多个第一系统参数中的至少一个第一系统参数的频域资源对应的时频资源中的至少一个资源元素用于所述用户设备传输物理信道对应的信息和/或物理信号对应的信息;其中,第一系统参数包括第一子载波间隔大小、循环前缀长度、传输时间间隔长度、符号长度和符号数等参数中的至少一种。
    27、根据权利要求26所述的网络设备,其特征在于,所述网络设备还包括:处理单元,用于为所述多个第一系统参数分配频域资源,得到所述多个第一系统参数的频域资源的分配信息。
    28、根据权利要求26或27所述的网络设备,其特征在于,所述第一系统参数的频域资源由所述第一系统参数的频域资源的分配信息、所述第一系统参数以及第二系统参数确定,所述第二系统参数包括第二子载波间隔大小。
    29、根据权利要求28所述的网络设备,其特征在于,所述多个第一系统参数为所述网络设备所支持的系统参数,所述第二系统参数为划分系统频域资源的参考系统参数。
    30、根据权利要求26-29任一项所述的网络设备,其特征在于,所述配置信息还包括所述第二系统参数的标识。
    31、根据权利要求26-30任一项所述的网络设备,其特征在于,所述配置信息还包括所述第一系统参数的标识。
    32、根据权利要求31所述的网络设备,其特征在于,所述配置信息为公共级下行控制信息,所述公共级下行控制信息的循环冗余校验通过小区公共标识进行加扰,或所述公共级下行控制信息的冻结位为所述小区公共标识。
    33、根据权利要求26-30任一项所述的网络设备,其特征在于,所述配置信息为公共级下行控制信息,所述公共级下行控制信息的循环冗余校验通过所述第一系统参数的标识进行加扰,或所述公共级下行控制信息的冻结位为所述第一系统参数的标识。
    34、根据权利要求26-31任一项所述的网络设备,其特征在于,所述配置信息为高层信令,所述高层信令由专用无线资源控制信令、系统消息、随机接入响应消息、消息4或媒体访问控制控制元素承载。
    35、一种用户设备,其特征在于,包括处理器、通信模块,所述用户设备用于执行如权利要求1-8所述的资源指示方法。
    36、一种网络设备,其特征在于,包括处理器、收发器,所述网络设备用于执行如权利要求9-17所述的资源指示方法。
  2. 一种信号测量方法,其特征在于,包括:
    网络侧设备发送下行链路参考信号的配置信息,所述下行链路参考信号的配置信息用于指示所述下行链路参考信号的空口发送信息;
    所述网络侧设备发送所述下行链路参考信号,所述下行链路参考信号根据所述下行链路参考信号的配置信息生成。
  3. 根据权利要求1所述的方法,其特征在于,所述下行链路参考信号的配置信息包括所述下行链路参考信号的端口信息和所述下行链路参考信号的时频资源信息。
  4. 根据权利要求1或2所述的方法,其特征在于,所述网络侧设备发送下行链路参考信号的配置信息,包括:
    所述网络侧设备通过物理广播信道PBCH发送所述下行链路参考信号的配置信息;
    或,所述网络侧设备通过无线资源控制RRC信令发送所述下行链路参考信号的配置信息。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述下行链路参考信号为可配置的下行参考信号,包括信道状态信息参考信号或下行链路测量参考信号;或,所述下行链路参考信号为基于波束的下行参考信号,包括波束特定参考信号或小区特定参考信号。
  6. 根据权利要求4所述的方法,其特征在于,所述网络侧设备发送下行链路参考信号的配置信息,包括:
    所述网络侧设备在监测到用户设备位于预设边缘区域时,发送所述下行链路参考信号的配置信息。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备接收用户设备发送的第一测量结果,所述第一测量结果为所述用户设备根据所述下行链路参考信号测量得到的,包括第一参考信号接收功率RSRP、第一参考信号接收质量RSRQ、第一接收信号强度指示RSSI中的至少一种。
  8. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备接收用户设备发送的第二测量结果,所述第二测量结果为所述用户设备根据所述网络侧设备发送的同步信号测量得到的,包括第二RSRP、第二RSRQ、第二RSSI中的至少一种。
  9. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备接收所述用户设备发送的第三测量结果,所述第三测量结果为所述用 户设备根据所述第一测量结果和所述第二测量结果计算得到的,包括第三RSRP、第三RSRQ、第三RSSI中的至少一种。
  10. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备接收所述用户设备发送的所述第一测量结果和所述第二测量结果,所述第一测量结果为所述用户设备位于所述预设边缘区域时根据所述下行链路参考信号测量得到的,所述第二测量结果为所述用户设备位于预设中心区域时根据所述同步信号测量得到的。
  11. 根据权利要求6-9任一项所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备根据所述用户设备发送的测量结果判断所述用户设备是否需要进行小区切换或重选,所述测量结果包括所述第一测量结果或所述第二测量结果或所述第三测量结果,或所述第一测量结果和所述第二测量结果;
    若判断的结果为是,则所述网络侧设备向所述用户设备发送指示消息,所述指示消息用于指示所述用户设备进行小区切换或重选。
  12. 一种信号测量方法,其特征在于,包括:
    用户设备接收下行链路参考信号的配置信息,所述下行链路参考信号的配置信息用于指示所述下行链路参考信号的空口发送信息;
    所述用户设备接收所述下行链路参考信号,所述下行链路参考信息根据所述下行链路参考信号的配置信息生成;
    所述用户设备根据所述下行链路参考信号进行测量。
  13. 根据权利要求11所述的方法,其特征在于,所述下行链路参考信号的配置信息包括所述下行链路参考信号的端口信息和所述下行链路参考信号的时频资源信息。
  14. 根据权利要求11或12所述的方法,其特征在于,所述下行链路参考信号的配置信息通过PBCH向所述用户设备发送,或通过RRC信令向所述用户设备发送。
  15. 根据权利要求11-13任一项所述的方法,其特征在于,所述下行链路参考信号为可配置的下行参考信号,包括信道状态信息参考信号或下行链路测量参考信号;或,所述下行链路参考信号为基于波束的下行参考信号,包括波束特定参考信号或小区特定参考信号。
  16. 根据权利要求14所述的方法,其特征在于,所述下行链路参考信号的配置信息由网络侧设备在监测到所述用户设备位于预设边缘区域时,向所述用户设备发送。
  17. 根据权利要求11-15任一项所述的方法,其特征在于,所述方法还包括:
    所述用户设备发送第一测量结果,所述第一测量结果为所述用户设备根据所述下行链路参考信号测量得到的,包括第一RSRP、第一RSRQ、第一RSSI中的至少一种。
  18. 根据权利要求11-15任一项所述的方法,其特征在于,所述方法还包括:
    所述用户设备根据同步信号进行测量得到第二测量结果,所述第二测量结果包括第二RSRP、第二RSRQ、第二RSSI中的至少一种;
    所述用户设备发送所述第二测量结果。
  19. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    所述用户设备根据所述第一测量结果和所述第二测量结果计算得到第三测量结果,所述测量结果包括第三测量结果,所述第三测量结果包括第三RSRP、第三RSRQ、第三RSSI中的至少一种;
    所述用户设备发送所述第三测量结果。
  20. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    所述用户设备位于预设边缘区域时根据所述下行链路参考信号测量得到的所述第一测量结果;
    所述用户设备位于预设中心区域时根据所述同步信号测量得到所述第二测量结果;
    所述用户设备发送所述第一测量结果和所述第二测量结果。
  21. 根据权利要求16-19任一项所述的方法,其特征在于,所述方法还包括:
    所述用户设备接收指示消息,并根据所述指示消息进行小区切换或重选。
  22. 一种网络侧设备,其特征在于,包括:收发器和处理器,
    所述收发器,用于发送下行链路参考信号的配置信息,所述下行链路参考信号的配置信息用于指示所述下行链路参考信号的空口发送信息;
    所述收发器,还用于发送所述下行链路参考信号,所述下行链路参考信号根据所述下行链路参考信号的配置信息生成。
  23. 根据权利要求21所述的网络侧设备,其特征在于,所述下行链路参考信号的配置信息包括所述下行链路参考信号的端口信息和所述下行链路参考信号的时频资源信息。
  24. 根据权利要求21或22所述的网络侧设备,其特征在于,所述收发器具体用于通过物理广播信道PBCH发送所述下行链路参考信号的配置信息;或,通过无线资源控制RRC信令发送所述下行链路参考信号的配置信息。
  25. 根据权利要求21-23任一项所述的网络侧设备,其特征在于,所述下行链路参考信号为可配置的下行参考信号,包括信道状态信息参考信号或下行链路测量参考信号;或, 所述下行链路参考信号为基于波束的下行参考信号,包括波束特定参考信号或小区特定参考信号。
  26. 根据权利要求24所述的网络侧设备,其特征在于,所述收发器具体用于在监测到用户设备位于预设边缘区域时,发送所述下行链路参考信号的配置信息。
  27. 根据权利要求21-25任一项所述的网络侧设备,其特征在于,
    所述收发器,还用于接收用户设备发送的第一测量结果,所述第一测量结果为所述用户设备根据所述下行链路参考信号测量得到的,包括第一参考信号接收功率RSRP、第一参考信号接收质量RSRQ、第一接收信号强度指示RSSI中的至少一种。
  28. 根据权利要求21-25任一项所述的网络侧设备,其特征在于,
    所述收发器,还用于接收用户设备发送的第二测量结果,所述第二测量结果为所述用户设备根据所述网络侧设备发送的同步信号测量得到的,包括第二RSRP、第二RSRQ、第二RSSI中的至少一种。
  29. 根据权利要求26或27所述的网络侧设备,其特征在于,
    所述收发器,还用于接收所述用户设备发送的第三测量结果,所述第三测量结果为所述用户设备根据所述第一测量结果和所述第二测量结果计算得到的,包括第三RSRP、第三RSRQ、第三RSSI中的至少一种。
  30. 根据权利要求26或27所述的网络侧设备,其特征在于,
    所述收发器,还用于接收所述用户设备发送的所述第一测量结果和所述第二测量结果,所述第一测量结果为所述用户设备位于所述预设边缘区域时根据所述下行链路参考信号测量得到的,所述第二测量结果为所述用户设备位于预设中心区域时根据所述同步信号测量得到的。
  31. 根据权利要求26-29任一项所述的网络侧设备,其特征在于,
    所述收发器,还用于根据所述用户设备发送的测量结果判断所述用户设备是否需要进行小区切换或重选,所述测量结果包括所述第一测量结果或所述第二测量结果或所述第三测量结果,或所述第一测量结果和所述第二测量结果;
    若判断的结果为是,则所述网络侧设备向所述用户设备发送指示消息,所述指示消息用于指示所述用户设备进行小区切换或重选。
  32. 一种用户设备,其特征在于,包括:处理器和通信模块,
    所述通信模块,用于接收下行链路参考信号的配置信息,所述下行链路参考信号的配置信息用于指示所述下行链路参考信号的空口发送信息;
    所述通信模块,还用于接收所述下行链路参考信号,所述下行链路参考信息根据所述 下行链路参考信号的配置信息生成;
    所述处理器,用于根据所述下行链路参考信号进行测量。
  33. 根据权利要求31所述的用户设备,其特征在于,所述下行链路参考信号的配置信息包括所述下行链路参考信号的端口信息和所述下行链路参考信号的时频资源信息。
  34. 根据权利要求31或32所述的用户设备,其特征在于,所述下行链路参考信号的配置信息通过PBCH向所述用户设备发送,或通过RRC信令向所述用户设备发送。
  35. 根据权利要求31-33任一项所述的用户设备,其特征在于,所述下行链路参考信号为可配置的下行参考信号,包括信道状态信息参考信号或下行链路测量参考信号;或,所述下行链路参考信号为基于波束的下行参考信号,包括波束特定参考信号或小区特定参考信号。
  36. 根据权利要求34所述的用户设备,其特征在于,所述下行链路参考信号的配置信息由网络侧设备在监测到所述用户设备位于预设边缘区域时,向所述用户设备发送。
  37. 根据权利要求31-35任一项所述的用户设备,其特征在于,
    所述通信模块,还用于发送第一测量结果,所述第一测量结果为所述用户设备根据所述下行链路参考信号测量得到的,包括第一RSRP、第一RSRQ、第一RSSI中的至少一种。
  38. 根据权利要求31-35任一项所述的用户设备,其特征在于,
    所述处理器,还用于根据同步信号进行测量得到第二测量结果,所述第二测量结果包括第二RSRP、第二RSRQ、第二RSSI中的至少一种;
    所述通信模块,还用于发送所述第二测量结果。
  39. 根据权利要求36或37所述的用户设备,其特征在于,
    所述处理器,还用于根据所述第一测量结果和所述第二测量结果计算得到第三测量结果,所述测量结果包括第三测量结果,所述第三测量结果包括第三RSRP、第三RSRQ、第三RSSI中的至少一种;
    所述通信模块,还用于发送所述第三测量结果。
  40. 根据权利要求36或37所述的用户设备,其特征在于,
    所述处理器,还用于所述用户设备位于预设边缘区域时根据所述下行链路参考信号测量得到的所述第一测量结果;
    所述处理器,还用于所述用户设备位于预设中心区域时根据所述同步信号测量得到所述第二测量结果;
    所述通信模块,还用于发送所述第一测量结果和所述第二测量结果。
  41. 根据权利要求36-39任一项所述的用户设备,其特征在于,
    所述通信模块,还用于接收指示消息,并根据所述指示消息进行小区切换或重选。
PCT/CN2017/120281 2017-01-06 2017-12-29 一种资源指示方法、用户设备及网络设备 WO2018127021A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17889793.0A EP3554155B1 (en) 2017-01-06 2017-12-29 Resource indication method and user equipment
JP2019536924A JP2020504546A (ja) 2017-01-06 2017-12-29 リソース指示方法、ユーザ機器、およびネットワークデバイス
US16/504,024 US10979194B2 (en) 2017-01-06 2019-07-05 Resource indication method, user equipment, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710010466.3 2017-01-06
CN201710010466.3A CN108282870B (zh) 2017-01-06 2017-01-06 一种资源指示方法、用户设备及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/504,024 Continuation US10979194B2 (en) 2017-01-06 2019-07-05 Resource indication method, user equipment, and network device

Publications (1)

Publication Number Publication Date
WO2018127021A1 true WO2018127021A1 (zh) 2018-07-12

Family

ID=62789263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/120281 WO2018127021A1 (zh) 2017-01-06 2017-12-29 一种资源指示方法、用户设备及网络设备

Country Status (5)

Country Link
US (1) US10979194B2 (zh)
EP (1) EP3554155B1 (zh)
JP (1) JP2020504546A (zh)
CN (1) CN108282870B (zh)
WO (1) WO2018127021A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020191702A1 (en) 2019-03-28 2020-10-01 Panasonic Intellectual Property Corporation Of America Mobile station, base station, reception method, and transmission method
US12021827B2 (en) * 2020-03-16 2024-06-25 Nokia Technologies Oy Apparatus, method and computer program to influence 3GPP terminals on preferences between multiple recursive DNS servers

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282870B (zh) * 2017-01-06 2021-04-20 华为技术有限公司 一种资源指示方法、用户设备及网络设备
WO2019003156A1 (en) * 2017-06-27 2019-01-03 Telefonaktiebolaget Lm Ericsson (Publ) SHARED CHANNEL REMAPPING IN A COEXISTENCE SCENARIO OF MULTIPLE RADIO ACCESS TECHNOLOGIES
US20190260435A1 (en) * 2018-02-17 2019-08-22 Mediatek Inc. Uplink Transmission Schemes In Mobile Communications
CN110636617B (zh) * 2018-06-22 2022-04-05 华为技术有限公司 一种参数配置方法及装置
US10999023B2 (en) * 2018-07-16 2021-05-04 Mediatek Singapore Pte. Ltd. Method and apparatus for frequency domain resource allocation when frequency hopping is enabled in mobile communications
JP7237486B2 (ja) * 2018-07-31 2023-03-13 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN113330797B (zh) * 2019-01-11 2024-08-16 瑞典爱立信有限公司 用于免许可频谱中上行链路传输的资源分配
WO2020144639A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) Frequency-domain resource allocation for multi-source transmission
WO2020155059A1 (zh) * 2019-01-31 2020-08-06 华为技术有限公司 一种信息传输方法、相关设备及系统
US11082984B2 (en) * 2019-06-24 2021-08-03 Qualcomm Incorporated Frequency domain resource allocation for frequency division multiplexing schemes with single downlink control information associated with multiple transmission configuration indication states
CN111836378B (zh) * 2019-08-15 2023-07-25 维沃移动通信有限公司 一种频域资源分配方法、网络侧设备及终端
CN111602454B (zh) * 2020-04-24 2023-10-10 北京小米移动软件有限公司 可穿戴设备及用于可穿戴设备获取通信资源的方法
EP4132110A4 (en) * 2020-04-29 2023-08-30 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND COMMUNICATION DEVICE
CN114143801B (zh) * 2020-09-04 2024-03-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
TWI827939B (zh) * 2021-06-09 2024-01-01 光寶科技股份有限公司 網路實體及資源配置方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685847A (zh) * 2013-08-05 2015-06-03 华为技术有限公司 带宽分配方法、装置及系统
CN105359474A (zh) * 2013-07-01 2016-02-24 飞思卡尔半导体公司 无线电信号解码和解码器
WO2016114824A1 (en) * 2015-01-15 2016-07-21 Intel IP Corporation Apparatus and method of providing a flexible guard interval for block single carrier transmission
US20160360550A1 (en) * 2015-06-03 2016-12-08 Qualcomm Incorporated Low latency under time division duplex and flexible frequency division duplex

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105325045A (zh) * 2014-01-27 2016-02-10 华为技术有限公司 一种窄带传输的方法、设备、基站及用户设备
US10862634B2 (en) * 2014-03-07 2020-12-08 Huawei Technologies Co., Ltd. Systems and methods for OFDM with flexible sub-carrier spacing and symbol duration
WO2016004634A1 (en) 2014-07-11 2016-01-14 Mediatek Singapore Pte. Ltd. Method for enb, ue uplink transmission and reception
CN105813199A (zh) * 2014-12-30 2016-07-27 夏普株式会社 针对寻呼消息的资源分配方法及网络节点和用户设备
US10091713B2 (en) * 2015-01-27 2018-10-02 Qualcomm Incorporated Numerology and frames for networks in the sub-1GHz (S1G) band
WO2016130175A1 (en) * 2015-02-11 2016-08-18 Intel IP Corporation Device, system and method employing unified flexible 5g air interface
CN106304138A (zh) * 2015-05-28 2017-01-04 中兴通讯股份有限公司 系统参数处理方法及装置
US10038581B2 (en) * 2015-06-01 2018-07-31 Huawei Technologies Co., Ltd. System and scheme of scalable OFDM numerology
CN114158126A (zh) * 2016-03-22 2022-03-08 中兴通讯股份有限公司 一种信息传输方法、装置和系统
BR112019002748A2 (pt) * 2016-08-10 2019-05-14 Idac Holdings, Inc. método para uma unidade de transmissão/recepção sem fio, unidade de transmissão/recepção sem fio, e, estação-base
EP3282623A1 (en) * 2016-08-12 2018-02-14 Panasonic Intellectual Property Corporation of America Dynamic resource allocation among different ofdm numerology schemes
US10785759B2 (en) * 2016-08-12 2020-09-22 Asustek Computer Inc. Method and apparatus for determining numerology bandwidth in a wireless communication system
EP3301848A3 (en) * 2016-09-30 2018-06-20 ASUSTek Computer Inc. Method and apparatus for receiving control channel for multiple numerologies in a wireless communications system
EP3319263B1 (en) * 2016-11-04 2020-10-14 Mitsubishi Electric R&D Centre Europe B.V. Resource allocation with different numerologies onto the same carrier
US11456903B2 (en) * 2016-12-23 2022-09-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method, network device and terminal device
CN108282870B (zh) * 2017-01-06 2021-04-20 华为技术有限公司 一种资源指示方法、用户设备及网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105359474A (zh) * 2013-07-01 2016-02-24 飞思卡尔半导体公司 无线电信号解码和解码器
CN104685847A (zh) * 2013-08-05 2015-06-03 华为技术有限公司 带宽分配方法、装置及系统
WO2016114824A1 (en) * 2015-01-15 2016-07-21 Intel IP Corporation Apparatus and method of providing a flexible guard interval for block single carrier transmission
US20160360550A1 (en) * 2015-06-03 2016-12-08 Qualcomm Incorporated Low latency under time division duplex and flexible frequency division duplex

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020191702A1 (en) 2019-03-28 2020-10-01 Panasonic Intellectual Property Corporation Of America Mobile station, base station, reception method, and transmission method
EP3949586A4 (en) * 2019-03-28 2022-04-06 Panasonic Intellectual Property Corporation of America MOBILE STATION, BASE STATION, RECEIVING METHOD AND TRANSMITTING METHOD
US12063551B2 (en) 2019-03-28 2024-08-13 Panasonic Intellectual Property Corporation Of America Mobile station, base station, reception method, and transmission method
US12021827B2 (en) * 2020-03-16 2024-06-25 Nokia Technologies Oy Apparatus, method and computer program to influence 3GPP terminals on preferences between multiple recursive DNS servers

Also Published As

Publication number Publication date
US10979194B2 (en) 2021-04-13
EP3554155A4 (en) 2019-12-25
JP2020504546A (ja) 2020-02-06
US20190334680A1 (en) 2019-10-31
CN108282870B (zh) 2021-04-20
EP3554155A1 (en) 2019-10-16
CN108282870A (zh) 2018-07-13
EP3554155B1 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
WO2018127021A1 (zh) 一种资源指示方法、用户设备及网络设备
CN108347778B (zh) 通信方法及装置
JP7061995B2 (ja) 車両対車両通信のための復調基準信号設計
EP3557811B1 (en) Method and apparatus for transmitting reference signal
CA2954996C (en) User equipment and methods for allocation and signaling of time resources for device to device (d2d) communication
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
JP2020503712A (ja) 低いピーク対平均電力比を有する復調基準信号および粒度を伴う割振り情報
US20160088594A1 (en) Device and method of supporting reduced data transmission bandwidth
CN113711678A (zh) 网络节点、用户设备(ue)和用于由网络节点调度ue的相关方法
JP2019535186A (ja) データ通信方法、端末、および基地局
EP4106454A1 (en) Terminal and communication method
JP2019500815A (ja) ワイヤレス通信の方法およびシステム、ならびにデバイス
US20220256557A1 (en) Communication apparatuses and communication methods for dci for v2x communication apparatuses
JP2023517465A (ja) サイドリンク構成のためのシステムおよび方法
US11588605B2 (en) Resource scheduling method and apparatus, data transmission method and apparatus and communication system
CN115943707A (zh) 5g新空口无线通信中的srs信令
US20230155841A1 (en) Communication apparatuses and communication methods for security in resource pool allocation
JP2021119702A (ja) 共有基準信号を復調するための方法、端末装置とネットワーク装置
EP3487240B1 (en) Efficient wireless communication with reduced overhead signaling
WO2019244609A1 (ja) 端末装置、基地局装置、方法、および、集積回路
CN115211170A (zh) 用于侧链路配置的系统和方法
WO2024171520A1 (ja) 基地局、端末及び通信方法
WO2024034228A1 (ja) 通信装置、及び、通信方法
EP4102910A1 (en) Terminal and communication method
WO2024209510A1 (ja) 端末、基地局及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017889793

Country of ref document: EP

Effective date: 20190710