WO2019062947A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2019062947A1
WO2019062947A1 PCT/CN2018/108757 CN2018108757W WO2019062947A1 WO 2019062947 A1 WO2019062947 A1 WO 2019062947A1 CN 2018108757 W CN2018108757 W CN 2018108757W WO 2019062947 A1 WO2019062947 A1 WO 2019062947A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
reserved
srs
reference signal
time slot
Prior art date
Application number
PCT/CN2018/108757
Other languages
English (en)
French (fr)
Inventor
胡远洲
丁梦颖
秦熠
栗忠峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019062947A1 publication Critical patent/WO2019062947A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and device.
  • the reference signal is a fixed signal that the transmitting end sends to the receiving end. Since the receiving end is aware of such a signal, the receiving end can obtain system or channel related information by processing the received signal and the signal of the transmitting end, such as channel parameters, channel quality, or signal phase caused by the transmitting end or the receiving end device. Rotate, etc.
  • the sounding reference signal is a type of reference signal and can be used for uplink channel quality measurement, downlink channel quality measurement, and uplink beam management.
  • the present application provides a communication method and apparatus for determining reserved time slots and reserved symbols to reduce the probability of collision between SRS and uplink data.
  • a communication method which can be performed by a terminal device.
  • the method includes: obtaining, by the terminal device, reference information, the reference information, and a subcarrier spacing of the terminal device or a system parameter of the terminal device, indicating a reserved time slot, and a reserved symbol in the reserved time slot;
  • the reserved symbol is used to transmit a sounding reference signal and/or a physical uplink control channel, or the reserved symbol is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel; the terminal device according to the reference information and Determining the reserved time slot and the reserved symbol in the reserved time slot by using a subcarrier spacing of the terminal device or a system parameter of the terminal device.
  • a communication method which can be performed by a network device, such as a base station.
  • the method includes: the network device obtaining reference information, the reference information, and a subcarrier spacing of the terminal device or a system parameter of the terminal device indicating a reserved time slot, and a reserved symbol in the reserved time slot;
  • the reserved symbol is used to transmit the sounding reference signal and/or the physical uplink control channel, or the reserved symbol is not used to transmit the physical uplink shared channel and/or the physical downlink shared channel; the network device according to the reference information and the Determining the reserved time slot and the reserved symbol in the reserved time slot by a subcarrier spacing of the terminal device or a system parameter of the terminal device.
  • the terminal device may determine the reserved time slot according to the reference information and the reference information, and the subcarrier spacing of the terminal device or the system parameter of the terminal device, and reserve symbols in the reserved time slot, such as reserved symbols.
  • the terminal device may transmit the sounding reference signal and/or the physical uplink control channel, and the terminal device may not send the uplink data in the reserved symbol to reduce collision between the sounding reference signal and the uplink data, thereby improving system performance.
  • the reference information includes at least one of a length of a reference time unit, a reference system parameter, and a reference subcarrier spacing.
  • the system parameter is, for example, numerology.
  • the reference information is to define a common information, and each terminal device and network device in the cell can determine the reserved time slot and the reserved symbol according to the reference information, thereby avoiding different understandings of the length of the time unit by different terminal devices.
  • the reserved time slots determined by different terminal devices cannot be aligned, causing collisions between the SRS and the PUSCH. With the solution provided by the embodiment of the present application, it is apparent that the probability of collision between the SRS and the PUSCH can be reduced.
  • the terminal device obtains the length of the reference time unit or the reference system parameter, including: the terminal device receives first notification signaling from a network device, and the terminal device receives the first notification
  • the signaling obtains the length of the reference time unit; the length of the reference time unit is the length of the maximum time scheduling unit supported by the communication system in which the terminal device is located; or the terminal device receives the second notification from the network device
  • the terminal device obtains the reference system parameter from the second notification signaling;
  • the index of the reference system parameter is a minimum index of system parameters supported by the communication system; or, the terminal device is configured according to a frequency band in which the carrier where the terminal device is located, and a mapping relationship between the frequency band and the subcarrier interval, determining a reference subcarrier interval, and determining a length of the minimum time scheduling unit of the reference subcarrier interval as the reference time unit
  • the length of the terminal device according to the frequency band, frequency band, and sub-carrier where the carrier device is located Mapping relationship between wave interval, and the mapping
  • the network device sends the first notification signaling to the terminal device, where the first notification signaling is used to indicate the length of the reference time unit; the length of the reference time unit is where the terminal device is located The length of the maximum time scheduling unit supported by the communication system; or, the network device sends a second notification signaling to the terminal device, where the second notification signaling is used to indicate the reference system parameter;
  • the index of the system parameters is the smallest index of the system parameters supported by the communication system.
  • the terminal device may obtain the reference information according to the first notification signaling sent by the network device, and the terminal device only needs to receive the notification signaling, and does not need excessive work, thereby helping to reduce the work of the terminal device. Consumption.
  • the terminal device may determine the reference information by itself, for example, determining the reference information according to the frequency band in which the carrier where the terminal device is located and other information, without requiring network device notification, reducing signaling interaction, and saving transmission resources.
  • the terminal device further receives an ith indication information from the network device, where the ith indication information includes at least one bit; the ith indication information belongs to a signaling group, and the signaling The group includes at least one indication information, i is an index indicating the information in the signaling group, and the indication information included in the signaling group is used to indicate the reserved time slot, and the reserved symbol in the reserved time slot And determining, by the terminal device, the reserved time slot according to the reference information and a subcarrier spacing of the terminal device or a system parameter of the terminal device, and the pre-reserved in the reserved time slot a leaving symbol, comprising: the terminal device according to the ith indication information, the reference information, the number of indication information included by the signaling group, and a subcarrier spacing of the terminal device or the terminal device a system parameter determining the reserved time slot and the reserved symbol in the reserved time slot.
  • the network device further sends an ith indication information to the terminal device, where the ith indication information includes at least one bit; the ith indication information belongs to a signaling group, and the signaling group includes At least one indication information, i is an index indicating the information in the signaling group, and the signaling group includes indication information for indicating the reserved time slot and the reserved symbol in the reserved time slot.
  • the reserved time slot and the reserved symbol can be directly determined by the indication information included in the signaling group, and the method is relatively simple and easy.
  • the terminal device Determining, by the system parameter of the device, the reserved time slot, and the reserved symbol in the reserved time slot, including:
  • the i-th indication information includes the value of the at least one bit belonging to the first value range, determining that the S i ⁇ f/ ⁇ f R symbols from the last symbol of the time slot calculated according to the following formula is The reserved symbol:
  • s i is the value of at least one bit included in the ith indication information
  • ⁇ f is the subcarrier spacing of the terminal device
  • ⁇ f R is the reference subcarrier spacing corresponding to the reference time unit.
  • mod is a modulo operation
  • M is the number of indication information included in the signaling group.
  • the terminal device Determining, by the system parameter of the device, the reserved time slot, and the reserved symbol in the reserved time slot, including:
  • the i-th indication information includes the value of the at least one bit belonging to the first value range, determining that the forward S i ⁇ ⁇ / ⁇ R symbols from the last symbol of the time slot calculated according to the following formula is The reserved symbol:
  • s i is the value of the at least one bit
  • is the system parameter of the terminal device
  • ⁇ R is the system transmission corresponding to the reference time unit
  • mod is the modulo operation
  • M is the The number of indication information included in the signaling group.
  • the at least one bit is a bitmap; the terminal device according to the ith indication information, the reference information, the number of indication information included by the signaling group, and the terminal device
  • determining that the k-th bit of the at least one bit included in the i-th indication information is 1, the symbol numbered k ⁇ f/ ⁇ f R (k+1) ⁇ f/ ⁇ f R ⁇ 1 Reserved for the symbol; and/or,
  • s i is the bitmap
  • ⁇ f is the subcarrier spacing of the terminal device
  • ⁇ f R is the reference subcarrier spacing corresponding to the reference time unit
  • is the system parameter of the terminal device
  • ⁇ R is the system transmission corresponding to the reference time unit
  • mod represents the modulo operation
  • M is the number of indication information included in the signaling group.
  • a communication method which can be performed by a terminal device.
  • the method includes: the terminal device receives third notification signaling from the network device; the terminal device determines a reserved time slot according to the third notification signaling, where the reserved time slot is used for transmitting the sounding reference signal and/or the physical The uplink control channel, or the reserved time slot is not used to transmit the physical uplink shared channel and/or the physical downlink shared channel; the third notification signaling includes at least one of the following configurations: the transmission period of the sounding reference signal is 4 The time slot of the sounding reference signal is 8 time slots; the transmission period of the sounding reference signal is 640 time slots; the transmission period of the sounding reference signal is 1280 time slots; the transmission period of the sounding reference signal is a reserved number Time slot.
  • a communication method which can be performed by a network device, such as a base station.
  • the method includes: the network device generates a third notification signaling, where the third notification signaling is used to indicate a reserved time slot, where the reserved time slot is used to transmit a sounding reference signal and/or a physical uplink control channel, or The reserved time slot is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel, and the network device sends the third notification signaling to the terminal device;
  • the third notification signaling includes at least one configuration as follows
  • the transmission period of the sounding reference signal is 4 time slots; the transmission period of the sounding reference signal is 8 time slots; the transmission period of the sounding reference signal is 640 time slots; the transmission period of the sounding reference signal is 1280 time slots;
  • the transmission period of the reference signal is a reserved number of time slots.
  • the third notification signaling includes at least one of the following configurations:
  • the first configuration index of the sounding reference signal is 637-640, the transmission period of the sounding reference signal is 4 time slots, and the transmission offset of the sounding reference signal is the difference between the first configuration index and 637;
  • the second configuration index of the sounding reference signal is 641-648, the transmission period of the sounding reference signal is 8 time slots, and the transmission offset of the sounding reference signal is the difference between the second configuration index and 641;
  • the third configuration index of the sounding reference signal is 649 to 1288, the transmission period of the sounding reference signal is 640 time slots, and the transmission offset of the sounding reference signal is the difference between the third configuration index and 650;
  • the fourth configuration index of the sounding reference signal is 1289 to 2568, the transmission period of the sounding reference signal is 1280 time slots, and the transmission offset of the sounding reference signal is the difference between the third configuration index and 1289;
  • the fifth configuration index of the sounding reference signal is 2569 to 4095, the transmission period of the sounding reference signal is a reserved number of time slots, and the transmission offset of the sounding reference signal is the difference between the third configuration index and the reserved quantity. .
  • the collision of the SRS of the 15 KHz terminal device and the PUSCH transmission of the 30/60 KHz terminal device can be effectively avoided by the configuration of the third notification signaling.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a processor.
  • the terminal device may further include a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a processor.
  • the network device may further include a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the third or third aspect above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device can include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any one of the possible aspects of the fourth aspect or the fourth aspect described above.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a processing module.
  • the terminal device may further include a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a processing module.
  • the network device may further include a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the third aspect or the third aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible designs of the fourth aspect or the fourth aspect described above.
  • a communication device may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible aspects of the first aspect or the first aspect described above.
  • a communication device may be a network device in the above method design, or a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the network device in any of the possible aspects of the second aspect or the second aspect above.
  • a communication device may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible aspects of the third aspect or the third aspect above.
  • a communication device may be a network device in the above method design, or a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the network device in any one of the possible aspects of the fourth aspect or the fourth aspect described above.
  • a communication system comprising a network device and a terminal device.
  • the terminal device is configured to obtain reference information, the reference information, and a subcarrier spacing of the terminal device or a system parameter of the terminal device, indicating a reserved time slot, and a reserved symbol in the reserved time slot.
  • the reserved symbol is used to transmit a sounding reference signal and/or a physical uplink control channel, or the reserved symbol is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel; according to the reference information and the terminal a subcarrier spacing of the device or a system parameter of the terminal device, determining the reserved time slot, and the reserved symbol in the reserved time slot; and the network device, configured to obtain reference information, the reference information And a subcarrier spacing of the terminal device or a system parameter of the terminal device indicating a reserved time slot, and a reserved symbol in the reserved time slot; the reserved symbol is used for transmitting a sounding reference signal and/or a physical uplink a control channel, or the reserved symbol is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel; according to the reference information and a sub-device
  • the carrier interval or the system parameter of the terminal device determines the reserved time slot and the reserved symbol in the reserved time slot.
  • a communication system comprising a network device and a terminal device.
  • the terminal device is configured to receive third notification signaling from the network device, and determine, according to the third notification signaling, a reserved time slot, where the reserved time slot is used to transmit the sounding reference signal and/or the physical uplink control channel. Or the reserved time slot is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel; the network device is configured to generate third notification signaling, where the third notification signaling is used to indicate a reserved time slot.
  • the reserved time slot is used to transmit a sounding reference signal and/or a physical uplink control channel, or the reserved time slot is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel; and the third device is sent to the terminal device.
  • Notification signaling includes at least one configuration of: a transmission period of the sounding reference signal is 4 time slots; a transmission period of the sounding reference signal is 8 time slots; and transmission of the sounding reference signal The period is 640 slots; the transmission period of the sounding reference signal is 1280 slots; the transmission period of the sounding reference signal is a reserved number of time slots.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any one of the first aspect or the first aspect of the first aspect The method described in the above.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the possible aspects of the second aspect or the second aspect described above The method described in the above.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any one of the third aspect or the third aspect described above The method described in the design.
  • a twenty-second aspect a computer storage medium is provided, wherein the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform any one of the fourth aspect or the fourth aspect described above The method described in the design.
  • a twenty-third aspect a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect described above The method described in the design.
  • a twenty-fourth aspect a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any of the second aspect or the second aspect described above The method described in the design.
  • a twenty-fifth aspect a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any one of the third aspect or the third aspect described above The method described in the design.
  • a twenty-sixth aspect a computer program product comprising instructions, wherein instructions stored in a computer program product, when executed on a computer, cause the computer to perform any one of the fourth aspect or the fourth aspect described above The method described in the design.
  • the terminal device may determine the reserved time slot and the reserved symbol in the reserved time slot.
  • the reserved symbol may be used to transmit the sounding reference signal and/or the physical uplink control channel, and the terminal device is reserved.
  • the uplink data may not be transmitted in the symbol to reduce the collision between the sounding reference signal and the uplink data, thereby improving system performance.
  • FIG. 1A is a schematic diagram of a subframe and a slot, and a Mini-slot when the subcarrier spacing is 15 kHz;
  • FIG. 1B is a schematic diagram of a slot and a Mini-slot when the subcarrier spacing is 30 kHz;
  • FIG. 1C is a schematic diagram of a slot and a Mini-slot when the subcarrier spacing is 60 kHz;
  • 2 is a schematic diagram of time slots for transmitting SRS as understood by terminal devices with different subcarrier spacings
  • FIG. 3 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of determining, in the embodiment of the present application, a symbol in a middle of a time slot as a reserved symbol;
  • FIG. 6 is a schematic diagram of reserved slot alignment determined by terminal devices with different subcarrier spacings according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of transmission of two different subcarrier spacings with frequency domain guard intervals in the frequency domain;
  • FIG. 8 is a schematic diagram of indicating a reserved slot and a reserved symbol by using a signaling group according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of indicating a reserved slot and a reserved symbol in the form of a bitmap by using a signaling group according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of indicating a reserved time slot and a reserved symbol by using a signaling group according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of another communication method according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • 16A-16B are schematic structural diagrams of a communication apparatus according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of another communication method according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of another communication method according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 25 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 26 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • Terminal devices Also referred to as terminals, including devices that provide voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a user equipment (UE), a wireless terminal device, a mobile terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote station.
  • Remote station access point (AP), remote terminal, access terminal, user terminal, user agent, or user equipment (user) Device) and so on.
  • AP access point
  • remote terminal access terminal, user terminal, user agent, or user equipment (user) Device
  • a mobile phone or "cellular” phone
  • a computer with a mobile terminal a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA Personal Digital Assistant
  • smart watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more cells.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-A), or
  • NodeB or eNB or e-NodeB, evolutional Node B in a long term evolution (LTE) system or an evolved LTE system (LTE-A), or
  • LTE long term evolution
  • LTE-A evolved LTE system
  • the next generation node B (gNB) in the 5G NR system may be included in the embodiment of the present application.
  • the transmission of data within one carrier uses a subcarrier spacing of 15 kHz.
  • data transmission within one carrier can use multiple subcarrier spacings, and different subcarrier spacings correspond to different system parameters.
  • the numerology includes a plurality of configurations, the configuration of the numerology is represented by ⁇ , and the configuration of the numerology may include a subcarrier spacing configuration and a cyclic prefix (CP) configuration.
  • CP cyclic prefix
  • ⁇ f is the subcarrier spacing of the terminal device.
  • the scheduling unit of data is one subframe, which includes two slots, and each slot includes seven orthogonal frequency division multiplexing (OFDM) symbols.
  • the scheduling unit of data is defined as a time slot of 14 normal cyclic prefix (NCP) OFDM symbols, or a time slot of 12 extended cyclic prefix (ECP) OFDM symbols, and 1
  • NCP normal cyclic prefix
  • ECP extended cyclic prefix
  • the sub-frames correspond to an absolute time length of 1 ms.
  • symbol refers to an OFDM symbol.
  • slot configuration (slot_configuration) under different numerology configurations, that is, how many symbols are included in one slot, how many slots are included in one frame, and one subframe. An indication of how many time slots are included.
  • one slot includes 14 symbols
  • one frame includes 10 slots
  • one subframe includes 1 slot.
  • the slot_configuration in the configuration of different numerology that is, how many symbols are included in one slot, how many slots are included in one frame, and how many slots are included in one subframe.
  • one slot includes 12 symbols
  • one frame includes 40 slots
  • one subframe includes 4 slots.
  • the following time units are provided, including:
  • Subframe the length of one subframe is 1 ms, and includes 14 OFDM symbols under the numerology of 15 kHz subcarrier spacing. Within one subframe, the symbol boundaries of various numerologies for subcarrier spacings of 15 kHz and above are aligned.
  • symbol in the following refers to an OFDM symbol unless otherwise specified.
  • ⁇ Slot is the length of time of a possible scheduling unit.
  • One slot includes the y symbols under the currently used numerology.
  • Mini-slot which is the minimum length of time for the scheduling unit.
  • the 1 MIMO symbol included in the Mini-slot may be smaller than the y symbols under the currently used numerology.
  • FIG. 1A is a schematic diagram of a subframe and a slot, and a Mini-slot when the subcarrier spacing is 15 kHz
  • FIG. 1B is a schematic diagram of a slot and a Mini-slot when the subcarrier spacing is 30 kHz
  • 1C is an illustration of a slot and a Mini-slot when the subcarrier spacing is 60 kHz.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • NR system 5G NR system
  • next generation mobile communication system or other similar communication system.
  • the base station may determine a subframe number used by the terminal device to transmit the SRS by using a cell-level signaling SRS subframe configuration (srs-SubframeConfig) and user-level signaling I SRS .
  • srs-SubframeConfig cell-level signaling SRS subframe configuration
  • I SRS user-level signaling I SRS .
  • the last symbol in the general configuration subframe the last two symbols for the special subframe in the time division duplexing (TDD) mode
  • TDD time division duplexing
  • the cell-level signaling srs-subframeConfig may be used to indicate that the subframe number of the SRS transmission resource in the cell is determined, that is, the terminal device in the cell can learn, by using srs-SubframeConfig, which subframes the SRS can be transmitted in the cell.
  • the srs-SubframeConfig can be configured with an SRS subframe configuration period T SFC and a transmission offset ⁇ SFC, etc., and the configuration units are all subframes. Specific, satisfied The subframe can be used to transmit an SRS, where n s is the slot number within a frame.
  • the configuration index is 0, the T SFC is 5, and the ⁇ SFC is ⁇ 1 ⁇ , indicating that the first subframe in every 5 subframes can be used to send SRS, then one frame.
  • the subframes that can be used to transmit the SRS are subframe 1 and subframe 6.
  • the terminal device in order to avoid the SRS transmission of the terminal device 1 and the physical uplink shared channel (PUSCH) transmission collision of the terminal device 2, the terminal device can learn all the terminals in the cell through the cell-level signaling srs-SubframeConfig.
  • the device may transmit the subframe number of the SRS, and then all the terminal devices in the cell do not transmit the PUSCH in the last symbol in the subframes to avoid collision between the SRS and the PUSCH.
  • the user level signaling I SRS can be used to indicate the subframe number used by one terminal device to transmit the SRS, which of course is also limited by the configuration of the srs-SubframeConfig.
  • the I SRS configuration includes an SRS transmission period T SRS and a subframe offset T offset .
  • the user-level signaling I SRS configuration is shown in Table 6.
  • n f is the frame number and mod is the modulo operation.
  • the value of the k SRS is shown in Table 7 when the number of uplink pilot timeslots (UpPTSs) in the TDD special subframe is less than or equal to 2.
  • the NR system supports a plurality of numerologies.
  • the slot configuration srs-SubframeConfig of the cell-level signaling of the SRS still uses a subframe (1 ms) as a configuration unit, for example, a terminal device that uses a sub-carrier spacing of 240 kHz is used.
  • the SRS transmission opportunity will occur once every 16 time slots, making the channel information acquisition too slow.
  • the terminal devices are transmitted at different sub-carrier intervals.
  • the understanding of the duration of one slot is inconsistent, and the SRS and PUSCH transmission collision problems of different terminal devices may occur. Referring to FIG.
  • cell level signaling indicates that slots 2, 3, 6, and 7 in the cell are used for transmitting SRS, but
  • the positions of the time slots 2, 3, 6, and 7 that are understood are different, for example, the time slot 2 understood by the terminal device of 15 kHz, and actually the terminal device with 30 kHz.
  • the time slots 4 and 5 are understood to have the same time.
  • the 30 KHz terminal device may transmit the PUSCH in the time slots 4 and 5 understood by the 30 KHz terminal device, and the 15 KHz terminal device may be in the time slot 2 understood by the 15 KHz terminal device.
  • the technical solution of the embodiment of the present application is provided, and the probability of collision between the SRS and the PUSCH can be reduced.
  • FIG. 3 includes a network device and a terminal device, where the network device can allocate an uplink control channel resource to the terminal device, so that the terminal device can send the response information to the network device by using the allocated uplink control channel resource.
  • the network device in FIG. 3 is, for example, an access network (AN) device, such as a base station.
  • the core network device is not shown in FIG. 3 because the solution of the embodiment of the present application mainly relates to an access network device and a terminal device.
  • the access network device is, for example, a gNB in the NR system.
  • a plurality of terminal devices may actually be connected to the network device.
  • FIG. 3 is an example of a terminal device.
  • an embodiment of the present application provides a communication method.
  • the application scenario shown in FIG. 3 is applied to the example. The flow of this method is described below.
  • the terminal device obtains reference information.
  • the reference information and a subcarrier spacing of the terminal device or a system parameter of the terminal device indicate a reserved time slot, and a reserved symbol in the reserved time slot; the reserved symbol is used to transmit a sounding reference a signal and/or a physical uplink control channel, or the reserved symbol is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel;
  • the terminal device determines, according to reference information, a subcarrier spacing of the terminal device, or a system parameter of the terminal device, the reserved time slot, and the reserved symbol in the reserved time slot.
  • the terminal device sends a sounding reference signal and/or a physical uplink control channel on the reserved symbol, where the network device receives the sounding reference signal and/or the physical uplink control channel on the reserved symbol, or And the terminal device sends other information than the physical uplink shared channel on the reserved symbol, where the network device receives other information except the physical uplink shared channel on the reserved symbol, or The terminal device receives other information than the physical downlink shared channel on the reserved symbol, and the network device sends other information than the physical downlink shared channel on the reserved symbol.
  • S43 is an optional step.
  • the reserved symbol is not used to transmit the physical uplink shared channel and/or the physical downlink shared channel, and the reserved symbol is used for transmitting the sounding reference signal and/or the physical uplink control channel, which may be considered as a corresponding solution, for example, a reserved symbol.
  • a scheme for using the reserved symbols for transmitting the sounding reference signal and/or the physical uplink control channel may be included.
  • the reserved time slot and the reserved symbol may be at the cell level, for example, the reserved time slot and the reserved symbol in the cell where the terminal device is located, that is, the terminal in the cell where the terminal device is located.
  • the device uses the reserved symbol to transmit the sounding reference signal and/or the physical uplink control channel, or the terminal device in the cell where the terminal device is located does not use the reserved symbol to transmit the physical uplink shared channel and/or the physical downlink shared channel; or
  • the reserved time slot and the reserved symbol may also be user-level, that is, the terminal device transmits the sounding reference signal and/or the physical uplink control channel by using the reserved symbol, or the terminal device does not use the reserved symbol to transmit the physical uplink shared channel and / or physical downlink shared channel.
  • the reference information may be provided, and the reference information may include a length of the reference time unit, a reference system parameter, and Referring to at least one of the subcarrier spacings, the reference information is shared by one cell, and all terminal devices and network devices in the cell can determine the duration of the time slot by using the reference information, so that the time can be reduced. The probability that the duration of the gap is inconsistent and causes the SRS and PUSCH to collide.
  • srs-SlotConfig is configured as configuration 8 in Table 8. As shown in FIG. 5, the 30/60 kHz terminal device can learn the reserved time slot by using the judgment criterion to be introduced later in this paper.
  • the 15 kHz terminal device can learn the reserved time slot through some judgment criteria, it can be seen that
  • the reserved symbol in the reserved time slot determined by the terminal device of 15 KHz includes the symbol of the middle position of the time slot 1, and the symbols in the middle of the time slot are generally With good channel estimation performance, if the terminal device determines its reserved symbol, the terminal device will no longer transmit PUSCH or demodulation reference signal (DMRS) on these symbols, which will cause performance loss.
  • DMRS demodulation reference signal
  • the symbols that can be used to transmit the SRS in each slot may be inconsistent, resulting in a complicated symbol level configuration.
  • the configuration of the reference information is more important.
  • the following describes how several terminal devices obtain reference information.
  • the network device may send the first notification signaling to the terminal device, where the first notification signaling is used to indicate the length of the reference time unit, for example, indicating the length of T U , or is understood to indicate T U , and the terminal device receives the first from the network device.
  • the terminal device can determine the length of T U according to the first notification signaling.
  • T U is the length of the maximum time scheduling unit supported by the communication system in which the terminal device is located, or T U is the length of the maximum time scheduling unit supported by the carrier in which the working frequency band of the terminal device is supported.
  • the length of the time scheduling unit supported by the communication system includes a length of 1 ms supported by the subcarrier spacing of 15 kHz, and The length of the time scheduling unit supported by the subcarrier spacing of 30 KHz is 0.5 ms, and the length of the maximum time scheduling unit supported by the communication system is 1 ms.
  • the length of the maximum time scheduling unit supported by the communication system in which the terminal device is located may also be defined by the network device, which is not limited in this embodiment.
  • the carrier of the working frequency band of the terminal device supports a subcarrier spacing of 15 kHz and a subcarrier spacing of 30 kHz
  • the length of the time scheduling unit supported by the carrier includes a length of 1 ms supported by the subcarrier spacing of 15 kHz.
  • the length of the time scheduling unit supported by the subcarrier spacing of 30 KHz is 0.5 ms
  • the length of the maximum time scheduling unit supported by the carrier is 1 ms.
  • the length of the maximum time scheduling unit supported by the carrier may also be defined by the network device, which is not limited in this embodiment.
  • the unit of T U is milliseconds (ms), and the length of T U depends on, but is not limited to, the set ⁇ 1ms, 0.5ms, 0.25ms, 0.125ms, 0.0625ms, 0.0375ms ⁇ .
  • the network device may send the second notification signaling to the terminal device, where the second notification signaling may indicate the configuration of the reference numerology (here denoted by ⁇ R , specifically, ⁇ R may represent an index of the reference numerology), and the terminal device Receiving the second notification signaling from the network device, the terminal device may determine ⁇ R according to the second notification signaling.
  • the value of ⁇ R belongs to the set ⁇ 0, 1, 2, 3, 4, 5 ⁇ .
  • the ⁇ R indicated by the second notification signaling is the smallest index of the numerology supported by the communication system in which the terminal device is located, or
  • the ⁇ R indicated by the second notification signaling is the smallest index of the numerology supported by the carrier in which the working frequency band of the terminal device is located.
  • the communication system in which the terminal device is located supports a subcarrier spacing of 15 kHz and a subcarrier spacing of 30 kHz.
  • the index of the numerology corresponding to the 15 kHz subcarrier spacing is 0, and the subcarrier spacing of 30 kHz corresponds to the numerology.
  • the minimum index of the numerology supported by the communication system is 0.
  • the minimum index of the numerology supported by the communication system may also be defined by the network device, which is not limited in this embodiment.
  • the carrier in which the working frequency band of the terminal device is located supports a subcarrier spacing of 15 kHz and a subcarrier spacing of 30 kHz.
  • the index of the numerology corresponding to the 15 kHz subcarrier spacing is 0, and the subcarrier spacing of 30 kHz corresponds to
  • the index of the numerology is 1, and the minimum index of the numerology supported by the carrier is 0.
  • the minimum index of the numerology supported by the carrier may also be defined by the network device, which is not limited in this embodiment.
  • the network device may send the fourth notification signaling to the terminal device, where the fourth notification signaling may indicate the reference subcarrier interval, the terminal device receives the fourth notification signaling from the network device, and the terminal device may Determine the reference subcarrier spacing.
  • the subcarrier spacing indicated by the fourth notification signaling is the minimum subcarrier spacing supported by the communication system in which the terminal device is located. For example, if the communication system in which the terminal device is located supports a subcarrier spacing of 15 kHz and a subcarrier spacing of 30 kHz, the minimum subcarrier spacing supported by the communication system is 15 kHz.
  • the minimum sub-carrier spacing supported by the communication system may also be defined by the network device, which is not limited in this embodiment.
  • the carrier where the working frequency band of the terminal device is located supports a subcarrier spacing of 15 kHz and a subcarrier spacing of 30 kHz, and the minimum subcarrier spacing supported by the carrier is 15 kHz.
  • the minimum sub-carrier spacing supported by the carrier may also be defined by the network device, which is not limited in this embodiment.
  • the subcarrier spacing supported by the communication system in which the terminal device is located is not the same as the subcarrier spacing supported by the carrier where the working frequency band of the terminal device is located.
  • the frequency band of the carrier where the working frequency band of the terminal device belongs is 1 to 6 GHz, according to Table 2, the subcarrier spacing supported by the carrier includes 15/30/60 KHz, and the communication systems operating in the carrier may have their own The frequency band, and different communication systems do not necessarily support 15/30/60KHz. For example, some communication systems support 15KHz, and some communication systems support 30/60KHz. Therefore, the communication system supported by the terminal device supports The minimum subcarrier spacing may be different from the minimum subcarrier spacing supported by the carrier where the working frequency band of the terminal device is located.
  • the frequency band of the carrier in which the working frequency band of the terminal device belongs is 1 to 6 GHz
  • the minimum subcarrier spacing supported by the carrier is 15 kHz
  • the subcarrier spacing supported by a communication system operating on the carrier is 30, for example. /60KHz
  • the minimum subcarrier spacing supported by the communication system is 30KHz.
  • the terminal device determines the length of T U according to the frequency recessivity of the carrier where the working frequency band of the terminal device is located.
  • the minimum subcarrier spacing is 15 kHz
  • the length of T U is 1 ms
  • the minimum subcarrier spacing is 60 kHz
  • the length of T U is 0.25 ms.
  • the time scheduling unit corresponding to the minimum subcarrier spacing supported by the carrier in which the working frequency band of the terminal device is located is T U .
  • the length of the time scheduling unit corresponding to the subcarrier spacing of 15 kHz is 1 ms
  • the length of the time scheduling unit corresponding to the subcarrier spacing of 30 kHz is 0.5 ms.
  • the terminal device implicitly determines the value of ⁇ R according to the mapping relationship between the frequency band in which the carrier frequency band of the terminal device is located, the frequency band and the subcarrier spacing, and the mapping relationship between the subcarrier spacing and the system parameters. .
  • the mapping relationship between the frequency band and the subcarrier spacing shown in Table 2 for the frequency band less than 6 GHz, the minimum subcarrier spacing is 15 kHz, and then according to the mapping relationship between the subcarrier spacing and the system parameters shown in Table 3.
  • ⁇ R 0
  • the minimum subcarrier spacing is 60 kHz
  • the premise here is that the index of the numerology corresponding to the minimum subcarrier spacing supported by the carrier in which the working frequency band of the terminal device is located is ⁇ R .
  • the terminal device implicitly determines the reference subcarrier spacing according to the frequency band in which the carrier where the working frequency band of the terminal device is located, and the mapping relationship between the frequency band and the subcarrier spacing.
  • the minimum subcarrier spacing is 15 kHz for the frequency band less than 6 GHz
  • the minimum subcarrier spacing is 60 kHz for the frequency band of 24 to 52.6 GHz.
  • the premise here is that the minimum subcarrier spacing supported by the carrier in which the working frequency band of the terminal device is determined is the reference subcarrier spacing.
  • the configuration period T SC of the SRS and the transmission of the SRS are also used. Offset ⁇ SC . Therefore, before S42, the network device can send cell level signaling, because the NR system is configured with time slots, so the cell level signaling can be called srs-SlotConfig.
  • the configuration of srs-SlotConfig is as shown in Table 8. In the embodiment of the present application, the configuration of srs-SlotConfig includes at least one of Table 8.
  • the configuration period T SC of the corresponding SRS is 10 T U
  • the transmission offset ⁇ SC of the SRS is ⁇ 0 ⁇ , indicating every 10 T the first U T U 0 for transmitting the SRS, or to be understood that each of the 10 T U T U of 0 is reserved T U, T U as if the slot, each of the 10 T U The 0th T U is the reserved time slot.
  • a slot number that satisfies the following two conditions is determined:
  • the slot number that satisfies both of the above conditions The corresponding time slot is a reserved time slot.
  • the definition of the same parameter is the same, so if there are the same parameters in the following text, it will not be explained too much.
  • the terminal device of 15 kHz can determine that the reserved time slot is time slot 2, 3, 7, 8 and 30 KHz, and the terminal device can determine that the reserved time slot is the time slot.
  • the terminal equipment of 5, 7, 15, 17, 60 KHz can determine that the reserved time slots are time slots 11, 15, 31, 35.
  • the end time of the time slot 2 determined by the terminal device of 15 KHz, the end time of the time slot 5 determined by the terminal device of 30 KHz, and the end time of the time slot 11 determined by the terminal device of 60 KHz are the same, that is, different numerology
  • the reserved time slots determined by the terminal device are aligned, thereby preventing different terminal devices from transmitting SRS and PUSCH respectively at the same time, which reduces the probability of collision between SRS and PUSCH.
  • the terminal device determines the reserved time slot by using the length of the T U , that is, the reference information includes the length of the T U.
  • the terminal device may also determine the reserved time slot by using the configuration of the numerology. That is, the reference information includes reference to numerology.
  • the terminal device obtains the configuration of the reference numerology through the signaling sent by the network device, denoted as ⁇ R , and the value of ⁇ R belongs to the set ⁇ 0, 1, 2, 3, 4, 5 ⁇ , and the terminal device can determine the T SC accordingly.
  • the length of the configuration unit T U of ⁇ SC for example, the length of T U is 1/2 ⁇ ms.
  • a slot number that satisfies the following two conditions is determined:
  • This example can also be referred to FIG. It can be seen that, regardless of which of the above examples is used to determine the reserved time slot, the reserved time slots determined by the terminal devices of different numerologies are aligned, thereby preventing different terminal devices from respectively transmitting SRS and PUSCH at the same time, reducing The probability of collision between SRS and PUSCH.
  • all the reserved time slots are determined, and one reserved time slot may include multiple symbols. If the collision probability of the SRS and the PUSCH is to be reduced, in addition to determining the reserved time slot, it is also determined to be reserved. Which symbols are used to transmit the SRS in the time slot.
  • the terminal equipment can transmit on a plurality of consecutive symbols in one time slot, and the number of symbols that can be reserved for SRS transmission in one reserved time slot should also be configurable.
  • the symbols reserved for SRS transmission are preferably in the last few symbols.
  • one carrier of the NR system supports multiple different subcarrier spacing data transmissions, and the subcarrier spacing used by the SRS transmission is consistent with the subcarrier spacing of the uplink data transmission, there may be multiple subcarrier spacing SRS transmissions within one NR carrier. .
  • SRS transmission of 15KHz terminal equipment and SRS transmission of 30KHz terminal equipment cannot use frequency division multiplexing (FDM).
  • FDM frequency division multiplexing
  • the multiplexing method because the transmission of two different subcarrier intervals requires a frequency domain guard interval in the frequency domain, refer to FIG. 7, which may cause the network device to fail to obtain channel information of certain frequency bands, and at the same time
  • the size of the bandwidth of the SRS transmission is limited. Therefore, different subcarrier spacing SRS transmissions can only use time division multiplexing (TDM) multiplexing. In the time slot in which the SRS reserved resources exist, it is necessary to indicate which symbols are reserved for SRS transmission.
  • TDM time division multiplexing
  • the symbol level of the SRS reserved resource indicates that it is necessary to know the number of symbols reserved for SRS transmission in each slot, the number of symbols, and the subcarrier spacing of symbols.
  • the first mode is that the network device sends the subcarrier spacing corresponding to the numerology or symbol corresponding to the symbol to the terminal device, and the terminal device receives the subcarrier spacing corresponding to the numerology or symbol corresponding to the symbol. And, the network device sends the number of reserved symbols included in the reserved time slot to the terminal device, and the terminal device receives the number of reserved symbols included in each reserved time slot. Wherein, if the reserved time slots include multiple, the network device may send the number of reserved symbols included in each of the reserved time slots to the terminal device. The terminal device may determine the location of the reserved symbol included in the reserved slot according to the subcarrier spacing corresponding to the symbol corresponding to the numerology or the symbol, and the number of reserved symbols included in each reserved slot.
  • the subcarrier spacing corresponding to the numerology or the symbol corresponding to the symbol means that the number of symbols to be indicated by the network device needs to be indicated under a uniform numerology or subcarrier spacing, otherwise the time unit corresponding to the different numerology or subcarrier spacing is Different lengths may result in inconsistent understanding of different terminal devices.
  • the network device sends cell level signaling S ⁇ /S SCS and S N .
  • S ⁇ /S SCS means S ⁇ or S SCS
  • the network device either sends S ⁇ or sends S SCS .
  • S ⁇ is used to indicate the numerology corresponding to the symbol
  • S SCS is used to indicate the subcarrier spacing corresponding to the symbol
  • S N indicates the number of reserved symbols in each reserved time slot.
  • the network device can send S N after sending S ⁇ /S SCS first, or the network device can send S ⁇ /S SCS after sending S N first, or the network device can send S ⁇ /S SCS and S N at the same time.
  • the explicit indication method of the S ⁇ /S SCS is as shown in Table 9 to Table 11.
  • the indication method of S ⁇ /S SCS includes at least one of the plurality of indication methods shown in Tables 9 to 11 .
  • the value of S ⁇ is 00, indicating that the configuration of numerology is 2, and the value of S SCS is 00, indicating that the subcarrier spacing is 60 kHz.
  • the value of S ⁇ /S SCS can be used to indicate the configuration of the numerology or the subcarrier spacing, which is more flexible.
  • Implementation 2 The network device sends the number of reserved symbols included in each reserved time slot to the terminal device, and the terminal device receives the number of reserved symbols included in each reserved time slot.
  • the terminal device may determine the location of the reserved symbol included in the reserved slot according to the reference numerology or the reference subcarrier interval or the length of the reference time unit, and the number of reserved symbols included in each reserved slot.
  • the terminal device may obtain the reference numerology or the reference subcarrier interval or the length of the reference time unit, which has been introduced as before.
  • Implementation 2 includes different implementation processes, which are described below.
  • the network device sends S N to the terminal device, and S N indicates the number of reserved symbols in each reserved time slot.
  • the numerology corresponding to the symbol is a reference to the numerology, for example, the smallest numerology currently supported by the communication system in which the terminal device is located, that is, the minimum index of the numerology, or the subcarrier spacing corresponding to the symbol is the reference subcarrier spacing, for example, the terminal device.
  • the network device sends S N to the terminal device, and S N indicates the number of reserved symbols in each reserved time slot.
  • the numerology corresponding to the symbol is a reference numerology, for example, the smallest numerology currently supported by the carrier in which the working frequency band of the terminal device is supported, that is, the minimum index of the numerology, or the subcarrier spacing corresponding to the symbol is the reference subcarrier spacing, for example, The minimum subcarrier spacing currently supported by the carrier where the working frequency band of the terminal device is located.
  • the terminal device may directly refer to the numerology as the numerology corresponding to the symbol, or use the reference subcarrier spacing as the subcarrier spacing corresponding to the symbol, without the network device additionally transmitting the numerology corresponding to the symbol or the subcarrier spacing corresponding to the symbol. Can save transmission resources.
  • Embodiment 3 The network device sends, to the terminal device, the number of reserved symbols included in the reserved time slot of the SN and the SN , and the terminal device receives the number of reserved symbols included in each reserved time slot, and the network
  • the device sends the symbol offset information S offset to the terminal device, and the terminal device receives the symbol offset information, and the symbol offset information S offset is used to indicate the starting symbol position of the consecutive symbols.
  • the terminal device may determine the location of the reserved symbol included in the reserved slot according to the subcarrier spacing corresponding to the symbol or the subcarrier spacing corresponding to the symbol, the number of reserved symbols included in each reserved slot, and the symbol offset information. .
  • the terminal device may obtain the subcarrier spacing corresponding to the symbol or the symbol corresponding to the numerology or the symbol, or the terminal device may determine the reference numerology as the symbol corresponding to the method in the second implementation manner as described above. Numerology, or determining the reference subcarrier spacing as a subcarrier spacing corresponding to the symbol.
  • the location of the reserved symbol in the reserved time slot may be determined. For example, if the number of reserved symbols in the reserved slot is X and the subcarrier spacing corresponding to the symbol is Y, then for a terminal device with a subcarrier spacing of Z, if based on the implementation mode 1 or the implementation mode 2, the foregoing Determined time slot
  • the last symbol of the last symbol begins to be forward (XZ/Y) symbols as reserved symbols, so that the SRS can be placed as far as possible in the last few symbols of the time slot, leaving the symbols in the middle of the time slot for transmitting PUSCH or Information such as DMRS improves system performance.
  • the cell-level configuration includes one reserved symbol in the reserved time slot, and the sub-carrier spacing of the symbol is 15 kHz. Then, for a terminal device that uses the 60 kHz sub-carrier interval transmission, the last symbol in the reserved time slot starts. The consecutive 16 consecutive symbols are reserved symbols. Or, based on the implementation mode 3, the time slot determined by the foregoing The first symbol S offset forwards and continuous (XZ / Y) symbols are reserved symbol, this approach is more flexible for a flexible deployment position of the SRS transmission.
  • the terminal equipment may be required to transmit SRS, the following provides a way, the SRS is determined by the I terminal device can be used for SRS transmission time slot.
  • I SRS configuration comprises at least one table in FIG. 12.
  • the configuration unit of T SRS and T offset in the NR system should be a time slot, as shown in Table 12.
  • cell-level signaling srs-SlotConfig and user-level signaling I SRS may determine time slots capable of transmitting SRS, and user-level signaling is required to indicate symbols in these time slots that are capable of transmitting SRS.
  • a terminal device For a terminal device that needs to transmit an SRS, it can transmit the SRS in a time slot capable of transmitting the SRS.
  • the symbol number in one slot is ⁇ 0,1,2,3,4,5,6,7,8,9,10,11,12,13 ⁇ , or for NCP, ⁇ 0, 1,2,3,4,5,6,7,8,9,10,11 ⁇ .
  • the symbols that can be used to transmit the SRS can be determined by two signalings.
  • One is user-level signaling S n , for example, using 2 bits for transmission, which can be used to indicate the number of symbols that can transmit SRS;
  • S offset for example, using 4 bits of transmission, is used to indicate the initial position of the first symbol capable of transmitting the SRS, and for the time slot of the NCP, the value of S offset is [0, 13], for the time slot of the ECP, The value of S offset is [0, 11].
  • the terminal device can be in the time slot.
  • SRS is transmitted on S n consecutive symbols starting from the S offset symbol in the slot, that is, the slot
  • the S n consecutive symbols starting from the S offset symbols in the middle are symbols capable of transmitting the SRS.
  • the terminal device can be in the time slot.
  • SRS ie, time slot
  • the KS n symbols starting with the S offset of consecutive symbols are symbols capable of transmitting the SRS.
  • the relationship between the number of S n and the number of symbols capable of transmitting the SRS may include at least one of the following:
  • the terminal device can determine the reserved time slot and the reserved symbol in the manner as described above. If the reserved resources use the two-level signaling indications of the slot level and the symbol level, the reserved resources of the system may be wasted. For example, if there are 15KHz, 30KHz, and 60KHz terminal devices in the system, if the symbol level is configured as four 15KHz symbols, then for a 60KHz terminal device in the system, resources above one time slot may not be used for uplink data. transmission. In fact, in some time slots used to transmit SRS to a 60KHz terminal device, only four 60KHz reserved symbols may be reserved. In all cases, the resources reserved according to the granularity of 15KHz may sacrifice the transmission resources of the PUSCH.
  • an additional method is also provided to determine reserved time slots and reserved symbols, which are described below.
  • the signaling group includes indication information for indicating a reserved time slot and a reserved symbol in the reserved time slot. Each indication information in the signaling group may correspond to one time slot. Then, the indication information included in the signaling group is ⁇ S 0 , S 1 , S 2 , S 3 , S 4 , S 5 , S 6 , S 7 , S 8 , S 9 ⁇ .
  • the terminal device may determine the reserved time slot according to the ith indication information, the reference information, the number of indication information included in the signaling group, and the subcarrier spacing of the terminal device or the numerology of the terminal device in the signaling group. And reserved symbols in reserved slots.
  • Each indication information included in the signaling group includes at least one bit, and in the manner a, 4 bits are taken as an example. Satisfied when S i ⁇ second value range The time slot does not contain a reserved symbol; when S i ⁇ the first value range, the slave time slot is determined The last symbol of the beginning of the S i ⁇ ⁇ f / ⁇ f R symbols is a reserved symbol.
  • S i is a value obtained by converting at least one bit included in the i-th indication information into decimal.
  • the first value range and the second value range do not have an intersection.
  • the first value range includes, for example, at least one of [0, 5], [0, 11], and [0, 13], for example, for a terminal device of an NCP with a subcarrier spacing of ⁇ f, the first to which S i belongs
  • the value range is, for example, [0, 13].
  • the first value range to which S i belongs is, for example, [0, 11].
  • the second range of values includes, for example, at least one of [6, 7], [14, 15], and [12, 15].
  • a second value range to which S i belongs is, for example, [14, 15]
  • a second value to which S i belongs The range is, for example, [12, 15].
  • Each indication information included in the signaling group includes at least one bit, and in the mode b, 4 bits are taken as an example.
  • the time slot does not contain a reserved symbol; when S i ⁇ the first value range, the slave time slot The last symbol of the beginning of the S i ⁇ ⁇ / ⁇ R symbols is the reserved symbol.
  • the shaded boxes in Figure 8 represent reserved time slots and the dashed boxes represent reserved symbols in reserved time slots.
  • the number of reserved symbols obtained by the signaling S 0 is 15, as shown in FIG. 8
  • S 0 corresponds to Slot 0 means that there are 15 reserved symbols in slot 0 of 15 kHz.
  • the symbols included in one slot are actually less than 15, so that there is no reserved symbol in slot 0.
  • the second indication information S 2 is sent, the number of symbols obtained by S 2 is 1, as shown in FIG. 8 , and S 2 corresponds to time slot 2, which means that there is 1 in slot 2 of 15 kHz.
  • Reserved symbols are reserved symbols obtained by S 0.
  • the reserved time slot and the reserved symbol can be determined by using the signaling occupying 4 bits, and different subcarrier intervals can be separately determined.
  • the terminal device of the 60 kHz subcarrier spacing need not be needed. Sacrificing time slots 8, 9, and 10 as reserved time slots, only need to use time slot 11 as a reserved time slot, and time slots 8, 9, and 10 can continue to be used for transmitting PUSCH, etc., and can effectively utilize transmission resources. Improve system performance.
  • Each indication information included in the signaling group includes at least one bit, and at least one bit constitutes a 14-bit or 12-bit bitmap map.
  • the kth bit is 1 in at least one bit included in the i-th indication information, the symbol numbered [k ⁇ f/ ⁇ f R , (k+1) ⁇ f/ ⁇ f R ⁇ 1] To reserve the symbol.
  • Each indication information included in the signaling group includes at least one bit, and at least one bit constitutes a 14-bit or 12-bit bias map.
  • the kth bit is 1 in at least one bit included in the i-th indication information, the symbol numbered [k ⁇ / ⁇ R , (k+1) ⁇ / ⁇ R ⁇ 1] To reserve the symbol.
  • the hatched boxes in Figure 9 represent reserved time slots and the dashed boxes represent reserved symbols in time slots.
  • the hatched boxes in Figure 9 represent reserved time slots and the dashed boxes represent reserved symbols in time slots.
  • the 0th indication information S 0 is sent, there is no reserved symbol.
  • the second indication information S 2 is sent, there is a reserved symbol in the slot 2 of 15 kHz.
  • the indication methods of c and d are more flexible for the indication of the symbol level, and the indication of the reserved symbols does not necessarily have to be continuous.
  • the indication information included in the first signaling group is, for example, ⁇ S 0 , S 1 , S 2 , S 3 , S 4 , S 5 , S 6 , S 7 , S 8 , S 9 ⁇
  • the second signaling group includes
  • the offset information is, for example, ⁇ w 0 , w 1 , w 2 , w 3 , w 4 , w 5 , w 6 , w 7 , w 8 , w 9 ⁇ .
  • the terminal device may be configured according to the i th indication information in the first signaling group, the i th offset information in the second signaling group, the reference information, the M, and the subcarrier spacing of the terminal device or the terminal.
  • the device's numerology determines the reserved time slots and the reserved symbols in the reserved time slots.
  • each indication information included in the first signaling group includes at least one bit
  • 4 bits are taken as an example
  • each offset information included in the second signaling group also includes at least one bit
  • the indication information includes bits.
  • the number and the number of bits included in the offset information may be the same or different.
  • the offset information includes 4 bits as an example. Satisfied when S i ⁇ second value range The time slot does not contain a reserved symbol; when S i ⁇ the first value range, the slave time slot The first w i ⁇ f/ ⁇ f R symbols start backward or forward S i ⁇ f/ ⁇ f R symbols are reserved symbols.
  • Each indication information included in the first signaling group includes at least one bit, and in the method e, 4 bits are taken as an example.
  • Each offset information included in the second signaling group also includes at least one bit, and the bit included in the indication information is included. The number and the number of bits included in the offset information may be the same or different.
  • the offset information includes 4 bits as an example.
  • the first value range and the second value range have been introduced as before, and are not described here.
  • the shaded boxes in Figure 10 represent reserved time slots and the dashed boxes represent reserved symbols in time slots.
  • the number of symbols obtained by the 0th indication information S 0 and the 0th offset information w 0 is 15, and FIG. 10 is taken as an example, and refers to the slot 0 of 15KHz.
  • the symbols included in one slot are actually less than 15, so that there is no reserved symbol in slot 0.
  • the number of symbols obtained by the second indication information S 2 is 1, and the number of symbols obtained by the second offset information w 2 is 2, and FIG. 10 is taken as an example, and refers to 2 of the slots 2 of 15 KHz.
  • the symbols are reserved symbols.
  • the offset of the reserved symbol in the reserved slot can be indicated, and the SRS can be transmitted without occupying the last symbol of the slot, as in the slot 2 of 15 kHz in FIG. 10, when the reserved symbol is The symbol in the middle of the gap 2. It can be seen that this method is more flexible.
  • the reserved symbol as described above includes at least one of the following functions:
  • the reserved symbol does not map the PUSCH, and the SRS can be transmitted;
  • the reserved symbol does not map the PUSCH, and may transmit the SRS and/or the PUCCH;
  • the reserved symbols do not map the PUSCH and the physical downlink shared channel (PDSCH), and do not assume any reception and transmission on these reserved resources. That is, these reserved symbols may not be used and may be reserved for possible future expansion.
  • PDSCH physical downlink shared channel
  • the reserved symbols determined in the embodiments of the present application may have multiple uses, and the embodiments of the present application are not limited to specific applications.
  • the network device may also determine the reserved time slot and the reserved symbol in the same manner. After the terminal device determines the reserved time slot and the reserved symbol, the sounding reference signal and/or the physical uplink control channel may be sent on the reserved symbol, and the network device receives the sounding reference signal and/or on the reserved symbol. Or a physical uplink control channel, or the terminal device sends other information than the physical uplink shared channel on the reserved symbol, and the network device receives other information than the physical uplink shared channel on the reserved symbol. Or, the terminal device receives other information than the physical downlink shared channel on the reserved symbol, and the network device sends other information than the physical downlink shared channel on the reserved symbol.
  • collision between the SRS and the PUSCH can be effectively reduced, and system performance is improved.
  • the method introduced in the embodiment shown in FIG. 4 can indicate time-frequency resources reserved for SRS transmission in the system. Another embodiment will be described below, reusing the value of I SRS to configure a time slot that cannot be used as a reserved time slot.
  • the system may allow multiple sets of parameters to be configured to indicate SRS transmission time-frequency resources reserved for different transmission periods.
  • an embodiment of the present application provides a communication method.
  • the application is applied to the application scenario shown in FIG. 3 as an example. The flow of the method is described below.
  • the network device sends the third notification signaling to the terminal device, where the terminal device receives the third notification signaling from the network device.
  • the terminal device determines a reserved time slot according to the third notification signaling.
  • the reserved time slot is used for transmitting the sounding reference signal and/or the physical uplink control channel, or the reserved time slot is not used for transmitting the physical uplink shared channel and/or the physical downlink shared channel;
  • S1103 The terminal device sends a sounding reference signal and/or a physical uplink control channel on the reserved time slot, where the network device receives the sounding reference signal and/or the physical uplink control channel, or The terminal device sends other information than the physical uplink shared channel on the reserved time slot, and the network device receives other information except the physical uplink shared channel on the reserved time slot. Or the terminal device receives other information than the physical downlink shared channel on the reserved time slot, and the network device sends other information than the physical downlink shared channel on the reserved time slot.
  • S1103 is an optional step.
  • the reserved symbols are not used to transmit the physical uplink shared channel and/or the physical downlink shared channel, and the reserved symbols are used for transmitting the sounding reference signal and/or the physical uplink control channel, which may be considered as a corresponding solution, for example, reserved.
  • the symbol is not used to transmit the physical uplink shared channel and/or the physical downlink shared channel, and may include a scheme for the reserved symbol to transmit the sounding reference signal and/or the physical uplink control channel.
  • the reserved time slot may be a cell-level, for example, a reserved time slot in the cell where the terminal device is located, that is, the terminal device in the cell where the terminal device is located uses the reserved time slot for transmission.
  • the sounding reference signal and/or the physical uplink control channel, or the terminal equipment in the cell where the terminal device is located does not use the reserved time slot to transmit the physical uplink shared channel and/or the physical downlink shared channel; or the reserved time slot may also It is user-level, that is, the terminal device uses the reserved time slot to transmit the sounding reference signal and/or the physical uplink control channel, or the terminal device does not use the reserved time slot to transmit the physical uplink shared channel and/or the physical downlink shared channel.
  • the third notification signaling includes at least one configuration as follows:
  • the transmission period of the sounding reference signal is 4 time slots
  • the transmission period of the sounding reference signal is 8 time slots
  • the transmission period of the sounding reference signal is 640 time slots
  • the transmission period of the sounding reference signal is 1280 time slots
  • the transmission period of the sounding reference signal is a reserved number of time slots.
  • the third notification signaling may include at least one configuration as follows:
  • the first configuration index of the sounding reference signal is 637-640, the transmission period of the sounding reference signal is 4 time slots, and the transmission offset of the sounding reference signal is the difference between the first configuration index and 637;
  • the second configuration index of the sounding reference signal is 641-648, the transmission period of the sounding reference signal is 8 time slots, and the transmission offset of the sounding reference signal is the difference between the second configuration index and 641;
  • the third configuration index of the sounding reference signal is 649 to 1288, the transmission period of the sounding reference signal is 640 time slots, and the transmission offset of the sounding reference signal is the difference between the third configuration index and 650;
  • the fourth configuration index of the sounding reference signal is 1289 to 2568, the transmission period of the sounding reference signal is 1280 time slots, and the transmission offset of the sounding reference signal is the difference between the third configuration index and 1289;
  • the fifth configuration index of the sounding reference signal is 2569 to 4095, the transmission period of the sounding reference signal is a reserved number of time slots, and the transmission offset of the sounding reference signal is the difference between the third configuration index and the reserved quantity. .
  • the at least one configuration as described above may be referred to the table 14, that is, the third notification signaling in the embodiment of the present application may include at least one configuration in the table 14:
  • the third notification signaling may include at least one configuration in Table 15, where Table 15 includes Table 14:
  • the terminal equipment of 15KHz, 30KHz, and 60KHz exists in the system as an example. If the 15KHz terminal equipment is configured to transmit SRS in 2 time slots, then 30KHz The terminal equipment should be configured with 4 time slots as reserved time slots, and the 60KHz terminal equipment should be configured with 8 time slots as reserved time slots. However, there is no choice of 4 time slots or 6 time slots in Table 6. Therefore, according to the configuration of Table 6, the collision of the SRS of the 15 KHz terminal device and the PUSCH transmission of the 30/60 KHz terminal device cannot be avoided by the configuration of the I SRS .
  • the embodiment of the present application provides Table 14 and Table 15, and introduces a new selection in Table 14 or Table 15.
  • the I SRS occupies 10 bits, and the value is 0-636, which can be used to configure reserved time slots; I SRS occupies 12 The bits, with a value of 0–2567, can be used to configure time slots that cannot be reserved slots.
  • the 30KHz terminal device should be configured with 4 time slots as reserved time slots and 60KHz terminals.
  • the device should be configured with 8 time slots as reserved time slots. Both configurations are available in Table 14 or Table 15. Therefore, according to the configuration of Table 14 or Table 15, the collision of the SRS of the 15 KHz terminal device and the PUSCH transmission of the 30/60 KHz terminal device can be effectively avoided by the configuration of the I SRS .
  • the reserved symbol as described above includes at least one of the following functions:
  • the reserved symbol does not map the PUSCH, and the SRS can be transmitted;
  • the reserved symbol does not map the PUSCH, and may transmit the SRS and/or the PUCCH;
  • the reserved symbols do not map the PUSCH and the physical downlink shared channel (PDSCH), and do not assume any reception and transmission on these reserved resources. That is, these reserved symbols may not be used and may be reserved for possible future expansion.
  • PDSCH physical downlink shared channel
  • the reserved symbols determined in the embodiments of the present application may have multiple uses, and the embodiments of the present application are not limited to specific applications.
  • FIG. 12 shows a schematic structural diagram of a terminal device 1200.
  • the terminal device 1200 can implement the functions of the terminal device referred to above.
  • the terminal device 1200 may be the terminal device described above, or may be a chip disposed in the terminal device described above.
  • the terminal device 1200 can include a processor 1201.
  • the terminal device may further include a transceiver 1202.
  • the processor 1201 can be used to perform S41 and S42 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver 1202 can be used to perform S43 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the processor 1201 is configured to obtain reference information, where the reference information and the subcarrier spacing of the terminal device or the system parameter of the terminal device indicate a reserved time slot, and a reservation in the reserved time slot. a symbol; the reserved symbol is used to transmit a sounding reference signal and/or a physical uplink control channel, or the reserved symbol is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel; according to the reference information and the Determining the reserved time slot and the reserved symbol in the reserved time slot by a subcarrier spacing of the terminal device or a system parameter of the terminal device.
  • FIG. 13 shows a schematic structural diagram of a network device 1300.
  • the network device 1300 can implement the functionality of the network devices referred to above.
  • the network device 1300 may be the network device described above or may be a chip disposed in the network device described above.
  • the network device 1300 can include a processor 1301.
  • the network device may further include a transceiver 1302.
  • the processor 1301 may be configured to obtain reference information, determine the reserved time slot, and the reserved time slot according to the reference information and a subcarrier spacing of the terminal device or a system parameter of the terminal device.
  • the reserved symbols in, and/or other processes for supporting the techniques described herein.
  • the transceiver 1302 can be used to perform S43 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the processor 1301 is configured to obtain reference information, where the reference information and the subcarrier spacing of the terminal device or the system parameter of the terminal device indicate a reserved time slot, and a reserved symbol in the reserved time slot;
  • the reserved symbol is used to transmit a sounding reference signal and/or a physical uplink control channel, or the reserved symbol is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel; according to the reference information and the terminal device
  • the subcarrier spacing or the system parameter of the terminal device determines the reserved time slot and the reserved symbol in the reserved time slot.
  • FIG. 14 shows a schematic structural diagram of a terminal device 1400.
  • the terminal device 1400 can implement the functions of the terminal device referred to above.
  • the terminal device 1400 may be the terminal device described above, or may be a chip disposed in the terminal device described above.
  • the terminal device 1400 can include a processor 1401 and a transceiver 1402. Wherein, the processor 1401 can be used to perform S1102 in the embodiment shown in FIG. 11, and/or other processes for supporting the techniques described herein.
  • the transceiver 1402 can be used to perform S1101 and S1103 in the embodiment shown in FIG. 11, and/or other processes for supporting the techniques described herein.
  • the transceiver 1402 is configured to receive third notification signaling from the network device, and the processor 1401 is configured to determine, according to the third notification signaling, a reserved time slot, where the reserved time slot is used to transmit the sounding reference signal. And/or a physical uplink control channel, or the reserved time slot is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel;
  • the third notification signaling includes at least one of the following configurations:
  • the transmission period of the sounding reference signal is 4 time slots
  • the transmission period of the sounding reference signal is 8 time slots
  • the transmission period of the sounding reference signal is 640 time slots
  • the transmission period of the sounding reference signal is 1280 time slots
  • the transmission period of the sounding reference signal is a reserved number of time slots.
  • FIG. 15 shows a schematic structural diagram of a network device 1500.
  • the network device 1500 can implement the functions of the network devices referred to above.
  • the network device 1500 may be the network device described above or may be a chip disposed in the network device described above.
  • the network device 1500 can include a processor 1501 and a transceiver 1502. Wherein, the processor 1501 can be configured to generate third notification signaling, and/or other processes for supporting the techniques described herein.
  • the transceiver 1502 can be used to perform S1101 and S1103 in the embodiment shown in FIG. 11, and/or other processes for supporting the techniques described herein.
  • the processor 1501 is configured to generate third notification signaling, where the third notification signaling is used to indicate a reserved time slot, where the reserved time slot is used to transmit a sounding reference signal and/or a physical uplink control channel, Or the reserved time slot is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel;
  • the third notification signaling includes at least one of the following configurations:
  • the transmission period of the sounding reference signal is 4 time slots
  • the transmission period of the sounding reference signal is 8 time slots
  • the transmission period of the sounding reference signal is 640 time slots
  • the transmission period of the sounding reference signal is 1280 time slots
  • the transmission period of the sounding reference signal is a reserved number of time slots
  • the transceiver 1502 is configured to send the third notification signaling to the terminal device.
  • terminal device 1200, network device 1300, terminal device 1400, or network device 1500 may also be implemented by the structure of communication device 1600 as shown in FIG. 16A.
  • the communication device 1600 can implement the functions of the network device or the terminal device referred to above.
  • the communication device 1600 can include a processor 1601. Wherein, when the communication device 1600 is used to implement the functions of the terminal device in the embodiment shown in FIG. 4, the processor 1601 may be configured to execute S41 and S42 in the embodiment shown in FIG. 4, and/or for Other processes that support the techniques described herein.
  • the communication device 1600 is used to implement the functions of the network device in the embodiment shown in FIG.
  • the processor 1601 may be configured to obtain reference information according to the reference information and the subcarrier spacing of the terminal device or the System parameters of the terminal device, the reserved time slots, and the reserved symbols in the reserved time slots, and/or other processes for supporting the techniques described herein.
  • the processor 1601 may be configured to execute S1102 in the embodiment shown in FIG. 11, and/or to support the description herein. Other processes of technology.
  • the processor 1601 can be configured to generate third notification signaling, and/or other processes for supporting the techniques described herein. .
  • the communication device 1600 can pass through a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor (central processor). Unit, CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), or programmable logic device (programmable logic device,
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor
  • CPU central processor
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller
  • programmable logic device programmable logic device
  • the communication device 1600 can be configured in the network device or the terminal device of the embodiment of the present application, so that the network device or the terminal device implements the communication method provided by the embodiment of the present application.
  • the communication device 1600 can further include a memory 1602, which can be referenced to FIG. 16B, where the memory 1602 is used to store computer programs or instructions, and the processor 1601 is used to decode and execute the computer programs or instructions. .
  • these computer programs or instructions may include the functional programs of the network devices or terminal devices described above.
  • the function program of the network device is decoded and executed by the processor 1601
  • the network device can be caused to implement the function of the network device in the communication method of the embodiment of the present application.
  • the terminal device can be caused to implement the function of the terminal device in the communication method of the embodiment of the present application.
  • the functional programs of these network devices or terminal devices are stored in a memory external to the communication device 1600.
  • the function program of the network device is decoded and executed by the processor 1601, part or all of the contents of the function program of the network device are temporarily stored in the memory 1602.
  • the function program of the terminal device is decoded and executed by the processor 1601, part or all of the contents of the function program of the terminal device are temporarily stored in the memory 1602.
  • the functional programs of these network devices or terminal devices are disposed in a memory 1602 stored within the communication device 1600.
  • the communication device 1600 can be disposed in the network device of the embodiment of the present application.
  • the function program of the terminal device is stored in the memory 1602 inside the communication device 1600
  • the communication device 1600 can be disposed in the terminal device of the embodiment of the present application.
  • portions of the functional programs of the network devices are stored in a memory external to the communication device 1600, and other portions of the functional programs of the network devices are stored in the memory 1602 internal to the communication device 1600.
  • part of the contents of the functional programs of the terminal devices are stored in a memory external to the communication device 1600, and other portions of the functional programs of the terminal devices are stored in the memory 1602 inside the communication device 1600.
  • the terminal device 1200, the network device 1300, the terminal device 1400, the network device 1500, and the communication device 1600 are presented in a form corresponding to each function module, or the functional modules may be divided in an integrated manner.
  • a “module” herein may refer to an ASIC, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that provide the functionality described above.
  • the terminal device 1200 provided by the embodiment shown in FIG. 12 can also be implemented in other forms.
  • the terminal device includes a processing module.
  • the terminal device may further include a transceiver module.
  • the processing module can be implemented by the processor 1201, and the transceiver module can be implemented by the transceiver 1202.
  • the processing module can be used to perform S41 and S42 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the transceiver module can be used to perform S43 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the processing module is configured to obtain reference information, the reference information, and a subcarrier spacing of the terminal device or a system parameter of the terminal device, indicating a reserved time slot, and a reserved symbol in the reserved time slot.
  • the reserved symbol is used to transmit a sounding reference signal and/or a physical uplink control channel, or the reserved symbol is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel; according to the reference information and the terminal Determining the reserved time slot and the reserved symbol in the reserved time slot by a subcarrier spacing of the device or a system parameter of the terminal device.
  • the network device 1300 provided by the embodiment shown in FIG. 13 can also be implemented in other forms.
  • the network device includes a processing module.
  • the network device may further include a transceiver module.
  • the processing module can be implemented by the processor 1301, and the transceiver module can be implemented by the transceiver 1302.
  • the processing module may be configured to obtain reference information, determine the reserved time slot, and the reserved time slot according to the reference information and a subcarrier spacing of the terminal device or a system parameter of the terminal device.
  • the transceiver module can be used to perform S43 in the embodiment shown in FIG. 4, and/or other processes for supporting the techniques described herein.
  • the processing module is configured to obtain reference information, the reference information, and a subcarrier spacing of the terminal device or a system parameter of the terminal device, indicating a reserved time slot, and a reserved symbol in the reserved time slot;
  • the reserved symbol is used to transmit a sounding reference signal and/or a physical uplink control channel, or the reserved symbol is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel; according to the reference information and the terminal device a subcarrier spacing or a system parameter of the terminal device, the reserved time slot, and the reserved symbol in the reserved time slot.
  • the terminal device 1400 provided by the embodiment shown in FIG. 14 can also be implemented in other forms.
  • the terminal device includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 1401, and the transceiver module can be implemented by the transceiver 1402.
  • the processing module can be used to execute S1102 in the embodiment shown in FIG. 11, and/or other processes for supporting the techniques described herein.
  • the transceiver module can be used to perform S1101 and S1103 in the embodiment shown in FIG. 11, and/or other processes for supporting the techniques described herein.
  • the transceiver module is configured to receive third notification signaling from the network device, and the processing module is configured to determine, according to the third notification signaling, a reserved time slot, where the reserved time slot is used to transmit the sounding reference signal and/or Or a physical uplink control channel, or the reserved time slot is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel;
  • the third notification signaling includes at least one of the following configurations:
  • the transmission period of the sounding reference signal is 4 time slots
  • the transmission period of the sounding reference signal is 8 time slots
  • the transmission period of the sounding reference signal is 640 time slots
  • the transmission period of the sounding reference signal is 1280 time slots
  • the transmission period of the sounding reference signal is a reserved number of time slots.
  • the network device 1500 provided by the embodiment shown in FIG. 15 can also be implemented in other forms.
  • the network device includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 1501
  • the transceiver module can be implemented by the transceiver 1502.
  • the processing module can be used to generate third notification signaling, and/or other processes for supporting the techniques described herein.
  • the transceiver module can be used to perform S1101 and S1103 in the embodiment shown in FIG. 11, and/or other processes for supporting the techniques described herein.
  • the processing module is configured to generate third notification signaling, where the third notification signaling is used to indicate a reserved time slot, where the reserved time slot is used to transmit a sounding reference signal and/or a physical uplink control channel, or The reserved time slot is not used to transmit a physical uplink shared channel and/or a physical downlink shared channel;
  • the third notification signaling includes at least one of the following configurations:
  • the transmission period of the sounding reference signal is 4 time slots
  • the transmission period of the sounding reference signal is 8 time slots
  • the transmission period of the sounding reference signal is 640 time slots
  • the transmission period of the sounding reference signal is 1280 time slots
  • the transmission period of the sounding reference signal is a reserved number of time slots
  • transceiver module configured to send the third notification signaling to the terminal device.
  • the terminal device 1200, the network device 1300, the terminal device 1400, the network device 1500, and the communication device 1600 provided by the embodiments of the present application may be used to perform the method provided in the embodiment shown in FIG. 4 or the embodiment shown in FIG.
  • the technical effects that can be obtained reference may be made to the foregoing method embodiments, and details are not described herein again.
  • the network device can configure the terminal device to send the SRS.
  • the SRS is used to measure the upstream channel.
  • the network device performs uplink channel measurement based on the SRS sent by the terminal device to obtain channel state information (CSI) of the uplink channel, so as to facilitate scheduling of uplink resources.
  • CSI channel state information
  • the network device can also obtain the downlink CSI by measuring the SRS, that is, first obtain the uplink CSI, and then determine the downlink CSI according to the channel reciprocity.
  • a terminal device supporting 1 transmit antenna 2 receive antenna (1T2R) transmits SRS on different antennas at different times.
  • This SRS transmission method is called SRS antenna switching or antenna selection.
  • the uplink transmission of the terminal device can only be transmitted by one antenna or one port at the same time, and the downlink reception can be simultaneously received by two antennas. Therefore, in the scenario where the uplink and downlink channels have reciprocity, the network device is based on The SRS transmitted on a single antenna cannot obtain the channel of the downlink 2 receiving antenna.
  • the terminal equipment In order to obtain the channels of all downlink antennas, the terminal equipment must transmit SRSs at different times on multiple antennas, that is, SRS transmission is performed by means of SRS antenna switching.
  • SRS antenna switching is applied to the transmission of periodic SRS signals.
  • b hop ⁇ B SRS is configured.
  • the b hop is the hopping bandwidth configured for the high-level signaling
  • the B SRS is the transmission bandwidth of the SRS.
  • the transmission bandwidth is greater than or equal to the hopping bandwidth, the SRS does not perform frequency hopping.
  • the relationship between the identifier of the antenna used for transmitting the SRS and the identifier n SRS of the SRS transmission time may be expressed as:
  • n SRS is determined according to at least one of a frame number, a subframe number, a slot number, a symbol number, a symbol number of a resource of the SRS, and a period of the SRS , or the n SRS indicates that the SRS is sent in a period of time.
  • n SRS is the number of times or times the uplink reference signal is transmitted minus 1
  • n SRS is a count of the SRS time domain position in a cycle of one frame or one frame number.
  • n SRS is defined as:
  • N SP is the number of downlink-to-uplink handovers in a frame
  • n f is the frame number
  • n s is the slot number in the frame
  • T SRS is the period of the SRS
  • T offset is based on the symbol position and SRS in the special subframe. The number of symbols is determined
  • T offset_max is the maximum value of T offset . It can be seen that the n SRS in the calculation formula is the count of all the positions of the SRS that satisfy the SRS period in the period of 0 to 1023 of one frame number.
  • K is the total number of hops for frequency hopping, that is, the number of SRS transmissions used to complete the hopping measurement for all configured SRS bandwidths.
  • the above method supports antenna switching in periodic SRS transmission of 1T2R.
  • the subsequent communication technology system for example, the 5G system
  • the existing LTE antenna switching technology cannot be applied. How to solve the problem of supporting antenna selection under more antenna transmission and reception becomes a problem to be solved.
  • the next generation mobile communication system may further support antenna switching in aperiodic SRS transmission.
  • the aperiodic SRS transmission configures the time-frequency location of the SRS through higher layer signaling and triggers transmission through downlink control information (DCI).
  • DCI downlink control information
  • the aperiodic transmission of the SRS can also be triggered by the DCI.
  • the antenna used by the terminal device to transmit the SRS is determined according to the time parameter n SRS transmitted by the SRS .
  • the aperiodic SRS may not configure the SRS period, thus causing Calculate n SRS .
  • the network device must transmit DCI trigger SRS transmission according to a specific n SRS time, thus limiting scheduling.
  • the terminal device receives at least two SRS resources configured by the network device, where the number of ports of each SRS resource is 1, each SRS resource is associated with at least two antennas, and each SRS resource corresponds to The antennas are different.
  • the association here can be a correspondence.
  • the network device configures two SRS resources for the terminal device, and the scenario of four antennas is used as an example.
  • Each SRS resource may have one port, and each SRS resource corresponds to two antennas, that is, one rotation. Use two antennas to transmit SRS on one port; or the SRS can have two ports, corresponding to two antennas, that is, first use one antenna to transmit SRS in one antenna port, and then use another antenna in another antenna Send SRS in the port.
  • the SRS resource 0 corresponds to the antenna 0 and the antenna 1
  • the SRS resource 1 corresponds to the antenna 2 and the antenna 3.
  • the manner of the antenna corresponding to the SRS resource may be different, or the SRS resource 0 may correspond to the antenna 0 and the antenna 2, and the SRS resource 1 corresponds to the antenna 1 and the antenna 3.
  • 0, 1, 2, and 3 of the antenna 0, the antenna 1, the antenna 2, and the antenna 3 are respectively index values of the antenna, and the number of the resource may be an index value or other numbers. It may even be a number, but a certain time-frequency position of the transmitted SRS. For convenience, it may also be called the first resource and the second resource.
  • the terminal may be configured with a corresponding antenna 0 with a smaller resource number, and an antenna 1, a corresponding antenna 2 with a larger resource number, and an antenna 3.
  • the terminal may be configured with a corresponding antenna set 0 with a smaller resource number and a corresponding antenna set 1 with a larger resource number, where the antenna set 0 includes several antennas, and the antenna set 1 includes a plurality of other antennas.
  • the antennas of the antenna set 0 are transmitted in the corresponding resource set according to a determined rule, and the antennas of the antenna set 1 are transmitted in the corresponding resource set according to a determined rule.
  • a similar corresponding manner or other predefined corresponding manner may also be applied in the scenario of more antennas or more SRS resources.
  • the network device is configured with at least two SRS resources, and the corresponding relationship between the SRS resource and the antenna may be configured by the network device by using high layer signaling, for example, by using RRC signaling or MAC CE signaling.
  • the at least two SRS resources may belong to the same SRS resource group.
  • the network device may configure the SRS resource group for SRS antenna switching or for antenna selection through RRC signaling or MAC CE signaling.
  • the terminal device performs handover and transmission between antennas corresponding to each of the SRS resources in the process of sending the SRS by each SRS resource.
  • the SRS resource 0 corresponds to the antenna 0 and the antenna 1
  • the SRS resource 1 corresponds to the antenna 2 and the antenna 3.
  • the terminal device transmits the SRS signal during the handover of the antenna 0 and the antenna 1 on the resource 0.
  • the terminal device The SRS signal is transmitted during the switching transmission of the antenna 2 and the antenna 3 on the resource 1.
  • the antenna switching of the 1T2R may refer to an SRS antenna switching rule in LTE.
  • the terminal device receives SRS resource configuration information of the network device, where the SRS resource configuration information is used to configure the SRS resource.
  • the SRS configuration information is used to configure at least one of a frequency domain resource of the SRS resource.
  • the sequence can be used as a code domain resource, such as a spreading code or a cyclic shift CS.
  • the SRS resource has a corresponding relationship with the transmitting antenna of the terminal device, where the corresponding relationship may be a correspondence between each SRS resource and an antenna, the corresponding relationship may be predefined, or the correspondence between the SRS resource and the antenna may be
  • the network device is configured through high layer signaling, such as RRC signaling or MAC CE signaling.
  • the antenna used by the SRS transmitted on the SRS resource is part or all of the antenna corresponding to the SRS resource.
  • the resource correspondence may be a direct configuration of the number of SRS resources.
  • the terminal device determines the SRS resource and the terminal device sending antenna according to other parameters such as the number of resources and the number or number of antennas.
  • the SRS resources may be one or more, wherein each of the SRS resources may be associated with one or more antennas.
  • the following steps take the 2T4R SRS antenna switching as an example, and can be extended to 1T2R SRS antenna switching and a transmitting antenna b receiving antenna SRS antenna switching, where a ⁇ b, a can divide b.
  • the network device may be configured with one SRS resource or two SRS resources, and the two SRS resources may belong to the same SRS resource group or different SRS resource groups. If one SRS resource is configured, the SRS resource corresponds to all antennas, that is, 4 antennas. If two SRS resources are configured, the two SRS resources respectively correspond to two antennas, and the antennas corresponding to the two SRS resources are different. For example, two antennas corresponding to the same SRS resource can perform uplink transmission at the same time.
  • SRS resource 0 corresponds to antenna 0 and antenna 1
  • SRS resource 1 corresponds to antenna 2 and antenna 3
  • SRS resource 0 corresponds to antenna 0 and antenna 2
  • SRS resource 0 corresponds to antenna 0 and antenna 2
  • SRS resource 1 corresponds to antenna 1 and antenna 3
  • the number of the SRS resources in the above example may also be other numbers, and the correspondence between the two SRS resources and the antenna may be determined according to the relative relationship of their SRS resource numbers, for example, SRS resources.
  • the SRS resource with a small number corresponds to the antenna ⁇ 0, 1 ⁇
  • the SRS resource with a large SRS resource number corresponds to the antenna ⁇ 2, 3 ⁇
  • the SRS resource with a small SRS resource number corresponds to the antenna ⁇ 0, 2 ⁇
  • the SRS with a large SRS resource number corresponds to the antenna ⁇ 1, 3 ⁇
  • the SRS resource with a large SRS resource number corresponds to the antenna ⁇ 0, 2 ⁇ , and may also be other predefined correspondences.
  • the corresponding relationship between the SRS resource and the sending antenna of the terminal device may be determined according to the sequence of the time resources of the SRS resource, for example, the time resource corresponds to the front SRS resource.
  • the antenna ⁇ 0, 1 ⁇ , the SRS resource corresponding to the time resource corresponds to the antenna ⁇ 2, 3 ⁇ ; or the SRS resource corresponding to the front of the time resource corresponds to the antenna ⁇ 0, 2 ⁇ , and the time resource corresponds to the SRS resource corresponding antenna ⁇ 1,3 ⁇ ; or the SRS resource corresponding to the front of the time resource corresponds to the antenna ⁇ 2, 3 ⁇ , the SRS resource corresponding to the time resource corresponds to the antenna ⁇ 0, 1 ⁇ ; or the SRS resource corresponding to the front of the SRS resource corresponding to the antenna ⁇ 1, 3 ⁇ , the SRS resource corresponding to the time resource corresponds to the antenna ⁇ 0, 2 ⁇ .
  • the two antennas corresponding to the one SRS resource may be one antenna group, that is, one SRS resource corresponding to the antenna group 1, Another SRS resource corresponds to the antenna group 2.
  • the specific corresponding method may be similar to the above example according to the relative relationship between the number of the SRS resource or the time resource of the SRS resource.
  • the terminal device determines that the antenna selection is enabled.
  • the terminal device determines that the antenna is enabled.
  • This step may be a process of receiving the enabling signaling.
  • the terminal device receives the high layer signaling or physical layer signaling sent by the base station.
  • the enabling signaling is RRC signaling or the enabling signaling is MAC CE signaling.
  • the antenna selection enable means that the function of the antenna selection is turned on. For example, the specific value may be written according to the signaling, or the value of a certain field is read. It should be understood that this step may be performed on the receiving network device.
  • the configured SRS resources precede the step 1801 or before the step of triggering the SRS transmission.
  • the antenna selection enablement may be antenna switching or antenna selection, or may be antenna switching or antenna selection of a certain SRS resource or SRS resource group configured for the terminal device, the SRS resource group. Contains one or more SRS resources.
  • the terminal device determines that the antenna selection is enabled, the user equipment determines the correspondence between the SRS resource and the antenna according to the method in step 1801.
  • the antenna selection enable may not be configured by the network device, ie step 1802 is optional.
  • the network device is configured with two SRS resources, and the terminal device determines the correspondence between each SRS resource and the antenna in the two SRS resources according to the predefined information or the configuration of the network device, and does not need to configure the antenna selection enable.
  • the terminal device implements antenna selection or antenna switching by transmitting the SRS using the respective antennas on the two SRS resources.
  • the terminal device receives a trigger indication sent by the network device, where the trigger indication is used to trigger transmission of the SRS.
  • the trigger indication is downlink control information DCI (downlink control information).
  • the network device sends configuration signaling to the terminal device to configure the time resource for transmitting the DCI and the SRS resource at least before sending the DCI.
  • the relationship between the SRS transmissions for example, the terminal unit confirms that the time unit for transmitting the DCI is the time unit n, and the terminal device may determine, according to the configuration signaling, that the time unit of the SRS transmission on the SRS resource is the time unit n +k1, where the k1 value is determined according to the configuration signaling.
  • the time unit can be a time slot or a symbol or a subframe.
  • the indication may be an implicit indication, or an indication may be displayed, and the configuration signaling may directly indicate the value of the k1, or may be implicitly notified according to a channel state or other parameters.
  • the transmission of the configuration signaling and the sequence of the above steps 1801 to 1804 are not limited.
  • the relationship between the time resource for transmitting the DCI and the time resource for the at least one SRS transmission on the SRS resource may be predefined.
  • the time unit for transmitting the DCI is the time unit n
  • the SRS resource is at least once.
  • the value of k1 may be determined according to period information of the SRS resource and period offset information, and a time resource for transmitting the DCI, for example, one of the time resources after transmitting the DCI is available for the SRS resource.
  • the SRS is transmitted on the resources transmitted by the SRS, and the resources available for the SRS transmission are determined according to the period information of the SRS resources and the period offset information.
  • the terminal device determines, according to a time resource that receives the DCI, and a relationship between a time resource for transmitting the DCI and a time resource for the at least one SRS transmission on the SRS resource, determining the first time resource for sending the SRS.
  • the antenna used for transmitting the SRS on the first time resource may be predefined. For example, if only one SRS resource is configured for the base station, the SRS on the first time resource is sent by using two antennas, for example, the antenna ⁇ 0. , 1 ⁇ or ⁇ 0, 2 ⁇ or ⁇ 2, 3 ⁇ or ⁇ 1, 3 ⁇ .
  • SRS resource A and SRS resource B are referred to for convenience of description.
  • SRS resource A corresponding to 2 antennas, such as antenna 0 and antenna 1
  • SRS resource B corresponds to two other antennas, such as antenna 2 and antenna 3, and the SRS on SRS resource A can be defined to be transmitted or defined on the first time resource.
  • the SRS on the SRS resource B is transmitted on the first time resource.
  • the terminal device After the terminal device sends the SRS on the first time resource, the terminal device also sends the SRS on the second time resource, for example, when only one SRS resource is configured for the base station, and the SRS is used for the second time resource.
  • the two antennas other than the antenna used for SRS transmission on the first time resource are transmitted, for example, antenna ⁇ 2, 3 ⁇ or ⁇ 1, 3 ⁇ or ⁇ 0, 1 ⁇ or ⁇ 0, 2 ⁇ .
  • the SRS resource A and the SRS resource B correspond to two antennas for the SRS resource A, such as antenna 0 and antenna 1
  • SRS resource B corresponds to two other antennas, such as an antenna.
  • the SRS of the SRS resource transmitted on the second time resource may be different from the SRS of the SRS resource transmitted on the first time resource, for example, the SRS on the SRS resource A is transmitted on the first time resource, and the SRS resource is used.
  • the SRS on the B is transmitted on the second time resource; or the SRS on the SRS resource B is transmitted on the first time resource, and the SRS on the SRS resource A is transmitted on the second time resource.
  • the correspondence between the first time resource and the second time resource and the SRS resource may also be configured by the network device.
  • the antenna used for sending the SRS on the first time resource and the second time resource is determined according to the SRS resource on the first time resource or the second time resource, and the corresponding relationship between the SRS resource and the antenna.
  • the antennas used for SRS transmission on different time resources can also be obtained according to a predefined table lookup table, for example, Table 16:
  • the transmitting antenna may not be defined by using the used antenna configuration in Table 16 above.
  • the SRS resource 0 corresponds to the antenna.
  • the scenario of case 1 or case 2 in Table 16 can also be used.
  • the resources occupied by the SRS transmission in the first time resource and the second time resource correspond to the one SRS resource.
  • the resources occupied by the SRS transmission in the first time resource correspond to one SRS resource in the two SRS resources, where the second time resource is in the second time resource.
  • the resource occupied by the SRS transmission corresponds to another SRS resource of the two SRS resources.
  • the correspondence may be predefined or configured by a base station.
  • the predefined correspondence may be determined according to the number or the size of the SRS resource. For example, when A ⁇ B, the SRS resource A is transmitted on the first time resource, and the SRS resource B is transmitted on the second time resource; or When A>B, the SRS resource A is transmitted on the first time resource, and the SRS resource B is transmitted on the second time resource.
  • the predefined correspondence may also be determined according to a chronological relationship of SRS resources.
  • the configuration signaling in the S1803 may further indicate a relationship between a time resource of the multiple DCI and the SRS resource, for example, configuring a time interval of the DCI and a time interval of the second time resource.
  • the relationship such as the time resource of the DCI belongs to the time unit n, and the second time resource belongs to the time unit n+k2, then the k2 may be configured by the base station. Alternatively, k2 can also be predefined.
  • the time unit is a time slot or a subframe or a symbol.
  • multiple time resources may be further included.
  • the resources occupied by the SRS transmission in the first time resource correspond to one SRS resource A of the multiple SRS resources.
  • the resource occupied by the SRS transmission in the second time resource corresponds to one SRS resource B of the multiple SRS resources
  • the resource occupied by the SRS transmission in the third time resource corresponds to the multiple SRS resources One of the SRS resources C, and so on.
  • the second time resource may be determined according to the first time resource, for example, the time unit where the first time resource is located is n+k1, and the time unit where the second time resource is located is n+k1+ ⁇
  • the time unit can be a symbol, a time slot or a subframe.
  • ⁇ >1 thereby ensuring sufficient antenna switching time is reserved.
  • the last symbol of the second time unit is The last symbol of the time slot in which the time unit is located, or the second time unit is transmitted in the next time slot.
  • the second time resource may be determined according to the time resource in which the DCI is located.
  • the time unit in which the time resource of the DCI is located is n
  • the time unit in which the second time resource is located is n+k2
  • k2 A value configured for a predefined or network device, such as a predefined k2 1.
  • the time unit can be a symbol, a time slot or a subframe.
  • k2-k1 ⁇ >1, thereby ensuring sufficient antenna switching time is reserved.
  • the terminal device may send the first report information to the network device, where the first report information is used to report the antenna switching capability of the terminal device, for example,
  • the antenna switching capability may be used to indicate the time at which the terminal device switches the antenna or the maximum time for switching the antenna, which may be the direct reporting time, the number of reported symbols or the number of slots or other quantized values, or may be through coding or mapping or Other parameters implicitly notify the reporting time or its quantified value.
  • the network device can determine the value of ⁇ according to the antenna switching capability reported by the terminal device.
  • the terminal device reports the time required to switch the antenna of the terminal device by using the first report information, or needs to specify S symbols for reporting the antenna switching of the terminal device, or report the antenna switch in the time slot supported or not supported by the terminal device.
  • the antenna device that sends the first report information to the network device for reporting the antenna switching capability of the terminal device can be separately performed independently of other steps in this embodiment.
  • the frequency domain resources occupied by the SRS sent by the first time unit and the second time unit are the same.
  • the terminal device may determine that the frequency domain resources of the SRS transmitted on the second time unit are the same according to the frequency domain resources occupied by the SRS transmitted on the first time resource.
  • the time unit where the first time resource or the second time resource is located may be understood as the first A time unit of a time resource or a second time resource, such as a first time unit of the first time resource or the second time resource, or a last time unit of the first time resource or the second time resource.
  • time unit of the present application may be a time slot, or a symbol, or a sub-frame, or a predefined time unit.
  • the SRS antenna switching for the 2T4R can be further extended to the scenario where the transmitting antenna b receives the antenna, where a>1, and the b/a secondary SRS needs to be sent, that is, it needs to be sent from the first time resource to the ceil (b). /a) or floor(b/a) or b/a time resource, where ceil() is the rounding up operation and floor() is the rounding down operation.
  • multiple SRS transmissions are triggered by one DCI, and each SRS transmission uses different antennas, and the number of transmissions is equal to the number of SRS transmissions required to complete one antenna handover, so that all DCs are triggered after one DCI trigger. Complete an SRS transmission process.
  • FIG. 19 shows another embodiment of the terminal device of the present application, including a receiving unit 1901, configured to receive at least two SRS resources configured by a network device, where the number of ports of each SRS resource is 1, and each SRS resource Associated with at least two antennas, and the antenna corresponding to each of the SRS resources is different.
  • the receiving unit 1901 can further implement other various embodiments of S1701 in the embodiment shown in FIG.
  • the terminal device further includes a sending unit 1902, configured to perform handover and transmission between antennas corresponding to each of the SRS resources in the process of sending the SRS by each SRS resource.
  • the sending unit 1902 is also used to implement other various implementations of step 1701.
  • the terminal device may further comprise a processing unit for processing each received information and performing necessary processing before transmitting the information, for example, determining that the terminal needs to be notified in each step The parameters of the device.
  • FIG. 20 shows another embodiment of a terminal device of the present application.
  • the terminal device may include a receiving unit 2001, configured to receive SRS resource configuration information of a network device, where the SRS resource configuration information is used to configure an SRS resource.
  • the receiving unit 2001 can further implement other various embodiments of S1801 in the embodiment shown in FIG. 18.
  • the processing unit 2002 is configured to determine an antenna selection enablement.
  • the receiving unit 2001 is further configured to receive the enabling signaling.
  • the processing unit 2002 can further implement other various embodiments of S1802 in conjunction with the receiving unit 2001.
  • the receiving unit 2001 is further configured to implement the step of receiving a trigger indication sent by the network device, where the trigger indication is used to trigger transmission of the SRS.
  • the receiving unit 2001 can further implement other various embodiments of the step 1803 in the embodiment shown in FIG.
  • the sending unit 2003 is configured to determine, according to a time resource that receives the DCI, and a relationship between a time resource that transmits the DCI and a time resource that transmits the SRS, determine a first time resource that sends the SRS.
  • the transmitting unit 2003 can further implement other various embodiments of the S1804 in the embodiment shown in FIG. It should be understood that the various units illustrated in FIG. 20 are merely one example and may be added, combined, or interchanged in the techniques of the various units described above to implement the various steps of the embodiment illustrated in FIG.
  • FIG. 21 shows another embodiment of the terminal device of the present application, including a receiver 2101, configured to receive at least two SRS resources configured by a network device, where the number of ports of each SRS resource is 1, and each SRS resource Associated with at least two antennas, and the antenna corresponding to each of the SRS resources is different.
  • the receiver 2101 can further implement other various embodiments of S1701 in the embodiment shown in FIG.
  • the terminal device further includes a transmitter 2102, configured to perform handover transmission between antennas corresponding to each of the SRS resources in a process of sending the SRS by each SRS resource.
  • the transmitter 2102 is also used to implement other various implementations of step 1701.
  • the processor can also be used to process the received various information and perform the necessary processing before transmitting the information.
  • the terminal device may further comprise a processor for processing the received various information and performing necessary processing before transmitting the information, for example, determining parameters required to notify the terminal device in each step.
  • FIG. 22 shows another embodiment of the terminal device of the present application.
  • the terminal device may include a receiver 2201, configured to receive SRS resource configuration information of the network device, where the SRS resource configuration information is used to configure the SRS resource.
  • the receiver 2201 can further implement other various embodiments of S1801 in the embodiment shown in FIG.
  • the processor 2202 is configured to determine an antenna selection enablement.
  • the receiver 2201 is further configured to receive enable signaling.
  • the processor 2202 can further implement other various implementations of S1802 in conjunction with the receiver 2201.
  • the receiver 2201 is further configured to implement the step of receiving a trigger indication sent by the network device, where the trigger indication is used to trigger transmission of the SRS.
  • the receiver 2201 can further implement other various embodiments of S1803 in the embodiment shown in FIG.
  • the processor can also be used to process the received various information and perform the necessary processing before transmitting the information.
  • the transmitter 2203 is configured to determine, according to a time resource that receives the DCI, and a relationship between a time resource that transmits the DCI and a time resource that transmits the SRS, to determine a first time resource that sends the SRS.
  • the transmitter 2203 can further implement other various embodiments of the S1804 in the embodiment illustrated in FIG. It should be understood that the various components illustrated in FIG. 22 are merely one example and may be added, combined, or interchanged in the techniques of the various units described above to implement the various steps of the embodiment illustrated in FIG.
  • FIG. 23 shows another embodiment of the network device of the present application, including a sending unit 2301, configured to configure at least two SRS resources to the terminal device, where the number of ports of each of the SRS resources is 1, and each SRS resource Associated with at least two antennas, and the antenna corresponding to each of the SRS resources is different.
  • the association here can be a correspondence.
  • the sending unit 2301 can also implement the steps performed by the network devices of other parts in the S1701.
  • the receiving unit 2302 is configured to receive the SRS.
  • the receiving unit 2302 may further implement the steps performed by the network device of the part of the S2302, or the receiving unit may receive the SRS correspondingly according to the sending manner of the terminal. And determine the SRS sent by each resource and antenna.
  • Figure 24 illustrates yet another embodiment of a network device of the present application.
  • the sending unit 2401 is configured to send SRS resource configuration information to the terminal device.
  • the sending unit 2401 is further configured to send an enable indication to the terminal device, where the sending unit is further configured to send a trigger indication to the terminal device.
  • the transmitting unit may also perform the respective transmitting steps of S1801 to 1803 shown in FIG. 18.
  • the network device further includes a determining unit that determines parameters required to notify the terminal device in each step before performing each of the steps S1801 to S1803.
  • the network device may further include a processing unit 2402 for processing each of the received information and performing necessary processing before transmitting the information.
  • FIG. 25 shows another embodiment of the network device of the present application, including a transmitter 2501, configured to configure at least two SRS resources to the terminal device, where the number of ports of each of the SRS resources is 1, and each SRS resource is At least two antennas are associated, and the antennas corresponding to each of the SRS resources are different.
  • the association here can be a correspondence.
  • the transmitter 2501 can also implement the steps performed by the network devices of other parts of the S1701.
  • the receiver 2502 is configured to receive the SRS.
  • the receiver 2502 may also implement the steps performed by the network device of the portion of the S1702, or the receiving unit may receive the SRS correspondingly according to the sending manner of the terminal device. And determine the SRS sent by each resource and antenna.
  • the network device may further include a processor for processing the received various information and performing necessary processing before transmitting the information.
  • Figure 26 illustrates yet another embodiment of a network device of the present application.
  • the transmitter 2601 is configured to send SRS resource configuration information to the terminal device.
  • the transmitter 2601 is further configured to send an enable indication to the terminal device, where the sending unit is further configured to send a trigger indication to the terminal device.
  • the transmitting unit can also perform the respective transmitting steps of S1801 to S1803 shown in FIG. 18.
  • the network device further includes a receiver 2602 for processing each received information before performing each of the steps S1801 to S1803, and performing necessary processing before transmitting the information, for example, determining that each step needs to be notified The parameters of the terminal device.
  • a chip system includes a chip for executing instructions and a memory for storing necessary data.
  • the chip can perform the various steps illustrated in Figures 17 and 18 for storing some of the necessary process data.
  • a communication system includes a terminal device and a network device, and the network device may be a device such as the base station described above.
  • the terminal device may perform the functions performed by each of the foregoing terminal devices, and the network device may perform the functions performed by the foregoing network devices.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another readable storage medium, for example, the computer instructions can be passed from a website site, computer, server or data center Wired (eg, coaxial cable, fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD) ))Wait.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a digital versatile disc (DVD)
  • DVD digital versatile disc
  • semiconductor medium eg, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及设备,用于确定预留时隙以及预留符号,以减小SRS和上行数据之间的碰撞几率。其中的一种分配上行控制信道资源的方法包括:终端设备获得参考信息,所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数指示预留时隙,以及所述预留时隙中的预留符号;所述预留符号用于传输探测参考信号和/或物理上行控制信道,或所述预留符号不用于传输物理上行共享信道和/或物理下行共享信道;所述终端设备根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。

Description

一种通信方法及设备
本申请要求在2017年9月30日提交中国专利局、申请号为201710944064.0、申请名称为“一种通信方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及设备。
背景技术
在通信系统中,参考信号是发射端发送给接收端的一种固定信号。由于接收端对这种信号已知,则接收端可以通过处理接收到的信号和发射端的信号得到系统或者信道相关的信息,例如信道参数、信道质量、或发射端或者接收端器件引起的信号相位旋转等。探测参考信号(sounding reference signal,SRS)是参考信号的一种,可以用于上行信道质量测量,下行信道质量测量,上行波束管理等功能。
而在第五代移动通信技术(5G)新无线(new radio,NR)系统中,终端设备如何确定小区中的终端设备传输SRS的时隙(slot),以减少SRS和上行数据之间的碰撞,成为了亟待解决的问题。
发明内容
本申请提供一种通信方法及设备,用于确定预留时隙以及预留符号,以减小SRS和上行数据之间的碰撞几率。
第一方面,提供一种通信方法,该方法可由终端设备执行。该方法包括:终端设备获得参考信息,所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数指示预留时隙,以及所述预留时隙中的预留符号;所述预留符号用于传输探测参考信号和/或物理上行控制信道,或所述预留符号不用于传输物理上行共享信道和/或物理下行共享信道;所述终端设备根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。
相应的,第二方面,提供一种通信方法,该方法可由网络设备执行,网络设备例如为基站。该方法包括:网络设备获得参考信息,所述参考信息以及终端设备的子载波间隔或所述终端设备的系统参数指示预留时隙,以及所述预留时隙中的预留符号;所述预留符号用于传输探测参考信号和/或物理上行控制信道,或所述预留符号不用于传输物理上行共享信道和/或物理下行共享信道;所述网络设备根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。
本申请实施例中,终端设备可以根据参考信息以及参考信息以及终端设备的子载波间隔或终端设备的系统参数,确定预留时隙,以及预留时隙中的预留符号,例如预留符号可以用于传输探测参考信号和/或物理上行控制信道,则终端设备在预留符号中可以不发送上 行数据,以减少探测参考信号和上行数据之间的碰撞,提高系统性能。
在一个可能的设计中,所述参考信息包括参考时间单元的长度、参考系统参数、及参考子载波间隔中的至少一种。
其中,系统参数例如为numerology。参考信息就是定义一个公共信息,小区中的各终端设备以及网络设备都可根据参考信息来确定预留时隙以及预留符号,从而避免因不同的终端设备对于时间单元的长度的理解不同而导致不同的终端设备所确定的预留时隙不能对齐,致使SRS和PUSCH之间产生碰撞。通过本申请实施例提供的方案,显然能够减小SRS和PUSCH碰撞的几率。
在一个可能的设计中,终端设备获得所述参考时间单元的长度或所述参考系统参数,包括:所述终端设备从网络设备接收第一通知信令,所述终端设备从所述第一通知信令获得所述参考时间单元的长度;所述参考时间单元的长度为所述终端设备所在的通信系统所支持的最大时间调度单元的长度;或,所述终端设备从网络设备接收第二通知信令,所述终端设备从所述第二通知信令获得所述参考系统参数;所述参考系统参数的索引为所述通信系统所支持的系统参数的最小索引;或,所述终端设备根据所述终端设备所在的载波所在的频段,以及频段与子载波间隔之间的映射关系,确定参考子载波间隔,并确定所述参考子载波间隔的最小时间调度单元的长度为所述参考时间单元的长度;或,所述终端设备根据所述终端设备所在的载波所在的频段、频段与子载波间隔之间的映射关系、以及子载波间隔与系统参数之间的映射关系,确定所述参考系统参数。相应的,所述网络设备向所述终端设备发送第一通知信令,所述第一通知信令用于指示所述参考时间单元的长度;所述参考时间单元的长度为所述终端设备所在的通信系统所支持的最大时间调度单元的长度;或,所述网络设备向所述终端设备发送第二通知信令,所述第二通知信令用于指示所述参考系统参数;所述参考系统参数的索引为所述通信系统所支持的系统参数的最小索引。
本申请实施例中,终端设备可以根据网络设备发送的第一通知信令获得参考信息,则终端设备只需接收通知信令即可,无需过多的工作,有助于减小终端设备的功耗。或者,终端设备也可以自行确定参考信息,例如根据所述终端设备所在的载波所在的频段以及其他信息确定参考信息,无需网络设备通知,减少信令交互,节省传输资源。
在一个可能的设计中,所述终端设备还从网络设备接收第i个指示信息,所述第i个指示信息包括至少一个比特;所述第i个指示信息属于信令组,所述信令组包括至少一个指示信息,i为指示信息在信令组中的索引,所述信令组包括的指示信息用于指示所述预留时隙,以及所述预留时隙中的预留符号;则,所述终端设备根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号,包括:所述终端设备根据所述第i个指示信息、所述参考信息、所述信令组包括的指示信息的数量、以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。相应的,所述网络设备还向所述终端设备发送第i个指示信息,所述第i个指示信息包括至少一个比特;所述第i个指示信息属于信令组,所述信令组包括至少一个指示信息,i为指示信息在信令组中的索引,所述信令组包括的指示信息用于指示所述预留时隙,以及所述预留时隙中的预留符号。
通过信令组包括的指示信息就可以直接确定预留时隙和预留符号,无需过多的步骤,方式较为简单易行。
在一个可能的设计中,所述终端设备根据所述第i个指示信息、所述参考信息、所述信令组包括的指示信息的数量、以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号,包括:
当所述第i个指示信息包括至少一个比特的取值属于第一取值范围时,确定从根据如下公式计算的时隙的最后一个符号开始向前的S i×Δf/Δf R个符号为所述预留符号:
Figure PCTCN2018108757-appb-000001
其中,
Figure PCTCN2018108757-appb-000002
为时隙的编号,s i为所述第i个指示信息包括的至少一个比特的取值,Δf为所述终端设备的子载波间隔,Δf R为所述参考时间单元对应的参考子载波间隔,mod为取模运算,M为所述信令组包括的指示信息的数量。
在一个可能的设计中,所述终端设备根据所述第i个指示信息、所述参考信息、所述信令组包括的指示信息的数量、以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号,包括:
当所述第i个指示信息包括至少一个比特的取值属于第一取值范围时,确定从根据如下公式计算的时隙的最后一个符号开始向前的S i×μ/μ R个符号为所述预留符号:
Figure PCTCN2018108757-appb-000003
其中,
Figure PCTCN2018108757-appb-000004
为时隙的编号,s i为所述至少一个比特的取值,μ为所述终端设备的系统参数,μ R为所述参考时间单元对应的系统传输,mod表示取模运算,M为所述信令组包括的指示信息的数量。
在一个可能的设计中,所述至少一个比特为bitmap;所述终端设备根据所述第i个指示信息、所述参考信息、所述信令组包括的指示信息的数量、以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号,包括:
对于满足如下公式
Figure PCTCN2018108757-appb-000005
的时隙中,确定所述第i个指示信息包括的至少一个比特中的第k个比特为1,则编号为k×Δf/Δf R(k+1)×Δf/Δf R-1的符号为所述预留符号;和/或,
对于满足
Figure PCTCN2018108757-appb-000006
的时隙中,确定所述第i个指示信息包括的至少一个比特中的第k个比特为1,则编号为k×μ/Δμ R(k+1)×μ/Δμ R-1的符号为所述预留符号;
其中,
Figure PCTCN2018108757-appb-000007
为时隙的编号,s i为所述bitmap,Δf为所述终端设备的子载波间隔,Δf R为所述参考时间单元对应的参考子载波间隔,μ为所述终端设备的系统参数,μ R为所述参考时间单元对应的系统传输,mod表示取模运算,M为所述信令组包括的指示信息的数量。
第三方面,提供一种通信方法,该方法可由终端设备执行。该方法包括:终端设备从网络设备接收第三通知信令;所述终端设备根据所述第三通知信令确定预留时隙,所述预留时隙用于传输探测参考信号和/或物理上行控制信道,或所述预留时隙不用于传输物理上行共享信道和/或物理下行共享信道;所述第三通知信令包括如下的至少一种配置:探测参考信号的传输周期为4个时隙;探测参考信号的传输周期为8个时隙;探测参考信号的传输周期为640个时隙;探测参考信号的传输周期为1280个时隙;探测参考信号的传输周期为预留数量个时隙。
相应的,第四方面,提供一种通信方法,该方法可由网络设备执行,网络设备例如为基站。该方法包括:网络设备生成第三通知信令,所述第三通知信令用于指示预留时隙, 所述预留时隙用于传输探测参考信号和/或物理上行控制信道,或所述预留时隙不用于传输物理上行共享信道和/或物理下行共享信道,所述网络设备向终端设备发送所述第三通知信令;所述第三通知信令包括如下的至少一种配置:探测参考信号的传输周期为4个时隙;探测参考信号的传输周期为8个时隙;探测参考信号的传输周期为640个时隙;探测参考信号的传输周期为1280个时隙;探测参考信号的传输周期为预留数量个时隙。
在一个可能的设计中,第三通知信令包括如下的至少一种配置:
探测参考信号的第一配置索引为637~640,探测参考信号的传输周期为4个时隙,探测参考信号的传输偏移为所述第一配置索引与637的差值;
探测参考信号的第二配置索引为641~648,探测参考信号的传输周期为8个时隙,探测参考信号的传输偏移为所述第二配置索引与641的差值;
探测参考信号的第三配置索引为649~1288,探测参考信号的传输周期为640个时隙,探测参考信号的传输偏移为所述第三配置索引与650的差值;
探测参考信号的第四配置索引为1289~2568,探测参考信号的传输周期为1280个时隙,探测参考信号的传输偏移为所述第三配置索引与1289的差值;
探测参考信号的第五配置索引为2569~4095,探测参考信号的传输周期为预留数量个时隙,探测参考信号的传输偏移为所述第三配置索引与所述预留数量的差值。
通过本申请实施例提供的技术方案,能够有效通过第三通知信令的配置来避免15KHz的终端设备的SRS和30/60KHz的终端设备的PUSCH传输的碰撞。
第五方面,提供一种终端设备。该终端设备具有实现上述方法设计中终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该终端设备的具体结构可包括处理器。可选的,该终端设备还可以包括收发器。处理器和收发器可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第六方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理器。可选的,该网络设备还可以包括收发器。处理器和收发器可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第七方面,提供一种终端设备。该终端设备具有实现上述方法设计中终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该终端设备的具体结构可包括处理器和收发器。处理器和收发器可执行上述第三方面或第三方面的任意一种可能的设计所提供的方法中的相应功能。
第八方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理器和收发器。处理器和收发器可执行上述第四方面或第四方面的任意一种可能的设计所提供的方法中的相应功能。
第九方面,提供一种终端设备。该终端设备具有实现上述方法设计中终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该终端设备的具体结构可包括处理模块。可选的,该终端设备还可以包括收发模块。处理模块和收发模块可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第十方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理模块。可选的,该网络设备还可以包括收发模块。处理模块和收发模块可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第十一方面,提供一种终端设备。该终端设备具有实现上述方法设计中终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该终端设备的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第三方面或第三方面的任意一种可能的设计所提供的方法中的相应功能。
第十二方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第四方面或第四方面的任意一种可能的设计所提供的方法中的相应功能。
第十三方面,提供一种通信装置。该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第一方面或第一方面的任意一种可能的设计中终端设备所执行的方法。
第十四方面,提供一种通信装置。该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第二方面或第二方面的任意一种可能的设计中网络设备所执行的方法。
第十五方面,提供一种通信装置。该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第三方面或第三方面的任意一种可能的设计中终端设备所执行的方法。
第十六方面,提供一种通信装置。该通信装置可以为上述方法设计中的网络设备,或 者为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第四方面或第四方面的任意一种可能的设计中网络设备所执行的方法。
第十七方面,提供一种通信系统,该通信系统包括网络设备和终端设备。其中,终端设备,用于获得参考信息,所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数指示预留时隙,以及所述预留时隙中的预留符号;所述预留符号用于传输探测参考信号和/或物理上行控制信道,或所述预留符号不用于传输物理上行共享信道和/或物理下行共享信道;根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号;网络设备,用于获得参考信息,所述参考信息以及终端设备的子载波间隔或所述终端设备的系统参数指示预留时隙,以及所述预留时隙中的预留符号;所述预留符号用于传输探测参考信号和/或物理上行控制信道,或所述预留符号不用于传输物理上行共享信道和/或物理下行共享信道;根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。
第十八方面,提供一种通信系统,该通信系统包括网络设备和终端设备。其中,终端设备,用于从网络设备接收第三通知信令;根据所述第三通知信令确定预留时隙,所述预留时隙用于传输探测参考信号和/或物理上行控制信道,或所述预留时隙不用于传输物理上行共享信道和/或物理下行共享信道;网络设备,用于生成第三通知信令,所述第三通知信令用于指示预留时隙,所述预留时隙用于传输探测参考信号和/或物理上行控制信道,或所述预留时隙不用于传输物理上行共享信道和/或物理下行共享信道;向终端设备发送所述第三通知信令;其中,所述第三通知信令包括如下的至少一种配置:探测参考信号的传输周期为4个时隙;探测参考信号的传输周期为8个时隙;探测参考信号的传输周期为640个时隙;探测参考信号的传输周期为1280个时隙;探测参考信号的传输周期为预留数量个时隙。
第十九方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第二十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第二十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计中所述的方法。
第二十二方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
第二十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第二十四方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第二十五方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计中所述的方法。
第二十六方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
本申请实施例中,终端设备可以确定预留时隙以及预留时隙中的预留符号,例如预留符号可以用于传输探测参考信号和/或物理上行控制信道,则终端设备在预留符号中可以不发送上行数据,以减少探测参考信号和上行数据之间的碰撞,提高系统性能。
附图说明
图1A为子载波间隔是15KHz时subframe与slot、以及Mini-slot的示意;
图1B为子载波间隔是30KHz时slot与Mini-slot的示意;
图1C为子载波间隔是60KHz时slot与Mini-slot的示意;
图2为不同的子载波间隔的终端设备所理解的用于传输SRS的时隙的示意图;
图3为本申请实施例的一种应用场景示意图;
图4为本申请实施例提供的一种通信方法的示意图;
图5为本申请实施例中将时隙中部的符号确定为预留符号的示意图;
图6为本申请实施例中不同的子载波间隔的终端设备确定的预留时隙对齐的示意图;
图7为两种不同的子载波间隔的传输在频域上具有频域保护间隔的示意图;
图8为本申请实施例提供的通过一个信令组指示预留时隙和预留符号的示意图;
图9为本申请实施例提供的通过一个信令组以bitmap的形式指示预留时隙和预留符号的示意图;
图10为本申请实施例提供的通过一个信令组指示预留时隙和预留符号的示意图;
图11为本申请实施例提供的另一种通信方法的示意图;
图12为本申请实施例提供的终端设备的一种结构示意图;
图13为本申请实施例提供的网络设备的一种结构示意图;
图14为本申请实施例提供的终端设备的一种结构示意图;
图15为本申请实施例提供的网络设备的一种结构示意图;
图16A-图16B为本申请实施例提供的通信装置的结构示意图;
图17为本申请实施例提供的另一种通信方法的示意图;
图18为本申请实施例提供的另一种通信方法的示意图;
图19为本申请实施例提供的终端设备的一种结构示意图;
图20为本申请实施例提供的终端设备的一种结构示意图;
图21为本申请实施例提供的终端设备的一种结构示意图;
图22为本申请实施例提供的终端设备的一种结构示意图;
图23为本申请实施例提供的网络设备的一种结构示意图;
图24为本申请实施例提供的网络设备的一种结构示意图;
图25为本申请实施例提供的网络设备的一种结构示意图;
图26为本申请实施例提供的网络设备的一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备:也可以称之为终端,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G NR系统中的下一代节点B(next generation node B,gNB),本申请实施例并不限定。
3)在LTE系统中,一个载波内数据的传输使用15KHz的子载波间隔。在NR系统中,一个载波内的数据传输可以使用多种子载波间隔,不同的子载波间隔对应不同的系统参数(numerology)。如表1所示,numerology包括多种配置,numerology的配置用μ表示,numerology的配置可包括子载波间隔配置和循环前缀(cyclic prefix,CP)配置等。
表1
μ Δf=2 μ·15[kHz] 循环前缀
0 15 普通(Normal)
1 30 Normal
2 60 Normal,扩展(Extended)
3 120 Normal
4 240 Normal
5 480 Normal
其中,Δf为终端设备的子载波间隔。
目前NR系统中一共支持6种子载波间隔配置,在不同的载波频段支持不同的子载波间隔选项,如表2所示。
表2
Figure PCTCN2018108757-appb-000008
在LTE系统中,数据的调度单元为一个子帧,其中包含2个时隙,每个时隙包含7个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。在NR系统中,由于多子载波间隔的引入,数据的调度单元定义为14个普通循环前缀(NCP)OFDM符号的时隙,或者12个扩展循环前缀(ECP)OFDM符号的时隙,而1个子帧则对应绝对时间长度1ms。在本申请实施例中,如无特殊声明,则“符号”均是指OFDM符号。
请参见表3,为对于普通循环前缀来说,在不同的numerology的配置下的时隙配置(slot_configuration),即,一个时隙包括多少个符号,一个帧包括多少个时隙,以及一个子帧包括多少个时隙的示意。
表3
Figure PCTCN2018108757-appb-000009
例如,μ=0时,一个时隙包括14个符号,一个帧包括10个时隙,一个子帧包括1个时隙。
请参见表4,为对于扩展循环前缀来说,在不同的numerology的配置下的slot_configuration,即,一个时隙包括多少个符号,一个帧包括多少个时隙,以及一个子帧包括多少个时隙的示意。
表4
Figure PCTCN2018108757-appb-000010
例如,μ=2时,一个时隙包括12个符号,一个帧包括40个时隙,一个子帧包括4个时隙。
4)NR系统中支持多种子载波间隔来适应不同的业务需求。在频域上,NR系统支持的子载波间隔的计算方式为f sc=f 0*2 m。其中,f 0=15kHz,m是整数。在时域上,提供了如下一些时间单位,包括:
■子帧(subframe),1个subframe的长度为1ms,在15kHz子载波间隔的numerology下包括14个OFDM符号。在1个subframe内,对15kHz以及15kHz以上的子载波间隔的各种numerology的符号边界是对齐的。其中,如无特殊说明,则下文中的“符号”均是指OFDM符号。
■时隙(slot),是一种可能的调度单元的时间长度。1个slot包括当前使用的numerology下的y个符号。1个subframe中包括整数个slot。例如,在子载波间隔是60KHz以下的情况时,y=7;在子载波间隔是60kHz以上的情况时,y=14。
■迷你时隙(mini-slot),是调度单元的最小时间长度。1个Mini-slot包括的OFDM符号可以小于当前使用的numerology下的y个符号。
可参考图1A、图1B和图1C,其中图1A为子载波间隔是15KHz时subframe与slot、以及Mini-slot的示意,图1B为子载波间隔是30KHz时slot与Mini-slot的示意,图1C为子载波间隔是60KHz时slot与Mini-slot的示意。
4)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本文所提供的技术方案可以应用于5G NR系统(下文简称NR系统),或者下一代移动通信系统,或者是其他类似的通信系统。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术背景。
在LTE系统中,对于需要传输SRS的终端设备,基站可通过小区级信令SRS子帧配置(srs-SubframeConfig)和用户级信令I SRS确定该终端设备用于传输SRS的子帧号。且一般配置子帧中的最后一个符号(对于时分双工(time division duplexing,TDD)模式下的特殊子帧,则为最后两个符号)可以用来传输SRS。
小区级信令srs-SubframeConfig可以用于指示确定小区中含有SRS传输资源的子帧号,即小区中的终端设备可通过srs-SubframeConfig获知在小区中可以通过哪些子帧传输SRS。srs-SubframeConfig可以配置SRS子帧配置周期(configuration period)T SFC和传输偏移 (transmission offset)Δ SFC等,配置单元均为子帧。具体的,满足
Figure PCTCN2018108757-appb-000011
的子帧可以用来发送SRS,其中n s为一个帧内的时隙号。
以TDD系统为例,srs-SubframeConfig如表5所示。
表5
srs-SubframeConfig 二进制(Binary) 配置周期T SFC(子帧) 传输偏移Δ SFC(子帧)
0 0000 5 {1}
1 0001 5 {1,2}
2 0010 5 {1,3}
3 0011 5 {1,4}
4 0100 5 {1,2,3}
5 0101 5 {1,2,4}
6 0110 5 {1,3,4}
7 0111 5 {1,2,3,4}
8 1000 10 {1,2,6}
9 1001 10 {1,3,6}
10 1010 10 {1,6,7}
11 1011 10 {1,2,6,8}
12 1100 10 {1,3,6,9}
13 1101 10 {1,4,6,7}
14 1110 预留(reserved) reserved
15 1111 reserved reserved
例如,srs-SubframeConfig的取值为0时表示配置索引为0,则T SFC为5,Δ SFC为{1},表明每5个子帧中的第一个子帧可用于发送SRS,则一个帧内可以用于发送SRS的子帧为子帧1和子帧6。
在LTE系统中,为了避免终端设备1的SRS传输和终端设备2的物理上行共享信道(physical uplink shared channel,PUSCH)传输碰撞,终端设备可通过小区级信令srs-SubframeConfig得知小区内所有终端设备可能传输SRS的子帧号,那么小区内所有终端设备在这些子帧内的最后一个符号都不传输PUSCH,以避免SRS与PUSCH之间产生碰撞。
用户级信令I SRS可用于指示一个终端设备用于传输SRS的子帧号,当然这也同时受限于srs-SubframeConfig的配置。I SRS配置包括SRS传输周期(periodicity)T SRS和子帧偏移(subframe offset)T offset
在TDD系统中,用户级信令I SRS配置如表6所示。
表6
Figure PCTCN2018108757-appb-000012
Figure PCTCN2018108757-appb-000013
具体的,当T SRS>2时,终端设备在满足(10·n f+k SRS-T offset)modT SRS=0的子帧上发送SRS;当T SRS=2时,终端设备在满足(k SRS-T offset)mod5=0的子帧上发送SRS。其中n f为帧号,mod表示取模运算。
其中,TDD特殊子帧内的上行导频时隙(UpPTS)的数目小于或等于2时,k SRS的取值如表7所示。
表7
Figure PCTCN2018108757-appb-000014
NR系统支持多种numerology,在NR系统中,如果SRS的小区级信令的时隙配置srs-SubframeConfig仍然以子帧(1ms)作为配置单元,那么例如使用240KHz的子载波间隔 传输的终端设备,在最快的情况下,每16个时隙才会出现一次SRS的传输机会,使得信道信息的获取过慢。
再者,如果SRS的小区级信令的时隙配置srs-SubframeConfig以时隙作为配置单元,由于NR系统中,一个载波中可能存在多种子载波间隔传输,以不同的子载波间隔传输的终端设备对于一个时隙持续时间的理解不一致,会出现不同终端设备的SRS和PUSCH传输碰撞问题。可参考图2,对于分别按照15KHz、30KHz、60KHz的子载波间隔传输的终端设备来说,小区级信令均指示该小区中的时隙2、3、6、7用于传输SRS,但对于按照不同的子载波间隔传输的终端设备来说,所理解的时隙2、3、6、7的位置是不同的,例如15KHz的终端设备所理解的时隙2,实际上与30KHz的终端设备所理解的时隙4、5的时间一致,30KHz的终端设备可能会在30KHz的终端设备理解的时隙4、5传输PUSCH,而15KHz的终端设备可能会在15KHz的终端设备理解的时隙2传输SRS,则SRS和PUSCH就会产生碰撞。
鉴于此,提供本申请实施例的技术方案,能够减小SRS和PUSCH碰撞的几率。
本文提供的技术方案可应用于NR系统,或下一代通信系统,或其他可能的通信系统。
下面介绍本申请实施例的一种应用场景,请参考图3,为该应用场景的示意图。图3中包括网络设备和终端设备,其中网络设备可为终端设备分配上行控制信道资源,从而终端设备可以通过分配的上行控制信道资源向网络设备发送应答信息。图3中的网络设备例如为接入网(access network,AN)设备,例如基站。其中,因为本申请实施例的方案主要涉及的是接入网设备和终端设备,因此图3中未画出核心网设备。其中,接入网设备例如为NR系统中的gNB。另外,实际可能有多个终端设备接入了该网络设备,图3是以一个终端设备为例。
下面结合附图介绍本申请实施例提供的技术方案。
请参见图4,本申请实施例提供一种通信方法,在下文的介绍过程中,以该方法应用在图3所示的应用场景为例。该方法的流程介绍如下。
S41、终端设备获得参考信息。所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数指示预留时隙,以及所述预留时隙中的预留符号;所述预留符号用于传输探测参考信号和/或物理上行控制信道,或所述预留符号不用于传输物理上行共享信道和/或物理下行共享信道;
S42、所述终端设备根据参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。
S43、所述终端设备在所述预留符号上发送探测参考信号和/或物理上行控制信道,则所述网络设备在所述预留符号上接收探测参考信号和/或物理上行控制信道,或,所述终端设备在所述预留符号上发送除了物理上行共享信道之外的其他信息,则所述网络设备在所述预留符号上接收除了物理上行共享信道之外的其他信息,或,所述终端设备在所述预留符号上接收除了物理下行共享信道之外的其他信息,则所述网络设备在所述预留符号上发送除了物理下行共享信道之外的其他信息。
其中,S43为可选的步骤。
其中,预留符号不用于传输物理上行共享信道和/或物理下行共享信道,和预留符号用于传输探测参考信号和/或物理上行控制信道,可以认为是相应的方案,例如,预留符号不用于传输物理上行共享信道和/或物理下行共享信道,就可以包括了预留符号用于传输探测 参考信号和/或物理上行控制信道的方案。本申请实施例中,预留时隙和预留符号可以是小区级的,例如是指该终端设备所在的小区中的预留时隙和预留符号,即该终端设备所在的小区中的终端设备均使用预留符号传输探测参考信号和/或物理上行控制信道,或该终端设备所在的小区中的终端设备均不使用预留符号传输物理上行共享信道和/或物理下行共享信道;或者,预留时隙和预留符号也可以是用户级的,即该终端设备使用预留符号传输探测参考信号和/或物理上行控制信道,或该终端设备不使用预留符号传输物理上行共享信道和/或物理下行共享信道。
本申请实施例中,为了解决以不同的子载波间隔传输的终端设备对于一个时隙的持续时间的理解不一致的问题,提供参考信息,参考信息可以包括参考时间单元的长度、参考系统参数、以及参考子载波间隔中的至少一种,参考信息是一个小区所共用的,小区中的所有终端设备和网络设备都可以通过该参考信息来确定时隙的持续时间,这样就可以减小因为对时隙的持续时间不一致而导致SRS和PUSCH碰撞的几率。
但是需要注意的是,对于一个NR载波,最好不要任意配置参考信息。例如对于1~6GHz的频段,一个NR载波上可能有15/30/60KHz的终端设备传输。如果将参考时间单元的长度(本文以T U表示,或者也可以将T U理解为参考时间单元本身)配置为0.5ms,srs-SlotConfig配置为表8中的配置8。则如图5中所示,30/60KHz的终端设备可以通过本文后续将要介绍的判断准则获知预留时隙,即便15KHz的终端设备可以通过某些判断准则获知预留时隙,可以看到,一方面为了与60KHz的终端设备确定的预留时隙对齐,则15KHz的终端设备确定的预留时隙中的预留符号包括时隙1的中部位置的符号,而时隙中部的符号一般都具有较好的信道估计性能,如果终端设备确定其预留符号,则终端设备不会再在这些符号上传输PUSCH或解调参考信号(demodulation reference signal,DMRS)等,会造成性能损失。另一方面,如图5所示,每个时隙内能够用来传输SRS的符号会不一致,导致符号级的配置变得很复杂。
因此参考信息的配置较为重要。下面介绍几种终端设备获得参考信息的方式。
方式一、信令通知方式。
例如网络设备可以向终端设备发送第一通知信令,第一通知信令用于指示参考时间单元的长度,例如指示T U的长度,或者理解为指示T U,则终端设备从网络设备接收第一通知信令,终端设备根据第一通知信令就可以确定T U的长度。例如,T U为该终端设备所在的通信系统所支持的最大时间调度单元的长度,或者T U为该终端设备的工作频段所在的载波所支持的最大时间调度单元的长度。例如,该终端设备所在的通信系统共支持15KHz的子载波间隔和30KHz的子载波间隔,则该通信系统支持的时间调度单元的长度包括15KHz的子载波间隔支持的时间调度单元的长度1ms,以及30KHz的子载波间隔支持的时间调度单元的长度0.5ms,则该通信系统所支持的最大时间调度单元的长度就是1ms。或者该终端设备所在的通信系统所支持的最大时间调度单元的长度也可以由网络设备自行定义,本申请实施例不做限制。或者例如,该终端设备的工作频段所在的载波共支持15KHz的子载波间隔和30KHz的子载波间隔,则该载波支持的时间调度单元的长度包括15KHz的子载波间隔支持的时间调度单元的长度1ms,以及30KHz的子载波间隔支持的时间调度单元的长度0.5ms,则该载波所支持的最大时间调度单元的长度就是1ms。或者该载波所支持的最大时间调度单元的长度也可以由网络设备自行定义,本申请实施例不做限制。
例如,T U的单位为毫秒(ms),T U的长度取值属于但不限于集合{1ms,0.5ms,0.25ms, 0.125ms,0.0625ms,0.0375ms}。
或者,网络设备可以向终端设备发送第二通知信令,第二通知信令可以指示参考numerology的配置(本文以μ R表示,具体的,μ R可以表示参考numerology的索引),,则终端设备从网络设备接收第二通知信令,终端设备根据第二通知信令就可以确定μ R。μ R的取值属于集合{0,1,2,3,4,5},例如,第二通知信令所指示的μ R为该终端设备所在的通信系统支持的numerology的最小索引,或者,第二通知信令所指示的μ R为该终端设备的工作频段所在的载波支持的numerology的最小索引。例如,该终端设备所在的通信系统共支持15KHz的子载波间隔和30KHz的子载波间隔,根据表1可知,15KHz的子载波间隔对应的numerology的索引为0,30KHz的子载波间隔对应的numerology的索引为1,则该通信系统支持的numerology的最小索引为0。或者该通信系统所支持的numerology的最小索引也可以由网络设备自行定义,本申请实施例不做限制。或者例如,该终端设备的工作频段所在的载波共支持15KHz的子载波间隔和30KHz的子载波间隔,根据表1可知,15KHz的子载波间隔对应的numerology的索引为0,30KHz的子载波间隔对应的numerology的索引为1,则该载波支持的numerology的最小索引为0。或者该载波所支持的numerology的最小索引也可以由网络设备自行定义,本申请实施例不做限制。
或者,网络设备可以向终端设备发送第四通知信令,第四通知信令可以指示参考子载波间隔,则终端设备从网络设备接收第四通知信令,终端设备根据第四通知信令就可以确定参考子载波间隔。例如,第四通知信令所指示的子载波间隔为该终端设备所在的通信系统支持的最小子载波间隔。例如,该终端设备所在的通信系统共支持15KHz的子载波间隔和30KHz的子载波间隔,则该通信系统所支持的最小子载波间隔为15KHz。或者该通信系统所支持的最小子载波间隔也可以由网络设备自行定义,本申请实施例不做限制。或者例如,该终端设备的工作频段所在的载波共支持15KHz的子载波间隔和30KHz的子载波间隔,则该载波所支持的最小子载波间隔为15KHz。或者该载波所支持的最小子载波间隔也可以由网络设备自行定义,本申请实施例不做限制。
其中,该终端设备所在的通信系统支持的子载波间隔,与该终端设备的工作频段所在的载波所支持的子载波间隔,二者不是同一概念。例如该终端设备的工作频段所在的载波的频段属于1~6GHz,则根据表2可知,该载波支持的子载波间隔包括15/30/60KHz,而工作在该载波中的通信系统可能又有各自的频段,而不同的通信系统不一定均支持15/30/60KHz,例如可能有的通信系统支持其中的15KHz,有的通信系统支持其中的30/60KHz,因此,终端设备所在的通信系统支持的最小子载波间隔,与该终端设备的工作频段所在的载波所支持的最小子载波间隔,可能是不同的。同样以该终端设备的工作频段所在的载波的频段属于1~6GHz为例,则该载波支持的最小子载波间隔为15KHz,而例如工作在该载波的某个通信系统支持的子载波间隔为30/60KHz,那么该通信系统支持的最小子载波间隔就是30KHz。
方式二、隐式确定方式。
例如终端设备根据该终端设备的工作频段所在的载波所在的频隐性确定T U的长度。例如。根据表2,对于小于6GHz的频段,最小子载波间隔为15KHz,则T U的长度为1ms,对于24~52.6GHz的频段,最小子载波间隔为60KHz,则T U的长度为0.25ms。这里的前提是,确定该终端设备的工作频段所在的载波支持的最小子载波间隔对应的时间调度单元为T U。例如,15KHz的子载波间隔对应的时间调度单元的长度为1ms,30KHz的子载波间 隔对应的时间调度单元的长度为0.5ms。
或者,终端设备根据该终端设备的工作频段所在的载波所在的频段、频段与子载波间隔之间的映射关系、以及子载波间隔与系统参数之间的映射关系,隐性确定μ R的取值。例如,根据表2所示的频段与子载波间隔之间的映射关系,对于小于6GHz的频段,最小子载波间隔为15KHz,再根据表3所示的子载波间隔与系统参数之间的映射关系可知μ R=0,对于24~52.6GHz的频段,最小子载波间隔为60KHz,再根据表3可知μ R=2。这里的前提是,确定该终端设备的工作频段所在的载波支持的最小子载波间隔对应的numerology的索引为μ R
例如终端设备根据该终端设备的工作频段所在的载波所在的频段,以及频段与子载波间隔之间的映射关系隐性确定参考子载波间隔。例如。根据表2所示的频段与子载波间隔之间的映射关系,对于小于6GHz的频段,最小子载波间隔为15KHz,对于24~52.6GHz的频段,最小子载波间隔为60KHz。这里的前提是,确定该终端设备的工作频段所在的载波支持的最小子载波间隔为参考子载波间隔。
如上介绍的确定参考信息的方式只是示例,本申请实施例不做限制。
要确定预留时隙以及预留符号,除了要使用参考信息,以及所述终端设备的子载波间隔或所述终端设备的numerology,之外,还要使用SRS的配置周期T SC以及SRS的传输偏移Δ SC。因此在S42之前,网络设备可以发送小区级信令,因为NR系统是以时隙为配置单元,因此小区级信令可称为srs-SlotConfig。例如srs-SlotConfig的配置如表8所示,本申请实施例中,srs-SlotConfig的配置包括表8中的至少一种。
表8
Figure PCTCN2018108757-appb-000015
例如,srs-SlotConfig的取值为1001代表srs-SlotConfig的配置为9,则对应SRS的配置周期T SC为10个T U,SRS的传输偏移Δ SC为{0},表示每10个T U中的第0个T U用于传输SRS,或者理解为每10个T U中的第0个T U为预留的T U,若T U为时隙,则每10个T U中的第0个T U为预留的时隙。
作为一种示例,对于子载波间隔为Δf的终端设备,确定同时满足以下两个条件的时隙号:
Figure PCTCN2018108757-appb-000016
Figure PCTCN2018108757-appb-000017
是时隙在一个子帧内的编号,
Figure PCTCN2018108757-appb-000018
是时隙在一个帧内的编号,实际上
Figure PCTCN2018108757-appb-000019
Figure PCTCN2018108757-appb-000020
指示的是同一个时隙,只是编号方式不同。
同时满足以上两个条件的时隙号
Figure PCTCN2018108757-appb-000021
所对应的时隙就是预留时隙。本文中,同一参数的定义相同,因此,后文中如有相同的参数则不再过多解释。
请参考图6,以T U的长度是1为例,则15KHz的终端设备可以确定预留时隙为时隙2、3、7、8,30KHz的终端设备可以确定预留时隙为时隙5、7、15、17,60KHz的终端设备可以确定预留时隙为时隙11、15、31、35。例如,15KHz的终端设备确定的时隙2的结束时间、30KHz的终端设备确定的时隙5的结束时间、及60KHz的终端设备确定的时隙11的结束时间是相同的,即,不同的numerology的终端设备所确定的预留时隙是对齐的,从而避免了不同的终端设备在同一个时刻分别发送SRS和PUSCH,减小了SRS和PUSCH碰撞的几率。
在如前的示例中,终端设备是通过T U的长度确定预留时隙,即参考信息包括T U的长度,作为另一种示例,终端设备也可以通过numerology的配置确定预留时隙,即参考信息包括参考numerology。
例如,终端设备通过网络设备发送的信令获得参考numerology的配置,表示为μ R,μ R的取值属于集合{0,1,2,3,4,5},终端设备可以相应确定T SC和Δ SC的配置单元T U的长度,例如T U的长度为1/2 μms。
对于子载波间隔为Δf的终端设备,确定同时满足以下两个条件的时隙号:
Figure PCTCN2018108757-appb-000022
Figure PCTCN2018108757-appb-000023
其中,
Figure PCTCN2018108757-appb-000024
表示确定的时隙号,Δf表示该终端设备的子载波间隔,μ表示该终端设备的numerology的配置,
Figure PCTCN2018108757-appb-000025
表示numerology的配置为μ时一个子帧包括的时隙的数量,
Figure PCTCN2018108757-appb-000026
表示向下取整。
该示例同样可以参考图6。可见,无论通过以上哪个示例确定预留时隙,不同的numerology的终端设备所确定的预留时隙都是对齐的,从而避免了不同的终端设备在同一个时刻分别发送SRS和PUSCH,减小了SRS和PUSCH碰撞的几率。
如前介绍的都是确定预留时隙,而一个预留时隙可能包括多个符号,如果要减少SRS和PUSCH的碰撞几率,除了要确定预留时隙之外,还需要确定在预留时隙中究竟通过哪些符号传输SRS。
在NR系统中,终端设备在一个时隙中能够在多个连续的符号上进行传输,则一个预 留时隙中能够预留给SRS传输的符号数量也应当是可以配置的。在一个预留时隙中,为了尽量不影响PUSCH和DMRS等的传输,预留给SRS传输的符号最好在最后几个符号。
由于NR系统的一个载波中支持多种不同的子载波间隔的数据传输,SRS传输使用的子载波间隔与上行数据传输的子载波间隔一致,那么一个NR载波内可能存在多种子载波间隔的SRS传输。例如,当一个NR载波内可能存在15KHz的终端设备和30KHz的终端设备的SRS传输,15KHz的终端设备的SRS传输和30KHz的终端设备的SRS传输不能使用频分复用(frequency division multiplexing,FDM)的复用方法,因为两种不同的子载波间隔的传输在频域上需要频域保护间隔(guard band),可参考图7,这样会造成网络设备无法获得某些频段的信道信息,同时对SRS的传输的带宽大小带来限制。因此,不同的子载波间隔的SRS传输只能使用时分复用(time division multiplexing,TDM)的复用方式。在存在SRS预留资源的时隙中,需要指示哪些符号预留给SRS传输。
如果使用小区级别的信令指示,使用不同的子载波间隔进行传输的终端设备对于符号所占的时频资源的理解不一致。因此SRS预留资源的符号级别指示需要知道每个时隙中预留给SRS传输的符号个数、符号的编号和符号的子载波间隔,下面介绍几种指示方式。
实现方式一、网络设备向终端设备发送符号对应的numerology或符号对应的子载波间隔,则终端设备接收符号对应的numerology或符号对应的子载波间隔。以及,网络设备向终端设备发送预留时隙中包括的预留符号的数量,则终端设备接收每个预留时隙中包括的预留符号的数量。其中,如果预留时隙包括多个,则网络设备可以向终端设备发送其中的每个预留时隙包括的预留符号的数量。终端设备根据符号对应的numerology或符号对应的子载波间隔,以及每个预留时隙中包括的预留符号的数量,就可以确定预留时隙包括的预留符号的位置。其中,符号对应的numerology或符号对应的子载波间隔是指,网络设备要指示符号的数量,则需要在统一的numerology或子载波间隔下指示,否则不同的numerology或子载波间隔对应的时间单元的长度不同,可能导致不同的终端设备的理解不一致。
具体的,网络设备发送小区级别的信令S μ/S SCS和S N。其中,S μ/S SCS是指S μ或S SCS,即网络设备或者发送S μ,或者发送S SCS。S μ用于指示符号对应的numerology,S SCS用于指示符号对应的子载波间隔,S N指示每个预留时隙中的预留符号的数量。网络设备可先发送S μ/S SCS后发送S N,或者网络设备可先发送S N后发送S μ/S SCS,或者网络设备可同时发送S μ/S SCS和S N。S μ/S SCS的显性指示方法如表9~表11所示,本申请实施例中,S μ/S SCS的指示方法包括表9~表11所示的多种指示方法中的至少一种。
表9
Figure PCTCN2018108757-appb-000027
表10
Figure PCTCN2018108757-appb-000028
Figure PCTCN2018108757-appb-000029
表11
Figure PCTCN2018108757-appb-000030
例如,24~52.6GHz的频段,S μ的取值为00时,表示numerology的配置为2,S SCS的取值为00时,表示子载波间隔为60KHz。
在实现方式一下,可通过S μ/S SCS的取值指示numerology的配置或子载波间隔,方式较为灵活。
实现方式二、网络设备向终端设备发送每个预留时隙中包括的预留符号的数量,则终端设备接收每个预留时隙中包括的预留符号的数量。终端设备根据参考numerology或参考子载波间隔或参考时间单元的长度,以及每个预留时隙中包括的预留符号的数量,就可以确定预留时隙包括的预留符号的位置。其中,终端设备可获取参考numerology或参考子载波间隔或参考时间单元的长度,该内容已在如前进行了介绍。实现方式二又包括不同的具体实施过程,以下进行介绍。
实施过程a、网络设备向终端设备发送S N,S N指示每个预留时隙中的预留符号的数量。此时,符号对应的numerology为参考numerology,例如为终端设备所在的通信系统当前支持的最小的numerology,即numerology的最小索引,或,符号对应的子载波间隔为参考子载波间隔,例如为终端设备所在的通信系统当前支持的最小子载波间隔。
实施过程b、网络设备向终端设备发送S N,S N指示每个预留时隙中的预留符号的数量。此时,符号对应的numerology为参考numerology,例如为终端设备的工作频段所在的载波当前支持的最小的numerology,即numerology的最小索引,或,符号对应的子载波间隔为参考子载波间隔,例如为终端设备的工作频段所在的载波当前支持的最小子载波间隔。
在实现方式二下,终端设备可以直接将参考numerology作为符号对应的numerology,或将参考子载波间隔作为符号对应的子载波间隔,无需网络设备再额外发送符号对应的numerology或符号对应的子载波间隔,能够节省传输资源。
实现方式三、网络设备向终端设备发送S N,S N预留时隙中包括的预留符号的数量,则终端设备接收每个预留时隙中包括的预留符号的数量,以及,网络设备向终端设备发送符号偏移信息S offset,则终端设备接收符号偏移信息,符号偏移信息S offset用于指示连续的符号的起始符号位置。终端设备根据符号对应的numerology或符号对应的子载波间隔、每个预留时隙中包括的预留符号的数量、以及符号偏移信息,就可以确定预留时隙包括的预留符号的位置。
其中,终端设备可通过如前介绍的实现方式一获得符号对应的numerology或符号对应的子载波间隔,或者终端设备也可以按照如前介绍的实现方式二中的方式,确定参考 numerology为符号对应的numerology,或确定参考子载波间隔为符号对应的子载波间隔。
根据上述的实现方式一、实现方式二或实现方式三,都可确定预留时隙内的预留符号的位置。例如,预留时隙内的预留符号的数量为X,符号对应的子载波间隔为Y,那么对于一个子载波间隔为Z的终端设备,如果基于实现方式一或实现方式二,则由前文确定的时隙
Figure PCTCN2018108757-appb-000031
的最后一个符号开始向前的连续的(XZ/Y)个符号为预留符号,这样可以将SRS尽量放置在时隙的最后几个符号传输,留出时隙中部的符号用于传输PUSCH或DMRS等信息,提高系统性能。例如,小区级配置一个预留时隙中包括4个预留符号,符号的子载波间隔为15KHz,那么对于一个使用60KHz子载波间隔传输的终端设备,该预留时隙中的最后一个符号开始向前的连续16个符号为预留符号。或者,基于实现方式三,则由前文确定的时隙
Figure PCTCN2018108757-appb-000032
中的第S offset个符号开始向前的连续的(XZ/Y)个符号为预留符号,这种方式较为灵活,有助于灵活部署SRS的传输位置。
本申请实施例中,所述终端设备也可能需要发送SRS,则下面提供一种方式,通过I SRS确定所述终端设备能够用于发送SRS的时隙。
请参见表12,为I SRS的示意,本申请实施例中,I SRS的配置包括表12所示的至少一种。
表12
SRS Configuration Index I SRS SRS Periodicity T SRS(slot) SRS slot Offset T offset
0–1 2 I SRS
2–6 5 I SRS–2
7–16 10 I SRS–7
17–36 20 I SRS–17
37–76 40 I SRS–37
77–156 80 I SRS–77
157–316 160 I SRS–157
317–636 320 I SRS–317
637–1023 reserved reserved
在LTE系统中,在可以传输SRS的子帧内,通常情况下只有最后一个符号可以用来传输SRS。而在NR系统中,一个时隙内可以配置多个符号来传输SRS。因此NR系统中T SRS和T offset的配置单位应当为时隙,如表12所示。
对于需要传输SRS的终端设备,小区级信令srs-SlotConfig和用户级信令I SRS可以确定能够发送SRS的时隙,以及,需要用户级信令指示这些时隙中的能够发送SRS的符号。
对于需要传输SRS的终端设备,其可以在能够发送SRS的时隙内传输SRS。例如,对于ECP,一个时隙中的符号编号为{0,1,2,3,4,5,6,7,8,9,10,11,12,13},或者对于NCP,{0,1,2,3,4,5,6,7,8,9,10,11}。
Figure PCTCN2018108757-appb-000033
中可以用于传输SRS的符号可通过两个信令确定,一是用户级信令S n,例如使用2个比特传输,可以用来指示能够发送SRS的符号个数;二是用户级信令S offset,例如使用4个比特传输,用来指示第一个能够发送SRS的符号的初始位置,对于NCP的时隙,S offset的取值范围为[0,13],对于ECP的时隙,S offset的取值范围为[0,11]。
那么对于SRS的非重复传输模式,终端设备能在时隙
Figure PCTCN2018108757-appb-000034
中的第S offset个符号开始的 S n个连续的符号上传输SRS,即,时隙
Figure PCTCN2018108757-appb-000035
中的第S offset个符号开始的S n个连续的符号为能够发送SRS的符号。对于SRS的重复传输模式,当重复倍数为K时,终端设备能在时隙
Figure PCTCN2018108757-appb-000036
中第S offset个连续的符号开始的KS n个符号上传输SRS,即,时隙
Figure PCTCN2018108757-appb-000037
中第S offset个连续的符号开始的KS n个符号为能够发送SRS的符号。
S n与能够发送SRS的符号的数量之间的关系可参考表13,在本申请实施例中,S n与能够发送SRS的符号的数量之间的关系可包括表13中的至少一种:
表13
S n 能够发送SRS的符号的数量
00 1
01 2
10 4
11 Reserved
在如前介绍的终端设备获得T U或μ R的基础上,终端设备可以按照如前介绍的方式确定预留时隙和预留符号。如果按照该方式,预留资源使用时隙级别和符号级别两级信令指示,可能会导致系统的预留资源有所浪费。例如,系统中同时有15KHz,30KHz,60KHz的终端设备,如果符号级配置为4个15KHz的符号,那么对于系统中的60KHz的终端设备则会持续出现一个时隙以上的资源不能用于上行数据传输。其实在某些时隙用来给60KHz的终端设备传输SRS,可能只需要预留4个60KHz的预留符号即可,所有情况都按照15KHz的粒度来预留资源会牺牲PUSCH的传输资源。
因此本申请实施例中,还提供另外的方法来确定预留时隙和预留符号,下面介绍几种。
确定方法一、使用一个大小为M的信令组来指示预留给SRS传输的时频资源,M为正整数,这里以M=10为例,该信令组包括至少一个指示信息,i为指示信息在信令组中的索引,i的取值范围为[0,M-1]。该信令组包括的指示信息用于指示预留时隙,以及所述预留时隙中的预留符号。信令组中的每个指示信息可以对应一个时隙。则该信令组包括的指示信息为{S 0,S 1,S 2,S 3,S 4,S 5,S 6,S 7,S 8,S 9}。则终端设备可根据信令组中的第i个指示信息、参考信息、该信令组包括的指示信息的数量、以及该终端设备的子载波间隔或该终端设备的numerology,确定预留时隙,以及预留时隙中的预留符号。
下面分为几种具体的方式来介绍。
a、信令组包括的每个指示信息包括至少一个比特,方式a中以4比特为例。当S i∈第二取值范围时,满足
Figure PCTCN2018108757-appb-000038
的时隙不含有预留符号;当S i∈第一取值范围时,确定从时隙
Figure PCTCN2018108757-appb-000039
的最后一个符号开始向前的S i×Δf/Δf R个符号是预留符号。这里的S i是指第i个指示信息包括的至少一个比特换算为十进制后的取值。
其中,第一取值范围和第二取值范围不存在交集。第一取值范围例如包括[0,5]、[0,11]、及[0,13]中的至少一种,例如对于子载波间隔为Δf的NCP的终端设备,S i所属的第一取值范围例如为[0,13],对于子载波间隔为Δf的ECP的终端设备,S i所属的第一取值范围例如为[0,11]。第二取值范围例如包括[6,7]、[14,15]、及[12,15]中的至少一种。例如对于子载波间隔为Δf的NCP的终端设备,S i所属的第二取值范围例如为[14,15],对于子载波间隔为Δf的ECP的终端设备,S i所属的第二取值范围例如为[12,15]。
b、信令组包括的每个指示信息包括至少一个比特,方式b中以4比特为例。对于numerology为μ的终端设备,当S i∈第二取值范围时,满足
Figure PCTCN2018108757-appb-000040
的时隙不含有预留符号;当S i∈第一取值范围时,从时隙
Figure PCTCN2018108757-appb-000041
的最后一个符号开始向前的S i×μ/μ R个符号是预留符号。
可参考图8,图8中画斜线的方框表示预留时隙,虚线框表示预留时隙中的预留符号。例如按照方式a或方式b中的公式,则信令S 0得到的预留符号的数量为15,以图8为例,如果发的是第0个指示信息信令S 0,S 0对应于时隙0,则是指15KHz的时隙0中有15个预留符号。而一个时隙中包括的符号实际是小于15的,因此说明,时隙0中没有预留符号。再例如,如果发的是第2个指示信息S 2,则S 2得到的符号的数量为1,以图8为例,S 2对应于时隙2,是指15KHz的时隙2中有1个预留符号。
这种方式下,使用占用4个比特的信令就可以确定预留时隙和预留符号,且不同的子载波间隔可分别确定,以图8为例,60KHz的子载波间隔的终端设备无需牺牲时隙8、9、10来作为预留时隙,只需将时隙11作为预留时隙即可,时隙8、9、10可继续用于传输PUSCH等,能够有效利用传输资源,提高系统性能。
c、信令组包括的每个指示信息包括至少一个比特,至少一个比特构成14比特或者12比特的比特映射组(biatmap)。对于子载波间隔为Δf的NCP的终端设备,对于满足
Figure PCTCN2018108757-appb-000042
的时隙中,第i个指示信息包括的至少一个比特中如果第k个比特为1,则编号为[k×Δf/Δf R,(k+1)×Δf/Δf R-1]的符号为预留符号。
d、信令组包括的每个指示信息包括至少一个比特,至少一个比特构成14比特或者12比特的biatmap。对于numerology为μ的终端设备,对于满足
Figure PCTCN2018108757-appb-000043
的时隙中,第i个指示信息包括的至少一个比特中如果第k个比特为1,则编号为[k×μ/Δμ R,(k+1)×μ/Δμ R-1]的符号为预留符号。
其中,k的取值从0开始。
可参考图9,图9中画斜线的方框表示预留时隙,虚线框表示时隙中的预留符号。例如按照方式c或方式d中的公式,如果发的是第0个指示信息S 0,则没有预留符号。再例如,如果是发的是第2个指示信息S 2,则15KHz的时隙2中有预留符号。
相对于a、b的两种指示方式来说,c和d的指示方法对于符号级别的指示更加灵活,预留符号的指示不一定必须是连续的。
确定方法二、使用两个大小均为M的信令组来指示预留给SRS传输的时频资源,M为正整数,这里以M=10为例,其中的第一信令组包括至少一个指示信息,其中的第二信令组包括至少一个偏移信息,第一信令组中的指示信息、第二信令组中的偏移信息、以及时隙,这三者一一对应,i为指示信息在第一信令组中的索引,或为偏移信息在第二信令组中的索引,i的取值范围为[0,M-1]。第一信令组包括的指示信息及第二信令组包括的偏移信息用于指示预留时隙,以及所述预留时隙中的预留符号。第一信令组包括的指示信息例如为{S 0,S 1,S 2,S 3,S 4,S 5,S 6,S 7,S 8,S 9},第二信令组包括的偏移信息例如为{w 0,w 1,w 2, w 3,w 4,w 5,w 6,w 7,w 8,w 9}。则终端设备可根据第一信令组中的第i个指示信息、第二信令组中的第i个偏移信息、参考信息、所述M、以及该终端设备的子载波间隔或该终端设备的numerology,确定预留时隙,以及预留时隙中的预留符号。
下面分为e、f两种具体的方式来介绍。
e、第一信令组包括的每个指示信息包括至少一个比特,方式e中以4比特为例,第二信令组包括的每个偏移信息也包括至少一个比特,指示信息包括的比特数量与偏移信息包括的比特数量可以相同,也可以不同,方式e中以偏移信息包括4比特为例。当S i∈第二取值范围时,满足
Figure PCTCN2018108757-appb-000044
的时隙不含有预留符号;当S i∈第一取值范围时,从时隙
Figure PCTCN2018108757-appb-000045
的第w i×Δf/Δf R个符号开始向后或者向前的S i×Δf/Δf R个符号是预留符号。
f、第一信令组包括的每个指示信息包括至少一个比特,方式e中以4比特为例,第二信令组包括的每个偏移信息也包括至少一个比特,指示信息包括的比特数量与偏移信息包括的比特数量可以相同,也可以不同,方式e中以偏移信息包括4比特为例。对于numerology为μ的终端设备,当S i∈第二取值范围时,满足
Figure PCTCN2018108757-appb-000046
的时隙不含有预留符号;当S i∈第一取值范围时,从时隙
Figure PCTCN2018108757-appb-000047
的第w i×μ/μ R个符号开始向后或者向前的S i×μ/μ R个符号是预留符号。
通过这种方式指示,可以指示连续的符号,较为节省信令开销。且预留符号不一定从最后一个符号开始,比较灵活。
关于第一取值范围和第二取值范围,如前都已有介绍,不多赘述。
可参考图10,图10中画斜线的方框表示预留时隙,虚线框表示时隙中的预留符号。例如按照方式e中或方式f的公式,则第0个指示信息S 0、第0个偏移信息w 0得到的符号的数量为15,以图10为例,是指15KHz的时隙0中有15个符号为预留符号。而一个时隙中包括的符号实际是小于15的,因此说明,时隙0中没有预留符号。再例如,第2个指示信息S 2得到的符号的数量为1,第2个偏移信息w 2得到的符号的数量为2,以图10为例,是指15KHz的时隙2中的2个符号为预留符号。通过这种方式能够指示预留符号在预留时隙中的偏移量,则可以不一定占用时隙最后的符号来传输SRS,如图10中的15KHz的时隙2,预留符号是时隙2的中间的符号。可见,这种方式较为灵活。
本申请实施例中,如前介绍的预留符号,其功能包括如下的至少一种:
a、预留符号不映射PUSCH,可以传输SRS;
b、预留符号不映射PUSCH,可以传输SRS和/或PUCCH;
c、预留符号不映射PUSCH和物理下行共享信道(physical downlink shared channel,PDSCH),并且不在这些预留资源上假设任何接收和发送。即,这些预留符号可以不使用,可留待以后可能的扩展。
即,本申请实施例确定的预留符号可以有多种用途,对于具体用途本申请实施例不做限制。
本申请实施例中,网络设备也可以采用相同的方式来确定预留时隙和预留符号。终端设备确定预留时隙和预留符号后,就可以在预留符号上发送探测参考信号和/或物理上行控制信道,则所述网络设备在所述预留符号上接收探测参考信号和/或物理上行控制信道,或,终端设备在所述预留符号上发送除了物理上行共享信道之外的其他信息,则网络设备在所 述预留符号上接收除了物理上行共享信道之外的其他信息,或,终端设备在所述预留符号上接收除了物理下行共享信道之外的其他信息,则网络设备在所述预留符号上发送除了物理下行共享信道之外的其他信息。通过本申请实施例提供的技术方案,能够有效减小SRS和PUSCH之间的碰撞,提高系统性能。
图4所示的实施例介绍的方法可指示系统中预留给SRS传输的时频资源。下面再介绍另一实施例,重用I SRS的值来配置不能用来作为预留时隙的时隙。系统可以允许配置多套参数来指示预留给不同传输周期的SRS传输时频资源。
请参见图11,本申请实施例提供一种通信方法,在下文的介绍过程中,以该方法应用于图3所示的应用场景为例。该方法的流程描述如下。
S1101、网络设备向终端设备发送第三通知信令,则终端设备从网络设备接收第三通知信令;
S1102、终端设备根据第三通知信令确定预留时隙。该预留时隙用于传输探测参考信号和/或物理上行控制信道,或该预留时隙不用于传输物理上行共享信道和/或物理下行共享信道;
S1103、终端设备在所述预留时隙上发送探测参考信号和/或物理上行控制信道,则所述网络设备在所述预留时隙上接收探测参考信号和/或物理上行控制信道,或,所述终端设备在所述预留时隙上发送除了物理上行共享信道之外的其他信息,则所述网络设备在所述预留时隙上接收除了物理上行共享信道之外的其他信息,或,所述终端设备在所述预留时隙上接收除了物理下行共享信道之外的其他信息,则所述网络设备在所述预留时隙上发送除了物理下行共享信道之外的其他信息。
其中,S1103为可选的步骤。
同样的,预留符号不用于传输物理上行共享信道和/或物理下行共享信道,和预留符号用于传输探测参考信号和/或物理上行控制信道,可以认为是相应的方案,例如,预留符号不用于传输物理上行共享信道和/或物理下行共享信道,就可以包括了预留符号用于传输探测参考信号和/或物理上行控制信道的方案。本申请实施例中,预留时隙可以是小区级的,例如是指该终端设备所在的小区中的预留时隙,即该终端设备所在的小区中的终端设备均使用预留时隙传输探测参考信号和/或物理上行控制信道,或该终端设备所在的小区中的终端设备均不使用预留时隙传输物理上行共享信道和/或物理下行共享信道;或者,预留时隙也可以是用户级的,即该终端设备使用预留时隙传输探测参考信号和/或物理上行控制信道,或该终端设备不使用预留时隙传输物理上行共享信道和/或物理下行共享信道。
本申请实施例中,第三通知信令包括如下的至少一种配置:
探测参考信号的传输周期为4个时隙;
探测参考信号的传输周期为8个时隙;
探测参考信号的传输周期为640个时隙;
探测参考信号的传输周期为1280个时隙;
探测参考信号的传输周期为预留数量个时隙。
作为一种示例,第三通知信令可包括如下的至少一种配置:
探测参考信号的第一配置索引为637~640,探测参考信号的传输周期为4个时隙,探测参考信号的传输偏移为所述第一配置索引与637的差值;
探测参考信号的第二配置索引为641~648,探测参考信号的传输周期为8个时隙,探 测参考信号的传输偏移为所述第二配置索引与641的差值;
探测参考信号的第三配置索引为649~1288,探测参考信号的传输周期为640个时隙,探测参考信号的传输偏移为所述第三配置索引与650的差值;
探测参考信号的第四配置索引为1289~2568,探测参考信号的传输周期为1280个时隙,探测参考信号的传输偏移为所述第三配置索引与1289的差值;
探测参考信号的第五配置索引为2569~4095,探测参考信号的传输周期为预留数量个时隙,探测参考信号的传输偏移为所述第三配置索引与所述预留数量的差值。
具体的,如上所述的至少一种配置可参考表14所示,也就是说,本申请实施例中的第三通知信令可包括表14中的至少一种配置:
表14
SRS Configuration Index I SRS SRS Periodicity T SRS(slot) SRS slot Offset T offset
637–640 4 I SRS–637
641–648 8 I SRS–641
649–1288 640 I SRS–650
1289-2568 1280 I SRS–1289
2569-4095 reserved reserved
进一步的,第三通知信令可包括表15中的至少一种配置,其中,表15包括表14:
表15
SRS Configuration Index I SRS SRS Periodicity T SRS(slot) SRS slot Offset T offset
0–1 2 I SRS
2–6 5 I SRS–2
7–16 10 I SRS–7
17–36 20 I SRS–17
37–76 40 I SRS–37
77–156 80 I SRS–77
157–316 160 I SRS–157
317–636 320 I SRS–317
637–640 4 I SRS–637
641–648 8 I SRS–641
649–1288 640 I SRS–650
1289-2568 1280 I SRS–1289
2569-4095 reserved reserved
如果重用LTE系统中I SRS的配置表,即如前的表6,以系统中同时存在15KHz,30KHz,60KHz的终端设备为例,如果15KHz的终端设备配置2个时隙传输SRS,那么30KHz的终端设备应该配置4个时隙作为预留时隙,60KHz的终端设备应该配置8个时隙作为预留时隙。但在表6中并不存在4个时隙或6个时隙的选择。因此,按照表6的配置,无法通过I SRS的配置来避免15KHz的终端设备的SRS和30/60KHz的终端设备的PUSCH传输的 碰撞。
因此本申请实施例提供表14和表15,在表14或表15中引入新的选择,I SRS占用10个比特,取值为0–636可以用来配置预留时隙;I SRS占用12个比特,取值为0–2567可以用来配置不能作为预留时隙的时隙。
继续以系统中同时存在15KHz,30KHz,60KHz的终端设备为例,如果15KHz的终端设备配置2个时隙传输SRS,那么30KHz的终端设备应该配置4个时隙作为预留时隙,60KHz的终端设备应该配置8个时隙作为预留时隙,这两种配置在表14或表15中都能获得。因此,按照表14或表15的配置,能够有效通过I SRS的配置来避免15KHz的终端设备的SRS和30/60KHz的终端设备的PUSCH传输的碰撞。
同样的,本申请实施例中,如前介绍的预留符号,其功能包括如下的至少一种:
a、预留符号不映射PUSCH,可以传输SRS;
b、预留符号不映射PUSCH,可以传输SRS和/或PUCCH;
c、预留符号不映射PUSCH和物理下行共享信道(physical downlink shared channel,PDSCH),并且不在这些预留资源上假设任何接收和发送。即,这些预留符号可以不使用,可留待以后可能的扩展。
即,本申请实施例确定的预留符号可以有多种用途,对于具体用途本申请实施例不做限制。
下面结合附图介绍本申请实施例提供的装置。
图12示出了一种终端设备1200的结构示意图。该终端设备1200可以实现上文中涉及的终端设备的功能。该终端设备1200可以是上文中所述的终端设备,或者可以是设置在上文中所述的终端设备中的芯片。该终端设备1200可以包括处理器1201。可选的,该终端设备还可以包括收发器1202。其中,处理器1201可以用于执行图4所示的实施例中的S41及S42,和/或用于支持本文所描述的技术的其它过程。收发器1202可以用于执行图4所示的实施例中的S43,和/或用于支持本文所描述的技术的其它过程。
例如,处理器1201,用于获得参考信息,所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数指示预留时隙,以及所述预留时隙中的预留符号;所述预留符号用于传输探测参考信号和/或物理上行控制信道,或所述预留符号不用于传输物理上行共享信道和/或物理下行共享信道;根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图13示出了一种网络设备1300的结构示意图。该网络设备1300可以实现上文中涉及的网络设备的功能。该网络设备1300可以是上文中所述的网络设备,或者可以是设置在上文中所述的网络设备中的芯片。该网络设备1300可以包括处理器1301。可选的,该网络设备还可以包括收发器1302。其中,处理器1301可以用于获得参考信息,根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号,和/或用于支持本文所描述的技术的其它过程。收发器1302可以用于执行图4所示的实施例中的S43,和/或用于支持本文所描述的技术的其它过程。
例如,处理器1301,用于获得参考信息,所述参考信息以及终端设备的子载波间隔或 所述终端设备的系统参数指示预留时隙,以及所述预留时隙中的预留符号;所述预留符号用于传输探测参考信号和/或物理上行控制信道,或所述预留符号不用于传输物理上行共享信道和/或物理下行共享信道;根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图14示出了一种终端设备1400的结构示意图。该终端设备1400可以实现上文中涉及的终端设备的功能。该终端设备1400可以是上文中所述的终端设备,或者可以是设置在上文中所述的终端设备中的芯片。该终端设备1400可以包括处理器1401和收发器1402。其中,处理器1401可以用于执行图11所示的实施例中的S1102,和/或用于支持本文所描述的技术的其它过程。收发器1402可以用于执行图11所示的实施例中的S1101和S1103,和/或用于支持本文所描述的技术的其它过程。
例如,收发器1402,用于从网络设备接收第三通知信令;处理器1401,用于根据所述第三通知信令确定预留时隙,所述预留时隙用于传输探测参考信号和/或物理上行控制信道,或所述预留时隙不用于传输物理上行共享信道和/或物理下行共享信道;所述第三通知信令包括如下的至少一种配置:
探测参考信号的传输周期为4个时隙;
探测参考信号的传输周期为8个时隙;
探测参考信号的传输周期为640个时隙;
探测参考信号的传输周期为1280个时隙;
探测参考信号的传输周期为预留数量个时隙。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图15示出了一种网络设备1500的结构示意图。该网络设备1500可以实现上文中涉及的网络设备的功能。该网络设备1500可以是上文中所述的网络设备,或者可以是设置在上文中所述的网络设备中的芯片。该网络设备1500可以包括处理器1501和收发器1502。其中,处理器1501可以用于生成第三通知信令,和/或用于支持本文所描述的技术的其它过程。收发器1502可以用于执行图11所示的实施例中的S1101和S1103,和/或用于支持本文所描述的技术的其它过程。
例如,处理器1501,用于生成第三通知信令,所述第三通知信令用于指示预留时隙,所述预留时隙用于传输探测参考信号和/或物理上行控制信道,或所述预留时隙不用于传输物理上行共享信道和/或物理下行共享信道;所述第三通知信令包括如下的至少一种配置:
探测参考信号的传输周期为4个时隙;
探测参考信号的传输周期为8个时隙;
探测参考信号的传输周期为640个时隙;
探测参考信号的传输周期为1280个时隙;
探测参考信号的传输周期为预留数量个时隙;
收发器1502,用于向终端设备发送所述第三通知信令。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将终端设备1200、网络设备1300、终端设备1400或网络设备1500通过如图16A所示的通信装置1600的结构实现。该通信装置1600可以实现上文中涉及的网络设备或终端设备的功能。该通信装置1600可以包括处理器1601。其中,在该通信装置1600用于实现图4所示的实施例中的终端设备的功能时,处理器1601可以用于执行图4所示的实施例中的S41及S42,和/或用于支持本文所描述的技术的其它过程。在该通信装置1600用于实现图4所示的实施例中的网络设备的功能时,处理器1601可以用于获得参考信息,根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号,和/或用于支持本文所描述的技术的其它过程。在该通信装置1600用于实现图11所示的实施例中的终端设备的功能时,处理器1601可以用于执行图11所示的实施例中的S1102,和/或用于支持本文所描述的技术的其它过程。在该通信装置1600用于实现图11所示的实施例中的网络设备的功能时,处理器1601可以用于生成第三通知信令,和/或用于支持本文所描述的技术的其它过程。
其中,通信装置1600可以通过现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片实现,则通信装置1600可被设置于本申请实施例的网络设备或终端设备中,以使得该网络设备或终端设备实现本申请实施例提供的通信方法。
在一种可选实现方式中,该通信装置1600还可以包括存储器1602,可参考图16B,其中,存储器1602用于存储计算机程序或指令,处理器1601用于译码和执行这些计算机程序或指令。应理解,这些计算机程序或指令可包括上述网络设备或终端设备的功能程序。当网络设备的功能程序被处理器1601译码并执行时,可使得网络设备实现本申请实施例的通信方法中网络设备的功能。当终端设备的功能程序被处理器1601译码并执行时,可使得终端设备实现本申请实施例的通信方法中终端设备的功能。
在另一种可选实现方式中,这些网络设备或终端设备的功能程序存储在通信装置1600外部的存储器中。当网络设备的功能程序被处理器1601译码并执行时,存储器1602中临时存放上述网络设备的功能程序的部分或全部内容。当终端设备的功能程序被处理器1601译码并执行时,存储器1602中临时存放上述终端设备的功能程序的部分或全部内容。
在另一种可选实现方式中,这些网络设备或终端设备的功能程序被设置于存储在通信装置1600内部的存储器1602中。当通信装置1600内部的存储器1602中存储有网络设备的功能程序时,通信装置1600可被设置在本申请实施例的网络设备中。当通信装置1600内部的存储器1602中存储有终端设备的功能程序时,通信装置1600可被设置在本申请实施例的终端设备中。
在又一种可选实现方式中,这些网络设备的功能程序的部分内容存储在通信装置1600外部的存储器中,这些网络设备的功能程序的其他部分内容存储在通信装置1600内部的存储器1602中。或,这些终端设备的功能程序的部分内容存储在通信装置1600外部的存储器中,这些终端设备的功能程序的其他部分内容存储在通信装置1600内部的存储器1602中。
在本申请实施例中,终端设备1200、网络设备1300、终端设备1400、网络设备1500及通信装置1600对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
另外,图12所示的实施例提供的终端设备1200还可以通过其他形式实现。例如该终端设备包括处理模块。可选的,该终端设备还可以包括收发模块。例如处理模块可通过处理器1201实现,收发模块可通过收发器1202实现。其中,处理模块可以用于执行图4所示的实施例中的S41及S42,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图4所示的实施例中的S43,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于获得参考信息,所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数指示预留时隙,以及所述预留时隙中的预留符号;所述预留符号用于传输探测参考信号和/或物理上行控制信道,或所述预留符号不用于传输物理上行共享信道和/或物理下行共享信道;根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图13所示的实施例提供的网络设备1300还可以通过其他形式实现。例如该网络设备包括处理模块。可选的,该网络设备还可以包括收发模块。例如处理模块可通过处理器1301实现,收发模块可通过收发器1302实现。其中,处理模块可以用于获得参考信息,根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图4所示的实施例中的S43,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于获得参考信息,所述参考信息以及终端设备的子载波间隔或所述终端设备的系统参数指示预留时隙,以及所述预留时隙中的预留符号;所述预留符号用于传输探测参考信号和/或物理上行控制信道,或所述预留符号不用于传输物理上行共享信道和/或物理下行共享信道;根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图14所示的实施例提供的终端设备1400还可以通过其他形式实现。例如该终端设备包括处理模块和收发模块。例如处理模块可通过处理器1401实现,收发模块可通过收发器1402实现。其中,处理模块可以用于执行图11所示的实施例中的S1102,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图11所示的实施例中的S1101和S1103,和/或用于支持本文所描述的技术的其它过程。
例如,收发模块,用于从网络设备接收第三通知信令;处理模块,用于根据所述第三通知信令确定预留时隙,所述预留时隙用于传输探测参考信号和/或物理上行控制信道,或所述预留时隙不用于传输物理上行共享信道和/或物理下行共享信道;所述第三通知信令包括如下的至少一种配置:
探测参考信号的传输周期为4个时隙;
探测参考信号的传输周期为8个时隙;
探测参考信号的传输周期为640个时隙;
探测参考信号的传输周期为1280个时隙;
探测参考信号的传输周期为预留数量个时隙。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图15所示的实施例提供的网络设备1500还可以通过其他形式实现。例如该网络设备包括处理模块和收发模块。例如处理模块可通过处理器1501实现,收发模块可通过收发器1502实现。其中,处理模块可以用于生成第三通知信令,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图11所示的实施例中的S1101和S1103,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于生成第三通知信令,所述第三通知信令用于指示预留时隙,所述预留时隙用于传输探测参考信号和/或物理上行控制信道,或所述预留时隙不用于传输物理上行共享信道和/或物理下行共享信道;所述第三通知信令包括如下的至少一种配置:
探测参考信号的传输周期为4个时隙;
探测参考信号的传输周期为8个时隙;
探测参考信号的传输周期为640个时隙;
探测参考信号的传输周期为1280个时隙;
探测参考信号的传输周期为预留数量个时隙;
收发模块,用于向终端设备发送所述第三通知信令。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的终端设备1200、网络设备1300、终端设备1400、网络设备1500及通信装置1600可用于执行图4所示的实施例或图11所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在上行通信的过程中,网络设备可以配置终端设备发送SRS。SRS用于测量上行信道。网络设备基于终端设备发送的SRS进行上行信道测量,以获取上行信道的信道状态信息(channel state information,CSI),以便于进行上行资源的调度。当上下行信道具有互易性的时候,网络设备还可以通过测量SRS获取下行CSI,即首先获取上行CSI,再根据信道互易性确定下行CSI。
支持了1发送天线2接收天线(1T2R)的终端设备在不同时间在不同的天线上发送SRS,这种SRS的发送方法称为SRS天线切换或天线选择。在这种情况下,终端设备的上行发送只能同时用一个天线或一个端口进行发送,而下行接收可以用2个天线同时进行接收,因此在上下行信道具有互易性的场景下网络设备基于单天线上发送的SRS无法获得下行2接收天线的信道。为了能够获得所有下行天线的信道,终端设备必须在多个天线上不同时间发送SRS,即采用SRS天线切换的方式进行SRS发送。
在LTE系统中,SRS天线切换适用于周期性SRS信号的发送,当未使能跳频功能时,即配置b hop≥B SRS。其中b hop为高层信令配置的跳频带宽,B SRS为SRS的传输带宽,当传输带宽大于等于跳频带宽时,SRS不进行跳频。此时发送SRS所采用的天线的标识与SRS传输 时间的标识n SRS的关系可以表示为:
a(n SRS)=n SRSmod 2
其中n SRS根据当前SRS所在的帧号、子帧号、时隙号、符号号、SRS的资源的符号数、SRS的周期中至少之一确定,或n SRS表示在一段时间内本次发送SRS的计数。例如n SRS为所述上行参考信号发送的次数或次数减1,或者n SRS为一个帧或一个帧号的循环周期内SRS时域位置的计数。例如在LTE中n SRS的定义为:
Figure PCTCN2018108757-appb-000048
其中N SP为一个帧内的下行到上行切换的次数,n f为帧号,n s为帧内的时隙号,T SRS为SRS的周期,T offset根据特殊子帧中的符号位置和SRS的符号数量确定,T offset_max为T offset的最大值。可以看出,该计算公式中的n SRS为本次发送的SRS在一个帧号的0~1023的周期内的满足SRS周期的所有位置中的计数。
当使能跳频时,即b hop<B SRS,则有
Figure PCTCN2018108757-appb-000049
其中
Figure PCTCN2018108757-appb-000050
K为跳频的总跳数,即完成一次跳频测量所有配置的SRS带宽所用的SRS发送次数。
在LTE系统中,上述方法支持1T2R的周期性的SRS传输中进行天线切换。而在后续通信技术系统中(例如5G系统)需要支持更多天线的收发,现有的LTE天线切换技术无法应用。如何解决支持更多天线收发下的天线选择方式成为待解决的问题。
此外,为了快速获取下行信道,下一代移动通信系统中可能进一步支持非周期的SRS传输中进行天线切换。先前的通信系统中,非周期的SRS传输是通过高层信令配置SRS的时频位置,并通过下行控制信息(DCI)触发传输的。在NR系统中,同样可以通过DCI触发SRS的非周期传输。在周期性SRS传输时,终端设备发送SRS所使用的天线是根据SRS发送的时间参数n SRS确定的,在下一代移动通信系统中,非周期的SRS可能不配置SRS的周期,因此会导致无法计算n SRS。此外即使非周期的SRS配置了周期参数,网络设备为了使终端设备在所有的天线上发送,必须根据特定的n SRS时间发送DCI触发SRS发送,这样限制了调度。
下面,将结合附图17介绍本申请又一个SRS配置方法的实施例:
S1701,终端设备接收网络设备配置的至少两个SRS资源,其中,每个所述SRS资源的端口数为1,每个SRS资源与至少两个天线相关联,且每个所述SRS资源所对应的天线不同。这里的相关联可以是一个对应关系。
一个实施例中,网络设备为所述终端设备配置2个SRS资源,4个天线的场景为例,每个所述SRS资源可以有1个端口,每个SRS资源对应2个天线,即一个轮流使用2个天线在1个端口发送SRS;或者所述SRS可以有2个端口,对应2个天线,即先使用1个天线在1个天线端口中发送SRS,再使用另一个天线在另一个天线端口中发送SRS。其中,SRS资源0对应天线0和天线1,SRS资源1对应天线2和天线3。应理解,所述SRS资源对应的天线的方式可以不同,也可以是SRS资源0对应天线0和天线2,SRS资源1对应天线1和天线3。一个实施例中,所述天线0,天线1,天线2和天线3中的0,1,2,3分别为天线的索引值,所述资源的编号可以是一个索引值,也可以是其它编号,甚至可以是没有编号,而是某一个确定的发送SRS的时频位置,为方便起见,也可以称之第一资源,第二资源。一个实施例中,所述终端可以配置资源编号较小的对应天线0,和天线1,资源编号较大的对应天线2和天线3。又一个实施例中,所述终端可以配置资源编号较小的对应天线集合0,资源编号较大的对应天线集合1,其中所述天线集合0包含数个天线,天线集合1包含另外的数个天线。所述天线集合0的天线按照确定的规则在所对应的资源集合发送,所述天线集合1的天线按照确定的规则在所对应的资源集合发送。在更多的天线或更多的SRS资源的场景下也可以适用类似的对应方式或其它预先定义的对应方式。
可选的,所述网络设备配置的至少2个SRS资源,所述SRS资源和天线的对应关系可以是网络设备通过高层信令配置的,如是通过RRC信令或MAC CE信令配置的。可选的,所述至少2个SRS资源可以属于同一个SRS资源组。此时网络设备可以通过RRC信令或MAC CE信令配置所述SRS资源组用于SRS天线切换或用于天线选择。
S1702,终端设备在每个SRS资源发送所述SRS过程中,在每个所述SRS资源对应的天线之间进行切换发送。以SRS资源0对应天线0和天线1,SRS资源1对应天线2和天线3为例,所述终端设备在资源0上以天线0和天线1切换发送的过程中发送SRS信号,所述终端设备在资源1上以天线2和天线3切换发送的过程中发送SRS信号。可选的,所述1T2R的天线切换可以参照LTE中的SRS天线切换规则。
下面,将结合附图18介绍本申请又一个SRS配置方法的实施例:
S1801:终端设备接收网络设备的SRS资源配置信息,所述SRS资源配置信息用于配置SRS资源。所述SRS配置信息用于配置SRS资源的频域资源,序列的至少之一。应理解,所述序列可以作为一种码域资源,例如扩频码或循环移位CS(cycle shift)。所述SRS资源与终端设备的发送天线具有对应关系,所述对应关系可以是每个SRS资源与天线的对应关系,所述对应关系可以是预定义的,或者SRS资源和天线的对应关系可以是网络设备通过高层信令配置的,如RRC信令或MAC CE信令。所述SRS资源上传输的SRS所使用的天线为所述SRS资源所对应的天线中的部分或全部。
一个实施例中,上述资源对应关系可以是直接配置SRS资源个数,可选的,所述终端设备根据所述资源个数和天线编号或数量等其它参数确定所述SRS资源与终端设备发送天线的对应关系。所述SRS资源可以为一个或多个,其中,每个所述SRS资源可以与一个或多个天线相关联。
以下步骤以2T4R的SRS天线切换为例,可以扩展至1T2R的SRS天线切换以及a发送天线b接收天线的SRS天线切换,其中a<b,a可以整除b。
可选的,网络设备可以配置1个SRS资源,也可以配置2个SRS资源,所述2个SRS资源可以属于同一个SRS资源组,或不同的SRS资源组。若配置1个SRS资源,则该SRS资源对 应所有的天线,即4个天线。若配置2个SRS资源,则所述2个SRS资源分别各对应2个天线,且两个SRS资源对应的天线不同,例如,同一个SRS资源对应的2个天线可以同时进行上行传输。
可选的,对于配置2个SRS资源的情况。例如SRS资源0对应天线0和天线1,SRS资源1对应天线2和天线3;或者SRS资源0对应天线0和天线2,SRS资源1对应天线1和天线3;可以理解,当终端设备被配置了其他SRS资源时,上述例子中的SRS资源的编号还可以是其他编号,所述的2个SRS资源和天线的对应关系可以是根据他们的SRS资源编号的相对关系来确定的,例如SRS资源编号小的SRS资源对应天线{0,1},SRS资源编号大的SRS资源对应天线{2,3};或者SRS资源编号小的SRS资源对应天线{0,2},SRS资源编号大的SRS资源对应天线{1,3};或者SRS资源编号小的SRS资源对应天线{2,3},SRS资源编号大的SRS资源对应天线{0,1};或者SRS资源编号小的SRS资源对应天线{1,3},SRS资源编号大的SRS资源对应天线{0,2},也可以是其他预定义的对应关系。可选的,若网络设备进一步配置了SRS资源的时间资源,则可以根据SRS资源的时间资源的先后顺序确定SRS资源与终端设备的发送天线的对应关系,例如时间资源相对靠前的SRS资源对应天线{0,1},时间资源相对靠后的SRS资源对应天线{2,3};或者时间资源相对靠前的SRS资源对应天线{0,2},时间资源相对靠后的SRS资源对应天线{1,3};或者时间资源相对靠前的SRS资源对应天线{2,3},时间资源相对靠后的SRS资源对应天线{0,1};或者时间资源相对靠前的SRS资源对应天线{1,3},时间资源相对靠后的SRS资源对应天线{0,2}.可选的,上述一个SRS资源对应的2个天线可以为一个天线组,即一个SRS资源对应天线组1,另一个SRS资源对应天线组2,具体对应方法可以根据SRS资源的编号或SRS资源的时间资源的相对关系,与上述例子相似。
S1802:终端设备确定天线选择使能。所述终端设备确定天线使能,这一步骤可以是一个接收使能信令的过程,例如,所述终端设备接收基站发送的高层信令或物理层信令。一个实施例中,所述使能信令为RRC信令或所述使能信令为MAC CE信令。所述天线选择使能是指天线选择的功能被开启,例如具体可以是根据所述信令写入某个寄存器,或读取某个字段的值,应理解,这一步骤可以在接收网络设备配置的SRS资源在所述步骤1801之前,或在后续触发SRS发送的步骤之前。又一个实施例中,所述天线选择使能可以是天线切换或天线选择,也可以是使能配置给终端设备的某个SRS资源或SRS资源组的天线切换或天线选择,所述SRS资源组包含一个或多个SRS资源。一个实施例中,当终端设备确定天线选择使能,则用户设备根据步骤1801中的方法确定SRS资源和天线的对应关系。
应理解,天线选择使能可以不是由网络设备配置的,即步骤1802是可选的。例如网络设备配置了2个SRS资源,并且终端设备根据预定义的信息或网络设备的配置确定了2个SRS资源中的每个SRS资源和天线的对应关系,则不需要配置天线选择使能。终端设备通过在两个SRS资源上使用各自对应的天线发送SRS,就实现了天线选择或天线切换。
S1803:终端设备接收网络设备发送的触发指示,所述触发指示用于触发SRS的传输。一个实施例中,所述触发指示为下行控制信息DCI(downlink control information)。
以所述触发指示为DCI为例,作为一个可选的步骤,网络设备在发送DCI之前,还向终端设备发送配置信令,用于配置传输所述DCI的时间资源与所述SRS资源上至少一次SRS传输间的关系,例如,所述终端设备确认传输DCI的时间单元为时间单元n,所述终端设备可以根据所述配置信令确定SRS资源上至少一次SRS传输的时间单元为时间单元n+k1,其中k1值是根据所述配置信令确定的。所述时间单元可以是一个时隙或一个符号或一个子帧。 这一指示可以是隐式指示,也可以显示指示,所述配置信令可以直接指示所述k1的值,也可以是根据信道状态或其它参数隐含通知的。所述配置信令的传输及上述步骤1801至步骤1804的先后顺序不做限定。
又一个实施例中,所述传输DCI的时间资源与SRS资源上至少一次SRS传输的时间资源间的关系可以是预定义的,例如传输DCI的时间单元为时间单元n,则SRS资源上至少一次SRS传输的时间单元为时间单元n+k1,其中k1值是预定义的,例如k1=0或k1=1。
又一个实施例中,k1的值可以是根据SRS资源的周期信息和周期偏移信息,以及传输DCI的时间资源确定的,例如在传输DCI的时间资源后的一个可用于所述SRS资源上的SRS传输的资源上传输SRS,其中可用于SRS传输的资源是根据SRS资源的周期信息和周期偏移信息确定的。
S1804:终端设备根据接收DCI的时间资源,以及传输DCI的时间资源和SRS资源上至少一次SRS传输的时间资源之间的关系,确定发送所述SRS的第一时间资源。所述第一时间资源上发送SRS采用的天线可以为预定义的,例如,对于基站只配置了1个SRS资源的情况,第一时间资源上的SRS使用其中2个天线发送,例如天线{0,1}或{0,2}或{2,3}或{1,3}。又例如对于基站配置了2个SRS资源的情况,为了方便表述,记作SRS资源A和SRS资源B。对于上述SRS资源A对应2个天线,如天线0和天线1,SRS资源B对应另外两个天线,如天线2和天线3,可以定义SRS资源A上的SRS在第一时间资源上传输或定义SRS资源B上的SRS在第一时间资源上传输。
所述终端设备在第一时间资源上发送SRS后,所述终端设备还在第二时间资源上发送SRS,例如,对于基站只配置了1个SRS资源的情况,第二时间资源上的SRS使用第一时间资源上SRS发送所使用的天线之外的2个天线发送,例如天线{2,3}或{1,3}或{0,1}或{0,2}。又例如对于基站配置了2个SRS资源的情况,记作SRS资源A和SRS资源B对于上述SRS资源A对应2个天线,如天线0和天线1,SRS资源B对应另外两个天线,如天线2和天线3,可以定义第二时间资源上传输的SRS资源的SRS与第一时间资源上传输的SRS资源的SRS不同,例如SRS资源A上的SRS在第一时间资源上传输,则SRS资源B上的SRS在第二时间资源上传输;或者SRS资源B上的SRS在第一时间资源上传输,则SRS资源A上的SRS在第二时间资源上传输。可选的,所述第一时间资源和第二时间资源与SRS资源的对应关系还可以是网络设备配置的。可选的,所述第一时间资源和第二时间资源上发送SRS所使用的天线根据第一时间资源或第二时间资源上的SRS资源,以及SRS资源与天线的对应关系确定。
又一个实施例中,不同时间资源上SRS传输所使用的天线还可以根据预定义的表格查表获得,例如表16:
表16
Figure PCTCN2018108757-appb-000051
应理解,上述表16为一个实施例,一个实施例中,发送天线可以不对使用上述表16中 的使用天线配置限定,例如,对于上述SRS资源0对应天线0和天线1,SRS资源1对应天线2和天线3的场景,也可以采用表16中情况一或情况二的场景。
可选的,S1081中网络设备配置了1个SRS资源时,所述第一时间资源和所述第二时间资源中SRS传输所占用的资源都对应所述1个SRS资源。
可选的,S1801中网络设备配置了2个SRS资源时,所述第一时间资源中SRS传输所占用的的资源对应所述2个SRS资源中的一个SRS资源,所述第二时间资源中SRS传输所占用的的资源对应所述2个SRS资源中的另一个SRS资源。所述对应关系可以是预定义的或基站配置的。所述预定义的对应关系可以是根据SRS资源的编号或编号大小确定的,例如A<B时,SRS资源A在第一时间资源上传输,SRS资源B在第二时间资源上传输;或者,A>B时,SRS资源A在第一时间资源上传输,SRS资源B在第二时间资源上传输。或者,所述预定义的对应关系还可以是根据SRS资源的时间先后关系确定的。
可选的,所述S1803中的配置信令还可以指示多个所述DCI的时间资源与所述SRS资源间的关系,例如配置所述DCI的时间资源与所述第二时间资源的时间间隔关系,如DCI的时间资源属于时间单元n,第二时间资源属于时间单元n+k2,则可k2可以是基站配置的。可选的,k2还可以是预定义的。所述时间单元为时隙或子帧或符号。
应理解,S1803中配置了多个SRS资源的情况,可以进一步包含多个时间资源,例如所述第一时间资源中SRS传输所占用的的资源对应所述多个SRS资源中的一个SRS资源A,所述第二时间资源中SRS传输所占用的的资源对应所述多个SRS资源中的一个SRS资源B,所述第三时间资源中SRS传输所占用的的资源对应所述多个SRS资源中的一个SRS资源C,以此类推。
作为一个实施例,可以根据所述第一时间资源确定所述第二时间资源,例如第一时间资源所在的时间单元为n+k1,则第二时间资源所在的时间单元为n+k1+Δ,其中Δ为预定义或网络设备配置的值,例如预定义Δ=1。所述时间单元可以为符号、时隙或子帧。可选的,当所述时间单元为符号时,Δ>1,从而保证预留足够的天线切换时间。可选的,当时间单元为符号时,若第一时间单元的时隙内的符号n+k1+Δ以及之后的符号不足够传输所述SRS时,则第二时间单元的最后一个符号为第一时间单元所在时隙的最后一个符号,或者第二时间单元在下一个时隙传输。
可选的,还可以根据所述DCI所在的时间资源确定所述第二时间资源,例如DCI的时间资源所在的时间单元为n,则第二时间资源所在的时间单元为n+k2,其中k2为预定义或网络设备配置的值,例如预定义k2=1。其中k2>k1。所述时间单元可以为符号、时隙或子帧。可选的,当所述时间单元为符号时,k2-k1=Δ>1,从而保证预留足够的天线切换时间。
可选的,为了适配不同的终端设备的天线切换能力,在本步骤之前,终端设备可以向网络设备发送第一上报信息,所述第一上报信息用于上报终端设备的天线切换能力,例如天线切换能力可以用于表征终端设备切换天线的时间或切换天线的最大时间,可以是直接上报时间,也可以是上报符号数或时隙数或其他量化值,也可以是通过编码或映射关系或其他参数隐含通知上报时间或其量化值。这样网络设备可以根据终端设备上报的天线切换能力,确定Δ的值。例如终端设备通过第一上报信息上报终端设备的天线切换需要T us的时间,或上报终端设备的天线切换需要需要说明S个符号,或上报终端设备支持或不支持时隙内进行天线切换。需要说明,终端设备向网络设备发送第一上报信息用于上报终端设备的天线切换能力可以独立于本实施例中的其他步骤单独进行。
可选的,第一时间单元和第二时间单元上发送的SRS所占用的频域资源相同。例如终端设备可以根据第一时间资源上传输的SRS所占用的频域资源确定第二时间单元上传输的SRS的频域资源相同。
可选的,本实施例中第一时间资源或第二时间资源包含多个时间单元时,例如SRS资源包含多个符号时,第一时间资源或第二时间资源所在的时间单元可以理解为第一时间资源或第二时间资源的某一个时间单元,例如第一时间资源或第二时间资源的第1个时间单元,或第一时间资源或第二时间资源的最后1个时间单元.
应理解,本申请的时间单元可以是一个时隙,或一个符号,或一个子帧,或者是一个预定义的时间单位。
本方案针对2T4R的SRS天线切换,可以进一步扩展至a发送天线b接收天线的场景,其中a>1,此时需要发送b/a次SRS,即需要从第一时间资源发送至第ceil(b/a)或floor(b/a)或b/a时间资源,其中ceil()为向上取整运算,floor()为向下取整运算。
本申请实施例中,利用一个DCI触发多次SRS传输,每次SRS传输采用不同的天线,传输的数量等于完成一次天线切换所需的SRS发送次数,从而在一次DCI触发后在所有的天线上完成一次SRS发送过程。
图19示出了本申请又一个终端装置实施例,包括接收单元1901,用于接收网络设备配置的至少两个SRS资源,其中,每个所述SRS资源的端口数为1,每个SRS资源与至少两个天线相关联,且每个所述SRS资源所对应的天线不同。所述接收单元1901还可以进一步实现图17示出的实施例中S1701的其它各个实施方式。
所述终端装置还包括发送单元1902,用于在每个SRS资源发送所述SRS过程中,在每个所述SRS资源对应的天线之间进行切换发送。所述发送单元1902还用于实现步骤1701的其它各个实施方式。一个图中未示出的实施例中,所述终端装置还可以包含处理单元,用于处理接收到的各个信息,以及在发送信息前进行必要的处理,例如确定各个步骤中需要通知所述终端设备的参数。
图20示出了本申请又一个终端装置实施例,所述终端装置可以包含接收单元2001,用于接收网络设备的SRS资源配置信息,所述SRS资源配置信息用于配置SRS资源。所述接收单元2001还可以进一步实现图18示出的实施例中S1801的其它各个实施方式。
处理单元2002,用于确定天线选择使能。一个实施例中,所述接收单元2001还用于接收使能信令。所述处理单元2002可以结合接收单元2001进一步实现S1802的其它各个实施方式。
所述接收单元2001还用于实现步骤接收网络设备发送的触发指示,所述触发指示用于触发SRS的传输。所述接收单元2001还可以进一步实现图18示出的实施例中步骤1803的其它各个实施方式。
发送单元2003,用于根据接收DCI的时间资源,以及传输DCI的时间资源和传输SRS的时间资源之间的关系,确定发送所述SRS的第一时间资源。所述发送单元2003还可以进一步实现图18示出的实施例中S1804的其它各个实施方式。应理解,图20示出的各个单元仅是一个示例,可以在上述各个单元的技术上增加、合并或调换以实施图18示出的实施例的各个步骤。
图21示出了本申请又一个终端装置实施例,包括接收器2101,用于接收网络设备配置的至少两个SRS资源,其中,每个所述SRS资源的端口数为1,每个SRS资源与至少 两个天线相关联,且每个所述SRS资源所对应的天线不同。所述接收器2101还可以进一步实现图17示出的实施例中S1701的其它各个实施方式。
所述终端装置还包括发送器2102,用于在每个SRS资源发送所述SRS过程中,在每个所述SRS资源对应的天线之间进行切换发送。所述发送器2102还用于实现步骤1701的其它各个实施方式。所述处理器还可以用于处理接收到的各个信息,以及在发送信息前进行必要的处理。所述终端装置还可以包含处理器,用于处理接收到的各个信息,以及在发送信息前进行必要的处理,例如确定各个步骤中需要通知所述终端设备的参数。
图22示出了本申请又一个终端装置实施例,所述终端装置可以包含接收器2201,用于接收网络设备的SRS资源配置信息,所述SRS资源配置信息用于配置SRS资源。所述接收器2201还可以进一步实现图18示出的实施例中S1801的其它各个实施方式。
处理器2202,用于确定天线选择使能。一个实施例中,所述接收器2201还用于接收使能信令。所述处理器2202可以结合接接收器2201进一步实现S1802的其它各个实施方式。
所述接收器2201还用于实现步骤接收网络设备发送的触发指示,所述触发指示用于触发SRS的传输。所述接收器2201还可以进一步实现图18示出的实施例中S1803的其它各个实施方式。所述处理器还可以用于处理接收到的各个信息,以及在发送信息前进行必要的处理。
发送器2203,用于根据接收DCI的时间资源,以及传输DCI的时间资源和传输SRS的时间资源之间的关系,确定发送所述SRS的第一时间资源。所述发送器2203还可以进一步实现图18示出的实施例中S1804的其它各个实施方式。应理解,图22示出的各个部件仅是一个示例,可以在上述各个单元的技术上增加、合并或调换以实施图18示出的实施例的各个步骤。
图23示出了本申请的又一个网络装置实施例,包括发送单元2301,用于向终端设备配置至少两个SRS资源,其中,每个所述SRS资源的端口数为1,每个SRS资源与至少两个天线相关联,且每个所述SRS资源所对应的天线不同。这里的相关联可以是一个对应关系。所述发送单元2301还可以实现所述S1701中其它部分的网络设备执行的步骤。
接收单元2302,用于接收所述SRS。所述接收单元2302还可以实现所述S2302中其部分的网络设备执行的步骤,或者所述接收单元可以对应终端的发送方式相应的接收SRS。并确定各个资源及天线发送的SRS。
图24示出了本申请的又一个网络装置实施例。包括发送单元2401,用于向终端设备发送SRS资源配置信息。所述发送单元2401还用于向终端设备发送使能指示;所述发送单元还用于向终端设备发送触发指示。所述发送单元还可以执行图18示出的S1801至1803的各个发送步骤。所述网络装置还包含确定单元,在执行所述S1801至S1803每一步之前,确定各个步骤中需要通知所述终端设备的参数。所述网络装置可以还包括处理单元2402,用于处理接收到的各个信息,以及在发送信息前进行必要的处理。
图25示出了本申请又一个网络装置实施例,包括发送器2501,用于向终端设备配置至少两个SRS资源,其中,每个所述SRS资源的端口数为1,每个SRS资源与至少两个天线相关联,且每个所述SRS资源所对应的天线不同。这里的相关联可以是一个对应关系。所述发送器2501还可以实现所述S1701中其它部分的网络设备执行的步骤。
接收器2502,用于接收所述SRS。所述接收器2502还可以实现所述S1702中其部分 的网络设备执行的步骤,或者所述接收单元可以对应终端设备的发送方式相应的接收SRS。并确定各个资源及天线发送的SRS。所述网络装置可以还包括处理器,用于处理接收到的各个信息,以及在发送信息前进行必要的处理。
图26示出了本申请的又一个网络装置实施例。包括发送器2601,用于向终端设备发送SRS资源配置信息。所述发送器2601还用于向终端设备发送使能指示;所述发送单元还用于向终端设备发送触发指示。所述发送单元还可以执行图18示出的S1801至S1803的各个发送步骤。所述网络装置还包含一个接收器2602,在执行所述S1801至S1803每一步之前,用于处理接收到的各个信息,以及在发送信息前进行必要的处理,例如确定各个步骤中需要通知所述终端设备的参数。
作为本申请的又一个实施例,一种芯片系统,包含一个芯片以及一个存储器,所述芯片用于执行指令,所述存储器用于存储必要的数据。所述芯片可以执行图17以及图18示出的各个步骤,所述存储器用于存储一些必要的过程数据。作为本申请的又一个实施例,一种通信系统,包括一个终端设备和一个网络设备,所述网络设备可以是前文介绍的基站等装置。所述终端设备可以执行上述各终端设备执行的功能,所述网络设备可以执行上述各网络设备执行的功能。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (15)

  1. 一种通信方法,其特征在于,包括:
    终端设备获得参考信息,所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数指示预留时隙,以及所述预留时隙中的预留符号;所述预留符号用于传输探测参考信号和/或物理上行控制信道,或所述预留符号不用于传输物理上行共享信道和/或物理下行共享信道;
    所述终端设备根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。
  2. 如权利要求1所述的方法,其特征在于,所述参考信息包括参考时间单元的长度、参考系统参数、及参考子载波间隔中的至少一种。
  3. 如权利要求2所述的方法,其特征在于,终端设备获得所述参考时间单元的长度或所述参考系统参数,包括:
    所述终端设备从网络设备接收第一通知信令,所述终端设备从所述第一通知信令获得所述参考时间单元的长度;所述参考时间单元的长度为所述终端设备所在的通信系统所支持的最大时间调度单元的长度;或,
    所述终端设备从网络设备接收第二通知信令,所述终端设备从所述第二通知信令获得所述参考系统参数;所述参考系统参数的索引为所述通信系统所支持的系统参数的最小索引;或,
    所述终端设备根据所述终端设备所在的载波所在的频段,以及频段与子载波间隔之间的映射关系,确定参考子载波间隔,并确定所述参考子载波间隔的最小时间调度单元的长度为所述参考时间单元的长度;或,
    所述终端设备根据所述终端设备所在的载波所在的频段、频段与子载波间隔之间的映射关系、以及子载波间隔与系统参数之间的映射关系,确定所述参考系统参数。
  4. 如权利要求1-3任一所述的方法,其特征在于,
    所述方法还包括:
    所述终端设备从网络设备接收第i个指示信息,所述第i个指示信息包括至少一个比特;所述第i个指示信息属于信令组,所述信令组包括至少一个指示信息,i为指示信息在信令组中的索引,所述信令组包括的指示信息用于指示所述预留时隙,以及所述预留时隙中的预留符号;
    所述终端设备根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号,包括:
    所述终端设备根据所述第i个指示信息、所述参考信息、所述信令组包括的指示信息的数量、以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。
  5. 如权利要求4所述的方法,其特征在于,所述终端设备根据所述第i个指示信息、所述参考信息、所述信令组包括的指示信息的数量、以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号,包括:
    当所述第i个指示信息包括至少一个比特的取值属于第一取值范围时,确定从根据如下公式计算的时隙的最后一个符号开始向前的S i×Δf/Δf R个符号为所述预留符号:
    Figure PCTCN2018108757-appb-100001
    其中,
    Figure PCTCN2018108757-appb-100002
    为时隙的编号,s i为所述第i个指示信息包括的至少一个比特的取值,Δf为所述终端设备的子载波间隔,Δf R为所述参考时间单元对应的参考子载波间隔,mod为取模运算,M为所述信令组包括的指示信息的数量。
  6. 如权利要求4所述的方法,其特征在于,所述终端设备根据所述第i个指示信息、所述参考信息、所述信令组包括的指示信息的数量、以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号,包括:
    当所述第i个指示信息包括至少一个比特的取值属于第一取值范围时,确定从根据如下公式计算的时隙的最后一个符号开始向前的S i×μ/μ R个符号为所述预留符号:
    Figure PCTCN2018108757-appb-100003
    其中,
    Figure PCTCN2018108757-appb-100004
    为时隙的编号,s i为所述至少一个比特的取值,μ为所述终端设备的系统参数,μ R为所述参考时间单元对应的系统传输,mod表示取模运算,M为所述信令组包括的指示信息的数量。
  7. 如权利要求4所述的方法,其特征在于,所述至少一个比特为比特映射组bitmap;所述终端设备根据所述第i个指示信息、所述参考信息、所述信令组包括的指示信息的数量、以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号,包括:
    对于满足如下公式
    Figure PCTCN2018108757-appb-100005
    的时隙中,确定s i中第k个比特为1,则编号为[k×Δf/Δf R,(k+1)×Δf/Δf R-1]的符号为所述预留符号;和/或,
    对于满足
    Figure PCTCN2018108757-appb-100006
    的时隙中,确定s i中第k个比特为1,则编号为[k×μ/Δμ R,(k+1)×μ/Δμ R-1]的符号为所述预留符号;其中,
    Figure PCTCN2018108757-appb-100007
    为时隙的编号,s i为所述bitmap,Δf为所述终端设备的子载波间隔,Δf R为所述参考时间单元对应的参考子载波间隔,μ为所述终端设备的系统参数,μ R为所述参考时间单元对应的系统传输,mod表示取模运算,M为所述信令组包括的指示信息的数量。
  8. 一种通信方法,其特征在于,包括:
    终端设备从网络设备接收第三通知信令;
    所述终端设备根据所述第三通知信令确定预留时隙,所述预留时隙用于传输探测参考信号和/或物理上行控制信道,或所述预留时隙不用于传输物理上行共享信道和/或物理下行共享信道;所述第三通知信令包括如下的至少一种配置:
    探测参考信号的传输周期为4个时隙;
    探测参考信号的传输周期为8个时隙;
    探测参考信号的传输周期为640个时隙;
    探测参考信号的传输周期为1280个时隙;
    探测参考信号的传输周期为预留数量个时隙。
  9. 如权利要求8所述的方法,其特征在于,所述第三通知信令包括如下的至少一种配置:
    探测参考信号的第一配置索引为637~640,探测参考信号的传输周期为4个时隙,探测参考信号的传输偏移为所述第一配置索引与637的差值;
    探测参考信号的第二配置索引为641~648,探测参考信号的传输周期为8个时隙,探测参考信号的传输偏移为所述第二配置索引与641的差值;
    探测参考信号的第三配置索引为649~1288,探测参考信号的传输周期为640个时隙,探测参考信号的传输偏移为所述第三配置索引与650的差值;
    探测参考信号的第四配置索引为1289~2568,探测参考信号的传输周期为1280个时隙,探测参考信号的传输偏移为所述第三配置索引与1289的差值;
    探测参考信号的第五配置索引为2569~4095,探测参考信号的传输周期为预留数量个时隙,探测参考信号的传输偏移为所述第三配置索引与所述预留数量的差值。
  10. 一种通信方法,其特征在于,包括:
    网络设备获得参考信息,所述参考信息以及终端设备的子载波间隔或所述终端设备的系统参数指示预留时隙,以及所述预留时隙中的预留符号;所述预留符号用于传输探测参考信号和/或物理上行控制信道,或所述预留符号不用于传输物理上行共享信道和/或物理下行共享信道;
    所述网络设备根据所述参考信息以及所述终端设备的子载波间隔或所述终端设备的系统参数,确定所述预留时隙,以及所述预留时隙中的所述预留符号。
  11. 如权利要求10所述的方法,其特征在于,所述参考信息包括参考时间单元的长度、参考系统参数、及参考子载波间隔中的至少一种。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一通知信令,所述第一通知信令用于指示所述参考时间单元的长度;所述参考时间单元的长度为所述终端设备所在的通信系统所支持的最大时间调度单元的长度;或,
    所述网络设备向所述终端设备发送第二通知信令,所述第二通知信令用于指示所述参考系统参数;所述参考系统参数的索引为所述通信系统所支持的系统参数的最小索引。
  13. 如权利要求10-12任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第i个指示信息,所述第i个指示信息包括至少一个比特;所述第i个指示信息属于信令组,所述信令组包括至少一个指示信息,i为指示信息在信令组中的索引,所述信令组包括的指示信息用于指示所述预留时隙,以及所述预留时隙中的预留符号。
  14. 一种通信方法,其特征在于,包括:
    网络设备生成第三通知信令,所述第三通知信令用于指示预留时隙,所述预留时隙用于传输探测参考信号和/或物理上行控制信道,或所述预留时隙不用于传输物理上行共享信道和/或物理下行共享信道;所述第三通知信令包括如下的至少一种配置:
    探测参考信号的传输周期为4个时隙;
    探测参考信号的传输周期为8个时隙;
    探测参考信号的传输周期为640个时隙;
    探测参考信号的传输周期为1280个时隙;
    探测参考信号的传输周期为预留数量个时隙;
    所述网络设备向终端设备发送所述第三通知信令。
  15. 如权利要求14所述的方法,其特征在于,所述第三通知信令包括如下的至少一种配置:
    探测参考信号的第一配置索引为637~640,探测参考信号的传输周期为4个时隙,探测参考信号的传输偏移为所述第一配置索引与637的差值;
    探测参考信号的第二配置索引为641~648,探测参考信号的传输周期为8个时隙,探测参考信号的传输偏移为所述第二配置索引与641的差值;
    探测参考信号的第三配置索引为649~1288,探测参考信号的传输周期为640个时隙,探测参考信号的传输偏移为所述第三配置索引与650的差值;
    探测参考信号的第四配置索引为1289~2568,探测参考信号的传输周期为1280个时隙,探测参考信号的传输偏移为所述第三配置索引与1289的差值;
    探测参考信号的第五配置索引为2569~4095,探测参考信号的传输周期为预留数量个时隙,探测参考信号的传输偏移为所述第三配置索引与所述预留数量的差值;
    所述网络设备向终端设备发送所述第三通知信令。
PCT/CN2018/108757 2017-09-30 2018-09-29 一种通信方法及设备 WO2019062947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710944064.0A CN109600794B (zh) 2017-09-30 2017-09-30 一种通信方法及设备
CN201710944064.0 2017-09-30

Publications (1)

Publication Number Publication Date
WO2019062947A1 true WO2019062947A1 (zh) 2019-04-04

Family

ID=65900693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108757 WO2019062947A1 (zh) 2017-09-30 2018-09-29 一种通信方法及设备

Country Status (2)

Country Link
CN (1) CN109600794B (zh)
WO (1) WO2019062947A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111283B (zh) * 2017-11-03 2021-12-14 中兴通讯股份有限公司 一种参考信号的传输方法及设备
CN111835476B (zh) * 2019-04-22 2022-12-06 华为技术有限公司 通信方法与装置
CN111818642B (zh) * 2019-07-19 2024-03-22 维沃移动通信有限公司 一种参数处理方法、设备及计算机可读存储介质
CN111758239B (zh) * 2020-05-25 2023-09-26 北京小米移动软件有限公司 参考信号传输方法、用户设备、网络设备及电子设备
JP7485215B2 (ja) * 2020-10-15 2024-05-16 富士通株式会社 サウンディング参照信号の送受信方法及び装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008156293A2 (en) * 2007-06-19 2008-12-24 Lg Electronics Inc. Method of transmitting sounding reference signal
CN101827444A (zh) * 2010-03-31 2010-09-08 中兴通讯股份有限公司 一种测量参考信号的信令配置系统及方法
CN102111886A (zh) * 2010-07-02 2011-06-29 电信科学技术研究院 上行控制信息的传输方法和设备
CN106992804A (zh) * 2016-01-20 2017-07-28 中兴通讯股份有限公司 一种探测参考信号的发送方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008156293A2 (en) * 2007-06-19 2008-12-24 Lg Electronics Inc. Method of transmitting sounding reference signal
CN101827444A (zh) * 2010-03-31 2010-09-08 中兴通讯股份有限公司 一种测量参考信号的信令配置系统及方法
CN102111886A (zh) * 2010-07-02 2011-06-29 电信科学技术研究院 上行控制信息的传输方法和设备
CN106992804A (zh) * 2016-01-20 2017-07-28 中兴通讯股份有限公司 一种探测参考信号的发送方法和装置

Also Published As

Publication number Publication date
CN109600794B (zh) 2021-01-15
CN109600794A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
US11252712B2 (en) Method and apparatus for control resource set configuration for common control
US20220321294A1 (en) Signal communication method and device
WO2020143750A1 (zh) 侧行参考信号的传输方法和通信装置
WO2019062947A1 (zh) 一种通信方法及设备
WO2019095828A1 (zh) 参考信号的传输方法和传输装置
WO2018188561A1 (zh) 上行信息发送方法、接收方法和装置
WO2018082544A1 (zh) 无线通信的方法和装置
WO2016095110A1 (zh) 基于探测参考信号的下行信道估计方法、装置以及通信系统
JP6910483B2 (ja) 通信方法、ネットワークデバイス、およびユーザ機器
CN110234164B (zh) 一种确定控制信道位置方法设备和处理器可读存储介质
JP2018525932A (ja) 無線フレーム構成
TW202013996A (zh) 配置訊息的傳輸方法和終端設備
CN109041199A (zh) 一种同步信号的传输方法和装置
JP2021533657A (ja) ランダムアクセス方法、通信装置、チップ、および記憶媒体
AU2020334822B2 (en) Resource multiplexing method and apparatus
EP3637904A1 (en) Resource indication method and device
EP3573274A1 (en) Communication method and network device
CN114301750B (zh) 时间信息的确定方法、网络节点和终端设备
CN110167170B (zh) 通信方法、装置和系统
JP2021503791A (ja) 検出ウィンドウ指示方法及び装置
TW202008828A (zh) 資源配置的方法和終端設備
US10177938B2 (en) Device and method for adaptive channel estimation
CN109076513A (zh) 下行控制信息的发送方法、检测方法和设备
WO2020143558A1 (zh) 信道测量方法和装置
EP4171140A1 (en) Beam indication method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861273

Country of ref document: EP

Kind code of ref document: A1