WO2020143750A1 - 侧行参考信号的传输方法和通信装置 - Google Patents

侧行参考信号的传输方法和通信装置 Download PDF

Info

Publication number
WO2020143750A1
WO2020143750A1 PCT/CN2020/071358 CN2020071358W WO2020143750A1 WO 2020143750 A1 WO2020143750 A1 WO 2020143750A1 CN 2020071358 W CN2020071358 W CN 2020071358W WO 2020143750 A1 WO2020143750 A1 WO 2020143750A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
time
terminal device
side reference
frequency resource
Prior art date
Application number
PCT/CN2020/071358
Other languages
English (en)
French (fr)
Inventor
向铮铮
张锦芳
郭文婷
苏宏家
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020217025214A priority Critical patent/KR102603072B1/ko
Priority to EP20738433.0A priority patent/EP3905817A4/en
Publication of WO2020143750A1 publication Critical patent/WO2020143750A1/zh
Priority to US17/371,296 priority patent/US20210337514A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the field of communications. More specifically, it relates to a side reference signal transmission method and communication device.
  • V2X Vehicle to other equipment
  • Other equipment can be other vehicles, other infrastructure, pedestrians, terminal equipment, etc.
  • a side link (side) (SL) is a communication link between a terminal device and a terminal device, and a link between V2X communications is a type of side link.
  • SL side link
  • the resources of the reference signal used for side channel channel state information measurement are configured by the network device, and the reference signal is sent by the network device. As a result, the transmission efficiency and reliability of the SL link reference signal are low, which seriously affects the user experience.
  • the present application provides a transmission method of a side reference signal, which improves the flexibility and reliability of the side reference signal transmission in the side link, and reduces the resource overhead of the side reference signal.
  • a method for transmitting a side reference signal is provided.
  • the method can be executed by either a first terminal device or a chip applied to the first terminal device.
  • the method includes: the first terminal device acquires a first time-frequency resource, and the first time-frequency resource is used to send side control information and data; the first terminal device sends the second time to the second terminal device on the first time-frequency resource.
  • the side reference signal and the side control information and data are sent.
  • the side reference signal is used to determine the channel state of the side link between the first terminal device and the second terminal device.
  • the transmission method of the side reference signal provided in the first aspect is carried along with the side control information and/or data by carrying the side reference signal on a time-frequency resource for transmitting the side control information and/or data.
  • the side reference signal can be flexibly and accurately transmitted in SL communication. No additional transmission resources need to be configured for the side reference signal, which improves the flexibility and reliability of the side reference signal transmission in the side link and reduces the resource overhead of the side reference signal.
  • the side line control information is used to indicate configuration information of the side line reference signal.
  • the first terminal device sends the side reference signal to the second terminal device on the last symbol or symbols of the first time-frequency resource.
  • the first terminal device sends the side reference signal to the second terminal device on any one or more symbols of the first time-frequency resource.
  • the frequency domain bandwidth of the side reference signal is the same as the bandwidth of the first time-frequency resource, or the bandwidth of the side reference signal is the same as the bandwidth of the data.
  • the first terminal device may not use the side reference signal Additional indication of the bandwidth of the system does not require extra resources to indicate the bandwidth of the side reference signal, which can save resources and improve resource utilization.
  • control information includes configuration information of the side reference signal, or the control information includes indication information of configuration information of the side reference signal.
  • the indication information is a resource index of the side reference signal
  • the resource index of the side reference signal corresponds to the configuration information of the side reference signal
  • the configuration information of the side reference signal includes one or more of the following information: the bandwidth of the side reference signal, the number of antenna ports of the side reference signal, and the side The number of symbols occupied by the line reference signal, the density of the side line reference signal, the code division multiplexing mode of the side line reference signal, the resource mapping mode of the side line reference signal, and the scrambling code identification of the side line reference signal.
  • the method further includes: the first terminal device sends request information for requesting the first time-frequency resource to the network device; the first terminal device obtains the first time-frequency resource Includes: the first terminal device receives configuration information of the first time-frequency resource from the network device.
  • the first terminal device acquiring the first time-frequency resource includes: the first terminal device determining the first time-frequency resource from a set of side link resources, the side The time-frequency resources in the set of link resources are used to transmit side link information.
  • the first time-frequency resource is a time slot or a mini-slot in the time domain.
  • a method for transmitting a side reference signal is provided.
  • the method can be executed by either a second terminal device or a chip applied to the second terminal device.
  • the method includes: a second terminal device acquires a first time-frequency resource, and the first time-frequency resource is used to receive side control information and data; and the second terminal device uses the first time-frequency resource from the first terminal device Receiving a side reference signal and the side control information and data, the side reference signal is used to determine a channel state of a side link between the first terminal device and the second terminal device.
  • the second aspect provides a method for transmitting a side reference signal by carrying the side reference signal on a time-frequency resource for receiving side control information and/or data, and receiving it with the side control information and/or data.
  • the side reference signal can be received flexibly and accurately in SL communication. It is not necessary to receive the side reference signal on other resources, which improves the flexibility and reliability of the reception of the side reference signal in the side link, and reduces the resource overhead of the side reference signal.
  • the side line control information is used to indicate configuration information of the side line reference signal.
  • the second terminal device receives the side reference signal from the first terminal device on the last symbol or symbols of the first time-frequency resource.
  • the second terminal device receives the side reference signal from the first terminal device on any one or more symbols of the first time-frequency resource.
  • the frequency domain bandwidth of the side reference signal is the same as the bandwidth of the first time-frequency resource, or the bandwidth of the side reference signal is the same as the bandwidth of the data.
  • control information includes configuration information of the side reference signal, or the control information includes indication information of configuration information of the side reference signal.
  • the indication information is a resource index of the side reference signal
  • the resource index of the side reference signal corresponds to the configuration information of the side reference signal
  • the configuration information of the side reference signal includes one or more of the following information: the bandwidth of the side reference signal, the number of antenna ports of the side reference signal, and the side The number of symbols occupied by the line reference signal, the density of the side line reference signal, the code division multiplexing mode of the side line reference signal, the resource mapping mode of the side line reference signal, and the scrambling code identification of the side line reference signal.
  • the first time-frequency resource is a time slot or a mini-slot in the time domain.
  • a method for transmitting a side reference signal is provided.
  • the method can be executed by either the first terminal device or a chip applied to the first terminal device.
  • the method includes: a first terminal device acquires a second time-frequency resource, and the second time-frequency resource is used to send a side reference signal; the first terminal device sends the second time-frequency resource to the second terminal device on the second time-frequency resource Side reference signal and indication information, the indication information is used to indicate the configuration information of the reference signal, the side reference signal is used to determine the channel state of the side link between the first terminal device and the second terminal device .
  • the third aspect provides a method for transmitting a side reference signal.
  • the terminal device can transmit the side reference signal on a time-frequency resource used solely for transmitting the side reference signal, which improves the flexibility of the side reference signal transmission in the side link And reliability.
  • the indication information is configuration information of the side reference signal, or the indication information is indication information of the configuration information of the side reference signal.
  • the method further includes: the first terminal device sends request information for requesting the second time-frequency resource to the network device; the first terminal device obtains the second time-frequency resource ,include:
  • the first terminal device receives the configuration information of the second time-frequency resource from the network device.
  • the first terminal device acquiring the second time-frequency resource includes: the first terminal device determining the second time-frequency resource in a set of side link resources, the side The time-frequency resources in the set of link resources are used to transmit side link information.
  • the second time-frequency resource is a time slot or a mini-slot in the time domain.
  • a method for transmitting a side reference signal is provided.
  • the method can be executed by either a second terminal device or a chip applied to the second terminal device.
  • the method includes: a second terminal device acquires a second time-frequency resource, and the second time-frequency resource is used to receive a side reference signal; the second terminal device receives the second time-frequency resource from the first terminal device on the second time-frequency resource Side reference signal and indication information, the indication information is used to indicate the configuration information of the reference signal, the side reference signal is used to determine the channel state of the side link between the first terminal device and the second terminal device .
  • the fourth aspect provides a method for transmitting a side reference signal.
  • the terminal device can receive the side reference signal on a time-frequency resource used solely for receiving the side reference signal, which improves the flexibility of the side reference signal reception in the side link And reliability.
  • the indication information is configuration information of the side reference signal, or the indication information is indication information of the configuration information of the side reference signal.
  • the second terminal device acquiring the second time-frequency resource includes:
  • the second terminal device receives the configuration information of the second time-frequency resource from the network device or the first terminal device.
  • the second time-frequency resource is a time slot or a mini-slot in the time domain.
  • a method for transmitting a side reference signal is provided.
  • the method can be executed by either a network device or a chip applied to the network device.
  • the method includes: the network device determines a second time-frequency resource, the second time-frequency resource is used to send a side reference signal, and the side reference signal is used to determine a side chain between the first terminal device and the second terminal device Channel state of the channel; the network device sends the configuration information of the second time-frequency resource to the first terminal device and/or the first terminal device.
  • the fifth aspect provides a method for transmitting a side reference signal.
  • Time-frequency resources can be separately configured for the side reference signal, which improves the flexibility and reliability of the side reference signal transmission in the side link.
  • the network device determining the second time-frequency resource includes:
  • the network device determines a set of sidelink resources, and the time-frequency resources in the set of sidelink resources are used to transmit sidelink information; the network device determines the second time-frequency in the set of sidelink resources Resources.
  • the method further includes:
  • the network device receives the request information of the second time-frequency resource from the first terminal device and/or the first terminal device.
  • the second time-frequency resource is a time slot in the time domain, or a mini-slot.
  • a communication device includes: a processing unit for acquiring a first time-frequency resource, and the first time-frequency resource is used for transmitting side control information and data; On the first time-frequency resource, send a side reference signal and the side control information and data to the second terminal device, the side reference signal is used to determine a side chain between the first terminal device and the second terminal device The channel state of the channel, wherein the communication device is the first terminal device, or the first terminal device includes the communication device.
  • the side line control information is used to indicate configuration information of the side line reference signal.
  • the transceiver unit is specifically configured to send the side reference signal to the second terminal device on the last symbol or symbols of the first time-frequency resource.
  • the transceiver unit is specifically configured to: send the side reference signal to the second terminal device on any one or more symbols of the first time-frequency resource.
  • the frequency domain bandwidth of the side reference signal is the same as the bandwidth of the first time-frequency resource, or the bandwidth of the side reference signal is the same as the bandwidth of the data.
  • control information includes configuration information of the side reference signal, or the control information includes indication information of configuration information of the side reference signal.
  • the indication information is a resource index of the side reference signal
  • the resource index of the side reference signal corresponds to the configuration information of the side reference signal
  • the configuration information of the side reference signal includes one or more of the following information: the bandwidth of the side reference signal, the number of antenna ports of the side reference signal, the The number of symbols occupied by the side reference signal, the density of the side reference signal, the code division multiplexing method of the side reference signal, the resource mapping mode of the side reference signal, and the scrambling code identification of the side reference signal.
  • the transceiver unit is further configured to: send request information for requesting the first time-frequency resource to a network device; and receive the configuration of the first time-frequency resource from the network device information.
  • the processing unit is specifically configured to: determine the first time-frequency resource from the side link resource set, and use the time-frequency resource in the side link resource set to Transmit sidelink information.
  • a communication device includes: a processing unit for acquiring a first time-frequency resource, and the first time-frequency resource is used for receiving side control information and data; On the first time-frequency resource, a side reference signal and the side control information and data are received from the first terminal device, and the side reference signal is used to determine a side chain between the first terminal device and the second terminal device The channel state of the channel, wherein the communication device is the second terminal device, or the second terminal device includes the communication device.
  • the side line control information is used to indicate configuration information of the side line reference signal.
  • the transceiver unit is specifically configured to: receive the side reference signal from the first terminal device on the last symbol or symbols of the first time-frequency resource.
  • the transceiver unit is specifically configured to: receive the side reference signal from the first terminal device on any one or more symbols of the first time-frequency resource.
  • the frequency domain bandwidth of the side reference signal is the same as the bandwidth of the first time-frequency resource, or the bandwidth of the side reference signal is the same as the bandwidth of the data.
  • control information includes configuration information of the side reference signal, or the control information includes indication information of the configuration information of the side reference signal; the indication information is the side
  • the resource index of the line reference signal corresponds to the configuration information of the side line reference signal.
  • a communication device including: a processing unit for acquiring a second time-frequency resource, the second time-frequency resource used for transmitting a side reference signal; a transceiver unit, used for transmitting at the second time-frequency On the resource, the side reference signal and the indication information are sent to the second terminal device, the indication information is used to indicate the configuration information of the reference signal, and the side reference signal is used to determine the relationship between the first terminal device and the second terminal device.
  • the channel state of the inter-side link, where the communication device is the first terminal device, or the first terminal device includes the communication device.
  • the indication information is configuration information of the side reference signal, or the indication information is indication information of the configuration information of the side reference signal.
  • the transceiver unit is further configured to: send request information for requesting the second time-frequency resource to a network device; and receive the configuration of the second time-frequency resource from the network device information.
  • the processing unit is specifically configured to: determine the second time-frequency resource in the side link resource set, and use the time-frequency resource in the side link resource set to Transmit sidelink information.
  • a communication device including: a processing unit for acquiring a second time-frequency resource, the second time-frequency resource for receiving a side reference signal; and a transceiver unit for the second time-frequency
  • the side reference signal and indication information are received from the first terminal device, the indication information is used to indicate the configuration information of the reference signal, and the side reference signal is used to determine the relationship between the first terminal device and the second terminal device
  • the indication information is configuration information of the side reference signal, or the indication information is indication information of the configuration information of the side reference signal.
  • the transceiver unit is further configured to: receive configuration information of the second time-frequency resource from the network device or the first terminal device.
  • a communication device including: a processing unit, configured to determine a second time-frequency resource, the second time-frequency resource used to transmit a side reference signal, and the side reference signal used to determine a first terminal Channel status of the side link between the device and the second terminal device; a transceiver unit, configured to send configuration information of the second time-frequency resource to the first terminal device and/or the first terminal device.
  • the processing unit is specifically configured to: determine a set of side link resources, and time-frequency resources in the set of side link resources are used to transmit side link information; The second time-frequency resource is determined in the set of sidelink resources.
  • the transceiver unit is further configured to: receive the request information of the second time-frequency resource from the first terminal device and/or the first terminal device.
  • a communication device including at least one processor and a memory, and the at least one processor is configured to execute the above first aspect to fourth aspect, or any possible implementation of the first aspect to the fourth aspect The way in the way.
  • a communication device including at least one processor and a memory, and the at least one processor is configured to execute the method in the fifth aspect or any possible implementation manner of the fifth aspect.
  • a terminal device including the communication device provided in the sixth aspect to the ninth aspect, or any possible implementation manner of the sixth aspect and the ninth aspect, or the terminal device includes The communication device provided in the above eleventh aspect.
  • a network device including the communication device provided in the tenth aspect or any possible implementation manner of the tenth aspect, or the network device includes the communication device provided in the twelfth aspect .
  • a computer program product comprising a computer program, which when executed by a processor, is used to execute the first aspect to the fifth aspect, or the first aspect to the fifth aspect In any possible implementation.
  • a computer-readable storage medium in which a computer program is stored, and when the computer program is executed, it is used to execute the first aspect to the fifth aspect, or the first aspect to The method in any possible implementation manner of the fifth aspect.
  • a chip system includes a processor for implementing the functions involved in the above aspects, for example, generating, receiving, sending, or processing data and/or data involved in the above method. Or information.
  • the chip system further includes a memory for storing necessary program instructions and data.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the processor and the memory may be decoupled, respectively set on different devices, and connected by wired or wireless means, or the processor and the memory may also be coupled on the same device.
  • the communication device provided in any one of the above aspects includes the chip system.
  • FIG. 1 is a schematic structural diagram of a mobile communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of indicating a subframe for V2V communication using a bit map.
  • FIG. 3 is an example of time-frequency resources of a V2V communication resource pool.
  • FIG. 4 is a schematic diagram of frequency division multiplexing for PSCCH and PSSCH.
  • FIG. 5 is a schematic diagram of PSCCH and PSSCH using partial frequency division multiplexing and partial time division multiplexing.
  • FIG. 6 is a schematic diagram of CSI-RS resources.
  • FIG. 7 is a schematic diagram of a communication system suitable for the communication method of the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another example of a communication system suitable for the communication method of the embodiment of the present application.
  • FIG. 9 is a schematic interaction diagram of an example of a method for transmitting a side reference signal provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a side reference signal carried on a first time-frequency resource in some embodiments of the present application.
  • FIG. 11 is a schematic diagram of a side reference signal carried on a first time-frequency resource in some embodiments of the present application.
  • FIG. 12 is a schematic diagram of a side reference signal carried on a first time-frequency resource in some embodiments of the present application.
  • FIG. 13 is a schematic diagram of a side reference signal carried on a first time-frequency resource in some embodiments of the present application.
  • FIG. 14 is a schematic diagram of a side reference signal carried on a first time-frequency resource in some embodiments of the present application.
  • 15 is a schematic interaction diagram of another example of a method for transmitting a side reference signal provided by an embodiment of the present application.
  • 16 is a schematic interaction diagram of another example of a method for transmitting a side reference signal provided by an embodiment of the present application.
  • FIG. 17 is a schematic interaction diagram of another example of a method for transmitting a side reference signal provided by an embodiment of the present application.
  • FIG. 18 is a schematic interaction diagram of another example of a method for transmitting a side reference signal provided by an embodiment of the present application.
  • FIG. 19 is a schematic interaction diagram of another example of a method for transmitting a side reference signal provided by an embodiment of the present application.
  • 20 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • 21 is a schematic block diagram of a communication device provided by another embodiment of the present application.
  • 22 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 23 is a schematic block diagram of a communication device provided by another embodiment of the present application.
  • 24 is a schematic block diagram of a communication device provided by another embodiment of the present application.
  • FIG. 25 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • 26 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 27 is a schematic block diagram of a communication device provided by another embodiment of the present application.
  • FIG. 28 is a schematic block diagram of a communication device provided by another embodiment of the present application.
  • FIG. 29 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 30 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 31 is a schematic block diagram of a network device provided by another embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User devices, automobiles, in-vehicle equipment, etc.
  • Terminal devices can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), and wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or public land mobile communication networks (PLMN) in the future evolution
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • the terminal device and the like are not limited in this embodiment of the present application.
  • the network device in the embodiment of the present application may be a device deployed in a wireless access network to provide wireless communication services for terminal devices, and the network device may be a global mobile communication (global system for mobile communications (GSM) system or code)
  • the base station (base transceiver) (BTS) in code division multiple access (CDMA) can also be the base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, and It can be an evolved base station (evoled NodeB, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station,
  • the entry point, the in-vehicle device, the wearable device, the network device in the future 5G network or the network device in the future evolved PLMN network, etc., are not limited in the embodiments of the present application.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of the method provided in the embodiment of the present application, as long as it can run the program that records the code of the method provided by the embodiment of the present application to provide according to the embodiment of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as methods, devices, or articles using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CD), digital universal discs (digital) discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • V2X communication is an important key technology for environment awareness and information interaction in the Internet of Vehicles.
  • Other equipment here can be other vehicles, other infrastructure, pedestrians, terminal equipment, etc.
  • V2X communication can be regarded as a special case of device-to-device (D2D) communication.
  • Vehicle-to-vehicle (V2V) communication can be regarded as a special case of V2X communication.
  • D2D device-to-device
  • V2V Vehicle-to-vehicle
  • V2X communication Through direct communication between vehicles and vehicles, the status information of other vehicles and road conditions can be obtained in real time, thereby Better assist vehicle driving and even realize automatic driving.
  • the communication link between V2Vs may be called a side link (SL).
  • the side link is a direct communication link between the terminal device and the terminal device device.
  • a direct link can be understood as a link that directly transmits data between two terminal devices, and there is no other network node between the two terminal devices.
  • Figure 1 is a schematic diagram of a typical scenario of V2V communication. As shown in Figure 1, a vehicle in motion can directly exchange information with other nearby vehicles through V2V communication.
  • V2V communication includes two communication modes: the first communication mode is based on V2V communication scheduled by network equipment (such as base stations), and V2V users (such as vehicles or on-board equipment) can be scheduled according to the scheduling information of the network equipment. Control messages and data for V2V communication are sent on frequency resources.
  • the second communication mode is for V2V users to select the time-frequency resources used for V2V communication among the available time-frequency resources contained in the pre-configured V2V communication resource pool (or V2X resource set), and select the resources on the selected resources. Send control messages and data.
  • the two communication modes have their own advantages and disadvantages, and can be flexibly used in various scenarios.
  • the time-frequency resources of V2V communication are configured based on the V2V communication resource pool.
  • the V2V communication resource pool can be regarded as a collection of time domain resources and frequency resources used for V2V communication.
  • the network device may use a bit map and periodically repeat the bit map to indicate the set of subframes available for V2V communication among all subframes in the system.
  • the time length of one subframe is 1 ms.
  • FIG. 2 is a schematic diagram of indicating a subframe for V2V communication using a bit map. For example, the bit "1" can be used to indicate that a certain subframe is used for V2V communication, and the bit "0" can be used to indicate that a certain subframe is not used for V2V communication.
  • the length of the bit map in the example shown in FIG. 2 is 8 bits.
  • the network device may divide the frequency band used for V2V communication into several sub-channels, and each sub-channel contains a certain number of resource blocks (RBs).
  • FIG. 3 is an example of time-frequency resources of a V2V communication resource pool. As shown in FIG. 3, the use of bit "1" indicates that a certain subframe can be used for V2V communication, and the use of bit "0" indicates that a certain subframe is not used for V2V communication.
  • the network device will indicate the sequence number of the first resource block of the frequency resource used for V2V communication, the total number N of subchannels contained in the V2V communication resource pool, and the number nCH of resource blocks contained in each subchannel.
  • data or control information transmission can occupy one or more sub-channels at a time.
  • the subframe in the above description is a time unit defined in a communication system (for example, LTE), and the time length of one subframe is 1 ms.
  • the physical sidelink control channel (physical sidelink control channel, PSCCH) is used to transmit control information in V2V communication
  • the physical sidelink shared channel (physical sidelink shared channel, PSSCH) is used to transmit data in V2V communication.
  • the aforementioned control information is used for data when the receiving end receives V2V communication.
  • PSCCH and PSSCH can be multiplexed in a frequency division multiplexing (FDM) manner.
  • FIG. 4 is a schematic diagram of frequency division multiplexing for PSCCH and PSSCH. As shown in FIG. 4, PSCCH and PSSCH occupy the same time-domain resources and occupy unused subcarriers in the frequency domain.
  • PSCCH and PSSCH can use partial time division multiplexing and partial frequency division multiplexing.
  • FIG. 5 is a schematic diagram of PSCCH and PSSCH using partial frequency division multiplexing and partial time division multiplexing. As shown in FIG. 5, a part of PSSCH and PSCCH occupy the same time domain resources and occupy different subcarriers in the frequency domain, and a part of PSSCH and PSCCH occupy different time domain resources in the time domain.
  • Channel State Information (Channel) Information is the channel state information reported by the receiving end device (taking the terminal device as an example) to the sending end device (taking the network device as an example).
  • the channel quality indicator channel quality indicator (channel quality indicator (CQI), One or more of the precoding matrix indicator (precoding matrix indicator (PMI), precoding type indicator (PTI) and channel matrix rank indicator (RI)).
  • the network device determines the channel quality based on the CSI information.
  • the network equipment will take the channel quality into consideration when performing downlink scheduling, that is, determine the transmission resources and transmission parameters for the control information and data sent to the terminal equipment according to the CSI information.
  • the channel state information reference signal (channel-state information reference, CSI-RS) is mainly used to obtain channel state information.
  • the network device periodically sends the CSI-RS to the terminal device.
  • the terminal device receives the CSI-RS and performs measurement to obtain channel state information, and then feeds back the channel state information to the network device.
  • CSI-RS can occupy multiple resource blocks (resource, block, RB) in the frequency domain, one RB includes 12 resource elements (resource, element, RE), one RE occupies a symbol in the time domain, and occupies a sub in the frequency domain Carrier wave.
  • the CSI-RS can occupy one or several symbols in the time domain.
  • the CSI-RS can support multiple antenna ports (for example, CSI-RS supports up to 32 ports in the NR system), and different code division multiplexing methods can be used between different antenna ports.
  • the CSI-RS resource configuration information may include the following parameters: CSI-RS period, bandwidth occupied by CSI-RS, number of antenna ports supported by CSI-RS, density of CSI-RS transmission, and code division multiplexing of CSI-RS Usage mode, CSI-RS resource mapping mode (mapping mode in one RB and one time slot, including number of occupied symbols and index of symbols, index of occupied RE, etc.), scrambling identification of CSI-RS (scrambling ID) etc.
  • FIG. 6 is a schematic diagram of CSI-RS resources.
  • the time slot can be a flexibly defined time unit, and the length of the time slot will be different because of the different subcarrier spacing. Generally, as the subcarrier spacing becomes larger, the time The gap length becomes smaller. Generally, a time slot includes 14 time-domain symbols. In some cases (for example, extended cyclic prefix (CP)), a time slot may include 12 time-domain symbols.
  • CP extended cyclic prefix
  • the total channel bandwidth is n RBs
  • the CSI-RS bandwidth is n-1 RBs (that is, from RB 2 to RB n), including 2 antenna ports.
  • the CSI-RS occupies 1 symbol in the time domain (the 14 symbols of a slot start from 0, and the CSI-RS occupies the fifth OFDM symbols), the density is 1 (the density is the number of REs occupied by 1 RB and 1 slot per antenna port of the CSI-RS resource).
  • the symbol is also called a time-domain symbol, which may be an orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol, or a single carrier frequency division multiple access (single carrier frequency division multiple access).
  • SC-FDMA orthogonal frequency division multiplexing with conversion precoding (orthogonal frequency division multiplexing with transforming coding, OFDM with TP).
  • the network device configures one or more CSI-RS resources for each terminal device through radio resource control (RRC) signaling.
  • RRC radio resource control
  • One or more CSI-RS resources may be periodic or aperiodic.
  • the network device also sends CSI-RS to each terminal device.
  • the terminal device receives the CSI-RS sent by the network device according to the CSI-RS resource configuration information of the network device, and performs channel measurement.
  • the network device configures CSI-RS resources for each terminal device through RRC signaling, and the network device sends the CSI-RS to the terminal device through the downlink.
  • the configuration and transmission of CSI-RS are performed by network equipment.
  • the communication link (direct link) is the communication link between the terminal device and the terminal device.
  • the reference signal sent on the side link can be called a side line
  • the reference signal, the side reference signal is used to determine the channel state of the side link between the terminal device and the terminal device.
  • the CSI-RS sent by a terminal device in V2X or D2D communication may be called a side reference signal, and the CSI-RS is sent by one terminal device to another terminal device.
  • the network device configures CSI-RS resources for each terminal device and sends CSI-RS to each terminal device, it will cause inefficiency problems. For example, the network device cannot understand the real-time status of each V2X communication link In the situation, it is not possible to flexibly allocate CSI-RS resources for each V2X communication link according to the situation of each V2X communication link, which may cause conflicts in CSI-RS resources of different V2X communication links. However, when the terminal device is outside the coverage of the network device, the network device cannot configure the CSI-RS resource for the transmitting device, and cannot guarantee the correct transmission of the CSI-RS. Thereby seriously affecting the communication quality and efficiency.
  • the present application provides a transmission method of a side reference signal, which can achieve flexible and accurate transmission of a side reference signal in a side link.
  • the efficiency of side reference signal transmission is improved, the resource overhead of side reference signals is reduced, and the transmission of side reference signals in side links is improved Flexibility and reliability, thereby improving the efficiency and reliability of sidelink data transmission and improving user experience.
  • the communication system 100 includes four communication devices, for example, a network device 110 and terminal devices 121 to 123, wherein the terminal device and the terminal device can perform data communication through D2D or V2X communication methods, and the network device 110 Data communication is possible with at least one of the terminal devices 121 to 123.
  • the direct link formed between the two is SL.
  • the terminal devices 121 and 123 transmit the side reference signal
  • the side reference signal transmission and side channel quality measurement may be performed by the side reference signal transmission method according to the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication system 200 suitable for the communication method of the embodiment of the present application.
  • the communication system 200 includes three communication devices, for example, terminal devices 121 to 123, wherein the terminal device and the terminal device can perform data communication through D2D or V2X communication.
  • the link between the two is SL.
  • the side reference signals are transmitted between the terminal devices 123 and 122, the side reference signal transmission and the side channel quality measurement may be performed by the side reference signal transmission method of the embodiment of the present application.
  • each communication system shown in FIGS. 7 and 8 may further include more network nodes, such as terminal devices or network devices, and network devices or terminal devices included in each communication system shown in FIGS. 7 and 8. It may be the above-mentioned various forms of network equipment or terminal equipment. The embodiments of the present application are not shown one by one in the figure.
  • FIG. 9 is a schematic interaction diagram of a method 300 for transmitting a side reference signal according to an embodiment of the present application.
  • the method 300 may be applied in FIG. 1
  • the scenarios shown in FIG. 7 and FIG. 8 can of course also be applied to other communication scenarios, and the embodiments of the present application are not limited herein.
  • the terminal device and the network device are taken as the execution subject of the execution method of each embodiment as an example to describe the method of each embodiment.
  • the execution body of the execution method may also be a chip applied to a terminal device and a chip applied to a base station.
  • the terminal device when the method 300 is applied in a V2X communication system, the terminal device may be a vehicle, an on-vehicle device, a mobile phone terminal, etc. in V2X communication.
  • the transmission method of the side reference signal provided by the present application carries the side reference signal on a time-frequency resource for transmitting the side control information and data for transmission, which improves the transmission of the side reference signal in the side link Flexibility and reliability reduce the resource overhead of side reference signals.
  • the method 300 shown in FIG. 9 may include steps S310 to S320.
  • the steps of the method 300 are described in detail below with reference to FIG. 9.
  • the first terminal device and the second terminal device acquire a first time-frequency resource, and the first time-frequency resource is used to send side control information and data.
  • the first terminal device sends a side reference signal and the side control information and data to the second terminal device on the first time-frequency resource.
  • the second terminal device receives the reference signal and the control information and data from the first terminal device on the first time-frequency resource.
  • the side reference signal is used to determine the channel state of the side link between the first terminal device and the second terminal device.
  • the first terminal device needs to send data to the second terminal device, it is necessary to know the channel state of the direct link (side link) from the first terminal device to the second terminal device. Therefore, the first terminal device needs to send a side reference signal for determining the channel state of the side link to the second terminal device, the side link is a direct link from the first terminal device to the second terminal device, The side reference signal is a reference signal sent on the side link. The side reference signal is used by the second terminal device to determine the channel state of the side link between the first terminal device and the second terminal device.
  • the first terminal device When the first terminal device needs to send the side reference signal to the second terminal device, the first terminal device needs to determine on which time-frequency resources the side reference signal can be sent, that is, the time-frequency resource for sending the side reference signal needs to be determined. Therefore, in step S310, the first terminal device may acquire (determine) a first time-frequency resource, and the first time-frequency resource is used to send side control information and data. That is, the first time-frequency resource is a time-frequency resource that is used by the first terminal device to send control information and/or data of the side link to the second terminal device.
  • the side control information may be control information carried on the PSCCH of the side link
  • the side data may be data carried on the PSSCH of the side link.
  • the side control information may include related control information for demodulating and scheduling the side data, for example, the side control information may include time-frequency resource information occupied by the side data, power parameters for transmitting the side data, and side data Coding matrix etc.
  • the side control information is mainly used for the receiving device to correctly receive the side data sent by the sending device.
  • the side control information is represented by PSCCH
  • the side data is represented by PSSCH. If there is no special explanation, the side control information and PSCCH can be interchanged, and the side data and PSSCH can be interchanged.
  • the first time-frequency resource may be a time-frequency resource used to transmit PSCCH.
  • the first time-frequency resource may be a time-frequency resource used to transmit PSSCH.
  • the first time-frequency resource may be a time-frequency resource used to transmit PSCCH and PSSCH.
  • the first time-frequency resources of PSCCH and PSSCH may adopt a frequency division multiplexing method, for example, as shown in FIG. 4. Partial frequency division multiplexing and partial time division multiplexing can also be used, such as shown in FIG. 5.
  • the embodiments of the present application are not limited herein.
  • the first time-frequency resource has a determined time domain range and frequency domain range.
  • the first terminal device acquires the first time-frequency resource. Specifically, the first terminal device may acquire (determine) the time domain and the starting position of the frequency domain and the size of the time domain and the frequency domain of the first time-frequency resource. , Or the start and end positions in the time and frequency domains.
  • the second terminal device may also acquire the first time-frequency resource. After acquiring the first time-frequency resource, the second terminal device can correctly receive the PSCCH and/or PSSCH sent by the first terminal device on the first time-frequency resource. Specifically, the second terminal device may receive the PSCCH sent by the first terminal device through blind detection, and then receive the PSCCH sent by the first terminal device according to the indication information in the PSCCH.
  • the indication information in the PSCCH may be indication information used to indicate the location of the time-frequency resource occupied by the PSCCH and the encoding method.
  • the second terminal device may be notified of the configuration information of the first time-frequency resource. That is, the second terminal device may obtain the first time-frequency resource from the first terminal device.
  • the second terminal device may request configuration information of the first time-frequency resource from the network device, and the network device may notify the second device of the configuration information of the first time-frequency resource.
  • the terminal device that is, the second terminal device may obtain the first time-frequency resource from the network device.
  • the first terminal device does not need to notify the second terminal device of the configuration information of the first time-frequency resource.
  • the second terminal device blindly detects the downlink control information (down control information) carried by the physical downlink control channel (PDCCH) sent by the network device, and obtains the first time-frequency resource through the detected DCI Configuration information.
  • down control information down control information carried by the physical downlink control channel (PDCCH) sent by the network device
  • the first terminal device sends a side reference signal and the side control information and data to the second terminal device on the first time-frequency resource, and the side reference signal is used to determine the channel of the side link status.
  • the second terminal device receives the side reference signal.
  • the first terminal device may send a side reference signal and side control to the second terminal device on the first time-frequency resource Information and data.
  • the first terminal device may send only the PSCCH and the side reference signal on the first time-frequency resource.
  • the first terminal device may send only the PSSCH and the side reference signal in the first time-frequency resource.
  • the second terminal device After receiving the side reference signal, the second terminal device can determine the channel state of the side link between the first terminal device and the second terminal device according to the side reference signal, and further generate the side link CSI, which can further feed back the CSI of the side link to the first terminal device, and the first terminal device can determine or adjust the transmission parameters or resources used to send data to the second terminal device according to the CSI of the side link , Thereby improving the reliability of data transmission between the first terminal device and the second terminal device.
  • the transmission method of the side reference signal provided by the present application is carried along with the side control information and/or data by carrying the side reference signal on a time-frequency resource for transmitting the side control information and/or data.
  • the side reference signal can be flexibly and accurately transmitted in SL communication. No additional transmission resources need to be configured for the side reference signal, which improves the flexibility and reliability of the side reference signal transmission in the side link and reduces the resource overhead of the side reference signal.
  • the side reference signal may include a cell-specific reference signal, a CSI-RS, and the like used to perform channel quality measurement of the side link.
  • the embodiments of the present application do not limit the specific types of reference signals.
  • the lateral control information is also used to indicate configuration information of the lateral reference signal.
  • the first terminal device sends the side reference signal and the side control information and data to the second terminal device on the first time-frequency resource. Therefore, the first terminal device also needs to notify the second terminal device of the configuration information of the side reference signal.
  • the configuration information of the side reference signal is used by the second terminal to correctly receive the side reference signal. For example, according to the configuration information of the side reference signal, the second terminal may determine which REs in the first time-frequency resource to detect the side reference signal and how to detect the side reference signal. Therefore, the PSCCH can be used to indicate the configuration information of the side reference signal, that is, the configuration information of the side reference signal can be carried in the PSCCH.
  • the configuration information of the side reference signal includes one or more of the following information:
  • the density of the side reference signal is the number of REs occupied by each transmission antenna port used for transmitting the side reference signal in 1 RB and 1 slot.
  • the bandwidth of the side reference signal may be the size of the frequency domain resource occupied by the side reference signal.
  • the number of antenna ports of the side reference signal may be the number of antenna ports when the side reference signal is sent.
  • the resource mapping mode may refer to a mapping manner in one RB and one time slot, for example, including the number of occupied symbols and the index of symbols, the index of occupied REs, and so on.
  • the second terminal device may determine the transmission information of the side reference signal according to the configuration information of the side reference signal, and then accurately receive the side reference signal.
  • the configuration information of the side reference signal may further include other configuration parameters related to the side reference signal.
  • the configuration information of the side reference signal may further include the period of the side reference signal.
  • the second terminal device can accurately receive the side reference signal, the success rate of the second terminal device receiving the side reference signal is improved, and the side reference signal is guaranteed Transmission efficiency.
  • the PSSCH may also be used to indicate the configuration information of the side reference signal, that is, the configuration information of the side reference signal may be carried in the PSSCH or the indication information of the configuration information of the side reference signal Carried in the PSSCH.
  • the PSCCH includes configuration information of a side reference signal, or the PSCCH includes indication information of configuration information of a side reference signal.
  • the first terminal device may carry the configuration information of the side reference signal in the PSCCH or PSSCH and send it to the second terminal device.
  • the first terminal device may also carry the indication information of the configuration information of the side reference signal in the PSCCH or PSSCH and send it to the second terminal device.
  • the indication information of the configuration information of the side reference signal may be a resource index of the side reference signal, and the resource index of the side reference signal corresponds to the configuration of the side reference signal information.
  • one or more side reference signals may be configured or pre-defined for the first terminal device and the second terminal device in advance, and an identifier may be configured or pre-defined for the configuration information of each side reference signal, each side
  • the identification of the line reference signal can be regarded as the resource index of the side line reference signal, and the resource index of the side line reference signal is used to identify the configuration information of the side line reference signal, or the resource index of the side line reference signal is used to indicate Configuration information of the side reference signal.
  • the configuration information of the side reference signal indicated by the side reference signal resource index i and the side reference signal resource index j (i ⁇ j) are not completely the same.
  • the side reference signal resource index i can be regarded as the resource identifier of the side reference signal.
  • the second terminal device After acquiring the resource index (resource index) of the side reference signal, the second terminal device can determine the configuration information of the side reference signal indicated by the resource index of the side reference signal according to the resource index of the side reference signal , So that the side reference signal is received on the first time-frequency resource according to the configuration information of the side reference signal.
  • the specific form of the indication information of the configuration information of the side reference signal is not limited. As long as the indication information can uniquely identify the configuration information of a side reference signal, the embodiments of the present application are not limited herein.
  • the side reference signal is located on the last symbol or symbols on the first time-frequency resource in the time domain. That is, in the above step S320, the first terminal device sends the side reference signal to the second terminal device on the last symbol or symbols of the first time-frequency resource. The second terminal device receives the side reference signal on the last symbol or symbols of the first time-frequency resource
  • FIG. 10 is a schematic diagram of a side reference signal carried on a first time-frequency resource in some embodiments of the present application.
  • the first time-frequency resource is a time slot in the time domain and occupies n RBs in the frequency domain.
  • the PSCCH and PSSCH use partial frequency division multiplexing and partial time division multiplexing.
  • the side reference signal may be located on the last one or more symbols of the first time-frequency resource. If the time slot includes a guard interval, the side reference signal may occupy the last one or more of the first time-frequency resource excluding the guard interval Symbols.
  • Figure 10 shows that the side reference signal can be located on the last symbol of the time slot.
  • the first terminal device sends the side reference signal to the second terminal device on the last symbol or symbols of the first time-frequency resource.
  • the interference of the side reference signal on the PSCCH or PSSCH can be reduced, and the accuracy of receiving the side reference signal, PSCCH and/or PSSCH can be improved.
  • the side reference signal occupies the last symbol of the time slot in the time domain, and may occupy n RBs in the frequency domain, or only a part of the n RBs.
  • the side reference signal may be sent only on some REs of the RB, or may be sent on all REs included in the RB.
  • FIG. 10 shows that the side reference signal is transmitted on some REs in one RB, that is to say, some REs in one RB are idle and are not used to send any information or data.
  • FIG. 11 is a schematic diagram of a side reference signal carried on a first time-frequency resource in other embodiments of this application.
  • the first time-frequency resource is a time slot in the time domain and occupies n RBs in the frequency domain. n is the first time-frequency resource.
  • FIG. 11 shows the side reference signal at Send on a part of REs in an RB, and send the PSSCH on the remaining REs on the symbol where the side reference signal is located (that is, on idle REs that are not occupied by the side reference signal), that is, the side reference signal PSSCH is frequency division complex Use or rate matching. This can make full use of resources and improve resource utilization.
  • the side reference signal may also be located on any one or more symbols of the first time-frequency resource in the time domain, and the multiple symbols may be continuous or discontinuous . That is, the side reference signal may be located on any one or more symbols of the first time-frequency resource (that is, on any time-domain position).
  • the embodiments of the present application are not limited herein.
  • the frequency domain bandwidth of the side reference signal is the same as the bandwidth of the first time-frequency resource, or the bandwidth of the side reference signal is the same as the bandwidth of the PSSCH.
  • PSCCH and PSSCH adopt a method of partial frequency division multiplexing and partial time division multiplexing.
  • the first time-frequency resource is a time slot in the time domain, occupies n RBs in the frequency domain, and n is the number of RBs occupied by the first time-frequency resource.
  • the bandwidth of the side reference signal is the same as the bandwidth of the first time-frequency resource.
  • the bandwidth of the first time-frequency resource is the same as the bandwidth of the PSSCH.
  • the bandwidth of the PSSCH is greater than the bandwidth of the PSCCH.
  • the bandwidth of the PSCCH is only a part of the bandwidth of the PSSCH.
  • FIG. 12 is a schematic diagram of a side reference signal carried on a first time-frequency resource in some embodiments of the present application.
  • the first time-frequency resource is a time slot in the time domain and occupies n RBs in the frequency domain.
  • the bandwidth of the PSSCH is larger than the bandwidth of the PSCCH, and the bandwidth of the PSCCH is only a part of the bandwidth of the PSSCH.
  • the bandwidth of the side reference signal is smaller than the bandwidth of the first time-frequency resource, that is, the bandwidth of the side reference signal is smaller than the bandwidth of the data.
  • the embodiments of the present application are not limited herein.
  • the frequency domain bandwidth of the side reference signal is the same as the sum of the bandwidths of the PSCCH and the PSSCH.
  • FIG. 13 is some embodiments of the present application A schematic diagram of the side reference signal carried on the first time-frequency resource in.
  • the first time-frequency resource is m time slots in the time domain, and s RBs are occupied in the frequency domain.
  • PSCCH and PSSCH adopt frequency division multiplexing.
  • FIG. 13 shows that the frequency domain bandwidth of the side reference signal is the same as the sum of the bandwidths of the PSCCH and the data PSSCH. That is, the bandwidth of the side reference signal is the same as the bandwidth of the first time-frequency resource, and the bandwidth of the first time-frequency resource is the sum of the bandwidths of the PSCCH and the PSSCH.
  • the bandwidth of the side reference signal may also be smaller than the sum of the bandwidths of the PSCCH and the PSSCH.
  • FIG. 14 is a schematic diagram of a side reference signal carried on a first time-frequency resource in some embodiments of the present application.
  • PSCCH and PSSCH adopt frequency division multiplexing.
  • the first time-frequency resource is m time slots in the time domain, and s RBs are occupied in the frequency domain.
  • the bandwidth of the horizontal reference signal may be smaller than the sum of the bandwidths of the PSCCH and the PSSCH, that is, the bandwidth of the lateral reference signal is smaller than the bandwidth of the first time-frequency resource, and the bandwidth of the first time-frequency resource is the sum of the bandwidths of the PSCCH and the PSSCH .
  • the embodiments of the present application are not limited herein.
  • the first terminal device may not use the side reference signal Additional indication of the bandwidth of the system does not require extra resources to indicate the bandwidth of the side reference signal, which can save resources and improve resource utilization.
  • the bandwidth of the side reference signal may be the same as the bandwidth occupied by the PSSCH or different from the bandwidth occupied by the data PSSCH.
  • the bandwidth of the side reference signal is the same as the bandwidth occupied by the PSCCH.
  • the bandwidth of the side reference signal is different from the bandwidth occupied by the PSCCH.
  • the time-frequency resource occupied by the side reference signal is the same as the time-frequency resource occupied by the data PSSCH.
  • the time-frequency resource occupied by the side reference signal is different from the time-frequency resource occupied by the data PSSCH.
  • the time-frequency resources occupied by the side reference signal may be the same as the time-frequency resources occupied by the PSCCH, or the time-frequency resources occupied by the side reference signal may be the same as the PSCCH The occupied time-frequency resources are different.
  • the side reference signal may be located at any position where the first time-frequency resource can be transmitted, that is, implemented in the present application
  • the number and position of REs occupied by the side reference signal on the first time domain resource are not limited, that is, the side reference signal may be located at any frequency domain position of the first time frequency resource.
  • the first time-frequency resource is a time slot in the time domain, or a mini-slot.
  • the duration of a mini-slot is shorter than the duration of a slot.
  • the duration of a mini-slot can be 2 symbols, 4 symbols, or 7 symbols.
  • the duration of the first time-frequency resource in the time domain may be one time slot, or may be one mini-slot.
  • the first time-frequency resource may also occupy a longer time length in the time domain.
  • the first time-frequency resource may include multiple time slots or the first time-frequency resource. The length of time can be less than one time slot.
  • the first time-frequency resource may occupy multiple subcarriers in the frequency domain. That is, in the embodiment of the present application, the size of the first time-frequency resource is not limited. There may be multiple first time-frequency resources, and the multiple first time-frequency resources may be periodic or non-periodic. The embodiments of the present application are not limited herein.
  • FIG. 15 is a schematic interaction diagram of a method for transmitting a side reference signal in some embodiments of the present application.
  • the method 300 is based on the method steps shown in FIG. Also includes:
  • the first terminal device sends request information for requesting the first time-frequency resource to the network device.
  • the network device determines the first time-frequency resource in the side link resource set according to the request information, and the time-frequency resource in the side link resource set is used to transmit the side link information.
  • the first terminal device acquiring the first time-frequency resource includes:
  • the first terminal device receives the configuration information of the first time-frequency resource from the network device.
  • step S320 for the description of step S320 shown in FIG. 15, reference may be made to the description of step S320 in FIG. 9 described above.
  • the first terminal may send request information for requesting the first time-frequency resource to the network device. That is, in step S308, the first terminal device sends request information for requesting the first time-frequency resource to the network device.
  • the request information may include the number of data or control information or side reference signals that the first terminal device needs to send to the second terminal device, so that the network device can allocate the first terminal device to the first terminal device more accurately Time-frequency resources.
  • the network device may determine the first time-frequency resource in the side link resource set, and the time-frequency resource in the side link resource set is used to transmit the side link information.
  • the side link resource set may include a V2X resource set or a D2D resource set.
  • the first time-frequency resource is determined in the V2X resource set of the network device, and the time-frequency resource in the V2X resource set (or V2X resource pool) may be used to transmit V2X information.
  • the time-frequency resources in the V2X resource set are used for data or control information transmission from terminal device to terminal device.
  • the network device may send the configuration information of the first time-frequency resource to the first terminal device, that is, the first terminal The device receives the configuration information of the first time-frequency resource from the network device.
  • the network device may notify the first terminal device of the configuration information of the first time-frequency resource through control signaling, such as DCI, media access control (MAC) layer signaling, RRC layer signaling, and the like.
  • the configuration information of the first time-frequency resource is used to indicate the size and position of the first time-frequency resource.
  • the configuration information of the first time-frequency resource may include start positions of the time and frequency domains of the first time-frequency resource, sizes of the time and frequency domains, or start and end positions of the time and frequency domains, and so on.
  • the first terminal device may determine (obtain) the first time-frequency resource according to the configuration information of the first time-frequency resource.
  • the first time-frequency resource may be periodic, and each first time-frequency resource may be a time slot or other time length in the time domain. There may also be multiple first time-frequency resources.
  • the second terminal device may also request the configuration information of the first time-frequency resource from the network device, that is, the second terminal device may also send the network device a request for the first time Request information of frequency resources.
  • the network device may also notify the second terminal device of the configuration information of the first time-frequency resource to facilitate the second
  • the terminal device correctly receives the side reference signal and the control information and data.
  • the network device may also notify the second terminal device of the configuration information of the first time-frequency resource through control signaling, such as DCI, MAC layer signaling, and RRC layer signaling.
  • the first terminal device does not need to notify the second terminal device of the configuration information of the first time-frequency resource.
  • FIG. 16 is a schematic interaction diagram of a side reference signal transmission method in some embodiments of the present application.
  • the first terminal device Obtain the first time-frequency resources, including:
  • the first terminal device determines the first time-frequency resource in the side link resource set.
  • the method 300 may also include:
  • the first terminal device sends the configuration information of the first time-frequency resource to the second terminal device.
  • step S320 for the description of step S320 shown in FIG. 16, reference may be made to the description of step S320 in FIG. 9 described above. For brevity, details are not described here.
  • the first terminal When the first terminal needs to determine the size and location of the first time-frequency resource, it can determine the first time-frequency resource in the side link resource set by itself, that is, without requesting the first time-frequency resource from the network device. That is, in S312, the first terminal device may determine the first time-frequency resource in a pre-configured set of sidelink resources.
  • the set of side link resources may be pre-configured by the network device to the first terminal device or pre-defined by the protocol.
  • the side link resource set may include a V2X resource set or a D2D resource set.
  • the first terminal device may determine the first time-frequency resource in the V2X resource set, and the time-frequency resource in the V2X resource set (or may also be referred to as a V2X resource pool) is used to transmit V2X Information, that is, the time-frequency resources in the V2X resource set are used for data or control information transmission from terminal device to terminal device.
  • the first terminal device may send the configuration information of the first time-frequency resource to the second terminal device, so that the second terminal device can correctly receive the side Line reference signal and the control information and data.
  • the second terminal device may not request the configuration information of the first time-frequency resource from the network device, and the network device may not notify the second terminal device of the configuration information of the first time-frequency resource.
  • FIG. 17 is a schematic interaction diagram of a method 400 for transmitting a side reference signal in some embodiments of the present application. As shown in FIG. 17, the method 400 further includes steps S410 to step S420.
  • the first terminal device and the second terminal device obtain a second time-frequency resource.
  • the second time-frequency resource is used to send a side reference signal, and the side reference signal is used to determine the first terminal device to the second terminal device.
  • Channel status of the side link is used to determine the first terminal device to the second terminal device.
  • the first terminal device sideways references the reference signal and indication information to the second terminal device on the second time-frequency resource, where the indication information is used to indicate the configuration information of the sideline reference signal.
  • the second terminal device receives the side reference signal and the indication information from the first terminal device on the second time-frequency resource.
  • the terminal device can transmit the side reference signal on a time-frequency resource used solely for transmitting the side reference signal, which improves the flexibility of the side reference signal transmission in the side link And reliability.
  • the first terminal device needs to side reference the second terminal device, it is necessary to determine the time-frequency resource (second time-frequency resource) for sending the side reference signal.
  • the second terminal device also needs to acquire the second time-frequency resource, so as to accurately receive the side reference signal.
  • the first terminal device and the second terminal device acquire a second time-frequency resource
  • the second time-frequency resource is a time-frequency resource used for the first terminal device to send a side reference signal to the second terminal device, That is, the second time-frequency resource is a time-frequency resource dedicated to sending the side reference signal.
  • the side reference signal is used to determine the channel status of the side link.
  • the side link is a direct link from the first terminal device to the second terminal device.
  • the side reference signal may occupy all REs of the second time-frequency resource, or may occupy some REs of the second time-frequency resource.
  • the first terminal device sends a side reference signal and indication information to the second terminal device on the second time-frequency resource, where the indication information is used to indicate the configuration information of the side reference signal.
  • the configuration information of the side reference signal is used by the second terminal to correctly receive the side reference signal. For example, according to the configuration information of the side reference signal, the second terminal may determine which REs to detect the side reference signal in the second time-frequency resource, and how to detect the side reference signal.
  • the terminal device may send the side reference signal and the indication information used to indicate the configuration information of the side reference signal on the time-frequency resource used solely for transmitting the side reference signal.
  • the terminal When the device sends the side reference signal, it no longer depends on the PSCCH or PSSCH sent by the terminal device, which improves the flexibility and reliability of side reference signal transmission in the side link.
  • the second terminal device may also acquire the second time-frequency resource. After acquiring the second time-frequency resource, the second terminal device may correctly receive the side reference signal sent by the first terminal device on the first time-frequency resource And the indication information, so that the second terminal device correctly receives the side reference signal and the indication information.
  • the second terminal device may be notified of the configuration information of the second time-frequency resource. That is, the second terminal device may obtain the second time-frequency resource from the first terminal device. Specifically, the second terminal device may receive the PSCCH sent by the first terminal device through blind detection, and then receive the PSCCH sent by the first terminal device according to the indication information in the PSCCH.
  • the indication information in the PSCCH may be indication information used to indicate the location of the time-frequency resource occupied by the PSCCH and the encoding method.
  • the first terminal device may also send configuration information including configuration information of the second time-frequency resource to the second terminal device.
  • the second terminal device may request the configuration information of the second time-frequency resource from the network device, that is, the network device may notify the configuration information of the second time-frequency resource to the first Two terminal devices, that is, the second terminal device can obtain the one-time-frequency resource from the network device.
  • the first terminal device may not notify the second terminal device of the configuration information of the second time-frequency resource.
  • the second terminal device obtains the configuration information of the second time-frequency resource by blindly detecting the DCI carried by the PDCCH and sent by the network device.
  • the side reference signal may include a cell-specific reference signal, a CSI-RS, and the like used for side channel link channel quality measurement.
  • the embodiments of the present application are not limited herein.
  • the configuration information of the side reference signal includes one or more of the following information:
  • the density of the side reference signal is the number of REs occupied by each transmission antenna port used for transmitting the side reference signal in 1 RB and 1 slot.
  • the bandwidth of the side reference signal may be the size of the frequency domain resource occupied by the side reference signal.
  • the number of antenna ports of the side reference signal may be the number of antenna ports when the side reference signal is sent.
  • the resource mapping mode may refer to a mapping manner in one RB and one time slot, for example, including the number of occupied symbols and the index of symbols, the index of occupied REs, and so on.
  • the second terminal device may determine the transmission information of the side reference signal according to the configuration information of the side reference signal, and then accurately receive the side reference signal.
  • the configuration information of the side reference signal may further include other configuration parameters related to the side reference signal.
  • the configuration information of the side reference signal may further include the period of the side reference signal.
  • the indication information is configuration information of the side reference signal.
  • the indication information is indication information of the configuration information of the side reference signal.
  • the first terminal device may send the configuration information of the side reference signal to the second terminal device on the second time-frequency resource. That is, the indication information is the configuration information of the side reference signal.
  • the indication information sent by the first terminal device on the second time-frequency resource is indication information of the configuration information of the side reference signal.
  • the indication information of the configuration information of the side reference signal may be the resource index of the side reference signal, and the resource index of the side reference signal corresponds to the configuration information of the side reference signal. That is, the indication information sent by the first terminal device on the second time-frequency resource may be the resource index (resource index) of the side reference signal.
  • one or more side reference signals may be configured or pre-defined for the first terminal device and the second terminal device in advance, and an identifier may be configured or pre-defined for the configuration information of each side reference signal, each side line
  • the resource identifier of the reference signal can be regarded as the resource index of the side reference signal.
  • the resource index of the side reference signal is used to identify the configuration information of the side reference signal, or the resource index of the side reference signal is used to indicate Configuration information of the side reference signal.
  • the configuration information of the side reference signals indicated by the side reference signal resource index t and the side reference signal resource index q (t ⁇ q) are not completely the same.
  • the side reference signal resource index t can be regarded as the resource identifier of the side reference signal (that is, the indication information of the configuration information of the side reference signal).
  • the second terminal device After acquiring the resource index (resource index) of the side reference signal, the second terminal device can determine the configuration information of the side reference signal indicated by the resource index of the side reference signal according to the resource index of the side reference signal , So that the side reference signal is received on the second time-frequency resource according to the configuration information of the side reference signal.
  • the first terminal device may send the side reference signal and the PSCCH to the second terminal device on the second time-frequency resource, and the PSCCH includes the indication information
  • the first A terminal device may send a side reference signal and a PSSCH to the second terminal device on the second time-frequency resource, and the PSSCH includes the indication information
  • the bandwidth of the side reference signal may be the same as the bandwidth of the second time-frequency resource.
  • the first terminal device may not need to additionally indicate the bandwidth of the side reference signal, and does not need additional resources to indicate The bandwidth of the side reference signal can save resources and improve resource utilization.
  • the bandwidth of the side reference signal may also be different from the bandwidth of the second time-frequency resource.
  • the side reference signal is located on the last symbol or symbols of the second time-frequency resource in the time domain. That is, the first terminal device sends the side reference signal to the second terminal device on the last symbol or symbols of the second time-frequency resource.
  • the side reference signal may also be located on any one or more symbols of the second time-frequency resource in the time domain, and the multiple symbols may be continuous or discontinuous. That is, the side reference signal may be located on any one or more symbols of the second time-frequency resource (that is, on any time-domain position).
  • the embodiments of the present application are not limited herein.
  • the side reference signal may occupy any one or more subcarriers of the second time-frequency resource in the frequency domain, and the multiple subcarriers may be continuous or discontinuous. That is, the side reference signal may be located in any frequency domain position of the second time-frequency resource.
  • the embodiments of the present application are not limited herein.
  • the second time-frequency resource is a time slot or a mini-slot in the time domain.
  • the second time-frequency resource may also occupy a longer time length in the time domain, for example, multiple time slots, or the time length of the second time-frequency resource may be less than one time slot Wait.
  • the second time-frequency resource may occupy multiple subcarriers in the frequency domain. That is, in the embodiment of the present application, the size of the second time-frequency resource is not limited. There may be multiple second time-frequency resources, and the multiple second time-frequency resources may be periodic or non-periodic. The embodiments of the present application are not limited herein.
  • FIG. 18 is a schematic interaction diagram of a side reference signal transmission method in some embodiments of the present application.
  • the method 300 is based on the method steps shown in FIG. Also includes:
  • the first terminal device sends request information for requesting the second time-frequency resource to the network device.
  • the network device determines the second time-frequency resource in the side link resource set according to the request information.
  • the first terminal device acquiring the second time-frequency resource includes:
  • the first terminal device receives the configuration information of the second time-frequency resource from the network device.
  • step S420 shown in FIG. 18, reference may be made to the description of step S420 in FIG. 17 described above.
  • the first terminal may send request information for requesting the second time-frequency resource to the network device. That is, in step S408, the first terminal device sends request information for requesting the second time-frequency resource to the network device.
  • the request information may include the number of side reference signals that the first terminal device needs to send to the second terminal device, etc., so that the network device can more accurately allocate the second time-frequency resource to the second terminal device.
  • the network device may determine the second time-frequency resource in the side link resource set, and the time-frequency resource in the side link resource set is used to transmit the side link information.
  • the side link resource set may include a V2X resource set or a D2D resource set.
  • the network device may determine the second time-frequency resource in the V2X resource set, and the time-frequency resource in the V2X resource set (or may also be referred to as a V2X resource pool) is used to transmit V2X information, That is, the time-frequency resource in the V2X resource set is used for data or control information transmission from terminal device to terminal device.
  • the network device may send the configuration information of the second time-frequency resource to the first terminal device, that is, the first terminal
  • the device receives the configuration information of the second time-frequency resource from the network device.
  • the network device may notify the first terminal device of the configuration information of the second time-frequency resource through control signaling, such as DCI, MAC layer signaling, and RRC layer signaling.
  • the configuration information of the second time-frequency resource is used to indicate the size and location of the second time-frequency resource.
  • the configuration information of the second time-frequency resource may include start positions of the time and frequency domains of the second time-frequency resource, sizes of the time and frequency domains, or start and end positions of the time and frequency domains, and so on.
  • the first terminal device may determine (obtain) the first time-frequency resource according to the configuration information of the second time-frequency resource.
  • the network device periodically configures a time slot for transmitting the side reference signal in the corresponding side link resource set.
  • the set of side link resources may include many time slots, and the network device may periodically configure time slots for transmitting reference side reference signals in the multiple time slots, and use the time slots for transmitting reference side rows periodically.
  • the time slot of the reference signal notifies the first terminal device and/or the first terminal device. That is, in the embodiment of the present application, the second time-frequency resource may be periodic, and each second time-frequency resource may be a time slot in the time domain. There may also be multiple second time-frequency resources.
  • the second terminal device may also request the configuration information of the second time-frequency resource from the network device, that is, the second terminal device may also send the network device a request for the second time-frequency resource Resource request information.
  • the network device may also notify the second terminal device of the configuration information of the second time-frequency resource.
  • the network device may also notify the second terminal device of the configuration information of the second time-frequency resource through control signaling, such as DCI, MAC layer signaling, and RRC layer signaling.
  • the first terminal device may not notify the second terminal device of the configuration information of the second time-frequency resource.
  • FIG. 19 is a schematic interaction diagram of a side reference signal transmission method in some embodiments of the present application.
  • the first terminal device Obtaining second time-frequency resources, including:
  • the first terminal device determines the second time-frequency resource in the side link resource set.
  • the method 400 may also include:
  • the first terminal device sends the configuration information of the second time-frequency resource to the second terminal device.
  • step S420 shown in FIG. 19, reference may be made to the description of step S420 in FIG. 17 described above.
  • the first terminal When the first terminal needs to determine the size and location of the second time-frequency resource, it can determine the second time-frequency resource in the side link resource set by itself, that is, without requesting the second time-frequency resource from the network device. That is, in S412, the first terminal device may determine the second time-frequency resource in the pre-configured set of sidelink resources.
  • the side link resource set may be pre-configured in advance by the network device to the second terminal device or the protocol.
  • the side link resource set may include a V2X resource set or a D2D resource set.
  • the first terminal device may determine the second time-frequency resource in the V2X resource set, and the time-frequency resource in the V2X resource set (or V2X resource pool) may be used to transmit V2X.
  • Information, the V2X information includes the side reference signal.
  • the first terminal device may send the configuration information of the second time-frequency resource to the second terminal device, so that the second terminal device can correctly receive the side Line reference signal and the indication information.
  • the second terminal device may not request the configuration information of the second time-frequency resource from the network device, and the network device may not notify the second terminal device of the configuration information of the second time-frequency resource.
  • the terminal device may send the side reference signal and the indication information used to indicate the configuration information of the side reference signal on a time-frequency resource used solely for transmitting the side reference signal.
  • the terminal device sends the side reference signal, it no longer depends on the PSCCH or PSSCH sent by the terminal device, which improves the flexibility and reliability of the side reference signal transmission in the side link.
  • first, second, etc. are only for convenience of description.
  • first time-frequency resource and the second time-frequency resource are only for showing specific time-frequency resources. It should not have any impact on the time-frequency resource itself, and the above-mentioned first, second, etc. should not cause any limitation to the embodiments of the present application.
  • pre-set and pre-defined may be achieved by pre-storing corresponding codes, tables or other information that can be used to indicate related information in devices (for example, including terminal devices and network devices)
  • devices for example, including terminal devices and network devices
  • the application is not limited in this application.
  • FIG. 20 to FIG. The communication device in 28 can execute each step of the synchronization method in the embodiment of the present application.
  • FIG. 20 shows a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • the device 500 may correspond to the first terminal device described in each embodiment of the above method, or may be a chip or a component applied to the first terminal device. And, each module or unit in the apparatus 500 is used to perform the above method 300 and various actions or processing procedures performed by the first terminal device in each embodiment.
  • the communication apparatus 500 may include: Unit 510 and transceiver 520.
  • the processing unit 510 is configured to acquire a first time-frequency resource, and the first time-frequency resource is used to send side control information and data;
  • the transceiver unit 520 is configured to send a side reference signal and the side control information and data to the second terminal device on the first time-frequency resource.
  • the side reference signal is used to determine the first terminal device and The channel state of the side link between the second terminal devices, wherein the communication device is the first terminal device, or the first terminal device includes the communication device.
  • the lateral control information is used to indicate configuration information of the lateral reference signal.
  • the transceiver unit 520 is specifically configured to: send the side reference signal to the second terminal device on the last symbol or symbols of the first time-frequency resource .
  • the transceiver unit 520 is specifically configured to: send the side reference signal to the second terminal device on any one or more symbols of the first time-frequency resource .
  • the frequency domain bandwidth of the side reference signal is the same as the bandwidth of the first time-frequency resource, or the bandwidth of the side reference signal is the same as the bandwidth of the data The bandwidth is the same.
  • control information includes configuration information of the side reference signal, or the control information includes indication information of configuration information of the side reference signal.
  • the indication information is a resource index of the side reference signal
  • the resource index of the side reference signal corresponds to the configuration information of the side reference signal
  • the configuration information of the side reference signal includes one or more of the following information:
  • the bandwidth of the side reference signal The bandwidth of the side reference signal, the number of antenna ports of the side reference signal, the number of symbols occupied by the side reference signal, the density of the side reference signal, and the code division of the side reference signal Multiplexing mode, resource mapping mode of the side reference signal, and scrambling code identification of the side reference signal.
  • the transceiving unit 520 is further configured to: send request information for requesting the first time-frequency resource to a network device; receive the first from the network device Configuration information of time-frequency resources.
  • the processing unit 510 is specifically configured to: determine the first time-frequency resource from the side link resource set, and the time in the side link resource set Frequency resources are used to transmit sidelink information.
  • the first time-frequency resource is a time slot or a mini-slot in the time domain.
  • the transceiving unit 520 may include a receiving unit (module) and a sending unit (module), which are used to perform various embodiments of the foregoing method 300 and the first terminal device in the embodiments shown in FIG. 9, FIG. 15, and FIG. 16. Steps to receive and send messages.
  • the communication device 500 may further include a storage unit 530 for storing instructions executed by the processing unit 510 and the transceiver unit 520.
  • the processing unit 510, the transceiver unit 520 and the storage unit 530 are communicatively connected, the storage unit 530 stores instructions, the processing unit 510 is used to execute the instructions stored by the storage unit 530, and the transceiver unit 520 is used to perform specific signal transmission and reception under the drive of the processing unit 510 .
  • the transceiver unit 520 may be implemented by a transceiver, and the processing unit 510 may be implemented by a processor.
  • the storage unit 530 may be implemented by a memory.
  • the communication device 600 may include a processor 610, a memory 620, and a transceiver 630.
  • the communication device 500 shown in FIG. 20 or the communication device 600 shown in FIG. 21 can implement various embodiments of the foregoing method 300 and the steps performed by the first terminal device in the embodiments shown in FIGS. 9, 15, and 16.
  • the description in the aforementioned corresponding method please refer to the description in the aforementioned corresponding method. To avoid repetition, I will not repeat them here.
  • the communication device 500 shown in FIG. 20 or the communication device 600 shown in FIG. 21 may be a terminal device.
  • the apparatus 700 may correspond to the second terminal device described in each embodiment of the above method, or may be a chip or a component applied to the second terminal device. And, each module or unit in the apparatus 700 is used to perform the above method 300 and various actions or processing procedures performed by the second terminal device in each embodiment.
  • the communication apparatus 700 may include: Unit 710 and transceiver 720.
  • the processing unit 710 is configured to acquire a first time-frequency resource, and the first time-frequency resource is used to receive side control information and data;
  • the transceiver unit 720 is configured to receive a side reference signal and the side control information and data from the first terminal device on the first time-frequency resource, and the side reference signal is used to determine the first terminal device and The channel state of the side link between the second terminal devices, wherein the communication device is the second terminal device, or the second terminal device includes the communication device.
  • the lateral control information is used to indicate configuration information of the lateral reference signal.
  • the transceiver unit 720 is specifically configured to: receive the side row from the first terminal device on the last symbol or symbols of the first time-frequency resource Reference signal.
  • the transceiver unit 720 is specifically configured to: receive the side row from the first terminal device on any one or more symbols of the first time-frequency resource Reference signal.
  • the frequency domain bandwidth of the side reference signal is the same as the bandwidth of the first time-frequency resource, or the bandwidth of the side reference signal is the same as the bandwidth of the data The bandwidth is the same.
  • control information includes configuration information of the side reference signal, or the control information includes indication information of configuration information of the side reference signal;
  • the indication information is the resource index of the side reference signal, and the resource index of the side reference signal corresponds to the configuration information of the side reference signal.
  • the first time-frequency resource is a time slot or a mini-slot in the time domain.
  • the transceiving unit 720 may include a receiving unit (module) and a sending unit (module), which are used to perform various embodiments of the foregoing method 300 and the second terminal device in the embodiments shown in FIG. 9, FIG. 17, and FIG. 18. Steps to receive and send messages.
  • the communication device 700 may further include a storage unit 730 for storing instructions executed by the processing unit 710 and the transceiver unit 720.
  • the processing unit 710, the transceiving unit 720 and the storage unit 730 are communicatively connected, the storage unit 730 stores instructions, the processing unit 710 is used to execute the instructions stored by the storage unit 730, and the transceiving unit 720 is used to perform specific signal transceiving under the drive of the processing unit 710 .
  • the transceiver unit 720 may be implemented by a transceiver, and the processing unit 710 may be implemented by a processor.
  • the storage unit 730 may be implemented by a memory.
  • the communication device 800 may include a processor 810, a memory 820, and a transceiver 830.
  • the communication apparatus 700 shown in FIG. 22 or the communication apparatus 800 shown in FIG. 23 can implement various embodiments of the foregoing method 300 and the steps performed by the second terminal device in the embodiments shown in FIGS. 9, 15, and 16.
  • the description in the aforementioned corresponding method please refer to the description in the aforementioned corresponding method. To avoid repetition, I will not repeat them here.
  • the communication apparatus 700 shown in FIG. 22 or the communication apparatus 800 shown in FIG. 23 may be a terminal device.
  • FIG. 24 shows a schematic block diagram of a communication apparatus 900 according to an embodiment of the present application.
  • the apparatus 900 may correspond to the first terminal device described in each embodiment of the above method, or may be a chip or a component applied to the first terminal device. And, each module or unit in the apparatus 900 is used to perform the above method 400 and various actions or processing procedures performed by the first terminal device in each embodiment.
  • the communication apparatus 900 may include: Unit 910 and transceiver 920.
  • the processing unit 910 is configured to acquire a second time-frequency resource, and the second time-frequency resource is used to send a side reference signal;
  • the transceiver unit 920 is configured to send the side reference signal and indication information to the second terminal device on the second time-frequency resource, where the indication information is used to indicate configuration information of the reference signal, and the side
  • the line reference signal is used to determine the channel state of the side link between the first terminal device and the second terminal device, wherein the communication device is the first terminal device, or the first terminal device Including the communication device.
  • the indication information is configuration information of the side reference signal, or the indication information is indication information of the configuration information of the side reference signal.
  • the indication information is a resource index of the side reference signal
  • the resource index of the side reference signal corresponds to the configuration information of the side reference signal
  • the configuration information of the side reference signal includes one or more of the following information:
  • the bandwidth of the side reference signal The bandwidth of the side reference signal, the number of antenna ports of the side reference signal, the number of symbols occupied by the side reference signal, the density of the side reference signal, and the code division of the side reference signal Multiplexing mode, resource mapping mode of the side reference signal, and scrambling code identification of the side reference signal.
  • the transceiver unit 920 is further configured to: send request information for requesting the second time-frequency resource to a network device; receive the second from the network device Configuration information of time-frequency resources.
  • the processing unit 910 is specifically configured to:
  • the second time-frequency resource is determined in a side link resource set, and the time-frequency resource in the side link resource set is used to transmit side link information.
  • the transceiver unit 920 may include a receiving unit (module) and a sending unit (module), which are used to perform various embodiments of the foregoing method 300 and the first terminal device in the embodiments shown in FIGS. 17 to 19 to receive information and Steps to send information.
  • the communication device 900 may further include a storage unit 930 for storing instructions executed by the processing unit 910 and the transceiver unit 920.
  • the processing unit 910, the transceiver unit 920 and the storage unit 930 are communicatively connected, the storage unit 930 stores instructions, the processing unit 910 is used to execute the instructions stored by the storage unit 930, and the transceiver unit 920 is used to perform specific signal transmission and reception under the drive of the processing unit 910 .
  • the transceiver unit 920 may be implemented by a transceiver, and the processing unit 910 may be implemented by a processor.
  • the storage unit 930 may be implemented by a memory.
  • the communication device 1000 may include a processor 1010, a memory 1020, and a transceiver 1030.
  • the communication device 900 shown in FIG. 24 or the communication device 1000 shown in FIG. 25 can implement various embodiments of the foregoing method 400 and the steps performed by the first terminal device in the embodiments shown in FIGS. 17 to 19.
  • the description in the aforementioned corresponding method please refer to the description in the aforementioned corresponding method. To avoid repetition, I will not repeat them here.
  • the communication device 900 shown in FIG. 24 or the communication device 1000 shown in FIG. 25 may be a terminal device.
  • FIG. 26 shows a schematic block diagram of a communication device 1100 according to an embodiment of the present application.
  • the device 1100 may correspond to the second terminal device described in each embodiment of the above method, or may be a chip or a component applied to the second terminal device And, each module or unit in the apparatus 1100 is used to perform the above method 400 and various actions or processing procedures performed by the second terminal device in each embodiment.
  • the communication apparatus 1100 may include: Unit 1110 and transceiver unit 1120.
  • the processing unit 1110 is configured to acquire a second time-frequency resource, and the second time-frequency resource is used to receive a side reference signal;
  • the transceiver unit 1120 is configured to receive the side reference signal and indication information from the first terminal device on the second time-frequency resource, where the indication information is used to indicate configuration information of the reference signal, and the side
  • the line reference signal is used to determine the channel status of the side link between the first terminal device and the second terminal device, where the communication device is the second terminal device or the second terminal device Including the communication device.
  • the indication information is configuration information of the side reference signal, or the indication information is indication information of the configuration information of the side reference signal.
  • the indication information is a resource index of the side reference signal
  • the resource index of the side reference signal corresponds to the configuration information of the side reference signal
  • the configuration information of the side reference signal includes one or more of the following information:
  • the bandwidth of the side reference signal The bandwidth of the side reference signal, the number of antenna ports of the side reference signal, the number of symbols occupied by the side reference signal, the density of the side reference signal, and the code division of the side reference signal Multiplexing mode, resource mapping mode of the side reference signal, and scrambling code identification of the side reference signal.
  • the transceiver unit 1120 is further configured to: receive configuration information of the second time-frequency resource from the network device or the first terminal device.
  • the transceiving unit 1120 may include a receiving unit (module) and a sending unit (module) for performing the foregoing embodiments of the method 300 and the second terminal device in the embodiments shown in FIGS. 17 to 19 to receive information and Steps to send information.
  • the communication device 1100 may further include a storage unit 1130 for storing instructions executed by the processing unit 1110 and the transceiver unit 1120.
  • the processing unit 1110, the transceiver unit 1120 and the storage unit 1130 are communicatively connected, the storage unit 1130 stores instructions, the processing unit 1110 is used to execute the instructions stored by the storage unit 1130, and the transceiver unit 1120 is used to perform specific signal transmission and reception under the drive of the processing unit 1110 .
  • the transceiver unit 1120 may be implemented by a transceiver, and the processing unit 1110 may be implemented by a processor.
  • the storage unit 1130 may be implemented by a memory.
  • the communication device 1200 may include a processor 1210, a memory 1220, and a transceiver 1230.
  • the communication device 1100 shown in FIG. 26 or the communication device 1200 shown in FIG. 27 can implement various embodiments of the foregoing method 400 and the steps performed by the second terminal device in the embodiments shown in FIGS. 17 to 19.
  • the communication device 1100 shown in FIG. 26 or the communication device 1200 shown in FIG. 27 may be a terminal device.
  • FIG. 28 shows a schematic block diagram of a communication device 1300 according to an embodiment of the present application.
  • the device 1300 may correspond to the network device described in each embodiment of the above method, or may be a chip or a component applied to the network device, and the Each module or unit in the apparatus 1300 is used to perform the above method 300 and each action or processing procedure performed by the second terminal device in each embodiment.
  • the communication apparatus 1300 may include: a processing unit 1310 and a transceiver Single 1320.
  • the processing unit 1310 is configured to determine a second time-frequency resource, where the second time-frequency resource is used to send a side reference signal, and the side reference signal is used to determine a side between the first terminal device and the second terminal device Channel status of the uplink;
  • the transceiver unit 1320 is configured to send the configuration information of the second time-frequency resource to the first terminal device and/or the first terminal device.
  • the processing unit 1310 is specifically configured to: determine a side link resource set, and time-frequency resources in the side link resource set are used to transmit the side link Information; determining the second time-frequency resource in the set of sidelink resources.
  • the transceiver unit 1320 is further used to:
  • the transceiving unit 1320 may include a receiving unit (module) and a sending unit (module) for performing the foregoing embodiments of the method 300 and the method 400 and the network device in the embodiments shown in FIGS. 15 and 18 to receive information And the steps to send information.
  • the communication device 1300 may further include a storage unit 1330 for storing instructions executed by the processing unit 1310 and the transceiver unit 1320.
  • the processing unit 1310, the transceiving unit 1320 and the storage unit 1330 are communicatively connected, the storage unit 1330 stores instructions, the processing unit 1310 is used to execute the instructions stored by the storage unit 1330, and the transceiving unit 1320 is used to perform specific signal transceiving under the drive of the processing unit 1310 .
  • the transceiver unit 1320 may be implemented by a transceiver, and the processing unit 1310 may be implemented by a processor.
  • the storage unit 1330 may be implemented by a memory.
  • the communication device 1400 may include a processor 1410, a memory 1420, and a transceiver 1430.
  • the communication apparatus 1300 shown in FIG. 28 or the communication apparatus 2400 shown in FIG. 29 can implement the foregoing embodiments of the method 300 and the method 400 and the steps performed by the network device in the embodiments shown in FIGS. 15 to 18.
  • the description in the aforementioned corresponding method please refer to the description in the aforementioned corresponding method. To avoid repetition, I will not repeat them here.
  • the communication device 1300 shown in FIG. 28 or the communication device 1400 shown in FIG. 29 may be a network device.
  • each unit in the above device may be implemented in the form of software invoking through processing elements; they may also be implemented in the form of hardware; some units may be implemented in software invoking through processing elements, and some units may be implemented in hardware.
  • each unit can be a separate processing element, or it can be integrated into a chip of the device.
  • it can also be stored in the memory in the form of a program, which is called and executed by a processing element of the device.
  • the processing element may also be referred to as a processor, which may be an integrated circuit with signal processing capability.
  • a processor which may be an integrated circuit with signal processing capability.
  • each step of the above method or each unit above may be implemented by an integrated logic circuit of hardware in a processor element or in the form of software invoking through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (application specific integrated circuits, ASIC), or, one or Multiple digital signal processors (DSPs), or one or more field programmable gate arrays (FPGAs), or a combination of at least two of these integrated circuit forms.
  • ASIC application specific integrated circuits
  • DSPs Multiple digital signal processors
  • FPGAs field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduling program
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processor that can call a program.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • FIG. 30 is a schematic structural diagram of a terminal device 1500 provided by an embodiment of the present application.
  • the terminal device 1500 includes a processor 1501 and a transceiver 1502.
  • the terminal device 1500 further includes a memory 1503.
  • the processor 1501, the transceiver 1502 and the memory 1503 can communicate with each other through an internal connection channel to transfer control and/or data signals.
  • the memory 1503 is used to store a computer program, and the processor 1501 is used from the memory 1503 Call and run the computer program to control the transceiver 1502 to send and receive signals.
  • the terminal device 1500 may further include an antenna 1504 for sending uplink data or uplink control signaling output by the transceiver 1502 through a wireless signal.
  • the processor 1501 and the memory 1503 may be combined into one processing device.
  • the processor 1501 is used to execute the program code stored in the memory 1503 to implement the above functions.
  • the memory 1503 may also be integrated in the processor 1501 or independent of the processor 1501.
  • the terminal device 1500 may correspond to the first terminal device or the second terminal device in various embodiments of the method according to the embodiments of the present application, and in the embodiments shown in FIGS. 9, 15 to 19, the The terminal device 1500 may include units for performing various embodiments of the method and the method performed by the first terminal device or the second terminal device in the embodiments shown in FIGS. 9, 15 to 19.
  • each unit in the terminal device 1500 and the other operations and/or functions described above are for implementing respective processes in the embodiments of the method and the embodiments shown in FIGS. 9, 15 to 19, respectively.
  • the above-mentioned processor 1501 may be used to perform the internally implemented actions of the first terminal device or the second terminal device described in the foregoing method embodiment, and the transceiver 1502 may be used to execute the first terminal device or the first terminal device described in the foregoing method embodiment.
  • the action initiated or received by the terminal device please refer to the description in the foregoing method embodiment, and no more details are provided here.
  • the terminal device 1500 may further include a power supply 1505, which is used to provide power to various devices or circuits in the terminal device.
  • a power supply 1505 which is used to provide power to various devices or circuits in the terminal device.
  • the terminal device 1500 may further include one or more of an input unit 1506, a display unit 1507, an audio circuit 1508, a camera 1509, a sensor 1515, etc.
  • the audio circuit also A speaker 15082, a microphone 15084, etc. may be included.
  • FIG. 31 is a schematic structural diagram of a network device according to an embodiment of the present application. It is used to realize the operation of the network device in the above embodiments.
  • the network device includes: an antenna 1601, a radio frequency device 1602, and a baseband device 1603.
  • the antenna 1601 is connected to the radio frequency device 1602.
  • the radio frequency device 1602 receives the information sent by the terminal through the antenna 1601, and sends the information sent by the terminal device to the baseband device 1603 for processing.
  • the baseband device 1603 processes the information of the terminal and sends it to the radio frequency device 1602.
  • the radio frequency device 1602 processes the information of the terminal device and sends it to the terminal through the antenna 1601.
  • the baseband device 1603 may include one or more processing elements 16031, for example, including a main control CPU and other integrated circuits.
  • the baseband device 1603 may also include a storage element 16032 and an interface 16033.
  • the storage element 16032 is used to store programs and data; the interface 16033 is used to exchange information with the radio frequency device 1602, and the interface is, for example, a common public radio interface (common public radio interface) , CPRI).
  • the above device for network equipment may be located in the baseband device 1603, for example, the above device for network equipment may be a chip on the baseband device 1603, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to perform the above network Each step of any method performed by the device, the interface circuit is used to communicate with other devices.
  • the unit of the network device that implements the steps of the above method may be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiments.
  • the storage element may be a storage element on the same chip as the processing element, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the terminal device and the network device in each of the above device embodiments may completely correspond to the terminal device or the network device in the method embodiment, and the corresponding steps are performed by corresponding modules or units, for example, when the device is implemented in a chip manner
  • the receiving unit may be an interface circuit of the chip for receiving signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices, for example, when the device is implemented as a chip, the sending unit is the chip for sending signals to other chips or devices Interface circuit.
  • processor in the embodiments of the present application may be a CPU, and the processor may also be other general-purpose processors, DSPs, ASICs, FPGAs, or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and so on.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (random access memory, RAM), which acts as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access Access memory
  • SDRAM synchronous dynamic random access Access memory
  • double data rate synchronous dynamic random access memory double data Srate, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the terminal device and the network device in each of the above device embodiments may completely correspond to the terminal device or the network device in the method embodiment, and the corresponding steps are performed by corresponding modules or units, for example, when the device is implemented in a chip manner
  • the receiving unit may be an interface circuit of the chip for receiving signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices, for example, when the device is implemented as a chip, the sending unit is the chip for sending signals to other chips or devices Interface circuit.
  • An embodiment of the present application further provides a communication system.
  • the communication system includes the foregoing first terminal device and/or second terminal device, and the foregoing network device.
  • An embodiment of the present application also provides a computer-readable medium for storing computer program code, the computer program including instructions for executing the method for transmitting the side reference signal in the embodiments of the present application in the above methods 300 and 400.
  • the readable medium may be a read-only memory (read-only memory, ROM) or a random access memory (random access memory, RAM), which is not limited in the embodiments of the present application.
  • the present application also provides a computer program product including instructions, when the instructions are executed, so that the first terminal device, the second terminal device, and the network device respectively execute the first terminal corresponding to the above method Operation of equipment, second terminal equipment and network equipment.
  • An embodiment of the present application further provides a system chip.
  • the system chip includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor.
  • the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute computer instructions to cause the chip in the communication device to execute any of the side reference signal transmission methods provided in the embodiments of the present application.
  • any of the communication devices provided in the above embodiments of the present application may include the system chip.
  • the computer instructions are stored in the storage unit.
  • the storage unit is a storage unit within the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip within the terminal, such as a ROM or other device that can store static information and instructions Types of static storage devices, RAM, etc.
  • the processor mentioned in any one of the above may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits for executing the program for controlling the above-mentioned feedback information transmission method.
  • the processing unit and the storage unit can be decoupled, respectively set on different physical devices, and connected by wired or wireless means to realize the respective functions of the processing unit and the storage unit, so as to support the system chip to implement the above embodiments Various functions in.
  • the processing unit and the memory may be coupled on the same device.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (random access memory, RAM), which acts as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access Access memory
  • SDRAM synchronous dynamic random access Access memory
  • double data rate synchronous dynamic random access memory double data Srate, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • system and "network” are often used interchangeably in this document.
  • the term “and/or” in this article is just an association relationship that describes an associated object, which means that there can be three kinds of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, exist alone B these three cases.
  • the character “/” in this article generally indicates that the related objects before and after it are in an “or” relationship.
  • upstream and downstream appearing in this application are used to describe the direction of data/information transmission in specific scenarios.
  • the "upstream” direction generally refers to the direction or distribution of data/information transmission from the terminal to the network side
  • the transmission direction of the centralized unit to the centralized unit generally refers to the direction of data/information transmission from the network side to the terminal, or the transmission direction of the centralized unit to the distributed unit.
  • upstream and downstream “It is only used to describe the direction of data/information transmission, and the specific starting and ending devices of the data/information transmission are not limited.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种侧行参考信号的传输方法和通信装置,可以应用于车联网,例如V2X、LTE-V、V2V等。第一终端设备获取第一时频资源,第一时频资源用于发送侧行控制信息和数据;该第一终端设备在该第一时频资源上,向第二终端设备发送侧行参考信号以及侧行控制信息和数据,侧行参考信号用于确定第一终端设备与第二终端设备之间的侧行链路的信道状态。本申请提供的侧行参考信号的传输方法,通过将侧行参考信号承载在用于发送侧行控制信息和/或数据的时频资源上,和侧行控制信息和/或数据一起发送。可以在SL通信中实现侧行参考信号灵活、准确的发送,提高了侧行链路中侧行参考信号的发送的灵活度和可靠性,降低侧行参考信号的资源开销。

Description

侧行参考信号的传输方法和通信装置
本申请要求于2019年1月11日提交中国专利局、申请号为201910028732.4、申请名称为“侧行参考信号的传输方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域。更为具体的,涉及一种侧行参考信号的传输方法和通信装置。
背景技术
车辆对其他设备(vehicle to everything,V2X)通信是车联网中实现环境感知、信息交互的重要关键技术,这里的其他设备可以是其他车辆、其他基础设施、行人、终端设备等。侧行链路(side link,SL)为终端设备和终端设备设备之间的通信链路,V2X通信之间的链路为侧行链路的一种。在V2X通信中,用于进行侧行链路信道状态信息测量的参考信号的资源是由网络设备进行配置,并且参考信号是由网络设备发送的。造成SL链路参考信号的发送效率和可靠性低,严重影响用户体验。
发明内容
本申请提供一种侧行参考信号的传输方法,提高了侧行链路中侧行参考信号的发送的灵活度和可靠性,降低侧行参考信号的资源开销。
第一方面,提供了一种侧行参考信号的传输方法,该方法的执行主体既可以是第一终端设备也可以是应用于第一终端设备的芯片。该方法包括:第一终端设备获取第一时频资源,该第一时频资源用于发送侧行控制信息和数据;该第一终端设备在该第一时频资源上,向第二终端设备发送侧行参考信号以及该侧行控制信息和数据,该侧行参考信号用于确定该第一终端设备与该第二终端设备之间的侧行链路的信道状态。
第一方面提供的侧行参考信号的传输方法,通过将侧行参考信号承载在用于发送侧行控制信息和/或数据的时频资源上,和侧行控制信息和/或数据一起发送。可以在SL通信中实现侧行参考信号灵活、准确的发送。不需要为该侧行参考信号额外的配置发送资源,提高了侧行链路中侧行参考信号的发送的灵活度和可靠性,降低侧行参考信号的资源开销。
在第一方面一种可能的实现方式中,该侧行控制信息用于指示该侧行参考信号的配置信息。
在第一方面一种可能的实现方式中,该第一终端设备在该第一时频资源的最后一个或者多个符号上向该第二终端设备发送该侧行参考信号。
在第一方面一种可能的实现方式中,该第一终端设备在该第一时频资源的任意一个或者多个符号上向该第二终端设备发送该侧行参考信号。
在第一方面一种可能的实现方式中,该侧行参考信号的频域带宽与该第一时频资源的 带宽相同,或者,该侧行参考信号的带宽与该数据的带宽相同。在该实现方式中。当该侧行参考信号的频域带宽与该第一时频资源的带宽相同,或者,该侧行参考信号的带宽与该PSSCH的带宽相同时,第一终端设备可以不用对该侧行参考信号的带宽进行额外的指示,不需要额占用外的资源来指示该侧行参考信号的带宽,可以节省资源,提高资源的利用率。
在第一方面一种可能的实现方式中,该控制信息包括该侧行参考信号的配置信息,或者,该控制信息包括该侧行参考信号的配置信息的指示信息。
在第一方面一种可能的实现方式中,该指示信息为该侧行参考信号的资源索引,该侧行参考信号的资源索引对应该侧行参考信号的配置信息。
在第一方面一种可能的实现方式中,该侧行参考信号的配置信息包括以下信息中的一个或者多个:该侧行参考信号的带宽、该侧行参考信号的天线端口数、该侧行参考信号所占的符号数、该侧行参考信号的密度、该侧行参考信号的码分复用方式、该侧行参考信号的资源映射模式、该侧行参考信号的扰码标识。
在第一方面一种可能的实现方式中,该方法还包括:该第一终端设备向网络设备发送用于请求该第一时频资源的请求信息;该第一终端设备获取第一时频资源,包括:该第一终端设备从该网络设备接收该第一时频资源的配置信息。
在第一方面一种可能的实现方式中,该第一终端设备获取该第一时频资源,包括:该第一终端设备从侧行链路资源集合中确定该第一时频资源,该侧行链路资源集合中的时频资源用于传输侧行链路信息。
在第一方面一种可能的实现方式中,该第一时频资源在时域上为一个时隙,或者为一个微时隙。
第二方面,提供了一种侧行参考信号的传输方法,该方法的执行主体既可以是第二终端设备也可以是应用于第二终端设备的芯片。该方法包括:第二终端设备获取第一时频资源,该第一时频资源用于接收侧行控制信息和数据;该第二终端设备在该第一时频资源上,从第一终端设备接收侧行参考信号以及该侧行控制信息和数据,该侧行参考信号用于确定该第一终端设备与该第二终端设备之间的侧行链路的信道状态。
第二方面提供侧行参考信号的传输方法,通过将侧行参考信号承载在用于接收侧行控制信息和/或数据的时频资源上,和侧行控制信息和/或数据一起接收。可以在SL通信中实现侧行参考信号灵活、准确的接收。不需要在其他资源上接收该侧行参考信号,提高了侧行链路中侧行参考信号的接收的灵活度和可靠性,降低侧行参考信号的资源开销。
在第二方面一种可能的实现方式中,该侧行控制信息用于指示该侧行参考信号的配置信息。
在第二方面一种可能的实现方式中,该第二终端设备在该第一时频资源的最后一个或者多个符号上从该第一终端设备接收该侧行参考信号。
在第二方面一种可能的实现方式中,该第二终端设备在该第一时频资源的任意一个或者多个符号上从该第一终端设备接收该侧行参考信号。
在第二方面一种可能的实现方式中,该侧行参考信号的频域带宽与该第一时频资源的带宽相同,或者,该侧行参考信号的带宽与该数据的带宽相同。
在第二方面一种可能的实现方式中,该控制信息包括该侧行参考信号的配置信息,或者,该控制信息包括该侧行参考信号的配置信息的指示信息。
在第二方面一种可能的实现方式中,该指示信息为该侧行参考信号的资源索引,该侧行参考信号的资源索引对应该侧行参考信号的配置信息。
在第二方面一种可能的实现方式中,该侧行参考信号的配置信息包括以下信息中的一个或者多个:该侧行参考信号的带宽、该侧行参考信号的天线端口数、该侧行参考信号所占的符号数、该侧行参考信号的密度、该侧行参考信号的码分复用方式、该侧行参考信号的资源映射模式、该侧行参考信号的扰码标识。
在第二方面一种可能的实现方式中,该第一时频资源在时域上为一个时隙,或者为一个微时隙。
第三方面,提供了一种侧行参考信号的传输方法,该方法的执行主体既可以是第一终端设备也可以是应用于第一终端设备的芯片。该方法包括:第一终端设备获取第二时频资源,该第二时频资源用于发送侧行参考信号;该第一终端设备在该第二时频资源上,向第二终端设备发送该侧行参考信号和指示信息,该指示信息用于指示该参考信号的配置信息,该侧行参考信号用于确定该第一终端设备与该第二终端设备之间的侧行链路的信道状态。
第三方面提供侧行参考信号的传输方法,终端设备可以在单独用于发送侧行参考信号的时频资源发送该侧行参考信号,提高了侧行链路中侧行参考信号发送的灵活度和可靠性。
在第三方面一种可能的实现方式中,该指示信息为该侧行参考信号的配置信息,或者,该指示信息为该侧行参考信号的配置信息的指示信息。
在第三方面一种可能的实现方式中,该方法还包括:该第一终端设备向网络设备发送用于请求该第二时频资源的请求信息;该第一终端设备获取第二时频资源,包括:
该第一终端设备从该网络设备接收该第二时频资源的配置信息。
在第三方面一种可能的实现方式中,该第一终端设备获取该第二时频资源,包括:该第一终端设备在侧行链路资源集合中确定该第二时频资源,该侧行链路资源集合中的时频资源用于传输侧行链路信息。
在第三方面一种可能的实现方式中,该第二时频资源在时域上为一个时隙,或者为一个微时隙。
第四方面,提供了一种侧行参考信号的传输方法,该方法的执行主体既可以是第二终端设备也可以是应用于第二终端设备的芯片。该方法包括:第二终端设备获取第二时频资源,该第二时频资源用于接收侧行参考信号;该第二终端设备在该第二时频资源上,从第一终端设备接收该侧行参考信号和指示信息,该指示信息用于指示该参考信号的配置信息,该侧行参考信号用于确定该第一终端设备与该第二终端设备之间的侧行链路的信道状态。
第四方面提供侧行参考信号的传输方法,终端设备可以在单独用于接收侧行参考信号的时频资源接收该侧行参考信号,提高了侧行链路中侧行参考信号接收的灵活度和可靠性。
在第四方面一种可能的实现方式中,该指示信息为该侧行参考信号的配置信息,或者,该指示信息为该侧行参考信号的配置信息的指示信息。
在第四方面一种可能的实现方式中,该第二终端设备获取第二时频资源,包括:
该第二终端设备从该网络设备或该第一终端设备接收该第二时频资源的配置信息。
在第四方面一种可能的实现方式中,该第二时频资源在时域上为一个时隙,或者为一个微时隙。
第五方面,提供了一种侧行参考信号的传输方法,该方法的执行主体既可以是网络设备也可以是应用于网络设备的芯片。该方法包括:网络设备确定第二时频资源,该第二时频资源用于发送侧行参考信号,该侧行参考信号用于确定第一终端设备与第二终端设备之间的侧行链路的信道状态;该网络设备向该第一终端设备和/或该第一终端设备发送该第二时频资源的配置信息。
第五方面提供侧行参考信号的传输方法,可以在单独为侧行参考信号的配置时频资源,提高了侧行链路中侧行参考信号传输的灵活度和可靠性。
在第五方面一种可能的实现方式中,该网络设备确定第二时频资源,包括:
该网络设备确定侧行链路资源集合,该侧行链路资源集合中的时频资源用于传输侧行链路信息;该网络设备在该侧行链路资源集合中确定该第二时频资源。
在第五方面一种可能的实现方式中,该方法还包括:
该网络设备从该第一终端设备和/或第一终端设备接收该第二时频资源的请求信息。
在第五方面一种可能的实现方式中,该第二时频资源在时域上为一个时隙,或者为一个微时隙。
第六方面,提供了一种通信装置,该装置包括:处理单元,用于获取第一时频资源,该第一时频资源用于发送侧行控制信息和数据;收发单元,用于在该第一时频资源上,向第二终端设备发送侧行参考信号以及该侧行控制信息和数据,该侧行参考信号用于确定第一终端设备与该第二终端设备之间的侧行链路的信道状态,其中,该通信装置为该第一终端设备,或者,该第一终端设备包括该通信装置。
在第六方面的一种可能的实现方式中,该侧行控制信息用于指示该侧行参考信号的配置信息。
在第六方面的一种可能的实现方式中,收发单元具体用于:在该第一时频资源的最后一个或者多个符号上向该第二终端设备发送该侧行参考信号。
在第六方面的一种可能的实现方式中,收发单元具体用于:在该第一时频资源的任意一个或者多个符号上向该第二终端设备发送该侧行参考信号。
在第六方面的一种可能的实现方式中,该侧行参考信号的频域带宽与该第一时频资源的带宽相同,或者,该侧行参考信号的带宽与该数据的带宽相同。
在第六方面的一种可能的实现方式中,该控制信息包括该侧行参考信号的配置信息,或者,该控制信息包括该侧行参考信号的配置信息的指示信息。
在第六方面的一种可能的实现方式中,该指示信息为该侧行参考信号的资源索引,该侧行参考信号的资源索引对应该侧行参考信号的配置信息。
在第六方面的一种可能的实现方式中,该侧行参考信号的配置信息包括以下信息中的一个或者多个:该侧行参考信号的带宽、该侧行参考信号的天线端口数、该侧行参考信号所占的符号数、该侧行参考信号的密度、该侧行参考信号的码分复用方式、该侧行参考信号的资源映射模式、该侧行参考信号的扰码标识。
在第六方面的一种可能的实现方式中,该收发单元还用于:向网络设备发送用于请求 该第一时频资源的请求信息;从该网络设备接收该第一时频资源的配置信息。
在第六方面的一种可能的实现方式中,该处理单元具体用于:从侧行链路资源集合中确定该第一时频资源,该侧行链路资源集合中的时频资源用于传输侧行链路信息。
第七方面,提供了一种通信装置,该装置包括:处理单元,用于获取第一时频资源,该第一时频资源用于接收侧行控制信息和数据;收发单元,用于在该第一时频资源上,从第一终端设备接收侧行参考信号以及该侧行控制信息和数据,该侧行参考信号用于确定第一终端设备与该第二终端设备之间的侧行链路的信道状态,其中,该通信装置为该第二终端设备,或者,该第二终端设备包括该通信装置。
在第七方面的一种可能的实现方式中,该侧行控制信息用于指示该侧行参考信号的配置信息。
在第七方面的一种可能的实现方式中,该收发单元具体用于:在该第一时频资源的最后一个或者多个符号上从该第一终端设备接收该侧行参考信号。
在第七方面的一种可能的实现方式中,该收发单元具体用于:在该第一时频资源的任意一个或者多个符号上从该第一终端设备接收该侧行参考信号。
在第七方面的一种可能的实现方式中,该侧行参考信号的频域带宽与该第一时频资源的带宽相同,或者,该侧行参考信号的带宽与该数据的带宽相同。
在第七方面的一种可能的实现方式中,该控制信息包括该侧行参考信号的配置信息,或者,该控制信息包括该侧行参考信号的配置信息的指示信息;该指示信息为该侧行参考信号的资源索引,该侧行参考信号的资源索引对应该侧行参考信号的配置信息。
第八方面,提供了一种通信装置,包括:处理单元,用于获取第二时频资源,该第二时频资源用于发送侧行参考信号;收发单元,用于在该第二时频资源上,向第二终端设备发送该侧行参考信号和指示信息,该指示信息用于指示该参考信号的配置信息,该侧行参考信号用于确定第一终端设备与该第二终端设备之间的侧行链路的信道状态,其中,该通信装置为该第一终端设备,或者,该第一终端设备包括该通信装置。
在第八方面的一种可能的实现方式中,该指示信息为该侧行参考信号的配置信息,或者,该指示信息为该侧行参考信号的配置信息的指示信息。
在第八方面的一种可能的实现方式中,该收发单元还用于:向网络设备发送用于请求该第二时频资源的请求信息;从该网络设备接收该第二时频资源的配置信息。
在第八方面的一种可能的实现方式中,该处理单元具体用于:在侧行链路资源集合中确定该第二时频资源,该侧行链路资源集合中的时频资源用于传输侧行链路信息。
第九方面,提供了一种通信装置,包括:处理单元,用于获取第二时频资源,该第二时频资源用于接收侧行参考信号;收发单元,用于在该第二时频资源上,从第一终端设备接收该侧行参考信号和指示信息,该指示信息用于指示该参考信号的配置信息,该侧行参考信号用于确定该第一终端设备与第二终端设备之间的侧行链路的信道状态,其中,该通信装置为该第二终端设备,或者,该第二终端设备包括该通信装置。
在第九方面的一种可能的实现方式中,该指示信息为该侧行参考信号的配置信息,或者,该指示信息为该侧行参考信号的配置信息的指示信息。
在第九方面的一种可能的实现方式中,该收发单元还用于:从该网络设备或该第一终端设备接收该第二时频资源的配置信息。
第十方面,提供了一种通信装置,包括:处理单元,用于确定第二时频资源,该第二时频资源用于发送侧行参考信号,该侧行参考信号用于确定第一终端设备与第二终端设备之间的侧行链路的信道状态;收发单元,用于向该第一终端设备和/或该第一终端设备发送该第二时频资源的配置信息。
在第十方面的一种可能的实现方式中,该处理单元具体用于:确定侧行链路资源集合,该侧行链路资源集合中的时频资源用于传输侧行链路信息;在该侧行链路资源集合中确定该第二时频资源。
在第十方面的一种可能的实现方式中,该收发单元还用于:从该第一终端设备和/或第一终端设备接收该第二时频资源的请求信息。
第十一方面,提供了一种通信装置,该装置包括至少一个处理器和存储器,至少一个处理器用于执行以上第一方面至第四方面,或第一方面至第四方面的任意可能的实现方式中的方法。
第十二方面,提供了一种通信装置,该装置包括至少一个处理器和存储器,至少一个处理器用于执行以上第五方面或第五方面的任意可能的实现方式中的方法。
第十三方面,提供了一种终端设备,该终端设备包括上述第六方面至第九方面、或第六方面和第九方面的任意可能的实现方式提供的通信装置,或者,该终端设备包括上述第十一方面提供的通信装置。
第十四方面,提供了一种网络设备,该网络设备包括上述第十方面或第十方面的任意可能的实现方式提供的通信装置,或者,该网络设备包括上述第十二方面提供的通信装置。
第十五方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序在被处理器执行时,用于执行第一方面至第五方面,或第一方面至第五方面的任意可能的实现方式中的方法。
第十六方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第一方面至第五方面、或第一方面至第五方面的任意可能的实现方式中的方法。
第十七方面,提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片系统还包括存储器,该存储器,用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。该处理器和该存储器可以解耦,分别设置在不同的设备上,通过有线或者无线的方式连接,或者处理器和该存储器也可以耦合在同一个设备上。可选的,上述任意一方面提供的通信装置包括该芯片系统。
附图说明
图1是适用于本申请实施例的移动通信系统的架构示意图。
图2是利用比特地图指示用于V2V通信的子帧的示意图。
图3是一例V2V通信资源池的时频资源示意图。
图4是PSCCH和PSSCH采用频分复用的示意图。
图5是PSCCH和PSSCH采用部分频分复用和部分时分复用的示意图。
图6是CSI-RS资源的示意图。
图7是适用于本申请实施例的通信方法的通信系统的示意图。
图8是另一例适用于本申请实施例的通信方法的通信系统的示意图。
图9是本申请实施例提供的一例侧行参考信号的传输方法的示意性交互图。
图10是本申请一些实施例中的第一时频资源上承载的侧行参考信号的示意图。
图11是本申请一些实施例中的第一时频资源上承载的侧行参考信号的示意图。
图12是本申请一些实施例中的第一时频资源上承载的侧行参考信号的示意图。
图13是本申请一些实施例中的第一时频资源上承载的侧行参考信号的示意图。
图14是本申请一些实施例中的第一时频资源上承载的侧行参考信号的示意图。
图15是本申请实施例提供的另一例侧行参考信号的传输方法的示意性交互图。
图16是本申请实施例提供的另一例侧行参考信号的传输方法的示意性交互图。
图17是本申请实施例提供的另一例侧行参考信号的传输方法的示意性交互图。
图18是本申请实施例提供的另一例侧行参考信号的传输方法的示意性交互图。
图19是本申请实施例提供的另一例侧行参考信号的传输方法的示意性交互图。
图20是本申请实施例提供的通信装置的示意性框图。
图21是本申请另一个实施例提供的通信装置的示意性框图。
图22是本申请实施例提供的通信装置的示意性框图。
图23是本申请另一个实施例提供的通信装置的示意性框图。
图24是本申请另一个实施例提供的通信装置的示意性框图。
图25是本申请实施例提供的通信装置的示意性框图。
图26是本申请实施例提供的通信装置的示意性框图。
图27是本申请另一个实施例提供的通信装置的示意性框图。
图28是本申请另一个实施例提供的通信装置的示意性框图。
图29是本申请实施例提供的通信装置的示意性框图。
图30是本申请一个实施例提供的终端设备的示意性框图。
图31是本申请另一个实施例提供的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用 户装置、汽车、车载设备等。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是一种部署在无线接入网中用以为终端设备提供无线通信服务的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
车辆对其他设备(vehicle to everything,V2X)通信是车联网中实现环境感知、信息交互的重要关键技术,这里的其他设备可以是其他车辆、其他基础设施、行人、终端设备等。V2X通信可以看成是设备到设备(device to device,D2D)通信的一种特殊情形。车辆到车辆(vehicle to vehicle,V2V)之间的通信可以看成是V2X通信的一种特殊情形,通过车辆和车辆之间直接进行通信,可以实时地获取其他车辆的状态信息以及路面情况,从而更好地辅助车辆驾驶甚至实现自动驾驶。V2V之间的通信链路可以称为侧行链路(side  link,SL),侧行链路为终端设备和终端设备设备之间的通信直连链路。例如,可以车辆到车辆之间的通信等。直连链路可以理解为两个终端设备之间直接进行数据传输的链路,两个终端设备之间没有其他的网络节点。图1是V2V通信的一个典型场景的示意图。如图1所示,行驶中的车辆可以通过V2V通信来直接和附近的其他车辆交互信息。
目前,V2V通信包含两种通信模式:第一种通信模式是基于网络设备(例如基站)调度的V2V通信,V2V用户(例如可以是车辆或者车载设备)根据网络设备的调度信息在被调度的时频资源上发送V2V通信的控制消息和数据。第二种通信模式是V2V用户在预配置的V2V通信资源池(或者也可以称为V2X资源集合)包含的可用时频资源中自行选择V2V通信所用的时频资源,并在所选择的资源上发送控制消息和数据。两种通信模式各有优缺点,可以灵活运用于各种不同的场景。
V2V通信的时频资源是基于V2V通信资源池来进行配置的。V2V通信资源池可以看作是用于V2V通信的时域资源和频率资源的集合。例如,对于时域资源,网络设备可以采用一个比特地图(bit map)并且周期性重复该比特地图来指示系统中所有子帧中可用于V2V通信的子帧的集合。一个子帧的时间长度为1ms。图2是利用比特地图指示用于V2V通信的子帧的示意图。例如,可以利用比特位“1”指示某一个子帧用于V2V通信,利用比特位“0”指示某一个子帧不用于V2V通信。图2所示例子中的比特地图的长度为8比特。
对于V2V通信资源池的频率资源,网络设备可以将用于V2V通信的频段分成若干个子信道,每个子信道包含一定数量的资源块(resource block,RB)。图3是一例V2V通信资源池的时频资源示意图。如图3所示,利用比特位“1”指示某一个子帧可用于V2V通信,利用比特位“0”指示某一个子帧不用于V2V通信。另外网络设备会指示用于V2V通信的频率资源的第一个资源块的序号,该V2V通信资源池包含的总的子信道的数目N,每个子信道包含的资源块的数目n CH。V2V通信时数据或者控制信息传输一次可以占用一个或者多个子信道。需要理解的是,上述描述中的子帧为通信系统(例如LTE)中定义的一种时间单位,一个子帧的时间长度为1ms。
在V2X通信系统中,物理侧行控制信道(physical sidelink control channel,PSCCH)用于传输V2V通信中的控制信息,物理侧行共享信道(physical sidelink shared channel,PSSCH)用于传输V2V通信中的数据。前述控制信息用于接收端接收V2V通信时的数据。目前,PSCCH和PSSCH可以采用频分复用(frequency division multiplexing,FDM)的方式进行复用。图4是PSCCH和PSSCH采用频分复用的示意图。如图4所示,PSCCH和PSSCH的占用相同的时域资源,在频域上占据不用的子载波。
作为另外一种可能实现方式,PSCCH和PSSCH可以利用部分时分复用和部分频分复用的方式,图5是PSCCH和PSSCH采用部分频分复用和部分时分复用的示意图。如图5所示,一部分PSSCH与PSCCH占用相同的时域资源,在频域上占据不同的子载波,一部分PSSCH与PSCCH在时域上占据不同的时域资源。
信道状态信息(Channel State Information,CSI)是接收端设备(以终端设备为例)上报给发送端设备(以网络设备为例)的信道状态信息,由信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、预编码类型指示(precoding type indicator,PTI)和信道矩阵秩指示(rand indication,RI)中的一个或者多个组成。网络设备根据CSI信息,确定信道质量。网络设备在进行下行调度时会将信道 质量考虑在内,即根据CSI信息为发送给将终端设备的控制信息和数据确定传输资源以及传输参数等。
信道状态信息参考信号(channel state information reference signal,CSI-RS)主要用于获取信道状态信息。网络设备会周期性地发送CSI-RS给终端设备,终端设备接收CSI-RS并进行测量,进而获得信道状态信息,然后将信道状态信息反馈给网络设备。CSI-RS在频域上可以占据多个资源块(resource block,RB),一个RB包括12个资源元素(resource element,RE),一个RE在时域占据一个符号,在频域上占据一个子载波。CSI-RS在时域上可以占据一个或者若干个符号。CSI-RS可以支持多个天线端口(例如在NR系统中CSI-RS最多支持32个端口),不同天线端口之间可以采用不同的码分复用方式。具体的,CSI-RS资源配置信息可以包含如下参数:CSI-RS的周期、CSI-RS所占带宽,CSI-RS支持的天线端口数、CSI-RS发送的密度、CSI-RS的码分复用方式、CSI-RS的资源映射模式(在一个RB及一个时隙内的映射方式,包括占据的符号数及符号的索引、占据的RE的索引等)、CSI-RS的扰码标识(scrambling ID)等。图6是CSI-RS资源的一个示意图。需要理解的是,在5G或其他未来的通信系统中时隙可以是一种灵活定义的时间单位,时隙长度因为子载波间隔不同会有所不同,一般是随着子载波间隔变大,时隙长度变小。一般的,一个时隙包括14个时域符号,一些情况(例如扩展循环前缀(cyclic prefix,CP))下,一个时隙可以包括12个时域符号。
如图6所示,其中信道总带宽为n个RB,CSI-RS的带宽为n-1个RB(也即从RB 2至RB n),包含2个天线端口。具体到一个RB及1个时隙范围的时频资源内,CSI-RS在时域上占据1个符号(1个时隙(slot)的14个符号从0开始编号,CSI-RS占据第5个OFDM符号),密度为1(密度为CSI-RS资源每个天线端口在1个RB及1个时隙中所占据的RE数)。在本申请实施例中,符号也称为时域符号,可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号,其中SC-FDMA又称为带有转换预编码的正交频分复用(orthogonal frequency division multiplexing with transform precoding,OFDM with TP)。
网络设备会通过无线资源控制(radio resource control,RRC)信令为每个终端设备配置一个或者多个CSI-RS资源。一个或者多个CSI-RS资源可以是周期性的地或者是非周期性的。网络设备还会向每个终端设备发送CSI-RS。终端设备会根据网络设备的CSI-RS资源配置信息接收网络设备发送的CSI-RS,并进行信道测量。
目前,网络设备会通过RRC信令来为每个终端设备配置CSI-RS资源,并且网络设备通过下行链路发送CSI-RS给终端设备。CSI-RS的配置和发送均由网络设备进行。
在V2X或者D2D通信中,通信链路(直连链路)是终端设备和终端设备之间的通信链路,V2X或者D2D通信中,在侧行链路上发送的参考信号可以称为侧行参考信号,侧行参考信号用于确定终端设备与终端设备之间的侧行链路的信道状态。例如,V2X或者D2D通信中终端设备发送的CSI-RS可以称为侧行参考信号,CSI-RS是由一个终端设备发送给另一个终端设备的。此外,在V2X者D2D通信中,可以同时存在很多并行的侧行链路(例如V2X通信链路),每个V2X通信链路的发送端设备均可以向其接收端设备发送CSI-RS。此时,如果由网络设备来为每个终端设备配置CSI-RS资源,并向每个终端设备发送CSI-RS会带来 效率低下的问题,例如,网络设备不能实时了解各个V2X通信链路的状况,不能根据各个V2X通信链路的情况灵活为各个V2X通信链路分配CSI-RS资源,可能造成不同的V2X通信链路的CSI-RS资源产生冲突。而当终端设备位于网络设备覆盖范围外时,网络设备则无法为发送端设备配置CSI-RS资源,不能保障CSI-RS的正确发送。从而严重的影响通信质量和效率。
基于上述问题,本申请提供了一种侧行参考信号的传输方法,可以在侧行链路中实现侧行参考信号灵活、准确的发送。在具有不同发送端设备的多条侧行链路并存的时,提高了侧行参考信号的发送效率,降低侧行参考信号的资源开销,提高了侧行链路中侧行参考信号的发送的灵活度和可靠性,从而提高侧行链路数据传输的效率和可靠性,提高用户体验。
为便于理解本申请实施例,首先结合图7和图8简单介绍适用于本申请实施例的通信系统。
图7是适用于本申请实施例的通信方法的通信系统100的示意图。如图7所示,该通信系统100包括四个通信设备,例如,网络设备110,终端设备121至123,其中,终端设备和终端设备可以通过D2D或者V2X的通信方式进行数据通信,网络设备110与终端设备121至123中的至少一个之间可以进行数据通信。对于终端设备121至123,两两之间形成的直连链路为SL。例如,终端设备121和123进行侧行参考信号的传输时,可以通过本申请实施例的侧行参考信号的传输方法进行侧行参考信号的传输以及侧行信道质量的测量。
图8是适用于本申请实施例的通信方法的通信系统200的示意图。如图8所示,该通信系统200包括三个通信设备,例如,终端设备121至123,其中,终端设备和终端设备可以通过D2D或者V2X的通信方式进行数据通信。对于终端设备121至123,两两之间的链路为SL。例如,终端设备123和122之间进行侧行参考信号的传输时,可以通过本申请实施例的侧行参考信号的传输方法进行侧行参考信号的传输以及侧行信道质量的测量。
应理解,图7和图8所示的各通信系统中还可以包括更多的网络节点,例如终端设备或网络设备,图7和图8所示的各通信系统中包括的网络设备或者终端设备可以是上述各种形式的网络设备或者终端设备。本申请实施例在图中不再一一示出。
下面结合图9详细说明本申请提供的侧行参考信号的传输的方法,图9是本申请一个实施例的侧行参考信号的传输方法300的示意性交互图,该方法300可以应用在图1、图7和图8所示的场景中,当然也可以应用在其他通信场景中,本申请实施例在此不作限制。
应理解,在本申请实施例中,以终端设备和网络设备作为各个实施例的执行方法的执行主体为例,对各个实施例的方法进行说明。作为示例而非限定,执行方法的执行主体也可以是应用于终端设备的芯片和应用于基站的芯片。示例性的,方法300应用于V2X通信系统中时,该终端设备可以是V2X通信中的车辆、车载设备、手机终端等。
本申请提供的侧行参考信号的传输方法,将侧行参考信号承载在用于发送该侧行控制信息和数据的时频资源进行发送,提高了侧行链路中侧行参考信号的发送的灵活度和可靠性,降低侧行参考信号的资源开销。
如图9所示,图9中示出的方法300可以包括步骤S310至步骤S320。下面结合图9 详细说明方法300中的各个步骤。
S310,第一终端设备和第二终端设备获取第一时频资源,第一时频资源用于发送侧行控制信息和数据。
S320,第一终端设备在第一时频资源上,向第二终端设备发送侧行参考信号以及该侧行控制信息和数据。相应的,第二终端设备在第一时频资源上,从第一终端设备接收参考信号以及控制信息和数据。该侧行参考信号用于确定第一终端设备与第二终端设备之间的侧行链路的信道状态。
具体而言,在第一终端设备需要向第二终端设备发送数据时,需要获知第一终端设备到第二终端设备的直连链路(侧行链路)的信道状态。因此,第一终端设备需要向第二终端设备发送用于确定侧行链路的信道状态的侧行参考信号,该侧行链路为第一终端设备到第二终端设备的直连链路,该侧行参考信号为在该侧行链路上发送的参考信号。该侧行参考信号用于第二终端设备确定第一终端设备到第二终端设备之间的侧行链路的信道状态。第一终端设备需要向第二终端设备发送侧行参考信号,则第一终端设备需要确定在哪些时频资源上可以发送该侧行参考信号,即需要确定发送侧行参考信号的时频资源。因此,在步骤S310中,第一终端设备可以获取(确定)第一时频资源,第一时频资源用于发送侧行控制信息和数据。即第一时频资源是用于第一终端设备向第二终端设备发送侧行链路的控制信息和/或数据的时频资源。侧行控制信息可以是该侧行链路的PSCCH上承载的控制信息,侧行数据可以是该侧行链路的PSSCH上承载的数据。侧行控制信息可以包括用于解调和调度侧行数据的相关控制信息,例如,侧行控制信息可以包括侧行数据所占的时频资源信息,发送侧行数据的功率参数、侧行数据的编码矩阵等。侧行控制信息主要用于接收端设备正确接收发送端设备发送的侧行数据。下文的描述中,侧行控制信息用PSCCH表示,侧行数据用PSSCH表示,如果没有特殊的说明,侧行控制信息和PSCCH可以互换,侧行数据和PSSCH可互换。
第一时频资源可以是用于发送PSCCH的时频资源。或者,第一时频资源可以是用于发送PSSCH的时频资源。或者,第一时频资源可以是用于发送PSCCH和PSSCH的时频资源。PSCCH和PSSCH第一时频资源上可以是采用频分复用的方式,例如图4所示的。也可以采用部分频分复用和部分时分复用的方式,例如图5所示的。本申请实施例在此不作限制。第一时频资源具有确定的时域范围和频域范围。在S310中,第一终端设备获取第一时频资源,具体的,第一终端设备可以获取(确定)第一时频资源的时域和频域的起始位置、时域和频域的大小,或者时域和频域的起止位置等。
第二终端设备也可以获取该第一时频资源。第二终端设备获取了该第一时频资源后,可以在该第一时频资源上正确的接收第一终端设备发送的PSCCH和/或PSSCH。具体的,第二终端设备可以通过盲检的方式接收该第一终端设备发送的PSCCH,然后根据PSCCH中的指示信息接收第一终端设备发送的PSCCH。例如,PSCCH中的指示信息可以是用于指示PSCCH所占的时频资源位置以及编码方式的指示信息。
可选的,在本申请的一些实施例中,在第一终端设备获取第一时频资源后,可以将第一时频资源的配置信息通知给第二终端设备。即第二终端设备可以从第一终端设备获取该第一时频资源。
可选的,在本申请的一些实施例中,第二终端设备可以向网络设备请求该第一时频资 源的配置信息,网络设备可以将该第一时频资源的配置信息通知给该第二终端设备,即第二终端设备可以从网络设备获取该第一时频资源。第一终端设备可以不用将第一时频资源的配置信息通知给第二终端设备。具体的,第二终端设备通过盲检网络设备发送的物理下行控制信道(physical down control channel,PDCCH)承载的下行控制信息(down control information DCI),通过检测到的DCI获知该第一时频资源的配置信息。
在S320中,第一终端设备在第一时频资源上,向第二终端设备发送侧行参考信号以及该侧行控制信息和数据,该侧行参考信号用于确定该侧行链路的信道状态。相应的,第二终端设备接收该侧行参考信号。
具体的,在第一终端设备获取了该第一时频资源后,在S320中,第一终端设备可以在该第一时频资源上,向第二终端设备发送侧行参考信号以及侧行控制信息和数据。
可选的,在本申请的一些实施例中,第一终端设备可以在第一时频资源上只发送PSCCH和该侧行参考信号。
可选的,在本申请的一些实施例中,第一终端设备可以在第一时频资源只发送PSSCH和该侧行参考信号。
第二终端设备接收该侧行参考信号后,可以根据侧行该参考信号确定第一终端设备和第二终端设备之间的侧行链路的信道状态,并进一步的生成该侧行链路的CSI,进一步的可以向第一终端设备反馈该侧行链路的CSI,第一终端设备可以根据该侧行链路的CSI,确定或者调整向第二终端设备发送数据使用的发送参数或者资源等,从而提高了第一终端设备和第二终端设备之间的数据传输的可靠性。
本申请提供的侧行参考信号的传输方法,通过将侧行参考信号承载在用于发送侧行控制信息和/或数据的时频资源上,和侧行控制信息和/或数据一起发送。可以在SL通信中实现侧行参考信号灵活、准确的发送。不需要为该侧行参考信号额外的配置发送资源,提高了侧行链路中侧行参考信号的发送的灵活度和可靠性,降低侧行参考信号的资源开销。
在本申请实施例中,侧行参考信号可以包括小区特定的参考信号、CSI-RS等用来进行侧行链路的信道质量测量的参考信号。本申请实施例对参考信号的具体种类不作限制。
可选的,在本申请的一些实施例中,该侧行控制信息还用于指示侧行参考信号的配置信息。
具体的,由于第一终端设备在第一时频资源上向第二终端设备发送侧行参考信号以及该侧行控制信息和数据。因此,第一终端设备还需要向第二终端设备通知该侧行参考信号的配置信息。该侧行参考信号的配置信息用于第二终端正确的接收该侧行参考信号。例如,第二终端可以根据侧行参考信号的配置信息,确定在第一时频资中哪些RE上去检测该侧行参考信号,以及怎么检测该侧行参考信号等。因此,该PSCCH可以用于指示该侧行参考信号的配置信息,即可以将该侧行参考信号的配置信息携带在该PSCCH中。
可选的,在本申请的一些实施例中,该侧行参考信号的配置信息包括以下信息中的一个或者多个:
该侧行参考信号的带宽、该侧行参考信号的天线端口数、该侧行参考信号所占的符号数、该侧行参考信号的密度、该侧行参考信号的码分复用方式、该侧行参考信号的资源映射模式、该侧行参考信号的扰码标识。
侧行参考信号的密度为发送该侧行参考信号使用的每个发送天线端口在1个RB及1 个时隙(slot)中所占据的RE数。该侧行参考信号的带宽可以是该侧行参考信号所占的频域资源的大小,该侧行参考信号的天线端口数可以发送该侧行参考信号时的天线端口数,侧行参考信号的资源映射模式可以指在一个RB及一个时隙内的映射方式,例如包括占据的符号数及符号的索引、占据的RE的索引等。第二终端设备可以根据上述侧行参考信号的配置信息确定侧行参考信号的发送信息,进而准确地接收该侧行参考信号。
应理解,在本申请实例中,该侧行参考信号的配置信息还可以包括其他与该侧行参考信号相关的配置参数。例如,该侧行参考信号的配置信息还可以包括该侧行参考信号的周期等。本申请实施例在此不作限制。
通过利用该PSCCH指示侧行参考信号的配置信息,可以使得第二终端设备准确的接收该侧行参考信号,提高了第二终端设备接收侧行参考信号的成功率,保障了侧行参考信号的传输效率。
可选的,该PSSCH中也可以用于指示该侧行参考信号的配置信息,即可以将该侧行参考信号的配置信息携带在该PSSCH中,或者将侧行参考信号的配置信息的指示信息携带在该PSSCH中。
可选的,在本申请的一些实施例中,该PSCCH包括侧行参考信号的配置信息,或者,该PSCCH包括侧行参考信号的配置信息的指示信息。
具体的,第一终端设备可以将该侧行参考信号的配置信息携带在该PSCCH或者PSSCH中发送给第二终端设备。
可选的,在本申请的另一些实施例中。第一终端设备还可以将该侧行参考信号的配置信息的指示信息携带在该PSCCH或者PSSCH中发送给第二终端设备。
作为一种具体的实现方式,该侧行参考信号的配置信息的指示信息可以为该侧行参考信号的资源索引(resource index),该侧行参考信号的资源索引对应该侧行参考信号的配置信息。
具体而言,可以事先为第一终端设备和第二终端设备配置或者预定义一个或者多个侧行参考信号,并且为每个侧行参考信号的配置信息配置或者预定义一个标识,每个侧行参考信号的标识可以看成该侧行参考信号的资源索引,该侧行参考信号的资源索引用于标识该侧行参考信号的配置信息,或者,该侧行参考信号的资源索引用于指示该侧行参考信号的配置信息。
例如,侧行参考信号资源索引i和侧行参考信号资源索引j(i≠j)分别指示的侧行参考信号的配置信息不完全相同。侧行参考信号资源索引i可以看作是该侧行参考信号的资源标识。第二终端设备获取了该侧行参考信号的资源索引(resource index)后,便可以根据该侧行参考信号的资源索引确定该侧行参考信号的资源索引所指示的侧行参考信号的配置信息,从而根据该侧行参考信号的配置信息在第一时频资源上接收该侧行参考信号。
应理解,在本申请实施例中,对于侧行参考信号的配置信息的指示信息的具体形式不作限制。只要该指示信息可以唯一标识一个侧行参考信号的配置信息即可,本申请实施例在此不作限制。
可选的,在本申请的一些实施例中,侧行参考信号在时域上位于所述第一时频资源的最后一个或者多个符号上。即在上述的步骤S320中,第一终端设备在第一时频资源的最后一个或者多个符号上向第二终端设备发送该侧行参考信号。第二终端设备在第一时频资 源的最后一个或者多个符号上接收该侧行参考信号
结合图10进行说明,图10是本申请一些实施例中的第一时频资源上承载的侧行参考信号的示意图。如图10所示,第一时频资源在时域上为一个时隙,在频域上占据了n个RB,PSCCH和PSSCH为采用部分频分复用和部分时分复用的方式。侧行参考信号可以位于该第一时频资源最后一个或者多个符号上,如果该时隙包括保护间隔,则侧行参考信号可以占据该第一时频资源除去保护间隔后的最后一个或者多个符号上。图10所示为侧行参考信号可以位于该时隙最后一个符号上。第一终端设备在第一时频资源的最后一个或者多个符号上向第二终端设备发送该侧行参考信号。可以降低侧行参考信号对PSCCH或者PSSCH的干扰,提高侧行参考信号、PSCCH和/或PSSCH接收的准确性。
如图10所示,侧行参考信号在时域上占据该时隙最后一个符号,在频域上,可以占据n个RB,或者只占据n个RB中的一部分RB。对于一个RB而言,侧行参考信号可以只在该RB的部分RE上发送,也可以在该RB包括的所有RE发送。图10所示为侧行参考信号在一个RB内的部分RE上发送,也就是说一个RB内的有部分RE是空闲的,不用来发送任何信息或者数据。
图11是本申请另一些实施例中的第一时频资源上承载的侧行参考信号的示意图。第一时频资源在时域上为一个时隙,在频域上占据了n个RB,n为第一时频资源所占与图10不同的是,图11所示为侧行参考信号在一个RB内的部分RE上发送,并且在侧行参考信号所在的符号上剩余的RE上(即没有被侧行参考信号占据的空闲RE上)发送PSSCH,即侧行参考信号PSSCH为频分复用或者速率匹配的方式。这样可以充分的利用资源,提高资源的利用率。
可选的,在本申请的一些实施例中,侧行参考信号在时域上还可以位于第一时频资源的任意一个或者多个符号上,该多个符号可以是连续的或者不连续的。即侧行参考信号可以位于第一时频资源的任何一个或者多个符号上(即任何时域位置上)。本申请实施例在此不作限制。
可选的,在本申请的一些实施例中,该侧行参考信号的频域带宽与该第一时频资源的带宽相同,或者,该侧行参考信号的带宽与该PSSCH的带宽相同。
具体而言,如图10和图11所示的,PSCCH和PSSCH为采用部分频分复用和部分时分复用的方式。第一时频资源在时域上为一个时隙,在频域上占据了n个RB,n为第一时频资源所占的RB的个数。该侧行参考信号的带宽与该第一时频资源的带宽相同,该第一时频资源的带宽与PSSCH的带宽相同,PSSCH的带宽大于PSCCH的带宽,PSCCH的带宽只是PSSCH的带宽的一部分。
应理解,在本申请实施例中,该侧行参考信号的带宽也可以和该PSSCH的带宽不相同。例如,如图12所示,图12是本申请一些实施例中的第一时频资源上承载的侧行参考信号的示意图。如图12所示的,第一时频资源在时域上为一个时隙,在频域上占据了n个RB,PSSCH的带宽大于PSCCH的带宽,PSCCH的带宽只是PSSCH的带宽的一部分。侧行参考信号的带宽小于该第一时频资源的带宽,即侧行参考信号的带宽小于该数据的带宽。本申请实施例在此不作限制。
可选的,在本申请的一些实施例中,该侧行参考信号的频域带宽与该PSCCH和该PSSCH的带宽之和相同,例如,如图13所示,图13是本申请一些实施例中的第一时频 资源上承载的侧行参考信号的示意图。第一时频资源在时域上为m个时隙,在频域上占据了s个RB,图13中所示为PSCCH和PSSCH采用频分复用的方式。图13所示的为该侧行参考信号的频域带宽与该PSCCH和该数据PSSCH的带宽之和相同。即侧行参考信号的带宽与该第一时频资源的带宽相同,第一时频资源的带宽为该PSCCH和该PSSCH的带宽之和。
应理解,在本申请实施例中,该侧行参考信号的带宽也可以小于该PSCCH和该PSSCH的带宽之和。例如,如图14所示,图14是本申请一些实施例中的第一时频资源上承载的侧行参考信号的示意图。如图14所示的,图14中所示为PSCCH和PSSCH采用频分复用的方式.第一时频资源在时域上为m个时隙,在频域上占据了s个RB,侧行参考信号的带宽可以小于该PSCCH和该PSSCH的带宽之和,即侧行参考信号的带宽小于第一时频资源的带宽,第一时频资源的带宽为该PSCCH和该PSSCH的带宽之和。本申请实施例在此不作限制。
当该侧行参考信号的频域带宽与该第一时频资源的带宽相同,或者,该侧行参考信号的带宽与该PSSCH的带宽相同时,第一终端设备可以不用对该侧行参考信号的带宽进行额外的指示,不需要额占用外的资源来指示该侧行参考信号的带宽,可以节省资源,提高资源的利用率。
在本申请另一些实施例中,该侧行参考信号的带宽可以与PSSCH所占的带宽相同,或者与数据PSSCH所占的带宽不相同。
可选的,在本申请另一些实施例中,该侧行参考信号的带宽与PSCCH所占的带宽相同。或者,该侧行参考信号的带宽与PSCCH所占的带宽不相同。
可选的,在本申请另一些实施例中,该侧行参考信号所占的时频资源与数据PSSCH所占的时频资源相同。或者,该侧行参考信号所占的时频资源与数据PSSCH所占的时频资源不同。
可选的,在本申请另一些实施例中,该侧行参考信号所占的时频资源可以与PSCCH所占的时频资源相同,或者,该侧行参考信号所占的时频资源与PSCCH所占的时频资源不同。
应理解,图10至图14所示的仅仅是示例性的,在本申请实施例中,该侧行参考信号可以位于该第一时频资源的任何可以发送的位置上,即在本申请实施例中,对侧行参考信号在该第一时域资源上的所占的RE的个数和位置不作限制,即侧行参考信号可以位于第一时频资源的任何频域位置上。
可选的,在本申请的一些实施例中,第一时频资源在时域上为一个时隙,或者为一个微时隙。
微时隙(mini-slot)的时长比一个时隙(slot)的时长要短。例如,一个mini-slot的时长可以为2个符号或者4个符号,或者7个符号等。在本申请实施例中,第一时频资源在时域上的时长可以是一个时隙,或者,可以是一个微时隙。
应理解,在本申请实施例中,第一时频资源在时域上还可以占据更长的时间长度,例如,第一时频资源可以包括为多个时隙,或者第一时频资源的时间长度可以小于一个时隙。第一时频资源在频域上可以占据多个子载波。即在本申请实施例,对第一时频资源的大小不作限制。第一时频资源可以有多个,多个第一时频资源可以是周期性的,也可以不是周 期性的。本申请实施例在此不作限制。
如图15所示,图15是本申请一些实施例中的侧行参考信号的传输方法的示意性交互图,在一些实施例中,在图9所示的方法步骤的基础上,该方法300还包括:
S308,第一终端设备向网络设备发送用于请求该第一时频资源的请求信息。
S309,网络设备根据该请求信息,在侧行链路资源集合中确定该第一时频资源,侧行链路资源集合中的时频资源用于传输侧行链路信息。
在上述的步骤S310中,第一终端设备获取第一时频资源,包括:
S311,第一终端设备从网络设备接收该第一时频资源的配置信息。
具体而言,图15中所示的步骤S320描述可以参考上述图9中对步骤S320的描述,为了简洁,这里不再赘述。
在第一终端设需要确定该第一时频资源的大小以及位置时,可以向网络设备发送用于请求该第一时频资源的请求信息。即在步骤S308中,第一终端设备向网络设备发送用于请求该第一时频资源的请求信息。可选的,该请求信息可以包括第一终端设备需要向第二终端设备发送的数据或者控制信息或者侧行参考信号的数量等,以便于网络设备更加准确的为第一终端设备分配该第一时频资源。在步骤S309中,网络设备根据该请求信息,可以在侧行链路资源集合确定该第一时频资源,侧行链路资源集合中的时频资源用于传输侧行链路信息。侧行链路资源集合可以包括V2X资源集合或者D2D资源集合等。以V2X资源集合为例进行说明,网络设备V2X资源集合中确定该第一时频资源,该V2X资源集合(或者也可以称为V2X资源池)中的时频资源用于传输V2X信息,即该V2X资源集合中的时频资源是用于终端设备到终端设备之间进行数据或者控制信息的传输时使用。在网络设备根据该请求信息,在V2X资源集合中确定该第一时频资源后,在步骤S311中,网络设备可以向第一终端设备发送该第一时频资源的配置信息,即第一终端设备从网络设备接收该第一时频资源的配置信息。具体的,网络设备可以通过控制信令,例如DCI、媒体访问控制层(media access control,MAC)层信令、RRC层信令等向第一终端设备通知该第一时频资源的配置信息。该第一时频资源的配置信息用于指示第一时频资源的大小以及位置等。例如,该第一时频资源的配置信息可以包括第一时频资源的时域和频域的起始位置、时域和频域的大小,或者时域和频域的起止位置等。第一终端设备可以根据该第一时频资源的配置信息,确定(获取)第一时频资源。在本申请实施例中,第一时频资源可以是周期性的,每个第一时频资源在时域上可以为一个时隙或者其他时间长度。第一时频资源也可以有多个。
应理解,在本申请的一些实施例中,第二终端设备也可以向网络设备请求该第一时频资源的配置信息,即第二终端设备也可以向网络设备发送用于请求该第一时频资源的请求信息。网络设备根据该请求信息,在侧行链路资源集合中确定该第一时频资源后,网络设备也可以将该第一时频资源的配置信息通知给该第二终端设备,以便于第二终端设备正确的接收该侧行参考信号以及该控制信息和数据。具体的,网络设备也可以通过控制信令,例如DCI、、MAC层信令、RRC层信令等向第二终端设备通知该第一时频资源的配置信息。第一终端设备可以不用将第一时频资源的配置信息通知给第二终端设备。
利用网络设备确定该第一时频资源并向第一终端设备通知该第一时频资源的方式,第一时频资源的准确性较好,可以很大程度上避免第一时频资源和其他侧行链路上的数据传 输资源产生冲突,进一步的提高第一终端设备向第二终端设备发送侧行参考信号的效率和准确性。
如图16所示,图16是本申请一些实施例中的侧行参考信号的传输方法的示意性交互图,在一些实施例中,在图9所示的方法步骤S310中,第一终端设备获取第一时频资源,包括:
S312,第一终端设备在侧行链路资源集合中确定第一时频资源。
该方法300还可以包括:
S313,第一终端设备将第一时频资源的配置信息发送给第二终端设备。
具体而言,图16中所示的步骤S320描述可以参考上述图9中对步骤S320的描述,为了简洁,这里不再赘述。
在第一终端设需要确定该第一时频资源的大小以及位置时,可以自行在侧行链路资源集合中确定该第一时频资源,即不用向网络设备请求该第一时频资源。即在S312中,第一终端设备可以在预配置的在侧行链路资源集合中确定该第一时频资源。侧行链路资源集合可以是网络设备事先预配置给第一终端设备或者是协议预定义的。侧行链路资源集合可以包括V2X资源集合或者D2D资源集合等。以V2X资源集合为例进行说明,第一终端设备可以在V2X资源集合中确定该第一时频资源,该V2X资源集合(或者也可以称为V2X资源池)中的时频资源用于传输V2X信息,即该V2X资源集合中的时频资源是用于终端设备到终端设备之间进行数据或者控制信息的传输时使用。在S313中,第一终端设备获取了该第一时频资源的配置信息后,可以将该第一时频资源的配置信息发送给第二终端设备,以便于第二终端设备正确的接收该侧行参考信号以及该控制信息和数据。第二终端设备可以不向网络设备请求该第一时频资源的配置信息,网络设备可以不用将第一时频资源的配置信息通知给第二终端设备。
本申请还提供一种侧行参考信号的传输方法,图17是本申请一些实施例中的侧行参考信号的传输方法400的示意性交互图,如图17所示,该方法400还包括步骤S410至步骤S420。
S410,第一终端设备和第二终端设备获取第二时频资源,第二时频资源用于发送侧行参考信号,侧行参考信号用于确定第一终端设备到第二终端设备之间的侧行链路的信道状态。
S420,第一终端设备在第二时频资源上,向第二终端设备侧行参考信号和指示信息,该指示信息用于指示侧行参考信号的配置信息。相应的,第二终端设备在第二时频资源上,从第一终端设备接收所述侧行参考信号和指示信息。
本申请提供的侧行参考信号的传输方法,终端设备可以在单独用于发送侧行参考信号的时频资源发送该侧行参考信号,提高了侧行链路中侧行参考信号发送的灵活度和可靠性。
具体而言,在第一终端设备需要向第二终端设备侧行参考信号时,需要确定发送该侧行参考信号的时频资源(第二时频资源)。第二终端设备也需要获取该第二时频资源,以便于准确的接收该侧行参考信号。在上述的步骤S410中,第一终端设备和第二终端设备获取第二时频资源,第二时频资源是用于第一终端设备向第二终端设备发送侧行参考信号的时频资源,即第二时频资源是专用于发送该侧行参考信号的时频资源。该侧行参考信号 用于确定侧行链路的信道状态。该侧行链路为第一终端设备到第二终端设备的直连链路。该侧行参考信号可以占据该第二时频资源的所有RE,也可以占据该第二时频资源的部分RE。
在S420中,第一终端设备在第二时频资源上,向第二终端设备发送侧行参考信号和指示信息,该指示信息用于指示侧行参考信号的配置信息。该侧行参考信号的配置信息用于第二终端正确的接收该侧行参考信号。例如,第二终端可以根据侧行参考信号的配置信息,确定在第二时频资中哪些RE上去检测该侧行参考信号,以及怎么检测该侧行参考信号等。
本申请提供的侧行参考信号的传输方法,终端设备可以在单独用于发送侧行参考信号的时频资源发送该侧行参考信号和用于指示侧行参考信号的配置信息的指示信息,终端设备在发送侧行参考信号时,不再依赖于该终端设备发送的PSCCH或者PSSCH,提高了侧行链路中侧行参考信号发送的灵活度和可靠性。
第二终端设备也可以获取该第二时频资源,第二终端设备获取了该第二时频资源后,可以在该第一时频资源上正确的接收第一终端设备发送的侧行参考信号和该指示信息,以便于第二终端设备正确的接收该侧行参考信号以及该指示信息。
可选的,在本申请的一些实施例中,在第一终端设备获取第二时频资源后,可以将第二时频资源的配置信息通知给第二终端设备。即第二终端设备可以从第一终端设备获取该第二时频资源。具体的,第二终端设备可以通过盲检的方式接收该第一终端设备发送的PSCCH,然后根据PSCCH中的指示信息接收第一终端设备发送的PSCCH。例如,PSCCH中的指示信息可以是用于指示PSCCH所占的时频资源位置以及编码方式的指示信息。或者,第一终端设备也可以向第二终端设备发送包括第二时频资源的配置信息的配置信息。
可选的,在本申请的一些实施例中,第二终端设备可以向网络设备请求该第二时频资源的配置信息,即网络设备可以将该第二时频资源的配置信息通知给该第二终端设备,即第二终端设备可以从网络设备获取该一时频资源。第一终端设备可以不用将第二时频资源的配置信息通知给第二终端设备。具体的,第二终端设备通过盲检网络设备发送的PDCCH承载的DCI,通过检测到的DCI获知该第二时频资源的配置信息。
在本申请实施例中,侧行参考信号可以包括小区特定的参考信号、CSI-RS等用来进行侧行链路的信道质量测量的侧行参考信号。本申请实施例在此不作限制。
可选的,在本申请的一些实施例中,该侧行参考信号的配置信息包括以下信息中的一个或者多个:
该侧行参考信号的带宽、该侧行参考信号的天线端口数、该侧行参考信号所占的符号数、该侧行参考信号的密度、该侧行参考信号的码分复用方式、该侧行参考信号的资源映射模式、该侧行参考信号的扰码标识。
侧行参考信号的密度为发送该侧行参考信号使用的每个发送天线端口在1个RB及1个时隙(slot)中所占据的RE数。该侧行参考信号的带宽可以是该侧行参考信号所占的频域资源的大小,该侧行参考信号的天线端口数可以发送该侧行参考信号时的天线端口数,侧行参考信号的资源映射模式可以指在一个RB及一个时隙内的映射方式,例如包括占据的符号数及符号的索引、占据的RE的索引等。第二终端设备可以根据上述侧行参考信号的配置信息确定侧行参考信号的发送信息,进而准确地接收该侧行参考信号。
应理解,在本申请实例中,该侧行参考信号的配置信息还可以包括其他与该侧行参考信号相关的配置参数。例如,该侧行参考信号的配置信息还可以包括该侧行参考信号的周期等。本申请实施例在此不作限制。
可选的,在本申请的一些实施例中,该指示信息为该侧行参考信号的配置信息。或者,该指示信息为该侧行参考信号的配置信息的指示信息。
具体的,在本申请的另一些实施例中,第一终端设备可以在该第二时频资源上将该侧行参考信号的配置信息发送给第二终端设备。即该指示信息为该侧行参考信号的配置信息。
可选的,在本申请的另一些实施例中,第一终端设备在第二时频资源上发送的指示信息为侧行参考信号的配置信息的指示信息。例如,侧行参考信号的配置信息的指示信息可以为该侧行参考信号的资源索引(resource index),该侧行参考信号的资源索引对应该侧行参考信号的配置信息。即第一终端设备在第二时频资源上发送的指示信息可以是该侧行参考信号的资源索引(resource index)。
具体的,可以事先为第一终端设备和第二终端设备配置或者预定义一个或者多个侧行参考信号,并且为每个侧行参考信号的配置信息配置或者预定义一个标识,每个侧行参考信号的资源标识可以看成该侧行参考信号的资源索引,该侧行参考信号的资源索引用于标识该侧行参考信号的配置信息,或者,该侧行参考信号的资源索引用于指示该侧行参考信号的配置信息。
例如,侧行参考信号资源索引t和侧行参考信号资源索引q(t≠q)分别指示的侧行参考信号的配置信息不完全相同。侧行参考信号资源索引t可以看作是该侧行参考信号的资源标识(即侧行参考信号的配置信息的指示信息)。第二终端设备获取了该侧行参考信号的资源索引(resource index)后,便可以根据该侧行参考信号的资源索引确定该侧行参考信号的资源索引所指示的侧行参考信号的配置信息,从而根据该侧行参考信号的配置信息在第二时频资源上接收该侧行参考信号。
可选的,在本申请的一些实施例中,第一终端设备可以在第二时频资源上,向第二终端设备发送侧行参考信号和PSCCH,该PSCCH中包括该指示信息,或者,第一终端设备可以在第二时频资源上,向第二终端设备发送侧行参考信号和PSSCH,该PSSCH中包括该指示信息。
可选的,在本申请的一些实施例中,该侧行参考信号带宽可以和第二时频资源的带宽相同。当该侧行参考信号的频域带宽与该第二时频资源的带宽相同时,第一终端设备可以不用对该侧行参考信号的带宽进行额外的指示,不需要额占用外的资源来指示该侧行参考信号的带宽,可以节省资源,提高资源的利用率。
可选的,在本申请的一些实施例中,该侧行参考信号带宽也可以和第二时频资源的带宽不同。
可选的,在本申请的一些实施例中,该侧行参考信号在时域上位于该第二时频资源的最后一个或者多个符号上。即第一终端设备在第二时频资源的最后一个或者多个符号上向第二终端设备发送该侧行参考信号。
应理解,在本申请实施例中,侧行参考信号在时域上还可以位于第二时频资源的任意一个或者多个符号上,该多个符号可以是连续的或者不连续的。即侧行参考信号可以位于 第二时频资源的任何一个或者多个符号上(即任何时域位置上)。本申请实施例在此不作限制。
还应理解,在本申请实施例中,侧行参考信号在频域可以占据第二时频资源的任意一个或者多个子载波,该多个子载波可以是连续的或者不连续的。即侧行参考信号可以位于第二时频资源的任何频域位置上。本申请实施例在此不作限制。
可选的,在本申请的一些实施例中,第二时频资源在时域上为一个时隙,或者为一个微时隙。
应理解,在本申请实施例中,第二时频资源在时域上还可以占据更长的时间长度,例如,为多个时隙,或者第二时频资源的时间长度可以小于一个时隙等。第二时频资源在频域上可以占据多个子载波。即在本申请实施例,对第二时频资源的大小不作限制。第二时频资源可以有多个,多个第二时频资源可以是周期性的,也可以非周期性的。本申请实施例在此不作限制。
如图18所示,图18是本申请一些实施例中的侧行参考信号的传输方法的示意性交互图,在一些实施例中,在图17所示的方法步骤的基础上,该方法300还包括:
S408,第一终端设备向网络设备发送用于请求该第二时频资源的请求信息。
S409,网络设备根据该请求信息,在侧行链路资源集合中确定该第二时频资源。
在上述的步骤S410中,第一终端设备获取第二时频资源,包括:
S411,第一终端设备从网络设备接收该第二时频资源的配置信息。
具体而言,图18中所示的步骤S420描述可以参考上述图17中对步骤S420的描述,为了简洁,这里不再赘述。
在第一终端设需要确定该第二时频资源的大小以及位置时,可以向网络设备发送用于请求该第二时频资源的请求信息。即在步骤S408中,第一终端设备向网络设备发送用于请求该第二时频资源的请求信息。可选的,该请求信息可以包括第一终端设备需要向第二终端设备发送的侧行参考信号的数量等,以便于网络设备更加准确的为第二终端设备分配该第二时频资源。在步骤S409中,网络设备根据该请求信息,可以在侧行链路资源集合确定该第二时频资源,侧行链路资源集合中的时频资源用于传输侧行链路信息。侧行链路资源集合可以包括V2X资源集合或者D2D资源集合等。以V2X资源集合为例进行说明,网络设备可以在V2X资源集合中确定该第二时频资源,该V2X资源集合(或者也可以称为V2X资源池)中的时频资源用于传输V2X信息,即该V2X资源集合中的时频资源是用于终端设备到终端设备之间进行数据或者控制信息的传输时使用。在网络设备根据该请求信息,在V2X资源集合中确定该第二时频资源后,在步骤S411中,网络设备可以向第一终端设备发送该第二时频资源的配置信息,即第一终端设备从网络设备接收该第二时频资源的配置信息。具体的,网络设备可以通过控制信令,例如DCI、MAC层信令、RRC层信令等向第一终端设备通知该第二时频资源的配置信息。该第二时频资源的配置信息用于指示第二时频资源的大小以及位置等。例如,该第二时频资源的配置信息可以包括第二时频资源的时域和频域的起始位置、时域和频域的大小,或者时域和频域的起止位置等。第一终端设备可以根据该第二时频资源的配置信息,确定(获取)第一时频资源。
例如,在步骤S409中,网络设备会在对应的侧行链路资源集合中周期性地配置用于发送侧行参考信号的时隙。侧行链路资源集合可以包括很多时隙,网络设备可以在该多个 时隙中周期性的配置用于发送参考侧行参考信号的时隙,并将该周期性的用于发送参考侧行参考信号的时隙通知该第一终端设备和/或第一终端设备。即在本申请实施例中,第二时频资源可以是周期性的,每个第二时频资源在时域上可以为一个时隙。第二时频资源也可以有多个。
应理解,在本申请一些实施例中,第二终端设备也可以向网络设备请求该第二时频资源的配置信息,即第二终端设备也可以向网络设备发送用于请求该第二时频资源的请求信息。网络设备根据该请求信息,在侧行链路资源集合中确定该第二时频资源后,网络设备也可以将该第二时频资源的配置信息通知给该第二终端设备。以便于第二终端设备正确的接收该侧行参考信号和该指示信息。具体的,网络设备也可以通过控制信令,例如DCI、MAC层信令、RRC层信令等向第二终端设备通知该第二时频资源的配置信息。第一终端设备可以不用将第二时频资源的配置信息通知给第二终端设备。
如图19所示,图19是本申请一些实施例中的侧行参考信号的传输方法的示意性交互图,在一些实施例中,在图17所示的方法步骤S410中,第一终端设备获取第二时频资源,包括:
S412,第一终端设备在侧行链路资源集合中确定第二时频资源。
该方法400还可以包括:
S413,第一终端设备将第二时频资源的配置信息发送给第二终端设备。
具体而言,图19中所示的步骤S420描述可以参考上述图17中对步骤S420的描述,为了简洁,这里不再赘述。
在第一终端设需要确定该第二时频资源的大小以及位置时,可以自行在侧行链路资源集合中确定该第二时频资源,即不用向网络设备请求该第二时频资源。即在S412中,第一终端设备可以在预配置的在侧行链路资源集合中确定该第二时频资源。侧行链路资源集合可以是网络设备事先预配置给第二终端设备或者协议预定义的,侧行链路资源集合可以包括V2X资源集合或者D2D资源集合等。以V2X资源集合为例进行说明,第一终端设备可以在V2X资源集合中确定该第二时频资源,该V2X资源集合(或者也可以称为V2X资源池)中的时频资源用于传输V2X信息,该V2X信息包括该侧行参考信号。在S413中,第一终端设备获取了该第二时频资源的配置信息后,可以将该第二时频资源的配置信息发送给第二终端设备,以便于第二终端设备正确的接收该侧行参考信号以及该指示信息。第二终端设备可以不向网络设备请求该第二时频资源的配置信息,网络设备可以不用将第二时频资源的配置信息通知给第二终端设备。
本申请提供的侧行参考信号的传输方法,终端设备可以在单独用于发送侧行参考信号的时频资源发送该侧行参考信号和用于指示侧行参考信号的配置信息的指示信息。终端设备在发送侧行参考信号时,不再依赖于该终端设备发送的PSCCH或者PSSCH,提高了侧行链路中侧行参考信号发送的灵活度和可靠性。
应理解,在本申请的各个实施例中,第一、第二等只是为了便于描述。例如第一时频资源和第二时频只是为了表示出具体的时频资源。而不应该对时频资源的本身产生任何影响,上述的第一、第二等不应该对本申请的实施例造成任何限制。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的 修改或变化,例如,上述方法的各个实施例中某些步骤可以是不必须的,或者可以新加入某些步骤等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本申请实施例中,“预先设定”、“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
还应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
上文结合图1至图19对本申请实施例的侧行参考信号传输的方法进行了详细的描述,下面结合图20至图31对本申请实施例的通信装置进行描述,应理解,图20至图28中的通信装置能够执行本申请实施例的同步方法的各个步骤。
图20示出了本申请实施例的通信装置500的示意性框图,该装置500可以对应上述方法的各个实施例中描述的第一终端设备,也可以是应用于第一终端设备的芯片或组件,并且,该装置500中各模块或单元分别用于执行上述方法300以及各个实施例中第一终端设备所执行的各动作或处理过程,如图20所示,该通信装置500可以包括:处理单元510和收发单520。
处理单元510,用于获取第一时频资源,所述第一时频资源用于发送侧行控制信息和数据;
收发单元520,用于在所述第一时频资源上,向第二终端设备发送侧行参考信号以及所述侧行控制信息和数据,所述侧行参考信号用于确定第一终端设备与所述第二终端设备之间的侧行链路的信道状态,其中,所述通信装置为所述第一终端设备,或者,所述第一终端设备包括所述通信装置。
可选的,在本申请的一些实施例中,所述侧行控制信息用于指示所述侧行参考信号的配置信息。
可选的,在本申请的一些实施例中,收发单元520具体用于:在所述第一时频资源的最后一个或者多个符号上向所述第二终端设备发送所述侧行参考信号。
可选的,在本申请的一些实施例中,收发单元520具体用于:在所述第一时频资源的任意一个或者多个符号上向所述第二终端设备发送所述侧行参考信号。
可选的,在本申请的一些实施例中,所述侧行参考信号的频域带宽与所述第一时频资源的带宽相同,或者,所述侧行参考信号的带宽与所述数据的带宽相同。
可选的,在本申请的一些实施例中,所述控制信息包括所述侧行参考信号的配置信息, 或者,所述控制信息包括所述侧行参考信号的配置信息的指示信息。
可选的,在本申请的一些实施例中,所述指示信息为所述侧行参考信号的资源索引,所述侧行参考信号的资源索引对应所述侧行参考信号的配置信息。
可选的,在本申请的一些实施例中,所述侧行参考信号的配置信息包括以下信息中的一个或者多个:
所述侧行参考信号的带宽、所述侧行参考信号的天线端口数、所述侧行参考信号所占的符号数、所述侧行参考信号的密度、所述侧行参考信号的码分复用方式、所述侧行参考信号的资源映射模式、所述侧行参考信号的扰码标识。
可选的,在本申请的一些实施例中,所述收发单元520还用于:向网络设备发送用于请求所述第一时频资源的请求信息;从所述网络设备接收所述第一时频资源的配置信息。
可选的,在本申请的一些实施例中,所述处理单元510具体用于:从侧行链路资源集合中确定所述第一时频资源,所述侧行链路资源集合中的时频资源用于传输侧行链路信息。
可选的,在本申请的一些实施例中,所述第一时频资源在时域上为一个时隙,或者为一个微时隙。
应理解,装置500中各单元执行上述相应步骤的具体过程请参照前文中结合图3至图13的方法300中的相关实施例第一终端设备相关的描述,为了简洁,这里不加赘述。
可选的,收发单元520可以包括接收单元(模块)和发送单元(模块),用于执行前述方法300的各个实施例以及图9、图15、图16所示的实施例中第一终端设备接收信息和发送信息的步骤。可选的,通信装置500还可以包括存储单元530,用于存储处理单元510和收发单元520执行的指令。处理单元510、收发单元520和存储单元530通信连接,存储单元530存储指令,处理单元510用于执行存储单元530存储的指令,收发单元520用于在处理单元510的驱动下执行具体的信号收发。
应理解,收发单元520可以由收发器实现,处理单元510可由处理器实现。存储单元530可以由存储器实现。如图21所示,通信装置600可以包括处理器610、存储器620和收发器630。
图20所示的通信装置500或图21所示的通信装置600能够实现前述方法300的各个实施例以及图9、图15、图16所示的实施例中第一终端设备执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
还应理解,图20所示的通信装置500或图21所示的通信装置600可以为终端设备。
图22示出了本申请实施例的通信装置700的示意性框图,该装置700可以对应上述方法的各个实施例中描述的第二终端设备,也可以是应用于第二终端设备的芯片或组件,并且,该装置700中各模块或单元分别用于执行上述方法300以及各个实施例中第二终端设备所执行的各动作或处理过程,如图22所示,该通信装置700可以包括:处理单元710和收发单720。
处理单元710,用于获取第一时频资源,所述第一时频资源用于接收侧行控制信息和数据;
收发单元720,用于在所述第一时频资源上,从第一终端设备接收侧行参考信号以及所述侧行控制信息和数据,所述侧行参考信号用于确定第一终端设备与所述第二终端设备 之间的侧行链路的信道状态,其中,所述通信装置为所述第二终端设备,或者,所述第二终端设备包括所述通信装置。
可选的,在本申请的一些实施例中,所述侧行控制信息用于指示所述侧行参考信号的配置信息。
可选的,在本申请的一些实施例中,所述收发单元720具体用于:在所述第一时频资源的最后一个或者多个符号上从所述第一终端设备接收所述侧行参考信号。
可选的,在本申请的一些实施例中,所述收发单元720具体用于:在所述第一时频资源的任意一个或者多个符号上从所述第一终端设备接收所述侧行参考信号。
可选的,在本申请的一些实施例中,所述侧行参考信号的频域带宽与所述第一时频资源的带宽相同,或者,所述侧行参考信号的带宽与所述数据的带宽相同。
可选的,在本申请的一些实施例中,所述控制信息包括所述侧行参考信号的配置信息,或者,所述控制信息包括所述侧行参考信号的配置信息的指示信息;所述指示信息为所述侧行参考信号的资源索引,所述侧行参考信号的资源索引对应所述侧行参考信号的配置信息。
可选的,在本申请的一些实施例中,所述第一时频资源在时域上为一个时隙,或者为一个微时隙。
应理解,装置700中各单元执行上述相应步骤的具体过程请参照前文中结合图3至图13的方法300中的相关实施例第二终端设备相关的描述,为了简洁,这里不加赘述。
可选的,收发单元720可以包括接收单元(模块)和发送单元(模块),用于执行前述方法300的各个实施例以及图9、图17、图18所示的实施例中第二终端设备接收信息和发送信息的步骤。可选的,通信装置700还可以包括存储单元730,用于存储处理单元710和收发单元720执行的指令。处理单元710、收发单元720和存储单元730通信连接,存储单元730存储指令,处理单元710用于执行存储单元730存储的指令,收发单元720用于在处理单元710的驱动下执行具体的信号收发。
应理解,收发单元720可以由收发器实现,处理单元710可由处理器实现。存储单元730可以由存储器实现。如图23所示,通信装置800可以包括处理器810、存储器820和收发器830。
图22所示的通信装置700或图23所示的通信装置800能够实现前述方法300的各个实施例以及图9、图15、图16所示的实施例中第二终端设备执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
还应理解,图22所示的通信装置700或图23所示的通信装置800可以为终端设备。
图24示出了本申请实施例的通信装置900的示意性框图,该装置900可以对应上述方法的各个实施例中描述的第一终端设备,也可以是应用于第一终端设备的芯片或组件,并且,该装置900中各模块或单元分别用于执行上述方法400以及各个实施例中第一终端设备所执行的各动作或处理过程,如图24所示,该通信装置900可以包括:处理单元910和收发单920。
处理单元910,用于获取第二时频资源,所述第二时频资源用于发送侧行参考信号;
收发单元920,用于在所述第二时频资源上,向第二终端设备发送所述侧行参考信号和指示信息,所述指示信息用于指示所述参考信号的配置信息,所述侧行参考信号用于确 定第一终端设备与所述第二终端设备之间的侧行链路的信道状态,其中,所述通信装置为所述第一终端设备,或者,所述第一终端设备包括所述通信装置。
可选的,在本申请的一些实施例中,所述指示信息为所述侧行参考信号的配置信息,或者,所述指示信息为所述侧行参考信号的配置信息的指示信息。
可选的,在本申请的一些实施例中,所述指示信息为所述侧行参考信号的资源索引,所述侧行参考信号的资源索引对应所述侧行参考信号的配置信息。
可选的,在本申请的一些实施例中,所述侧行参考信号的配置信息包括以下信息中的一个或者多个:
所述侧行参考信号的带宽、所述侧行参考信号的天线端口数、所述侧行参考信号所占的符号数、所述侧行参考信号的密度、所述侧行参考信号的码分复用方式、所述侧行参考信号的资源映射模式、所述侧行参考信号的扰码标识。
可选的,在本申请的一些实施例中,所述收发单元920还用于:向网络设备发送用于请求所述第二时频资源的请求信息;从所述网络设备接收所述第二时频资源的配置信息。
可选的,在本申请的一些实施例中,所述处理单元910具体用于:
在侧行链路资源集合中确定所述第二时频资源,所述侧行链路资源集合中的时频资源用于传输侧行链路信息。
可选的,收发单元920可以包括接收单元(模块)和发送单元(模块),用于执行前述方法300的各个实施例以及图17至图19所示的实施例中第一终端设备接收信息和发送信息的步骤。可选的,通信装置900还可以包括存储单元930,用于存储处理单元910和收发单元920执行的指令。处理单元910、收发单元920和存储单元930通信连接,存储单元930存储指令,处理单元910用于执行存储单元930存储的指令,收发单元920用于在处理单元910的驱动下执行具体的信号收发。
应理解,收发单元920可以由收发器实现,处理单元910可由处理器实现。存储单元930可以由存储器实现。如图25所示,通信装置1000可以包括处理器1010、存储器1020和收发器1030。
图24所示的通信装置900或图25所示的通信装置1000能够实现前述方法400的各个实施例以及图17至图19所示的实施例中第一终端设备执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
还应理解,图24所示的通信装置900或图25所示的通信装置1000可以为终端设备。
图26示出了本申请实施例的通信装置1100的示意性框图,该装置1100可以对应上述方法的各个实施例中描述的第二终端设备,也可以是应用于第二终端设备的芯片或组件,并且,该装置1100中各模块或单元分别用于执行上述方法400以及各个实施例中第二终端设备所执行的各动作或处理过程,如图26所示,该通信装置1100可以包括:处理单元1110和收发单元1120。
处理单元1110,用于获取第二时频资源,所述第二时频资源用于接收侧行参考信号;
收发单元1120,用于在所述第二时频资源上,从第一终端设备接收所述侧行参考信号和指示信息,所述指示信息用于指示所述参考信号的配置信息,所述侧行参考信号用于确定所述第一终端设备与第二终端设备之间的侧行链路的信道状态,其中,所述通信装置为所述第二终端设备,或者,所述第二终端设备包括所述通信装置。
可选的,在本申请的一些实施例中,所述指示信息为所述侧行参考信号的配置信息,或者,所述指示信息为所述侧行参考信号的配置信息的指示信息。
可选的,在本申请的一些实施例中,所述指示信息为所述侧行参考信号的资源索引,所述侧行参考信号的资源索引对应所述侧行参考信号的配置信息。
可选的,在本申请的一些实施例中,所述侧行参考信号的配置信息包括以下信息中的一个或者多个:
所述侧行参考信号的带宽、所述侧行参考信号的天线端口数、所述侧行参考信号所占的符号数、所述侧行参考信号的密度、所述侧行参考信号的码分复用方式、所述侧行参考信号的资源映射模式、所述侧行参考信号的扰码标识。
可选的,在本申请的一些实施例中,所述收发单元1120还用于:从所述网络设备或所述第一终端设备接收所述第二时频资源的配置信息。
可选的,收发单元1120可以包括接收单元(模块)和发送单元(模块),用于执行前述方法300的各个实施例以及图17至图19所示的实施例中第二终端设备接收信息和发送信息的步骤。可选的,通信装置1100还可以包括存储单元1130,用于存储处理单元1110和收发单元1120执行的指令。处理单元1110、收发单元1120和存储单元1130通信连接,存储单元1130存储指令,处理单元1110用于执行存储单元1130存储的指令,收发单元1120用于在处理单元1110的驱动下执行具体的信号收发。
应理解,收发单元1120可以由收发器实现,处理单元1110可由处理器实现。存储单元1130可以由存储器实现。如图27所示,通信装置1200可以包括处理器1210、存储器1220和收发器1230。
图26所示的通信装置1100或图27所示的通信装置1200能够实现前述方法400的各个实施例以及图17至图19所示的实施例中第二终端设备执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
还应理解,图26所示的通信装置1100或图27所示的通信装置1200可以为终端设备。
图28示出了本申请实施例的通信装置1300的示意性框图,该装置1300可以对应上述方法的各个实施例中描述的网络设备,也可以是应用于网络设备的芯片或组件,并且,该装置1300中各模块或单元分别用于执行上述方法300以及各个实施例中第二终端设备所执行的各动作或处理过程,如图22所示,该通信装置1300可以包括:处理单元1310和收发单1320。
处理单元1310,用于确定第二时频资源,所述第二时频资源用于发送侧行参考信号,所述侧行参考信号用于确定第一终端设备与第二终端设备之间的侧行链路的信道状态;
收发单元1320,用于向所述第一终端设备和/或所述第一终端设备发送所述第二时频资源的配置信息。
可选的,在本申请的一些实施例中,所述处理单元1310具体用于:确定侧行链路资源集合,所述侧行链路资源集合中的时频资源用于传输侧行链路信息;在所述侧行链路资源集合中确定所述第二时频资源。
可选的,在本申请的一些实施例中,所述收发单元1320还用于:
从所述第一终端设备和/或第一终端设备接收所述第二时频资源的请求信息。
应理解,装置1300中各单元执行上述相应步骤的具体过程请参照前文中结合图3至 图13的方法300中的相关实施例第二终端设备相关的描述,为了简洁,这里不加赘述。
可选的,收发单元1320可以包括接收单元(模块)和发送单元(模块),用于执行前述方法300和方法400的各个实施例以及图15和图18所示的实施例中网络设备接收信息和发送信息的步骤。可选的,通信装置1300还可以包括存储单元1330,用于存储处理单元1310和收发单元1320执行的指令。处理单元1310、收发单元1320和存储单元1330通信连接,存储单元1330存储指令,处理单元1310用于执行存储单元1330存储的指令,收发单元1320用于在处理单元1310的驱动下执行具体的信号收发。
应理解,收发单元1320可以由收发器实现,处理单元1310可由处理器实现。存储单元1330可以由存储器实现。如图29所示,通信装置1400可以包括处理器1410、存储器1420和收发器1430。
图28所示的通信装置1300或图29所示的通信装置2400能够实现前述方法300和方法400的各个实施例以及图15至图18所示的实施例中网络设备执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
还应理解,图28所示的通信装置1300或图29所示的通信装置1400可以为网络设备。
还应理解,以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。这里该处理元件又可以称为处理器,可以是一种具有信号处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图30是本申请实施例提供的终端设备1500的结构示意图。如图所示,该终端设备1500包括处理器1501和收发器1502。可选的,该终端设备1500还包括存储器1503。其中,处理器1501、收发器1502和存储器1503之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器1503用于存储计算机程序,该处理器1501用于从该存储器1503中调用并运行该计算机程序,以控制该收发器1502收发信号。可选的,终端设备1500还可以包括天线1504,用于将收发器1502输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器1501和存储器1503可以合成一个处理装置,处理器1501用于执行存储 器1503中存储的程序代码来实现上述功能。具体实现时,该存储器1503也可以集成在处理器1501中,或者独立于处理器1501。
具体的,该终端设备1500可对应于根据本申请实施例的方法的各个实施例中、以及图9、图15至图19所示的实施例中的第一终端设备或者第二终端设备,该终端设备1500可以包括用于执行方法的各个实施例以及图9、图15至图19所示的实施例中的第一终端设备或者第二终端设备执行的方法的单元。并且,该终端设备1500中的各单元和上述其他操作和/或功能分别为了实现方法的各个实施例中以及图9、图15至图19所示的实施例中的相应流程。
上述处理器1501可以用于执行前面方法实施例中描述的第一终端设备或者第二终端设备内部实现的动作,而收发器1502可以用于执行前面方法实施例中描述的第一终端设备或者第二终端设备发动或者接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选的,上述终端设备1500还可以包括电源1505,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备1500还可以包括输入单元1506、显示单元1507、音频电路1508、摄像头1509和传感器1515等中的一个或多个,该音频电路还可以包括扬声器15082、麦克风15084等。
图31是本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图31所示,该网络设备包括:天线1601、射频装置1602、基带装置1603。天线1601与射频装置1602连接。在上行方向上,射频装置1602通过天线1601接收终端发送的信息,将终端设备发送的信息发送给基带装置1603进行处理。在下行方向上,基带装置1603对终端的信息进行处理,并发送给射频装置1602,射频装置1602对终端设备的信息进行处理后经过天线1601发送给终端。
基带装置1603可以包括一个或多个处理元件16031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1603还可以包括存储元件16032和接口16033,存储元件16032用于存储程序和数据;接口16033用于与射频装置1602交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置1603,例如,以上用于网络设备的装置可以为基带装置1603上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的终端设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
应理解,本申请实施例中的处理器可以为CPU,该处理器还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的终端设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
本申请实施例还提供了一种通信系统,该通信系统包括:上述的第一终端设备和/或第二终端设备,以及上述网络设备。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述方法300和400中本申请实施例的侧行参考信号的传输方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行时,以使得该第一终端设备、第二终端设备和网络设备分别执行对应于上述方法的第一终端设备、第二终端设备和网络设备的操作。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该通信装置内的芯片执行上述本申请实施例提供的任一种侧行参考信号的传输方法。
可选地,上述本申请实施例中提供的任意一种通信装置可以包括该系统芯片。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端内的位于该芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的反馈信息传输的方法的程序执行的集成电路。 该处理单元和该存储单元可以解耦,分别设置在不同的物理设备上,通过有线或者无线的方式连接来实现该处理单元和该存储单元的各自的功能,以支持该系统芯片实现上述实施例中的各种功能。或者,该处理单元和该存储器也可以耦合在同一个设备上。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的术语“上行”和“下行”,用于在特定场景描述数据/信息传输的方向,比如,“上行”方向一般是指数据/信息从终端向网络侧传输的方向,或者分布式单元向集中式单元传输的方向,“下行”方向一般是指数据/信息从网络侧向终端传输的方向,或者集中式单元向分布式单元传输的方向,可以理解,“上行”和“下行”仅用于描述数据/信息的传输方向,该数据/信息传输的具体起止的设备都不作限定。
在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所 显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种侧行参考信号的传输方法,其特征在于,包括:
    第一终端设备获取第一时频资源,所述第一时频资源用于发送侧行控制信息和数据;
    所述第一终端设备在所述第一时频资源上,向第二终端设备发送侧行参考信号以及所述侧行控制信息和数据,所述侧行参考信号用于确定所述第一终端设备与所述第二终端设备之间的侧行链路的信道状态。
  2. 根据权利要求1所述的方法,其特征在于,所述侧行控制信息用于指示所述侧行参考信号的配置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一终端设备在所述第一时频资源的最后一个或者多个符号上向所述第二终端设备发送所述侧行参考信号。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一终端设备在所述第一时频资源的任意一个或者多个符号上向所述第二终端设备发送所述侧行参考信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述侧行参考信号的频域带宽与所述第一时频资源的带宽相同,或者,所述侧行参考信号的带宽与所述数据的带宽相同。
  6. 根据权利2所述的方法,其特征在于,所述侧行控制信息包括所述侧行参考信号的配置信息,或者,所述控制信息包括所述侧行参考信号的配置信息的指示信息;
    所述指示信息为所述侧行参考信号的资源索引,所述侧行参考信号的资源索引对应所述侧行参考信号的配置信息。
  7. 根据权利要求2或5所述的方法,其特征在于,所述侧行参考信号的配置信息包括以下信息中的一个或者多个:
    所述侧行参考信号的带宽、所述侧行参考信号的天线端口数、所述侧行参考信号所占的符号数、所述侧行参考信号的密度、所述侧行参考信号的码分复用方式、所述侧行参考信号的资源映射模式、所述侧行参考信号的扰码标识。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向网络设备发送用于请求所述第一时频资源的请求信息;
    所述第一终端设备获取第一时频资源,包括:
    所述第一终端设备从所述网络设备接收所述第一时频资源的配置信息。
  9. 一种侧行参考信号的传输方法,其特征在于,包括:
    第二终端设备获取第一时频资源,所述第一时频资源用于接收侧行控制信息和数据;
    所述第二终端设备在所述第一时频资源上,从第一终端设备接收侧行参考信号以及所述侧行控制信息和数据,所述侧行参考信号用于确定所述第一终端设备与所述第二终端设备之间的侧行链路的信道状态。
  10. 根据权利要求9所述的方法,其特征在于,所述侧行控制信息用于指示所述侧行参考信号的配置信息。
  11. 根据权利要求9或10所述的方法,其特征在于,所述侧行参考信号的频域带宽与所述第一时频资源的带宽相同,或者,所述侧行参考信号的带宽与所述数据的带宽相同。
  12. 根据权利10所述的方法,其特征在于,所述侧行控制信息包括所述侧行参考信号的配置信息,或者,所述控制信息包括所述侧行参考信号的配置信息的指示信息;所述指示信息为所述侧行参考信号的资源索引,所述侧行参考信号的资源索引对应所述侧行参考信号的配置信息。
  13. 一种侧行参考信号的传输方法,其特征在于,
    第一终端设备获取第二时频资源,所述第二时频资源用于发送侧行参考信号;
    所述第一终端设备在所述第二时频资源上,向第二终端设备发送所述侧行参考信号和指示信息,所述指示信息用于指示所述参考信号的配置信息,所述侧行参考信号用于确定所述第一终端设备与所述第二终端设备之间的侧行链路的信道状态。
  14. 根据权利要求13所述的方法,其特征在于,所述指示信息为所述侧行参考信号的配置信息,或者,所述指示信息为所述侧行参考信号的配置信息的指示信息。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向网络设备发送用于请求所述第二时频资源的请求信息;
    所述第一终端设备获取第二时频资源,包括:
    所述第一终端设备从所述网络设备接收所述第二时频资源的配置信息。
  16. 根据权利要求13或14所述的方法,其特征在于,所述第一终端设备获取所述第二时频资源,包括:
    所述第一终端设备在侧行链路资源集合中确定所述第二时频资源,所述侧行链路资源集合中的时频资源用于传输侧行链路信息。
  17. 一种侧行参考信号的传输方法,其特征在于,包括:
    第二终端设备获取第二时频资源,所述第二时频资源用于接收侧行参考信号;
    所述第二终端设备在所述第二时频资源上,从第一终端设备接收所述侧行参考信号和指示信息,所述指示信息用于指示所述参考信号的配置信息,所述侧行参考信号用于确定所述第一终端设备与所述第二终端设备之间的侧行链路的信道状态。
  18. 根据权利要求17所述的方法,其特征在于,所述指示信息为所述侧行参考信号的配置信息,或者,所述指示信息为所述侧行参考信号的配置信息的指示信息。
  19. 一种侧行参考信号的传输方法,其特征在于,包括:
    网络设备确定第二时频资源,所述第二时频资源用于发送侧行参考信号,所述侧行参考信号用于确定第一终端设备与第二终端设备之间的侧行链路的信道状态;
    所述网络设备向所述第一终端设备和/或所述第一终端设备发送所述第二时频资源的配置信息。
  20. 根据权利要求19所述的方法,其特征在于,所述网络设备确定第二时频资源,包括:
    所述网络设备确定侧行链路资源集合,所述侧行链路资源集合中的时频资源用于传输侧行链路信息;
    所述网络设备在所述侧行链路资源集合中确定所述第二时频资源。
  21. 一种通信装置,其特征在于,包括:
    处理单元,用于获取第一时频资源,所述第一时频资源用于发送侧行控制信息和数据;
    收发单元,用于在所述第一时频资源上,向第二终端设备发送侧行参考信号以及所述 侧行控制信息和数据,所述侧行参考信号用于确定第一终端设备与所述第二终端设备之间的侧行链路的信道状态,其中,所述通信装置为所述第一终端设备,或者,所述第一终端设备包括所述通信装置。
  22. 根据权利要求21所述的装置,其特征在于,所述侧行控制信息用于指示所述侧行参考信号的配置信息。
  23. 根据权利要求21或22所述的装置,其特征在于,收发单元具体用于:在所述第一时频资源的最后一个或者多个符号上向所述第二终端设备发送所述侧行参考信号。
  24. 根据权利要求21或22所述的装置,其特征在于,收发单元具体用于:在所述第一时频资源的任意一个或者多个符号上向所述第二终端设备发送所述侧行参考信号。
  25. 根据权利要求21至24中任一项所述的装置,其特征在于,所述侧行参考信号的频域带宽与所述第一时频资源的带宽相同,或者,所述侧行参考信号的带宽与所述数据的带宽相同。
  26. 根据权利22所述的装置,其特征在于,所述侧行控制信息包括所述侧行参考信号的配置信息,或者,所述控制信息包括所述侧行参考信号的配置信息的指示信息;
    所述指示信息为所述侧行参考信号的资源索引,所述侧行参考信号的资源索引对应所述侧行参考信号的配置信息。
  27. 根据权利要求22或26所述的装置,其特征在于,所述侧行参考信号的配置信息包括以下信息中的一个或者多个:
    所述侧行参考信号的带宽、所述侧行参考信号的天线端口数、所述侧行参考信号所占的符号数、所述侧行参考信号的密度、所述侧行参考信号的码分复用方式、所述侧行参考信号的资源映射模式、所述侧行参考信号的扰码标识。
  28. 根据权利要求21至27中任一项所述的装置,其特征在于,所述收发单元还用于:
    向网络设备发送用于请求所述第一时频资源的请求信息;
    从所述网络设备接收所述第一时频资源的配置信息。
  29. 一种通信装置,其特征在于,包括:
    处理单元,用于获取第一时频资源,所述第一时频资源用于接收侧行控制信息和数据;
    收发单元,用于在所述第一时频资源上,从第一终端设备接收侧行参考信号以及所述侧行控制信息和数据,所述侧行参考信号用于确定第一终端设备与所述第二终端设备之间的侧行链路的信道状态,其中,所述通信装置为所述第二终端设备,或者,所述第二终端设备包括所述通信装置。
  30. 根据权利要求29所述的装置,其特征在于,所述侧行控制信息用于指示所述侧行参考信号的配置信息。
  31. 根据权利要求29或30所述的装置,其特征在于,所述侧行参考信号的频域带宽与所述第一时频资源的带宽相同,或者,所述侧行参考信号的带宽与所述数据的带宽相同。
  32. 根据权利30所述的装置,其特征在于,所述侧行控制信息包括所述侧行参考信号的配置信息,或者,所述控制信息包括所述侧行参考信号的配置信息的指示信息;所述指示信息为所述侧行参考信号的资源索引,所述侧行参考信号的资源索引对应所述侧行参考信号的配置信息。
  33. 一种通信装置,其特征在于,包括
    处理单元,用于获取第二时频资源,所述第二时频资源用于发送侧行参考信号;
    收发单元,用于在所述第二时频资源上,向第二终端设备发送所述侧行参考信号和指示信息,所述指示信息用于指示所述参考信号的配置信息,所述侧行参考信号用于确定第一终端设备与所述第二终端设备之间的侧行链路的信道状态,其中,所述通信装置为所述第一终端设备,或者,所述第一终端设备包括所述通信装置。
  34. 根据权利要求33所述的装置,其特征在于,所述指示信息为所述侧行参考信号的配置信息,或者,所述指示信息为所述侧行参考信号的配置信息的指示信息。
  35. 根据权利要求33或34所述的装置,其特征在于,所述收发单元还用于:
    向网络设备发送用于请求所述第二时频资源的请求信息;
    从所述网络设备接收所述第二时频资源的配置信息。
  36. 根据权利要求33或34所述的装置,其特征在于,所述处理单元具体用于:
    在侧行链路资源集合中确定所述第二时频资源,所述侧行链路资源集合中的时频资源用于传输侧行链路信息。
  37. 一种通信装置,其特征在于,包括:
    处理单元,用于获取第二时频资源,所述第二时频资源用于接收侧行参考信号;
    收发单元,用于在所述第二时频资源上,从第一终端设备接收所述侧行参考信号和指示信息,所述指示信息用于指示所述参考信号的配置信息,所述侧行参考信号用于确定所述第一终端设备与第二终端设备之间的侧行链路的信道状态,其中,所述通信装置为所述第二终端设备,或者,所述第二终端设备包括所述通信装置。
  38. 根据权利要求37所述的装置,其特征在于,所述指示信息为所述侧行参考信号的配置信息,或者,所述指示信息为所述侧行参考信号的配置信息的指示信息。
  39. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第二时频资源,所述第二时频资源用于发送侧行参考信号,所述侧行参考信号用于确定第一终端设备与第二终端设备之间的侧行链路的信道状态;
    收发单元,用于向所述第一终端设备和/或所述第一终端设备发送所述第二时频资源的配置信息。
  40. 根据权利要求39所述的装置,其特征在于,所述处理单元具体用于:
    确定侧行链路资源集合,所述侧行链路资源集合中的时频资源用于传输侧行链路信息;
    在所述侧行链路资源集合中确定所述第二时频资源。
  41. 一种存储介质,其特征在于,所述存储介质中存储有程序,当所述程序被处理器运行时,如权利要求1至20中任一项所述的方法被执行。
PCT/CN2020/071358 2019-01-11 2020-01-10 侧行参考信号的传输方法和通信装置 WO2020143750A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217025214A KR102603072B1 (ko) 2019-01-11 2020-01-10 사이드링크 기준 신호 송신 방법 및 통신 장치
EP20738433.0A EP3905817A4 (en) 2019-01-11 2020-01-10 SIDE LINK REFERENCE SIGNAL TRANSMISSION METHOD AND COMMUNICATION DEVICE
US17/371,296 US20210337514A1 (en) 2019-01-11 2021-07-09 Sidelink reference signal transmission method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028732.4 2019-01-11
CN201910028732.4A CN111436131A (zh) 2019-01-11 2019-01-11 侧行参考信号的传输方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/371,296 Continuation US20210337514A1 (en) 2019-01-11 2021-07-09 Sidelink reference signal transmission method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2020143750A1 true WO2020143750A1 (zh) 2020-07-16

Family

ID=71521982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071358 WO2020143750A1 (zh) 2019-01-11 2020-01-10 侧行参考信号的传输方法和通信装置

Country Status (5)

Country Link
US (1) US20210337514A1 (zh)
EP (1) EP3905817A4 (zh)
KR (1) KR102603072B1 (zh)
CN (1) CN111436131A (zh)
WO (1) WO2020143750A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114095520A (zh) * 2020-07-21 2022-02-25 大唐高鸿智联科技(重庆)有限公司 一种定位数据的确定方法、车联网设备及装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757375A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 无线通信的方法、终端设备、接入网设备
WO2021062608A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 用于确定信道状态信息参考信号资源映射的方法及装置
CN114007262A (zh) * 2020-07-27 2022-02-01 华为技术有限公司 通信方法及装置
WO2022027477A1 (zh) * 2020-08-06 2022-02-10 北京小米移动软件有限公司 测距信号的发送、接收方法、装置、设备及可读存储介质
US20230084636A1 (en) * 2021-09-14 2023-03-16 Qualcomm Incorporated Sidelink reference signal configuration
WO2023122905A1 (zh) * 2021-12-27 2023-07-06 Oppo广东移动通信有限公司 无线通信的方法及终端设备
WO2023131212A1 (zh) * 2022-01-07 2023-07-13 华为技术有限公司 一种侧行链路通信方法及装置
CN117560130A (zh) * 2022-08-03 2024-02-13 华为技术有限公司 传输侧行链路定位参考信号的方法和相关装置
CN117675131A (zh) * 2022-08-11 2024-03-08 华为技术有限公司 传输控制信息的方法和通信装置
WO2024031581A1 (en) * 2022-08-11 2024-02-15 Nec Corporation Method, device, and medium for communication
CN117651341A (zh) * 2022-08-18 2024-03-05 展讯半导体(南京)有限公司 资源分配方法、装置及设备
CN117997494A (zh) * 2022-11-04 2024-05-07 华为技术有限公司 一种资源指示方法和装置
WO2024103231A1 (zh) * 2022-11-14 2024-05-23 Oppo广东移动通信有限公司 Sl prs的发送方法、接收方法、装置、介质及产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208609A1 (ja) * 2016-05-31 2017-12-07 株式会社Nttドコモ ユーザ装置及び通信方法
CN107733818A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 端到端设备的数据传输方法及装置
CN108667580A (zh) * 2017-03-31 2018-10-16 华为技术有限公司 一种参考信号发送方法、终端设备和接入网设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10863492B2 (en) * 2015-07-16 2020-12-08 Qualcomm Incorporated Low latency device-to-device communication
CN107926005B (zh) * 2015-08-13 2022-03-18 株式会社Ntt都科摩 用户装置及信号发送方法
CN107925495B (zh) * 2015-08-13 2019-08-16 株式会社Ntt都科摩 用户装置、信号发送方法及信号接收方法
JP2018029323A (ja) * 2016-08-10 2018-02-22 ソニー株式会社 通信装置及び通信方法
WO2018030185A1 (ja) * 2016-08-10 2018-02-15 ソニー株式会社 通信装置及び通信方法
US10039102B2 (en) * 2016-08-24 2018-07-31 Lg Electronics Inc. Method for performing a transmission on a sidelink subframe and wireless device thereof
CN108023698B (zh) * 2016-11-03 2021-01-29 华为技术有限公司 配置参考信号的方法和装置
US10863447B2 (en) * 2018-07-11 2020-12-08 Samsung Electronics Co., Ltd. Method and apparatus for multi-antenna transmission in vehicle to vehicle communication
US20200029340A1 (en) * 2018-07-19 2020-01-23 Samsung Electronics Co., Ltd. Method and apparatus for nr v2x resource selection
EP3836476A4 (en) * 2018-08-10 2021-08-04 Beijing Xiaomi Mobile Software Co., Ltd. REFERENCE SIGNAL SENDING METHOD AND APPARATUS, REFERENCE SIGNAL RECEPTION METHOD AND APPARATUS, VEHICLE ON-BOARD DEVICE, AND TERMINAL
JP7257505B2 (ja) * 2018-09-26 2023-04-13 テレフオンアクチーボラゲット エルエム エリクソン(パブル) サイドリンク無線通信のための技法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208609A1 (ja) * 2016-05-31 2017-12-07 株式会社Nttドコモ ユーザ装置及び通信方法
CN107733818A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 端到端设备的数据传输方法及装置
CN108667580A (zh) * 2017-03-31 2018-10-16 华为技术有限公司 一种参考信号发送方法、终端设备和接入网设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On SCI Formats", 3GPP TSG-RAN WG1 MEETING #94BIS R1-1813649, 12 October 2018 (2018-10-12), XP051555707, DOI: 20200311095252Y *
SAMSUNG: "Discussion on Physical Layer Procedures", 3GPP TSG RAN WG1 MEETING #95 R1-1812985, 16 November 2019 (2019-11-16), XP051554964, DOI: 20200311095049Y *
SAMSUNG: "Discussion on Physical Layer Procedures", 3GPP TSG RAN WG1 MEETING #95 R1-1812985, 16 November 2019 (2019-11-16), XP051554964, DOI: 20200311095105X *
See also references of EP3905817A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114095520A (zh) * 2020-07-21 2022-02-25 大唐高鸿智联科技(重庆)有限公司 一种定位数据的确定方法、车联网设备及装置
CN114095520B (zh) * 2020-07-21 2024-01-19 中信科智联科技有限公司 一种定位数据的确定方法、车联网设备及装置

Also Published As

Publication number Publication date
KR102603072B1 (ko) 2023-11-15
EP3905817A4 (en) 2022-03-16
CN111436131A (zh) 2020-07-21
EP3905817A1 (en) 2021-11-03
KR20210111845A (ko) 2021-09-13
US20210337514A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2020143750A1 (zh) 侧行参考信号的传输方法和通信装置
TWI713402B (zh) 業務傳輸的方法和裝置
US11903010B2 (en) Sidelink quality measurement method and communications apparatus
WO2020124353A1 (zh) 侧行通信的方法和终端设备
WO2020143059A1 (zh) 侧行通信的方法和终端设备
WO2017193980A1 (zh) 传输下行控制信息的方法和装置
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
CA3030456C (en) Method and terminal device for transmitting data
WO2020025040A1 (zh) 资源配置的方法和终端设备
WO2020025042A1 (zh) 资源配置的方法和终端设备
WO2018170673A1 (zh) 传输数据的方法、终端设备和网络设备
AU2017405700A1 (en) Data transmission method, terminal device and network device
WO2019029425A1 (zh) 信息上报及信息处理方法、终端及网络设备
WO2019141146A1 (zh) 一种波束配置方法和装置
WO2018126363A1 (zh) 上行传输方法、终端与网络设备
US11570794B2 (en) Method, terminal device and network device for transmitting channels
WO2018137700A1 (zh) 一种通信方法,装置及系统
WO2020088653A1 (zh) 确定传输资源的方法和装置
CN116250318A (zh) 一种参考信号序列生成方法及装置
WO2017000099A1 (zh) 传输信道状态信息参考信号的方法和设备
WO2020155182A1 (zh) 信道传输的方法和设备
WO2021068264A1 (zh) 无线通信方法、装置和通信设备
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
US11991684B2 (en) Data transmission method and apparatus
WO2020155181A1 (zh) 信道传输的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020738433

Country of ref document: EP

Effective date: 20210726

ENP Entry into the national phase

Ref document number: 20217025214

Country of ref document: KR

Kind code of ref document: A