WO2021062608A1 - 用于确定信道状态信息参考信号资源映射的方法及装置 - Google Patents

用于确定信道状态信息参考信号资源映射的方法及装置 Download PDF

Info

Publication number
WO2021062608A1
WO2021062608A1 PCT/CN2019/109395 CN2019109395W WO2021062608A1 WO 2021062608 A1 WO2021062608 A1 WO 2021062608A1 CN 2019109395 W CN2019109395 W CN 2019109395W WO 2021062608 A1 WO2021062608 A1 WO 2021062608A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
terminal device
frequency domain
mapping
channel state
Prior art date
Application number
PCT/CN2019/109395
Other languages
English (en)
French (fr)
Inventor
焦春旭
向铮铮
郭文婷
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/109395 priority Critical patent/WO2021062608A1/zh
Priority to KR1020227014580A priority patent/KR20220074928A/ko
Priority to CN201980100332.8A priority patent/CN114365443A/zh
Priority to PCT/CN2019/115720 priority patent/WO2021062915A1/zh
Priority to EP19947769.6A priority patent/EP4030668B1/en
Publication of WO2021062608A1 publication Critical patent/WO2021062608A1/zh
Priority to US17/657,042 priority patent/US20220240280A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to a method and device for determining channel state information reference signal (CSI-RS) resource mapping.
  • CSI-RS channel state information reference signal
  • CSI channel state information
  • a wireless link connection (e.g., Uu link) between a base station (BS) and a user equipment (UE) can be used to transmit the channel state information reference signal (channel state information).
  • reference signal CSI-RS
  • the specific process is as follows: the base station sends the CSI-RS configuration information to the UE, the UE receives the CSI-RS configuration information from the base station, and determines the CSI-RS time according to the CSI-RS configuration information Frequency resources, the base station sends CSI-RS to the UE on the time-frequency resources of the CSI-RS, the UE receives the CSI-RS from the base station on the time-frequency resources of the CSI-RS, and measures and calculates the received CSI-RS CSI.
  • the base station sends the CSI-RS configuration information to the UE
  • the UE receives the CSI-RS configuration information from the base station, and determines the CSI-RS time according to the CSI-RS configuration information Frequency resources
  • the base station sends
  • the time-frequency resources of CSI-RS are more flexible, and CSI-RS supports many types of code division multiplexing (CDM). Therefore, CSI-RS configuration information needs to be indicated More parameter information (for example, the number of ports corresponding to the CSI-RS, the frequency domain density corresponding to the CSI-RS, the CDM type corresponding to the CSI-RS, the frequency domain bandwidth corresponding to the CSI-RS, etc.).
  • the SL CSI-RS can be transmitted by referring to the above-mentioned method of transmitting CSI-RS on the Uu link.
  • the number of ports corresponding to the SL CSI-RS and/or the CDM type corresponding to the SL CSI-RS is limited, and the above-mentioned method of transmitting the CSI-RS on the Uu link is used to transmit the SL CSI-RS, and the signaling overhead is relatively large.
  • the embodiments of the present application provide a method and device for determining channel state information reference signal resource mapping, which can solve the problem of limited communication in the number of ports corresponding to the channel state information reference signal and/or the CDM type corresponding to the channel state information reference signal When transmitting the channel state information reference signal in the scene, the signaling overhead is large.
  • an embodiment of the present application provides a method for determining channel state information reference signal resource mapping, including: a first terminal device receives configuration information from a second terminal device or a network device, where the configuration information includes a channel The number of ports corresponding to the state information reference signal and the frequency domain density corresponding to the channel state information reference signal, where the frequency domain density is the average resource unit RE occupied by each port corresponding to the channel state information reference signal on a resource block RB Quantity; the first terminal device determines a first parameter set according to the number of ports and the frequency domain density, where the first parameter set includes at least one of the following parameters: the code division multiplexing type corresponding to the channel state information reference signal , At least one code division multiplexing group number, at least one code division multiplexing group's frequency domain resource start point, or one code division multiplexing group's frequency domain resource number; the first terminal device determines the number according to the first parameter set The resource used for mapping the channel state information reference signal in the data channel of the second terminal device, and the mapping
  • the first terminal device may receive configuration information from the second terminal device, where the configuration information includes the number of ports corresponding to the channel state information reference signal and the frequency domain density corresponding to the channel state information reference signal.
  • a terminal device can determine the first parameter set according to the number of ports and the frequency domain density, and determine the data channel of the second terminal device for mapping according to the first parameter set
  • the first terminal device may also determine the resource used to map the CSI-RS in the data channel of the second terminal device, and the data channel used to map the channel state information reference signal The mapping value on the RE in the resource saves signaling overhead.
  • the method further includes: the first terminal device receives the data channel from the second terminal device, and maps the channel state information reference signal according to the resource used for mapping the channel
  • the state information refers to the mapping value on the RE in the resource of the signal for channel estimation.
  • the first terminal device can receive the data channel from the second terminal device, and based on the resource used for mapping the channel state information reference signal and the resource used for mapping the channel state information reference signal on the RE.
  • the mapping value is used for channel estimation, and then the correct signal reception can be realized according to the result of the channel estimation.
  • the first terminal device determines the mapping value on the RE in the resource used for mapping the channel state information reference signal in the data channel of the second terminal device according to the first parameter set, including: The mapping value on the RE in the resource used for mapping the channel state information reference signal in the data channel of the second terminal device satisfies: among them, Represents the mapping value on the RE corresponding to the time domain resource number l, the frequency domain resource number k, the spatial resource number p, and the subcarrier interval number ⁇ , ⁇ CSIRS represents the power control factor of the channel state information reference signal, w f (k′ ) Represents the value of the k′th element in the code division multiplexing sequence corresponding to a code division multiplexing group on frequency domain resources, and the k′ represents the frequency domain resource number in the code division multiplexing group, r(m′ ) Represents the value of the m'th element in the reference signal sequence of the channel state information reference signal, and the m'satisfies:
  • the first terminal device can determine the mapping value on the RE in the resource used for mapping the channel state information reference signal according to the above formula, and when the number of ports is greater than or equal to 2, and the frequency domain density is greater than or equal to 2, it can Reasonably use the channel state information reference signal sequence to improve the detection performance of the channel state information reference signal sequence.
  • the first terminal device maintains a first mapping table, where the first mapping table includes at least one port quantity, at least one frequency domain density, and at least one mapping relationship between a first parameter set;
  • the first terminal device determining the first parameter set according to the number of ports and the frequency domain density includes: the first terminal device looks up a table according to the number of ports and the frequency domain density to obtain the first parameter set. Based on the above method, the first terminal device can obtain the first parameter set by looking up the table according to the number of ports and the frequency domain density without including the first parameter set in the configuration information, which saves signaling overhead.
  • the configuration information further includes first indication information, the first indication information is used to indicate the frequency domain offset; the first terminal device determines the first parameter set according to the number of ports and the frequency domain density , Including: the first terminal device determines a first parameter set according to the number of ports, the frequency domain density, and the frequency domain offset. Based on the above method, the first terminal device can determine the first parameter set according to the number of ports, the frequency domain density, and the frequency domain offset indicated in the configuration information, thereby improving the freedom of frequency domain resources for mapping channel state information reference signals degree.
  • the resource used for mapping the channel state information reference signal includes: the frequency domain resource used for mapping the channel state information reference signal, and the time domain resource used for mapping the channel state information reference signal , And the spatial resource used to map the channel state information reference signal.
  • the first terminal device can determine, according to the first parameter set, the frequency domain resource used to map the channel state information reference signal, the time domain resource used to map the channel state information reference signal, and the channel state information reference signal used to map the channel.
  • the time domain resource used for mapping the channel state information reference signal is the last symbol in the data channel; or, the configuration information further includes second indication information, and the second indication information is used for Indicate the time domain resource used to map the channel state information reference signal.
  • the first terminal device may determine that the time domain resource used for mapping the channel state information reference signal is the last symbol in the data channel, or the first terminal device may determine that the time domain resource used to map the channel state information reference signal is the last symbol in the data channel according to the second indication information.
  • the time domain resource of the channel state information reference signal so that the mapping value on the RE in the resource used for mapping the channel state information reference signal in the data channel can be determined.
  • the method further includes: the first terminal device obtains the reference signal sequence of the channel state information reference signal according to the scrambling code identifier. Based on the above method, the first terminal device can obtain the reference signal sequence of the channel state information reference signal according to the scrambling code identifier, and subsequently, the first terminal device can determine the data according to the reference signal sequence of the channel state information reference signal and the first parameter set The mapping value on the RE in the resource used for mapping the channel state information reference signal in the channel.
  • the configuration information further includes third indication information, where the third indication information is used to indicate the scrambling code identifier.
  • the first terminal device can obtain the scrambling code identifier according to the third indication information in the configuration information, and then can determine the data channel used for mapping according to the reference signal sequence of the channel state information reference signal and the first parameter set The mapping value on the RE in the resource of the channel state information reference signal.
  • the method further includes: the first terminal device receives control information from the second terminal device, where the control information includes a physical layer source identifier and/or a physical layer destination identifier; the first terminal The device determines that the physical layer source identifier or the physical layer destination identifier is the scrambling code identifier. Based on the above method, the first terminal device may determine the scrambling code identifier according to the physical layer source identifier and/or the physical layer destination identifier in the control information, and then may determine the scrambling code identifier according to the reference signal sequence of the channel state information reference signal and the first parameter set The mapping value on the RE in the resource used for mapping the channel state information reference signal in the data channel.
  • the method further includes: the first terminal device receives control information from the second terminal device; the first terminal device obtains a cyclic redundancy check code according to the control information; the first terminal device
  • the low L bit or the high L bit of the cyclic redundancy check code is used as the scrambling code identifier, where L is a positive integer, and L is greater than or equal to 1 and less than or equal to the length of the cyclic redundancy check code.
  • the first terminal device can obtain the cyclic redundancy check code according to the control information, obtain the scrambling code identifier according to the cyclic redundancy check code, and then can obtain the reference signal sequence and the first parameter of the reference signal according to the channel state information
  • the set determines the mapping value on the RE in the resource used for mapping the channel state information reference signal in the data channel.
  • an embodiment of the present application provides a method for determining channel state information reference signal resource mapping, the method includes: the second terminal device corresponds to the channel state information reference signal according to the number of ports corresponding to the channel state information reference signal The frequency domain density determines the first parameter set, where the frequency domain density is the average number of resource units RE occupied on a resource block RB by each port corresponding to the channel state information reference signal, and the first parameter set includes the following At least one of the parameters: the code division multiplexing type corresponding to the channel state information reference signal, at least one code division multiplexing group number, the frequency domain resource start point of at least one code division multiplexing group, or within one code division multiplexing group The number of the frequency domain resource; the second terminal device determines the resource used for mapping the channel state information reference signal in the data channel of the second terminal device according to the first parameter set, and the data channel is used for mapping the channel state The mapping value on the RE in the resource of the information reference signal.
  • the second terminal device may determine the first parameter set according to the number of ports corresponding to the channel state information reference signal and the frequency domain density corresponding to the channel state information reference signal, and determine the second terminal according to the first parameter set
  • the resource used to map the channel state information reference signal in the data channel of the device, and the mapping value on the RE in the resource used to map the channel state information reference signal in the data channel, so that the configuration information does not need to include channel state information Information such as the CDM type corresponding to the reference signal and the frequency domain bandwidth corresponding to the channel state information reference signal saves signaling overhead.
  • the method further includes: the second terminal device sends the data channel to the first terminal device. Based on the above method, the second terminal device can send a data channel to the first terminal device, so that the first terminal device can map the channel state information reference signal according to the resource used for mapping the channel state information reference signal and the resource used for mapping the channel state information reference signal.
  • the mapping value on the RE performs channel estimation.
  • the method further includes: the second terminal device sends the configuration information to the first terminal device.
  • the second terminal device can send configuration information to the first terminal device, so that the first terminal device determines the first parameter set according to the number of ports and the frequency domain density, and determines the second terminal device according to the first parameter set
  • the second terminal device determines the mapping value on the RE in the resource used for mapping the channel state information reference signal in the data channel of the second terminal device according to the first parameter set, including: The mapping value on the RE in the resource used for mapping the channel state information reference signal in the data channel of the second terminal device satisfies: where, Represents the mapping value on the RE corresponding to the time domain resource number l, the frequency domain resource number k, the spatial resource number p, and the subcarrier interval number ⁇ , ⁇ CSIRS represents the power control factor of the channel state information reference signal, w f (k′ ) Represents the value of the k′th element in the code division multiplexing sequence corresponding to a code division multiplexing group on frequency domain resources, and the k′ represents the frequency domain resource number in the code division multiplexing group, r(m′ ) Represents the value of the m'th element in the reference signal sequence of the channel state information reference signal, and the m'satisfies:
  • the second terminal device can determine the mapping value on the RE in the resource for mapping the channel state information reference signal according to the above formula, and when the number of ports is greater than or equal to 2, and the frequency domain density is greater than or equal to 2, it can Reasonably use the channel state information reference signal sequence to improve the detection performance of the channel state information reference signal sequence.
  • the second terminal device maintains a first mapping table, where the first mapping table includes at least one port number, at least one frequency domain density, and at least one mapping relationship between the first parameter set;
  • the second terminal device determining the first parameter set according to the number of ports and the frequency domain density includes: the second terminal device looks up a table according to the number of ports and the frequency domain density to obtain the first parameter set. Based on the above method, the second terminal device can obtain the first parameter set by looking up the table according to the number of ports and the frequency domain density without including the first parameter set in the configuration information, which saves signaling overhead.
  • the configuration information further includes first indication information, the first indication information is used to indicate the frequency domain offset; the second terminal device determines the first parameter set according to the number of ports and the frequency domain density , Including: the second terminal device determines the first parameter set according to the number of ports, the frequency domain density, and the frequency domain offset. Based on the above method, the second terminal device can determine the first parameter set according to the number of ports, the frequency domain density, and the frequency domain offset indicated in the configuration information, thereby improving the freedom of frequency domain resources for mapping channel state information reference signals. degree.
  • the resource used for mapping the channel state information reference signal includes: the frequency domain resource used for mapping the channel state information reference signal, and the time domain resource used for mapping the channel state information reference signal , And the spatial resource used to map the channel state information reference signal.
  • the second terminal device can determine, according to the first parameter set, the frequency domain resource used to map the channel state information reference signal, the time domain resource used to map the channel state information reference signal, and the channel state information reference signal used to map the channel.
  • the time domain resource used for mapping the channel state information reference signal is the last symbol in the data channel; or, the configuration information further includes second indication information, and the second indication information is used for Indicate the time domain resource used to map the channel state information reference signal.
  • the second terminal device may determine that the time domain resource used to map the channel state information reference signal is the last symbol in the data channel, or the second terminal device may determine that the time domain resource used to map the channel state information reference signal is the last symbol in the data channel according to the second indication information.
  • the time domain resource of the channel state information reference signal so that the mapping value on the RE in the resource used for mapping the channel state information reference signal in the data channel can be determined.
  • the method further includes: the second terminal device identifies the reference signal sequence of the channel state information reference signal according to the scrambling code. Based on the above method, the second terminal device can obtain the reference signal sequence of the channel state information reference signal according to the scrambling code identifier, and subsequently, the second terminal device can determine the data according to the reference signal sequence of the channel state information reference signal and the first parameter set The mapping value on the RE in the resource used for mapping the channel state information reference signal in the channel.
  • the configuration information further includes third indication information, where the third indication information is used to indicate the scrambling code identifier.
  • the second terminal device can obtain the scrambling code identifier according to the third indication information in the configuration information, and then can determine the data channel used for mapping according to the reference signal sequence of the channel state information reference signal and the first parameter set The mapping value on the RE in the resource of the channel state information reference signal.
  • the method further includes: the second terminal device sends control information to the first terminal device, where the control information includes a physical layer source identifier and/or a physical layer destination identifier; the second terminal device Determine that the physical layer source identifier or the physical layer destination identifier is the scrambling code identifier. Based on the above method, the second terminal device may determine the scrambling code identifier according to the physical layer source identifier and/or the physical layer destination identifier in the control information, and then may determine the scrambling code identifier according to the reference signal sequence of the channel state information reference signal and the first parameter set The mapping value on the RE in the resource used for mapping the channel state information reference signal in the data channel.
  • the method further includes: the second terminal device sends control information to the first terminal device; the second terminal device obtains a cyclic redundancy check code according to the control information; the second terminal device transfers The low L bit or the high L bit of the cyclic redundancy check code is used as the scrambling code identifier, where L is a positive integer, and L is greater than or equal to 1 and less than or equal to the length of the cyclic redundancy check code.
  • the second terminal device can obtain the cyclic redundancy check code according to the control information, obtain the scrambling code identifier according to the cyclic redundancy check code, and then can obtain the reference signal sequence and the first parameter of the reference signal according to the channel state information.
  • the set determines the mapping value on the RE in the resource used for mapping the channel state information reference signal in the data channel.
  • an embodiment of the present application provides a communication device that has the method and function described in the first aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device that has the method and function described in the second aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device, including: at least one processor, at least one memory, and a communication interface.
  • the communication interface, the at least one memory and the at least one processor are coupled; the communication device communicates with each other.
  • the interface communicates with other devices, and the at least one memory is used to store a computer program, so that when the computer program is executed by the at least one processor, the method for determining channel state information as described in the first aspect and various possible implementation manners thereof is implemented Reference signal resource mapping method.
  • an embodiment of the present application provides a communication device, including: at least one processor, at least one memory, and a communication interface.
  • the communication interface, the at least one memory and the at least one processor are coupled; the communication device communicates with each other.
  • the interface communicates with other devices, and the at least one memory is used to store a computer program, so that when the computer program is executed by the at least one processor, it is used to determine channel state information as described in the second aspect and various possible implementations thereof.
  • Reference signal resource mapping method including: at least one processor, at least one memory, and a communication interface.
  • the present application provides a system chip that can be used in a communication device.
  • the system chip includes: at least one processor, and related program instructions are executed in the at least one processor to implement The method on the one hand and the function of the first terminal device in any design.
  • the system chip may further include at least one memory, and the memory stores related program instructions.
  • the present application provides a system chip that can be used in a communication device.
  • the system chip includes: at least one processor, and related program instructions are executed in the at least one processor to implement The method of the two aspects and the function of the second terminal device in any design.
  • the system chip may further include at least one memory, and the memory stores related program instructions.
  • embodiments of the present application provide a computer-readable storage medium, such as a computer-readable storage medium that is non-transitory.
  • a computer program is stored thereon, and when the computer program runs on the computer, the computer is caused to execute any one of the possible methods of the first aspect described above.
  • the computer may be at least one storage node.
  • an embodiment of the present application provides a computer-readable storage medium, such as a non-transitory computer-readable storage medium.
  • a computer program is stored thereon, and when the computer program runs on the computer, the computer is caused to execute any one of the possible methods of the second aspect described above.
  • the computer may be at least one storage node.
  • an embodiment of the present application provides a computer program product, which when it runs on a computer, enables any method provided in the first aspect to be executed.
  • the computer may be at least one storage node.
  • the embodiments of the present application provide a computer program product, which when running on a computer, enables any method provided in the second aspect to be executed.
  • the computer may be at least one storage node.
  • embodiments of the present application provide a communication system, which may include any one or more of the following: such as the communication device in the third aspect, or the communication device in the fourth aspect, or the communication device in the fourth aspect, or The communication device in the fifth aspect, or the communication device in the sixth aspect, or the system chip in the seventh aspect, or the system chip in the eighth aspect, or the computer storage medium in the ninth aspect, or The computer storage medium in the tenth aspect is either the computer program product in the eleventh aspect or the computer program product in the twelfth aspect.
  • any of the communication devices, system chips, computer storage media, computer program products, or communication systems provided above are all used to execute the corresponding methods provided above, and therefore, the beneficial effects that can be achieved can be Refer to the beneficial effects in the corresponding method, which will not be repeated here.
  • an embodiment of the present application provides a method for generating a reference signal sequence of a channel state information reference signal.
  • the method includes: a second terminal device determines a scrambling code identifier; and the second terminal device sends a first terminal device to the first terminal device.
  • the second terminal device may obtain the reference signal sequence of the channel state information reference signal according to the scrambling code identifier after determining the scrambling code identifier, so as to subsequently obtain the reference signal sequence of the channel state information reference signal according to the reference signal of the channel state information reference signal.
  • the sequence determines the mapping value on the RE in the resource used for mapping the channel state information reference signal in the data channel of the second terminal device.
  • an embodiment of the present application provides a method for generating a reference signal sequence of a channel state information reference signal.
  • the method includes: a first terminal device receives first information from a second terminal device, wherein the first information Including the physical layer source identifier or the physical layer destination identifier; the first terminal device determines that the physical layer source identifier or the physical layer destination identifier is the scrambling code identifier; the first terminal device obtains the reference of the channel state information reference signal according to the scrambling code identifier Signal sequence.
  • the first terminal device may receive the physical layer source identifier or the physical layer destination identifier from the second terminal device, determine that the physical layer source identifier or the physical layer destination identifier is the scrambling code identifier, and based on the The scrambling code identifier obtains the reference signal sequence of the channel state information reference signal, so as to subsequently determine the RE in the resource used for mapping the channel state information reference signal in the data channel of the second terminal device according to the reference signal sequence of the channel state information reference signal The mapped value on the.
  • an embodiment of the present application provides a method for generating a reference signal sequence of a channel state information reference signal.
  • the method includes: a second terminal device sends first information to a first terminal device, where the first information includes Physical layer source identification or physical layer destination identification; the second terminal device determines that the physical layer source identification or physical layer destination identification is a scrambling code identification; the second terminal device obtains the reference signal of the channel state information reference signal according to the scrambling code identification sequence.
  • the second terminal device may send the physical layer source identifier or the physical layer destination identifier to the first terminal device, and determine that the physical layer source identifier or the physical layer destination identifier is the scrambling code identifier, and according to the The scrambling code identifier obtains the reference signal sequence of the channel state information reference signal, so as to subsequently determine the RE in the resource used for mapping the channel state information reference signal in the data channel of the second terminal device according to the reference signal sequence of the channel state information reference signal The mapped value on the.
  • an embodiment of the present application provides a method for generating a reference signal sequence of a channel state information reference signal.
  • the method includes: a first terminal device receives first information from a second terminal device; the first terminal device according to The first information obtains the cyclic redundancy check code; the first terminal device uses the low L bit or the high L bit of the cyclic redundancy check code as the scrambling code identifier, where L is a positive integer, and L is greater than or equal to 1. And is less than or equal to the length of the cyclic redundancy check code; the first terminal device obtains the reference signal sequence of the channel state information reference signal according to the scrambling code identifier.
  • the first terminal device can receive the first information from the second terminal device, obtain the cyclic redundancy check code according to the first information, and obtain the scrambling code identifier according to the cyclic redundancy check code, and Obtain the reference signal sequence of the channel state information reference signal according to the scrambling code identifier, so as to subsequently determine the resource used for mapping the channel state information reference signal in the data channel of the second terminal device according to the reference signal sequence of the channel state information reference signal The mapped value on the RE.
  • an embodiment of the present application provides a method for generating a reference signal sequence of a channel state information reference signal.
  • the method includes: a second terminal device sends first information to a first terminal device; The first information obtains the cyclic redundancy check code; the second terminal device uses the low L bit or the high L bit of the cyclic redundancy check code as the scrambling code identifier, where L is a positive integer, L is greater than or equal to 1 and Is less than or equal to the length of the cyclic redundancy check code; the second terminal device obtains the reference signal sequence of the channel state information reference signal according to the scrambling code identifier.
  • the second terminal device may send the first information to the second terminal device, obtain the cyclic redundancy check code according to the first information, obtain the scrambling code identifier according to the cyclic redundancy check code, and obtain the scrambling code identifier according to the cyclic redundancy check code.
  • the scrambling code identifier obtains the reference signal sequence of the channel state information reference signal, so as to subsequently determine the resource used for mapping the channel state information reference signal in the data channel of the second terminal device according to the reference signal sequence of the channel state information reference signal. The mapped value on the RE.
  • an embodiment of the present application provides a communication device, which has the method and function described in the fourteenth aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device, which has the method and function described in the fifteenth aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device that has the method and function described in the sixteenth aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device, which has the method and function of the seventeenth aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device, which has the method and function described in the eighteenth aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device, including: at least one processor, at least one memory, and a communication interface, the communication interface, the at least one memory and the at least one processor are coupled; the communication device passes through The communication interface communicates with other devices, and the at least one memory is used to store a computer program, so that when the computer program is executed by the at least one processor, the channel state is generated as described in the fourteenth aspect and various possible implementation manners thereof Information reference signal reference signal sequence method.
  • an embodiment of the present application provides a communication device, including: at least one processor, at least one memory, and a communication interface, the communication interface, the at least one memory and the at least one processor are coupled; the communication device passes through The communication interface communicates with other devices, and the at least one memory is used to store a computer program, so that when the computer program is executed by the at least one processor, the channel state information reference signal is generated as in the fifteenth aspect and various possible implementation manners thereof.
  • the reference signal sequence method including: at least one processor, at least one memory, and a communication interface, the communication interface, the at least one memory and the at least one processor are coupled; the communication device passes through The communication interface communicates with other devices, and the at least one memory is used to store a computer program, so that when the computer program is executed by the at least one processor, the channel state information reference signal is generated as in the fifteenth aspect and various possible implementation manners thereof.
  • the reference signal sequence method including: at least one processor, at least one memory, and a communication interface, the communication interface, the at
  • an embodiment of the present application provides a communication device, including: at least one processor, at least one memory, and a communication interface, the communication interface, the at least one memory and the at least one processor are coupled; the communication device passes through The communication interface communicates with other devices, and the at least one memory is used to store a computer program, so that when the computer program is executed by the at least one processor, the channel state is generated as described in the sixteenth aspect and various possible implementation manners thereof.
  • Information reference signal reference signal sequence method including: at least one processor, at least one memory, and a communication interface, the communication interface, the at least one memory and the at least one processor are coupled; the communication device passes through The communication interface communicates with other devices, and the at least one memory is used to store a computer program, so that when the computer program is executed by the at least one processor, the channel state is generated as described in the sixteenth aspect and various possible implementation manners thereof.
  • Information reference signal reference signal sequence method including: at least one processor, at least one memory, and a communication interface, the communication interface, the at
  • an embodiment of the present application provides a communication device, including: at least one processor, at least one memory, and a communication interface, the communication interface, the at least one memory and the at least one processor are coupled; the communication device passes through The communication interface communicates with other devices, and the at least one memory is used to store a computer program, so that when the computer program is executed by the at least one processor, the channel state is generated as described in the seventeenth aspect and various possible implementation manners thereof.
  • Information reference signal reference signal sequence method including: at least one processor, at least one memory, and a communication interface, the communication interface, the at least one memory and the at least one processor are coupled; the communication device passes through The communication interface communicates with other devices, and the at least one memory is used to store a computer program, so that when the computer program is executed by the at least one processor, the channel state is generated as described in the seventeenth aspect and various possible implementation manners thereof.
  • Information reference signal reference signal sequence method including: at least one processor, at least one memory, and a communication interface, the communication interface, the at
  • an embodiment of the present application provides a communication device, including: at least one processor, at least one memory, and a communication interface.
  • the communication interface, the at least one memory and the at least one processor are coupled; the communication device passes through The communication interface communicates with other devices, and the at least one memory is used to store a computer program, so that when the computer program is executed by the at least one processor, the channel state is generated as described in the eighteenth aspect and various possible implementation manners thereof Information reference signal reference signal sequence method.
  • the present application provides a system chip that can be used in a communication device.
  • the system chip includes: at least one processor, and related program instructions are executed in the at least one processor to implement The method according to the fourteenth aspect and the function of the second terminal device in any design thereof.
  • the system chip may further include at least one memory, and the memory stores related program instructions.
  • the present application provides a system chip that can be used in a communication device.
  • the system chip includes: at least one processor, and related program instructions are executed in the at least one processor to implement The method of the fifteenth aspect and the function of the first terminal device in any design thereof.
  • the system chip may further include at least one memory, and the memory stores related program instructions.
  • the present application provides a system chip that can be applied to a communication device.
  • the system chip includes: at least one processor, and related program instructions are executed in the at least one processor to implement The method according to the sixteenth aspect and the function of the second terminal device in any design thereof.
  • the system chip may further include at least one memory, and the memory stores related program instructions.
  • the present application provides a system chip that can be applied to a communication device.
  • the system chip includes: at least one processor, and related program instructions are executed in the at least one processor to implement The method according to the seventeenth aspect and the function of the first terminal device in any design thereof.
  • the system chip may further include at least one memory, and the memory stores related program instructions.
  • the present application provides a system chip that can be applied to a communication device.
  • the system chip includes: at least one processor, and related program instructions are executed in the at least one processor to implement The method according to the eighteenth aspect and the function of the second terminal device in any design thereof.
  • the system chip may further include at least one memory, and the memory stores related program instructions.
  • an embodiment of the present application provides a computer-readable storage medium, such as a computer non-transitory readable storage medium.
  • a computer program is stored thereon, and when the computer program runs on the computer, the computer is caused to execute any one of the possible methods of the fourteenth aspect.
  • the computer may be at least one storage node.
  • an embodiment of the present application provides a computer-readable storage medium, such as a non-transitory computer-readable storage medium.
  • a computer program is stored thereon, and when the computer program runs on the computer, the computer is caused to execute any one of the possible methods of the fifteenth aspect.
  • the computer may be at least one storage node.
  • an embodiment of the present application provides a computer-readable storage medium, such as a non-transitory computer-readable storage medium.
  • a computer program is stored thereon, and when the computer program runs on the computer, the computer is caused to execute any one of the possible methods of the sixteenth aspect.
  • the computer may be at least one storage node.
  • the embodiments of the present application provide a computer-readable storage medium, such as a non-transitory computer-readable storage medium.
  • a computer program is stored thereon, and when the computer program runs on the computer, the computer is caused to execute any one of the possible methods of the seventeenth aspect.
  • the computer may be at least one storage node.
  • embodiments of the present application provide a computer-readable storage medium, such as a non-transitory computer-readable storage medium.
  • a computer program is stored thereon, and when the computer program runs on the computer, the computer is caused to execute any one of the possible methods of the eighteenth aspect.
  • the computer may be at least one storage node.
  • the embodiments of the present application provide a computer program product, which when running on a computer, enables any method provided in the fourteenth aspect to be executed.
  • the computer may be at least one storage node.
  • the embodiments of the present application provide a computer program product, which when running on a computer, causes any method provided in the fifteenth aspect to be executed.
  • the computer may be at least one storage node.
  • the embodiments of the present application provide a computer program product, which when running on a computer, causes any method provided in the sixteenth aspect to be executed.
  • the computer may be at least one storage node.
  • the embodiments of the present application provide a computer program product, which when running on a computer, causes any method provided in the seventeenth aspect to be executed.
  • the computer may be at least one storage node.
  • the embodiments of the present application provide a computer program product, which when running on a computer, causes any method provided in the eighteenth aspect to be executed.
  • the computer may be at least one storage node.
  • an embodiment of the present application provides a communication system.
  • the communication system may include any one or more of the following: such as the communication device in the nineteenth aspect, or the communication device in the twentieth aspect, Or as the communication device in the twenty-first aspect, or as the communication device in the 22nd aspect, or as the communication device in the 23rd aspect, or as the communication device in the 24th aspect, or as the second aspect
  • any of the communication devices, system chips, computer storage media, computer program products, or communication systems provided above are all used to execute the corresponding methods provided above, and therefore, the beneficial effects that can be achieved can be Refer to the beneficial effects in the corresponding method, which will not be repeated here.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of the hardware structure of a communication device provided by an embodiment of the application.
  • FIG. 3 is a first schematic flowchart of a method for determining CSI-RS resource mapping provided by an embodiment of this application;
  • FIG. 4 is a schematic diagram of frequency domain resources used for mapping CSI-RS provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of time domain resources used for mapping CSI-RS provided by an embodiment of the application.
  • FIG. 6 is a second schematic flowchart of a method for determining CSI-RS resource mapping provided by an embodiment of this application;
  • FIG. 7 is a first schematic flowchart of a method for generating a CSI-RS reference signal sequence provided by an embodiment of the application
  • FIG. 8 is a second schematic flowchart of a method for generating a CSI-RS reference signal sequence provided by an embodiment of the application.
  • FIG. 9 is a third schematic flowchart of a method for generating a CSI-RS reference signal sequence provided by an embodiment of the application.
  • FIG. 10 is a first structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 11 is a second structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 12 is a third structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is a fourth structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 14 is a first schematic diagram of a communication system provided by an embodiment of this application.
  • 15 is a schematic structural diagram 5 of a communication device provided by an embodiment of this application.
  • FIG. 16 is a sixth structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 17 is a seventh structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 18 is a schematic diagram eight of the structure of a communication device provided by an embodiment of this application.
  • FIG. 19 is a second schematic diagram of a communication system provided by an embodiment of this application.
  • the method provided in the embodiments of this application can be used in various communication systems: it can be used in the third generation partnership project (3rd generation partnership project, 3GPP) communication system, for example, the LTE system, and it can also be used in the fifth generation (5th generation) communication system.
  • 3GPP third generation partnership project
  • 5th generation 5th generation
  • 5G fifth generation mobile communication systems
  • NR systems and other next-generation communication systems can also be used in non-3GPP communication systems without limitation.
  • the communication scenarios of the method provided in the embodiments of the present application may include communication scenarios where the number of antenna ports corresponding to CSI-RS (hereinafter referred to as ports) is limited and/or the CDM type corresponding to CSI-RS is limited.
  • These communication scenarios include but are not limited to: terminal The communication scenario between the device and the terminal device, the communication scenario between the network device and the network device, the communication scenario between the network device and the user equipment, etc.
  • terminal The communication scenario between the device and the terminal device, the communication scenario between the network device and the network device, the communication scenario between the network device and the user equipment, etc.
  • the following descriptions are all based on scenarios where the terminal device and the terminal device communicate with each other as an example.
  • the communication system 100 may include multiple network devices and multiple terminal devices.
  • the communication system 100 may include network devices 101 and 102, and terminal device 103-terminal device 106.
  • a network device can provide wireless access services for terminal devices.
  • each network device corresponds to a service coverage area, and terminal devices entering this area can communicate with the network device through the Uu port to receive wireless access services provided by the network device.
  • the terminal equipment and the network equipment can communicate through the Uu port link.
  • the Uu port link can be divided into uplink (UL) and downlink (DL) according to the direction of the data transmitted on it.
  • the UL can transmit data sent from terminal equipment to network equipment, DL It can transmit data from network equipment to terminal equipment.
  • the terminal device 103 is located in the coverage area of the network device 101, the network device 101 can send data to the terminal device 103 via DL, and the terminal device 103 can send data to the network device 101 via UL.
  • Terminal devices and other terminal devices can communicate with each other through direct communication links.
  • the directly connected communication link may be referred to as a side link or a side link (Sidelink, SL).
  • Sidelink Sidelink
  • the terminal device 103 and the terminal device 104 in Figure 1 can communicate through the side link
  • the terminal device 104 and the terminal device 106 in Figure 1 can communicate through the side link.
  • Link to communicate.
  • the network device in FIG. 1, for example, the network device 101 or 102 may be a transmission reception point (TRP), a base station, a relay station, or an access point.
  • the network device 101 or 102 can be a network device in a 5G communication system or a network device in a future evolution network, or it can be: global system for mobile communication (GSM) or code division multiple access
  • GSM global system for mobile communication
  • BTS code division multiple access
  • the base transceiver station (BTS) in the CDMA network can also be the NB (NodeB) in wideband code division multiple access (WCDMA), or it can be a long term evolution (long term). Evolution, LTE) eNB or eNodeB (evolutional NodeB).
  • the network device 101 or 102 may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • cloud radio access network cloud radio access network, CRAN
  • the terminal device in FIG. 1, such as the terminal device 103, the terminal device 104, the terminal device 105, or the terminal device 106, may be a device that includes a wireless transceiver function and can provide communication services for users.
  • the terminal device 103, the terminal device 104, the terminal device 105, or the terminal device 106 may be a device in a V2X system, a device in a D2D system, a device in a machine type communication (MTC) system, and the like.
  • terminal device 103, terminal device 104, terminal device 105, or terminal device 106 can refer to industrial robots, industrial automation equipment, user equipment (UE), access terminals, user units, user stations, mobile stations, and mobile stations.
  • UE user equipment
  • the terminal device 103, the terminal device 104, the terminal device 105, or the terminal device 106 may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, Personal digital assistant (PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or networks after 5G or The terminal equipment in the future evolved network is not limited in this application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA Personal digital assistant
  • the terminal device of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit built into a vehicle as one or more components or units.
  • the vehicle passes through the built-in vehicle-mounted module, vehicle-mounted module, On-board components, on-board chips, or on-board units can implement the method of the present application.
  • the communication system 100 shown in FIG. 1 is only used as an example, and is not used to limit the technical solution of the present application. Those skilled in the art should understand that in a specific implementation process, the communication system 100 may also include other devices, and the number of network devices and terminal devices may also be determined according to specific needs. In addition, the network elements in Figure 1 can also be connected through other interfaces, which are not limited.
  • each network element in FIG. 1 in the embodiment of the present application may be a functional module in a device.
  • the functional module can be an element in a hardware device, such as a communication chip or communication component in a terminal device or a network device, or a software functional module running on hardware, or a platform (for example, cloud Platform) instantiated virtualization functions.
  • each network element in FIG. 1 may be implemented by the communication device 200 in FIG. 2.
  • Fig. 2 shows a schematic diagram of the hardware structure of a communication device applicable to the embodiments of the present application.
  • the communication device 200 may include at least one processor 201, a communication line 202, a memory 203, and at least one communication interface 204.
  • the processor 201 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 202 may include a path for transferring information between the above-mentioned components, such as a bus.
  • the communication interface 204 uses any device such as a transceiver to communicate with other devices or communication networks, such as an Ethernet interface, a radio access network (RAN), and a wireless local area network (wireless local area networks, WLAN) and so on.
  • a transceiver uses any device such as a transceiver to communicate with other devices or communication networks, such as an Ethernet interface, a radio access network (RAN), and a wireless local area network (wireless local area networks, WLAN) and so on.
  • RAN radio access network
  • WLAN wireless local area network
  • the memory 203 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 202.
  • the memory can also be integrated with the processor.
  • the memory provided in the embodiments of the present application may generally be non-volatile.
  • the memory 203 is used to store and execute the computer execution instructions involved in the solution of the present application, and the processor 201 controls the execution.
  • the processor 201 is configured to execute computer-executable instructions stored in the memory 203, so as to implement the method provided in the embodiment of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2.
  • the communication device 200 may include multiple processors, such as the processor 201 and the processor 207 in FIG. 2. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication apparatus 200 may further include an output device 205 and an input device 206.
  • the output device 205 communicates with the processor 201 and can display information in a variety of ways.
  • the output device 205 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 206 communicates with the processor 201, and can receive user input in a variety of ways.
  • the input device 206 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the communication device 200 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a similar structure in Figure 2 equipment.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 200.
  • the method for determining the CSI-RS resource mapping provided by the embodiment of the present application will be described in detail below in conjunction with FIG. 1 and FIG. 2.
  • the network element in the following embodiment may have the components shown in FIG. 2.
  • the terminal device may perform some or all of the steps in the embodiments of the present application. These steps are only examples, and the embodiments of the present application may also perform other steps or variations of various steps. In addition, each step may be executed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all the steps in the embodiment of the present application.
  • the method for determining CSI-RS resource mapping is introduced by taking SL as an example.
  • the CSI-RS resource mapping method includes steps 301 to 305.
  • Step 301 The second terminal device or the network device sends configuration information to the first terminal device.
  • the first terminal device and the second terminal device may be terminal devices in the communication system shown in FIG. 1.
  • the first terminal device may be the terminal device 103 in the communication system shown in FIG.
  • the terminal device may be the terminal device 104 in the communication system shown in FIG. 1.
  • the first terminal device may be the terminal device 106 in the communication system shown in FIG. 1
  • the second terminal device may be the communication system shown in FIG. The terminal device 104 in the system.
  • the network device may be the network device in the communication system shown in FIG. 1.
  • the network device may be the network device in the communication system shown in FIG. 1.
  • the network device may be the network device 102 in the communication system shown in FIG. 1.
  • the configuration information may include the number of ports corresponding to the CSI-RS and the frequency domain density corresponding to the CSI-RS.
  • the frequency domain density corresponding to the CSI-RS may be the average number of resource elements (RE) occupied by each port corresponding to the CSI-RS on a resource block (RB).
  • RE resource elements
  • the CSI-RS may also be expressed as SL CSI-RS.
  • the frequency domain density is 0.5 RE/port/RB, or the frequency domain density is a positive integer, and the frequency domain density is greater than or equal to 1 RE/port/RB.
  • the second terminal device or network device sends the configuration information to the first terminal device.
  • the first terminal device and the second terminal device are in the service coverage area of the same network device (for example, the first terminal device is the terminal device 103 in the communication system shown in FIG. 1, and the second terminal device is the terminal device 103 in the communication system shown in FIG. 1.
  • the second terminal device or the network device can send the configuration information to the first terminal device.
  • the second terminal device sends the configuration information to the first terminal device, and subsequently, the second terminal device and the first terminal device may perform resource mapping according to the configuration information; or, the network device sends the configuration information to the first terminal device After receiving the configuration information, the first terminal device forwards the configuration information to the second terminal device. Subsequently, the second terminal device and the first terminal device may perform resource mapping according to the configuration information; or, the network device forwards the configuration information to the first terminal device.
  • the terminal device and the second terminal device send the configuration information, and subsequently, the second terminal device and the first terminal device may perform resource mapping according to the configuration information; or, the network device sends the configuration information to the second terminal device, and the second terminal device After receiving the configuration information, the configuration information is forwarded to the second terminal device, and subsequently, the second terminal device and the first terminal device may perform resource mapping according to the configuration information.
  • the first terminal device and the second terminal device are not in the service coverage area of the same network device (for example, the first terminal device is the terminal device 106 in the communication system shown in FIG. 1, and the second terminal device is The terminal device 104 in the communication system shown in 1), or the first terminal device and the second terminal device are not in the service coverage area of the network device, the second terminal device sends the configuration information to the first terminal device, and subsequently, the second terminal device
  • the device and the first terminal device may perform resource mapping according to the configuration information.
  • the configuration information is carried in radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the network device sends RRC signaling to the first terminal device, and the RRC signaling may carry configuration information.
  • the CSI-RS resource mapping (CSI-RS-ResourceMapping) information element (IE) can be used in the RRC signaling to indicate the resource mapping of the CSI-RS.
  • the design of the CSI-RS-ResourceMapping IE can be as follows:
  • nrofPorts can be used to indicate the number of ports, the number of ports can be 1, 2 or 4, density can be used to indicate the frequency domain density, the frequency domain density can be 0.5RE/port/RB, 1RE/port/RB, 2RE /port/RB or 3RE/port/RB.
  • the design of CSI-RS-ResourceMapping IE can also be as follows:
  • nrofPorts can be used to indicate the number of ports, the number of ports can be 1, 2 or 4, and density can be used to indicate the frequency domain density, which can be 1RE/port/RB, 2RE/port/RB or 3RE/ port/RB.
  • the configuration information is carried in PC5RRC signaling.
  • the second terminal device sends PC5 RRC signaling to the first terminal device, and the PC5 RRC signaling may include configuration information.
  • the SL CSI-RS Resource Mapping (SL-CSI-RS-ResourceMapping) IE can be used in the PC5 RRC signaling to indicate the resource mapping of the CSI-RS.
  • the design of the SL-CSI-RS-ResourceMapping IE can be as follows:
  • nrofPorts can be used to indicate the number of ports, the number of ports can be 1, 2 or 4, density can be used to indicate the frequency domain density, the frequency domain density can be 0.5RE/port/RB, 1RE/port/RB, 2RE /port/RB or 3RE/port/RB.
  • SL-CSI-RS-ResourceMapping IE can also be as follows:
  • nrofPorts can be used to indicate the number of ports, the number of ports can be 1, 2 or 4, and density can be used to indicate the frequency domain density, which can be 1RE/port/RB, 2RE/port/RB or 3RE/ port/RB.
  • Step 302 The first terminal device receives the configuration information, and determines a first parameter set according to the number of ports and the frequency domain density.
  • the first parameter set may include at least one of the following parameters: the CDM type corresponding to the CSI-RS, at least one CDM group number, the frequency domain resource start of at least one CDM group, or the frequency domain resource number in one CDM group.
  • the CDM type corresponding to the CSI-RS may include: no CDM (no CDM) and CDM (FD-CDM2) in which the CSI-RS is performed on two ports in the frequency domain.
  • the CDM group number may include the number of each CDM group corresponding to the CSI-RS in all CDM groups corresponding to the CSI-RS.
  • the starting point of the frequency domain resource of the CDM group may include: the starting point of the frequency domain resource of each CDM group corresponding to the CSI-RS.
  • the frequency domain resource number in the CDM group may include: the number of each RE in the CDM group in the frequency domain resource corresponding to the CDM group.
  • the first terminal device maintains a first mapping table.
  • the first mapping table includes at least one type of port number, at least one type of frequency domain density, and at least one set of mapping relationships among the first parameter sets.
  • the first terminal device determining the first parameter set according to the number of ports and the frequency domain density includes: the first terminal device looks up a table according to the number of ports and the frequency domain density to obtain the first parameter set.
  • the first mapping table may be as shown in Table 1, and the first terminal device may determine the first parameter set by querying the table 1.
  • Table 1 when the number of ports is 1, the frequency domain density is 1RE/port/RB, or 0.5RE/port/RB, it can be determined that the first parameter set includes: no CDM, the frequency domain resource starting point of the CDM group 0, CDM The group number is 0, the frequency domain resource number in the CDM group is 0; when the number of ports is 1 and the frequency domain density is 2RE/port/RB, it can be determined that the first parameter set includes: no CDM, the frequency domain resource starting point of the CDM group 0 And 6, the CDM group numbers 0 and 0, and the frequency domain resource number in the CDM group is 0; when the number of ports is 1, and the frequency domain density is 3RE/port/RB, it can be determined that the first parameter set includes: no CDM, CDM group The frequency domain resources starting point 0, 4, and 8, CDM group numbers 0, 0, and 0, and the frequency domain resource numbers in the CDM group 0 and 1
  • the first mapping table may be as shown in Table 2.
  • the first mapping table may be as shown in Table 3.
  • Table 1 to Table 3 are only examples of the first mapping table.
  • the first mapping table may also include a certain row, certain rows, all of the tables, and ratios in the above table. There are no restrictions on more rows, certain columns in the above table, or more columns than indicated.
  • the first parameter set will be introduced below.
  • the first parameter set can be obtained by looking up the table.
  • the first parameter set includes: FD-CDM2, the frequency domain resource starting points of the CDM group 0 and 2, and the CDM group number 0 and 1, the frequency domain resource numbers 0 and 1 in the CDM group.
  • FIG. 4 it is a schematic diagram of frequency domain resources used for mapping CSI-RS when the number of ports is 4 and the frequency domain density is 1 RE/port/RB.
  • the frequency domain resources used to map the CSI-RS (the part of the dashed line in the port 1 and port 2 in Figure 4) are numbered in the RB as 0- 1.
  • the corresponding CDM group number is 0.
  • the frequency domain resources used for mapping CSI-RS (the dashed line part in port 3 and port 4 in Figure 4) are in the RB The number in is 2-3, and the corresponding CDM group number is 1.
  • the frequency domain resources numbered 2-3 (the dashed line part in port 1 and port 2 in Figure 4)
  • the frequency domain resources numbered 0-1 do not transmit any reference signal or data symbol.
  • port 1, port 2, port 3, or port 4 are only examples of port identifiers.
  • the port identifiers may also be in other forms, which are not limited.
  • Step 303 The first terminal device determines the resource used for mapping CSI-RS in the data channel of the second terminal device according to the first parameter set, and the mapping value on the RE in the resource used for mapping CSI-RS in the data channel.
  • the data channel may be a physical layer sidelink shared channel (PSSCH).
  • PSSCH physical layer sidelink shared channel
  • the resources used for mapping CSI-RS may include frequency domain resources used for mapping CSI-RS, time domain resources used for mapping CSI-RS, and space domain resources used for mapping CSI-RS.
  • the frequency domain resource used for mapping CSI-RS may be used to indicate the frequency domain position of the second terminal device to send CSI-RS
  • the time domain resource used for mapping CSI-RS may be used to instruct the second terminal device to send CSI-RS.
  • the time domain position of the RS and the spatial resources used for mapping the CSI-RS may be used to indicate the port through which the second terminal device sends the CSI-RS.
  • the frequency domain resource used for mapping CSI-RS is determined according to the first parameter set.
  • the frequency domain resources used for mapping CSI-RS satisfy:
  • n represents the RB number
  • Indicates the number of sub-carriers in one RB Represents the starting point of the frequency domain resource of a CDM group
  • k′ represents the frequency domain resource number in the one code division multiplexing group.
  • the time domain resource used to map the CSI-RS is the last symbol in the data channel.
  • the identifier of the last symbol of the data channel is less than or equal to 12.
  • FIG. 5 it is a schematic diagram of time domain resources used for mapping CSI-RS.
  • FIG. 5 takes the data channel as the PSSCH as an example.
  • PSSCH occupies 1 time slot, that is, 14 symbols.
  • the first and last symbols are used as automatic gain control (AGC) symbols and
  • AGC automatic gain control
  • the time interval required to switch the time slot, therefore, the time domain resource number 1 used for mapping CSI-RS may be the 12th symbol in the time slot i.
  • the PSSCH occupies the 0th symbol-the 11th symbol.
  • the first and last symbols are respectively used as the AGC symbol and the time interval required for switching time slots. Therefore, the time domain resource number 1 used to map the CSI-RS may be the 10th symbol in the time slot i.
  • the PSSCH occupies the 3rd symbol-the 13th symbol.
  • the first and last symbols are respectively used as the AGC symbol and the time interval required for switching time slots. Therefore, the time domain resource number 1 used to map the CSI-RS may be the 12th symbol in the time slot i.
  • the spatial resources used for mapping the CSI-RS are determined according to the first parameter set.
  • p represents the spatial resource number
  • p CSIRS represents the starting port number of the CSI-RS
  • s represents the sequence number of the CDM sequence
  • j represents the CDM group number
  • L represents the size of the CDM group.
  • p CSIRS is 5000.
  • mapping value on the RE in the resource to which the CSI-RS is mapped in the data channel of the second terminal device satisfies:
  • ⁇ CSIRS represents the power control factor of the CSI-RS
  • ⁇ CSIRS can make the CSI-RS
  • the transmit power of is the same as the transmit power of the data symbols in the data channel
  • w f (k′) represents the value of the k′th element in the CDM sequence corresponding to a CDM group on the frequency domain resource
  • k′ represents the value of the CDM sequence in the CDM group.
  • the frequency domain resource number, r(m') represents the value of the m'th element in the CSI-RS reference signal sequence.
  • the value of w f (k') is always 1; when the CDM type is FD-CDM2, the value of w f (k') is determined according to the CDM sequence and k'.
  • m′ satisfies:
  • n represents the number of RB
  • is the intermediate variable calculated according to the number of ports and the frequency domain density
  • Means rounding down Means rounding up
  • means frequency domain density
  • CSI-RS and PSSCH have the same bandwidth.
  • the formula of m′ provided in the embodiment of this application is the same as the formula of m′ in the prior art Compared to one more item Therefore, when the number of ports is greater than or equal to 2, and the frequency domain density is greater than or equal to 2, the CSI-RS sequence can be reasonably used to improve the detection performance of the CSI-RS sequence.
  • Table 4 shows the specific situation of m′ provided in the embodiment of the present application and m′ in the prior art when the number of ports is greater than or equal to 2 and the frequency domain density is greater than or equal to 2.
  • the m′ provided by the embodiment of the present application has more values than the m′ provided by the prior art. Therefore, it can be reasonable Using CSI-RS sequence improves the detection performance of CSI-RS sequence.
  • Step 304 The second terminal device determines a first parameter set according to the number of ports and the frequency domain density.
  • step 304 For the specific process of step 304, reference may be made to the process of determining the first parameter set by the first terminal device according to the number of ports and the frequency domain density in the foregoing step 302, which will not be repeated.
  • Step 305 The second terminal device determines the resource used for mapping CSI-RS in the data channel of the second terminal device according to the first parameter set, and the mapping value on the RE in the resource used for mapping CSI-RS in the data channel.
  • step 305 For the specific process of step 305, refer to the above step 303.
  • the first terminal device determines the resource for mapping CSI-RS in the data channel of the second terminal device according to the first parameter set, and the resource for mapping CSI-RS in the data channel.
  • the specific process of mapping values on the RE in the resource will not be described in detail.
  • the second terminal device may send the data channel to the first terminal device, and the first terminal device may receive the data channel from the second terminal device, and according to the resources used for mapping the CSI-RS and the CSI-RS mapping
  • the mapping value on the RE in the resource of the RS performs channel estimation.
  • the first terminal device may first receive the data channel from the second terminal device, and then determine the resource used for mapping CSI-RS in the data channel of the second terminal device according to the first parameter set, and the data channel
  • the mapping value on the RE in the resource used to map the CSI-RS may also be first determined according to the first parameter set for the resource used to map the CSI-RS in the data channel of the second terminal device, and the data channel used to map the CSI -The mapping value on the RE in the resource of the RS, and then receiving the data channel from the second terminal device, and while receiving the data channel from the second terminal device, the second terminal can be determined according to the first parameter set.
  • the resource used to map the CSI-RS in the data channel of the device and the mapping value on the RE in the resource used to map the CSI-RS in the data channel are not limited.
  • step 302-step 303 can be executed first and then step 304-step 305 can be executed, or step can be executed first.
  • step 304-Step 305 then execute step 302-step 303, and also execute step 302-step 303, and step 304-step 305 at the same time.
  • the second terminal device may send configuration information to the first terminal device, where the configuration information includes the number of ports corresponding to the CSI-RS and the frequency domain density corresponding to the CSI-RS, and the first terminal device is receiving After the number of ports corresponding to the CSI-RS and the frequency domain density corresponding to the CSI-RS, the first parameter set can be determined according to the number of ports corresponding to the CSI-RS and the frequency domain density corresponding to the CSI-RS, and determined according to the first parameter set
  • the configuration information further includes first indication information and second indication information, and the first indication information may be used to indicate the frequency domain offset k 0 .
  • the first terminal device or the second terminal device may determine the first parameter set according to the number of ports, the frequency domain density, and the frequency domain offset, and the second indication information may be used to indicate time domain resources for mapping CSI-RS .
  • the first mapping table may be as shown in Table 5.
  • k 0 represents the frequency domain offset.
  • the first parameter set includes: no CDM, the frequency domain resource starting point of the CDM group k 0 , and the CDM group number 0 , The frequency domain resource number in the CDM group is 0; when the number of ports is 1 and the frequency domain density is 2RE/port/RB, it can be determined that the first parameter set includes: no CDM, the frequency domain resource starting points of the CDM group k 0 and k 0 +6, CDM group number 0 and 0, CDM group frequency domain resource number 0; when the number of ports is 1, and the frequency domain density is 3RE/port/RB, it can be determined that the first parameter set includes: no CDM, CDM The starting point of the frequency domain resources of the group k 0 , k 0 +4 and k 0 +8, the CDM group number 0, 0, and 0, the frequency domain resource number in the
  • the first parameter set includes: FD-CDM2, the frequency domain resources of the CDM group Starting point k 0 , k 0 +4 and k 0 +8, CDM group numbers 0, 0 and 0, frequency domain resource numbers in the CDM group 0 and 1; when the number of ports is 4, the frequency domain density is 1RE/port/RB , Or 0.5RE/port/RB, it can be determined that the first parameter set includes: FD-CDM2, the frequency domain resource starting point k 0 and k 0 +2 of the CDM group, the CDM group number 0 and 1, and the frequency domain within the CDM group Resource number 0 and 1.
  • the first mapping table may be as shown in Table 6.
  • the first mapping table may be as shown in Table 7.
  • Tables 5 to 6 are only examples of the first mapping table.
  • the first mapping table may also include a certain row, certain rows, all of the tables, and ratios in the above table. There are no restrictions on more rows, certain columns in the above table, or more columns than indicated.
  • the first indication information includes a bit map, and the bit map is used to indicate the frequency domain offset.
  • the bit map may include 12 bits (for example, the bit map may be [b 11 ,b 10 ...b 0 ]); when the number of ports is 1, the frequency domain density is 2RE/port/RB (that is, in Table 5 Line 2), the bit map may include 6 bits (for example, the bit map may be [b 5 ,b 4 ...b 0 ]); when the number of ports is 1, the frequency domain density is 3RE/port/RB ( That is, row 3 in Table 5), the bit map can include 4 bits (for example, the bit map can be [b 3 ,b 2 ,b 1 ,b 0 ]); when the number of ports is 2, the frequency domain density is When 1RE/port/RB, or 0.5RE/port/RB (that is, row 4 in Table 5), the bit map may include 6 bits (for example, the bit map may be [b 11 ,b 10 ...b 0 ]); when the number of ports is 1, the frequency domain density is 2RE/port/RB (that is, in Table 5 Line 2), the bit map may
  • the frequency domain offset k 0 is the product of the number of ports and the position identifier of the first element with a value of 1 in the bitmap.
  • the first terminal device or the first terminal device can determine that the position identifier of the first element with a value of 1 in the bitmap is 1, and then determine that the frequency domain offset k 0 is 2.
  • the first terminal device or the second terminal device can be based on the number of ports of 2, and the frequency domain
  • the density is 2RE/port/RB
  • the first parameter set obtained by looking up the table includes: FD-CDM2, frequency domain resource starting points 2 and 8 of the CDM group, CDM group numbers 0 and 0, and frequency domain resource numbers 0 and 1 in the CDM group.
  • the second indication information includes a time domain resource number used for mapping CSI-RS.
  • the number of the time domain resource used for mapping CSI-RS is greater than or equal to 0 and less than or equal to 12.
  • the configuration information is carried in RRC signaling.
  • the network device sends RRC signaling to the first terminal device, and the RRC signaling may include configuration information.
  • the CSI-RS-ResourceMapping IE can be used in the RRC signaling to indicate the resource mapping of the CSI-RS.
  • the design of the CSI-RS-ResourceMapping IE can be as follows:
  • frequencyDomainAllocation can be used to indicate the bit map.
  • the size of the bit map can be 12 bits, 6 bits, 4 bits, 3 bits or 2 bits.
  • nrofPorts can be used to indicate the number of ports.
  • the number of ports can be 1, 2, or 4.
  • the firstOFDMSymbolInTimeDomain can be used to indicate the time domain resources used to map CSI-RS, and the density can be used to indicate the frequency domain density.
  • the frequency domain density can be 0.5RE/port/RB, 1RE/port/RB, 2RE/port/ RB or 3RE/port/RB.
  • the design of CSI-RS-ResourceMapping IE can also be as follows:
  • frequencyDomainAllocation can be used to indicate the bit map.
  • the size of the bit map can be 12 bits, 6 bits, 4 bits, 3 bits or 2 bits.
  • nrofPorts can be used to indicate the number of ports. The number of ports can be 1, 2, or 4.
  • firstOFDMSymbolInTimeDomain can be used to indicate the time domain resources used to map CSI-RS
  • density can be used to indicate frequency domain density, which can be 1RE/port/RB, 2RE/port/RB or 3RE/port/RB .
  • the configuration information is carried in PC5 RRC signaling.
  • the second terminal device sends PC5 RRC signaling to the first terminal device, and the PC5 RRC signaling may include configuration information.
  • the PC5 RRC signaling can use the SL-CSI-RS-ResourceMapping IE to indicate the resource mapping of the CSI-RS.
  • the design of the SL-CSI-RS-ResourceMapping IE can be as follows:
  • frequencyDomainAllocation can be used to indicate the bit map.
  • the size of the bit map can be 12 bits, 6 bits, 4 bits, 3 bits or 2 bits.
  • nrofPorts can be used to indicate the number of ports.
  • the number of ports can be 1, 2, or 4.
  • the firstOFDMSymbolInTimeDomain can be used to indicate the time domain resources used to map CSI-RS, and the density can be used to indicate the frequency domain density.
  • the frequency domain density can be 0.5RE/port/RB, 1RE/port/RB, 2RE/port/ RB or 3RE/port/RB.
  • SL-CSI-RS-ResourceMapping IE can also be as follows:
  • frequencyDomainAllocation can be used to indicate the bit map.
  • the size of the bit map can be 12 bits, 6 bits, 4 bits, 3 bits or 2 bits.
  • nrofPorts can be used to indicate the number of ports. The number of ports can be 1, 2, or 4.
  • firstOFDMSymbolInTimeDomain can be used to indicate the time domain resources used to map CSI-RS
  • density can be used to indicate frequency domain density, which can be 1RE/port/RB, 2RE/port/RB or 3RE/port/RB .
  • the configuration information further includes first indication information and second indication information, where the first indication information is used to indicate the frequency domain offset, and the second indication information is used for indication.
  • the first terminal device or the second terminal device can determine the first parameter set according to the number of ports, the frequency domain density, and the frequency domain offset, so that the first terminal device or the second terminal device The terminal device determines the resource used for mapping CSI-RS in the data channel of the second terminal device according to the first parameter set, and the mapping value on the RE in the resource used for mapping CSI-RS in the data channel.
  • the method shown in FIG. 3 further includes step 306 and step 307.
  • Step 306 The first terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier.
  • the scrambling code identifier can be used to identify the reference signal sequence attributes of the CSI-RS. For a CSI-RS mapped to a given orthogonal frequency division multiplexing (OFDM) symbol in a radio frame, the scrambling code identifier can determine the reference signal sequence of the CSI-RS.
  • OFDM orthogonal frequency division multiplexing
  • the first terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier, including: the first terminal device obtains the initial value of the pseudo random sequence according to the scrambling code identifier, and the first terminal device obtains the initial value of the pseudo random sequence according to the initial value of the pseudo random sequence CSI-RS reference signal sequence.
  • the first terminal device obtains the initial value of the pseudo-random sequence according to the scrambling code identifier, including: the initial value of the pseudo-random sequence satisfies:
  • L represents the length of the scrambling code identifier
  • the unit is bit
  • Indicates the number of symbols in the time slot where the data channel is located It represents the index of the time slot in which the data channel is located in the wireless frame when the subcarrier interval number is ⁇
  • n ID represents the scrambling code identifier
  • mod represents the remainder operation.
  • the first terminal device can obtain the scrambling code identifier according to the following three methods.
  • Method 1 The scrambling code identifier is indicated in the configuration information.
  • the configuration information further includes third indication information, and the third indication information is used to indicate the scrambling code identifier.
  • the scrambling code identifies n ID ⁇ ⁇ 0,1,...,1023 ⁇ .
  • the scrambling code identifier is randomly selected by the second terminal device in the set ⁇ 0,1,...,1023 ⁇ , and sent to the first terminal device through configuration information, so that the first terminal device can obtain the CSI- according to the scrambling code identifier.
  • RS reference signal sequence is randomly selected by the second terminal device in the set ⁇ 0,1,...,1023 ⁇ , and sent to the first terminal device through configuration information, so that the first terminal device can obtain the CSI- according to the scrambling code identifier.
  • Method 2 The first terminal device determines the physical layer source ID (Layer-1 source ID) or the physical layer destination ID (Layer-1 desitination ID) as the scrambling code ID.
  • the first terminal device receives control information from the second terminal device, the control information includes a physical layer source identifier or a physical layer destination identifier, and the first terminal device uses the physical layer source identifier or physical layer destination identifier. Determined as the scrambling code identifier.
  • control information may be carried in sidelink control information (SCI).
  • SCI sidelink control information
  • the length of the scrambling code identifier is 8 bits.
  • Method 3 The first terminal device determines the scrambling code identifier according to a cyclic redundancy check (CRC) code.
  • CRC cyclic redundancy check
  • the first terminal device receives the control information from the second terminal device, the first terminal device obtains the CRC code according to the control information, and the first terminal device uses the low L or high L of the CRC code as Scrambling code identification.
  • control information can be carried in the SCI.
  • Step 307 The second terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier.
  • step 307 reference may be made to the process of obtaining the CSI-RS reference signal sequence of the CSI-RS by the first terminal device according to the scrambling code identifier in the foregoing step 306, which will not be repeated.
  • step 306 is performed before step 303, and step 307 is performed before step 305.
  • the embodiment of the present application does not limit the execution order of step 306 and step 307 in the method shown in FIG. 6.
  • step 306 may be performed before step 302, after step 301, and step 307 may be performed before step 301.
  • the first terminal device or the second terminal device can obtain the CSI-RS reference signal sequence according to the scrambling code identifier. Subsequently, the first terminal device or the second terminal device can obtain the CSI-RS reference signal sequence according to the The CSI-RS reference signal sequence determines the mapping value on the RE in the resource used for mapping the CSI-RS in the data channel of the second terminal device.
  • a method for generating a CSI-RS reference signal sequence provided by an embodiment of this application, the method may include step 701 to step 704.
  • Step 701 The second terminal device determines the scrambling code identifier.
  • the second terminal device may be the terminal device in the communication system shown in FIG. 1, for example, the second terminal device may be the terminal device 103 in the communication system shown in FIG. 1.
  • the scrambling code identifier can be used to identify the reference signal sequence attributes of the CSI-RS. For the CSI-RS mapped to a given OFDM symbol in the radio frame, the scrambling code identifier can determine the reference signal sequence of the CSI-RS.
  • the scrambling code identifies n ID ⁇ ⁇ 0,1,...,1023 ⁇ .
  • the scrambling code identifier is randomly selected by the second terminal device in the set ⁇ 0,1,...,1023 ⁇ , and sent to the first terminal device through configuration information, so that the first terminal device can obtain the CSI- according to the scrambling code identifier.
  • RS reference signal sequence is randomly selected by the second terminal device in the set ⁇ 0,1,...,1023 ⁇ , and sent to the first terminal device through configuration information, so that the first terminal device can obtain the CSI- according to the scrambling code identifier.
  • Step 702 The second terminal device sends the first information to the first terminal device.
  • the first terminal device may be the terminal device in the communication system shown in FIG. 1, for example, the first terminal device may be the terminal device 104 in the communication system shown in FIG. 1.
  • the first information may include the scrambling code identification.
  • the second terminal device sends a PC5-RRC to the first terminal device, and the PC5-RRC carries the first information.
  • Step 703 The first terminal device receives the first information from the second terminal device, and obtains the CSI-RS reference signal sequence according to the scrambling code identifier.
  • the first terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier, including: the first terminal device obtains the initial value of the pseudo random sequence according to the scrambling code identifier, and the first terminal device obtains the initial value of the pseudo random sequence according to the initial value of the pseudo random sequence CSI-RS reference signal sequence.
  • the first terminal device obtains the initial value of the pseudo-random sequence according to the scrambling code identifier, including: the initial value of the pseudo-random sequence satisfies:
  • L represents the length of the scrambling code identifier
  • the unit is bit
  • Indicates the number of symbols in the time slot where the data channel is located It represents the index of the time slot in which the data channel is located in the wireless frame when the subcarrier interval number is ⁇
  • n ID represents the scrambling code identifier
  • mod represents the remainder operation.
  • Step 704 The second terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier.
  • step 704 refers to the process of step 703 in which the first terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier, which is not repeated here.
  • step 704 may be executed after step 701, and the embodiment of the present application does not limit the execution order of step 704 in the method shown in FIG. 7.
  • step 704 may be performed before step 702 and after step 701, and step 704 may also be performed after step 702 and before step 703.
  • the second terminal device can determine the scrambling code identifier and send the scrambling code identifier to the first terminal device. Subsequently, the first terminal device or the second terminal device can obtain the CSI- according to the scrambling code identifier. RS reference signal sequence, so that the first terminal device performs channel estimation according to the CSI-RS reference signal sequence.
  • the CSI-RS reference signal sequence is obtained according to the scrambling code identifier determined by the second terminal device, the first terminal device or the second terminal device may also be based on the physical layer source identifier or the physical layer destination identifier. Obtain the CSI-RS reference signal sequence.
  • the method may include step 801 to step 805.
  • Step 801 The second terminal device sends the first information to the first terminal device.
  • the first terminal device and the second terminal device may be terminal devices in the communication system shown in FIG. 1.
  • the first terminal device may be the terminal device 103 in the communication system shown in FIG.
  • the terminal device may be the terminal device 104 in the communication system shown in FIG. 1.
  • the first terminal device may be the terminal device 106 in the communication system shown in FIG. 1
  • the second terminal device may be the communication system shown in FIG. The terminal device 104 in the system.
  • the first information may include a physical layer source identifier or a physical layer destination identifier.
  • the first information is carried in the SCI.
  • Step 802 The first terminal device receives the first information from the second terminal device, and determines that the physical layer source identifier or the physical layer destination identifier is a scrambling code identifier.
  • the scrambling code identifier can be used to identify the reference signal sequence attributes of the CSI-RS. For the CSI-RS mapped to a given OFDM symbol in the radio frame, the scrambling code identifier can determine the reference signal sequence of the CSI-RS.
  • the length of the scrambling code identifier is 8 bits.
  • Step 803 The first terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier.
  • the first terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier, including: the first terminal device obtains the initial value of the pseudo random sequence according to the scrambling code identifier, and the first terminal device obtains the initial value of the pseudo random sequence according to the initial value of the pseudo random sequence CSI-RS reference signal sequence.
  • the first terminal device obtains the initial value of the pseudo-random sequence according to the scrambling code identifier, including: the initial value of the pseudo-random sequence satisfies:
  • L represents the length of the scrambling code identifier
  • the unit is bit
  • Indicates the number of symbols in the time slot where the data channel is located It represents the index of the time slot in which the data channel is located in the wireless frame when the subcarrier interval number is ⁇
  • n ID represents the scrambling code identifier
  • mod represents the remainder operation.
  • Step 804 The second terminal device determines that the physical layer source identifier or the physical layer destination identifier is a scrambling code identifier.
  • Step 805 The second terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier.
  • step 805 reference may be made to the process of obtaining the CSI-RS reference signal sequence of the CSI-RS by the first terminal device according to the scrambling code identifier in step 803, which is not repeated here.
  • step 804 and step 805 can be executed after step 801, and the embodiment of the present application does not limit the execution order of step 804 and step 805 in the method shown in FIG. 8.
  • step 804 and step 805 may be performed before step 802 and after step 801, and step 804 and step 805 may also be performed after step 802 and before step 803.
  • the second terminal device can send first information to the first terminal device.
  • the first information includes the physical layer source identifier or the physical layer destination identifier.
  • the first terminal device or the second terminal device can determine the physical layer source identifier or the physical layer destination identifier.
  • the layer source identifier or the physical layer destination identifier is a scrambling code identifier, and the CSI-RS reference signal sequence is obtained according to the scrambling code identifier, so that the first terminal device can perform channel estimation according to the CSI-RS reference signal sequence.
  • the CSI-RS reference signal sequence is obtained according to the scrambling code identifier determined by the second terminal device, and in the method shown in FIG. 8, the physical layer source identifier or the physical layer destination identifier is determined as the scrambling code identifier,
  • the first terminal device or the second terminal device may also obtain the CSI-RS reference signal sequence according to the CRC code.
  • the method may include step 901 to step 907.
  • Step 901 The second terminal device sends the first information to the first terminal device.
  • the first terminal device and the second terminal device may be terminal devices in the communication system shown in FIG. 1.
  • the first terminal device may be the terminal device 103 in the communication system shown in FIG.
  • the terminal device may be the terminal device 104 in the communication system shown in FIG. 1.
  • the first terminal device may be the terminal device 106 in the communication system shown in FIG. 1
  • the second terminal device may be the communication system shown in FIG. The terminal device 104 in the system.
  • the first information is carried in the SCI.
  • Step 902 The first terminal device receives the first information from the second terminal device, and obtains the CRC code according to the first information.
  • the first terminal device descrambles the first information to obtain a CRC code.
  • Step 903 The first terminal device uses the low L bit or the high L bit of the CRC code as a scrambling code identifier.
  • the scrambling code identifier can be used to identify the reference signal sequence attributes of the CSI-RS. For the CSI-RS mapped to a given OFDM symbol in the radio frame, the scrambling code identifier can determine the reference signal sequence of the CSI-RS.
  • Step 904 The first terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier.
  • the first terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier, including: the first terminal device obtains the initial value of the pseudo random sequence according to the scrambling code identifier, and the first terminal device obtains the initial value of the pseudo random sequence according to the initial value of the pseudo random sequence CSI-RS reference signal sequence.
  • the first terminal device obtains the initial value of the pseudo-random sequence according to the scrambling code identifier, including: the initial value of the pseudo-random sequence satisfies:
  • L represents the length of the scrambling code identifier
  • the unit is bit
  • Indicates the number of symbols in the time slot where the data channel is located It represents the index of the time slot in which the data channel is located in the wireless frame when the subcarrier interval number is ⁇
  • n ID represents the scrambling code identifier
  • mod represents the remainder operation.
  • Step 905 The second terminal device obtains the CRC code according to the first information.
  • Step 906 The second terminal device uses the low L bit or the high L bit of the CRC code as a scrambling code identifier.
  • Step 907 The second terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier.
  • step 907 refers to the process of step 904 in which the first terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier, which is not repeated here.
  • step 905-step 907 can be executed after step 901, and the embodiment of the present application does not limit the execution order of step 905-step 907 in the method shown in FIG. 9.
  • step 905 to step 907 may be performed before step 902 and after step 901
  • step 905 to step 907 may also be performed after step 902 and before step 903.
  • the second terminal device can send the first information to the first terminal device, and the first terminal device or the second terminal device can obtain the CRC code according to the first information, and the low L bits or high bits of the CRC code
  • the L bit is used as the scrambling code identifier, and the CSI-RS reference signal sequence is obtained according to the scrambling code identifier, so that the first terminal device performs channel estimation according to the CSI-RS reference signal sequence.
  • the first terminal device or the second terminal device, etc. include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application can divide the first terminal device or the second terminal device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one.
  • Processing module can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 10 shows a schematic structural diagram of a communication device 100.
  • the communication device 100 may be a first terminal device or a chip or a system on a chip in the first terminal device, or other combination devices, components, etc. that can realize the functions of the above-mentioned terminal device.
  • the communication device 100 may be used to perform the functions involved in the above-mentioned embodiments. The function of the first terminal device.
  • the communication device 100 shown in FIG. 10 includes: a receiving module 101 and a processing module 102.
  • the receiving module 101 is configured to receive configuration information from a second terminal device or a network device, where the configuration information includes the number of ports corresponding to the CSI-RS and the frequency domain density corresponding to the CSI-RS, and the frequency domain density is the CSI-RS -The average number of resource units RE occupied by each port corresponding to the RS on a resource block RB.
  • the processing module 102 is configured to determine a first parameter set according to the number of ports and the frequency domain density, where the first parameter set includes at least one of the following parameters: a code division multiplexing type corresponding to the CSI-RS, at least one The code division multiplexing group number, the frequency domain resource starting point of at least one code division multiplexing group, or the frequency domain resource number within one code division multiplexing group.
  • the processing module 102 is further configured to determine, according to the first parameter set, the resource used for mapping the CSI-RS in the data channel of the second terminal device, and the RE in the resource used for mapping the CSI-RS in the data channel The mapped value on the.
  • the mapping value on the RE in the resource used to map the CSI-RS in the data channel of the second terminal device satisfies: among them, Represents the mapping value on the RE corresponding to the time domain resource number l, the frequency domain resource number k, the spatial resource number p, and the subcarrier interval number ⁇ , ⁇ CSIRS represents the power control factor of the CSI-RS, w f (k') represents The value of the k′th element in the code division multiplexing sequence corresponding to a code division multiplexing group on the frequency domain resource, where k′ represents the frequency domain resource number in the code division multiplexing group, and r(m′) represents The value of the m'th element in the reference signal sequence of the CSI-RS, where m'satisfies: Among them, n represents the number of the RB, and ⁇ is the intermediate variable calculated according to the number of ports and the frequency domain density, Means rounding down, Means rounding up, ⁇ means the frequency domain density, Indi
  • the communication device maintains a first mapping table, where the first mapping table includes at least one port number, at least one frequency domain density, and at least one set of mapping relationships among first parameter sets; the processing module 102, specifically It is used to look up the table according to the number of ports and the frequency domain density to obtain the first parameter set.
  • the configuration information further includes first indication information, and the first indication information is used to indicate the frequency domain offset; the processing module 102 is specifically configured to perform according to the number of ports, the frequency domain density, and the frequency domain offset. Quantities determine the first parameter set.
  • the resource used for mapping the CSI-RS includes: the frequency domain resource used for mapping the CSI-RS, the time domain resource used for mapping the CSI-RS, and the resource used for mapping the CSI-RS.
  • RS airspace resources the frequency domain resource used for mapping the CSI-RS, the time domain resource used for mapping the CSI-RS, and the resource used for mapping the CSI-RS.
  • the time domain resource used for mapping the CSI-RS is the last symbol in the data channel; or, the configuration information further includes second indication information, and the second indication information is used to indicate the mapping The time domain resource of the CSI-RS.
  • the processing module 102 is further configured to obtain the reference signal sequence of the CSI-RS according to the scrambling code identifier.
  • the configuration information further includes third indication information, where the third indication information is used to indicate the scrambling code identifier.
  • the receiving module 101 is further configured to receive control information from the second terminal device, where the control information includes a physical layer source identifier and/or a physical layer destination identifier; the processing module 102 is also used to determine the physical layer The layer source identifier or the physical layer destination identifier is the scrambling code identifier.
  • the receiving module 101 is also used to receive control information from the second terminal device; the processing module 102 is also used to obtain a cyclic redundancy check code according to the control information; the processing module 102 is also used to The low L bit or the high L bit of the cyclic redundancy check code is used as the scrambling code identifier, where L is a positive integer, and L is greater than or equal to 1 and less than or equal to the length of the cyclic redundancy check code.
  • the communication device 100 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 100 may adopt the form shown in FIG. 2.
  • the processor 201 in FIG. 2 may invoke the computer-executable instructions stored in the memory 203 to cause the communication device 100 to execute the method for determining channel state information reference signal resource mapping in the foregoing method embodiment.
  • the functions/implementation process of the receiving module 101 and the processing module 102 in FIG. 10 may be implemented by the processor 201 in FIG. 2 calling a computer execution instruction stored in the memory 203.
  • the function/implementation process of the processing module 102 in FIG. 10 may be implemented by the processor 201 in FIG. 2 calling a computer execution instruction stored in the memory 203, and the function/implementation process of the receiving module 101 in FIG. 2 in the communication interface 204 to achieve.
  • the communication device 100 provided in this embodiment can perform the above-mentioned method for determining channel state information reference signal resource mapping, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • FIG. 11 shows a schematic structural diagram of a communication device 110.
  • the communication device 110 may be a second terminal device or a chip or a system on a chip in the second terminal device, and the communication device 110 may be used to perform the functions of the second terminal device involved in the foregoing embodiments.
  • the communication device 110 shown in FIG. 11 includes: a processing module 111.
  • the processing module 111 is configured to determine a first parameter set according to the number of ports corresponding to the CSI-RS and the frequency domain density corresponding to the CSI-RS, where the frequency domain density is a resource block RB for each port corresponding to the CSI-RS
  • the number of resource units RE occupied on average, the first parameter set includes at least one of the following parameters: the code division multiplexing type corresponding to the CSI-RS, at least one code division multiplexing group number, and at least one code division multiplexing The starting point of the frequency domain resource of the group, or the frequency domain resource number in a code division multiplexing group.
  • the processing module 111 is further configured to determine, according to the first parameter set, the resource used for mapping the CSI-RS in the data channel of the communication device, and the resource on the RE in the resource used for mapping the CSI-RS in the data channel Map value.
  • the communication device 110 further includes: a sending module 112; and a sending module 112, configured to send configuration information to the first terminal device.
  • the mapping value on the RE in the resource used to map the CSI-RS in the data channel of the communication device satisfies: where, Represents the mapping value on the RE corresponding to the time domain resource number l, the frequency domain resource number k, the spatial resource number p, and the subcarrier interval number ⁇ , ⁇ CSIRS represents the power control factor of the CSI-RS, w f (k') represents The value of the k′th element in the code division multiplexing sequence corresponding to a code division multiplexing group on the frequency domain resource, where k′ represents the frequency domain resource number in the code division multiplexing group, and r(m′) represents The value of the m'th element in the reference signal sequence of the CSI-RS, where m'satisfies: Among them, n represents the number of the RB, and ⁇ is the intermediate variable calculated according to the number of ports and the frequency domain density, Means rounding down, Means rounding up, ⁇ means the frequency domain density, Indicates
  • the communication device maintains a first mapping table, where the first mapping table includes at least one port number, at least one frequency domain density, and at least one set of mapping relationships among the first parameter sets; the processing module 111 specifically It is used to look up the table according to the number of ports and the frequency domain density to obtain the first parameter set.
  • the configuration information further includes first indication information, the first indication information is used to indicate the frequency domain offset; the processing module 111 is specifically configured to perform according to the number of ports, the frequency domain density, and the frequency domain offset Quantities determine the first parameter set.
  • the resource used for mapping the CSI-RS includes: the frequency domain resource used for mapping the CSI-RS, the time domain resource used for mapping the CSI-RS, and the resource used for mapping the CSI-RS.
  • RS airspace resources the frequency domain resource used for mapping the CSI-RS, the time domain resource used for mapping the CSI-RS, and the resource used for mapping the CSI-RS.
  • the time domain resource used for mapping the CSI-RS is the last symbol in the data channel; or, the configuration information further includes second indication information, and the second indication information is used to indicate the mapping The time domain resource of the CSI-RS.
  • the processing module 111 is further configured to identify the reference signal sequence of the CSI-RS according to the scrambling code.
  • the configuration information further includes third indication information, where the third indication information is used to indicate the scrambling code identifier.
  • the sending module 112 is also used to send control information to the first terminal device, where the control information includes a physical layer source identifier and/or a physical layer destination identifier; the processing module 111 is also used to determine the physical layer The source identifier or the physical layer destination identifier is the scrambling code identifier.
  • the sending module 112 is also used to send control information to the first terminal device; the processing module 111 is also used to obtain a cyclic redundancy check code according to the control information; the processing module 111 is also used to send the cyclic redundancy check code to the first terminal device.
  • the low L bit or the high L bit of the redundancy check code is used as the scrambling code identifier, where L is a positive integer, and L is greater than or equal to 1 and less than or equal to the length of the cyclic redundancy check code.
  • the communication device 110 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 110 may adopt the form shown in FIG. 2.
  • the processor 201 in FIG. 2 may invoke a computer-executable instruction stored in the memory 203 to cause the communication device 110 to execute the method for determining channel state information reference signal resource mapping in the foregoing method embodiment.
  • the function/implementation process of the processing module 111 and the sending module 112 in FIG. 12 may be implemented by the processor 201 in FIG. 2 calling a computer execution instruction stored in the memory 203.
  • the function/implementation process of the processing module 111 in FIG. 12 may be implemented by the processor 201 in FIG. 2 calling a computer execution instruction stored in the memory 203, and the function/implementation process of the sending module 112 in FIG. 2 in the communication interface 204 to achieve.
  • the communication device 110 provided in this embodiment can perform the above-mentioned method for determining channel state information reference signal resource mapping, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • FIG. 13 shows a schematic diagram of the composition of a communication system.
  • the communication system 130 may include: a terminal device 1301 and a terminal device 1302. It should be noted that FIG. 13 is only an exemplary drawing, and the embodiment of the present application does not limit the network elements included in the communication system 130 shown in FIG. 13 and the number of network elements.
  • the terminal device 1301 has the function of the communication device 100 shown in FIG. 10, and can be used to receive the number of ports corresponding to the CSI-RS sent by the terminal device 1302 and the frequency domain density corresponding to the CSI-RS;
  • the frequency domain density determines the first parameter; and determines the resource used for mapping the CSI-RS in the data channel of the terminal device 1302 according to the first parameter set, and the RE in the resource used for mapping the CSI-RS in the data channel The mapped value on the.
  • the terminal device 1302 has the function of the communication device 110 shown in FIG. 11 or FIG. 12, and can be used to send the terminal device 1301 the number of ports corresponding to the CSI-RS and the frequency domain density corresponding to the CSI-RS;
  • the frequency domain density determines the first parameter; and determines the resource used for mapping the CSI-RS in the data channel of the terminal device 1302 according to the first parameter set, and the RE in the resource used for mapping the CSI-RS in the data channel The mapped value on the.
  • the communication system 130 further includes a network device 1303.
  • the network device 1303 may be used to send the number of ports corresponding to the CSI-RS and the frequency domain density corresponding to the CSI-RS to the terminal device 1301 and the terminal device 1302.
  • FIG. 14 shows a schematic structural diagram of a communication device 140.
  • the communication device 140 may be a second terminal device or a chip or a system on a chip in the second terminal device, or other combination devices, components, etc. that can realize the functions of the above-mentioned terminal device.
  • the communication device 140 may be used to perform the functions involved in the above-mentioned embodiments. The function of the second terminal device.
  • the communication device 140 shown in FIG. 14 includes: a processing module 141 and a sending module 142.
  • the transmitting module may be a transmitter, which may include an antenna and a radio frequency circuit
  • the processing module may be a processor, such as a baseband chip.
  • the sending module may be a radio frequency unit
  • the processing module may be a processor.
  • the sending module may be an output interface of the chip system
  • the processing module may be a processor of the chip system, such as a central processing unit (CPU).
  • CPU central processing unit
  • the processing module 141 is used to determine the scrambling code identifier.
  • the sending module 142 is configured to send first information to the first terminal device, where the first information includes the scrambling code identifier.
  • the processing module 141 is further configured to obtain a CSI-RS reference signal sequence according to the scrambling code identifier.
  • the communication device 140 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 140 may adopt the form shown in FIG. 2.
  • the processor 201 in FIG. 2 may invoke the computer-executable instructions stored in the memory 203 to cause the communication device 140 to execute the method of generating the reference signal sequence of the channel state information reference signal in the foregoing method embodiment.
  • the functions/implementation process of the processing module 141 and the sending module 142 in FIG. 14 may be implemented by the processor 201 in FIG. 2 calling a computer execution instruction stored in the memory 203.
  • the function/implementation process of the processing module 141 in FIG. 14 may be implemented by the processor 201 in FIG. 2 calling a computer execution instruction stored in the memory 203, and the function/implementation process of the sending module 142 in FIG. 2 in the communication interface 204 to achieve.
  • the communication device 140 provided in this embodiment can perform the above-mentioned method of generating the reference signal sequence of the channel state information reference signal, the technical effect that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • FIG. 15 shows a schematic structural diagram of a communication device 150.
  • the communication device 150 may be a first terminal device or a chip or a system on a chip in the first terminal device, or other combination devices, components, etc. that can realize the functions of the above-mentioned terminal device.
  • the communication device 150 may be used to perform the functions involved in the above-mentioned embodiments. The function of the first terminal device.
  • the communication device 150 shown in FIG. 15 includes: a receiving module 151 and a processing module 152.
  • the receiving module 151 is configured to receive first information from the second terminal device, where the first information includes a physical layer source identifier or a physical layer destination identifier.
  • the processing module 152 is configured to determine that the physical layer source identifier or the physical layer destination identifier is a scrambling code identifier.
  • the processing module 152 is further configured to obtain the CSI-RS reference signal sequence according to the scrambling code identifier.
  • the communication device 150 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 150 may adopt the form shown in FIG. 2.
  • the processor 201 in FIG. 2 may invoke the computer-executable instructions stored in the memory 203 to cause the communication device 150 to execute the method of generating the reference signal sequence of the channel state information reference signal in the foregoing method embodiment.
  • the functions/implementation process of the receiving module 151 and the processing module 152 in FIG. 15 may be implemented by the processor 201 in FIG. 2 calling a computer execution instruction stored in the memory 203.
  • the function/implementation process of the processing module 152 in FIG. 15 may be implemented by the processor 201 in FIG. 2 calling computer execution instructions stored in the memory 203, and the function/implementation process of the receiving module 151 in FIG. 2 in the communication interface 204 to achieve.
  • the communication device 150 provided in this embodiment can perform the above-mentioned method of generating the reference signal sequence of the channel state information reference signal, the technical effect that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • FIG. 16 shows a schematic structural diagram of a communication device 160.
  • the communication device 160 may be a second terminal device or a chip or a system on a chip in the second terminal device, or other combination devices, components, etc. that can realize the functions of the above-mentioned terminal device.
  • the communication device 160 may be used to perform the functions involved in the above-mentioned embodiments. The function of the second terminal device.
  • the communication device 160 shown in FIG. 16 includes: a sending module 161 and a processing module 162.
  • the sending module 161 is configured to send first information to the first terminal device, where the first information includes a physical layer source identifier or a physical layer destination identifier.
  • the processing module 162 is configured to determine that the physical layer source identifier or the physical layer destination identifier is a scrambling code identifier.
  • the processing module 162 is further configured to obtain the CSI-RS reference signal sequence according to the scrambling code identifier.
  • the communication device 160 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 160 may adopt the form shown in FIG. 2.
  • the processor 201 in FIG. 2 may invoke the computer-executable instructions stored in the memory 203 to cause the communication device 160 to execute the method of generating the reference signal sequence of the channel state information reference signal in the foregoing method embodiment.
  • the function/implementation process of the sending module 161 and the processing module 162 in FIG. 16 may be implemented by the processor 201 in FIG. 2 calling a computer execution instruction stored in the memory 203.
  • the function/implementation process of the processing module 162 in FIG. 16 may be implemented by the processor 201 in FIG. 2 calling a computer execution instruction stored in the memory 203, and the function/implementation process of the sending module 161 in FIG. 2 in the communication interface 204 to achieve.
  • the communication device 160 provided in this embodiment can perform the above-mentioned method of generating the reference signal sequence of the channel state information reference signal, the technical effect that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • FIG. 17 shows a schematic structural diagram of a communication device 170.
  • the communication device 170 may be a first terminal device or a chip or a system on a chip in the first terminal device, or other combination devices, components, etc. that can realize the functions of the above-mentioned terminal device.
  • the communication device 170 may be used to perform the functions involved in the above-mentioned embodiments. The function of the first terminal device.
  • the communication device 170 shown in FIG. 17 includes: a receiving module 171 and a processing module 172.
  • the receiving module 171 is configured to receive the first information from the second terminal device.
  • the processing module 172 is configured to obtain a cyclic redundancy check code according to the first information.
  • the processing module 172 is further configured to use the low L bit or the high L bit of the cyclic redundancy check code as the scrambling code identifier, where L is a positive integer, and L is greater than or equal to 1 and less than or equal to the cyclic redundancy check code.
  • L is a positive integer, and L is greater than or equal to 1 and less than or equal to the cyclic redundancy check code.
  • the communication device 170 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 170 may adopt the form shown in FIG. 2.
  • the processor 201 in FIG. 2 may invoke the computer-executable instructions stored in the memory 203 to cause the communication device 170 to execute the method of generating the reference signal sequence of the channel state information reference signal in the foregoing method embodiment.
  • the functions/implementation process of the receiving module 171 and the processing module 172 in FIG. 17 may be implemented by the processor 201 in FIG. 2 calling a computer execution instruction stored in the memory 203.
  • the function/implementation process of the processing module 172 in FIG. 17 may be implemented by the processor 201 in FIG. 2 calling a computer execution instruction stored in the memory 203, and the function/implementation process of the receiving module 171 in FIG. 2 in the communication interface 204 to achieve.
  • the communication device 170 provided in this embodiment can perform the above-mentioned method of generating the reference signal sequence of the channel state information reference signal, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • FIG. 18 shows a schematic structural diagram of a communication device 180.
  • the communication device 180 may be a second terminal device or a chip or a system on a chip in the second terminal device, or other combination devices, components, etc. that can realize the functions of the above-mentioned terminal device.
  • the communication device 180 may be used to perform the functions involved in the above-mentioned embodiments. The function of the second terminal device.
  • the communication device 180 shown in FIG. 18 includes a sending module 181 and a processing module 182.
  • the sending module 181 sends the first information to the first terminal device.
  • the processing module 182 is configured to obtain a cyclic redundancy check code according to the first information.
  • the processing module 182 is further configured to use the low L bit or the high L bit of the cyclic redundancy check code as the scrambling code identifier, where L is a positive integer, and L is greater than or equal to 1 and less than or equal to the cyclic redundancy check code.
  • L is a positive integer, and L is greater than or equal to 1 and less than or equal to the cyclic redundancy check code.
  • the length of the verification code; the second terminal device obtains the CSI-RS reference signal sequence according to the scrambling code identifier.
  • the communication device 180 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 180 may adopt the form shown in FIG. 2.
  • the processor 201 in FIG. 2 may invoke the computer-executable instructions stored in the memory 203 to cause the communication device 180 to execute the method of generating the reference signal sequence of the channel state information reference signal in the foregoing method embodiment.
  • the functions/implementation process of the sending module 181 and the processing module 182 in FIG. 18 may be implemented by the processor 201 in FIG. 2 calling a computer execution instruction stored in the memory 203.
  • the function/implementation process of the processing module 182 in FIG. 18 may be implemented by the processor 201 in FIG. 2 calling computer execution instructions stored in the memory 203, and the function/implementation process of the sending module 181 in FIG. 2 in the communication interface 204 to achieve.
  • the communication device 180 provided in this embodiment can perform the above-mentioned method of generating the reference signal sequence of the channel state information reference signal, the technical effect that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • FIG. 19 shows a schematic diagram of the composition of a communication system.
  • the communication system 190 may include: a terminal device 1901 and a terminal device 1902. It should be noted that FIG. 19 is only an exemplary drawing, and the embodiment of the present application does not limit the network elements included in the communication system 190 shown in FIG. 19 and the number of network elements.
  • the terminal device 1901 can be used to receive the first information from the terminal device 1902, and obtain the CSI-RS reference signal sequence according to the first information, or the terminal device 1901 has the communication device 150 shown in FIG. 15 or the communication device 150 shown in FIG. Indicates the function of the communication device 170.
  • the terminal device 1902 has the functions of the communication device 140 shown in FIG. 14, the communication device 160 shown in FIG. 16, or the communication device 180 shown in FIG.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, which is stored in a storage medium It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供用于确定CSI-RS资源映射的方法及装置,涉及无线通信领域,可以解决在CSI-RS对应的端口数量和/或CSI-RS对应的CDM类型有限的通信场景中传输CSI-RS时,信令开销大的问题,可以应用于车联网,例如V2X、LTE-V、V2V等,或可以用于D2D,智能驾驶,智能网联车等领域。该方法包括:第一终端设备接收来自第二终端设备或网络设备的配置信息,其中,该配置信息包括CSI-RS对应的端口数量以及CSI-RS对应的频域密度;第一终端设备根据该端口数量和频域密度确定第一参数集;第一终端设备根据第一参数集确定第二终端设备的数据信道中用于映射CSI-RS的资源,以及数据信道中用于映射CSI-RS的资源中的RE上的映射值。

Description

用于确定信道状态信息参考信号资源映射的方法及装置 技术领域
本申请实施例涉及无线通信领域,尤其涉及一种用于确定信道状态信息参考信号(channel state information reference signal,CSI-RS)资源映射的方法及装置。
背景技术
在过去的几十年中,无线通信系统经历了从第一代模拟通信系统到新无线电(new radio,NR)系统的技术演变,但是各代系统对信道状态信息(channel state information,CSI)的需求一直没有改变。在信号发送端,CSI可以用于计算发送参数,根据发送参数优化无线信道的使用效率。在信号接收端,CSI可以用于实现正确的信号接收。
例如,在NR系统中,可以通过基站(base station,BS)与用户设备(user equipment,UE)之间的无线链路连接(例如:Uu链路),传输信道状态信息参考信号(channel state information reference signal,CSI-RS),具体过程如下:基站向UE发送CSI-RS的配置信息,UE接收来自基站的CSI-RS的配置信息,并根据该CSI-RS的配置信息确定CSI-RS的时频资源,基站在CSI-RS的时频资源上向UE发送CSI-RS,UE在CSI-RS的时频资源上接收来自基站的CSI-RS,并对接收到的CSI-RS进行测量计算得到CSI,其中,Uu链路中,CSI-RS的时频资源较为灵活,且CSI-RS支持的码分复用(code division multiplexing,CDM)类型较多,因此,CSI-RS的配置信息需要指示较多的参数信息(例如,CSI-RS对应的端口数量、CSI-RS对应的频域密度、CSI-RS对应的CDM类型、CSI-RS对应的频域带宽等)。
在NR系统中,除了Uu链路之外,还存在用户设备与用户设备之间的无线链路连接(例如,侧行链路(sidelink,SL)),UE也需要通过SL传输SL CSI-RS,因此,可以参考上述Uu链路上传输CSI-RS的方法传输SL CSI-RS。但是,SL中,SL CSI-RS对应的端口数量和/或SL CSI-RS对应的CDM类型有限,采用上述Uu链路上传输CSI-RS的方法传输SL CSI-RS,信令开销较大。
发明内容
本申请实施例提供一种用于确定信道状态信息参考信号资源映射的方法及装置,可以解决在信道状态信息参考信号对应的端口数量,和/或信道状态信息参考信号对应的CDM类型有限的通信场景中传输信道状态信息参考信号时,信令开销大的问题。
为达到上述目的,本申请实施例采用如下方法:
第一方面,本申请实施例提供一种用于确定信道状态信息参考信号资源映射的方法,包括:第一终端设备接收来自第二终端设备或网络设备的配置信息,其中,该配置信息包括信道状态信息参考信号对应的端口数量以及该信道状态信息参考信号对应的频域密度,该频域密度为该信道状态信息参考信号对应的每个端口在一个资源块RB上平均占用的资源单元RE的数量;该第一终端设备根据该端口数量和该频域密度确定第一参数集,其中,该第一参数集包括以下参数中的至少一个:该信道状态信息参 考信号对应的码分复用类型、至少一个码分复用组编号、至少一个码分复用组的频域资源起点,或一个码分复用组内的频域资源编号;该第一终端设备根据该第一参数集确定该第二终端设备的数据信道中用于映射该信道状态信息参考信号的资源,以及该数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
上述第一方面提供的方法,第一终端设备可以接收来自第二终端设备的配置信息,其中,配置信息包括信道状态信息参考信号对应的端口数量以及信道状态信息参考信号对应的频域密度,第一终端设备在接收到该端口数量以及该频域密度后,可以根据该端口数量以及该频域密度确定第一参数集,并根据第一参数集确定第二终端设备的数据信道中用于映射信道状态信息参考信号的资源,以及该数据信道中用于映射信道状态信息参考信号的资源中的RE上的映射值,如此,配置信息中不需要包括信道状态信息参考信号对应的CDM类型以及信道状态信息参考信号对应的频域带宽等信息,第一终端设备也可以确定第二终端设备的数据信道中用于映射CSI-RS的资源,以及该数据信道中用于映射信道状态信息参考信号的资源中的RE上的映射值,节省了信令开销。
一种可能的实现方式,该方法还包括:该第一终端设备接收来自该第二终端设备的该数据信道,并根据该用于映射该信道状态信息参考信号的资源,以及用于映射该信道状态信息参考信号的资源中的RE上的映射值进行信道估计。基于上述方法,第一终端设备可以接收来自第二终端设备的数据信道,并根据用于映射该信道状态信息参考信号的资源,以及用于映射该信道状态信息参考信号的资源中的RE上的映射值进行信道估计,后续,可以根据信道估计的结果实现正确的信号接收。
一种可能的实现方式,该第一终端设备根据该第一参数集确定该第二终端设备的数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值,包括:该第二终端设备的数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值满足:
Figure PCTCN2019109395-appb-000001
其中,
Figure PCTCN2019109395-appb-000002
表示时域资源编号l、频域资源编号k、空域资源编号p、子载波间隔编号μ对应的RE上的映射值,β CSIRS表示该信道状态信息参考信号的功率控制因数,w f(k′)表示频域资源上一个码分复用组对应的码分复用序列上第k′个元素的值,该k′表示该一个码分复用组内的频域资源编号,r(m′)表示该信道状态信息参考信号的参考信号序列中第m′个元素的值,该m′满足:
Figure PCTCN2019109395-appb-000003
其中,n表示RB的编号,α为根据该端口数量和该频域密度计算的中间变量,
Figure PCTCN2019109395-appb-000004
表示向下取整,
Figure PCTCN2019109395-appb-000005
表示向上取整,ρ表示该频域密度,
Figure PCTCN2019109395-appb-000006
表示该一个码分复用组的频域资源起点,
Figure PCTCN2019109395-appb-000007
表示一个RB内的子载波数目。基于上述方法,第一终端设备可以根据上述公式确定用于映射信道状态信息参考信号的资源中的RE上的映射值,而且当端口数量大于或等于2,频域密度大于或等于2时,可以合理使用信道状态信息参考信号序列,提高信道状态信息参考信号序列的检测性能。
一种可能的实现方式,该第一终端设备维护第一映射表,该第一映射表包括至少一种端口数量、至少一种频域密度以及至少一组第一参数集之间的映射关系;该第一终端设备根据该端口数量和该频域密度确定第一参数集,包括:该第一终端设备根据该端口数量和该频域密度查表得到该第一参数集。基于上述方法,第一终端设备可以根据端口数量和频域密度查表得到第一参数集,而不需要在配置信息中包括该第一参 数集,节省了信令开销。
一种可能的实现方式,该配置信息还包括第一指示信息,该第一指示信息用于指示频域偏移量;该第一终端设备根据该端口数量和该频域密度确定第一参数集,包括:该第一终端设备根据该端口数量、该频域密度和该频域偏移量确定第一参数集。基于上述方法,第一终端设备可以根据端口数量,频域密度以及配置信息中指示的频域偏移量确定第一参数集,从而可以提高用于映射信道状态信息参考信号的频域资源的自由度。
一种可能的实现方式,该用于映射该信道状态信息参考信号的资源包括:该用于映射该信道状态信息参考信号的频域资源,该用于映射该信道状态信息参考信号的时域资源,以及该用于映射该信道状态信息参考信号的空域资源。基于上述方法,第一终端设备可以根据第一参数集确定用于映射该信道状态信息参考信号的频域资源,用于映射该信道状态信息参考信号的时域资源,以及该用于映射该信道状态信息参考信号的空域资源对应的资源中的RE上的映射值。
一种可能的实现方式,该用于映射该信道状态信息参考信号的时域资源是该数据信道中的最后一个符号;或者,该配置信息还包括第二指示信息,该第二指示信息用于指示该用于映射该信道状态信息参考信号的时域资源。基于上述方法,第一终端设备可以确定用于映射该信道状态信息参考信号的时域资源是该数据信道中的最后一个符号,或者,第一终端设备可以根据第二指示信息确定用于映射该信道状态信息参考信号的时域资源,从而可以确定该数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
一种可能的实现方式,该方法还包括:该第一终端设备根据扰码标识得到该信道状态信息参考信号的参考信号序列。基于上述方法,第一终端设备可以根据扰码标识得到信道状态信息参考信号的参考信号序列,后续,第一终端设备可以根据该信道状态信息参考信号的参考信号序列以及第一参数集确定该数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
一种可能的实现方式,该配置信息还包括第三指示信息,其中,该第三指示信息用于指示该扰码标识。基于上述方法,第一终端设备可以根据配置信息中的第三指示信息得到该扰码标识,进而可以根据该信道状态信息参考信号的参考信号序列以及第一参数集确定该数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
一种可能的实现方式,该方法还包括:该第一终端设备接收来自该第二终端设备的控制信息,其中,该控制信息包括物理层源标识和/或物理层目的标识;该第一终端设备确定该物理层源标识或物理层目的标识为该扰码标识。基于上述方法,第一终端设备可以根据控制信息中的物理层源标识和/或物理层目的标识确定该扰码标识,进而可以根据该信道状态信息参考信号的参考信号序列以及第一参数集确定该数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
一种可能的实现方式,该方法还包括:该第一终端设备接收来自该第二终端设备的控制信息;该第一终端设备根据该控制信息得到循环冗余校验码;该第一终端设备将该循环冗余校验码的低L位或高L位为作为该扰码标识,其中,L为正整数,L大 于或等于1且小于或等于该循环冗余校验码的长度。基于上述方法,第一终端设备可以根据控制信息得到循环冗余校验码,根据循环冗余校验码得到该扰码标识,进而可以根据该信道状态信息参考信号的参考信号序列以及第一参数集确定该数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
第二方面,本申请实施例提供一种用于确定信道状态信息参考信号资源映射的方法,该方法包括:该第二终端设备根据信道状态信息参考信号对应的端口数量和信道状态信息参考信号对应的频域密度确定第一参数集,其中,该频域密度为该信道状态信息参考信号对应的每个端口在一个资源块RB上平均占用的资源单元RE的数量,该第一参数集包括以下参数中的至少一个:该信道状态信息参考信号对应的码分复用类型、至少一个码分复用组编号、至少一个码分复用组的频域资源起点,或一个码分复用组内的频域资源编号;该第二终端设备根据该第一参数集确定该第二终端设备的数据信道中用于映射该信道状态信息参考信号的资源,以及该数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
上述第二方面提供的方法,第二终端设备可以根据信道状态信息参考信号对应的端口数量以及信道状态信息参考信号对应的频域密度确定第一参数集,并根据第一参数集确定第二终端设备的数据信道中用于映射信道状态信息参考信号的资源,以及该数据信道中用于映射信道状态信息参考信号的资源中的RE上的映射值,如此,配置信息中不需要包括信道状态信息参考信号对应的CDM类型以及信道状态信息参考信号对应的频域带宽等信息,节省了信令开销。
一种可能的实现方式,该方法还包括:该第二终端设备向该第一终端设备发送该数据信道。基于上述方法,第二终端设备可以向第一终端设备发送数据信道,以便第一终端设备根据用于映射该信道状态信息参考信号的资源,以及用于映射该信道状态信息参考信号的资源中的RE上的映射值进行信道估计。
一种可能的实现方式,该方法还包括:该第二终端设备向该第一终端设备发送该配置信息。基于上述方法,第二终端设备可以向第一终端设备发送配置信息,以便第一终端设备根据该端口数量以及该频域密度确定第一参数集,并根据第一参数集确定该第二终端设备的数据信道中用于映射该信道状态信息参考信号的资源,以及用于映射该信道状态信息参考信号的资源中的RE上的映射值。
一种可能的实现方式,该第二终端设备根据该第一参数集确定该第二终端设备的数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值,包括:该第二终端设备的数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值满足:其中,
Figure PCTCN2019109395-appb-000008
表示时域资源编号l、频域资源编号k、空域资源编号p、子载波间隔编号μ对应的RE上的映射值,β CSIRS表示该信道状态信息参考信号的功率控制因数,w f(k′)表示频域资源上一个码分复用组对应的码分复用序列上第k′个元素的值,该k′表示该一个码分复用组内的频域资源编号,r(m′)表示该信道状态信息参考信号的参考信号序列中第m′个元素的值,该m′满足:
Figure PCTCN2019109395-appb-000009
其中,n表示RB的编号,α为根据该端口数量和该频域密度计算的中间变量,
Figure PCTCN2019109395-appb-000010
表示向下取整,
Figure PCTCN2019109395-appb-000011
表示向上取整,ρ表示该频域密度,
Figure PCTCN2019109395-appb-000012
表示该一个码分复用组的频域资源起点,
Figure PCTCN2019109395-appb-000013
表示一个RB内的子载波数目。基于上述方法,第二终端设备可以根据上述公式确定用于映射信道状态信息参考信号的资源中的RE上的映射值,而且当端口数量大于或等于2,频域密度大于或等于2时,可以合理使用信道状态信息参考信号序列,提高信道状态信息参考信号序列的检测性能。
一种可能的实现方式,该第二终端设备维护第一映射表,该第一映射表包括至少一种端口数量、至少一种频域密度以及至少一组第一参数集之间的映射关系;该第二终端设备根据该端口数量和该频域密度确定第一参数集,包括:该第二终端设备根据该端口数量和该频域密度查表得到该第一参数集。基于上述方法,第二终端设备可以根据端口数量和频域密度查表得到第一参数集,而不需要在配置信息中包括该第一参数集,节省了信令开销。
一种可能的实现方式,该配置信息还包括第一指示信息,该第一指示信息用于指示频域偏移量;该第二终端设备根据该端口数量和该频域密度确定第一参数集,包括:该第二终端设备根据该端口数量、该频域密度和该频域偏移量确定第一参数集。基于上述方法,第二终端设备可以根据端口数量,频域密度以及配置信息中指示的频域偏移量确定第一参数集,从而可以提高用于映射信道状态信息参考信号的频域资源的自由度。
一种可能的实现方式,该用于映射该信道状态信息参考信号的资源包括:该用于映射该信道状态信息参考信号的频域资源,该用于映射该信道状态信息参考信号的时域资源,以及该用于映射该信道状态信息参考信号的空域资源。基于上述方法,第二终端设备可以根据第一参数集确定用于映射该信道状态信息参考信号的频域资源,用于映射该信道状态信息参考信号的时域资源,以及该用于映射该信道状态信息参考信号的空域资源对应的资源中的RE上的映射值。
一种可能的实现方式,该用于映射该信道状态信息参考信号的时域资源是该数据信道中的最后一个符号;或者,该配置信息还包括第二指示信息,该第二指示信息用于指示该用于映射该信道状态信息参考信号的时域资源。基于上述方法,第二终端设备可以确定用于映射该信道状态信息参考信号的时域资源是该数据信道中的最后一个符号,或者,第二终端设备可以根据第二指示信息确定用于映射该信道状态信息参考信号的时域资源,从而可以确定该数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
一种可能的实现方式,该方法还包括:该第二终端设备根据扰码标识得该信道状态信息参考信号的参考信号序列。基于上述方法,第二终端设备可以根据扰码标识得到信道状态信息参考信号的参考信号序列,后续,第二终端设备可以根据该信道状态信息参考信号的参考信号序列以及第一参数集确定该数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
一种可能的实现方式,该配置信息还包括第三指示信息,其中,该第三指示信息用于指示该扰码标识。基于上述方法,第二终端设备可以根据配置信息中的第三指示信息得到该扰码标识,进而可以根据该信道状态信息参考信号的参考信号序列以及第一参数集确定该数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
一种可能的实现方式,该方法还包括:该第二终端设备向该第一终端设备发送控 制信息,其中,该控制信息包括物理层源标识和/或物理层目的标识;该第二终端设备确定该物理层源标识或物理层目的标识为该扰码标识。基于上述方法,第二终端设备可以根据控制信息中的物理层源标识和/或物理层目的标识确定该扰码标识,进而可以根据该信道状态信息参考信号的参考信号序列以及第一参数集确定该数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
一种可能的实现方式,该方法还包括:该第二终端设备向该第一终端设备发送控制信息;该第二终端设备根据该控制信息得到循环冗余校验码;该第二终端设备将该循环冗余校验码的低L位或高L位为作为该扰码标识,其中,L为正整数,L大于或等于1且小于或等于该循环冗余校验码的长度。基于上述方法,第二终端设备可以根据控制信息得到循环冗余校验码,根据循环冗余校验码得到该扰码标识,进而可以根据该信道状态信息参考信号的参考信号序列以及第一参数集确定该数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
第三方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第一方面所述的方法和功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第二方面所述的方法和功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供了一种通信装置,包括:至少一个处理器、至少一个存储器以及通信接口,该通信接口、该至少一个存储器与该至少一个处理器耦合;通信装置通过该通信接口与其他装置通信,该至少一个存储器用于存储计算机程序,使得该计算机程序被该至少一个处理器执行时实现如第一方面及其各种可能的实现方式所述的用于确定信道状态信息参考信号资源映射的方法。
第六方面,本申请实施例提供了一种通信装置,包括:至少一个处理器、至少一个存储器以及通信接口,该通信接口、该至少一个存储器与该至少一个处理器耦合;通信装置通过该通信接口与其他装置通信,该至少一个存储器用于存储计算机程序,使得该计算机程序被该至少一个处理器执行时实现如第二方面及其各种可能的实现方式所述的用于确定信道状态信息参考信号资源映射的方法。
第七方面,本申请提供了一种系统芯片,该系统芯片可以应用在通信装置中,该系统芯片包括:至少一个处理器,涉及的程序指令在该至少一个处理器中执行,以实现根据第一方面的方法及其任一设计中的第一终端设备的功能。可选的,该系统芯片还可以包括至少一个存储器,该存储器存储有涉及的程序指令。
第八方面,本申请提供了一种系统芯片,该系统芯片可以应用在通信装置中,该系统芯片包括:至少一个处理器,涉及的程序指令在该至少一个处理器中执行,以实现根据第二方面的方法及其任一设计中的第二终端设备的功能。可选的,该系统芯片还可以包括至少一个存储器,该存储器存储有涉及的程序指令。
第九方面,本申请实施例提供了一种计算机可读存储介质,如计算机非瞬态的可读存储介质。其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述第一方面的任一种可能的方法。例如,该计算机可以是至少一个存储节点。
第十方面,本申请实施例提供了一种计算机可读存储介质,如计算机非瞬态的可读存储介质。其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述第二方面的任一种可能的方法。例如,该计算机可以是至少一个存储节点。
第十一方面,本申请实施例提供了一种计算机程序产品,当其在计算机上运行时,使得第一方面提供的任一方法被执行。例如,该计算机可以是至少一个存储节点。
第十二方面,本申请实施例提供了一种计算机程序产品,当其在计算机上运行时,使得第二方面提供的任一方法被执行。例如,该计算机可以是至少一个存储节点。
第十三方面,本申请实施例提供一种通信系统,该通信系统可以包括如下任一种或几种:如第三方面中的通信装置,或者如第四方面中的通信装置,或者如第五方面中的通信装置,或者如第六方面中的通信装置,或者如第七方面中的系统芯片,或者如第八方面中的系统芯片,或者如第九方面中的计算机存储介质,或者如第十方面中的计算机存储介质,或者如第十一方面中的计算机程序产品,或者如第十二方面中的计算机程序产品。
可以理解的,上述提供的任一种通信装置、系统芯片、计算机存储介质、计算机程序产品或通信系统等均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
第十四方面,本申请实施例提供一种生成信道状态信息参考信号的参考信号序列的方法,该方法包括:第二终端设备确定扰码标识;该第二终端设备向第一终端设备发送第一信息,其中,该第一信息包括该扰码标识;该第二终端设备根据该扰码标识得到信道状态信息参考信号的参考信号序列。
上述第十四方面提供的方法,第二终端设备可以在确定该扰码标识后,根据该扰码标识得到信道状态信息参考信号的参考信号序列,以便后续根据该信道状态信息参考信号的参考信号序列确定第二终端设备的数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
第十五方面,本申请实施例提供一种生成信道状态信息参考信号的参考信号序列的方法,该方法包括:第一终端设备接收来自第二终端设备的第一信息,其中,该第一信息包括物理层源标识或物理层目的标识;该第一终端设备确定该物理层源标识或物理层目的标识为扰码标识;该第一终端设备根据该扰码标识得到信道状态信息参考信号的参考信号序列。
上述第十五方面提供的方法,第一终端设备可以接收来自第二终端设备的物理层源标识或物理层目的标识,确定该物理层源标识或物理层目的标识为扰码标识,并根据该扰码标识得到信道状态信息参考信号的参考信号序列,以便后续根据该信道状态信息参考信号的参考信号序列确定第二终端设备的数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
第十六方面,本申请实施例提供一种生成信道状态信息参考信号的参考信号序列的方法,该方法包括:第二终端设备向第一终端设备发送第一信息,其中,该第一信息包括物理层源标识或物理层目的标识;该第二终端设备确定该物理层源标识或物理层目的标识为扰码标识;该第二终端设备根据该扰码标识得到信道状态信息参考信号的参考信号序列。
上述第十六方面提供的方法,第二终端设备可以向第一终端设备发送物理层源标识或物理层目的标识,并确定该物理层源标识或物理层目的标识为扰码标识,并根据该扰码标识得到信道状态信息参考信号的参考信号序列,以便后续根据该信道状态信息参考信号的参考信号序列确定第二终端设备的数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
第十七方面,本申请实施例提供一种生成信道状态信息参考信号的参考信号序列的方法,该方法包括:第一终端设备接收来自第二终端设备的第一信息;该第一终端设备根据该第一信息得到循环冗余校验码;第一终端设备将该循环冗余校验码的低L位或高L位为作为该扰码标识,其中,L为正整数,L大于等于1且小于等于所述循环冗余校验码的长度;该第一终端设备根据该扰码标识得到信道状态信息参考信号的参考信号序列。
上述第十七方面提供的方法,第一终端设备可以接收来自第二终端设备的第一信息,根据第一信息得到循环冗余校验码,根据循环冗余校验码得到扰码标识,并根据该扰码标识得到信道状态信息参考信号的参考信号序列,以便后续根据该信道状态信息参考信号的参考信号序列确定第二终端设备的数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
第十八方面,本申请实施例提供一种生成信道状态信息参考信号的参考信号序列的方法,该方法包括:第二终端设备向第一终端设备发送第一信息;该第二终端设备根据该第一信息得到循环冗余校验码;第二终端设备将该循环冗余校验码的低L位或高L位为作为该扰码标识,其中,L为正整数,L大于等于1且小于等于所述循环冗余校验码的长度;该第二终端设备根据该扰码标识得到信道状态信息参考信号的参考信号序列。
上述第十八方面提供的方法,第二终端设备可以向第二终端设备发送第一信息,根据第一信息得到循环冗余校验码,根据循环冗余校验码得到扰码标识,并根据该扰码标识得到信道状态信息参考信号的参考信号序列,以便后续根据该信道状态信息参考信号的参考信号序列确定第二终端设备的数据信道中用于映射该信道状态信息参考信号的资源中的RE上的映射值。
第十九方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第十四方面所述的方法和功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第二十方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第十五方面所述的方法和功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第二十一方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第十六方面所述的方法和功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第二十二方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第十七方面所述的方法和功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第二十三方面,本申请实施例提供了一种通信装置,该通信装置具有实现上述第十八方面所述的方法和功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第二十四方面,本申请实施例提供了一种通信装置,包括:至少一个处理器、至少一个存储器以及通信接口,该通信接口、该至少一个存储器与该至少一个处理器耦合;通信装置通过该通信接口与其他装置通信,该至少一个存储器用于存储计算机程序,使得该计算机程序被该至少一个处理器执行时实现如第十四方面及其各种可能的实现方式所述的生成信道状态信息参考信号的参考信号序列的方法。
第二十五方面,本申请实施例提供了一种通信装置,包括:至少一个处理器、至少一个存储器以及通信接口,该通信接口、该至少一个存储器与该至少一个处理器耦合;通信装置通过该通信接口与其他装置通信,该至少一个存储器用于存储计算机程序,使得该计算机程序被该至少一个处理器执行时实现如第十五方面及其各种可能的实现方式生成信道状态信息参考信号的参考信号序列的方法。
第二十六方面,本申请实施例提供了一种通信装置,包括:至少一个处理器、至少一个存储器以及通信接口,该通信接口、该至少一个存储器与该至少一个处理器耦合;通信装置通过该通信接口与其他装置通信,该至少一个存储器用于存储计算机程序,使得该计算机程序被该至少一个处理器执行时实现如第十六方面及其各种可能的实现方式所述的生成信道状态信息参考信号的参考信号序列的方法。
第二十七方面,本申请实施例提供了一种通信装置,包括:至少一个处理器、至少一个存储器以及通信接口,该通信接口、该至少一个存储器与该至少一个处理器耦合;通信装置通过该通信接口与其他装置通信,该至少一个存储器用于存储计算机程序,使得该计算机程序被该至少一个处理器执行时实现如第十七方面及其各种可能的实现方式所述的生成信道状态信息参考信号的参考信号序列的方法。
第二十八方面,本申请实施例提供了一种通信装置,包括:至少一个处理器、至少一个存储器以及通信接口,该通信接口、该至少一个存储器与该至少一个处理器耦合;通信装置通过该通信接口与其他装置通信,该至少一个存储器用于存储计算机程序,使得该计算机程序被该至少一个处理器执行时实现如第十八方面及其各种可能的实现方式所述的生成信道状态信息参考信号的参考信号序列的方法。
第二十九方面,本申请提供了一种系统芯片,该系统芯片可以应用在通信装置中,该系统芯片包括:至少一个处理器,涉及的程序指令在该至少一个处理器中执行,以实现根据第十四方面的方法及其任一设计中的第二终端设备的功能。可选的,该系统芯片还可以包括至少一个存储器,该存储器存储有涉及的程序指令。
第三十方面,本申请提供了一种系统芯片,该系统芯片可以应用在通信装置中,该系统芯片包括:至少一个处理器,涉及的程序指令在该至少一个处理器中执行,以实现根据第十五方面的方法及其任一设计中的第一终端设备的功能。可选的,该系统芯片还可以包括至少一个存储器,该存储器存储有涉及的程序指令。
第三十一方面,本申请提供了一种系统芯片,该系统芯片可以应用在通信装置中,该系统芯片包括:至少一个处理器,涉及的程序指令在该至少一个处理器中执行,以实现根据第十六方面的方法及其任一设计中的第二终端设备的功能。可选的,该系统 芯片还可以包括至少一个存储器,该存储器存储有涉及的程序指令。
第三十二方面,本申请提供了一种系统芯片,该系统芯片可以应用在通信装置中,该系统芯片包括:至少一个处理器,涉及的程序指令在该至少一个处理器中执行,以实现根据第十七方面的方法及其任一设计中的第一终端设备的功能。可选的,该系统芯片还可以包括至少一个存储器,该存储器存储有涉及的程序指令。
第三十三方面,本申请提供了一种系统芯片,该系统芯片可以应用在通信装置中,该系统芯片包括:至少一个处理器,涉及的程序指令在该至少一个处理器中执行,以实现根据第十八方面的方法及其任一设计中的第二终端设备的功能。可选的,该系统芯片还可以包括至少一个存储器,该存储器存储有涉及的程序指令。
第三十四方面,本申请实施例提供了一种计算机可读存储介质,如计算机非瞬态的可读存储介质。其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述第十四方面的任一种可能的方法。例如,该计算机可以是至少一个存储节点。
第三十五方面,本申请实施例提供了一种计算机可读存储介质,如计算机非瞬态的可读存储介质。其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述第十五方面的任一种可能的方法。例如,该计算机可以是至少一个存储节点。
第三十六方面,本申请实施例提供了一种计算机可读存储介质,如计算机非瞬态的可读存储介质。其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述第十六方面的任一种可能的方法。例如,该计算机可以是至少一个存储节点。
第三十七方面,本申请实施例提供了一种计算机可读存储介质,如计算机非瞬态的可读存储介质。其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述第十七方面的任一种可能的方法。例如,该计算机可以是至少一个存储节点。
第三十八方面,本申请实施例提供了一种计算机可读存储介质,如计算机非瞬态的可读存储介质。其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述第十八方面的任一种可能的方法。例如,该计算机可以是至少一个存储节点。
第三十九方面,本申请实施例提供了一种计算机程序产品,当其在计算机上运行时,使得第十四方面提供的任一方法被执行。例如,该计算机可以是至少一个存储节点。
第四十方面,本申请实施例提供了一种计算机程序产品,当其在计算机上运行时,使得第十五方面提供的任一方法被执行。例如,该计算机可以是至少一个存储节点。
第四十一方面,本申请实施例提供了一种计算机程序产品,当其在计算机上运行时,使得第十六方面提供的任一方法被执行。例如,该计算机可以是至少一个存储节点。
第四十二方面,本申请实施例提供了一种计算机程序产品,当其在计算机上运行时,使得第十七方面提供的任一方法被执行。例如,该计算机可以是至少一个存储节 点。
第四十三方面,本申请实施例提供了一种计算机程序产品,当其在计算机上运行时,使得第十八方面提供的任一方法被执行。例如,该计算机可以是至少一个存储节点。
第四十四方面,本申请实施例提供一种通信系统,该通信系统可以包括如下任一种或几种:如第十九方面中的通信装置,或者如第二十方面中的通信装置,或者如第二十一方面的通信装置,或者如第二十二方面中的通信装置,或者如第二十三方面的通信装置,或者如第二十四方面中的通信装置,或者如第二十五方面中的通信装置,或者如第二十六方面中的通信装置,或者如第二十七方面中的通信装置,或者如第二十八方面中的通信装置,或者如第二十九方面中的系统芯片,或者如第三十方面中的系统芯片,或者如第三十一方面中的系统芯片,或者如第三十二方面中的系统芯片,或者如第三十三方面中的系统芯片,或者如第三十四方面中的计算机存储介质,或者如第三十五方面中的计算机存储介质,或者如第三十六方面中的计算机存储介质,或者如第三十七方面中的计算机存储介质,或者如第三十八方面中的计算机存储介质,或者如第三十九方面中的计算机程序产品,或者如第四十方面中的计算机程序产品,或者如第四十一方面中的计算机程序产品,或者如第四十二方面中的计算机程序产品,或者如第四十三方面中的计算机程序产品。
可以理解的,上述提供的任一种通信装置、系统芯片、计算机存储介质、计算机程序产品或通信系统等均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的通信系统架构示意图;
图2为本申请实施例提供的通信装置的硬件结构示意图;
图3为本申请实施例提供的用于确定CSI-RS资源映射的方法的流程示意图一;
图4为本申请实施例提供的用于映射CSI-RS的频域资源的示意图;
图5为本申请实施例提供的用于映射CSI-RS的时域资源的示意图;
图6为本申请实施例提供的用于确定CSI-RS资源映射的方法的流程示意图二;
图7为本申请实施例提供的生成CSI-RS的参考信号序列的方法的流程示意图一;
图8为本申请实施例提供的生成CSI-RS的参考信号序列的方法的流程示意图二;
图9为本申请实施例提供的生成CSI-RS的参考信号序列的方法的流程示意图三;
图10为本申请实施例提供的通信装置的结构示意图一;
图11为本申请实施例提供的通信装置的结构示意图二;
图12为本申请实施例提供的通信装置的结构示意图三;
图13为本申请实施例提供的通信装置的结构示意图四;
图14为本申请实施例提供的通信系统的示意图一;
图15为本申请实施例提供的通信装置的结构示意图五;
图16为本申请实施例提供的通信装置的结构示意图六;
图17为本申请实施例提供的通信装置的结构示意图七;
图18为本申请实施例提供的通信设备的结构示意图八;
图19为本申请实施例提供的通信系统的示意图二。
具体实施方式
下面结合附图对本申请实施例的实施方式进行详细描述。
本申请实施例提供的方法可以用于各种通信系统:可以用于第三代合作伙伴计划(3rd generation partnership project,3GPP)通信系统,例如,LTE系统,也可以用于第五代(5th generation,5G)移动通信系统、NR系统以及其他下一代通信系统,还可以用于非3GPP通信系统,不予限制。本申请实施例提供的方法的通信场景可以包括CSI-RS对应的天线端口(以下简称端口)数量有限和/或CSI-RS对应的CDM类型有限的通信场景,这些通信场景包括但不限于:终端设备与终端设备之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与用户设备之间的通信场景等。下文中均是以应用于终端设备和终端设备通信的场景中为例进行说明的。
下面仅以图1所示通信系统100为例,对本申请实施例提供的方法进行描述。
如图1所示,为本申请实施例提供的通信系统100的架构示意图。图1中,通信系统100可以包括多个网络设备以及多个终端设备,如:可以包括网络设备101和102,以及终端设备103-终端设备106。
在图1中,网络设备可以为终端设备提供无线接入服务。具体来说,每个网络设备都对应一个服务覆盖区域,进入该区域的终端设备可通过Uu口与网络设备通信,以此来接收网络设备提供的无线接入服务。终端设备与网络设备之间可以通过Uu口链路通信。其中,Uu口链路可以根据其上传输的数据的方向分为上行链路(uplink,UL)、下行链路(downlink,DL),UL上可以传输从终端设备向网络设备发送的数据,DL上可以传输从网络设备向终端设备传输的数据。如:图1中,终端设备103位于网络设备101的覆盖区域内,网络设备101可以通过DL向终端设备103发送数据,终端设备103可通过UL向网络设备101发送数据。
终端设备与其他终端设备之间可以通过直连通信链路相互通信。其中,直连通信链路可以称之为边链路或者侧行链路(sidelink,SL)。如:以直连通信链路为侧行链路为例,图1中终端设备103与终端设备104可以通过侧行链路进行通信,图1中的终端设备104与终端设备106可以通过侧行链路进行通信。
图1中的网络设备,如:网络设备101或102可以是传输接收节点(transmission reception point,TRP)、基站、中继站或接入点等。网络设备101或102可以是5G通信系统中的网络设备或未来演进网络中的网络设备,还可以是:全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备101或102还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。
图1中的终端设备,如:终端设备103、终端设备104、终端设备105或终端设备106可以为包含无线收发功能、且可以为用户提供通讯服务的设备。具体的,终端设备103、终端设备104、终端设备105或终端设备106可以是V2X系统中的设备、D2D 系统中的设备、机器通信(machine type communication,MTC)系统中的设备等。例如,终端设备103、终端设备104、终端设备105或终端设备106可以指工业机器人、工业自动化设备、用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线终端设备、用户代理或用户装置。例如,终端设备103、终端设备104、终端设备105或终端设备106可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络或5G之后的网络中的终端设备或未来演进网络中的终端设备,本申请对此不作限定。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
应注意,图1所示的通信系统100仅用于举例,并非用于限制本申请的技术方案。本领域的技术人员应当明白,在具体实现过程中,通信系统100还可以包括其他设备,同时也可根据具体需要来确定网络设备和终端设备的数量。此外,图1中的各网元还可以通过其他接口进行连接,不予限制。
可选的,本申请实施例图1中的各网元,例如网络设备102或终端设备106,可以是一个装置内的一个功能模块。可以理解的是,该功能模块既可以是硬件设备中的元件,例如终端设备或网络设备中的通信芯片或通信部件,也可以是在硬件上运行的软件功能模块,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,图1中的各网元均可以通过图2中的通信装置200来实现。图2所示为可适用于本申请实施例的通信装置的硬件结构示意图。该通信装置200可以包括至少一个处理器201,通信线路202,存储器203以及至少一个通信接口204。
处理器201可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路202可包括一通路,在上述组件之间传送信息,例如总线。
通信接口204,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网接口,无线接入网接口(radio access network,RAN),无线局域网接口(wireless local area networks,WLAN)等。
存储器203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路202与处理器 相连接。存储器也可以和处理器集成在一起。本申请实施例提供的存储器通常可以具有非易失性。其中,存储器203用于存储执行本申请方案所涉及的计算机执行指令,并由处理器201来控制执行。处理器201用于执行存储器203中存储的计算机执行指令,从而实现本申请实施例提供的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置200可以包括多个处理器,例如图2中的处理器201和处理器207。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置200还可以包括输出设备205和输入设备206。输出设备205和处理器201通信,可以以多种方式来显示信息。例如,输出设备205可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备206和处理器201通信,可以以多种方式接收用户的输入。例如,输入设备206可以是鼠标、键盘、触摸屏设备或传感设备等。
在具体实现中,通信装置200可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图2中类似结构的设备。本申请实施例不限定通信装置200的类型。
下面将结合图1和图2对本申请实施例提供的用于确定CSI-RS资源映射的方法进行具体阐述。其中,下述实施例中的网元可以具备图2所示部件。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
可以理解的,本申请实施例中,终端设备可以执行本申请实施例中的部分或全部步骤,这些步骤仅是示例,本申请实施例还可以执行其它步骤或者各种步骤的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部步骤。
如图3所示,为本申请实施例提供的一种用于确定CSI-RS资源映射的方法,该用于确定CSI-RS资源映射的方法是以SL为例进行介绍的,该用于确定CSI-RS资源映射的方法包括步骤301-步骤305。
步骤301:第二终端设备或网络设备向第一终端设备发送配置信息。
其中,该第一终端设备和该第二终端设备可以是图1所示通信系统中的终端设备,例如,该第一终端设备可以是图1所示通信系统中的终端设备103,该第二终端设备可以是图1所示通信系统中的终端设备104,又例如,该第一终端设备可以是图1所示通信系统中的终端设备106,该第二终端设备可以是图1所示通信系统中的终端设备104。
该网络设备可以是图1所示通信系统中的网络设备,例如,若该第一终端设备是图1 所示通信系统中的终端设备103,则该网络设备可以是图1所示通信系统中的网络设备101,若该第一终端设备是图1所示通信系统中的终端设备106,则该网络设备可以是图1所示通信系统中的网络设备102。
配置信息可以包括CSI-RS对应的端口(port)数量以及CSI-RS对应的频域密度。
其中,CSI-RS对应的频域密度可以是CSI-RS对应的每个端口在一个资源块(resource block,RB)上平均占用的资源单元(resource element,RE)的个数。
可选的,该CSI-RS也可以表述为SL CSI-RS。
可选的,该频域密度为0.5RE/port/RB,或者,该频域密度为正整数,且该频域密度大于或等于1RE/port/RB。
可选的,第一终端设备要进行SL信道估计之前,第二终端设备或网络设备向第一终端设备发送该配置信息。
其中一种情况,第一终端设备和第二终端设备在同一个网络设备的服务覆盖区域(例如,第一终端设备是图1所示通信系统中的终端设备103,第二终端设备是图1所示通信系统中的终端设备104),则第二终端设备或该网络设备可以向第一终端设备发送该配置信息。
示例性的,第二终端设备向第一终端设备发送该配置信息,后续,第二终端设备和第一终端设备可以根据该配置信息进行资源映射;或者,网络设备向第一终端设备发送该配置信息,第一终端设备接收到该配置信息后,向第二终端设备转发该配置信息,后续,第二终端设备和第一终端设备可以根据该配置信息进行资源映射;或者,网络设备向第一终端设备和第二终端设备发送该配置信息,后续,第二终端设备和第一终端设备可以根据该配置信息进行资源映射;或者,网络设备向第二终端设备发送该配置信息,第二终端设备接收到该配置信息后,向第二终端设备转发该配置信息,后续,第二终端设备和第一终端设备可以根据该配置信息进行资源映射。
其中另一种情况,第一终端设备和第二终端设备不在同一个网络设备的服务覆盖区域(例如,第一终端设备是图1所示通信系统中的终端设备106,第二终端设备是图1所示通信系统中的终端设备104),或第一终端设备和第二终端设备不在网络设备的服务覆盖区域,则第二终端设备向第一终端设备发送该配置信息,后续,第二终端设备和第一终端设备可以根据该配置信息进行资源映射。
可选的,若网络设备向第一终端设备发送配置信息,则该配置信息携带在无线资源控制(radio resource control,RRC)信令中。
例如,网络设备向第一终端设备发送RRC信令,该RRC信令可以携带配置信息。该RRC信令中可以使用CSI-RS资源映射(CSI-RS-ResourceMapping)信息单元(information element,IE)指示CSI-RS的资源映射,CSI-RS-ResourceMapping IE的设计可以如下所示:
Figure PCTCN2019109395-appb-000014
Figure PCTCN2019109395-appb-000015
其中,nrofPorts可以用于指示端口数量,该端口数量可以是1、2或4,density可以用于指示频域密度,该频域密度可以是0.5RE/port/RB、1RE/port/RB、2RE/port/RB或3RE/port/RB。
CSI-RS-ResourceMapping IE的设计还可以如下所示:
Figure PCTCN2019109395-appb-000016
其中,nrofPorts可以用于指示端口数量,该端口数量可以是1、2或4,density可以用于指示频域密度,该频域密度可以是1RE/port/RB、2RE/port/RB或3RE/port/RB。
可选的,若第二终端设备向第一终端设备发送配置信息,则该配置信息携带在PC5RRC信令中。
例如,第二终端设备向第一终端设备发送PC5 RRC信令,该PC5 RRC信令可以包括配置信息。该PC5 RRC信令中可以使用SL CSI-RS资源映射(SL-CSI-RS-ResourceMapping)IE指示CSI-RS的资源映射,SL-CSI-RS-ResourceMapping IE的设计可以如下所示:
Figure PCTCN2019109395-appb-000017
其中,nrofPorts可以用于指示端口数量,该端口数量可以是1、2或4,density可以用于指示频域密度,该频域密度可以是0.5RE/port/RB、1RE/port/RB、2RE/port/RB或3RE/port/RB。
SL-CSI-RS-ResourceMapping IE的设计还可以如下所示:
Figure PCTCN2019109395-appb-000018
其中,nrofPorts可以用于指示端口数量,该端口数量可以是1、2或4,density可以用于指示频域密度,该频域密度可以是1RE/port/RB、2RE/port/RB或3RE/port/RB。
步骤302:第一终端设备接收该配置信息,并根据该端口数量以及该频域密度确定第一参数集。
其中,第一参数集可以包括以下参数中的至少一个:CSI-RS对应的CDM类型、至少一个CDM组编号、至少一个CDM组的频域资源起点,或一个CDM组内的频域资源编号。
其中,CSI-RS对应的CDM类型可以包括:不使用CDM(no CDM)以及在频域上的2个端口进行CSI-RS的CDM(FD-CDM2)。
CDM组编号可以包括:CSI-RS对应的每一个CDM组在CSI-RS对应的所有CDM组中的编号。
CDM组的频域资源起点可以包括:CSI-RS对应的每一个CDM组的频域资源起点。
CDM组内的频域资源编号可以包括:CDM组内每个RE在该CDM组对应的频域资源中的编号。
可选的,第一终端设备维护第一映射表。
其中,该第一映射表包括至少一种端口数量、至少一种频域密度以及至少一组第一参数集之间的映射关系。
可选的,第一终端设备根据该端口数量和该频域密度确定第一参数集,包括:第一终端设备根据该端口数量和该频域密度查表得到该第一参数集。
示例性的,该第一映射表可以如表1所示,第一终端设备可以通过查询表1确定该第一参数集。表1中,当端口数量为1,频域密度为1RE/port/RB,或者0.5RE/port/RB时,可以确定第一参数集包括:no CDM,CDM组的频域资源起点0,CDM组编号0,CDM组内的频域资源编号0;当端口数量为1,频域密度为2RE/port/RB时,可以确定第一参数集包括:no CDM,CDM组的频域资源起点0和6,CDM组编号0和0,CDM组内的频域资源编号0;当端口数量为1,频域密度为3RE/port/RB时,可以确定第一参数集包括:no CDM,CDM组的频域资源起点0、4和8,CDM组编号0、0和0,CDM组内的频域资源编号0和1;当端口数量为2,频域密度为1RE/port/RB,或者0.5RE/port/RB时,可以确定第一参数集包括:FD-CDM2,CDM组的频域资源起点0,CDM组编号0,CDM组内的频域资源编号0和1;当端口数量为2,频域密度为2RE/port/RB时,可以确定第一参数集包括:FD-CDM2,CDM组的频域资源起点0和6,CDM组编号0和0,CDM组内的频域资源编号0和1;当端口数量为2,频域密度为3RE/port/RB时,可以确定第一参数集包括:FD-CDM2,CDM组的频域资源起点0、4和8,CDM组编号0、0和0,CDM组内的频域资源编号0;当端口数量为4,频域密度为1RE/port/RB,或者0.5RE/port/RB时,可以确定第一参数集包括:FD-CDM2,CDM组的频域资源起点0和2,CDM组编号0和1,CDM组内的频域资源编号0和1;当端口数量为4,频域密度为2RE/port/RB时,可以确定第一参数集包括:FD-CDM2,CDM组的频域资源起点0、2、6和8,CDM组编号0、1、0和1,CDM组内的频域资源编号0和1;当端口数量为4,频域密度为3RE/port/RB时,可以确定第一参数集包括:FD-CDM2,CDM组的频域资源起点0、4、6、8和10,CDM 组编号0、1、0、1、0和1,CDM组内的频域资源编号0和1。
表1
Figure PCTCN2019109395-appb-000019
在一些实施例中,若频域密度不包括0.5RE/port/RB,第一映射表可以如表2所示。
表2
Figure PCTCN2019109395-appb-000020
在一些实施例中,若频域密度为0.5RE/port/RB,则第一映射表可以如表3所示。
表3
Figure PCTCN2019109395-appb-000021
需要说明的是,表1-表3仅是第一映射表的示例,在实际应用中,第一映射表还可以包括上述表中的某一行、某几行、表中的全部、比表示出的更多的行、上述表中 的某几列或比表示出的更多的列,不予限制。
下面以端口数量为4,频域密度为1RE/port/RB为例,介绍第一参数集。
若端口数量为4,频域密度为1RE/port/RB,可以查表得到第一参数集,该第一参数集包括:FD-CDM2,CDM组的频域资源起点0和2,CDM组编号0和1,CDM组内的频域资源编号0和1。
如图4所示,为端口数量为4,频域密度为1RE/port/RB时,用于映射CSI-RS的频域资源的示意图。图4中,端口1以及端口2对应的RB中,用于映射CSI-RS的频域资源(图4中的端口1和端口2中的虚斜线部分)在该RB中的编号为0-1,相应的CDM组编号为0,端口3以及端口4对应的RB中,用于映射CSI-RS的频域资源(图4中的端口3和端口4中的虚斜线部分)在该RB中的编号为2-3,相应的CDM组编号为1。
在实际应用中,为了确保信道估计的准确性,在端口1以及端口2对应的RB中,编号为2-3的频域资源(图4中的端口1和端口2中的虚直线部分),以及在端口3以及端口4对应的RB中,编号为0-1的频域资源(图4中的端口3和端口4中的虚直线部分)中不传输任何参考信号或数据符号。
需要说明的是,上述端口1、端口2、端口3或端口4仅是端口标识的示例,在具体应用中,端口标识还可以是其他形式,不予限制。
步骤303:第一终端设备根据第一参数集确定第二终端设备的数据信道中用于映射CSI-RS的资源,以及数据信道中用于映射CSI-RS的资源中的RE上的映射值。
其中,该数据信道可以是物理层侧行链路共享信道(physical sidelink shared channel,PSSCH)。
用于映射CSI-RS的资源可以包括用于映射CSI-RS的频域资源、用于映射CSI-RS的时域资源以及用于映射CSI-RS的空域资源。
其中,用于映射CSI-RS的频域资源可以用于指示第二终端设备发送CSI-RS的频域位置,用于映射CSI-RS的时域资源可以用于指示第二终端设备发送CSI-RS的时域位置,用于映射CSI-RS的空域资源可以用于指示第二终端设备发送CSI-RS的端口。
可选的,用于映射CSI-RS的频域资源是根据第一参数集确定的。
进一步可选的,用于映射CSI-RS的频域资源满足:
Figure PCTCN2019109395-appb-000022
其中,n表示RB编号,
Figure PCTCN2019109395-appb-000023
表示一个RB内的子载波数目,
Figure PCTCN2019109395-appb-000024
表示一个CDM组的频域资源起点,k′表示所述一个码分复用组内的频域资源编号。
可选的,
Figure PCTCN2019109395-appb-000025
为12。
可选的,用于映射CSI-RS的时域资源是数据信道中的最后一个符号。
可选的,数据信道的最后一个符号的标识小于或等于12。
如图5所示,为用于映射CSI-RS的时域资源的示意图,图5以数据信道为PSSCH为例。图5中的(a)中,时隙i中,PSSCH占用1个时隙,即14个符号,其中,PSSCH占用的符号中,首尾符号分别作为自动增益控制(automatic gain control,AGC)符号和切换时隙所需的时间间隔,因此,用于映射CSI-RS的时域资源编号l可以为时隙i中第12个符号。
图5中的(b)中,时隙i中,PSSCH占用第0个符号-第11个符号,其中,PSSCH 占用的符号中,首尾符号分别作为AGC符号和切换时隙所需的时间间隔,因此,用于映射CSI-RS的时域资源编号l可以为时隙i中第10个符号。
图5中的(c)中,时隙i中,PSSCH占用第3个符号-第13个符号,其中,PSSCH占用的符号中,首尾符号分别作为AGC符号和切换时隙所需的时间间隔,因此,用于映射CSI-RS的时域资源编号l可以为时隙i中第12个符号。
可选的,用于映射CSI-RS的空域资源是根据第一参数集确定的。
进一步可选的,用于映射CSI-RS的空域资源满足:p=p CSIRS+s+jL。
其中,p表示空域资源编号,p CSIRS表示CSI-RS的起始端口号,s表示CDM序列的序列编号,j表示CDM组编号,L表示CDM组的大小。
可选的,p CSIRS为5000。
可选的,若CDM类型为no CDM,则s=0;若CDM类型为FD-CDM2,CDM序列存在两种可能的序列,一种是[w f(0),w f(1)]=[+1,+1],另一种是[w f(0),w f(1)]=[+1,-1],一种可能的实现方式,CDM组内的第1个端口上映射的CSI-RS对应的s为0,CDM序列为[w f(0),w f(1)]=[+1,+1];CDM组内的第2个端口上映射的CSI-RS对应的s为1,CDM序列为[w f(0),w f(1)]=[+1,-1]。
可选的,若CDM类型为no CDM,则L=1;若CDM类型为FD-CDM2,则L=2。
可选的,第二终端设备的数据信道中映射CSI-RS的资源中的RE上的映射值满足:
Figure PCTCN2019109395-appb-000026
其中,
Figure PCTCN2019109395-appb-000027
表示时域资源编号l、频域资源编号k、空域资源编号p、子载波间隔编号μ对应的RE上的映射值,β CSIRS表示CSI-RS的功率控制因数,β CSIRS可以使得该CSI-RS的发送功率与数据信道中数据符号的发送功率相同,w f(k′)表示频域资源上一个CDM组对应的CDM序列上第k′个元素的值,k′表示该一个CDM组内的频域资源编号,r(m′)表示CSI-RS的参考信号序列中第m′个元素的值。
可选的,当CDM类型为no CDM,则w f(k′)值恒为1;当CDM类型为FD-CDM2,w f(k′)的值根据CDM序列和k′确定。
例如,当CDM类型为FD-CDM2,CDM序列为[w f(0),w f(1)]=[+1,+1]时,若k′为0,则w f(k′)为1,若k′为1,则w f(k′)也为1。类似的,当CDM类型为FD-CDM2,CDM序列为[w f(0),w f(1)]=[+1,-1]时,若k′为0,则w f(k′)为1,若k′为1,则w f(k′)为-1。
可选的,m′满足:
Figure PCTCN2019109395-appb-000028
其中,n表示RB的编号,α为根据端口数量和频域密度计算的中间变量,
Figure PCTCN2019109395-appb-000029
表示向下取整,
Figure PCTCN2019109395-appb-000030
表示向上取整,ρ表示频域密度,
Figure PCTCN2019109395-appb-000031
表示一个CDM组的频域资源起点,
Figure PCTCN2019109395-appb-000032
表示一个RB内的子载波数目。
可选的,若端口数量为1,则α=ρ,若端口数量大于1,则α=2ρ。
可选的,CSI-RS与PSSCH有相同的带宽。
需要说明的是,本申请实施例提供的m′的公式与现有技术中的m′的公式
Figure PCTCN2019109395-appb-000033
相比多了一项
Figure PCTCN2019109395-appb-000034
因此,当端口数量大于或等于2,频域密度 大于或等于2时,可以合理使用CSI-RS序列,提高CSI-RS序列的检测性能。
例如,表4中示出了当端口数量大于或等于2,频域密度大于或等于2时,本申请实施例提供的m′与现有技术中的m′的具体情况。
表4中,当端口数量为2,频域密度为2时,现有技术中的m′为
Figure PCTCN2019109395-appb-000035
其中,m∈{0,1,2},本申请实施例提供的m′为
Figure PCTCN2019109395-appb-000036
其中,m∈{0,1,2,3};当端口数量为2,频域密度为3时,现有技术中的m′为
Figure PCTCN2019109395-appb-000037
其中,m∈{0,1,2,3},本申请实施例提供的m′为
Figure PCTCN2019109395-appb-000038
其中,m∈{0,1,2,3,4,5};当端口数量为4,频域密度为2时,现有技术中的m′为
Figure PCTCN2019109395-appb-000039
其中,m∈{0,1,2},本申请实施例提供的m′为
Figure PCTCN2019109395-appb-000040
其中,m∈{0,1,2,3};当端口数量为4,频域密度为3时,现有技术中的m′为
Figure PCTCN2019109395-appb-000041
其中,m∈{0,1,2,3},本申请实施例提供的m′为
Figure PCTCN2019109395-appb-000042
其中,m∈{0,1,2,3,4,5}。由此可以看出,当端口数量大于或等于2,频域密度大于或等于2时,本申请实施例提供的m′比现有技术提供的m′有更多的取值,因此,可以合理使用CSI-RS序列,提高CSI-RS序列的检测性能。
表4
Figure PCTCN2019109395-appb-000043
步骤304:第二终端设备根据该端口数量以及该频域密度确定第一参数集。
步骤304的具体过程可以参考上述步骤302中,第一终端设备根据该端口数量以及该频域密度确定第一参数集的过程,不予赘述。
步骤305:第二终端设备根据第一参数集确定第二终端设备的数据信道中用于映射CSI-RS的资源,以及数据信道中用于映射CSI-RS的资源中的RE上的映射值。
步骤305的具体过程可以参考上述步骤303中,第一终端设备根据第一参数集确定第二终端设备的数据信道中用于映射CSI-RS的资源,以及数据信道中用于映射CSI-RS的资源中的RE上的映射值的具体过程,不予赘述。
后续,第二终端设备可以向第一终端设备发送该数据信道,第一终端设备可以接收来自第二终端设备的该数据信道,并根据用于映射该CSI-RS的资源以及用于映射CSI-RS的资源中的RE上的映射值进行信道估计。
需要说明的是,第一终端设备可以先接收来自第二终端设备的该数据信道,再根据第一参数集确定第二终端设备的数据信道中用于映射CSI-RS的资源,以及数据信道 中用于映射CSI-RS的资源中的RE上的映射值,也可以先根据第一参数集确定第二终端设备的数据信道中用于映射CSI-RS的资源,以及数据信道中用于映射CSI-RS的资源中的RE上的映射值,再接收来自第二终端设备的该数据信道,还可以在接收来自第二终端的设的该数据信道的同时,根据第一参数集确定第二终端设备的数据信道中用于映射CSI-RS的资源,以及数据信道中用于映射CSI-RS的资源中的RE上的映射值,不予限制。
需要说明的是,本申请实施例不限定步骤302-步骤303,以及步骤304-步骤305的执行顺序,例如,可以先执行步骤302-步骤303再执行步骤304-步骤305,也可以先执行步骤304-步骤305再执行步骤302-步骤303,还可以同时执行步骤302-步骤303,以及步骤304-步骤305。
基于图3所示的方法,第二终端设备可以向第一终端设备发送配置信息,其中,配置信息包括CSI-RS对应的端口数量以及CSI-RS对应的频域密度,第一终端设备在接收到CSI-RS对应的端口数量以及CSI-RS对应的频域密度后,可以根据CSI-RS对应的端口数量以及CSI-RS对应的频域密度确定第一参数集,并根据第一参数集确定第二终端设备的数据信道中用于映射CSI-RS的资源,以及该数据信道中用于映射CSI-RS的资源中的RE上的映射值,如此,配置信息中不需要包括CSI-RS对应的CDM类型以及CSI-RS对应的频域带宽等信息,第一终端设备也可以确定第二终端设备的数据信道中用于映射CSI-RS的资源,以及该数据信道中用于映射CSI-RS的资源中的RE上的映射值。
进一步可选的,在图3所示方法的第一种实现场景中,该配置信息还包括第一指示信息和第二指示信息,第一指示信息可以用于指示频域偏移量k 0,第一终端设备或第二终端设备可以根据该端口数量、该频域密度和该频域偏移量确定第一参数集,第二指示信息可以用于指示用于映射CSI-RS的时域资源。
可选的,若配置信息还包括第一指示信息,第一映射表可以如表5所示。
表5中,k 0表示该频域偏移量。当端口数量为1,频域密度为1RE/port/RB,或者0.5RE/port/RB时,可以确定第一参数集包括:no CDM,CDM组的频域资源起点k 0,CDM组编号0,CDM组内的频域资源编号0;当端口数量为1,频域密度为2RE/port/RB时,可以确定第一参数集包括:no CDM,CDM组的频域资源起点k 0和k 0+6,CDM组编号0和0,CDM组内的频域资源编号0;当端口数量为1,频域密度为3RE/port/RB时,可以确定第一参数集包括:no CDM,CDM组的频域资源起点k 0、k 0+4和k 0+8,CDM组编号0、0和0,CDM组内的频域资源编号0;当端口数量为2,频域密度为1RE/port/RB,或者0.5RE/port/RB时,可以确定第一参数集包括:FD-CDM2,CDM组的频域资源起点k 0,CDM组编号0,CDM组内的频域资源编号0和1;当端口数量为2,频域密度为2RE/port/RB时,可以确定第一参数集包括:FD-CDM2,CDM组的频域资源起点k 0和k 0+6,CDM组编号0和0,CDM组内的频域资源编号0和1;当端口数量为2,频域密度为3RE/port/RB时,可以确定第一参数集包括:FD-CDM2,CDM组的频域资源起点k 0、k 0+4和k 0+8,CDM组编号0、0和0,CDM组内的频域资源编号0和1;当端口数量为4,频域密度为1RE/port/RB,或者0.5RE/port/RB时,可以确定第一参数集包括:FD-CDM2,CDM组的频域资源起点k 0和k 0+2,CDM组编 号0和1,CDM组内的频域资源编号0和1。
表5
Figure PCTCN2019109395-appb-000044
在一些实施例中,若频域密度不包括0.5RE/port/RB,第一映射表可以如表6所示。
表6
Figure PCTCN2019109395-appb-000045
在一些实施例中,若频域密度为0.5RE/port/RB,则第一映射表可以如表7所示。
表7
Figure PCTCN2019109395-appb-000046
需要说明的是,表5-表6仅是第一映射表的示例,在实际应用中,第一映射表还可以包括上述表中的某一行、某几行、表中的全部、比表示出的更多的行、上述表中的某几列或比表示出的更多的列,不予限制。
可选的,第一指示信息包括比特地图,该比特地图用于指示该频域偏移量。
示例性的,以表5所示的第一映射表为例,当端口数量为1,频域密度为1RE/port/RB,或者0.5RE/port/RB时(即表5中的第1行),该比特地图可以包括12比特(例如,该比特地图可以为[b 11,b 10…b 0]);当端口数量为1,频域密度为2RE/port/RB时(即表5中的第2行),该比特地图可以包括6比特(例如,该比特地图可以为[b 5,b 4…b 0]);当端口数量为1,频域密度为3RE/port/RB时(即表5中的第3行),该比特地图可以包括4比特(例如,该比特地图可以为[b 3,b 2,b 1,b 0]);当端口数量为2,频域密度为1RE/port/RB,或者0.5RE/port/RB时(即表5中的第4行),该比特地图可以包括6比特(例如,该比特地图可以为[b 5,b 4…b 0]);当端口数量为2,频域密度为2RE/port/RB时(即表5中的第5行),该比特地图可以包括3比特(例如,该比特地图可以为[b 2,b 1,b 0]);当端口数量为2,频域密度为3RE/port/RB时(即表5中的第6行),该比特地图可以包括2比特(例如,该比特地图可以为[b 1,b 0]);当端口数量为4,频域密度为1RE/port/RB,或者0.5RE/port/RB时(即表5中的第7行),该比特地图可以包括3比特(例如,该比特地图可以为[b 2,b 1,b 0])。
一种可能的实现方式,该频域偏移量k 0为该端口数量与比特地图中首个值为1的元素的位置标识的乘积。
示例性的,以端口数量为2,频域密度为2RE/port/RB,比特地图为[b 2,b 1,b 0]=[0,1,0]为例,第一终端设备或第二终端设备可以确定比特地图中首个值为1的元素的位置标识为1,进而确定频域偏移量k 0为2,第一终端设备或第二终端设备可以根据端口数量2,频域密度2RE/port/RB,查表得到第一参数集包括:FD-CDM2,CDM组的频域资源起点2和8,CDM组编号0和0,CDM组内的频域资源编号0和1。
一种可能的实现方式,第二指示信息包括用于映射CSI-RS的时域资源编号。
可选的,该用于映射CSI-RS的时域资源编号大于或等于0,且小于或等于12。
可选的,若网络设备向第一终端设备发送配置信息,则该配置信息携带在RRC信令中。
例如,网络设备向第一终端设备发送RRC信令,该RRC信令可以包括配置信息。该RRC信令中可以使用CSI-RS-ResourceMapping IE指示CSI-RS的资源映射,CSI-RS-ResourceMapping IE的设计可以如下所示:
Figure PCTCN2019109395-appb-000047
Figure PCTCN2019109395-appb-000048
其中,frequencyDomainAllocation可以用于指示该比特地图,该比特地图的大小可以是12比特、6比特、4比特、3比特或2比特,nrofPorts可以用于指示端口数量,该端口数量可以是1、2或4,firstOFDMSymbolInTimeDomain可以用于指示用于映射CSI-RS的时域资源,density可以用于指示频域密度,该频域密度可以是0.5RE/port/RB、1RE/port/RB、2RE/port/RB或3RE/port/RB。
CSI-RS-ResourceMapping IE的设计还可以如下所示:
Figure PCTCN2019109395-appb-000049
其中,frequencyDomainAllocation可以用于指示该比特地图,该比特地图的大小可以是12比特、6比特、4比特、3比特或2比特,nrofPorts可以用于指示端口数量,该端口数量可以是1、2或4,firstOFDMSymbolInTimeDomain可以用于指示用于映射CSI-RS的时域资源,density可以用于指示频域密度,该频域密度可以是1RE/port/RB、2RE/port/RB或3RE/port/RB。
可选的,若第二终端设备向第一终端设备发送配置信息,则该配置信息携带在PC5 RRC信令中。
例如,第二终端设备向第一终端设备发送PC5 RRC信令,该PC5 RRC信令可以包括配置信息。该PC5 RRC信令中可以使用SL-CSI-RS-ResourceMapping IE指示CSI-RS的资 源映射,SL-CSI-RS-ResourceMapping IE的设计可以如下所示:
Figure PCTCN2019109395-appb-000050
其中,frequencyDomainAllocation可以用于指示该比特地图,该比特地图的大小可以是12比特、6比特、4比特、3比特或2比特,nrofPorts可以用于指示端口数量,该端口数量可以是1、2或4,firstOFDMSymbolInTimeDomain可以用于指示用于映射CSI-RS的时域资源,density可以用于指示频域密度,该频域密度可以是0.5RE/port/RB、1RE/port/RB、2RE/port/RB或3RE/port/RB。
SL-CSI-RS-ResourceMapping IE的设计还可以如下所示:
Figure PCTCN2019109395-appb-000051
Figure PCTCN2019109395-appb-000052
其中,frequencyDomainAllocation可以用于指示该比特地图,该比特地图的大小可以是12比特、6比特、4比特、3比特或2比特,nrofPorts可以用于指示端口数量,该端口数量可以是1、2或4,firstOFDMSymbolInTimeDomain可以用于指示用于映射CSI-RS的时域资源,density可以用于指示频域密度,该频域密度可以是1RE/port/RB、2RE/port/RB或3RE/port/RB。
基于图3所示方法的第一种实现场景,配置信息还包括第一指示信息和第二指示信息,其中,第一指示信息用于指示频域偏移量,第二指示信息用于指示用于映射CSI-RS的时域资源,第一终端设备或第二终端设备可以根据该端口数量、该频域密度和该频域偏移量确定第一参数集,以便第一终端设备或第二终端设备根据该第一参数集确定第二终端设备的数据信道中用于映射CSI-RS的资源,以及数据信道中用于映射CSI-RS的资源中的RE上的映射值。
进一步可选的,在图3所示方法的第二种实现场景中,如图6所示,图3所示方法还包括步骤306和步骤307。
步骤306:第一终端设备根据扰码标识得到CSI-RS的参考信号序列。
其中,扰码标识可以用于识别CSI-RS的参考信号序列属性。对于映射到无线帧(radio frame)内某个给定的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号上的CSI-RS,扰码标识可以确定该CSI-RS的参考信号序列。
可选的,第一终端设备根据扰码标识得到CSI-RS的参考信号序列,包括:第一终端设备根据扰码标识得到伪随机序列初始值,第一终端设备根据该伪随机序列初始值得到CSI-RS的参考信号序列。
可选的,第一终端设备根据扰码标识得到伪随机序列初始值,包括:伪随机序列初始值满足:
Figure PCTCN2019109395-appb-000053
其中,L表示扰码标识的长度,单位为比特,
Figure PCTCN2019109395-appb-000054
表示该数据信道所在的时隙的符号个数,
Figure PCTCN2019109395-appb-000055
表示子载波间隔编号为μ时,该数据信道所在的时隙在无线帧内的索引,n ID表示扰码标识,mod表示取余运算。
第一终端设备可以根据下述三种方法得到扰码标识。
方法1:配置信息中指示该扰码标识。
可选的,配置信息还包括第三指示信息,该第三指示信息用于指示该扰码标识。
可选的,该扰码标识n ID∈{0,1,...,1023}。
例如,该扰码标识由第二终端设备在集合{0,1,…,1023}中随机选取,并通过配置信息发送给第一终端设备,以便第一终端设备根据该扰码标识得到CSI-RS的参考信号序列。
方法2:第一终端设备确定物理层源标识(Layer-1 source ID)或物理层目的标识(Layer-1 desitination ID)为扰码标识。
一种可能的实现方式,第一终端设备接收来自第二终端设备的控制信息,该控制信息包括物理层源标识或物理层目的标识,第一终端设备将该物理层源标识或物理层 目的标识确定为扰码标识。
其中,该控制信息可以携带在侧行链路控制信息(sidelink control information,SCI)中。
可选的,该扰码标识的长度为8比特。
方法3:第一终端设备根据循环冗余校验(cyclic redundancy check,CRC)码确定该扰码标识。
一种可能的实现方式,第一终端设备接收来自第二终端设备的控制信息,第一终端设备根据该控制信息得到CRC码,第一终端设备将该CRC码的低L为或高L为作为扰码标识。
其中,L为正整数,L大于或等于1且小于或等于CRC码的长度,例如,L=10比特。
可选的,该控制信息可以携带在SCI中。
步骤307:第二终端设备根据扰码标识得到CSI-RS的参考信号序列。
步骤307的具体过程可以参考上述步骤306中,第一终端设备根据扰码标识得到CSI-RS的参考信号序列的过程,不予赘述。
需要说明的是,步骤306在步骤303之前执行,步骤307在步骤305之前执行即可,本申请实施例不限制步骤306和步骤307在图6所示方法中的执行顺序。例如,步骤306可以在步骤302之前,步骤301之后执行,步骤307可以在步骤301之前执行。
基于图3所示方法的第二种实现场景,第一终端设备或第二终端设备可以根据扰码标识得到CSI-RS的参考信号序列,后续,第一终端设备或第二终端设备可以根据该CSI-RS的参考信号序列确定第二终端设备的数据信道中用于映射CSI-RS的资源中的RE上的映射值。
如图7所示,为本申请实施例提供的一种生成CSI-RS的参考信号序列的方法,该方法可以包括步骤701-步骤704。
步骤701:第二终端设备确定扰码标识。
其中,第二终端设备可以是图1所示通信系统中的终端设备,例如,第二终端设备可以是图1所示通信系统中的终端设备103。
扰码标识可以用于识别CSI-RS的参考信号序列属性。对于映射到无线帧内某个给定的OFDM符号上的CSI-RS,扰码标识可以确定该CSI-RS的参考信号序列。
可选的,该扰码标识n ID∈{0,1,...,1023}。
例如,该扰码标识由第二终端设备在集合{0,1,…,1023}中随机选取,并通过配置信息发送给第一终端设备,以便第一终端设备根据该扰码标识得到CSI-RS的参考信号序列。
步骤702:第二终端设备向第一终端设备发送第一信息。
其中,第一终端设备可以是图1所示通信系统中的终端设备,例如,第一终端设备可以是图1所示通信系统中的终端设备104。第一信息可以包括该扰码标识。
一种可能的实现方式,第二终端设备向第一终端设备发送PC5-RRC,该PC5-RRC中携带该第一信息。
步骤703:第一终端设备接收来自第二终端设备的第一信息,并根据该扰码标识得到CSI-RS的参考信号序列。
可选的,第一终端设备根据扰码标识得到CSI-RS的参考信号序列,包括:第一终端设备根据扰码标识得到伪随机序列初始值,第一终端设备根据该伪随机序列初始值得到CSI-RS的参考信号序列。
可选的,第一终端设备根据扰码标识得到伪随机序列初始值,包括:伪随机序列初始值满足:
Figure PCTCN2019109395-appb-000056
其中,L表示扰码标识的长度,单位为比特,
Figure PCTCN2019109395-appb-000057
表示该数据信道所在的时隙的符号个数,
Figure PCTCN2019109395-appb-000058
表示子载波间隔编号为μ时,该数据信道所在的时隙在无线帧内的索引,n ID表示扰码标识,mod表示取余运算。
步骤704:第二终端设备根据该扰码标识得到CSI-RS的参考信号序列。
步骤704的具体过程可以参考步骤703中,第一终端设备根据该扰码标识得到CSI-RS的参考信号序列的过程,不用赘述。
需要说明的是,步骤704在步骤701后执行即可,本申请实施例不限定步骤704在图7所示方法中的执行顺序。例如,步骤704可以在步骤702之前,步骤701之后执行,步骤704还可以在步骤702之后,步骤703之前执行。
基于图7所示方法,第二终端设备可以确定扰码标识,并将该扰码标识发送给第一终端设备,后续,第一终端设备或第二终端设备可以根据该扰码标识得到CSI-RS的参考信号序列,以便第一终端设备根据该CSI-RS的参考信号序列进行信道估计。
除了图7所示方法中,根据第二终端设备确定的扰码标识得到CSI-RS的参考信号序列之外,第一终端设备或第二终端设备还可以根据物理层源标识或物理层目的标识得到CSI-RS的参考信号序列。
如图8所示,为本申请实施例提供的又一种生成CSI-RS的参考信号序列的方法,该方法可以包括步骤801-步骤805。
步骤801:第二终端设备向第一终端设备发送第一信息。
其中,该第一终端设备和该第二终端设备可以是图1所示通信系统中的终端设备,例如,该第一终端设备可以是图1所示通信系统中的终端设备103,该第二终端设备可以是图1所示通信系统中的终端设备104,又例如,该第一终端设备可以是图1所示通信系统中的终端设备106,该第二终端设备可以是图1所示通信系统中的终端设备104。
第一信息可以包括物理层源标识或物理层目的标识。
可选的,第一信息携带在SCI中。
步骤802:第一终端设备接收来自第二终端设备的第一信息,并确定该物理层源标识或物理层目的标识为扰码标识。
其中,扰码标识可以用于识别CSI-RS的参考信号序列属性。对于映射到无线帧内某个给定的OFDM符号上的CSI-RS,扰码标识可以确定该CSI-RS的参考信号序列。
可选的,该扰码标识的长度为8比特。
步骤803:第一终端设备根据该扰码标识得到CSI-RS的参考信号序列。
可选的,第一终端设备根据扰码标识得到CSI-RS的参考信号序列,包括:第一终端设备根据扰码标识得到伪随机序列初始值,第一终端设备根据该伪随机序列初始值 得到CSI-RS的参考信号序列。
可选的,第一终端设备根据扰码标识得到伪随机序列初始值,包括:伪随机序列初始值满足:
Figure PCTCN2019109395-appb-000059
其中,L表示扰码标识的长度,单位为比特,
Figure PCTCN2019109395-appb-000060
表示该数据信道所在的时隙的符号个数,
Figure PCTCN2019109395-appb-000061
表示子载波间隔编号为μ时,该数据信道所在的时隙在无线帧内的索引,n ID表示扰码标识,mod表示取余运算。
步骤804:第二终端设备确定该物理层源标识或物理层目的标识为扰码标识。
步骤805:第二终端设备根据该扰码标识得到CSI-RS的参考信号序列。
步骤805的具体过程可以参考步骤803中,第一终端设备根据该扰码标识得到CSI-RS的参考信号序列的过程,不用赘述。
需要说明的是,步骤804和步骤805在步骤801后执行即可,本申请实施例不限定步骤804和步骤805在图8所示方法中的执行顺序。例如,步骤804和步骤805可以在步骤802之前,步骤801之后执行,步骤804和步骤805还可以在步骤802之后,步骤803之前执行。
基于图8所示方法,第二终端设备可以向第一终端设备发送第一信息,该第一信息包括物理层源标识或物理层目的标识,第一终端设备或第二终端设备可以确定该物理层源标识或物理层目的标识为扰码标识,并根据该扰码标识得到CSI-RS的参考信号序列,以便第一终端设备根据该CSI-RS的参考信号序列进行信道估计。
除了图7所示方法中,根据第二终端设备确定的扰码标识得到CSI-RS的参考信号序列,以及图8所示方法中,确定物理层源标识或物理层目的标识为扰码标识,并根据扰码标识得到CSI-RS的参考信号序列之外,第一终端设备或第二终端设备还可以根据CRC码得到CSI-RS的参考信号序列。
如图9所示,为本申请实施例提供的又一种生成CSI-RS的参考信号序列的方法,该方法可以包括步骤901-步骤907。
步骤901:第二终端设备向第一终端设备发送第一信息。
其中,该第一终端设备和该第二终端设备可以是图1所示通信系统中的终端设备,例如,该第一终端设备可以是图1所示通信系统中的终端设备103,该第二终端设备可以是图1所示通信系统中的终端设备104,又例如,该第一终端设备可以是图1所示通信系统中的终端设备106,该第二终端设备可以是图1所示通信系统中的终端设备104。
可选的,第一信息携带在SCI中。
步骤902:第一终端设备接收来自第二终端设备的第一信息,并根据该第一信息得到CRC码。
一种可能的实现方式,第一终端设备解扰该第一信息得到CRC码。
步骤903:第一终端设备将该CRC码的低L位或高L位作为扰码标识。
其中,L为正整数,L大于或等于1且小于或等于CRC码的长度,例如,L=10比特。
扰码标识可以用于识别CSI-RS的参考信号序列属性。对于映射到无线帧内某个给定的OFDM符号上的CSI-RS,扰码标识可以确定该CSI-RS的参考信号序列。
步骤904:第一终端设备根据该扰码标识得到CSI-RS的参考信号序列。
可选的,第一终端设备根据扰码标识得到CSI-RS的参考信号序列,包括:第一终端设备根据扰码标识得到伪随机序列初始值,第一终端设备根据该伪随机序列初始值得到CSI-RS的参考信号序列。
可选的,第一终端设备根据扰码标识得到伪随机序列初始值,包括:伪随机序列初始值满足:
Figure PCTCN2019109395-appb-000062
其中,L表示扰码标识的长度,单位为比特,
Figure PCTCN2019109395-appb-000063
表示该数据信道所在的时隙的符号个数,
Figure PCTCN2019109395-appb-000064
表示子载波间隔编号为μ时,该数据信道所在的时隙在无线帧内的索引,n ID表示扰码标识,mod表示取余运算。
步骤905:第二终端设备根据该第一信息得到CRC码。
步骤906:第二终端设备将该CRC码的低L位或高L位作为扰码标识。
其中,L为正整数,L大于或等于1且小于或等于CRC码的长度,例如,L=10。
步骤907:第二终端设备根据该扰码标识得到CSI-RS的参考信号序列。
步骤907的具体过程可以参考步骤904中,第一终端设备根据该扰码标识得到CSI-RS的参考信号序列的过程,不用赘述。
需要说明的是,步骤905-步骤907在步骤901后执行即可,本申请实施例不限定步骤905-步骤907在图9所示方法中的执行顺序。例如,步骤905-步骤907可以在步骤902之前,步骤901之后执行,步骤905-步骤907还可以在步骤902之后,步骤903之前执行。
基于图9所示方法,第二终端设备可以向第一终端设备发送第一信息,第一终端设备或第二终端设备可以根据第一信息得到CRC码,将该CRC码的低L位或高L位作为扰码标识,并根据该扰码标识得到CSI-RS的参考信号序列,以便第一终端设备根据该CSI-RS的参考信号序列进行信道估计。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,上述第一终端设备或者第二终端设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法操作,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一终端设备或第二终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以采用集成的方式划分各个功能模块的情况下,图10示出了一种通信装置100的结构示意图。该通信装置100可以为第一终端设备或者第一终端设备中的芯片或者片上系统,或其他可实现上述终端设备功能的组合器件、部件等,该通信装置100可以用于执行上述实施例中涉及的第一终端设备的功能。
作为一种可能的实现方式,图10所示的通信装置100包括:接收模块101和处理模块102。
接收模块101,用于接收来自第二终端设备或网络设备的配置信息,其中,该配置信息包括CSI-RS对应的端口数量以及该CSI-RS对应的频域密度,该频域密度为该CSI-RS对应的每个端口在一个资源块RB上平均占用的资源单元RE的数量。
处理模块102,用于根据该端口数量和该频域密度确定第一参数集,其中,该第一参数集包括以下参数中的至少一个:该CSI-RS对应的码分复用类型、至少一个码分复用组编号、至少一个码分复用组的频域资源起点,或一个码分复用组内的频域资源编号。
处理模块102,还用于根据该第一参数集确定该第二终端设备的数据信道中用于映射该CSI-RS的资源,以及该数据信道中用于映射该CSI-RS的资源中的RE上的映射值。
可选的,该第二终端设备的数据信道中用于映射该CSI-RS的资源中的RE上的映射值满足:
Figure PCTCN2019109395-appb-000065
其中,
Figure PCTCN2019109395-appb-000066
表示时域资源编号l、频域资源编号k、空域资源编号p、子载波间隔编号μ对应的RE上的映射值,β CSIRS表示该CSI-RS的功率控制因数,w f(k′)表示频域资源上一个码分复用组对应的码分复用序列上第k′个元素的值,该k′表示该一个码分复用组内的频域资源编号,r(m′)表示该CSI-RS的参考信号序列中第m′个元素的值,该m′满足:
Figure PCTCN2019109395-appb-000067
其中,n表示RB的编号,α为根据该端口数量和该频域密度计算的中间变量,
Figure PCTCN2019109395-appb-000068
表示向下取整,
Figure PCTCN2019109395-appb-000069
表示向上取整,ρ表示该频域密度,
Figure PCTCN2019109395-appb-000070
表示该一个码分复用组的频域资源起点,
Figure PCTCN2019109395-appb-000071
表示一个RB内的子载波数目。
可选的,该通信装置维护第一映射表,该第一映射表包括至少一种端口数量、至少一种频域密度以及至少一组第一参数集之间的映射关系;处理模块102,具体用于根据该端口数量和该频域密度查表得到该第一参数集。
可选的,该配置信息还包括第一指示信息,该第一指示信息用于指示频域偏移量;处理模块102,具体用于根据该端口数量、该频域密度和该频域偏移量确定第一参数集。
可选的,该用于映射该CSI-RS的资源包括:该用于映射该CSI-RS的频域资源,该用于映射该CSI-RS的时域资源,以及该用于映射该CSI-RS的空域资源。
可选的,该用于映射该CSI-RS的时域资源是该数据信道中的最后一个符号;或者,该配置信息还包括第二指示信息,该第二指示信息用于指示该用于映射该CSI-RS的时域资源。
可选的,处理模块102,还用于根据扰码标识得到该CSI-RS的参考信号序列。
可选的,该配置信息还包括第三指示信息,其中,该第三指示信息用于指示该扰码标识。
可选的,接收模块101,还用于接收来自该第二终端设备的控制信息,其中,该控制信息包括物理层源标识和/或物理层目的标识;处理模块102,还用于确定该物理层源标识或物理层目的标识为该扰码标识。
可选的,接收模块101,还用于接收来自该第二终端设备的控制信息;处理模块102,还用于根据该控制信息得到循环冗余校验码;处理模块102,还用于将该循环冗余校验码的低L位或高L位为作为该扰码标识,其中,L为正整数,L大于或等于1且小于或等于该循环冗余校验码的长度。
其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置100以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置100可以采用图2所示的形式。
比如,图2中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置100执行上述方法实施例中的用于确定信道状态信息参考信号资源映射的方法。
示例性的,图10中的接收模块101和处理模块102的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现。或者,图10中的处理模块102的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现,图10中的接收模块101的功能/实现过程可以通过图2中的通信接口204来实现。
由于本实施例提供的通信装置100可执行上述的用于确定信道状态信息参考信号资源映射的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
比如,以采用集成的方式划分各个功能模块的情况下,图11示出了一种通信装置110的结构示意图。该通信装置110可以为第二终端设备或者第二终端设备中的芯片或者片上系统,该通信装置110可以用于执行上述实施例中涉及的第二终端设备的功能。
作为一种可能的实现方式,图11所示的通信装置110包括:处理模块111。
处理模块111,用于根据CSI-RS对应的端口数量和CSI-RS对应的频域密度确定第一参数集,其中,该频域密度为该CSI-RS对应的每个端口在一个资源块RB上平均占用的资源单元RE的数量,该第一参数集包括以下参数中的至少一个:该CSI-RS对应的码分复用类型、至少一个码分复用组编号、至少一个码分复用组的频域资源起点,或一个码分复用组内的频域资源编号。
处理模块111,还用于根据该第一参数集确定该通信装置的数据信道中用于映射该CSI-RS的资源,以及该数据信道中用于映射该CSI-RS的资源中的RE上的映射值。
可选的,如图12所示,通信装置110还包括:发送模块112;发送模块112,用于向第一终端设备发送配置信息。
可选的,该通信装置的数据信道中用于映射该CSI-RS的资源中的RE上的映射值满足:其中,
Figure PCTCN2019109395-appb-000072
表示时域资源编号l、频域资源编号k、空域资源编号p、子载波间隔编号μ对应的RE上的映射值,β CSIRS表示该CSI-RS的功率控制因数,w f(k′)表示频域资源上一个码分复用组对应的码分复用序列上第k′个元素的值,该k′表示该一个码分复用组内的频域资源编号,r(m′)表示该CSI-RS的参考信号序列中第m′个元素的值, 该m′满足:
Figure PCTCN2019109395-appb-000073
其中,n表示RB的编号,α为根据该端口数量和该频域密度计算的中间变量,
Figure PCTCN2019109395-appb-000074
表示向下取整,
Figure PCTCN2019109395-appb-000075
表示向上取整,ρ表示该频域密度,
Figure PCTCN2019109395-appb-000076
表示该一个码分复用组的频域资源起点,
Figure PCTCN2019109395-appb-000077
表示一个RB内的子载波数目。
可选的,该通信装置维护第一映射表,该第一映射表包括至少一种端口数量、至少一种频域密度以及至少一组第一参数集之间的映射关系;处理模块111,具体用于根据该端口数量和该频域密度查表得到该第一参数集。
可选的,该配置信息还包括第一指示信息,该第一指示信息用于指示频域偏移量;处理模块111,具体用于根据该端口数量、该频域密度和该频域偏移量确定第一参数集。
可选的,该用于映射该CSI-RS的资源包括:该用于映射该CSI-RS的频域资源,该用于映射该CSI-RS的时域资源,以及该用于映射该CSI-RS的空域资源。
可选的,该用于映射该CSI-RS的时域资源是该数据信道中的最后一个符号;或者,该配置信息还包括第二指示信息,该第二指示信息用于指示该用于映射该CSI-RS的时域资源。
可选的,处理模块111,还用于根据扰码标识得该CSI-RS的参考信号序列。
可选的,该配置信息还包括第三指示信息,其中,该第三指示信息用于指示该扰码标识。
可选的,发送模块112,还用于向该第一终端设备发送控制信息,其中,该控制信息包括物理层源标识和/或物理层目的标识;处理模块111,还用于确定该物理层源标识或物理层目的标识为该扰码标识。
可选的,发送模块112,还用于向该第一终端设备发送控制信息;处理模块111,还用于根据该控制信息得到循环冗余校验码;处理模块111,还用于将该循环冗余校验码的低L位或高L位为作为该扰码标识,其中,L为正整数,L大于或等于1且小于或等于该循环冗余校验码的长度。
其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置110以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置110可以采用图2所示的形式。
比如,图2中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置110执行上述方法实施例中的用于确定信道状态信息参考信号资源映射的方法。
示例性的,图12中的处理模块111和发送模块112的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现。或者,图12中的处理模块111的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现,图12中的发送模块112的功能/实现过程可以通过图2中的通 信接口204来实现。
由于本实施例提供的通信装置110可执行上述的用于确定信道状态信息参考信号资源映射的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
图13示出了的一种通信系统的组成示意图,如图13所示,该通信系统130中可以包括:终端设备1301和终端设备1302。需要说明的是,图13仅为示例性附图,本申请实施例不限定图13所示通信系统130包括的网元以及网元的个数。
其中,终端设备1301具有上述图10所示通信装置100的功能,可以用于接收终端设备1302发送的CSI-RS对应的端口数量以及该CSI-RS对应的频域密度;根据该端口号和该频域密度确定第一参数;并根据该第一参数集确定终端设备1302的数据信道中用于映射该CSI-RS的资源,以及该数据信道中用于映射该CSI-RS的资源中的RE上的映射值。
终端设备1302具有上述图11或图12所示通信装置110的功能,可以用于向终端设备1301发送CSI-RS对应的端口数量以及该CSI-RS对应的频域密度;根据该端口号和该频域密度确定第一参数;并根据该第一参数集确定终端设备1302的数据信道中用于映射该CSI-RS的资源,以及该数据信道中用于映射该CSI-RS的资源中的RE上的映射值。
可选的,通信系统130还包括网络设备1303。
网络设备1303可以用于向终端设备1301和终端设备1302发送CSI-RS对应的端口数量以及该CSI-RS对应的频域密度。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到该通信系统130对应网元的功能描述,在此不再赘述。
比如,以采用集成的方式划分各个功能模块的情况下,图14示出了一种通信装置140的结构示意图。该通信装置140可以为第二终端设备或者第二终端设备中的芯片或者片上系统,或其他可实现上述终端设备功能的组合器件、部件等,该通信装置140可以用于执行上述实施例中涉及的第二终端设备的功能。
作为一种可能的实现方式,图14所示的通信装置140包括:处理模块141和发送模块142。当通信装置是终端设备时发送模块可以是发送器,可以包括天线和射频电路等,处理模块可以是处理器,例如基带芯片等。当装置是具有上述终端设备功能的部件时,发送模块可以是射频单元,处理模块可以是处理器。当装置是芯片系统时,发送模块可以是芯片系统的输出接口、处理模块可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)。
处理模块141,用于确定扰码标识。
发送模块142,用于向第一终端设备发送第一信息,其中,该第一信息包括该扰码标识。
处理模块141,还用于根据该扰码标识得到CSI-RS的参考信号序列。
其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置140以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器 和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置140可以采用图2所示的形式。
比如,图2中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置140执行上述方法实施例中的生成信道状态信息参考信号的参考信号序列的方法。
示例性的,图14中的处理模块141和发送模块142的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现。或者,图14中的处理模块141的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现,图14中的发送模块142的功能/实现过程可以通过图2中的通信接口204来实现。
由于本实施例提供的通信装置140可执行上述的生成信道状态信息参考信号的参考信号序列的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
比如,以采用集成的方式划分各个功能模块的情况下,图15示出了一种通信装置150的结构示意图。该通信装置150可以为第一终端设备或者第一终端设备中的芯片或者片上系统,或其他可实现上述终端设备功能的组合器件、部件等,该通信装置150可以用于执行上述实施例中涉及的第一终端设备的功能。
作为一种可能的实现方式,图15所示的通信装置150包括:接收模块151和处理模块152。
接收模块151,用于接收来自第二终端设备的第一信息,其中,该第一信息包括物理层源标识或物理层目的标识。
处理模块152,用于确定该物理层源标识或物理层目的标识为扰码标识。
处理模块152,还用于根据该扰码标识得到CSI-RS的参考信号序列。
其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置150以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置150可以采用图2所示的形式。
比如,图2中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置150执行上述方法实施例中的生成信道状态信息参考信号的参考信号序列的方法。
示例性的,图15中的接收模块151和处理模块152的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现。或者,图15中的处理模块152的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现,图15中的接收模块151的功能/实现过程可以通过图2中的通信接口204来实现。
由于本实施例提供的通信装置150可执行上述的生成信道状态信息参考信号的参考信号序列的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘 述。
比如,以采用集成的方式划分各个功能模块的情况下,图16示出了一种通信装置160的结构示意图。该通信装置160可以为第二终端设备或者第二终端设备中的芯片或者片上系统,或其他可实现上述终端设备功能的组合器件、部件等,该通信装置160可以用于执行上述实施例中涉及的第二终端设备的功能。
作为一种可能的实现方式,图16所示的通信装置160包括:发送模块161和处理模块162。
发送模块161,用于向第一终端设备发送第一信息,其中,该第一信息包括物理层源标识或物理层目的标识。
处理模块162,用于确定该物理层源标识或物理层目的标识为扰码标识。
处理模块162,还用于根据该扰码标识得到CSI-RS的参考信号序列。
其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置160以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置160可以采用图2所示的形式。
比如,图2中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置160执行上述方法实施例中的生成信道状态信息参考信号的参考信号序列的方法。
示例性的,图16中的发送模块161和处理模块162的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现。或者,图16中的处理模块162的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现,图16中的发送模块161的功能/实现过程可以通过图2中的通信接口204来实现。
由于本实施例提供的通信装置160可执行上述的生成信道状态信息参考信号的参考信号序列的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
比如,以采用集成的方式划分各个功能模块的情况下,图17示出了一种通信装置170的结构示意图。该通信装置170可以为第一终端设备或者第一终端设备中的芯片或者片上系统,或其他可实现上述终端设备功能的组合器件、部件等,该通信装置170可以用于执行上述实施例中涉及的第一终端设备的功能。
作为一种可能的实现方式,图17所示的通信装置170包括:接收模块171和处理模块172。
接收模块171,用于接收来自第二终端设备的第一信息。
处理模块172,用于根据该第一信息得到循环冗余校验码。
处理模块172,还用于将该循环冗余校验码的低L位或高L位为作为该扰码标识,其中,L为正整数,L大于等于1且小于等于所述循环冗余校验码的长度;该第一终端设备根据该扰码标识得到CSI-RS的参考信号序列。
其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置170以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置170可以采用图2所示的形式。
比如,图2中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置170执行上述方法实施例中的生成信道状态信息参考信号的参考信号序列的方法。
示例性的,图17中的接收模块171和处理模块172的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现。或者,图17中的处理模块172的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现,图17中的接收模块171的功能/实现过程可以通过图2中的通信接口204来实现。
由于本实施例提供的通信装置170可执行上述的生成信道状态信息参考信号的参考信号序列的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
比如,以采用集成的方式划分各个功能模块的情况下,图18示出了一种通信装置180的结构示意图。该通信装置180可以为第二终端设备或者第二终端设备中的芯片或者片上系统,或其他可实现上述终端设备功能的组合器件、部件等,该通信装置180可以用于执行上述实施例中涉及的第二终端设备的功能。
作为一种可能的实现方式,图18所示的通信装置180包括:发送模块181处理模块182。
发送模块181,向第一终端设备发送第一信息。
处理模块182,用于根据该第一信息得到循环冗余校验码。
处理模块182,还用于将该循环冗余校验码的低L位或高L位为作为该扰码标识,其中,L为正整数,L大于等于1且小于等于所述循环冗余校验码的长度;该第二终端设备根据该扰码标识得到CSI-RS的参考信号序列。
其中,上述方法实施例涉及的各操作的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置180以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置180可以采用图2所示的形式。
比如,图2中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置180执行上述方法实施例中的生成信道状态信息参考信号的参考信号序列的方法。
示例性的,图18中的发送模块181和处理模块182的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现。或者,图18中的处 理模块182的功能/实现过程可以通过图2中的处理器201调用存储器203中存储的计算机执行指令来实现,图18中的发送模块181的功能/实现过程可以通过图2中的通信接口204来实现。
由于本实施例提供的通信装置180可执行上述的生成信道状态信息参考信号的参考信号序列的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
图19示出了的一种通信系统的组成示意图,如图19所示,该通信系统190中可以包括:终端设备1901和终端设备1902。需要说明的是,图19仅为示例性附图,本申请实施例不限定图19所示通信系统190包括的网元以及网元的个数。
其中,终端设备1901可以用于接收来自终端设备1902的第一信息,并根据第一信息得到CSI-RS的参考信号序列,或者,终端设备1901具有上述图15所示通信装置150或图17所示通信装置170的功能。
终端设备1902具有上述图14所示通信装置140、图16所示通信装置160或图18所示通信装置180的功能。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到该通信系统190对应网元的功能描述,在此不再赘述。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者 光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种用于确定信道状态信息参考信号资源映射的方法,其特征在于,所述方法包括:
    第一终端设备接收来自第二终端设备或网络设备的配置信息,其中,所述配置信息包括信道状态信息参考信号对应的端口数量以及所述信道状态信息参考信号对应的频域密度,所述频域密度为所述信道状态信息参考信号对应的每个端口在一个资源块RB上平均占用的资源单元RE的数量;
    所述第一终端设备根据所述端口数量和所述频域密度确定第一参数集,其中,所述第一参数集包括以下参数中的至少一个:所述信道状态信息参考信号对应的码分复用类型、至少一个码分复用组编号、至少一个码分复用组的频域资源起点,或一个码分复用组内的频域资源编号;
    所述第一终端设备根据所述第一参数集确定所述第二终端设备的数据信道中用于映射所述信道状态信息参考信号的资源,以及所述数据信道中用于映射所述信道状态信息参考信号的资源中的RE上的映射值。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端设备根据所述第一参数集确定所述第二终端设备的数据信道中用于映射所述信道状态信息参考信号的资源中的RE上的映射值,包括:
    所述第二终端设备的数据信道中用于映射所述信道状态信息参考信号的资源中的RE上的映射值满足:
    Figure PCTCN2019109395-appb-100001
    其中,
    Figure PCTCN2019109395-appb-100002
    表示时域资源编号l、频域资源编号k、空域资源编号p、子载波间隔编号μ对应的RE上的映射值,β CSIRS表示所述信道状态信息参考信号的功率控制因数,w f(k′)表示频域资源上一个码分复用组对应的码分复用序列上第k′个元素的值,所述k′表示所述一个码分复用组内的频域资源编号,r(m′)表示所述信道状态信息参考信号的参考信号序列中第m′个元素的值,所述m′满足:
    Figure PCTCN2019109395-appb-100003
    其中,n表示RB的编号,α为根据所述端口数量和所述频域密度计算的中间变量,
    Figure PCTCN2019109395-appb-100004
    表示向下取整,
    Figure PCTCN2019109395-appb-100005
    表示向上取整,ρ表示所述频域密度,
    Figure PCTCN2019109395-appb-100006
    表示所述一个码分复用组的频域资源起点,
    Figure PCTCN2019109395-appb-100007
    表示一个RB内的子载波数目。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一终端设备维护第一映射表,所述第一映射表包括至少一种端口数量、至少一种频域密度以及至少一组第一参数集之间的映射关系;
    所述第一终端设备根据所述端口数量和所述频域密度确定第一参数集,包括:
    所述第一终端设备根据所述端口数量和所述频域密度查表得到所述第一参数集。
  4. 根据权利要求1或2所述的方法,其特征在于,所述配置信息还包括第一指示信息,所述第一指示信息用于指示频域偏移量;
    所述第一终端设备根据所述端口数量和所述频域密度确定第一参数集,包括:
    所述第一终端设备根据所述端口数量、所述频域密度和所述频域偏移量确定第一 参数集。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述用于映射所述信道状态信息参考信号的资源包括:所述用于映射所述信道状态信息参考信号的频域资源,所述用于映射所述信道状态信息参考信号的时域资源,以及所述用于映射所述信道状态信息参考信号的空域资源。
  6. 根据权利要求5所述的方法,其特征在于,所述用于映射所述信道状态信息参考信号的时域资源是所述数据信道中的最后一个符号;或者,
    所述配置信息还包括第二指示信息,所述第二指示信息用于指示所述用于映射所述信道状态信息参考信号的时域资源。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据扰码标识得到所述信道状态信息参考信号的参考信号序列。
  8. 根据权利要求7所述的方法,其特征在于,所述配置信息还包括第三指示信息,其中,所述第三指示信息用于指示所述扰码标识。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收来自所述第二终端设备的控制信息,其中,所述控制信息包括物理层源标识和/或物理层目的标识;
    所述第一终端设备确定所述物理层源标识或物理层目的标识为所述扰码标识。
  10. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收来自所述第二终端设备的控制信息;
    所述第一终端设备根据所述控制信息得到循环冗余校验码;
    所述第一终端设备将所述循环冗余校验码的低L位或高L位为作为所述扰码标识,其中,L为正整数,L大于或等于1且小于或等于所述循环冗余校验码的长度。
  11. 一种用于确定信道状态信息参考信号资源映射的方法,其特征在于,所述方法包括:
    第二终端设备根据信道状态信息参考信号对应的端口数量以及所述信道状态信息参考信号对应的频域密度确定第一参数集,其中,所述频域密度为所述信道状态信息参考信号对应的每个端口在一个资源块RB上平均占用的资源单元RE的数量;所述第一参数集包括以下参数中的至少一个:所述信道状态信息参考信号对应的码分复用类型、至少一个码分复用组编号、至少一个码分复用组的频域资源起点,或一个码分复用组内的频域资源编号;
    所述第二终端设备根据所述第一参数集确定所述第二终端设备的数据信道中用于映射所述信道状态信息参考信号的资源,以及所述数据信道中用于映射所述信道状态信息参考信号的资源中的RE上的映射值。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备向所述第一终端设备发送配置信息,其中,所述配置信息包括所述端口数量以及所述频域密度。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第二终端设备根据所述第一参数集确定所述第二终端设备的数据信道中用于映射所述信道状态信息参考信号的资源中的RE上的映射值,包括:
    所述第二终端设备的数据信道中用于映射所述信道状态信息参考信号的资源中的RE上的映射值满足:
    其中,
    Figure PCTCN2019109395-appb-100008
    表示时域资源编号l、频域资源编号k、空域资源编号p、子载波间隔编号μ对应的RE上的映射值,β CSIRS表示所述信道状态信息参考信号的功率控制因数,w f(k′)表示频域资源上一个码分复用组对应的码分复用序列上第k′个元素的值,所述k′表示所述一个码分复用组内的频域资源编号,r(m′)表示所述信道状态信息参考信号的参考信号序列中第m′个元素的值,所述m′满足:
    Figure PCTCN2019109395-appb-100009
    其中,n表示RB的编号,α为根据所述端口数量和所述频域密度计算的中间变量,
    Figure PCTCN2019109395-appb-100010
    表示向下取整,
    Figure PCTCN2019109395-appb-100011
    表示向上取整,ρ表示所述频域密度,
    Figure PCTCN2019109395-appb-100012
    表示所述一个码分复用组的频域资源起点,
    Figure PCTCN2019109395-appb-100013
    表示一个RB内的子载波数目。
  14. 根据权利要求11-13任一项所述的方法,其特征在于,所述第二终端设备维护第一映射表,所述第一映射表包括至少一种端口数量、至少一种频域密度以及至少一组第一参数集之间的映射关系;
    所述第二终端设备根据所述端口数量和所述频域密度确定第一参数集,包括:
    所述第二终端设备根据所述端口数量和所述频域密度查表得到所述第一参数集。
  15. 根据权利要求11-13任一项所述的方法,其特征在于,所述配置信息还包括第一指示信息,所述第一指示信息用于指示频域偏移量;
    所述第二终端设备根据所述端口数量和所述频域密度确定第一参数集,包括:
    所述第二终端设备根据所述端口数量、所述频域密度和所述频域偏移量确定第一参数集。
  16. 根据权利要求11-15任一项所述的方法,其特征在于,所述用于映射所述信道状态信息参考信号的资源包括:所述用于映射所述信道状态信息参考信号的频域资源,所述用于映射所述信道状态信息参考信号的时域资源,以及所述用于映射所述信道状态信息参考信号的空域资源。
  17. 根据权利要求16所述的方法,其特征在于,所述用于映射所述信道状态信息参考信号的时域资源是所述数据信道中的最后一个符号;或者,
    所述配置信息还包括第二指示信息,所述第二指示信息用于指示所述用于映射所述信道状态信息参考信号的时域资源。
  18. 根据权利要求11-17任一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备根据扰码标识得所述信道状态信息参考信号的参考信号序列。
  19. 根据权利要求18所述的方法,其特征在于,所述配置信息还包括第三指示信息,其中,所述第三指示信息用于指示所述扰码标识。
  20. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备向所述第一终端设备发送控制信息,其中,所述控制信息包括物理层源标识和/或物理层目的标识;
    所述第二终端设备确定所述物理层源标识或物理层目的标识为所述扰码标识。
  21. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备向所述第一终端设备发送控制信息;
    所述第二终端设备根据所述控制信息得到循环冗余校验码;
    所述第二终端设备将所述循环冗余校验码的低L位或高L位为作为所述扰码标识,其中,L为正整数,L大于或等于1且小于或等于所述循环冗余校验码的长度。
  22. 一种通信装置,其特征在于,所述通信装置包括:接收模块以及处理模块;
    所述接收模块,用于接收来自第二终端设备或网络设备的配置信息,其中,所述配置信息包括信道状态信息参考信号对应的端口数量以及所述信道状态信息参考信号对应的频域密度,所述频域密度为所述信道状态信息参考信号对应的每个端口在一个资源块RB上平均占用的资源单元RE的数量;
    所述处理模块,用于根据所述端口数量和所述频域密度确定第一参数集,其中,所述第一参数集包括以下参数中的至少一个:所述信道状态信息参考信号对应的码分复用类型、至少一个码分复用组编号、至少一个码分复用组的频域资源起点,或一个码分复用组内的频域资源编号;
    所述处理模块,还用于根据所述第一参数集确定所述第二终端设备的数据信道中用于映射所述信道状态信息参考信号的资源,以及所述数据信道中用于映射所述信道状态信息参考信号的资源中的RE上的映射值。
  23. 根据权利要求22所述的通信装置,其特征在于,所述第二终端设备的数据信道中用于映射所述信道状态信息参考信号的资源中的RE上的映射值满足:
    Figure PCTCN2019109395-appb-100014
    其中,
    Figure PCTCN2019109395-appb-100015
    表示时域资源编号l、频域资源编号k、空域资源编号p、子载波间隔编号μ对应的RE上的映射值,β CSIRS表示所述信道状态信息参考信号的功率控制因数,w f(k′)表示频域资源上一个码分复用组对应的码分复用序列上第k′个元素的值,所述k′表示所述一个码分复用组内的频域资源编号,r(m′)表示所述信道状态信息参考信号的参考信号序列中第m′个元素的值,所述m′满足:
    Figure PCTCN2019109395-appb-100016
    其中,n表示RB的编号,α为根据所述端口数量和所述频域密度计算的中间变量,
    Figure PCTCN2019109395-appb-100017
    表示向下取整,
    Figure PCTCN2019109395-appb-100018
    表示向上取整,ρ表示所述频域密度,
    Figure PCTCN2019109395-appb-100019
    表示所述一个码分复用组的频域资源起点,
    Figure PCTCN2019109395-appb-100020
    表示一个RB内的子载波数目。
  24. 根据权利要求22或23所述的通信装置,其特征在于,所述通信装置维护第一映射表,所述第一映射表包括至少一种端口数量、至少一种频域密度以及至少一组第一参数集之间的映射关系;
    所述处理模块,具体用于根据所述端口数量和所述频域密度查表得到所述第一参数集。
  25. 根据权利要求22或23所述的通信装置,其特征在于,所述配置信息还包括第一指示信息,所述第一指示信息用于指示频域偏移量;
    所述处理模块,具体用于根据所述端口数量、所述频域密度和所述频域偏移量确定第一参数集。
  26. 根据权利要求22-25任一项所述的通信装置,其特征在于,所述用于映射所 述信道状态信息参考信号的资源包括:所述用于映射所述信道状态信息参考信号的频域资源,所述用于映射所述信道状态信息参考信号的时域资源,以及所述用于映射所述信道状态信息参考信号的空域资源。
  27. 根据权利要求26所述的通信装置,其特征在于,所述用于映射所述信道状态信息参考信号的时域资源是所述数据信道中的最后一个符号;或者,
    所述配置信息还包括第二指示信息,所述第二指示信息用于指示所述用于映射所述信道状态信息参考信号的时域资源。
  28. 根据权利要求22-27任一项所述的通信装置,其特征在于,
    所述处理模块,还用于根据扰码标识得到所述信道状态信息参考信号的参考信号序列。
  29. 根据权利要求28所述的通信装置,其特征在于,所述配置信息还包括第三指示信息,其中,所述第三指示信息用于指示所述扰码标识。
  30. 根据权利要求28所述的通信装置,其特征在于,
    所述接收模块,还用于接收来自所述第二终端设备的控制信息,其中,所述控制信息包括物理层源标识和/或物理层目的标识;
    所述处理模块,还用于确定所述物理层源标识或物理层目的标识为所述扰码标识。
  31. 根据权利要求28所述的通信装置,其特征在于,
    所述接收模块,还用于接收来自所述第二终端设备的控制信息;
    所述处理模块,还用于根据所述控制信息得到循环冗余校验码;
    所述处理模块,还用于将所述循环冗余校验码的低L位或高L位为作为所述扰码标识,其中,L为正整数,L大于或等于1且小于或等于所述循环冗余校验码的长度。
  32. 一种通信装置,其特征在于,所述通信装置包括:处理模块;
    所述处理模块,用于根据信道状态信息参考信号对应的端口数量和信道状态信息参考信号对应的频域密度确定第一参数集,其中,所述频域密度为所述信道状态信息参考信号对应的每个端口在一个资源块RB上平均占用的资源单元RE的数量,所述第一参数集包括以下参数中的至少一个:所述信道状态信息参考信号对应的码分复用类型、至少一个码分复用组编号、至少一个码分复用组的频域资源起点,或一个码分复用组内的频域资源编号;
    所述处理模块,还用于根据所述第一参数集确定所述通信装置的数据信道中用于映射所述信道状态信息参考信号的资源,以及所述数据信道中用于映射所述信道状态信息参考信号的资源中的RE上的映射值。
  33. 根据权利要求32所述的通信装置,其特征在于,所述通信装置还包括发送模块;
    所述发送模块,用于向第一终端设备发送配置信息。
  34. 根据权利要求32所述的通信装置,其特征在于,所述通信装置的数据信道中用于映射所述信道状态信息参考信号的资源中的RE上的映射值满足:
    其中,
    Figure PCTCN2019109395-appb-100021
    表示时域资源编号l、频域资源编号k、空域资源编号p、子载波间隔编号μ对应的RE上的映射值,β CSIRS表示所述信道状态信息参考信号的功率控制因数,w f(k′)表示频域资源上一个码分复用组对应的码分复用序列上第k′个元素的值,所述 k′表示所述一个码分复用组内的频域资源编号,r(m′)表示所述信道状态信息参考信号的参考信号序列中第m′个元素的值,所述m′满足:
    Figure PCTCN2019109395-appb-100022
    其中,n表示RB的编号,α为根据所述端口数量和所述频域密度计算的中间变量,
    Figure PCTCN2019109395-appb-100023
    表示向下取整,
    Figure PCTCN2019109395-appb-100024
    表示向上取整,ρ表示所述频域密度,
    Figure PCTCN2019109395-appb-100025
    表示所述一个码分复用组的频域资源起点,
    Figure PCTCN2019109395-appb-100026
    表示一个RB内的子载波数目。
  35. 根据权利要求32-34任一项所述的通信装置,其特征在于,所述通信装置维护第一映射表,所述第一映射表包括至少一种端口数量、至少一种频域密度以及至少一组第一参数集之间的映射关系;
    所述处理模块,具体用于根据所述端口数量和所述频域密度查表得到所述第一参数集。
  36. 根据权利要求32-34任一项所述的通信装置,其特征在于,所述配置信息还包括第一指示信息,所述第一指示信息用于指示频域偏移量;
    所述处理模块,具体用于根据所述端口数量、所述频域密度和所述频域偏移量确定第一参数集。
  37. 根据权利要求32-36任一项所述的通信装置,其特征在于,所述用于映射所述信道状态信息参考信号的资源包括:所述用于映射所述信道状态信息参考信号的频域资源,所述用于映射所述信道状态信息参考信号的时域资源,以及所述用于映射所述信道状态信息参考信号的空域资源。
  38. 根据权利要求37所述的通信装置,其特征在于,所述用于映射所述信道状态信息参考信号的时域资源是所述数据信道中的最后一个符号;或者,
    所述配置信息还包括第二指示信息,所述第二指示信息用于指示所述用于映射所述信道状态信息参考信号的时域资源。
  39. 根据权利要求32-38任一项所述的通信装置,其特征在于,
    所述处理模块,还用于根据扰码标识得所述信道状态信息参考信号的参考信号序列。
  40. 根据权利要求39所述的通信装置,其特征在于,所述配置信息还包括第三指示信息,其中,所述第三指示信息用于指示所述扰码标识。
  41. 根据权利要求39所述的通信装置,其特征在于,
    所述发送模块,还用于向所述第一终端设备发送控制信息,其中,所述控制信息包括物理层源标识和/或物理层目的标识;
    所述处理模块,还用于确定所述物理层源标识或物理层目的标识为所述扰码标识。
  42. 根据权利要求39所述的通信装置,其特征在于,
    所述发送模块,还用于向所述第一终端设备发送控制信息;
    所述处理模块,还用于根据所述控制信息得到循环冗余校验码;
    所述处理模块,还用于将所述循环冗余校验码的低L位或高L位为作为所述扰码标识,其中,L为正整数,L大于或等于1且小于或等于所述循环冗余校验码的长度。
  43. 一种计算机存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,所述程序指令运行时,以实现权利要求1-10中任一所述方法中所述的第一终端 设备的功能,或者,以实现权利要求11-21中任一所述方法中所述的第二终端设备的功能。
PCT/CN2019/109395 2019-09-30 2019-09-30 用于确定信道状态信息参考信号资源映射的方法及装置 WO2021062608A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2019/109395 WO2021062608A1 (zh) 2019-09-30 2019-09-30 用于确定信道状态信息参考信号资源映射的方法及装置
KR1020227014580A KR20220074928A (ko) 2019-09-30 2019-11-05 채널 상태 정보 참조 신호 자원 매핑을 결정하는 방법 및 장치
CN201980100332.8A CN114365443A (zh) 2019-09-30 2019-11-05 用于确定信道状态信息参考信号资源映射的方法及装置
PCT/CN2019/115720 WO2021062915A1 (zh) 2019-09-30 2019-11-05 用于确定信道状态信息参考信号资源映射的方法及装置
EP19947769.6A EP4030668B1 (en) 2019-09-30 2019-11-05 Method and device for determining channel state information reference signal resource mapping
US17/657,042 US20220240280A1 (en) 2019-09-30 2022-03-29 Method For Determining Channel State Information Reference Signal Resource Mapping and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109395 WO2021062608A1 (zh) 2019-09-30 2019-09-30 用于确定信道状态信息参考信号资源映射的方法及装置

Publications (1)

Publication Number Publication Date
WO2021062608A1 true WO2021062608A1 (zh) 2021-04-08

Family

ID=75336501

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/109395 WO2021062608A1 (zh) 2019-09-30 2019-09-30 用于确定信道状态信息参考信号资源映射的方法及装置
PCT/CN2019/115720 WO2021062915A1 (zh) 2019-09-30 2019-11-05 用于确定信道状态信息参考信号资源映射的方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115720 WO2021062915A1 (zh) 2019-09-30 2019-11-05 用于确定信道状态信息参考信号资源映射的方法及装置

Country Status (5)

Country Link
US (1) US20220240280A1 (zh)
EP (1) EP4030668B1 (zh)
KR (1) KR20220074928A (zh)
CN (1) CN114365443A (zh)
WO (2) WO2021062608A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115016729A (zh) * 2022-05-19 2022-09-06 Oppo广东移动通信有限公司 存储信息的存储方法、装置、终端及存储介质
CN118041496A (zh) * 2022-11-04 2024-05-14 华为技术有限公司 一种通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565363A (zh) * 2017-06-15 2019-04-02 Lg电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
US20190109761A1 (en) * 2015-05-14 2019-04-11 Telefonaktiebolaget Lm Ericsson (Publ) Configuring measurement reference signals for mimo

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046516A1 (en) * 2012-09-24 2014-03-27 Lg Electronics Inc. Method and apparatus for transmitting or receiving reference signal in wireless communication system
KR101955940B1 (ko) * 2015-04-10 2019-03-08 주식회사 아리스케일 전 차원 다중입력 다중출력 무선 통신 시스템에서 채널상태정보 참조신호 송수신 방법 및 장치
CN106559162B (zh) * 2015-09-24 2020-03-06 索尼公司 用于无线通信的基站侧和用户设备侧的装置及方法
WO2018201284A1 (en) * 2017-05-02 2018-11-08 Qualcomm Incorporated Port group indication and port subsets in a csi-rs resource for new radio (nr)
CN108111269B (zh) * 2017-05-05 2023-01-10 中兴通讯股份有限公司 一种信道状态信息导频传输方法与装置
CN108111273B (zh) * 2017-08-11 2021-11-02 中兴通讯股份有限公司 参考信号的传输方法及装置
CN110198207B (zh) * 2018-02-26 2020-09-15 维沃移动通信有限公司 无线通信的方法和网络设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190109761A1 (en) * 2015-05-14 2019-04-11 Telefonaktiebolaget Lm Ericsson (Publ) Configuring measurement reference signals for mimo
CN109565363A (zh) * 2017-06-15 2019-04-02 Lg电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG ET AL.: "Remaining issues on NR CSI-RS", 3GPP TSG RAN WG1 MEETING #89 R1-1707981, 19 May 2017 (2017-05-19), XP051261258 *
ZTE: "On CSI-RS for CSI acquisition", 3GPP TSG RAN WG1 MEETING #90 R1-1712303, 25 August 2017 (2017-08-25), XP051315119 *

Also Published As

Publication number Publication date
EP4030668B1 (en) 2024-04-03
KR20220074928A (ko) 2022-06-03
WO2021062915A1 (zh) 2021-04-08
CN114365443A (zh) 2022-04-15
EP4030668A4 (en) 2022-11-02
US20220240280A1 (en) 2022-07-28
EP4030668A1 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
US11991669B2 (en) Feedback control channel configuration method and device
US11387965B2 (en) Method for replying with acknowledgement frame, apparatus, and data transmission system
JP5207199B2 (ja) モバイルネットワークにおけるシステム設定情報の送信
JP7202461B2 (ja) 通信方法、装置、コンピュータプログラム、及び電子機器
US20220240280A1 (en) Method For Determining Channel State Information Reference Signal Resource Mapping and Apparatus
WO2019052388A1 (zh) 数据传输的方法和设备
WO2020216340A1 (zh) 侧行链路控制信息的发送方法及设备
WO2020030025A1 (zh) 用于上报csi的方法和装置
WO2017162216A1 (zh) 一种天线端口的指示方法和装置
US11290232B2 (en) Communications method and apparatus
CN110912666B (zh) 参考信号及序列配置方法和装置
CN111181887B (zh) 一种序列的生成及处理方法和装置
WO2021062815A1 (zh) 调制解调参考信号的配置信息获取方法、配置方法及装置
TWI769324B (zh) 傳輸資料的方法、終端設備和網路設備
WO2018205990A1 (zh) 一种数据处理方法及其装置
EP3614611A1 (en) Communication method and device
CN111669251A (zh) 传输块大小的确定方法及通信装置
EP3902154A1 (en) Data transmission method and apparatus
EP4274342A1 (en) Method and device for transmitting data
WO2018171670A1 (zh) 一种信息处理方法及相关设备
WO2021062872A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948135

Country of ref document: EP

Kind code of ref document: A1