WO2024032596A1 - 一种数据传输的方法及通信装置 - Google Patents

一种数据传输的方法及通信装置 Download PDF

Info

Publication number
WO2024032596A1
WO2024032596A1 PCT/CN2023/111700 CN2023111700W WO2024032596A1 WO 2024032596 A1 WO2024032596 A1 WO 2024032596A1 CN 2023111700 W CN2023111700 W CN 2023111700W WO 2024032596 A1 WO2024032596 A1 WO 2024032596A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx configuration
drx
signal
group
configuration
Prior art date
Application number
PCT/CN2023/111700
Other languages
English (en)
French (fr)
Inventor
苏桐
李锐杰
官磊
丁洋
张舒航
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024032596A1 publication Critical patent/WO2024032596A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a data transmission method and a communications device.
  • the power consumption on the network side is not directly proportional to the service load.
  • the power consumption of the access network equipment at each transmission time interval (TTI) includes many parts, such as the dynamic power consumption part related to the load. , the static power consumption part that has nothing to do with the load. In other words, even when the load is light, the static part that is not related to the load will still cause the access network equipment to consume energy.
  • DRX discontinuous reception
  • PDCCH physical downlink control channel
  • the access network equipment cannot completely shut down data transmission through the existing DRX configuration mechanism of the UE, resulting in high power consumption on the access network equipment side, resulting in unnecessary energy loss.
  • This application provides a data transmission method and communication device, which can flexibly select a configuration mechanism according to the business load, thereby achieving two-way dynamic shutdown and reducing power consumption.
  • the first aspect provides a data transmission method, which can be executed by a terminal device, or can be executed by a chip or circuit configured in the terminal device, or can also be implemented by a device that can realize all or part of the functions of the terminal device. logic module or software execution. This application does not limit this.
  • the method includes: receiving first indication information, the first indication information is used to indicate a first non-continuous reception DRX configuration, the first DRX configuration belongs to multiple DRX configurations, and the multiple DRX configurations are used to not receive or not send different signals,
  • the first indication information is carried in the first medium access control-Control Element (MAC-CE) or the first downlink control information (DCI); not receiving or The first signal is not sent.
  • MAC-CE medium access control-Control Element
  • DCI downlink control information
  • the terminal device can use different DRX configurations to control the sending or receiving status of different signals according to the instruction information of the network device, and can flexibly select the configuration mechanism according to the business load, thereby realizing two-way dynamic communication between the network device and the terminal device. Shut down to reduce power consumption.
  • multiple DRX configurations are used to not receive or send different signals.
  • the signals controlled by different DRX configurations are partially the same. It can also be said that the signals controlled by different DRX configurations are completely different.
  • the first signal is not received or sent within the first time window according to the first DRX configuration.
  • the terminal device does not receive or send the first signal within the inactive time configured by the first DRX.
  • the first signal is received or sent within the second time window according to the first DRX configuration.
  • the terminal device receives or sends the first signal within the activation time Active Time of the first DRX configuration.
  • the first MAC CE or the first DCI is carried on a multicast or broadcast physical downlink channel.
  • the instruction information and multiple sets of configurations are delivered through broadcast or multicast.
  • the existing technology through dedicated RRC Signaling to deliver DRX configuration can save signaling overhead.
  • the first signal includes at least one group of channels in a first group of channels, a second group of channels, a third group of channels, or a fourth group of channels; wherein, the first group of channels Including at least one of the following signals: semi-persistent scheduling physical downlink shared channel (semi-persistent scheduling physical downlink control channel, SPS PDSCH), configured grant physical downlink shared channel (CG PUSCH), SPS PDSCH Hybrid automatic repeat request-acknowledgment for semi-persistent scheduling physical downlink control channel, HARQ-ACK for SPS PDSCH), scheduling request (scheduling request, SR), or beam failure recovery (beam failure recovery, BFR); the second group of channels includes at least one of the following signals: system information-radio network temporary identifier (SI-RNTI) scrambled physical downlink control channel (PDCCH) , physical random access channel (PRACH), random access-radio network temporary identifier (RA-RNTI)
  • SI-RNTI system information-radio network
  • the UE receives some semi-statically configured downlink signals and sends some semi-statically configured uplink signals during the DRX inactive Time, causing the base station to be unable to shut down signal transmission during the UE's DRX inactive Time.
  • the DRX configuration can be controlled by indicating the DRX configuration through the indication information, thereby enabling the base station and the UE to achieve flexible two-way energy saving under different load conditions, overcoming the inability of the existing technology to dynamically perform DRX configuration according to the load. Adjustment problem.
  • the second signal is not received or sent according to the second DRX configuration, and the second signal includes at least one of the following signals: C/CS/SFI/INI/CI/TPC- PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI scrambled PDCCH, dynamically scheduled PDSCH, dynamically scheduled physical uplink shared channel (dynamic grant physical downlink shared channel, DG PUSCH), dynamically scheduled PDSCH HARQ-ACK, A/P/SP-SRS and A/P/SP-CSI.
  • the second signal includes at least one of the following signals: C/CS/SFI/INI/CI/TPC- PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI scrambled PDCCH, dynamically scheduled PDSCH, dynamically scheduled physical uplink shared channel (dynamic grant physical downlink shared channel, DG PUSCH), dynamically scheduled PDSCH HARQ-ACK, A/P/SP-SRS and A/P/SP-CSI.
  • the second signal when the first condition is met, is not received or sent according to the second DRX configuration, and the first condition is at least one of the following: the second indication information indicates the second DRX Configuration; the first DRX configuration includes a first timer, and the first timer times out.
  • the network device when the first condition is met, the above-mentioned activated DRX configuration becomes invalid and the old DRX configuration is used, or the network device sends or receives signals through the UE-specific DRX configuration configured through high-level signaling.
  • the first MAC or the first DCI is different from the first signal or the second signal.
  • the physical downlink channel where the first MAC-CE or the first DCI is located is different from the above-mentioned first signal, and/or the physical downlink channel where the first MAC-CE or the first DCI is located is different from the above-mentioned second signal, Then, the reception of the above-mentioned first indication information or the second indication information is not affected by the restrictions of the DRX configuration. That is, even during the inactive state of the DRX configuration, the terminal device still receives the first indication information and/or the second indication information, thereby realizing dynamic switching of the DRX configuration.
  • the first DRX configuration is determined according to a bit field value of the first indication information.
  • different values of one bit field or several bits of the first indication information correspond to different DRX configurations; or, the bit position of the first indication information corresponds to different UEs, and the bit position corresponds to the bit value corresponding to the UE. DRX configuration.
  • a data transmission method is provided.
  • the method can be executed by a network device, or can be executed by a chip or circuit configured in the network device, or can also be executed by a device that can realize all or part of the functions of the network device. logic module or software execution. This application does not limit this.
  • the method includes: determining a first non-continuous reception DRX configuration, the first DRX configuration belongs to multiple DRX configurations, and the multiple DRX configurations are used for terminal equipment not to receive or not send different signals; sending first indication information, the first indication information Used to indicate the first DRX configuration.
  • the first DRX configuration is used for the terminal equipment not to receive and/or not send the first signal.
  • the first indication information is carried in the first media access control-control element MAC-CE or the first downlink control. Information in DCI.
  • the network device can send instruction information to the terminal device, instructing the use of different DRX configurations to control the sending or receiving status of different signals, and can flexibly select the configuration mechanism according to the business load, thereby realizing two-way communication between the network device and the terminal device. Dynamic shutdown to reduce power consumption.
  • multiple DRX configurations are used to not receive or send different signals, or in other words, the signals controlled by different DRX configurations
  • the signal part is the same. It can also be said that the signals controlled by different DRX configurations are completely different.
  • the first DRX configuration is used for the terminal device not to receive or not send the first signal within the first time window of the first DRX configuration.
  • the network device instructs the terminal device not to receive or send the first signal within the Inactive Time of the first DRX configuration.
  • the first DRX configuration is used for the terminal device to receive or send the first signal within the second time window of the first DRX configuration.
  • the network device instructs the terminal device to receive or send the first signal within the Active Time of the first DRX configuration.
  • the first MAC CE or the first DCI is carried on a multicast or broadcast physical downlink channel.
  • the instruction information and multiple sets of configurations are delivered through broadcast or multicast.
  • signaling overhead can be saved.
  • the first signal includes at least one group of channels in a first group of channels, a second group of channels, a third group of channels, or a fourth group of channels; wherein, the first group of channels Including at least one of the following signals: semi-statically scheduled physical layer downlink shared channel SPS PDSCH, configured authorized physical uplink shared channel CG PUSCH, hybrid automatic repeat request feedback HARQ-ACK for SPS PDSCH, scheduling request SR, or beam Failure recovery BFR; the second group of channels includes at least one of the following signals: system message wireless network temporary identifier SI-RNTI scrambled physical downlink control channel PDCCH, physical random access channel PRACH, random access wireless network temporary identifier PDCCH scrambled by RA-RNTI, or PDCCH scrambled by temporary cell wireless network temporary identifier TC-RNTI; the third group of channels includes: PDCCH scrambled by paging wireless network temporary identifier P-RNTI; the fourth group of channels
  • the UE receives some semi-statically configured downlink signals and sends some semi-statically configured uplink signals during the DRX inactive Time, causing the base station to be unable to shut down signal transmission during the UE's DRX inactive Time.
  • the DRX configuration can be controlled by indicating the DRX configuration through the indication information, thereby enabling the base station and the UE to achieve flexible two-way energy saving under different load conditions, overcoming the inability of the existing technology to dynamically perform DRX configuration according to the load. Adjustment problem.
  • second indication information is sent.
  • the second indication information is used to instruct the terminal device to receive and/or send a second signal according to the second DRX configuration.
  • the second signal includes at least one of the following signals: One: C/CS/SFI/INI/CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI scrambled PDCCH, dynamically scheduled PDSCH, DG PUSCH, dynamically scheduled PDSCH HARQ-ACK, A /P/SP-SRS and A/P/SP-CSI.
  • the above-mentioned activated DRX configuration fails and the default DRX configuration is used, or the network device sends or receives signals through the UE-specific DRX configuration configured through high-level signaling.
  • the first DRX configuration includes a first timer, and when the first timer times out, the terminal device receives and/or sends the second signal according to the second DRX configuration.
  • the timer in the above activated DRX configuration expires when it expires, and the old DRX configuration is used, or the network device sends or receives signals through the UE-specific DRX configuration configured through high-level signaling.
  • the first MAC or the first DCI is different from the first signal or the second signal.
  • the physical downlink channel where the first MAC-CE or the first DCI is located is different from the above-mentioned first signal, and/or the physical downlink channel where the first MAC-CE or the first DCI is located is different from the above-mentioned second signal, Then, the reception of the above-mentioned first indication information or the second indication information is not affected by the restrictions of the DRX configuration. That is, even during the inactive state of the DRX configuration, the terminal device still receives the first indication information and/or the second indication information, thereby realizing dynamic switching of the DRX configuration.
  • a device for data transmission may be a terminal device, or it may be a chip or circuit configured in the terminal device, or it may also be logic that can realize all or part of the functions of the terminal device. module or software. This application does not limit this.
  • the device includes: a transceiver unit, used to receive first indication information, the first indication information is used to indicate a first non-continuous reception DRX configuration, the first DRX configuration belongs to multiple DRX configurations, and the multiple DRX configurations are used to not receive or not Send different signals, the first indication information is carried in the first media access control-control element MAC-CE or the first downlink control information DCI; the processing unit is configured to not receive or not send the first signal according to the first DRX configuration .
  • the processing unit is specifically configured to not receive or not send the first signal within the first time window according to the first DRX configuration.
  • the processing unit is specifically configured to receive or send the first signal within the second time window according to the first DRX configuration.
  • the first MAC CE or the first DCI is carried on a multicast or broadcast physical downlink channel.
  • the first signal includes at least one group of channels in a first group of channels, a second group of channels, a third group of channels, or a fourth group of channels; wherein, the first group of channels Including at least one of the following signals: semi-statically scheduled physical layer downlink shared channel SPS PDSCH, configured authorized physical uplink shared channel CG PUSCH, hybrid automatic repeat request feedback HARQ-ACK for SPS PDSCH, scheduling request SR, or beam Failure recovery BFR; the second group of channels includes at least one of the following signals: system message wireless network temporary identifier SI-RNTI scrambled physical downlink control channel PDCCH, physical random access channel PRACH, random access wireless network temporary identifier PDCCH scrambled by RA-RNTI, or PDCCH scrambled by temporary cell wireless network temporary identifier TC-RNTI; the third group of channels includes: PDCCH scrambled by paging wireless network temporary identifier P-RNTI; the fourth group of channels
  • the processing unit is further configured to not receive or send a second signal according to the second DRX configuration, where the second signal includes at least one of the following signals: C/CS/SFI/INI /CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI scrambled PDCCH, dynamically scheduled PDSCH, DG PUSCH, dynamically scheduled PDSCH HARQ-ACK, A/P/SP-SRS and A/P /SP-CSI.
  • the processing unit when the first condition is met, is configured not to receive or send the second signal according to the second DRX configuration, and the first condition is at least one of the following: second indication information A second DRX configuration is indicated; the first DRX configuration includes a first timer, and the first timer times out.
  • the first MAC or the first DCI is different from the first signal or the second signal.
  • the processing unit is configured to determine the first DRX configuration according to a bit field value of the first indication information.
  • a data transmission device may be a network device, or may be a chip or circuit configured in the network device, or may be logic that can realize all or part of the network device functions. module or software. This application does not limit this.
  • the device includes: a processing unit, used to determine a first non-continuous reception DRX configuration, the first DRX configuration belongs to multiple DRX configurations, and the multiple DRX configurations are used for terminal equipment not to receive or not send different signals; a transceiver unit, for Send the first indication information, the first indication information is used to indicate the first DRX configuration, the first DRX configuration is used for the terminal device not to receive and/or not send the first signal, the first indication information is carried in the first media intervention control-control element MAC-CE or first downlink control information DCI.
  • a processing unit used to determine a first non-continuous reception DRX configuration, the first DRX configuration belongs to multiple DRX configurations, and the multiple DRX configurations are used for terminal equipment not to receive or not send different signals
  • a transceiver unit for Send the first indication information
  • the first indication information is used to indicate the first DRX configuration
  • the first DRX configuration is used for the terminal device not to receive and/or not
  • multiple DRX configurations are used to not receive or send different signals.
  • the signals controlled by different DRX configurations are partially the same. It can also be said that the signals controlled by different DRX configurations are completely different.
  • the first DRX configuration is used for the terminal device not to receive or not send the first signal within the first time window of the first DRX configuration.
  • the first DRX configuration is used for the terminal device to receive or send the first signal within the second time window of the first DRX configuration.
  • the first MAC CE or the first DCI is carried on a multicast or broadcast physical downlink channel.
  • the first signal includes at least one group of channels in a first group of channels, a second group of channels, a third group of channels, or a fourth group of channels; wherein, the first group of channels Including at least one of the following signals: semi-statically scheduled physical layer downlink shared channel SPS PDSCH, configured authorized physical uplink shared channel CG PUSCH, hybrid automatic repeat request feedback HARQ-ACK for SPS PDSCH, scheduling request SR, or beam Failure recovery BFR; the second group of channels includes at least one of the following signals: system message wireless network temporary identifier SI-RNTI scrambled physical downlink control channel PDCCH, physical random access channel PRACH, random access wireless network temporary identifier PDCCH scrambled by RA-RNTI, or PDCCH scrambled by temporary cell wireless network temporary identifier TC-RNTI; the third group of channels includes: PDCCH scrambled by paging wireless network temporary identifier P-RNTI; the fourth group of channels
  • the transceiver unit is further configured to send second indication information.
  • the second indication information is used to instruct the terminal device to receive and/or send the second signal according to the second DRX configuration.
  • the second signal include at least one of the following signals: C/CS/SFI/INI/CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI scrambled PDCCH, dynamically scheduled PDSCH, DG PUSCH, dynamically scheduled PDSCH HARQ-ACK, A/P/ SP-SRS and A/P/SP-CSI.
  • the first DRX configuration includes a first timer, and when the first timer times out, the terminal device receives and/or sends the second signal according to the second DRX configuration.
  • the first MAC or the first DCI is different from the first signal or the second signal.
  • the present application provides a communication device, which device includes: at least one processor, the at least one processor is coupled to at least one memory, and the at least one processor is configured to execute a computer program stored in the at least one memory or Instructions enable the device to perform the method in any one of the above-mentioned first to second aspects and the possible implementation manners of the first to second aspects.
  • the present application provides a computer-readable medium.
  • Computer programs or instructions are stored on the computer-readable storage medium.
  • the computer program or instructions are run on a computer, the computer can implement the above-mentioned aspects from the first aspect to The second aspect and the method in any possible implementation manner from the first aspect to the second aspect.
  • the present application provides a computer program product, including a computer program or instructions, which when executed, are used to implement any of the above first to second aspects and the first to second aspects.
  • a computer program product including a computer program or instructions, which when executed, are used to implement any of the above first to second aspects and the first to second aspects.
  • the present application provides a chip system, including: a processor configured to execute computer programs or instructions in the memory, so that the chip system implements the above first to second aspects and the first to second aspects.
  • a processor configured to execute computer programs or instructions in the memory, so that the chip system implements the above first to second aspects and the first to second aspects.
  • a communication device in a ninth aspect, includes a processor configured to execute the method in any one of the above first to second aspects and possible implementations of the first to second aspects.
  • Figure 1 is a schematic diagram of a network architecture suitable for a communication system according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the basic DRX model provided by this application.
  • FIG. 3 is a schematic flow chart of a data transmission method applicable to the embodiment of the present application.
  • FIG. 4 is another schematic flow chart of a data transmission method applicable to the embodiment of the present application.
  • FIG. 5 is a schematic diagram of a method for controlling the transmission or reception of multiple signals by multiple DRX configurations applicable to the embodiment of the present application.
  • FIG. 6 is a schematic diagram of another method for multiple DRX configurations to control the transmission or reception of multiple signals applicable to the embodiment of the present application.
  • Figure 7 is a schematic block diagram of a communication device suitable for embodiments of the present application.
  • Figure 8 is a structural block diagram of a communication device suitable for embodiments of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • 5th generation, 5G new radio
  • new radio new radio
  • the technical solution provided by this application can also be applied to machine type communication (MTC), long term evolution-machine (LTE-M), and device-to-device (D2D).
  • MTC machine type communication
  • LTE-M long term evolution-machine
  • D2D device-to-device
  • MTC machine type communication
  • M2M machine to machine
  • IoT Internet of things
  • the IoT network may include, for example, the Internet of Vehicles.
  • the communication methods in the Internet of Vehicles system are collectively called vehicle to other devices (vehicle to X, V2X, X can represent anything).
  • the V2X can include: vehicle to vehicle (vehicle to vehicle, V2V) communication.
  • FIG. 1 is a schematic architectural diagram of a communication system 1000 suitable for an embodiment of the present application.
  • the communication system includes wireless
  • the access network 100 and the core network 200, optionally, the communication system 1000 may also include the Internet 300.
  • the radio access network 100 may include at least one radio access network device (110a and 110b in Figure 1), and may also include at least one terminal (120a-120j in Figure 1).
  • the terminal is connected to the wireless access network equipment through wireless means, and the wireless access network equipment is connected to the core network through wireless or wired means.
  • the core network equipment and the radio access network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the radio access network equipment can be integrated on the same physical device, or they can be one physical device.
  • Figure 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Figure 1 .
  • Access network equipment can also be called access equipment.
  • R)AN can manage wireless resources, provide access services for user equipment, and complete the forwarding of user equipment data between the user equipment and the core network.
  • R)AN can also Understood as the base station in the network.
  • the access network device in the embodiment of the present application may be any communication device with wireless transceiver functions used to communicate with user equipment.
  • the access network equipment includes but is not limited to: base station, evolved base station (evolved NodeB, eNodeB), transmission reception point (TRP), fifth generation (5th generation, 5G) mobile communication system
  • the next generation base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be A module or unit that completes some functions of the base station, for example, can be a centralized unit (CU) or a distributed unit (DU).
  • CU centralized unit
  • DU distributed unit
  • the CU here completes the functions of the base station's radio resource control protocol and packet data convergence protocol (PDCP), and can also complete the functions of the service data adaptation protocol (SDAP); DU completes the functions of the base station
  • PDCP radio resource control protocol
  • SDAP service data adaptation protocol
  • DU completes the functions of the base station
  • the functions of the wireless link control layer and medium access control (MAC) layer can also complete some or all of the physical layer functions.
  • the wireless access network equipment may be a macro base station (110a in Figure 1), a micro base station or an indoor station (110b in Figure 1), or a relay node or donor node.
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the RRC layer information is generated by the CU, and will eventually be encapsulated by the PHY layer of the DU into PHY layer information, or converted from the PHY layer information. Therefore, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by DU, or sent by DU+AAU.
  • the access network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into access network equipment in the access network (radio access network, RAN), or the CU can be divided into access network equipment in the core network (core network, CN). This application does not Make limitations.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the wireless access network equipment.
  • the following description takes a base station as an example of a radio access network device.
  • Terminal may also be called terminal equipment, UE, mobile station, mobile terminal, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device, etc.
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop ( wireless local loop (WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, vehicle-mounted device, wearable device, in 5G network Terminals or terminals in future evolution networks, etc.
  • SIP session
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal.
  • Base stations and terminals can be fixed-location or mobile. Base stations and terminals can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites. The embodiments of this application do not limit the application scenarios of base stations and terminals.
  • the helicopter or drone 120i in Figure 1 may be configured as a mobile base station.
  • the terminal 120i is Base station; but for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is through a wireless air interface protocol.
  • communication between 110a and 120i can also be carried out through an interface protocol between base stations.
  • relative to 110a, 120i is also a base station. Therefore, both base stations and terminals can be collectively called communication devices.
  • 110a and 110b in Figure 1 can be called communication devices with base station functions
  • 120a-120j in Figure 1 can be called communication devices with terminal functions.
  • Communication between base stations and terminals, between base stations and base stations, and between terminals can be carried out through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and unlicensed spectrum at the same time; it can communicate through 6,000 It can communicate using spectrum below gigahertz (GHz), it can also communicate through spectrum above 6GHz, and it can also communicate using spectrum below 6GHz and spectrum above 6GHz at the same time.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the functions of the base station may also be performed by modules (such as chips) in the base station, or may be performed by a control subsystem that includes the base station functions.
  • the control subsystem containing base station functions here can be the control center in the above application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the functions of the terminal can also be performed by modules in the terminal (such as chips or modems), or by a device containing the terminal functions.
  • the above network elements or devices may still use their names in the 4G or 5G communication systems, or may have other names, which are not limited in the embodiments of this application.
  • the functions of the above network elements or devices can be completed by an independent network element, or can be completed by several network elements together.
  • network elements in the core network can be deployed on the same or different physical devices.
  • AMF and SMF can be deployed on the same physical device.
  • the network elements of the 5G core network can be deployed on the same physical device as the network elements of the 4G core network.
  • the embodiments of the present application do not limit this.
  • Figure 1 is only an example and does not constitute any limitation on the scope of protection of the present application.
  • the communication method provided by the embodiment of the present application may also involve network elements not shown in Figure 1.
  • the communication method provided by the embodiment of the present application may also include only some of the network elements shown in Figure 1.
  • the power consumption of the access network equipment in each transmission time interval includes many parts, such as the dynamic power consumption part related to the load and the load-independent part. of static power consumption. In other words, even when the load is light, the static part that is not related to the load will still cause the access network equipment to consume energy.
  • DRX discontinuous reception
  • PDCCH physical downlink control channel
  • Synchronization signals/physical broadcast signals including primary synchronization signals (PSS), secondary synchronization signals (SSS), physical broadcast channel (physical broadcast channel, PBCH) .
  • PSS/SSS is mainly used for downlink synchronization of terminal equipment and obtaining cell identification (ID).
  • Downlink synchronization includes clock synchronization, wireless frame synchronization, and symbol synchronization.
  • PBCH is mainly used to carry the master information block (MIB).
  • the MIB includes the system frame number (SFN), sub- Carrier spacing, PDCCH configuration of scheduling system information (SI) and other information.
  • Physical random access channel Physical random access channel, PRACH: During the random access process of the terminal device, the network device needs to configure PRACH for the terminal device to access the system. Since the movement of the terminal device makes the distance between the terminal device and the network device uncertain, if the terminal device needs to send a message to the base station, uplink synchronization must be maintained and managed in real time. The purpose of PRACH is to achieve uplink synchronization, establish the uplink synchronization relationship between terminal equipment and network equipment, and request the network equipment to allocate dedicated resources to the terminal equipment, so that the terminal equipment can normally access the network equipment for service transmission.
  • PRACH Physical random access channel
  • Wireless network temporary identifier (information-radio network temporary identifier, RNTI): RNTI is used to distinguish or identify terminal equipment connected in a cell, a group of terminal equipment in a specific wireless channel or paging situation, and receive power control parameters. A group of end devices or system information sent by a network device for all end devices. RNTI can be a 16-bit identifier whose value depends on the type of RNTI. Among them, the RNTI used for paging is denoted as P-RNTI. In addition, there are cell radio network temporary identifier (C-RNTI), modulation and coding scheme cell radio network temporary identifier (MCS-C) used for data scheduling. -RNTI), configured scheduling radio network temporary identifier (CS-RNTI), etc.
  • C-RNTI cell radio network temporary identifier
  • MCS-C modulation and coding scheme cell radio network temporary identifier
  • CS-RNTI configured scheduling radio network temporary identifier
  • PDCCH Physical downlink control channel
  • PDSCH Physical downlink shared channel
  • Dynamic scheduling means sending a PDCCH to schedule a PDSCH. Before each PDSCH is sent, a PDCCH needs to be sent.
  • the PDCCH includes information such as the time domain location and frequency domain location of the scheduled PDSCH, and the terminal equipment receives the PDSCH based on this information.
  • Semi-static scheduling means that the network device sends a PDCCH.
  • This PDCCH activates the semi-static scheduling configuration of the RRC signaling configuration.
  • the semi-static configuration includes the period of PDSCH delivery.
  • the terminal equipment periodically receives PDSCH according to this period.
  • the PDSCH is in different states.
  • the time domain and frequency domain positions in the slot are determined based on the time domain and frequency domain resource allocation in the activated PDCCH.
  • PUSCH Physical downlink shared channel
  • Dynamic grant, dynamic grant, grant based is essentially PUSCH transmission based on PDCCH dynamic scheduling (the scheduling mechanism is similar to PDSCH reception based on PDCCH dynamic scheduling).
  • the base station issues configuration to the UE through RRC signaling configuredGrantConfig.
  • the signaling includes rrc-ConfiguredUplinkGrant. If the UE needs to send PUSCH, it can directly send PUSCH according to this configuration without waiting for the base station to issue DCI scheduling. Or activate; this method is also called grant free PUSCH
  • the base station first issues the RRC layer signaling configuredGrantConfig (excluding rrc-ConfiguredUplinkGrant), and then the UE needs to receive the DCI issued by the base station to activate the configuration. After the UE is activated, it performs periodic data transmission at fixed resources and fixed times. This method is also called semi-static PUSCH (similar to semi-static PDSCH).
  • SRS sounding reference signal
  • channel state information channel state information
  • SRS is a signal sent by the UE to the base station for measuring channel quality
  • CSI is the CSI-RS sent by the base station, and the UE receives the measured Report information
  • SRS and CSI reporting are uplink signals sent by the UE, which are divided into three types: aperiodic/periodic/semi-static (A/P/SP, Aperiodic/Persistent/Semi Persistent):
  • the uplink signal is sent based on the trigger of PDCCH issued by the base station, and the trigger is sent once (similar to dynamic PDSCH/PUSCH scheduling);
  • P-SRS/P-CSI is sent periodically, that is, the base station is configured with the RRC signaling configuration for SRS/CSI reporting, and the UE sends SRS/CSI reporting according to this configuration period;
  • SP-SRS/SP-CSI is also sent periodically, but the base station needs to configure RRC configuration and the base station needs to issue a PDCCH trigger so that the UE can send it periodically according to the configuration; (similar to configured grant type 2/SPS PDSCH).
  • CSI-RS is a downlink reference signal sent by the base station, which is received and measured by the UE (the measurement is sent to the base station in the above CSI report); CSI of the UE -RS measurement behavior is also divided into three types: A/P/SP:
  • A-CSI-RS based on the PDCCH issued by the base station, tells the UE where to perform measurements, triggering the measurement once (similar to dynamic PDSCH/PUSCH scheduling);
  • P-CSI-RS is a periodic measurement, that is, the base station is configured with CSI-RS measurement configuration, and the UE measures the channel according to the configuration period;
  • SP-CSI is also measured periodically, but the base station needs to configure the CSI-RS measurement configuration and the base station needs to issue a PDCCH trigger so that the UE can measure periodically according to the configuration; (similar to configured grant type 2/SPS PDSCH).
  • Dis-continuous transmission (DTX) mechanism In order to further reduce the power consumption of communication equipment, the communication equipment can be enabled not to send data transmission for a period of time, or the communication equipment can be enabled not to transmit data for a period of time. Send all channels or part of channels. This way of reducing power consumption of communication equipment can be called the DTX mechanism.
  • DTX Due to the interactive nature of communication systems, DTX has different interpretations of two or more communication devices communicating.
  • DTX can be understood as a non-persistent sending mechanism.
  • the receiving device corresponding to the sending device configured with DTX the receiving device at this time can be understood as a non-continuous receiving mechanism in DTX.
  • DTX in this application refers to the non-persistent transmission mechanism at the cell level. Since network equipment can communicate with multiple terminal devices in the cell, for convenience of description, DTX at the cell level in this application can also be understood as network equipment.
  • DTX mechanism through the DTX mechanism of network equipment, energy saving of network equipment can be achieved.
  • the network device can set a transmission pattern to only transmit data in part of the time period within a transmission cycle, and do not send or receive data in other time periods.
  • the network device DTX mechanism can be used to reduce the power consumption of the network device.
  • the network device DTX mechanism can also be used to aggregate the data to be sent into time period A. Send, so that it can enter the DTX state in time period B to achieve static energy saving of network equipment.
  • Dis-continuous reception (DRX) mechanism enables the terminal to detect the physical downlink control channel (PDCCH) only within a specified time period, but this technology only works on some transmission channels and signals.
  • the base station cannot completely silence the base station through the DRX configuration of the UE.
  • the basic mechanism of DRX is to configure a DRX cycle for the terminal device in the radio resource control (RRC) connected state.
  • the DRX cycle consists of "on Duration” and “Opportunity for DRX”: During the "on duration” period, the terminal device detects and receives the physical downlink control channel (PDCCH) ); and during the "DRX opportunity” period, the terminal equipment does not detect the PDCCH to save power consumption.
  • PDCH physical downlink control channel
  • FIG. 2 is a schematic diagram of the DRX basic model provided by this application.
  • the terminal equipment in the RRC connected state periodically enters the activation time period and the deactivation time period.
  • the terminal equipment performs PDCCH detection, and when the terminal equipment enters the deactivation time During this period, the terminal equipment no longer detects the PDCCH, that is, the terminal equipment does not need to be in a state of detecting the PDCCH all the time, thereby achieving the purpose of reducing terminal power consumption.
  • the base station sends DRX configuration information to the terminal device, so that the terminal device enters the activation mode within a specified time period based on the DRX configuration information, and enters the deactivation mode at the rest of the time to achieve sleep under the DRX mechanism.
  • the DRX configuration mainly includes the following parameters:
  • Activation timer (on Duration Timer): It can be understood as a continuous number of downlink subframes, indicating the time that the terminal device can maintain after waking up from sleep state. Within this number of consecutive downlink subframes, the terminal device needs to listen to the physical downlink control channel.
  • DRX inactivity timer (DRX-Inactivity Timer): It can also be understood as a continuous number of downlink subframes.
  • the DRX inactivation timer is started when the terminal device successfully demodulates the first symbol after the reception of the PDCCH that schedules the new transmission (uplink or downlink) of the terminal device, indicating that the corresponding MAC receives a PDCCH indicating a new transmission.
  • the length of time to monitor PDCCH is also required. That is to say, it is necessary to continue to monitor the physical downlink control channel during the timing period of the DRX inactivation timer.
  • DCI Downlink control information
  • PDSCH physical downlink shared channel
  • SPS downlink semi-persistent scheduling
  • the terminal equipment will start at the starting moment of the first symbol after the end symbol of the physical uplink control channel (PUCCH) that carries the feedback information "ACK/NACK" of the PDSCH transmission.
  • PUCCH physical uplink control channel
  • RTT round trip time
  • DRX–Retransmission Timer uplink DRX retransmission timer
  • the terminal equipment is considered to be in the activation time period (Active Time) in any of the following situations; otherwise, it is considered to be in the deactivation time period (Inactive Time): activation time timer, DRX inactivation timer, downlink DRX resumption timer transmission timer and uplink DRX retransmission timer.
  • the terminal device when the terminal device sends a scheduling request and the scheduling request is in the "pending" state, and when the terminal device ends based on the non-contention random access process, the terminal device receives a PDCCH indicating a cell wireless network temporary identifier. When a new scrambled transmission is not successfully received, the terminal device is also considered to be in the activation period.
  • the terminal equipment during the operation of the activation time timer, DRX inactivation timer, downlink DRX retransmission timer, uplink DRX retransmission timer, and when the terminal device sends a scheduling request and the scheduling request is pending In the "pending" state and when the terminal equipment receives a PDCCH indicating that a new transmission scrambled by a cell wireless network temporary identifier has not been successfully received, the terminal equipment is in the time period for PDCCH detection, and in the remaining time periods, the terminal equipment is in a non-stop state.
  • the deactivation period for PDCCH detection is performed to reduce the power consumption of the terminal equipment.
  • the deactivation period may also be referred to as the dormancy period under the DRX mechanism.
  • This technology only works on some transmission channels and signals, and the base station cannot completely silence the base station through the UE's DRX configuration.
  • the base station cannot completely shut down the base station through the UE's DRX configuration. That is to say, the base station will still send some downlink signals when it is inactive.
  • the transmission of this part of the signal causes the power consumption of the base station to increase.
  • the UE still has to receive this signal when it is inactive.
  • Some signals for example, 1) SSB, PRACH, 2) SI/RA/TC/P-RNTI, PS-RNTI scrambled DCI, 3) SPS PDSCH, 4) CG PUSCH, 5) HARQ-ACK for SPS PDSCH, 6) SR/BFR, so the UE will receive the above signal during the DRX inactive Time, so the base station cannot turn off signal transmission during the DRX inactive Time of the UER, otherwise it will affect the UE reception. Therefore, the base station cannot turn off data transmission through the existing DRX configuration of the UE, that is, it cannot achieve sleep on the base station side.
  • the inactive Time of UE DRX does not take effect for some transmissions, and the existing UE DRX configuration is configured through RRC signaling.
  • the two reconfigurations take a long time and cannot be dynamically adjusted according to the dynamic changes of the service load. Flexibly and dynamically adjust the DRX configuration of UE received data to achieve maximum energy saving.
  • this application provides a data transmission method that can flexibly select a configuration mechanism according to the business load, thereby achieving bidirectional dynamic shutdown and reducing power consumption.
  • Figure 3 is a schematic flow chart of a data transmission method provided by this application.
  • the network device and the terminal device are used as the execution subjects of the interactive gesture as an example to illustrate the method, but this application does not limit the execution subjects of the interactive gesture.
  • the network device in Figure 3 can also be a chip, chip system, or processor that supports the methods that the network device can implement, or it can also be a logic module or software that can realize all or part of the functions of the access network device;
  • the terminal device in 3 may also be a chip, chip system or processor that supports the methods that the terminal device can implement, or it may be a logic module or software that can realize all or part of the functions of the terminal device.
  • the terminal device receives first indication information, where the first indication information is used to indicate the first DRX configuration.
  • the network device configures one or more DRX configurations to the terminal device, and the multiple DRX configurations are used for the terminal device not to receive or send different signals.
  • one or more DRX configurations correspond to signals. This correspondence can be understood as different DRX configurations are used to control different signals not to be sent or not received, or as signals controlled by different DRX configurations. Partly the same, it can also be understood that the signals controlled by different DRX configurations are completely different.
  • the first indication information is used to indicate a first DRX configuration, and the first DRX configuration belongs to one of one or more DRX configurations configured by the network device for the terminal device.
  • the first DRX configuration is used to control or instruct not to send or not to receive the first signal.
  • the first indication information may be carried in the first MAC-CE or the first DCI.
  • the first MAC CE or the first DCI is carried on a multicast or broadcast physical downlink channel.
  • S320 The terminal device does not receive or send the first signal according to the first DRX configuration.
  • the terminal device does not receive the first downlink signal or does not send the first uplink signal according to the first DRX configuration.
  • the terminal device does not receive or send the first signal within the first time window according to the first DRX configuration.
  • the first time window is the Inactive Time of the first DRX configuration.
  • the first DRX configuration controls the terminal device not to receive or not send the first signal within the first time window. At a time domain position outside the first time window, the terminal device may receive or send the first signal, or may continue not to receive or send the first signal.
  • the terminal device is set to receive or send the first signal within a second time window, for example, the second time window is the Active Time of the first DRX configuration.
  • the first DRX configuration control terminal device may receive or send the first signal within the second time window. At a time domain position outside the second time window, the terminal device may not receive or send the first signal, or may continue to receive or send the first signal.
  • the first signal may include at least one of the following four groups of channels:
  • the first group of channels includes at least one of the following signals: semi-static scheduling physical layer downlink shared channel SPS PDSCH, configuration authorized physical uplink shared channel CG PUSCH, hybrid automatic repeat request feedback HARQ-ACK for SPS PDSCH, scheduling Request SR or restore BFR after beam failure.
  • the second group of channels includes at least one of the following signals: system message wireless network temporary identifier SI-RNTI scrambled physical downlink control channel PDCCH, physical random access channel PRACH, random access wireless network temporary identifier RA-RNTI scrambled The scrambled PDCCH, or the temporary cell radio network temporary identifier TC-RNTI scrambled PDCCH;
  • the third group of channels includes: PDCCH scrambled by the paging radio network temporary identifier P-RNTI;
  • the fourth group of channels includes: synchronization signal/physical broadcast channel block SSB.
  • first group of channels are data-related channels
  • second group of channels are system message-related channels
  • third channel and the fourth channel can also be combined with the second group of channels.
  • the terminal device may not receive or send the second signal according to the second DRX configuration; wherein the second DRX configuration may be a default DRX configuration, or a UE-specific configuration configured by the network device through high-level signaling. Some DRX configurations.
  • the second signal includes at least one of the following signals: C/CS/SFI/INI/CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI scrambled PDCCH, dynamically scheduled PDSCH, DG PUSCH , dynamically schedule HARQ-ACK, A/P/SP-SRS and A/P/SP-CSI of PDSCH.
  • the terminal device receives second indication information from the network device, where the second indication information indicates the second DRX configuration.
  • the second indication information is carried in the first MAC-CE or the first DCI, and the first MAC-CE or the first DCI carries a downlink physical channel delivered by domain multicast or broadcast mode.
  • the first DRX configuration includes a first timer.
  • the terminal device receives the first indication information indicating the first DRX configuration
  • the first timer is started.
  • the first timer times out, then The end device uses a second DRX configuration.
  • the physical downlink channel where the first MAC-CE or the first DCI is located is different from the above-mentioned first signal, and/or the physical downlink channel where the first MAC-CE or the first DCI is located is different from the above-mentioned second signal.
  • the signals are different.
  • the signal carrying the first indication information and the second indication information is not affected by the first signal or the second signal.
  • the signal carrying the above-mentioned first indication information and the second indication information does not belong to DRX configuration control signal. That is, the reception of the first indication information or the second indication information is not affected by the restriction of the DRX configuration. That is, even during the inactive state of the DRX configuration, the terminal device still receives the first indication information and/or the second indication information, thereby realizing dynamic switching of the DRX configuration.
  • the terminal device can use different DRX configurations to control the sending or receiving status of different signals according to the instructions of the network device, and can flexibly select the configuration mechanism according to the business load, thereby realizing bidirectional communication between the network device and the terminal device. Dynamic shutdown to reduce power consumption.
  • Figure 4 is another schematic flow chart of a data transmission method provided by this application.
  • the network device and the terminal device are used as the execution subjects of the interactive gesture as an example to illustrate the method, but this application does not limit the execution subjects of the interactive gesture.
  • the network device in Figure 4 can also be a chip, chip system, or processor that supports the methods that the network device can implement, or it can also be a logic module or software that can implement all or part of the network device functions; in Figure 4
  • the terminal device may also be a chip, chip system or processor that supports the methods that the terminal device can implement, or it may be able to implement all or part of Logic modules or software for terminal device functions.
  • S410 The network device sends message #1 to the terminal device.
  • the message #1 includes a configuration information set, and the configuration information set includes at least one set of configuration information.
  • the configuration information may be DRX configuration.
  • DRX configuration is taken as an example for description.
  • the terminal device receives the message #1 from the network device, that is, receives the configuration information set.
  • the configuration information set is only a term used to describe one or more sets of configuration information (DRX configuration) configured by the network device to the terminal device.
  • the configuration information set can also be directly replaced by at least one piece of configuration information.
  • the configuration information set can also be used Configuration information set, configuration information database and other similar terms are used instead, which are not limited in the embodiments of this application.
  • configuration information described in this embodiment is all configuration information in the configuration information set. To avoid redundancy, the explanation will not be repeated.
  • DRX configurations are used to control the terminal device not to send and/or not receive different signals.
  • DRX configuration included in the configuration information set corresponds to the signal, and the corresponding relationship can be understood as that different DRX configurations are used to control the sending or receiving status of different signals.
  • the configuration information set includes DRX configuration #a, DRX configuration #b, and DRX configuration #c, where DRX configuration #a is used to control not sending or not receiving signal #a, and DRX configuration #b is used to control not sending or receiving signal #a. Not receiving signal #b, DRX configuration #c is used to control not sending or not receiving signal #c.
  • the configuration information set includes DRX configuration #a, DRX configuration #b, and DRX configuration #c, where DRX configuration #a is used to control not sending or not receiving signal #a, and DRX configuration #b is used to control not sending or receiving signal #a. Not to receive signal #a and signal #b, DRX configuration #c is used to control not to send or not to receive signal #a and signal #c.
  • signals are divided into uplink signals or downlink signals, and the DRX configuration is used to control not to send uplink signals, or the DRX configuration is used to not receive downlink signals.
  • the terminal device may pre-configure the configuration information set.
  • the network device may not send the message #1 to the terminal device.
  • the terminal device may store a set of configuration information sent historically. In this case, the network device may not send the message #1 to the terminal device.
  • the DRX configuration control signal in the configuration information set includes at least one group of channels in the first group of channels, the second group of channels, the third channel or the fourth group of channels.
  • the first group of channels includes at least one of the following signals: semi-statically scheduled physical layer downlink shared channel SPS PDSCH, configured authorized physical uplink shared channel CG PUSCH, hybrid automatic repeat request feedback HARQ-ACK for SPS PDSCH, Scheduling request SR or beam failure recovery BFR;
  • the second group of channels includes at least one of the following signals: system message wireless network temporary identifier SI-RNTI scrambled physical downlink control channel PDCCH, physical random access channel PRACH, random access wireless network temporary identifier RA-RNTI scrambled The scrambled PDCCH, or the temporary cell radio network temporary identifier TC-RNTI scrambled PDCCH;
  • the third group of channels includes: PDCCH scrambled by the paging radio network temporary identifier P-RNTI;
  • the fourth group of channels includes: synchronization signal/physical broadcast channel block SSB.
  • first group of channels are data-related channels
  • second group of channels are system message-related channels
  • third channel and the fourth channel can also be combined with the second group of channels.
  • message #1 may be RRC dedicated signaling or RRC common signaling.
  • message #1 when message #1 is RRC dedicated signaling, the message #1 is configured by the network device to a single UE.
  • message #1 is RRC common signaling, the RRC common signaling is usually placed in the SIB , multiple UEs receive the same signaling.
  • S420 The network device sends instruction information #1 to the terminal device.
  • the indication information #1 is used to indicate one or more DRX configurations in the configuration information set, for example, DRX configuration #a.
  • the terminal device receives the instruction information #1 from the network device, and determines the configuration information set in the configuration information set according to the instruction of the instruction information #1.
  • Determine DRX configuration #a if the indication information #1 indicates multiple DRX configurations, multiple DRX configurations can be determined, for example, DRX configuration #a, DRX configuration #b).
  • the instruction information #1 can be sent through multicast or broadcast.
  • the network device sends PDCCH/PDSCH at a certain time-frequency resource location, and all UEs receive PDCCH/PDSCH at the same time-frequency resource location.
  • the indication information #1 may be DCI sent in a broadcast or multicast mode, or MAC-CE carried in a PDSCH sent in a broadcast or multicast mode.
  • the above indication information #1 does not belong to the signal of DRX configuration control. That is, the reception of indication information #1 is not restricted or affected by the DRX configuration. That is, even during the inactive state of the DRX configuration, the UE can still receive the indication information #1 normally, thereby realizing dynamic switching of the DRX configuration.
  • the UE when the UE receives the indication information #1, it may be received on PCell, SCell, or both PCell/SCell.
  • the embodiments of the present application do not limit this.
  • the indication information #1 is used to indicate the DRX configuration #a in the configuration information set.
  • the specific indication method may be to indicate in the bit field in the indication information #1.
  • the mapping relationship between the value of the bit field and the DRX configuration is set.
  • This mapping relationship can be understood as the corresponding relationship between the value of the bit field and the DRX configuration.
  • the mapping relationship between the value of the bit field and the DRX configuration is set. Different values of correspond to different DRX configurations.
  • the DRX configurations are all DRX configurations in the configuration information set.
  • the following uses G-DCI or MAC-CE as an example to introduce a DRX configuration indication method for indicating information #1.
  • Different values of one bit field or several bits of G-DCI correspond to different DRX configurations.
  • the configuration information set includes DRX configuration #a, DRX configuration #b, DRX configuration #c and DRX configuration #d.
  • the bit field of G-DCI is "00".
  • the value of the bit field is "00" can determine different DRX configurations. For example, for UE#1, this value corresponds to DRX configuration #a, and for UE#2, this value corresponds to DRX configuration #b.
  • the indication information #1 indicates multiple DRX configurations (for example, DRX configuration #a, DRX configuration #b), for UE#1, the value "00" of the above bit field corresponds to DRX configuration #a and DRX configuration #b.
  • the UE can determine the corresponding relationship between the bit field value and the DRX configuration according to a method of mapping the index of the DRX configuration, or by arranging the DRX configuration in a certain order, which is not limited in the embodiments of this application.
  • bit positions in G-DCI correspond to different UEs, and the bit positions corresponding to the bit values correspond to the DRX configuration of the UE.
  • the configuration information set includes DRX configuration #a, DRX configuration #b, DRX configuration #c and DRX configuration #d.
  • the bit field of G-DCI is "00 01 10".
  • the corresponding bit determines the corresponding DRX configuration based on the value of the bit. For example, UE#1 corresponds to the "00" position, and UE#1 determines the corresponding DRX configuration #a based on this value; for another example, UE#2 corresponds to the "01" position, and UE#2 determines the corresponding DRX configuration #c based on this value. .
  • the indication information #1 indicates multiple DRX configurations (for example, DRX configuration #a, DRX configuration #b), for UE#1, UE#1 corresponds to the "00" position, and UE#1 determines the corresponding DRX based on this value. Configuration #a and DRX configuration #b.
  • S430 The terminal device does not receive and/or transmit signal #a according to DRX configuration #a.
  • the terminal device when the indication information #1 indicates multiple DRX configurations (for example, DRX configuration #a, DRX configuration #b), the terminal device does not receive and/or does not send signals #a and DRX configuration #b according to DRX configuration #a and DRX configuration #b. Signal #b.
  • the terminal device determines not to receive downlink signals or not to send uplink signals according to the indicated DRX configuration.
  • signal #a is a signal that DRX configuration #a can control to send or receive.
  • the terminal device controls the sending or receiving status of multiple signals according to the multiple DRX configurations.
  • the terminal device when the signals controlled by multiple DRX configurations do not overlap, the terminal device responds according to the multiple DRX configurations.
  • the setting can control the sending or receiving of multiple signals, that is, the corresponding signals are received or sent according to different DRX configurations.
  • the same signals can be received or sent according to one DRX configuration.
  • periodic reception or transmission is performed based on the on Duration Time and inactive Time in one set of configurations.
  • the above-mentioned signals can be received or sent according to a configuration with a relatively small configuration index, or the above-mentioned signals can be received or sent according to a configuration with the longest inactivation time duration, or the above-mentioned signals can be received or sent according to a configuration with the longest DRX cycle period.
  • a configuration performs the reception or transmission of the above signals. The embodiments of the present application do not limit this.
  • Figure 5 shows a schematic diagram of a method for multiple DRX configurations to control the transmission or reception of multiple signals.
  • the configuration information set includes three DRX configurations, including DRX configuration #1, DRX configuration #2, and DRX configuration #3. Among them, the three DRX configurations all control DG PUSCH, and DRX configuration #1 also controls DG PDSCH, the terminal equipment uses DRX configuration #1 and DRX configuration #2 according to the instruction information #1. As shown in the figure, the terminal equipment can receive DG PDSCH in the on Duration Time of DRX configuration #1; the terminal equipment can be configured in DRX #2’s on Duration Time is used to send DG PUSCH.
  • the terminal device sends the uplink DG PUSCH, it is determined that the DRX configuration with the longest DRX cycle is DRX configuration #2, and then the DG PUSCH is sent during the on Duration Time of DRX configuration #2.
  • the terminal device may also transmit the above signal according to a configuration with a relatively small configuration index, or according to a configuration with the longest inactivation time duration.
  • This application The embodiment does not limit this.
  • the same signal can be received or sent according to two DRX configurations.
  • periodic reception or transmission is performed based on the on Duration Time and inactive Time in the two sets of configurations.
  • Figure 6 shows a schematic diagram of another method for multiple DRX configurations to control the transmission or reception of multiple signals.
  • the configuration information set includes three DRX configurations, including DRX configuration #1, DRX configuration #2, and DRX configuration #3, where all three DRX configurations control DG PUSCH.
  • the terminal device uses DRX configuration #2 and DRX configuration #3 according to instruction information #1.
  • the terminal device can send DG PUSCH in both the on Duration Time of DRX configuration #2 and DRX configuration #3.
  • the terminal device sends the uplink DG PUSCH, it is determined that the DRX configuration with the longest DRX cycle is DRX configuration #3, and then the DG PUSCH is sent in the on Duration Time of DRX configuration #3.
  • the terminal device does not receive and/or sends the signal #y according to the DRX configuration #y.
  • DRX configuration #a can be understood as invalid, and DRX configuration #y is used to not receive and/or not send signal #y.
  • the indication information #1 indicates multiple DRX configurations (for example, DRX configuration #a, DRX configuration #b), and when the first condition is met, DRX configuration #a and DRX configuration #b can be understood as invalid, then use DRX configuration #y does not receive and/or does not transmit signal #y.
  • DRX configuration #y is the original DRX configuration or the default DRX configuration.
  • signal #y includes at least one of the following signals: C/CS/SFI/INI/CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI scrambled PDCCH, dynamically scheduled PDSCH, DG PUSCH , dynamically schedule HARQ-ACK, A/P/SP-SRS and A/P/SP-CSI of PDSCH.
  • the terminal device receives indication information #2 from the network device, and the indication information #2 indicates DRX configuration #y.
  • DRX configuration #a includes a first timer, and when the first timer times out, DRX configuration #y can be activated.
  • the terminal device sends a specific signal to the network device, and after receiving the specific signal, the network device sends a confirmation message to confirm that the terminal device can switch to DRX configuration #y.
  • the terminal device can use different DRX configurations to control the sending or receiving status of different signals according to the instructions of the network device, and can flexibly select the configuration mechanism according to the business load, thereby realizing bidirectional communication between the network device and the terminal device. Dynamic shutdown to reduce power consumption.
  • Figure 7 is a schematic block diagram of a communication device provided by this application.
  • the communication device 700 may include a transceiver unit 710 and/or a processing unit 720 .
  • the transceiver unit 710 includes a sending unit and/or a receiving unit.
  • the interface unit 710 may be a transceiver (including a transmitter and/or receiver), input/output interface (including input and/or output interface), pins or circuits, etc.
  • the interface unit 710 may be used to perform the sending and/or receiving steps in the above method embodiment.
  • the processing unit 720 may be a processor (which may include one or more), a processing circuit with processor functions, etc., and may be used to perform other steps except sending and receiving in the above method embodiment.
  • the communication device may also include a storage unit, which may be a memory, an internal storage unit (eg, register, cache, etc.), an external storage unit (eg, read-only memory, random access memory, etc.), etc. .
  • the storage unit is used to store instructions, and the processing unit 720 executes the instructions stored in the storage unit, so that the communication device performs the above method.
  • the communication device 1000 may correspond to the terminal device in the above methods 300 and 400, and may perform the operations performed by the network device in the methods 300 and 400.
  • the transceiver unit 710 is used to receive first indication information.
  • the first indication information is used to indicate a first non-continuous reception DRX configuration.
  • the first DRX configuration belongs to multiple DRX configurations.
  • the multiple DRX configurations are used to not receive or not send different DRX configurations.
  • signal, the first indication information is carried in the first media access control element MAC-CE or the first downlink control information DCI; the processing unit 720 is configured to not receive or not send the first signal according to the first DRX configuration.
  • transceiver unit 710 and the processing unit 720 can also perform other operations performed by the terminal device and the network device in any of the above-mentioned methods 300 and 400, which will not be described in detail here.
  • FIG. 8 is a structural block diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device 800 shown in FIG. 8 includes: a processor 810, a memory 820, and a transceiver 830.
  • the processor 810 is coupled to the memory 820 and is used to execute instructions stored in the memory 820 to control the transceiver 830 to send signals and/or receive signals.
  • processor 810 and the memory 820 can be combined into one processing device, and the processor 810 is used to execute the program code stored in the memory 820 to implement the above functions.
  • the memory 820 can also be integrated in the processor 810 or independent of the processor 810 .
  • the processor 810 may also correspond to each processing unit in the front communication device, and the transceiver 830 may correspond to each receiving unit and sending unit in the front communication device.
  • the transceiver 830 may include a receiver and a transmitter.
  • the transceiver may further include an antenna, and the number of antennas may be one or more.
  • the transceiver may also be a communication interface or interface circuit.
  • the communication device 800 may correspond to the terminal device and network device in the method 300 and the method 400 according to the embodiment of the present application.
  • the communication device 800 may include a unit of the method performed by the network device in the method 300 and the method 400, or include a unit of the method performed by the terminal device in the method 300 and the method 400. It should be understood that the specific process of each unit performing the above corresponding steps has been described in detail in the above method embodiments, and will not be described again for the sake of brevity.
  • the chip When the communication device 800 is a chip, the chip includes an interface unit and a processing unit.
  • the interface unit may be an input-output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • This application also provides a computer-readable medium on which a computer program is stored.
  • the computer program is executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which implements any of the above methods when executed by a computer.
  • Example function
  • a computer program product includes one or more computer instructions.
  • Computer instructions When computer instructions are loaded and executed on a computer, processes or functions according to embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g., computer instructions may be transmitted from a website, computer, server or data center via a wired link (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD)) )wait.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)
  • an embodiment means that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present application. Therefore, various embodiments are not necessarily referred to the same embodiment throughout this specification. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the names of all nodes and messages in this application are only the names set by this application for the convenience of description.
  • the names in the actual network may be different. It should not be understood that this application limits the names of various nodes and messages. On the contrary, any names with and The names of nodes or messages with the same or similar functions used in this application are regarded as methods or equivalent replacements in this application, and are all within the protection scope of this application.
  • system and “network” are often used interchangeably herein.
  • network and/or in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • At least one of! or "at least one of" herein refers to all or any combination of the listed items, for example, "at least one of A, B and C", It can mean: A exists alone, B exists alone, C exists alone, A and B exist simultaneously, B and C exist simultaneously, and A, B and C exist simultaneously. "At least one” in this article means one or more. "Multiple" means two or more.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the terms “including,” “includes,” “having,” and variations thereof all mean “including but not limited to,” unless otherwise specifically emphasized.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function. Division, there may be other division methods in actual implementation, for example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Abstract

本申请提供了一种数据传输的方法及通信装置,该方法包括:终端设备从网络设备接收第一指示信息,第一指示信息用于指示第一非持续接收DRX配置,第一DRX配置属于多个DRX配置,多个DRX配置用于不接收或不发送不同的信号,第一指示信息承载于第一媒体介入控制-控制元素MAC-CE或第一下行控制信息DCI中;根据第一DRX配置不接收或不发送第一信号。终端设备采用不同的DRX配置控制不同信号的发送或接收状态,能够根据业务负载灵活的选择配置机制,从而可以实现网络设备和终端设备双向的动态关断,降低功耗。

Description

一种数据传输的方法及通信装置
本申请要求于2022年8月12日提交中国专利局、申请号为202210968082.3、申请名称为“一种数据传输的方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种数据传输的方法及通信装置。
背景技术
随着第五代(5th generation,5G)通信系统的不断发展,使用的频谱越来越宽,配置的发送天线数目越来越多,接入网设备整体消耗功率越来越高。
值得关注的是,网络侧的功耗和业务负载并不成正比,每个传输时间间隔(transmission time interval,TTI)上接入网设备功耗都包括很多部分,例如与负载相关的动态功耗部分、与负载无关的静态功耗部分。也就是说,即使负载较轻时,与负载无关的静态部分仍然会导致接入网设备消耗能量。
现有NR协议中,支持给终端设备配置非连续接收(dis-continuous reception,DRX)机制,使能终端设备只在规定时间段进行下行控制信道(physical downlink control channel,PDCCH)检测,但是该技术只对部分传输信道、信号起作用,接入网设备并不能通过UE的DRX配置实现数据传输的关断,无法完全实现接入网侧的休眠。
当前通信过程中接入网设备无法通过UE现有的DRX配置机制实现数据传输的完全关断,导致接入网设备侧的功耗较高,从而造成不必要的能量损失。
发明内容
本申请提供一种数据传输的方法及通信装置,能够根据业务负载灵活的选择配置机制,从而可以实现双向的动态关断,降低功耗。
第一方面,提供了一种数据传输的方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或电路执行,或者,还可以由能实现全部或部分终端设备功能的逻辑模块或软件执行。本申请对此不作限定。
该方法包括:接收第一指示信息,第一指示信息用于指示第一非持续接收DRX配置,第一DRX配置属于多个DRX配置,多个DRX配置用于不接收或不发送不同的信号,第一指示信息承载于第一媒体介入控制-控制元素(medium access control-Control Element,MAC-CE)或第一下行控制信息(downlink control information,DCI)中;根据第一DRX配置不接收或不发送第一信号。
根据上述技术方案,终端设备可以根据网络设备的指示信息,采用不同的DRX配置控制不同信号的发送或接收状态,能够根据业务负载灵活的选择配置机制,从而可以实现网络设备和终端设备双向的动态关断,降低功耗。
本申请中,多个DRX配置用于不接收或不发送不同的信号,或者说,不同的DRX配置控制的信号部分相同,也可以说,不同DRX配置控制的信号完全不同。
结合第一方面,一种可能的实施方式中,根据第一DRX配置在第一时间窗内不接收或不发送第一信号。
该方案中,终端设备在第一DRX配置的非激活时间Inactive Time内不接收或不发送第一信号。
结合第一方面,一种可能的实施方式中,根据第一DRX配置在第二时间窗内接收或发送第一信号。
该方案中,终端设备在第一DRX配置的激活时间Active Time内接收或发送第一信号。
结合第一方面,一种可能的实施方式中,第一MAC CE或第一DCI承载于组播或广播的物理下行信道。
该方案中,通过广播或组播方式下发的指示信息和多套配置,相比于现有技术中通过专用RRC 信令下发DRX配置,可以节省信令开销。
结合第一方面,一种可能的实施方式中,第一信号包括第一组信道、第二组信道、第三组信道、或者第四组信道中的至少一组信道;其中,第一组信道包括如下信号中至少一种:半静态调度物理层下行共享信道(semi-persistent scheduling physical downlink control channel,SPS PDSCH)、配置授权物理上行共享信道(configured grant physical downlink shared channel,CG PUSCH)、SPS PDSCH的混合自动重传请求反馈(hybrid automatic repeat request-acknowledgment for semi-persistent scheduling physical downlink control channel,HARQ-ACK for SPS PDSCH)、调度请求(scheduling request,SR)、或者波束失败恢复(beam failure recovery,BFR);第二组信道包括如下信号中至少一种:系统消息无线网络临时标识符(system information-radio network temporary identifier,SI-RNTI)加扰的物理下行控制信道(physical downlink control channel,PDCCH)、物理随机接入信道(physical random access channel,PRACH)、随机接入无线网络临时标识符(random access-radio network temporary identifier,RA-RNTI)加扰的PDCCH、或者临时小区无线网络临时标识符(temporary cell-radio network temporary identifier,TC-RNTI)加扰的PDCCH;第三组信道包括:寻呼无线网络临时标识符(Paging-radio network temporary identifier,P-RNTI)加扰的PDCCH;第四组信道包括:同步信号/物理广播信道块(synchronization signal/PBCH,SSB)。
该方案中,UE在DRX inactive Time接收的一些半静态配置的下行信号和发送的一些半静态配置的上行信号,导致基站在UE的DRX inactive Time期间,也不能关断信号的传输。本申请中,通过指示信息指示DRX配置可以进行上述信号的发送或接收控制,从而可以使得基站和UE在不同的负载情况下,实现灵活的双向节能,克服现有技术DRX配置无法动态根据负载进行调整的问题。
结合第一方面,一种可能的实施方式中,根据第二DRX配置不接收或不发送第二信号,第二信号包括如下信号中至少一种:C/CS/SFI/INI/CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI加扰的PDCCH、动态调度的PDSCH、动态调度的物理上行共享信道(dynamic grant physical downlink shared channel,DG PUSCH)、动态调度PDSCH的HARQ-ACK、A/P/SP-SRS和A/P/SP-CSI。
结合第一方面,一种可能的实施方式中,满足第一条件时,根据第二DRX配置不接收或不发送第二信号,第一条件为以下至少一项:第二指示信息指示第二DRX配置;第一DRX配置包括第一定时器,且第一定时器超时。
该方案中,满足第一条件时,上述激活的DRX配置失效,使用老DRX配置,或网络设备通过高层信令配置的UE专有的DRX配置发送或接收信号。
结合第一方面,一种可能的实施方式中,第一MAC或第一DCI与第一信号或第二信号不同。
该方案中,第一MAC-CE或第一DCI所在的物理下行信道与上述第一信号不同,和/或,第一MAC-CE或第一DCI所在的物理下行信道与上述第二信号不同,则,上述第一指示信息或第二指示信息的接收不受DRX配置的限制的影响。即,即使在DRX配置的非激活态期间,终端设备仍然接收第一指示信息和/或第二指示信息,从而实现动态的切换DRX配置。
结合第一方面,一种可能的实施方式中,根据第一指示信息的比特域取值确定第一DRX配置。
该方案中,第一指示信息的一个比特域或者几个比特位的不同取值对应不同的DRX配置;或者,第一指示信息的比特位置对应不同的UE,比特位置对应比特取值对应UE的DRX配置。
第二方面,提供了一种数据传输的方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或电路执行,或者,还可以由能实现全部或部分网络设备功能的逻辑模块或软件执行。本申请对此不作限定。
该方法包括:确定第一非持续接收DRX配置,第一DRX配置属于多个DRX配置,多个DRX配置用于终端设备不接收或不发送不同的信号;发送第一指示信息,第一指示信息用于指示第一DRX配置,第一DRX配置用于终端设备不接收和/或不发送第一信号,第一指示信息承载于第一媒体介入控制-控制元素MAC-CE或第一下行控制信息DCI中。
根据上述技术方案,网络设备可以向终端设备发送指示信息,指示采用不同的DRX配置控制不同信号的发送或接收状态,能够根据业务负载灵活的选择配置机制,从而可以实现网络设备和终端设备双向的动态关断,降低功耗。
本申请中,多个DRX配置用于不接收或不发送不同的信号,或者说,不同的DRX配置控制的信 号部分相同,也可以说,不同DRX配置控制的信号完全不同。
结合第二方面,一种可能的实施方式中,第一DRX配置用于终端设备在第一DRX配置的第一时间窗内不接收或不发送第一信号。
该方案中,网络设备指示终端设备在第一DRX配置的Inactive Time内不接收或不发送第一信号。
结合第二方面,一种可能的实施方式中,第一DRX配置用于终端设备在第一DRX配置的第二时间窗内接收或发送第一信号。
该方案中,网络设备指示终端设备在第一DRX配置的Active Time内接收或发送第一信号。
结合第二方面,一种可能的实施方式中,第一MAC CE或第一DCI承载于组播或广播的物理下行信道。
该方案中,通过广播或组播方式下发的指示信息和多套配置,相比于现有技术中通过dedicated RRC信令下发DRX配置,可以节省信令开销。
结合第二方面,一种可能的实施方式中,第一信号包括第一组信道、第二组信道、第三组信道、或者第四组信道中的至少一组信道;其中,第一组信道包括如下信号中至少一种:半静态调度物理层下行共享信道SPS PDSCH、配置授权物理上行共享信道CG PUSCH、SPS PDSCH的混合自动重传请求反馈HARQ-ACK for SPS PDSCH、调度请求SR、或者波束失败恢复BFR;第二组信道包括如下信号中至少一种:系统消息无线网络临时标识符SI-RNTI加扰的物理下行控制信道PDCCH、物理随机接入信道PRACH、随机接入无线网络临时标识符RA-RNTI加扰的PDCCH、或者临时小区无线网络临时标识符TC-RNTI加扰的PDCCH;第三组信道包括:寻呼无线网络临时标识符P-RNTI加扰的PDCCH;第四组信道包括:同步信号/物理广播信道块SSB。
该方案中,UE在DRX inactive Time接收的一些半静态配置的下行信号和发送的一些半静态配置的上行信号,导致基站在UE的DRX inactive Time期间,也不能关断信号的传输。本申请中,通过指示信息指示DRX配置可以进行上述信号的发送或接收控制,从而可以使得基站和UE在不同的负载情况下,实现灵活的双向节能,克服现有技术DRX配置无法动态根据负载进行调整的问题。
结合第二方面,一种可能的实施方式中,发送第二指示信息,第二指示信息用于指示终端设备根据第二DRX配置接收和/或发送第二信号,第二信号包括如下信号中至少一种:C/CS/SFI/INI/CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI加扰的PDCCH、动态调度的PDSCH、DG PUSCH、动态调度PDSCH的HARQ-ACK、A/P/SP-SRS和A/P/SP-CSI。
该方案中,上述激活的DRX配置失效,使用默认的DRX配置,或网络设备通过高层信令配置的UE专有的DRX配置发送或接收信号。
结合第二方面,一种可能的实施方式中,第一DRX配置包括第一定时器,且第一定时器超时,终端设备根据第二DRX配置接收和/或发送第二信号。
该方案中,上述激活的DRX配置中的定时器超时时失效,使用老DRX配置,或网络设备通过高层信令配置的UE专有的DRX配置发送或接收信号。
结合第二方面,一种可能的实施方式中,第一MAC或第一DCI与第一信号或第二信号不同。
该方案中,第一MAC-CE或第一DCI所在的物理下行信道与上述第一信号不同,和/或,第一MAC-CE或第一DCI所在的物理下行信道与上述第二信号不同,则,上述第一指示信息或第二指示信息的接收不受DRX配置的限制的影响。即,即使在DRX配置的非激活态期间,终端设备仍然接收第一指示信息和/或第二指示信息,从而实现动态的切换DRX配置。
第三方面,提供了一种数据传输的装置,该装置可以是终端设备,或者,也可以是配置于终端设备中的芯片或电路,或者,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。本申请对此不作限定。
该装置包括:收发单元,用于接收第一指示信息,第一指示信息用于指示第一非持续接收DRX配置,第一DRX配置属于多个DRX配置,多个DRX配置用于不接收或不发送不同的信号,第一指示信息承载于第一媒体介入控制-控制元素MAC-CE或第一下行控制信息DCI中;处理单元,用于根据第一DRX配置不接收或不发送第一信号。
结合第三方面,一种可能的实施方式中,处理单元具体用于根据第一DRX配置在第一时间窗内不接收或不发送第一信号。
结合第三方面,一种可能的实施方式中,处理单元具体用于根据第一DRX配置在第二时间窗内接收或发送第一信号。
结合第三方面,一种可能的实施方式中,第一MAC CE或第一DCI承载于组播或广播的物理下行信道。
结合第三方面,一种可能的实施方式中,第一信号包括第一组信道、第二组信道、第三组信道、或者第四组信道中的至少一组信道;其中,第一组信道包括如下信号中至少一种:半静态调度物理层下行共享信道SPS PDSCH、配置授权物理上行共享信道CG PUSCH、SPS PDSCH的混合自动重传请求反馈HARQ-ACK for SPS PDSCH、调度请求SR、或者波束失败恢复BFR;第二组信道包括如下信号中至少一种:系统消息无线网络临时标识符SI-RNTI加扰的物理下行控制信道PDCCH、物理随机接入信道PRACH、随机接入无线网络临时标识符RA-RNTI加扰的PDCCH、或者临时小区无线网络临时标识符TC-RNTI加扰的PDCCH;第三组信道包括:寻呼无线网络临时标识符P-RNTI加扰的PDCCH;第四组信道包括:同步信号/物理广播信道块SSB。
结合第三方面,一种可能的实施方式中,处理单元还用于根据第二DRX配置不接收或不发送第二信号,第二信号包括如下信号中至少一种:C/CS/SFI/INI/CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI加扰的PDCCH、动态调度的PDSCH、DG PUSCH、动态调度PDSCH的HARQ-ACK、A/P/SP-SRS和A/P/SP-CSI。
结合第三方面,一种可能的实施方式中,满足第一条件时,处理单元用于根据第二DRX配置不接收或不发送第二信号,第一条件为以下至少一项:第二指示信息指示第二DRX配置;第一DRX配置包括第一定时器,且第一定时器超时。
结合第一方面,一种可能的实施方式中,第一MAC或第一DCI与第一信号或第二信号不同。
结合第一方面,一种可能的实施方式中,处理单元用于根据第一指示信息的比特域取值确定第一DRX配置。
第四方面,提供了一种数据传输的装置,该装置可以为网络设备,或者,也可以为配置于网络设备中的芯片或电路,或者,还可以为能实现全部或部分网络设备功能的逻辑模块或软件。本申请对此不作限定。
该装置包括:处理单元,用于确定第一非持续接收DRX配置,第一DRX配置属于多个DRX配置,多个DRX配置用于终端设备不接收或不发送不同的信号;收发单元,用于发送第一指示信息,第一指示信息用于指示第一DRX配置,第一DRX配置用于终端设备不接收和/或不发送第一信号,第一指示信息承载于第一媒体介入控制-控制元素MAC-CE或第一下行控制信息DCI中。
本申请中,多个DRX配置用于不接收或不发送不同的信号,或者说,不同的DRX配置控制的信号部分相同,也可以说,不同DRX配置控制的信号完全不同。
结合第四方面,一种可能的实施方式中,第一DRX配置用于终端设备在第一DRX配置的第一时间窗内不接收或不发送第一信号。
结合第四方面,一种可能的实施方式中,第一DRX配置用于终端设备在第一DRX配置的第二时间窗内接收或发送第一信号。
结合第四方面,一种可能的实施方式中,第一MAC CE或第一DCI承载于组播或广播的物理下行信道。
结合第四方面,一种可能的实施方式中,第一信号包括第一组信道、第二组信道、第三组信道、或者第四组信道中的至少一组信道;其中,第一组信道包括如下信号中至少一种:半静态调度物理层下行共享信道SPS PDSCH、配置授权物理上行共享信道CG PUSCH、SPS PDSCH的混合自动重传请求反馈HARQ-ACK for SPS PDSCH、调度请求SR、或者波束失败恢复BFR;第二组信道包括如下信号中至少一种:系统消息无线网络临时标识符SI-RNTI加扰的物理下行控制信道PDCCH、物理随机接入信道PRACH、随机接入无线网络临时标识符RA-RNTI加扰的PDCCH、或者临时小区无线网络临时标识符TC-RNTI加扰的PDCCH;第三组信道包括:寻呼无线网络临时标识符P-RNTI加扰的PDCCH;第四组信道包括:同步信号/物理广播信道块SSB。
结合第四方面,一种可能的实施方式中,收发单元还用于发送第二指示信息,第二指示信息用于指示终端设备根据第二DRX配置接收和/或发送第二信号,第二信号包括如下信号中至少一种: C/CS/SFI/INI/CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI加扰的PDCCH、动态调度的PDSCH、DG PUSCH、动态调度PDSCH的HARQ-ACK、A/P/SP-SRS和A/P/SP-CSI。
结合第四方面,一种可能的实施方式中,第一DRX配置包括第一定时器,且第一定时器超时,终端设备根据第二DRX配置接收和/或发送第二信号。
结合第四方面,一种可能的实施方式中,第一MAC或第一DCI与第一信号或第二信号不同。
第五方面,本申请提供了一种通信装置,该装置包括:至少一个处理器,该至少一个处理器与至少一个存储器耦合,该至少一个处理器用于执行该至少一个存储器中存储的计算机程序或指令,使得该装置执行上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
第六方面,本申请提供了一种计算机可读介质,该计算机可读存储介质上存储有计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得计算机可以实现上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
第七方面,本申请提供了一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令被执行时用于实现上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
第八方面,本申请提供了一种芯片系统,包括:处理器,该处理器用于执行该存储器中的计算机程序或指令,使得该芯片系统实现上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
第九方面,提供了一种通信装置,该装置包括处理器,该处理器用于执行上述第一方面至第二方面以及第一方面至第二方面中任一种可能实现方式中的方法。
以上第三方面至第九方面及任一方面可能的实施方式中的有益效果可参照第一方面及其可能的实施方式中的有益效果。
附图说明
图1是适用于本申请实施例的通信系统的网络架构的示意图。
图2是本申请提供的DRX基本模型的示意图。
图3是适用于本申请实施例的一种数据传输的方法的示意性流程图。
图4是适用于本申请实施例的一种数据传输的方法的又一示意性流程图。
图5是适用于本申请实施例的多个DRX配置控制多个信号发送或接收的一种方法的示意图。
图6是适用于本申请实施例的多个DRX配置控制多个信号发送或接收的又一种方法的示意图。
图7是适用于本申请实施例的一种通信装置的示意性框图。
图8是适用于本申请实施例的一种通信装置的结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、第五代(5th generation,5G)系统或新无线(new radio,NR)或者其他演进的通信系统等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(long term evolution-machine,LTE-M)、设备到设备(device-to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
图1是适用于本申请实施例的通信系统1000的架构示意图。如图1所示,该通信系统包括无线接 入网100和核心网200,可选地,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
接入网设备也可以称为接入设备,(R)AN能够管理无线资源,为用户设备提供接入服务,完成用户设备数据在用户设备和核心网之间的转发,(R)AN也可以理解为网络中的基站。
示例性地,本申请实施例中的接入网设备可以是用于与用户设备通信的任意一种具有无线收发功能的通信设备。该接入网设备包括但不限于:基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息由CU生成,最终会经过DU的PHY层封装变成PHY层信息,或者,由PHY层的信息转变而来。因而,在这种架构下,高层信令如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,本申请对此不做限定。
本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、UE、移动台、移动终端、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置等。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。
终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things, IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
可以理解,上述应用于本申请实施例的网络架构仅是一种举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
在未来的通信系统,例如6G通信系统中,上述网元或设备仍可以使用其在4G或5G通信系统中的名称,或者也可以有其它名称,本申请实施例对此不作限定。上述网元或设备的功能可以由一个独立网元完成,也可以由若干个网元共同完成。在实际部署中,核心网中的网元可以部署在相同或者不同的物理设备上。例如作为一种可能的部署,可以将AMF和SMF部署在同一个物理设备上。又例如,5G核心网的网元可以和4G核心网的网元部署在同一物理设备上。本申请实施例对此不作限定。
可以理解,图1只是一种示例,对本申请的保护范围不构成任何限定。本申请实施例提供的通信方法还可以涉及图1中未示出的网元,当然本申请实施例提供的通信方法也可以只包括图1示出的部分网元。
随着第五代(5th generation,5G)通信系统的不断发展,使用的频谱越来越宽,配置的发送天线数目越来越多,接入网设备整体消耗功率越来越高。但网络侧的功耗和业务负载并不成正比,每个传输时间间隔(transmission time interval,TTI)上接入网设备功耗都包括很多部分,例如与负载相关的动态功耗部分、与负载无关的静态功耗部分。也就是说,即使负载较轻时,与负载无关的静态部分仍然会导致接入网设备消耗能量。
现有NR协议中,支持给终端设备配置非连续接收(dis-continuous reception,DRX)机制,使能终端设备只在规定时间段进行下行控制信道(physical downlink control channel,PDCCH)检测,但是该技术只对部分传输信道、信号起作用,接入网设备并不能通过UE的DRX配置实现数据传输的关断,无法完全实现接入网侧的休眠。
如何能根据业务负载实现动态关断,降低接入网设备的功耗,已成为目前研究的重点问题。
为便于理解本申请实施例,对本申请中涉及到的术语做简单说明。
1、同步信号/物理广播信号(synchronization signals/PBCH,SSB):包括主同步信号(primary synchronization signals,PSS)、辅同步信号(secondary synchronization signals,SSS)、物理广播信道(physical broadcast channel,PBCH)。其中,PSS/SSS主要用于终端设备下行同步和获取小区标识(identification,ID),下行同步包括时钟同步,无线帧同步,符号同步。其中,PBCH主要用于承载主信息块(master information block,MIB),MIB中包括系统帧号(system frame number,SFN),子 载波间隔,调度系统信息(system information,SI)的PDCCH配置等信息。
2、物理随机接入信道(physical random access channel,PRACH):终端设备在随机接入的过程中,网络设备需要为终端设备配置PRACH用于接入系统。由于终端设备的移动使得终端设备和网络设备之间的距离是不确定的,所以如果终端设备需要发送消息到基站,则必须实时进行上行同步的维持管理。PRACH的目的就是为达到上行同步,建立终端设备和网络设备上行同步的关系以及请求网络设备分配给终端设备专用资源,使终端设备正常接入网络设备进行业务传输。
3、无线网络临时标识符(information-radio network temporary identifier,RNTI):RNTI用于区分或识别小区中连接的终端设备、特定无线信道或寻呼情况下的一组终端设备、接收功率控制参数的一组终端设备或者由网络设备为所有终端设备发送的系统信息。RNTI可以是一个16位标识符,其值取决于RNTI的类型。其中,用于寻呼(paging)的RNTI记为P-RNTI。除此之外还有用于数据调度的小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)、调制和编码方案小区无线网络临时标识(modulation and coding scheme cell radio network temporary identifier,MCS-C-RNTI)、配置调度无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)等。
4、物理下行控制信道(physical downlink control channel,PDCCH):UE是通过基站配置在搜索空间(search space)和控制资源集合CORESET(control resource set)确定基站可能发送PDCCH所占的时域、频域位置。
5、物理下行共享信道(physical downlink shared channel,PDSCH):NR下行数据的调度分为两类:一类是基于PDCCH动态调度的PDSCH,另一类是半静态调度的PDSCH;
动态调度就是发送一个PDCCH调度一个PDSCH,在每次发送PDSCH前,都需要发送一个PDCCH。PDCCH中包括调度的PDSCH的时域位置、频域位置等信息,终端设备根据这些信息去接收PDSCH。
而半静态调度就是网络设备发送一个PDCCH,这个PDCCH激活RRC信令配置的半静态调度配置,半静态配置包括PDSCH下发的周期,终端设备按照这个周期,周期性的接收PDSCH,PDSCH的在不同slot中的时域频域位置,都是根据激活PDCCH中的时域频域资源分配来确定的。
6、物理上行共享信道(physical downlink shared channel,PUSCH):当前PUSCH的发送也可以分为三类:
A、动态授权、dynamic grant、grant based,本质上就是基于PDCCH动态调度的PUSCH发送(调度机制类似基于PDCCH动态调度的PDSCH接收)。
B、configured grant type 1,基站通过RRC信令configuredGrantConfig给UE下发配置,信令包含rrc-ConfiguredUplinkGrant,UE如果有PUSCH发送的需求,可以直接按照这个配置发送PUSCH,不需要等待基站下发DCI调度或激活;这种方式也叫grant free的PUSCH
C、configured grant type 2,基站首先下发RRC层信令configuredGrantConfig(不包含rrc-ConfiguredUplinkGrant),然后UE需要接收到基站下发的DCI来激活该配置。UE激活之后,便在固定资源固定时间进行周期性的数据传输。这种方式也叫半静态的PUSCH(类似半静态PDSCH)。
7、信号参考信号(sounding reference signal,SRS)和信道状态信息(channel state information):SRS是UE发送给基站用于测量信道质量的信号;CSI是基站发送的CSI-RS,UE接收测量之后的上报信息;SRS和CSI上报,都是UE发送的上行信号,分为非周期/周期/半静态(A/P/SP,Aperiodic/Persistent/Semi Persistent)三种:
A-SRS/A-CSI,基于基站下发PDCCH触发的上行信号发送,触发一次发送一次(类似动态PDSCH/PUSCH调度);
P-SRS/P-CSI,是周期性的发送,即基站配置了SRS/CSI上报的RRC信令配置,UE按照这个配置周期的发送SRS/CSI上报;
SP-SRS/SP-CSI也是周期性发送,但是需要基站配置RRC配置并且需要基站下发PDCCH触发,UE才能按照配置周期性的发送;(类似configured grant type 2/SPS PDSCH)。
8、信道状态信息参考信号(channel state information reference signal,CSI-RS):CSI-RS是基站发送的下行参考信号,UE接收并测量(测量就在上述CSI上报中发送给基站);UE的CSI-RS测量行为,也分为A/P/SP三种:
A-CSI-RS,基于基站下发PDCCH告诉UE在哪里进行测量,触发一次测一次(类似动态 PDSCH/PUSCH调度);
P-CSI-RS,是周期性的测量,即基站配置了CSI-RS测量配置,UE按照配置周期的测量信道;
SP-CSI也是周期性的测量,但是需要基站配置CSI-RS测量配置并且需要基站下发PDCCH触发,UE才能按照配置周期性进行测量;(类似configured grant type 2/SPS PDSCH)。
9、非持续传输(dis-continuous transmission,DTX)机制:为了进一步降低通信设备的功率消耗,可以使能通信设备在一段时间内不发送数据传输,或者,可以使能通信设备在一段时间内不发送全部信道或者部分信道。这种降低通信设备功率消耗的方式可以称为DTX机制。
由于通信系统的交互性,DTX对于通信的两个或者多个通信设备有不同的解读。对于发送设备,DTX可以理解为非持续发送机制,对于与配置了DTX的发送设备对应的接收设备,此时的接收设备在DTX可以理解为非持续接收机制。为方便描述,本申请中的DTX指代小区级的非持续传输机制,由于网络设备可以和小区内的多个终端设备通信,为方便描述,本申请中小区级的DTX也可以理解为网络设备DTX机制,通过网络设备DTX机制,可以实现网络设备的节能。
例如,网络设备可以设置一个传输图样,在一个传输周期内只在部分时间段上进行数据传输,在其他时间段都不进行数据收发。
当没有业务负载的时候,可以采用网络设备DTX机制,从而降低网络设备的功耗。
当业务负载很轻的时候,很多传输时间间隔上虽然有数据传输,但传输时间间隔的资源利用率很低,此时也可以采用网络设备DTX机制,通过将待发送的数据汇集到时间段A发送,从而可以在时间段B进入DTX状态,实现网络设备的静态节能。
10、非持续接收(dis-continuous reception,DRX)机制:使能终端只在规定时间段进行下行控制信道(physical downlink control channel,PDCCH)检测,但是该技术只对部分传输信道、信号起作用,基站并不能通过UE的DRX配置完全实现基站的静默。
DRX的基本机制是为处于无线资源控制(radio resource control,RRC)连接态的终端设备配置一个DRX周期。DRX周期由“持续时间(on Duration)”和“DRX的机会”(Opportunity for DRX)组成:在“持续时间”的时间段内,终端设备检测并接收物理下行控制信道(physical downlink control channel,PDCCH);而在“DRX的机会”的时间段内,终端设备不检测PDCCH以节省功耗。
其中,本申请中,将“持续时间”的时间段也称为激活时间段,将“DRX的机会”的时间段也称为去激活时间段。示例性地,图2为本申请提供的DRX基本模型的示意图。如图2所示,处于RRC连接态的终端设备周期性地进入激活时间段和去激活时间段,当终端设备进入激活时间段时,终端设备进行PDCCH的检测,而当终端设备进入去激活时间段时,终端设备不再进行PDCCH的检测,即不需要终端设备一直处于检测PDCCH的状态,从而达到降低终端功耗的目的。
目前,基站通过向终端设备发送DRX配置信息,以使得终端设备基于DRX配置信息在规定时间段内进入激活模式,而在其余时间进入去激活模式,以实现DRX机制下的休眠。具体地,在DRX配置中主要包括以下参数:
激活时间定时器(on Duration Timer):可以理解为一段连续的下行子帧数,表示终端设备在从休眠状态唤醒后所能维持的时间。在该段连续的下行子帧数内,终端设备需要侦听物理下行控制信道。
DRX非激活定时器(DRX–Inactivity Timer):同样可以理解为一段连续的下行子帧数。该DRX非激活定时器在终端设备成功解调出属于调度该终端设备新传(上行或下行)的PDCCH接收结束后的第一个符号启动,表示对应MAC在接收到一个指示新传的PDCCH后还需要监听PDCCH的时长。也就是说,在该DRX非激活定时器的定时时间段内也需要继续监听物理下行控制信道。
下行混合自动重传请求(hybrid automatic repeat request,HARQ)往返时延(round trip time,RTT)定时器(Timer)和下行DRX重传定时器(DRX–Retransmission Timer):当终端设备收到1个下行控制信息(downlink control information,DCI)指示一个物理下行共享控制信道(physical downlink shared channel,PDSCH)传输或者一个下行半持续调度(semi-persistent scheduling,SPS)的PDSCH传输被接收(不区分PDSCH是新传还是重传),终端设备会在承载该PDSCH传输的反馈信息“ACK/NACK”的物理上行控制信道(physical uplink control channel,PUCCH)的结束符号后的第一个符号起始时刻,启动下行HARQ-RTT-Timer并停止下行DRX重传定时器;当下行HARQ-RTT-Timer结束且终端设备没有成功接收该PDSCH传输,启动下行DRX重传定时器,如果终端设备成功接收该PDSCH传输, 则不启动下行Retransmission Timer。
上行混合自动重传请求(hybrid automatic repeat request,HARQ)往返时延(round trip time,RTT)定时器(Timer)和上行DRX重传定时器(DRX–Retransmission Timer):当终端设备收到1个DCI指示一个物理上行共享控制信道(physical uplink shared channel,PUSCH)传输或者一个上行配置授权(configured grant,CG)类型的PUSCH传输被激活,终端设备会在该PUSCH传输的第一个重复(repetition)的结束符号后第一个符号起始时刻,启动上行HARQ-RTT-Timer并停止上行行DRX重传定时器;当上行HARQ-RTT-Timer结束启动上行Retransmission Timer。
综上,终端设备在如下任一情况被认为是在激活时间段(Active Time),否则,认为是在去激活时间段(Inactive Time):激活时间定时器、DRX非激活定时器、下行DRX重传定时器、上行DRX重传定时器的运行期间。
此外,在DRX机制下,当终端设备发送调度请求且该调度请求处于悬挂“pending”状态,以及当终端设备基于非竞争随机接入过程结束后,终端设备收到PDCCH指示一个小区无线网络临时标识加扰的一个新传没有被成功接收时,终端设备也被认为是处于激活时间段。
也就是说,对于DRX机制,在激活时间定时器、DRX非激活定时器、下行DRX重传定时器、上行DRX重传定时器的运行期间、以及在终端设备发送调度请求且该调度请求处于悬挂“pending”状态和终端设备收到PDCCH指示一个小区无线网络临时标识加扰的一个新传没有被成功接收时,终端设备处于进行PDCCH的检测的时间段,而在其余时间段,终端设备处于不进行PDCCH检测的去激活时间段,以降低终端设备的功耗。
本申请中将去激活时间段也可以称为DRX机制下的休眠时间段。
该技术只对部分传输信道、信号起作用,基站并不能通过UE的DRX配置完全实现基站的静默。基站并不能通过UE的DRX配置完全实现基站的关断,也就是说,基站在inactive下仍然会发送部分下行信号,这一部分信号的发送导致基站的功耗增加,UE在inactive下仍然要接收这一部分信号,例如,1)SSB、PRACH,2)SI/RA/TC/P-RNTI、PS-RNTI加扰的DCI,3)SPS PDSCH,4)CG PUSCH,5)HARQ-ACK for SPS PDSCH,6)SR/BFR,因此UE会在DRX inactive Time接收如上信号,所以基站在UER的DRX inactive Time期间,也不能关断信号的传输,否则会影响UE接收。所以基站无法通过UE现有的DRX配置实现数据传输的关断,也就是无法做到基站侧的休眠。
从上文可见,UE DRX的inactive Time对一些传输并不生效,且现有的UE DRX配置是通过RRC信令配置的,两次重配时间较长,无法动态的根据业务负载的动态变化,灵活动态的调整UE接收数据的DRX配置,以达到最大限度的节能。
有鉴于此,本申请提供一种数据传输的方法,能够根据业务负载灵活的选择配置机制,从而可以实现双向的动态关断,降低功耗。
以下介绍本申请的具体方案。
图3是本申请提供的一种数据传输的方法的示意性流程图。
本实施例中以网络设备和终端设备作为交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图3中的网络设备也可以是支持该网络设备所能实现的方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分接入网设备功能的逻辑模块或软件;图3中的终端设备也可以是支持该终端设备所能实现的方法的芯片、芯片系统或处理器,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。
S310,终端设备接收第一指示信息,第一指示信息用于指示第一DRX配置。
本申请中,网络设备向终端设备配置一个或多个DRX配置,该多个DRX配置用于终端设备不接收或不发送不同的信号。
一种可选的理解,一个或多个DRX配置与信号对应,该对应关系可以理解为,不同的DRX配置用于控制不同信号不发送或不接收,也可以理解为不同的DRX配置控制的信号部分相同,也可以理解为不同DRX配置控制的信号完全不同。
其中,第一指示信息用于指示第一DRX配置,该第一DRX配置属于网络设备给终端设备配置的一个或多个DRX配置中的一个。
其中,第一DRX配置用于控制或指示第一信号的不发送或不接收。
本申请中,第一指示信息可以承载于第一MAC-CE或第一DCI中。
一种可能的实施方式中,第一MAC CE或第一DCI承载于组播或广播的物理下行信道。
S320,终端设备根据第一DRX配置不接收或不发送第一信号。
终端设备根据第一DRX配置不接收下行的第一信号或者不发送上行的第一信号。
一种可能的实施方式中,终端设备根据第一DRX配置在第一时间窗内不接收或不发送第一信号,比如第一时间窗是第一DRX配置的Inactive Time。
一种可选的理解,第一DRX配置控制终端设备在第一时间窗内不接收或不发送第一信号。在第一时间窗以外的时域位置,终端设备可以接收或发送第一信号,也可以继续不接收或不发送第一信号。
一种可能的实施方式中,终端设备置在第二时间窗内接收或发送第一信号,比如第二时间窗是第一DRX配置的Active Time。
一种可选的理解,第一DRX配置控制终端设备可以在第二时间窗内接收或发送第一信号。在第二时间窗以外的时域位置,终端设备可以不接收或不发送第一信号,也可以继续接收或发送第一信号。
本申请中,示例性的,第一信号可以包括如下四组信道中的至少一组:
第一组信道包括如下信号中的至少一种:半静态调度物理层下行共享信道SPS PDSCH、配置授权物理上行共享信道CG PUSCH、SPS PDSCH的混合自动重传请求反馈HARQ-ACK for SPS PDSCH、调度请求SR、或者波束失败恢复BFR。
第二组信道包括如下信号中至少一种:系统消息无线网络临时标识符SI-RNTI加扰的物理下行控制信道PDCCH、物理随机接入信道PRACH、随机接入无线网络临时标识符RA-RNTI加扰的PDCCH、或者临时小区无线网络临时标识符TC-RNTI加扰的PDCCH;
第三组信道包括:寻呼无线网络临时标识符P-RNTI加扰的PDCCH;
第四组信道包括:同步信号/物理广播信道块SSB。
可以理解,上述第一组信道为数据相关的信道,第二组信道为系统消息相关的信道,第三信道和第四信道也可以与第二组信道合并。
一种可能的实施方式中,终端设备还可以根据第二DRX配置不接收或不发送第二信号;其中,第二DRX配置可以是默认的DRX配置,或者网络设备通过高层信令配置的UE专有的DRX配置。
其中,第二信号包括如下信号中至少一种:C/CS/SFI/INI/CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI加扰的PDCCH、动态调度的PDSCH、DG PUSCH、动态调度PDSCH的HARQ-ACK、A/P/SP-SRS和A/P/SP-CSI。
一种可能的实施方式中,终端设备从网络设备接收第二指示信息,该第二指示信息指示第二DRX配置。其中,第二指示信息承载于第一MAC-CE或第一DCI中,第一MAC-CE或第一DCI承载域组播或广播方式下发的下行物理信道。
一种可能的实施方式中,第一DRX配置中包括第一定时器,当终端设备接收到指示第一DRX配置的第一指示信息时启动该第一定时器,当第一定时器超时,则终端设备使用第二DRX配置。
一种可能的实现方式,第一MAC-CE或第一DCI所在的物理下行信道与上述第一信号不同,和/或,第一MAC-CE或第一DCI所在的物理下行信道与上述第二信号不同。
一种可选的理解,承载第一指示信息和第二指示信息的信号不受第一信号或第二信号的影响,换句话说,承载上述第一指示信息和第二指示信息的信号不属于DRX配置控制的信号。即,第一指示信息或第二指示信息的接收不受DRX配置的限制的影响。也即,即使在DRX配置的非激活态期间,终端设备仍然接收第一指示信息和/或第二指示信息,从而实现动态的切换DRX配置。
根据本申请实施例的方案,终端设备可以根据网络设备的指示,采用不同的DRX配置控制不同信号的发送或接收状态,能够根据业务负载灵活的选择配置机制,从而可以实现网络设备和终端设备双向的动态关断,降低功耗。
图4是本申请提供的一种数据传输的方法的又一示意性流程图。
本实施例中以网络设备和终端设备作为交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图4中的网络设备也可以是支持该网络设备所能实现的方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分网络设备功能的逻辑模块或软件;图4中的终端设备也可以是支持该终端设备所能实现的方法的芯片、芯片系统或处理器,还可以是能实现全部或部分 终端设备功能的逻辑模块或软件。
S410,网络设备向终端设备发送消息#1。
其中,该消息#1包括配置信息集合,该配置信息集合包括至少一套配置信息。
该配置信息可以是DRX配置。以下实施例中,以DRX配置为例进行说明。
相应的,终端设备从网络设备接收该消息#1,即,接收该配置信息集合。
本申请中,配置信息集合仅为描述网络设备给终端设备配置的一套或多套配置信息(DRX配置)的术语,配置信息集合也可以直接替换为至少一个配置信息,配置信息集合也可以用配置信息集,配置信息库等类似术语代替,本申请实施例对此不作限定。
可以理解,本实施例中描述的配置信息均为该配置信息集合中的配置信息。为避免赘述,不再重复说明。
本申请中,在配置信息集合中,不同的DRX配置用于控制终端设备不发送和/或不接收不同的信号。
一种可选的理解,配置信息集合中包括的DRX配置与信号对应,该对应关系可以理解为,不同的DRX配置用于控制不同信号的发送或接收状态。
例如,配置信息集合包括了DRX配置#a,DRX配置#b,DRX配置#c,其中,DRX配置#a用于控制不发送或不接收信号#a,DRX配置#b用于控制不发送或不接收信号#b,DRX配置#c用于控制不发送或不接收信号#c。
一种可选的理解,对应关系可以理解为,不同的DRX配置控制的信号部分相同。
例如,配置信息集合包括了DRX配置#a,DRX配置#b,DRX配置#c,其中,DRX配置#a用于控制不发送或不接收信号#a,DRX配置#b用于控制不发送或不接收信号#a和信号#b,DRX配置#c用于控制不发送或不接收信号#a和信号#c。
需要说明的是,信号分为上行信号或下行信号,DRX配置用于控制上行信号不发送,或者,DRX配置用于下行信号不接收。
需要说明的是,该步骤为可选的步骤。
一种可能的实施方式中,终端设备可以预配置该配置信息集合,此情况下,网络设备可以不向终端设备发送该消息#1。
又一种可能的实施方式中,终端设备可以存储历史发送的配置信息集合,此情况下,网络设备也可以不向终端设备发送该消息#1。
本申请中,配置信息集合中的DRX配置控制的信号包括第一组信道、第二组信道、第三信道或第四组信道中的至少一组信道。
其中,第一组信道包括如下信号中至少一种:半静态调度物理层下行共享信道SPS PDSCH、配置授权物理上行共享信道CG PUSCH、SPS PDSCH的混合自动重传请求反馈HARQ-ACK for SPS PDSCH、调度请求SR、或者波束失败恢复BFR;
第二组信道包括如下信号中至少一种:系统消息无线网络临时标识符SI-RNTI加扰的物理下行控制信道PDCCH、物理随机接入信道PRACH、随机接入无线网络临时标识符RA-RNTI加扰的PDCCH、或者临时小区无线网络临时标识符TC-RNTI加扰的PDCCH;
第三组信道包括:寻呼无线网络临时标识符P-RNTI加扰的PDCCH;
第四组信道包括:同步信号/物理广播信道块SSB。
可以理解,上述第一组信道为数据相关的信道,第二组信道为系统消息相关的信道,第三信道和第四信道也可以与第二组信道合并。
作为示例而非限定,消息#1可以是RRC dedicated信令,或是RRC common信令。
需要说明的是,当消息#1是RRC dedicated信令时,该消息#1是网络设备配置给一个单独的UE的,当消息#1是RRC common信令时,RRC common信令通常放在SIB中,多个UE接收相同的信令。
S420,网络设备向终端设备发送指示信息#1。
一种可能的实施方式中,该指示信息#1用于指示配置信息集合中的一个或多个DRX配置,例如,DRX配置#a。
相应的,终端设备从网络设备接收该指示信息#1,并根据指示信息#1的指示在配置信息集合中确 定DRX配置#a(如果指示信息#1指示多个DRX配置,则可以确定多个DRX配置,例如,DRX配置#a、DRX配置#b)。
本申请中,指示信息#1可以通过组播方式发送,也可以通过广播方式发送。
一种可选的理解,网络设备在某一个时频资源位置发送PDCCH/PDSCH,所有UE到相同的时频资源位置接收PDCCH/PDSCH。
作为示例而非限定,指示信息#1可以是广播或组播方式下发送的DCI,或者广播或组播方式下发送的PDSCH中承载的MAC-CE。
需要说明的是,上述指示信息#1不属于DRX配置控制的信号。即,指示信息#1的接收不受DRX配置的限制和影响。也即,即使在DRX配置的非激活态期间,UE仍然可以正常接收指示信息#1,从而实现动态的切换DRX配置。
本申请中,UE接收该指示信息#1,可以是在PCell上接收,或SCell上接收,或在PCell/SCell上都可以接收。本申请实施例对此不作限定。
一种可能的实现方式中,指示信息#1用于指示配置信息集合中的DRX配置#a,具体的指示方式可以是在指示信息#1中的比特域中指示。
作为示例而非限定,在指示信息#1中,设置比特域的取值和DRX配置的映射关系,该映射关系可以理解为比特域的取值与DRX配置的对应关系,换句话说,比特域的不同取值对应不同的DRX配置。
可以理解,DRX配置均为配置信息集合中的DRX配置。
以下以G-DCI或MAC-CE为例介绍指示信息#1的一种DRX配置的指示方法。
方法一:
G-DCI的一个比特域或者几个比特位的不同取值对应不同的DRX配置。
例如,配置信息集合中包括DRX配置#a、DRX配置#b、DRX配置#c和DRX配置#d,G-DCI的比特域是“00”,对于不同的UE来说,针对比特域取值“00”可以确定不同的DRX配置。例如,对于UE#1来说,该取值对应DRX配置#a,对于UE#2来说,该取值对应DRX配置#b。
当指示信息#1指示多个DRX配置(例如,DRX配置#a、DRX配置#b),对于UE#1来说,上述比特域取值“00”对应DRX配置#a和DRX配置#b。
具体的,UE可以根据映射DRX配置的索引的方式,或者是按照一定的顺序排列DRX配置来确定比特域取值和DRX配置的对应关系,本申请实施例对此不作限定。
方法二:
G-DCI中的比特位置对应不同的UE,比特位置对应比特取值对应UE的DRX配置。
例如,配置信息集合中包括DRX配置#a、DRX配置#b、DRX配置#c和DRX配置#d,G-DCI的比特域是“00 01 10”,对于不同的UE来说,可以找到对应的比特位,进而根据比特位的取值确定对应的DRX配置。例如,UE#1对应“00”位置,UE#1根据该取值确定对应DRX配置#a;再例如,UE#2对应“01”位置,UE#2根据该取值确定对应DRX配置#c。
当指示信息#1指示多个DRX配置(例如,DRX配置#a、DRX配置#b),对于UE#1来说,UE#1对应“00”位置,UE#1根据该取值确定对应DRX配置#a和DRX配置#b。
以上举例仅为示例性说明,对本本申请实施例不作任何限定。
需要说明的是,上述方式仅为举例,通过比特域指示配置信息的任何可能的实施方案均可适用于本申请实施例。
S430,终端设备根据DRX配置#a不接收和/或不发送信号#a。
可以理解,当指示信息#1指示多个DRX配置(例如,DRX配置#a、DRX配置#b),终端设备根据DRX配置#a和DRX配置#b不接收和/或不发送信号#a和信号#b。
本申请中,终端设备根据指示的DRX配置来确定不接收下行信号或者不发送上行信号。
其中,信号#a为DRX配置#a可以控制发送或接收的信号。
需要说明的是,当指示信息#1指示多个DRX配置,则终端设备根据该多个DRX配置控制多个信号的发送或接收状态。
一种可能的实施方式中,当多个DRX配置控制的信号没有重复,则终端设备根据该多个DRX配 置可以控制多个信号的发送或接收,即,对应的信号按照不同DRX配置进行接收或发送。
一种可能的实施方式中,当多个DRX配置控制的信号有重复,也就是说,部分信号相同,则相同的信号可以按照一个DRX配置进行接收或发送。换句话说,根据其中一套配置中的on Duration Time和inactive Time进行周期性的接收或发送。
其中,可以按照配置索引相对较小的一个配置进行上述信号的接收或发送,也可以按照非激活时间持续时间最长的一个配置进行上述信号的接收或发送,也可以按照DRX循环周期最长的一个配置进行上述信号的接收或发送。本申请实施例对此不做限定。
图5示出了多个DRX配置控制多个信号发送或接收的一种方法示意图。如图5中所示,配置信息集合包括三个DRX配置,包括DRX配置#1,DRX配置#2,DRX配置#3,其中,三个DRX配置都控制DG PUSCH,DRX配置#1还控制DG PDSCH,终端设备根据指示信息#1使用DRX配置#1,DRX配置#2,如图中所示,终端设备可以在DRX配置#1的on Duration Time进行DG PDSCH的接收;终端设备可以在DRX配置#2的on Duration Time进行DG PUSCH的发送。
可以理解,终端设备发送上行DG PUSCH时,确定DRX cycle周期最长的DRX配置为DRX配置#2,则在DRX配置#2的on Duration Time进行DG PUSCH的发送。
应理解,以上仅为示例性说明,终端设备也可以按照配置索引相对较小的一个配置进行上述信号的发送,或是按照非激活时间持续时间最长的一个配置进行上述信号的发送,本申请实施例对此不作限定。
一种可能的实施方式中,当多个DRX配置控制的信号有重复,也就是说,部分信号相同,则相同的信号可以按照两个DRX配置进行接收或发送。换句话说,根据两套配置中的on Duration Time和inactive Time进行周期性的接收或发送。
图6示出了多个DRX配置控制多个信号发送或接收的另一种方法示意图。如图6中所示,配置信息集合包括三个DRX配置,包括DRX配置#1,DRX配置#2,DRX配置#3,其中,三个DRX配置都控制DG PUSCH。终端设备根据指示信息#1使用DRX配置#2和DRX配置#3,如图中所示,终端设备可以在DRX配置#2和DRX配置#3的on Duration Time都进行DG PUSCH的发送。
可以理解,终端设备发送上行DG PUSCH时,确定DRX cycle周期最长的DRX配置为DRX配置#3,则在DRX配置#3的on Duration Time进行DG PUSCH的发送。
应理解,以上仅为示例性说明,对本申请实施例不作任何限定。
S440,终端设备根据DRX配置#y不接收和/或不发送信号#y。
当满足第一条件时,DRX配置#a可以理解为失效,则使用DRX配置#y不接收和/或不发送信号#y。
可以理解,当指示信息#1指示多个DRX配置(例如,DRX配置#a、DRX配置#b),当满足第一条件时,DRX配置#a和DRX配置#b可以理解为失效,则使用DRX配置#y不接收和/或不发送信号#y。
其中,DRX配置#y为原有的DRX配置或是默认的DRX配置。
其中,信号#y包括如下信号中至少一种:C/CS/SFI/INI/CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI加扰的PDCCH、动态调度的PDSCH、DG PUSCH、动态调度PDSCH的HARQ-ACK、A/P/SP-SRS和A/P/SP-CSI。
一种可能的实施方式中,终端设备从网络设备接收指示信息#2,该指示信息#2指示DRX配置#y。
一种可能的实施方式中,DRX配置#a中包括第一定时器,当该第一定时器超时,则可以激活DRX配置#y。
一种可能的实施方式中,终端设备向网络设备发送特定信号,网络设备收到该特定信号后发送确认信息确认终端设备可以切换至DRX配置#y。
根据本申请实施例的方案,终端设备可以根据网络设备的指示,采用不同的DRX配置控制不同信号的发送或接收状态,能够根据业务负载灵活的选择配置机制,从而可以实现网络设备和终端设备双向的动态关断,降低功耗。
图7是本申请提供的一种通信装置的示意性框图。如图7所示,该通信装置700可以包括收发单元710和/或处理单元720。
该收发单元710,包括发送单元和/或接收单元。该接口单元710可以是收发器(包括发射器和/或 接收器)、输入/输出接口(包括输入和/或输出接口)、管脚或电路等。该接口单元710可以用于执行上述方法实施例中发送和/或接收的步骤。
该处理单元720可以是处理器(可以包括一个多个)、具有处理器功能的处理电路等,可以用于执行上述方法实施例中除发送接收外的其它步骤。
可选地,该通信装置还可以包括存储单元,该存储单元可以是存储器、内部存储单元(例如,寄存器、缓存等)、外部的存储单元(例如,只读存储器、随机存取存储器等)等。该存储单元用于存储指令,该处理单元720执行该存储单元所存储的指令,以使该通信装置执行上述方法。
一种设计中,该通信装置1000可对应于上述方法300和方法400中的终端设备,且可以执行方法300和方法400中由网络设备所执行的操作。
例如,收发单元710用于接收第一指示信息,第一指示信息用于指示第一非持续接收DRX配置,第一DRX配置属于多个DRX配置,多个DRX配置用于不接收或不发送不同的信号,第一指示信息承载于第一媒体介入控制-控制元素MAC-CE或第一下行控制信息DCI中;处理单元720用于根据第一DRX配置不接收或不发送第一信号。
应理解,收发单元710以及处理单元720还可以执行上述方法300和方法400中任一方法中由终端设备、网络设备所执行的其他操作,这里不再一一详述。
图8是本申请实施例提供的一种通信装置1000的结构框图。图8所示的通信装置800包括:处理器810、存储器820和收发器830。该处理器810与存储器820耦合,用于执行存储器820中存储的指令,以控制收发器830发送信号和/或接收信号。
应理解,上述处理器810和存储器820可以合成一个处理装置,处理器810用于执行存储器820中存储的程序代码来实现上述功能。具体实现时,该存储器820也可以集成在处理器810中,或者独立于处理器810。应理解,处理器810也可以和前面通信装置中的各个处理单元相对应,收发器830可以和前面通信装置中的各个接收单元和发送单元相对应。
还应理解,收发器830可以包括接收器(或者称,接收机)和发射器(或者称,发射机)。收发器还可以进一步包括天线,天线的数量可以为一个或多个。收发器还可以是通信接口或者接口电路。
具体地,该通信装置800可对应于根据本申请实施例的方法300和方法400中的终端设备、网络设备。该通信装置800可以包括方法300和方法400中的由网络设备执行的方法的单元,或者,包括方法300和方法400中的终端设备执行的方法的单元。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置800为芯片时,该芯片包括接口单元和处理单元。其中,接口单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施 例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
在本申请实施例中,“示例的”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有判断的动作,也不意味着存在其它限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况。本文中的“至少一个”表示一个或者多个。“多个”表示两个或者两个以上。
应理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
应理解,在本申请的各种实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的信息等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能 划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (21)

  1. 一种数据传输的方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示第一非持续接收DRX配置,所述第一DRX配置属于多个DRX配置,所述多个DRX配置用于不接收或不发送不同的信号,所述第一指示信息承载于第一媒体介入控制-控制元素MAC-CE或第一下行控制信息DCI中;
    根据所述第一DRX配置不接收或不发送第一信号。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一DRX配置不接收或不发送第一信号,包括:
    根据所述第一DRX配置在第一时间窗内不接收或不发送所述第一信号。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据所述第一DRX配置在第二时间窗内接收或发送所述第一信号。
  4. 根据权利要求1-3项中任一项所述的方法,其特征在于,所述第一MAC CE或所述第一DCI承载于组播或广播的物理下行信道。
  5. 根据权利要求1-4项中任一项所述的方法,其特征在于,所述第一信号包括第一组信道、第二组信道、第三组信道、或者第四组信道中的至少一组信道;
    其中,所述第一组信道包括如下信号中至少一种:半静态调度物理层下行共享信道SPS PDSCH、配置授权物理上行共享信道CG PUSCH、SPS PDSCH的混合自动重传请求反馈HARQ-ACK for SPS PDSCH、调度请求SR、或者波束失败恢复BFR;
    所述第二组信道包括如下信号中至少一种:系统消息无线网络临时标识符SI-RNTI加扰的物理下行控制信道PDCCH、物理随机接入信道PRACH、随机接入无线网络临时标识符RA-RNTI加扰的PDCCH、或者临时小区无线网络临时标识符TC-RNTI加扰的PDCCH;
    所述第三组信道包括:寻呼无线网络临时标识符P-RNTI加扰的PDCCH;
    所述第四组信道包括:同步信号/物理广播信道块SSB。
  6. 根据权利要求1-5项中任一项所述的方法,其特征在于,所述方法还包括:
    根据第二DRX配置不接收或不发送第二信号,所述第二信号包括如下信号中至少一种:C/CS/SFI/INI/CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI加扰的PDCCH、动态调度的PDSCH、DG PUSCH、动态调度PDSCH的HARQ-ACK、A/P/SP-SRS和A/P/SP-CSI。
  7. 根据权利要求6所述的方法,其特征在于,满足第一条件时,根据所述第二DRX配置不接收或不发送所述第二信号,所述第一条件为以下至少一项:
    第二指示信息指示所述第二DRX配置;
    所述第一DRX配置包括第一定时器,且所述第一定时器超时。
  8. 根据权利要求1-7项中任一项所述的方法,其特征在于,所述第一MAC或所述第一DCI与所述第一信号或第二信号不同。
  9. 一种数据传输的方法,其特征在于,包括:
    确定第一非持续接收DRX配置,所述第一DRX配置属于多个DRX配置,所述多个DRX配置用于终端设备不接收或不发送不同的信号;
    发送第一指示信息,所述第一指示信息用于指示所述第一DRX配置,所述第一DRX配置用于所述终端设备不接收和/或不发送第一信号,所述第一指示信息承载于第一媒体介入控制-控制元素MAC-CE或第一下行控制信息DCI中。
  10. 根据权利要求9所述的方法,其特征在于,所述第一DRX配置用于所述终端设备在所述第一DRX配置的第一时间窗内不接收或不发送所述第一信号。
  11. 根据权利要求10所述的方法,其特征在于,所述第一DRX配置用于所述终端设备在所述第一DRX配置的第二时间窗内接收或发送所述第一信号。
  12. 根据权利要求9-11项中任一项所述的方法,其特征在于,所述第一MAC CE或所述第一DCI承载于组播或广播的物理下行信道。
  13. 根据权利要求9-12项中任一项所述的方法,其特征在于,所述第一信号包括第一组信道、第二组信道、第三组信道、或者第四组信道中的至少一组信道;
    其中,所述第一组信道包括如下信号中至少一种:半静态调度物理层下行共享信道SPS PDSCH、配置授权物理上行共享信道CG PUSCH、SPS PDSCH的混合自动重传请求反馈HARQ-ACK for SPS PDSCH、调度请求SR、或者波束失败恢复BFR;
    所述第二组信道包括如下信号中至少一种:系统消息无线网络临时标识符SI-RNTI加扰的物理下行控制信道PDCCH、物理随机接入信道PRACH、随机接入无线网络临时标识符RA-RNTI加扰的PDCCH、或者临时小区无线网络临时标识符TC-RNTI加扰的PDCCH;
    所述第三组信道包括:寻呼无线网络临时标识符P-RNTI加扰的PDCCH;
    所述第四组信道包括:同步信号/物理广播信道块SSB。
  14. 根据权利要求9-13项中任一项所述的方法,其特征在于,所述方法还包括:发送第二指示信息,所述第二指示信息用于指示所述终端设备根据第二DRX配置接收和/或发送第二信号,所述第二信号包括如下信号中至少一种:C/CS/SFI/INI/CI/TPC-PUCCH/TPC-PUSCH/TPC-SRS/AI-RNTI加扰的PDCCH、动态调度的PDSCH、DG PUSCH、动态调度PDSCH的HARQ-ACK、A/P/SP-SRS和A/P/SP-CSI。
  15. 根据权利要求14所述的方法,其特征在于,所述第一DRX配置包括第一定时器,且所述第一定时器超时,所述终端设备根据第二DRX配置接收和/或发送所述第二信号。
  16. 根据权利要求9-15项中任一项所述的方法,其特征在于,所述第一MAC或所述第一DCI与所述第一信号或第二信号不同。
  17. 一种通信装置,其特征在于,包括用于执行权利要求1至8或9至16项中任一项所述方法的单元。
  18. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得所述装置执行如权利要求1至8中任一项所述的方法,或执行如权利要求9至16中任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1至8中任一项所述的方法;或,如权利要求9至16中任一项所述的方法。
  20. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行权利要求1至8中任一项所述的方法,或执行如权利要求9至16中任一项所述的方法。
  21. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行如权利要求1至8中任一项所述的方法的步骤,或执行如权利要求9至16中任一项所述的方法的步骤。
PCT/CN2023/111700 2022-08-12 2023-08-08 一种数据传输的方法及通信装置 WO2024032596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210968082.3 2022-08-12
CN202210968082.3A CN117641530A (zh) 2022-08-12 2022-08-12 一种数据传输的方法及通信装置

Publications (1)

Publication Number Publication Date
WO2024032596A1 true WO2024032596A1 (zh) 2024-02-15

Family

ID=89850999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111700 WO2024032596A1 (zh) 2022-08-12 2023-08-08 一种数据传输的方法及通信装置

Country Status (2)

Country Link
CN (1) CN117641530A (zh)
WO (1) WO2024032596A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307547A (zh) * 2016-09-30 2018-07-20 中兴通讯股份有限公司 一种确定非连续接收配置信息的方法及装置
CN110199547A (zh) * 2017-01-10 2019-09-03 Oppo广东移动通信有限公司 用于确定非连续接收状态的方法、终端设备和网络设备
WO2020164143A1 (zh) * 2019-02-15 2020-08-20 Oppo广东移动通信有限公司 非连续接收的方法、终端设备和网络设备
CN113382379A (zh) * 2020-03-10 2021-09-10 华为技术有限公司 无线通信方法和通信装置
CN113518478A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种drx控制方法及装置
WO2022099181A2 (en) * 2020-11-09 2022-05-12 Ofinno, Llc Discontinuous reception operation of multicast and broadcast services

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307547A (zh) * 2016-09-30 2018-07-20 中兴通讯股份有限公司 一种确定非连续接收配置信息的方法及装置
CN110199547A (zh) * 2017-01-10 2019-09-03 Oppo广东移动通信有限公司 用于确定非连续接收状态的方法、终端设备和网络设备
WO2020164143A1 (zh) * 2019-02-15 2020-08-20 Oppo广东移动通信有限公司 非连续接收的方法、终端设备和网络设备
CN113382379A (zh) * 2020-03-10 2021-09-10 华为技术有限公司 无线通信方法和通信装置
CN113518478A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种drx控制方法及装置
WO2022099181A2 (en) * 2020-11-09 2022-05-12 Ofinno, Llc Discontinuous reception operation of multicast and broadcast services

Also Published As

Publication number Publication date
CN117641530A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2019192342A1 (zh) 非连续接收的通信方法、装置、通信设备和通信系统
EP3986033A1 (en) Communication method and apparatus
WO2020191764A1 (en) Method and apparatus for fast serving cell activation
WO2020221093A1 (zh) 搜索空间的监测、配置方法及装置
WO2017193766A1 (zh) 一种下行数据传输的方法及设备
WO2020228609A1 (zh) 传输信号的方法、终端设备和网络设备
WO2021062612A1 (zh) 通信方法及装置
US9565631B2 (en) Method and arrangement for controlling discontinuous reception by a user equipment
US20220078715A1 (en) Methods and apparatuses for using power-saving signal pattern, device and system
BR112021005642A2 (pt) métodos realizados por um dispositivo sem fio e por um nó de rede, dispositivo sem fio, nó de rede, programa de computador, e, portador
US20220303902A1 (en) User equipment involved in monitoring the downlink control channel
CN113950151A (zh) 物理下行控制信道pdcch监测方法、装置及终端
US20130163493A1 (en) Method and apparatus for reducing power consumption in lte user equipment
WO2020143747A1 (zh) 通信方法和装置
US20240080771A1 (en) Enhanced discontinuous reception and power saving for user equipment
WO2021097648A1 (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2021088014A1 (zh) 信息传输方法以及相关设备
WO2024032596A1 (zh) 一种数据传输的方法及通信装置
WO2021030987A1 (zh) 一种冲突解决方法及装置
JPWO2020261461A5 (zh)
WO2024032322A1 (zh) 信号传输方法与装置
WO2023115466A1 (zh) 无线通信的方法和通信装置
WO2022151284A1 (zh) 半静态调度资源配置方法、半静态调度方法及装置
WO2023241292A1 (zh) 通信方法和装置
CN114616870B (zh) 非连续接收周期期间的唤醒信令

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851817

Country of ref document: EP

Kind code of ref document: A1