WO2020221093A1 - 搜索空间的监测、配置方法及装置 - Google Patents

搜索空间的监测、配置方法及装置 Download PDF

Info

Publication number
WO2020221093A1
WO2020221093A1 PCT/CN2020/086350 CN2020086350W WO2020221093A1 WO 2020221093 A1 WO2020221093 A1 WO 2020221093A1 CN 2020086350 W CN2020086350 W CN 2020086350W WO 2020221093 A1 WO2020221093 A1 WO 2020221093A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration parameters
search space
time
terminal
configuration
Prior art date
Application number
PCT/CN2020/086350
Other languages
English (en)
French (fr)
Inventor
薛祎凡
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020221093A1 publication Critical patent/WO2020221093A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to methods and devices for monitoring and configuring search spaces.
  • the base station sends a physical downlink control channel (PDCCH) that carries various downlink control information (DCI) to the terminal.
  • the terminal needs to monitor the PDCCH in the search space, and then obtain the DCI carried in the PDCCH.
  • the search space is a collection of multiple candidate PDCCHs. Currently, how to make the search space meet specific requirements at different times, the industry has not proposed a corresponding solution.
  • This application provides a method and device for monitoring and configuring a search space, which are used to implement specific requirements for the search space at different times.
  • a method for monitoring a search space including: a terminal monitors a first signal in the search space according to a first set of configuration parameters of the search space at a first time; afterwards, the terminal monitors a first signal in the search space at a second time The second set of configuration parameters is to monitor the first signal in the search space.
  • the terminal adopts a different set of configuration parameters at different times to monitor the first signal in the search space to meet the specific requirements of the first signal on the search space at different times.
  • the first signal is used to indicate power saving information.
  • the first signal is a power saving signal based on PDCCH.
  • the terminal only monitors the PDCCH-based power saving signals in one search space, that is, the network device only needs to use one search space to carry the PDCCH-based power saving signals, so that a larger number of The search space of can be used for other purposes, which is beneficial to the scheduling of the terminal by the network equipment.
  • the method further includes: the terminal receives a search space configuration message sent by the network device, the search space message parameters include a first set of configuration parameters and a second set of configuration parameters, the first set of configuration parameters corresponds to the first time, The second set of configuration parameters corresponds to the second time.
  • any one of the first set of configuration parameters and the second set of configuration parameters includes at least one of the following parameters: type of search space, aggregation level, number of candidate PDCCHs corresponding to the aggregation level, Monitoring period, offset value, time domain length, and starting symbol to be monitored in a time slot.
  • the first set of configuration parameters and the second set of configuration parameters are different in at least one configuration parameter.
  • the first set of configuration parameters and the second set of configuration parameters are different in the length of the time domain.
  • the first group of configuration parameters and the second group of configuration parameters are different in the monitoring period.
  • the first time is the active time
  • the second time is the inactive time.
  • the activation time refers to the time during which the terminal needs to monitor the PDCCH used for data scheduling, such as on duration in the DRX cycle.
  • the inactive time refers to the time during which the terminal does not need to monitor the PDCCH used for data scheduling, for example, opportunity for DRX in the DRX cycle.
  • the first set of configuration parameters and the second set of configuration parameters are different in at least one configuration parameter, including at least the following situations One: (1) For the same aggregation level, the number of candidate PDCCHs in the first set of configuration parameters is less than the number of candidate PDCCHs in the second set of configuration parameters; (2) the monitoring period in the first set of configuration parameters is less than The monitoring period in the second set of configuration parameters; (3) The time domain length in the first set of configuration parameters is greater than the time domain length in the second set of configuration parameters.
  • a method for configuring a search space including: a network device generates a search space configuration message.
  • the search space configuration message includes a first set of configuration parameters and a second set of configuration parameters.
  • the configuration parameters used when the first signal in the search space is monitored at time.
  • the second set of configuration parameters are the configuration parameters used by the terminal when monitoring the first signal in the search space at the second time; the network device sends the search space configuration to the terminal news.
  • the network device configures two sets of configuration parameters for a search space of the terminal through the search space configuration message, and these two sets of configuration parameters correspond to different times. Therefore, the terminal can adopt a corresponding set of configuration parameters at different times to monitor the first signal in the search space to meet the specific requirements for the search space at different times.
  • the first signal is used to indicate power saving information. That is, the first signal is a PDCCH-based power saving signal. Therefore, based on the technical solution of the present application, the network device only needs to use one search space to carry the PDCCH-based power saving signal, so that a larger number of search spaces can be used for other purposes, which is beneficial to the network device’s terminal Scheduling.
  • any one of the first set of configuration parameters and the second set of configuration parameters includes at least one of the following parameters: type of search space, aggregation level, number of candidate PDCCHs corresponding to the aggregation level, Monitoring period, offset value, time domain length, and starting symbol to be monitored in a time slot.
  • the first set of configuration parameters and the second set of configuration parameters are different in at least one configuration parameter.
  • the first time is the active time
  • the second time is the inactive time
  • the first set of configuration parameters and the second set of configuration parameters are different in at least one configuration parameter, including at least the following situations One: (1) For the same aggregation level, the number of candidate PDCCHs in the first set of configuration parameters is less than the monitoring period in the second set of configuration parameters; (2) the monitoring period in the first set of configuration parameters is less than the second set The number of candidate PDCCHs in the configuration parameters; (3) The time domain length in the first set of configuration parameters is greater than the time domain length in the second set of configuration parameters.
  • a terminal including: one or more processors; a memory; and one or more computer programs, wherein one or more computer programs are stored in the memory, and the one or more computer programs include instructions,
  • the terminal is caused to perform the following steps: monitor the first signal in the search space at the first time according to the first set of configuration parameters in the search space; at the second time according to the second set of configuration parameters in the search space, The first signal is monitored in the search space.
  • the first signal is used to indicate power saving information.
  • the terminal when the instruction is executed by the terminal, the terminal is also caused to perform the following steps: receiving the search space configuration message sent by the network device, the search space message parameters include the first set of configuration parameters and the second set of configuration parameters, the first The group configuration parameters correspond to the first time, and the second group configuration parameters correspond to the second time.
  • any one of the first set of configuration parameters and the second set of configuration parameters includes at least one of the following parameters: type of search space, aggregation level, number of candidate PDCCHs corresponding to the aggregation level, Monitoring period, offset value, time domain length, and starting symbol to be monitored in a time slot.
  • the first set of configuration parameters and the second set of configuration parameters are different in at least one configuration parameter.
  • the first time is the active time
  • the second time is the inactive time
  • the first set of configuration parameters and the second set of configuration parameters are different in at least one configuration parameter, including at least the following situations One: (1) For the same aggregation level, the number of candidate PDCCHs in the first set of configuration parameters is less than the number of candidate PDCCHs in the second set of configuration parameters; (2) the monitoring period in the first set of configuration parameters is less than The monitoring period in the second set of configuration parameters; (3) The time domain length in the first set of configuration parameters is greater than the time domain length in the second set of configuration parameters.
  • a network device including: one or more processors; a memory; and one or more computer programs, wherein one or more computer programs are stored in the memory, and the one or more computer programs include instructions
  • the terminal is caused to perform the following steps: generate a search space configuration message, the search space configuration message includes a first set of configuration parameters and a second set of configuration parameters, the first set of configuration parameters is the terminal’s first monitoring search
  • the configuration parameters used when the first signal in the space is used, and the second set of configuration parameters are configuration parameters used when the terminal monitors the first signal in the search space at the second time; a search space configuration message is sent to the terminal.
  • the first signal is used to indicate power saving information.
  • any one of the first set of configuration parameters and the second set of configuration parameters includes at least one of the following parameters: type of search space, aggregation level, number of candidate PDCCHs corresponding to the aggregation level, Monitoring period, offset value, time domain length, and starting symbol to be monitored in a time slot.
  • the first set of configuration parameters and the second set of configuration parameters are different in at least one configuration parameter.
  • the first time is the active time
  • the second time is the inactive time
  • the first set of configuration parameters and the second set of configuration parameters are different in at least one configuration parameter, including at least the following situations One: (1) For the same aggregation level, the number of candidate PDCCHs in the first set of configuration parameters is less than the number of candidate PDCCHs in the second set of configuration parameters; (2) the monitoring period in the first set of configuration parameters is less than The monitoring period in the second set of configuration parameters; (3) The time domain length in the first set of configuration parameters is greater than the time domain length in the second set of configuration parameters.
  • a computer-readable storage medium stores instructions that, when run on a computer, can cause the computer to execute the method described in the first or second aspect.
  • a computer program product containing instructions which when running on a computer, enables a terminal to execute the method described in the first or second aspect.
  • a chip in a seventh aspect, includes a processor, and when the processor executes an instruction, the processor is used to execute the method involved in any one of the designs of the first aspect or the second aspect.
  • the instruction can come from the internal memory of the chip or the external memory of the chip.
  • the chip also includes input and output circuits.
  • a communication system in an eighth aspect, includes a terminal and a network device.
  • the terminal is used to execute the search space monitoring method described in the first aspect.
  • the network device is used to execute the search space configuration method described in the second aspect.
  • Figure 1 is a schematic diagram of DRX cycle
  • Figure 2 is a schematic diagram of a PDCCH-based power saving signal
  • Figure 3 is a schematic diagram of another PDCCH-based power saving signal
  • FIG. 4 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of the hardware structure of a terminal and a network device provided by an embodiment of the application;
  • FIG. 6 is a flowchart of a method for configuring a search space provided by an embodiment of the application
  • FIG. 7 is a flowchart of a method for configuring a search space provided by an embodiment of the application.
  • FIG. 8 is a flowchart of a method for monitoring a search space provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a terminal monitoring a first signal according to an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a chip provided by an embodiment of the application.
  • A/B can mean A or B.
  • the "and/or” in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone These three situations.
  • “at least one” means one or more
  • “plurality” means two or more. The words “first” and “second” do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • the PDCCH is used to carry scheduling and other control information, such as downlink control information (DCI).
  • DCI downlink control information
  • the PDCCH is composed of a control channel element (CCE).
  • the DCI may include content such as resource block (RB) allocation information, modulation and coding scheme (MCS), and so on.
  • RB resource block
  • MCS modulation and coding scheme
  • the information carried by different DCIs is different, and the functions are also different.
  • multiple DCI formats are defined in the protocol.
  • the current communication standard defines the following DCI format:
  • DCI format0-0 used to schedule terminal uplink data
  • DCI format1-0 used to schedule terminal downlink data
  • DCI format2-0 used to indicate the time slot format
  • DCI format2-1 used to indicate interrupted transmission (interrupted transmission);
  • the power saving signal is used to indicate power saving information.
  • the power saving signal can be used to achieve the purpose of power saving.
  • power saving signals can be divided into the following categories:
  • the first type of power saving signals is wake-up signal, which is used to notify when the terminal is in sleep state when to switch from sleep state To normal working condition.
  • the second type of power saving signal is a go-to-sleep signal, which functions to notify the terminal when to switch from the normal working state to the sleep state when the terminal is in a normal working state.
  • the terminal when the terminal is in a sleep state, the terminal can turn off some circuits or functions to reduce its own power consumption. For example, when the terminal is in a sleep state, the terminal does not perform data scheduling (that is, it does not receive or send data).
  • the power saving signal can also be used to indicate other functions, such as instructing the terminal to skip PDCCH monitoring (skipping PDCCH monitoring), instructing the terminal to switch BWP (bandwidth part), instructing secondary cell activation or deactivation, and triggering channel status Measurement and so on.
  • the power saving signal may be implemented based on PDCCH, or in other words, the power saving signal may be implemented based on DCI.
  • the power saving signal may be expressed in a specific DCI format.
  • the power saving signal may be expressed in DCI format M. This implementation has the advantages of high reliability and low probability of missed detection/false detection.
  • the search space is a collection of candidate PDCCHs.
  • the search space can be divided into: common search space and UE-specific search space.
  • the public search space is used to transmit paging (Paging) messages, system information and other related control information.
  • the UE-specific search space is used for control information related to downlink shared channel (DL-SCH) and uplink shared channel (UL-SCH).
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • the common search space can also be used to transmit control information belonging to a specific UE, which is not limited in the embodiment of the present application.
  • the network device can configure one or more search spaces for the terminal, and the network device can also delete the search space previously configured for the terminal.
  • the network equipment in the current protocol is the corresponding configuration signaling in the terminal.
  • searchSpacesToAddModList is a list of newly added search spaces.
  • searchSpacesToReleaseList is a list of search spaces to be deleted.
  • the configuration parameters of the search space may be: aggregation level, the number of candidate PDCCHs corresponding to the aggregation level, monitoring period, offset value, time domain length, symbols to be monitored in a time slot, and search space type.
  • SearchSpace information element may be used in the protocol to configure configuration parameters of a search space.
  • SearchSpace IE can be as follows.
  • TS technical specification
  • 3rd generation partnership project 3rd generation partnership project
  • monitoringSlotPeriodicityAndOffset is used to indicate the monitoring period and offset value of the search space.
  • one monitoring period may include at least one time slot.
  • the network device can select a parameter from S1, S2, ..., S12560 to configure the monitoring period.
  • S1 indicates that one monitoring period includes 1 time slot
  • S2 indicates that one monitoring period includes 2 time slots
  • S12560 indicates that one monitoring period includes 12560 time slots.
  • the offset value is used to determine the starting time slot for the terminal to monitor in the monitoring period. Specifically, the value of the offset value is used to determine which time slot in the monitoring period the terminal starts to monitor the search space. For example, if the monitoring period includes 4 time slots and the offset value is 2, it means that the terminal starts to monitor the search space in the third time slot of the monitoring period. It should be noted that the value of the offset value cannot be greater than the size of the monitoring period (that is, the number of time slots included in the monitoring period). For example, the monitoring period is S2, and the value range of the offset value is ⁇ 0,1 ⁇ ; the monitoring period is S4, and the value range of the offset value is ⁇ 0,1,2,3 ⁇ .
  • Duration is used to indicate the time domain length of the search space.
  • the time domain length of the search space is the number of time slots lasting each time the search space appears, that is, the number of time slots that the terminal needs to monitor. For example, if the time domain length of the search space is 3 time slots, the terminal needs to monitor the search space on 3 consecutive time slots.
  • monitoringSymbolsWithinSlot is used to indicate the starting symbols to be monitored in a time slot. It should be noted that the symbol refers to an orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • MonitoringSymbolsWithinSlot is a 14-bit sequence in specific implementation.
  • each bit in the 14-bit sequence corresponds to each OFDM symbol in the time slot one-to-one.
  • the value of each bit in the 14-bit sequence is used to indicate whether the OFDM symbol corresponding to the bit is the starting symbol. Specifically, when the value of one bit in the 14-bit sequence is 1, it means that the OFDM symbol corresponding to the bit is the start symbol; when the value of one bit in the 14-bit sequence is 0, it means that the bit The corresponding OFDM symbol is not the start symbol. For example, if the sequence of these 14 bits is 1000000100000, then the symbols #0 and #7 in the time slot are the starting symbols.
  • CP cyclic prefix
  • BWP bandwidth part
  • the start symbol is the first symbol among consecutive symbols to be monitored in a time slot.
  • One slot can include multiple start symbols.
  • the terminal can determine which symbols in a slot are the symbols to be monitored according to the start symbol configured by monitoringSymbolsWithinSlot and the specific number of consecutive symbols to be monitored configured in the Control Resource Set (CORESET). For example, if monitoringSymbolsWithinSlot is 1000000100000, and the specific number of consecutive symbols to be monitored configured in Control Resource Set (CORESET) is 3, then the symbol #0, symbol #1, symbol #2, symbol #7, Symbol #8 and symbol #9 are symbols to be monitored.
  • CORESET Control Resource Set
  • nrofCandidate is used to configure the number of candidate PDCCHs corresponding to each aggregation level among multiple aggregation levels in the search space.
  • the aggregation level refers to the number of CCEs constituting a PDCCH. Multiple aggregation levels are defined in the agreement, such as 1, 2, 4, 8, 16, etc. Taking the aggregation level of the search space as an example of 16, it means that the PDCCH carried in the search space consists of 16 CCEs.
  • the number of candidate PDCCHs corresponding to each aggregation level of the search space configured by nrofCandidate is applicable to any DCI format.
  • searchSpaceType is used to indicate the type of search space, that is, it is used to indicate whether the search space is a common search space or a UE-specific search space.
  • searchSpaceType when configured as common, it means that the search space is a common search space.
  • searchSpaceType can also include any one or more of the following parameters: dci-Format0-0-AndFormat1-0, dci-Format2-0, dci-Format2-1, dci-Format2-2, dci -Format2-3.
  • any one of the above parameters is selected, it means that the terminal needs to monitor the DCI format corresponding to the parameter in the search space.
  • one of the above parameters is not selected, it means that the terminal does not need to monitor the DCI format corresponding to the parameter in the search space.
  • searchSpaceType includes dci-Format0-0-AndFormat1-0, and when other parameters are not included, it means that the terminal needs to monitor DCI format0-0 and DCI format1-0 in the search space, but does not need to monitor DCI format2-0, DCI format2- 1. DCI format2-2, and DCI format2-3.
  • searchSpaceType When the searchSpaceType is configured as UE-specific, it means that the search space is a UE-specific search space.
  • searchSpaceType can also include any one or more of the following parameters: formats0-0-And-1-0 or formats0-1-And-1-1.
  • formats0-0-And-1-0 When any one of the above parameters is selected, it means that the terminal needs to monitor the DCI format corresponding to the parameter in the search space.
  • formats0-1-And-1-1 are not configured, the terminal needs to monitor DCI format0-0 and DCI format1-0 in the search space, instead of monitoring DCI format0- 1 and DCI format1-1.
  • the DRX mechanism is divided into two modes, one is the idle state (IDLE) DRX, and the other is the connected state (connected) DRX.
  • the concrete realization of these two kinds of DRX is different.
  • the embodiments of this application mainly introduce connected DRX (C-DRX).
  • the DRX mechanism is to configure a DRX cycle for the RRC connected terminal.
  • the DRX cycle consists of "on duration" and "opportunity for DRX".
  • the terminal is in the active period and monitors and receives the downlink control channel (such as PDCCH); during the "opportunity for DRX" time, the terminal is in the dormant period and does not receive downlink channel data to save power consumption .
  • the terminal will continue to be in the active period after being scheduled to continuously monitor the PDCCH.
  • the implementation mechanism is: when the terminal is scheduled to transmit data initially, the terminal starts (or restarts) a timer drxInactivityTimer, and the terminal will remain in the active period until the timer drxInactivityTimer expires.
  • each DL HARQ process (Process) defines a timer HARQ RTT timer .
  • Each UL HARQ process defines a timer UL HARQ RTT timer.
  • the terminal When the HARQ RTT timer or UL HARQ RTT timer expires and the data received by the corresponding HARQ process is not successfully decoded, the terminal will start a timer drxRetransmissionTimer or drxULRetransmissionTimer for the HARQ process. When drxRetransmissionTimer or drxULRetransmissionTimer is running, the terminal will monitor the PDCCH for HARQ retransmission.
  • the initial transmission refers to the first transmission of a transmission block (TB).
  • Retransmission refers to each retransmission of the same transmission block after the first transmission.
  • the 5G new radio (NR) communication system supports larger bandwidth, higher transmission speed, and wider coverage. Power consumption is greater than that of LTE terminals. Therefore, in order to ensure user experience, it is necessary to optimize the power consumption of the terminal.
  • LTE long term evolution
  • NR new radio
  • the base station sends a PDCCH-based power saving signal to the terminal to instruct the terminal to perform corresponding operations (such as skipping one or more PDCCH monitoring, or skipping several time slots) PDCCH monitoring, etc.) to save terminal power consumption.
  • the network device can send the PDCCH-based power saving signal to the terminal before the OnDuration of the DRX cycle. Therefore, the terminal needs to monitor the PDCCH-based power saving signal before the OnDuration of the DRX cycle.
  • the network device may send the PDCCH-based power saving signal to the terminal within the OnDuration of the DRX cycle. Therefore, the terminal needs to monitor the PDCCH-based power saving signal in the OnDuration of the DRX cycle.
  • the solid line box represents OnDuration when the terminal is in the awake state
  • the dotted line box represents OnDuration when the terminal is in the sleep state.
  • the PDCCH-based power saving signal needs to be sent in the search space, so the terminal needs to monitor the PDCCH-based power saving signal in the search space.
  • the power saving signal based on PDCCH has different requirements for search space in active time (for example, OnDuration) and non-active time (for example, opportunity for DRX)
  • the current search space can only Configure a set of configuration parameters. Therefore, currently, a solution is proposed: the network device configures at least two search spaces for the terminal, such as search space #1 and search space #2.
  • the search space #1 may correspond to the activation time, and the configuration parameters of the search space #1 meet the requirements of the PDCCH-based power saving signal for the search space within the activation time.
  • the search space #2 may correspond to the inactive time, and the configuration parameters of the search space #2 meet the requirement of the PDCCH-based power saving signal for the search space in the inactive time.
  • the terminal monitors the PDCCh-based power saving signal in search space #1 during the active time; the terminal monitors the PDCCH-based power saving signal in search space #2 during the inactive time.
  • the network device configures at least two search spaces for the terminal to monitor the PDCCH-based power saving signal.
  • the configuration parameters of the at least two search spaces may be different to adapt to two different application scenarios of activation time and inactivation time.
  • the number of search spaces that the terminal can configure is limited. For example, the current terminal can only configure 10 search spaces. Therefore, if at least two search spaces are configured for the PDCCH-based power saving signal, the number of search spaces that can be configured for other purposes (for example, data scheduling) will be reduced, thereby affecting the scheduling of the terminal by the network device.
  • this application proposes a search space configuration method and a search space monitoring method.
  • the specific description can be found below, which will not be repeated here.
  • the technical solutions provided by the embodiments of this application can be applied to various communication systems, for example, a new radio (NR) communication system that adopts the fifth generation (5G) communication technology, a future evolution system, or multiple communication integrations System and so on.
  • the technical solution provided by this application can be applied to a variety of application scenarios, such as machine to machine (M2M), macro and micro communications, enhanced mobile broadband (eMBB), ultra-high reliability and ultra-low latency Scenarios such as communication (ultra-reliable&low latency communication, uRLLC) and massive Internet of Things communication (massive machine type communication, mMTC).
  • M2M machine to machine
  • eMBB enhanced mobile broadband
  • uRLLC ultra-high reliability and ultra-low latency Scenarios
  • mMTC massive Internet of Things communication
  • These scenarios may include, but are not limited to: a communication scenario between a communication device and a communication device, a communication scenario between a network device and a network device, a communication scenario between a network device and a communication device, and so on.
  • a communication scenario between a communication device and a communication device a communication scenario between a network device and a network device
  • a communication scenario between a network device and a communication device and so on.
  • the application in the communication scenario between the network device and the terminal is taken as an example.
  • FIG. 4 shows a schematic diagram of the architecture of a communication system to which the technical solution provided by the present application is applicable.
  • the communication system may include one or more network devices (only one is shown in FIG. 4) and one or more terminals ( Only one is shown in Figure 4).
  • the network device may be a base station or a base station controller for wireless communication.
  • the base station may include various types of base stations, such as: micro base stations (also called small stations), macro base stations, relay stations, access points, etc., which are not specifically limited in the embodiment of the present application.
  • the base station may be a base station (BTS) in the global system for mobile communication (GSM), code division multiple access (CDMA), and broadband
  • BTS base station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • eNB or e-NodeB evolutional node B
  • LTE long term evolution
  • eNB Internet of Things
  • NB-IoT narrowband-internet of things
  • PLMN public land mobile network
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system.
  • the device for implementing the functions of the network equipment is the network equipment as an example to describe the technical solutions provided by the embodiments of the present application.
  • the network equipment mentioned in this application usually includes a baseband unit (BBU), a remote radio unit (RRU), an antenna, and a feeder for connecting the RRU and the antenna.
  • BBU baseband unit
  • RRU remote radio unit
  • the BBU is used for signal modulation.
  • RRU is used for radio frequency processing.
  • the antenna is responsible for the conversion between the guided wave on the cable and the space wave in the air.
  • the distributed base station greatly shortens the length of the feeder between the RRU and the antenna, which can reduce signal loss, and can also reduce the cost of the feeder.
  • RRU plus antenna is relatively small and can be installed anywhere, making network planning more flexible.
  • all the BBUs can also be centralized and placed in the Central Office (CO).
  • CO Central Office
  • decentralized BBUs are centralized and turned into a BBU baseband pool, they can be managed and scheduled uniformly, and resource allocation is more flexible.
  • all physical base stations evolved into virtual base stations. All virtual base stations share the user's data transmission and reception, channel quality and other information in the BBU baseband pool, and cooperate with each other to realize joint scheduling.
  • the base station may include a centralized unit (CU) and a distributed unit (DU).
  • the base station may also include an active antenna unit (AAU).
  • the CU implements part of the functions of the base station, and the DU implements some of the functions of the base station.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of radio link control (RLC), media access control (MAC), and physical (physical, PHY) layers.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in the RAN, or the CU can be divided into network devices in the core network (core network, CN), which is not limited here.
  • the terminal is a device with wireless transceiver function.
  • the terminal can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as a ship, etc.); it can also be deployed in the air (such as aeroplane, balloon, satellite, etc.).
  • the terminal equipment may be user equipment (UE).
  • the UE includes a handheld device, a vehicle-mounted device, a wearable device, or a computing device with wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a computer with wireless transceiver function.
  • Terminal equipment can also be virtual reality (VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in telemedicine, and smart Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the device for implementing the function of the terminal may be a terminal, or a device capable of supporting the terminal to implement the function, such as a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is a terminal as an example to describe the technical solutions provided by the embodiments of the present application.
  • Figure 5 is a schematic diagram of the hardware structure of a network device and a terminal provided by an embodiment of the application.
  • the terminal includes at least one processor 101 and at least one transceiver 103.
  • the terminal may further include an output device 104, an input device 105, and at least one memory 102.
  • the processor 101, the memory 102, and the transceiver 103 are connected by a bus.
  • the processor 101 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs used to control the execution of the program of this application. integrated circuit.
  • the processor 101 may also include multiple CPUs, and the processor 101 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 102 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer
  • the memory 102 may exist independently and is connected to the processor 101 through a bus.
  • the memory 102 may also be integrated with the processor 101.
  • the memory 102 is used to store application program codes for executing the solutions of the present application, and the processor 101 controls the execution.
  • the processor 101 is configured to execute the computer program code stored in the memory 102, so as to implement the method provided in the embodiment of the present application.
  • the transceiver 103 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • the transceiver 103 includes a transmitter Tx and a receiver Rx.
  • the output device 104 communicates with the processor 101 and can display information in a variety of ways.
  • the output device 104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 105 communicates with the processor 101 and can receive user input in a variety of ways.
  • the input device 105 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the network device includes at least one processor 201, at least one memory 202, at least one transceiver 203, and at least one network interface 204.
  • the processor 201, the memory 202, the transceiver 203, and the network interface 204 are connected by a bus.
  • the network interface 204 is used to connect to the core network device through a link (for example, an S1 interface), or to connect to a network interface of another network device through a wired or wireless link (for example, an X2 interface) (not shown in the figure), The embodiment of the application does not specifically limit this.
  • a link for example, an S1 interface
  • a wired or wireless link for example, an X2 interface
  • a method for configuring a search space includes the following steps:
  • the network device generates a search space configuration message.
  • the search space configuration message is used to configure corresponding configuration parameters for the search space.
  • the search space is used to carry the first signal.
  • the first signal is used to indicate power saving information.
  • the first signal is equivalent to the aforementioned PDCCH-based power saving signal.
  • the first signal may also be another type of signal, which is not limited in the embodiment of the present application. It should be noted that this article mainly describes from the perspective that the first signal is a PDCCH-based power saving signal, which is described here in a unified manner, and will not be described in detail below.
  • the search space configuration message includes a first set of configuration parameters and a second set of configuration parameters. Any one of the first group of configuration parameters and the second group of configuration parameters includes at least one of the following parameters: type of search space, aggregation level, number of candidate PDCCHs corresponding to aggregation level, monitoring period, offset value , The length of the time domain, and the starting symbol to be monitored in a time slot.
  • type of search space aggregation level
  • number of candidate PDCCHs corresponding to aggregation level monitoring period
  • offset value The length of the time domain, and the starting symbol to be monitored in a time slot.
  • the first set of configuration parameters corresponds to the first time.
  • the first set of configuration parameters are configuration parameters used by the terminal when monitoring the first signal in the search space at the first time.
  • the second set of configuration parameters corresponds to the second time.
  • the second set of configuration parameters are configuration parameters used by the terminal when monitoring the first signal in the search space at the second time.
  • the first time is different from the second time.
  • the first time may be an active time
  • the second time may be an inactive time.
  • the activation time refers to the time that the terminal needs to monitor the PDCCH for data scheduling, such as on duration in the DRX cycle, and the running time of the timer drxInactivityTimer.
  • the inactive time is the time other than the active time. In other words, the inactive time is the time when the terminal does not need to monitor the PDCCH used for data scheduling, such as the opportunity for DRX in the DRX cycle, and the running time of the HARQ RTT timer when the terminal has only one HARQ process.
  • the time granularity of the first time and the second time may be symbols, time slots, subframes, radio frames, etc.
  • the embodiment of the present application is not limited thereto. That is, the first time (or the second time) may include at least one symbol, or at least one time slot, or at least one subframe, or at least one radio frame.
  • the time length of the radio frame is 10ms.
  • One radio frame may include multiple subframes.
  • One subframe may include multiple time slots.
  • One slot can include multiple symbols.
  • the first set of configuration parameters and the second set of configuration parameters may be different in at least one configuration parameter.
  • the first time is the activation time and the second time is the inactivation time
  • the first set of configuration parameters and the second set of configuration parameters are different in at least one configuration parameter, including one of the following situations:
  • the number of candidate PDCCHs in the first set of configuration parameters is smaller than the number of candidate PDCCHs in the second set of configuration parameters. It is understandable that during the inactive time, the terminal only needs to monitor the first signal in the search space, and does not need to monitor other scheduling signals. Therefore, the number of candidate PDCCHs in the search space during the inactive time can be more to avoid Missing the first signal.
  • the monitoring period in the first set of configuration parameters is smaller than the monitoring period in the second set of configuration parameters.
  • the time domain length of the activation time is smaller than the time domain length of the inactive time, so as to enable the terminal to better save power consumption.
  • the monitoring period of the search space within the activation time should be relatively small.
  • the monitoring period of the search space during the inactive time should be relatively large.
  • the time domain length in the first set of configuration parameters is greater than the time domain length in the second set of configuration parameters. It is understandable that since the terminal needs to monitor the first signal multiple times during the activation time, the time domain length of the search space during the activation time should be relatively large. Correspondingly, since the terminal only needs to monitor the first signal once during the inactive time, the time domain length of the search space during the inactive time should be relatively small.
  • the existing SearchSpace IE can only be used to configure a set of configuration parameters for a search space, so the existing SearchSpace IE is not applicable to the technical solution shown in FIG. 6.
  • Solution 1 The embodiment of this application proposes a new cell.
  • the new cell is specifically used to configure configuration parameters of the search space carrying the first signal.
  • the new cell may be referred to as SearchSpaceForPowerSaving IE in the following.
  • search spaces used for other purposes can use the current SearchSpace IE to configure corresponding configuration parameters.
  • the terminal can learn which search space is used to carry the first signal according to the information element issued by the network device.
  • the difference from SearchSpace IE SearchSpaceForPowerSaving IE is:
  • SearchSpaceForPowerSaving IE can be implemented as the following form:
  • monitoringSlotPeriodicityAndOffsetInActiveTime is used to indicate the monitoring period and offset value corresponding to the activation time.
  • monitoringSlotPeriodicityAndOffsetOutActiveTime is used to indicate the monitoring period and offset value corresponding to the inactive time.
  • the SearchSpaceForPowerSaving IE can be implemented as follows:
  • durationInActiveTime is used to indicate the length of the time domain corresponding to the activation time.
  • durationOutActiveTime is used to indicate the length of the time domain corresponding to the inactive time.
  • SearchSpaceForPowerSaving IE can be implemented in the following form:
  • monitoringSymbolsWithinSlotInActiveTime is used to indicate the starting symbol to be monitored in a time slot corresponding to the activation time.
  • monitoringSymbolsWithinSlotOutActiveTime is used to indicate the start symbol to be monitored in a time slot corresponding to the inactive time.
  • SearchSpaceForPowerSaving IE can be implemented in the following form:
  • nrofCandidatesInActiveTime is used to indicate multiple aggregation levels of the search space corresponding to the activation time, and the number of candidate PDCCHs corresponding to each aggregation level in the multiple aggregation levels.
  • nrofCandidatesInActiveTime is used to indicate multiple aggregation levels of the search space corresponding to the inactive time, and the number of candidate PDCCHs corresponding to each aggregation in the multiple aggregation levels.
  • the search space type configuration parameter may not be included in SearchSpaceForPowerSaving IE. That is, when the search space configuration message uses SearchSpaceForPowerSaving IE, the search space configuration message may not include the search space type. This helps to save signaling overhead.
  • the type of the search space carrying the first signal may be defined in the protocol, or may be negotiated and determined in advance by the network device and the terminal.
  • the search space carrying the first signal may default to a common search space, or the search space carrying the first signal may default to a UE-specific search space.
  • Solution 2 The embodiment of this application improves the existing SearchSpace IE.
  • the improved SearchSpace IE can be applied to any search space configuration. That is, regardless of whether the search space is used to carry the first signal or for other purposes, the search space configuration message corresponding to the search space can use the improved SearchSpace IE.
  • the terminal determines whether the corresponding search space is used to carry the first signal according to the DCI format carried in the improved SearchSpace IE.
  • the first signal as the power saving signal based on PDCCH as an example
  • the improved SearchSpace IE carries DCI fomat M
  • DCI format M is the DCI format corresponding to the power saving signal defined in the foregoing.
  • the difference of the improved SearchSpace IE is:
  • the improved SearchSpace IE can be implemented as follows:
  • monitoringSlotPeriodicityAndOffsetInActiveTime is used to indicate the monitoring period and offset value corresponding to the activation time.
  • monitoringSlotPeriodicityAndOffsetOutActiveTime is used to indicate the monitoring period and offset value corresponding to the inactive time.
  • the improved SearchSpace IE can be implemented as follows:
  • durationInActiveTime is used to indicate the length of the time domain corresponding to the activation time.
  • durationOutActiveTime is used to indicate the length of the time domain corresponding to the inactive time.
  • the improved SearchSpace IE can be implemented as follows:
  • monitoringSymbolsWithinSlotInActiveTime is used to indicate the starting symbol to be monitored in a time slot corresponding to the activation time.
  • monitoringSymbolsWithinSlotOutActiveTime is used to indicate the start symbol to be monitored in a time slot corresponding to the inactive time.
  • the improved SearchSpace IE can be implemented in the following form:
  • nrofCandidatesInActiveTime is used to indicate multiple aggregation levels of the search space corresponding to the activation time, and the number of candidate PDCCHs corresponding to each aggregation level in the multiple aggregation levels.
  • nrofCandidatesInActiveTime is used to indicate multiple aggregation levels of the search space corresponding to the inactive time, and the number of candidate PDCCHs corresponding to each aggregation in the multiple aggregation levels.
  • nrofCandidatesInActiveTime and nrofCandidatesInActiveTime are located in the structure of dci-FormatForPowerSaving to illustrate the structure of nrofCandidatesInActiveTime.
  • the aggregation level corresponding to the indicated activation time and the number of candidate PDCCHs are applicable to the power saving signal, and the aggregation level corresponding to the inactive time indicated by nrofCandidatesInActiveTime and the number of candidate PDCCHs are applicable to the power saving signal.
  • the network device sends the search space configuration message to the terminal, so that the terminal receives the search space configuration message sent by the network device.
  • the terminal determines a first set of configuration parameters and a second set of configuration parameters according to the search space configuration message.
  • the network device configures two sets of configuration parameters of a search space for the terminal through the search space configuration message, and these two sets of configuration parameters correspond to different times.
  • the terminal can adopt a corresponding set of configuration parameters at different times to monitor the first signal in the search space, so as to meet the specific requirements for the search space at different times.
  • the network device when the first signal is used to indicate power saving information, that is, when the first signal is a power saving signal based on PDCCH, based on the technical solution shown in FIG. 7, the network device only configures one terminal Search space for power saving signals. In this way, compared to the prior art that requires the terminal to be configured with two search spaces for power consumption and signal saving, the technical solution of the present application can enable the network device to have a larger number of search spaces that can be used for other purposes. , Is conducive to the network equipment to the terminal scheduling.
  • a method for configuring a search space includes the following steps:
  • the network device sends a first search space configuration message to the terminal, so that the terminal receives the first search space configuration message sent by the network device.
  • the first search space configuration message includes the first set of configuration parameters of the search space.
  • the first set of configuration parameters corresponds to the first time.
  • the first set of configuration parameters are configuration parameters used by the terminal when monitoring the first signal in the search space at the first time.
  • the first search space configuration message further includes first indication information, and the first indication information is used to indicate that a group of configuration parameters included in the first search space configuration message are the first group of configuration parameters.
  • the first indication information is used to indicate that a group of configuration parameters included in the first search space configuration message correspond to the first time.
  • S202 The network device sends a second search space configuration message to the terminal, so that the terminal receives the second search space configuration message sent by the network device.
  • the second search space configuration message includes the second set of configuration parameters of the search space.
  • the second set of configuration parameters corresponds to the second time.
  • the second set of configuration parameters are configuration parameters used by the terminal when monitoring the first signal in the search space at the second time.
  • the second search space configuration message further includes second indication information, and the second indication information is used to indicate that a group of configuration parameters included in the second search space configuration message is a second group of configuration parameters.
  • the second indication information is used to indicate that a group of configuration parameters included in the second search space configuration message correspond to the second time.
  • first search space configuration message and the second search space configuration message are used to indicate configuration parameters of the same search space.
  • first search space configuration message and the second search space configuration message may use the current SerachSpace IE, which is not limited in the embodiment of the present application.
  • step S201 may be executed first, and then step S202 may be executed.
  • step S202 may be executed first, and then step S201 may be executed.
  • steps S201 and S202 are performed simultaneously.
  • the terminal determines the first set of configuration parameters according to the first search space configuration message, and determines the second set of configuration parameters according to the second search space configuration message.
  • the network device uses two search space configuration messages to configure the terminal with two sets of configuration parameters corresponding to the same search space, and these two sets of configuration parameters are applicable to different times. Therefore, the terminal can use a corresponding set of configuration parameters to monitor the first signal at different times to meet special requirements at different times.
  • the network device when the first signal is used to indicate power saving information, that is, when the first signal is a power saving signal based on PDCCH, based on the technical solution shown in FIG. 7, the network device only configures one terminal Search space for power saving signals. In this way, compared to the prior art that requires the terminal to be configured with two search spaces for power consumption and signal saving, the technical solution of the present application can enable the network device to have a larger number of search spaces that can be used for other purposes. , Is conducive to the network equipment to the terminal scheduling.
  • a method for monitoring a search space includes the following steps:
  • the terminal monitors the first signal in the search space at the first time according to the first set of configuration parameters in the search space.
  • the first time may be the activation time.
  • the activation time refers to the time that the terminal needs to monitor the PDCCH for data scheduling, such as on duration in the DRX cycle, and the running time of the timer drxInactivityTimer.
  • the first time may be pre-configured by the network device for the terminal, or determined by the terminal itself, or determined according to a protocol, which is not limited.
  • step 301 may also be described as: the terminal monitors the first signal according to the first set of configuration parameters of the search space at the first time.
  • the terminal determines the time domain position of the search space according to the first set of configuration parameters at the first time; and performs a blind check on the search space according to the time domain position of the search space to determine whether the search space carries The first signal.
  • the blind detection process of the search space can refer to the prior art, which will not be repeated here.
  • S302 The terminal monitors the first signal in the search space at the second time according to the second set of configuration parameters in the search space.
  • the second time is different from the first time.
  • the second time is a time other than the first time.
  • the second time is an inactive time.
  • the inactive time is the time when the terminal does not need to monitor the PDCCH for data scheduling, such as the opportunity for DRX in the DRX cycle, and the running time of the HARQ RTT timer when the terminal has only one HARQ process.
  • the second time may be pre-configured by the network device for the terminal, or determined by the terminal itself, or determined according to a protocol, which is not limited.
  • step 302 may also be described as: the terminal monitors the first signal according to the second set of configuration parameters of the search space at the second time.
  • the terminal determines the time domain position of the search space according to the second set of configuration parameters at the second time; and performs a blind check on the search space according to the time domain position of the search space to determine whether the search space carries The first signal.
  • the terminal uses the first set of configuration parameters to monitor the first signal at the activation time, and uses the second set of configuration parameters to monitor the first signal at the inactive time.
  • the terminal adopts a different set of configuration parameters at different times to monitor the first signal in the search space to meet the specific requirements of the first signal on the search space at different times.
  • the technical solution shown in FIG. 8 can enable the terminal to monitor the PDCCH-based power saving signal in only one search space, that is, the network device only needs Utilizing a search space to carry the power saving signal based on the PDCCH can enable a larger number of search spaces to be used for other purposes, which is beneficial to the scheduling of the terminal by the network device.
  • each network element such as a network device and a terminal
  • each network element includes a corresponding hardware structure or software module for performing each function, or a combination of both.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function:
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of the application.
  • the terminal includes a communication module 301 and a processing module 302.
  • the communication module 301 is used to support the terminal to perform step S102 in FIG. 6, steps S201 and S202 in FIG. 7, and/or other processes used to support the technical solutions described herein.
  • the processing module 302 is used to support the terminal to perform step S103 in FIG. 6, step S103 in FIG. 7, steps S301 and S302 in FIG. 8, and/or other processes used to support the technical solutions described herein.
  • the communication module 301 in FIG. 10 may be implemented by the transceiver 103 in FIG. 5, and the processing module 302 in FIG. 10 may be implemented by the processor 101 in FIG. 5.
  • the embodiment of the application does not impose any limitation on this.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • the network device includes a communication module 401 and a processing module 402.
  • the communication module 401 is used to support the terminal to perform step S102 in FIG. 6, steps S201 and S202 in FIG. 7, and/or other processes used to support the technical solutions described herein.
  • the processing module 402 is used to support the terminal to perform step S101 in FIG. 6 and/or used to support other processes of the technical solutions described herein.
  • the communication module 401 in FIG. 11 may be implemented by the transceiver 203 in FIG. 5, and the processing module 402 in FIG. 11 may be implemented by the processor 201 in FIG.
  • the embodiments of this application do not impose any restriction on this.
  • the embodiment of the present application also provides a computer-readable storage medium in which computer instructions are stored; when the computer-readable storage medium runs on a communication device, the communication device is caused to execute as shown in FIG. 6 To the method shown in Figure 8.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid state disk (SSD)).
  • the embodiments of the present application also provide a computer program product containing computer instructions, which when it runs on a communication device, enables the communication device to execute the methods shown in FIGS. 6 to 8.
  • FIG. 12 is a schematic structural diagram of a chip provided by an embodiment of the application.
  • the chip shown in FIG. 12 may be a general-purpose processor or a dedicated processor.
  • the chip includes a processor 501.
  • the processor 501 is configured to support the communication device to execute the technical solutions shown in FIG. 6 to FIG. 8.
  • the chip further includes a transceiver pin 502, which is used to receive control of the processor 501 and used to support the communication device to execute the technical solutions shown in FIGS. 6 to 8.
  • the chip shown in FIG. 12 may further include: a storage medium 503.
  • the chip shown in Figure 12 can be implemented using the following circuits or devices: one or more field programmable gate arrays (FPGA), programmable logic devices (PLD) , Controllers, state machines, gate logic, discrete hardware components, any other suitable circuits, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGA field programmable gate arrays
  • PLD programmable logic devices
  • Controllers state machines
  • gate logic discrete hardware components
  • discrete hardware components any other suitable circuits, or any combination of circuits capable of performing the various functions described throughout this application.
  • the terminals, network equipment, computer storage media, computer program products, and chips provided in the above embodiments of this application are all used to execute the methods provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding methods provided above. The beneficial effects of this will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种搜索空间的监测、配置方法及装置,涉及通信技术领域,用于满足在不同时间下对于搜索空间的特定要求。该方法包括:终端在第一时间根据搜索空间的第一组配置参数,监测搜索空间中的第一信号;终端在第二时间根据搜索空间的第二组配置参数,监测搜索空间中的第一信号。本申请适用于对搜索空间进行监测的过程中。

Description

搜索空间的监测、配置方法及装置
本申请要求在2019年4月30日提交中国国家知识产权局、申请号为201910364474.7的中国专利申请的优先权,发明名称为“搜索空间的监测、配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及搜索空间的监测、配置方法及装置。
背景技术
在无线通信系统中,基站将承载各种下行控制信息(downlink control information,DCI)的物理下行控制信道(physical downlink control channel,PDCCH)发送给终端。终端需要在搜索空间(search space)中监测PDCCH,进而获取PDCCH中承载的DCI。搜索空间是多个候选PDCCH的集合。当前,如何使得搜索空间在不同时间下符合特定的要求,业界未提出相应的解决方案。
发明内容
本申请提供一种搜索空间的监测、配置方法及装置,用于实现在不同时间下对搜索空间的特定要求。
第一方面,提供一种搜索空间的监测方法,包括:终端在第一时间根据搜索空间的第一组配置参数,在搜索空间中监测第一信号;之后,终端在第二时间根据搜索空间的第二组配置参数,在搜索空间中监测第一信号。基于该技术方案,终端在不同的时间采用不同的一组配置参数,在搜索空间中监测第一信号,以满足第一信号在不同时间下对搜索空间的特定要求。
一种可能的设计中,第一信号用于指示功率节省信息。在这种情况下,第一信号为基于PDCCH的功耗节省信号。基于本申请的技术方案,终端仅在一个搜索空间中监测基于PDCCH的功耗节省信号,也即网络设备仅需要利用一个搜索空间来承载基于PDCCH的功耗节省信号,从而可以使得有更多数量的搜索空间可以用于其他目的,有利于网络设备对终端的调度。
一种可能的设计中,该方法还包括:终端接收网络设备发送的搜索空间配置消息,搜索空间消息参数包括第一组配置参数和第二组配置参数,第一组配置参数对应第一时间,第二组配置参数对应第二时间。
一种可能的设计中,第一组配置参数和第二组配置参数中任一组配置参数包括以下参数中的至少一项:搜索空间的类型、聚合等级、聚合等级对应的候选PDCCH的数量、监测周期、偏移值、时域长度、以及一个时隙中待监测的起始符号。
一种可能的设计中,第一组配置参数与第二组配置参数在至少一个配置参数上存在不同。例如,第一组配置参数和第二组配置参数在时域长度上不相同。又例如,第一组配置参数和第二组配置参数在监测周期上存在不同。
一种可能的设计中,第一时间为激活时间,第二时间为非激活时间。可以理解的是,激活时间是指终端需要监听用于数据调度的PDCCH的时间,例如DRX cycle中的on duration。非激活时间是指终端不需要监听用于数据调度的PDCCH的时间,例如,DRX cycle中的 opportunity for DRX。
一种可能的设计中,在第一时间为激活时间,第二时间为非激活时间的情况下,第一组配置参数与第二组配置参数在至少一个配置参数上存在不同,至少包括以下情形之一:(1)对于同一聚合等级,第一组配置参数中的候选PDCCH的个数小于第二组配置参数中的候选PDCCH的个数;(2)第一组配置参数中的监测周期小于第二组配置参数中的监测周期;(3)第一组配置参数中的时域长度大于第二组配置参数中的时域长度。
第二方面,提供一种搜索空间的配置方法,包括:网络设备生成搜索空间配置消息,搜索空间配置消息包括第一组配置参数和第二组配置参数,第一组配置参数是终端在第一时间监测搜索空间中的第一信号时所采用的配置参数,第二组配置参数是终端在第二时间监测搜索空间中的第一信号时所采用的配置参数;网络设备向终端发送搜索空间配置消息。基于该技术方案,网络设备通过搜索空间配置消息,为终端的一个搜索空间配置了两组配置参数,这两组配置参数对应不同的时间。从而终端可以在不同的时间可以采用对应的一组配置参数,在搜索空间中监测第一信号,以满足不同时间下对于该搜索空间的特定要求。
一种可能的设计中,第一信号用于指示功率节省信息。也就是说,第一信号为基于PDCCH的功耗节省信号。从而,基于本申请的技术方案,网络设备仅需要利用一个搜索空间来承载基于PDCCH的功耗节省信号,从而可以使得有更多数量的搜索空间可以用于其他目的,有利于网络设备对终端的调度。
一种可能的设计中,第一组配置参数和第二组配置参数中任一组配置参数包括以下参数中的至少一项:搜索空间的类型、聚合等级、聚合等级对应的候选PDCCH的数量、监测周期、偏移值、时域长度、以及一个时隙中待监测的起始符号。
一种可能的设计中,第一组配置参数与第二组配置参数在至少一个配置参数上存在不同。
一种可能的设计中,第一时间为激活时间,第二时间为非激活时间。
一种可能的设计中,在第一时间为激活时间,第二时间为非激活时间的情况下,第一组配置参数与第二组配置参数在至少一个配置参数上存在不同,至少包括以下情形之一:(1)对于同一聚合等级,第一组配置参数中的候选PDCCH的个数小于第二组配置参数中的监测周期;(2)第一组配置参数中的监测周期小于第二组配置参数中的候选PDCCH的个数;(3)第一组配置参数中的时域长度大于第二组配置参数中的时域长度。
第三方面,提供一种终端,包括:一个或多个处理器;存储器;以及一个或多个计算机程序,其中一个或多个计算机程序被存储在存储器中,一个或多个计算机程序包括指令,当指令被终端执行时,使得终端执行以下步骤:在第一时间根据搜索空间的第一组配置参数,在搜索空间中监测第一信号;在第二时间根据搜索空间的第二组配置参数,在搜索空间中监测第一信号。
一种可能的设计中,第一信号用于指示功率节省信息。
一种可能的设计中,当指令被终端执行时,还使得终端执行以下步骤:接收网络设备发送的搜索空间配置消息,搜索空间消息参数包括第一组配置参数和第二组配置参数,第一组配置参数对应第一时间,第二组配置参数对应第二时间。
一种可能的设计中,第一组配置参数和第二组配置参数中任一组配置参数包括以下参数中的至少一项:搜索空间的类型、聚合等级、聚合等级对应的候选PDCCH的数量、监测周期、偏移值、时域长度、以及一个时隙中待监测的起始符号。
一种可能的设计中,第一组配置参数与第二组配置参数在至少一个配置参数上存在不同。
一种可能的设计中,第一时间为激活时间,第二时间为非激活时间。
一种可能的设计中,在第一时间为激活时间,第二时间为非激活时间的情况下,第一组配置参数与第二组配置参数在至少一个配置参数上存在不同,至少包括以下情形之一:(1)对于同一聚合等级,第一组配置参数中的候选PDCCH的个数小于第二组配置参数中的候选PDCCH的个数;(2)第一组配置参数中的监测周期小于第二组配置参数中的监测周期;(3)第一组配置参数中的时域长度大于第二组配置参数中的时域长度。
第四方面,提供一种网络设备,包括:一个或多个处理器;存储器;以及一个或多个计算机程序,其中一个或多个计算机程序被存储在存储器中,一个或多个计算机程序包括指令,当指令被终端执行时,使得终端执行以下步骤:生成搜索空间配置消息,搜索空间配置消息包括第一组配置参数和第二组配置参数,第一组配置参数是终端在第一时间监测搜索空间中的第一信号时所采用的配置参数,第二组配置参数是终端在第二时间监测搜索空间中的第一信号时所采用的配置参数;向终端发送搜索空间配置消息。
一种可能的设计中,第一信号用于指示功率节省信息。
一种可能的设计中,第一组配置参数和第二组配置参数中任一组配置参数包括以下参数中的至少一项:搜索空间的类型、聚合等级、聚合等级对应的候选PDCCH的数量、监测周期、偏移值、时域长度、以及一个时隙中待监测的起始符号。
一种可能的设计中,第一组配置参数与第二组配置参数在至少一个配置参数上存在不同。
一种可能的设计中,第一时间为激活时间,第二时间为非激活时间。
一种可能的设计中,在第一时间为激活时间,第二时间为非激活时间的情况下,第一组配置参数与第二组配置参数在至少一个配置参数上存在不同,至少包括以下情形之一:(1)对于同一聚合等级,第一组配置参数中的候选PDCCH的个数小于第二组配置参数中的候选PDCCH的个数;(2)第一组配置参数中的监测周期小于第二组配置参数中的监测周期;(3)第一组配置参数中的时域长度大于第二组配置参数中的时域长度。
第五方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,可以使得计算机执行上述第一方面或第二方面所述的方法。
第六方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得终端可以执行上述第一方面或第二方面所述的方法。
第七方面,提供一种芯片,该芯片包括处理器,当该处理器执行指令时,处理器用于执行上述第一方面或第二方面中任一种设计所涉及的方法。该指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。可选的,该芯片还包括输入输出电路。
第八方面,提供一种通信系统,该通信系统包括终端和网络设备。其中,终端用于执行第一方面所述的搜索空间的监测方法。网络设备用于执行第二方面所述的搜索空间的配置方法。
附图说明
图1为DRX cycle的示意图;
图2为一种基于PDCCH的功耗节省信号的示意图;
图3为另一种基于PDCCH的功耗节省信号的示意图;
图4为本申请实施例提供的一种通信系统的架构示意图;
图5为本申请实施例提供的一种终端和网络设备的硬件结构示意图;
图6为本申请实施例提供的一种搜索空间的配置方法的流程图;
图7为本申请实施例提供的一种搜索空间的配置方法的流程图;
图8为本申请实施例提供的一种搜索空间的监测方法的流程图;
图9为本申请实施例提供的一种终端监测第一信号的示意图;
图10为本申请实施例提供的一种终端的结构示意图;
图11为本申请实施例提供的一种网络设备的结构示意图;
图12为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了便于理解本申请的技术方案,下面先对本申请所涉及的术语进行简单介绍。
1、PDCCH
PDCCH用于承载调度以及其他控制信息,例如下行控制信息(downlink control information,DCI)。PDCCH由控制信道单元(control channel element,CCE)构成。
2、DCI
DCI可以包括诸如资源块(resource block,RB)分配信息、调制方式(modulation and coding scheme,MCS)等内容。不同DCI所携带的信息是不一样的,功能也是不一样的。为了对DCI进行分类,协议中定义了多种DCI格式(format)。
例如,当前通信标准定义了如下DCI format:
DCI format0-0:用于调度终端上行数据;
DCI format1-0:用于调度终端下行数据;
DCI format2-0:用于指示时隙格式;
DCI format2-1:用于指示中断传输(interrupted transmission);
以上仅是对DCI format的示例,在此不一一展开叙述。
3、功率节省信号(power saving signal)
功耗节省信号用于指示功耗节省信息。功耗节省信号可以用来实现功耗节省的目的。
可选的,功耗节省信号可以分为以下几类:第一类功耗节省信号为唤醒信号(wake-up signal),其作用是在终端处于睡眠状态时,通知终端何时从睡眠状态切换到正常工作状态。第二类功耗节省信号为休眠信号(go-to-sleep signal),其作用是在终端处于正常工作状态时,通知终端何时从正常工作状态切换到睡眠状态。其中,终端处于睡眠状态时,终端可以关闭一些电路或者功能,以降低自身功耗。例如,终端处于睡眠状态时,终端不进行数据调度(也即不接收和不发送数据)。此外,功耗节省信号还可以用于指示其他功能,例如指示终端跳过PDCCH监测(skipping PDCCH monitoring),指示终端切换BWP(bandwidth part,带宽部分),指示辅小区激活或去激活,触发信道状态测量等等。
可选的,功耗节省信号可以基于PDCCH实现,或者说,功耗节省信号可以基于DCI实现。需要说明的是,在功耗节省信号基于DCI实现的情况下,功耗节省信号可以以特定的DCI format来表示。例如,在本申请实施例中,功耗节省信号可以以DCI format M表示。该 实现方式具有可靠性高,漏检/误检概率小的优点。
4、搜索空间
搜索空间为候选PDCCH的集合。搜索空间可以分为:公共搜索空间(common search space)和UE特定的搜索空间(UE-specific search space)。公共搜索空间用于传输寻呼(Paging)消息、系统信息等相关的控制信息。UE特定的搜索空间用于与下行共享信道(downlink shared channel,DL-SCH)、上行共享信道(uplink shared channel,UL-SCH)等相关的控制信息。当然,公共搜索空间也可以用于传输属于某个特定UE的控制信息,本申请实施例对此不作任何限制。
可以理解的是,网络设备可以为终端配置一个或多个搜索空间,网络设备也可以删除之前为终端所配置的搜索空间。示例性的,下面示出当前协议中网络设备为终端中相应的配置信令。
Figure PCTCN2020086350-appb-000001
其中,searchSpacesToAddModList为新增的搜索空间的列表。searchSpacesToReleaseList为待删除的搜索空间的列表。
上述信令的具体描述可参考现有技术,在此不再赘述。
5、搜索空间的配置参数
可选的,搜索空间的配置参数可以为:聚合等级、聚合等级对应的候选PDCCH的数目、监测周期、偏移值、时域长度、一个时隙中待监测的符号、搜索空间的类型。
示例性的,协议中可以采用SearchSpace信元(information element,IE)来配置一个搜索空间的配置参数。SearchSpace IE可以如下所示。该信元的具体内容可参见第三代合作伙伴计划(3rd generation partnership project,3GPP)技术标准(technical specification,TS)38.331中的相关描述。
Figure PCTCN2020086350-appb-000002
Figure PCTCN2020086350-appb-000003
Figure PCTCN2020086350-appb-000004
下面结合上述信元,对搜索空间的各个配置参数进行简单介绍。
(1)monitoringSlotPeriodicityAndOffset用于指示搜索空间的监测周期以及偏移值。
在本申请实施例中,一个监测周期可以包括至少一个时隙。在上述信元中,网络设备可以从S1、S2、……、S12560中选择一个参数来配置监测周期。其中,S1表示一个监测周期包括1个时隙,S2表示一个监测周期包括2个时隙,以此类推,S12560表示一个监测周期包括12560个时隙。
偏移值用于确定终端在监测周期内进行监测的起始时隙。具体的说,偏移值的取值用于确定终端在监测周期内的第几个时隙开始监测搜索空间。例如,若监测周期包含4个时隙,偏移值为2,则表示终端在监测周期的第三个时隙开始监测搜索空间。需要说明的是,偏移值的取值不能大于监测周期的大小(也即监测周期包含的时隙的数目)。例如,监测周期为S2,偏移值的取值范围为{0,1};监测周期为S4,偏移值的取值范围为{0,1,2,3}。
(2)duration用于指示搜索空间的时域长度。其中,搜索空间的时域长度是搜索空间每次出现时持续的时隙的数目,也即终端需要监测的时隙的数目。例如,搜索空间的时域长度为3个时隙,则终端需要在连续的3个时隙上监测搜索空间。
(3)monitoringSymbolsWithinSlot用于指示一个时隙内待监测的起始符号。需要说明的是,符号是指正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
monitoringSymbolsWithinSlot在具体实现中为一个长度为14比特的序列。其中,这14个比特的序列中的每一个比特与时隙中的每一个OFDM符号一一对应。这14个比特的序列中每一个比特的取值用于指示该比特对应的OFDM符号是否是起始符号。具体的,当14个比特的序列中一个比特的取值为1时,表示该比特对应的OFDM符号是起始符号;当14个比特的序列中一个比特的取值为0时,表示该比特对应的OFDM符号不是起始符号。例如,这14个比特的序列为1000000100000,则时隙中符号#0和符号#7为起始符号。
需要说明的是,若在网络设备为终端配置的部分带宽(bandwidth part,BWP)中,符号的循环前缀(cyclic prefix,CP)设置为扩展(extended)循环前缀,则monitoringSymbolsWithinSlot的最后2个比特可以被忽略。
需要说明的是,起始符号即为一个时隙中待监测的连续数个符号中的第一个符号。一个时隙可以包括多个起始符号。终端可以根据monitoringSymbolsWithinSlot所配置的起始符号,以及控制资源集合(ControlResourceSet,CORESET)所配置的待监测的连续数个符号的具体数目,确定一个时隙中哪些符号是待监测的符号。例如,monitoringSymbolsWithinSlot为1000000100000,控制资源集合(ControlResourceSet,CORESET)所配置的待监测的连续数个符号的具体数目为3,则时隙中符号#0、符号#1、符号#2、符号#7、符号#8、以及符号#9为待监测的符号。
(4)nrofCandidate用于配置搜索空间的多个聚合等级中每一个聚合等级对应的候选PDCCH的个数。
其中,聚合等级是指组成一个PDCCH的CCE的个数。协议中定义了多种聚合等级,例如1,2,4,8,16等。以搜索空间的聚合等级为16为例,则表示该搜索空间中承载的PDCCH由16个CCE组成。
需要说明的是,若未作出特别说明,nrofCandidate所配置的搜索空间的各个聚合等级对应的候选PDCCH的个数适用于任意DCI format。
(5)searchSpaceType用于指示搜索空间的类型,也即用于指示该搜索空间是公共搜索空间还是UE特定的搜索空间。
其中,当searchSpaceType配置为common时,表示该搜索空间为公共搜索空间。在这种情况下,searchSpaceType还可以包括以下参数中的任意一项或者多项:dci-Format0-0-AndFormat1-0、dci-Format2-0、dci-Format2-1、dci-Format2-2、dci-Format2-3。当上述参数中任意一个参数被选择时,表示终端需要在该搜索空间中监测该参数所对应的DCI format。当上述参数中某一个参数未被选择时,表示终端不需要在该搜索空间中监测该参数对应的DCI format。例如,searchSpaceType包括dci-Format0-0-AndFormat1-0,未包括其他参数时,表示终端需要在该搜索空间中监测DCI format0-0以及DCI format1-0,不需要监测DCI format2-0、DCI format2-1、DCI format2-2、以及DCI format2-3。
当searchSpaceType配置为UE-specific时,表示该搜索空间为UE特定的搜索空间。在这种情况下,searchSpaceType还可以包括以下参数中的任意一项或者多项:formats0-0-And-1-0或formats0-1-And-1-1。当上述参数中任意一个参数被选择时,表示终端需要在该搜索空间中监测该参数所对应的DCI format。当上述参数中某一个参数未被选择时,表示终端不需要在该搜索空间中监测该参数对应的DCI format。searchSpaceType中配置了formats0-0-And-1-0,未配置formats0-1-And-1-1,则终端需要在搜索空间中监测DCI format0-0以及DCI format1-0,而无需监测DCI format0-1以及DCI format1-1。
6、非连续接收(discontinuous reception,DRX)
DRX机制分为两种模式,一种是空闲态(IDLE)DRX,另一种是连接态(connected)DRX。这两种DRX的具体实现是不同的。本申请实施例主要介绍connected DRX(C-DRX)。
DRX机制是为处于RRC connected的终端配置一个DRX周期(cycle)。如图1所示,DRX cycle由“on duration”和“opportunity for DRX”组成。在“on duration”的时间内,终端处于激活期,监听并接收下行控制信道(例如PDCCH);在“opportunity for DRX”的时间内,终端处于休眠期,不接收下行信道的数据以节省功耗。
在一般情况下,当终端在某个子帧被调度以接收或发送数据后,在接下来的几个子帧内很可能被继续调度。如果等到下一个DRX cycle再来接收或发送这些数据,会导致额外的延迟。因此,为了降低这类延迟,终端在被调度后会持续处于激活期,以持续监听PDCCH。其实现机制是:终端被调度以初传数据时,终端启动(或重启)一个定时器drxInactivityTimer,终端将一直处于激活期直至该定时器drxInactivityTimer超时。
另外,为了允许终端在混合自动重传请求(hybrid automatic repeat request,HARQ)的往返时延(round trip time,RTT)期间内休眠,每个DL HARQ进程(Process)定义了一个定时器HARQ RTT timer,每个UL HARQ process定义了一个定时器UL HARQ RTT timer。当某个HARQ Process的传输块解码失败时,终端可以假定至少在HARQ RTT子帧后才会有重传,因此当HARQ RTT timer或UL HARQ RTT timer正在运行时,终端没必要监听PDCCH。
当HARQ RTT timer或UL HARQ RTT timer超时,且对应HARQ process接收到的数据没有被成功解码时,终端会该HARQ process启动一个定时器drxRetransmissionTimer或drxULRetransmissionTimer。当drxRetransmissionTimer或drxULRetransmissionTimer运行时,终端会监听用于HARQ重传的PDCCH。
需要说明的是,初传,指的是传输块(transmission block,TB)的第一次传输。重传,指的是同一个传输块在第一次传输之后的每一次重新传输。
以上是对本申请实施例所涉及术语的简单介绍,以下不再赘述。
相比于4G的长期演进(long term evolution,LTE)通信系统,5G新空口(new radio,NR)通信系统支持更大的带宽,更高的传输速度,更广的覆盖范围,导致NR终端的功耗比LTE终端的功耗更大。因此,为了保证用户的体验,有必要对终端的功耗进行优化。
当前,业界提出一种终端的功耗节省方案:基站向终端发送基于PDCCH的功耗节省信号,以指示终端进行相应的操作(例如跳过一个或多个PDCCH监测,或跳过若干个时隙的PDCCH监测等),以节省终端的功耗。
如图2所示,网络设备可以在DRX cycle的OnDuration前向终端发送基于PDCCH的功耗节省信号,因此终端需要在DRX cycle的OnDuration前监测基于PDCCH的功耗节省信号。
或者,如图3所示,网络设备可以在DRX cycle的OnDuration内向终端发送基于PDCCH的功耗节省信号,因此终端需要在DRX cycle的OnDuration中监测基于PDCCH的功耗节省信号。
需要说明的是,在图2或图3中,实线方框表示终端处于唤醒状态的OnDuration,虚线方框表示终端处于睡眠状态的OnDuration。
可以理解的是,基于PDCCH的功耗节省信号需要在搜索空间中发送,因此终端需要在搜索空间中监测基于PDCCH的功耗节省信号。由于基于PDCCH的功耗节省信号对于搜索空间的要求在激活时间(active time)(例如OnDuration)和非激活时间(non-active time)(例如opportunity for DRX)是不同的,而当前搜索空间仅能配置一组配置参数。因此,当前,提出一种方案:网络设备为终端配置至少两个搜索空间,例如搜索空间#1和搜索空间#2。其中,搜索空间#1可以对应激活时间,搜索空间#1的配置参数满足基于PDCCH的功耗节省信号对于搜索空间在激活时间内的要求。搜索空间#2可以对应非激活时间,搜索空间#2的配置参数满足基于PDCCH的功耗节省信号对于搜索空间在非激活时间的要求。这样一来,终端在激活时间内在搜索空间#1内监测基于PDCCh的功耗节省信号;终端在非激活时间内在搜索空间#2内监测基于PDCCH的功耗节省信号。
也即,网络设备为终端配置至少两个搜索空间以监测基于PDCCH的功耗节省信号。这样一来,所述至少两个搜索空间的配置参数可以是不同的,以适应激活时间和非激活时间这两种不同的应用场景。
但是,在每个BWP中,终端能够配置的搜索空间的数目是有限的。例如,当前终端仅能配置10个搜索空间。因此,如果为基于PDCCH的功耗节省信号配置了至少两个搜索空间,则用于其他目的(例如数据调度)的搜索空间的可配置个数会减少,从而影响到网络设备对终端的调度。
为了解决这一技术问题,本申请提出一种搜索空间的配置方法,以及一种搜索空间的监测方法。其具体描述可参见下文,在此不予赘述。
本申请实施例提供的技术方案可以应用于各种通信系统,例如,采用第五代(5th generation,5G)通信技术的新空口(new radio,NR)通信系统,未来演进系统或者多种通 信融合系统等等。本申请提供的技术方案可以应用于多种应用场景,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动互联网(enhanced mobile broadband,eMBB)、超高可靠超低时延通信(ultra-reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:通信设备与通信设备之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与通信设备之间的通信场景等。下文中均是以应用于网络设备和终端之间的通信场景中为例进行说明的。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图4示出了本申请提供的技术方案所适用的一种通信系统的架构示意图,通信系统可以包括一个或多个网络设备(图4中仅示出了1个)以及一个或多个终端(图4中仅示出了一个)。
网络设备可以是无线通信的基站或基站控制器等。例如,所述基站可以包括各种类型的基站,例如:微基站(也称为小站),宏基站,中继站,接入点等,本申请实施例对此不作具体限定。在本申请实施例中,所述基站可以是全球移动通信系统(global system for mobile communication,GSM),码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的基站(node B),长期演进(long term evolution,LTE)中的演进型基站(evolutional node B,eNB或e-NodeB),物联网(internet of things,IoT)或者窄带物联网(narrow band-internet of things,NB-IoT)中的eNB,未来5G移动通信网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,本申请实施例对此不作任何限制。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。在本申请实施例中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请所说的网络设备,例如基站,通常包括基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、天线、以及用于连接RRU和天线的馈线。其中,BBU用于负责信号调制。RRU用于负责射频处理。天线用于负责线缆上导行波和空气中空间波之间的转换。一方面,分布式基站大大缩短了RRU和天线之间馈线的长度,可以减少信号损耗,也可以降低馈线的成本。另一方面,RRU加天线比较小,可以随地安装,让网络规划更加灵活。除了RRU拉远之外,还可以把BBU全部都集中起来放置在中心机房(Central Office,CO),通过这种集中化的方式,可以极大减少基站机房数量,减少配套设备,特别是空调的能耗,可以减少大量的碳排放。此外,分散的BBU集中起来变成BBU基带池之后,可以统一管理和调度,资源调配更加灵活。这种模式下,所有的实体基站演变成了虚拟基站。所有的虚拟基站在BBU基带池中共享用户的数据收发、信道质量等信息,相互协作,使得联合调度得以实现。
在一些部署中,基站可以包括集中式单元(centralized unit,CU)和分布式单元(Distributed Unit,DU)。基站还可以包括有源天线单元(active antenna unit,AAU)。CU实现基站的部分功能,DU实现基站的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP) 层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,CU可以划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
终端是一种具有无线收发功能的设备。终端可以被部署在陆地上,包括室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例中,以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的技术方案。
图5为本申请实施例提供的网络设备和终端的硬件结构示意图。
终端包括至少一个处理器101和至少一个收发器103。可选的,终端还可以包括输出设备104、输入设备105和至少一个存储器102。
处理器101、存储器102和收发器103通过总线相连接。处理器101可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器101也可以包括多个CPU,并且处理器101可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器102可以是独立存在,通过总线与处理器101相连接。存储器102也可以和处理器101集成在一起。其中,存储器102用于存储执行本申请方案的应用程序代码,并由处理器101来控制执行。处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例提供的方法。
收发器103可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、无线局域网(wireless local area networks, WLAN)等。收发器103包括发射机Tx和接收机Rx。
输出设备104和处理器101通信,可以以多种方式来显示信息。例如,输出设备104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备105和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备105可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备包括至少一个处理器201、至少一个存储器202、至少一个收发器203和至少一个网络接口204。处理器201、存储器202、收发器203和网络接口204通过总线相连接。其中,网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端中处理器101、存储器102和收发器103的描述,在此不再赘述。
下面结合说明书附图,对本申请实施例所提供的技术方案进行具体介绍。
如图6所示,为本申请实施例提供的一种搜索空间的配置方法,包括以下步骤:
S101、网络设备生成搜索空间配置消息。
其中,搜索空间配置消息用于为搜索空间配置相应的配置参数。在本申请实施例中,所述搜索空间用于承载第一信号。可选的,第一信号用于指示功耗节省信息。在这种情况下,第一信号相当于前文所述的基于PDCCH的功耗节省信号。当然,第一信号也可以是其他类型的信号,本申请实施例对此不作限制。需要说明的是,本文主要从第一信号为基于PDCCH的功耗节省信号的角度进行描述,在此统一说明,以下不再赘述。
搜索空间配置消息包括第一组配置参数和第二组配置参数。第一组配置参数和第二组配置参数中任一组配置参数包括以下参数中的至少一项:搜索空间的类型、聚合等级、聚合等级对应的候选PDCCH的个数、监测周期、偏移值、时域长度、以及一个时隙中待监测的起始符号。上述参数的具体含义可参考前文,在此不再赘述。
第一组配置参数对应第一时间。或者说,第一组配置参数是终端在第一时间监测搜索空间中的第一信号时所采用的配置参数。
第二组配置参数对应第二时间。或者说,第二组配置参数是终端在第二时间监测搜索空间中的第一信号时所采用的配置参数。
在本申请实施例中,第一时间不同于第二时间。可选的,第一时间可以是激活时间,第二时间可以是非激活时间。其中,激活时间是指终端需要监听用于数据调度的PDCCH的时间,例如DRX cycle中的on duration,以及定时器drxInactivityTimer运行的时间等。非激活时间是除了激活时间之外的其他时间。或者说,非激活时间是值终端不需要监听用于数据调度的PDCCH的时间,例如DRX cycle中的opportunity for DRX,以及当终端只有一个HARQ进程的情况下定时器HARQ RTT timer运行的时间等。
第一时间和第二时间的时间粒度可以是符号、时隙、子帧、无线帧等,本申请实施例不限于此。也就是说,第一时间(或者第二时间)可以包括至少一个符号,或者至少一个时隙,或者至少一个子帧,或者至少一个无线帧。
其中,在5G NR系统中,无线帧的时间长度为10ms。一个无线帧可以包括多个子帧。一个子帧可以包括多个时隙。一个时隙可以包括多个符号。
可选的,为了适应不同的应用场景,第一组配置参数和第二组配置参数可以在至少一个配置参数上存在不同。
示例性的,若第一时间为激活时间,第二时间为非激活时间,则第一组配置参数和第二组配置参数在至少一个配置参数上存在不同,包括以下情形之一:
(1)对于同一聚合等级,所述第一组配置参数中的候选PDCCH的个数小于所述第二组配置参数中的候选PDCCH的个数。可以理解的是,在非激活时间内,终端仅需在搜索空间中监测第一信号,而无需监测其他调度信号,因此搜索空间在非激活时间内的候选PDCCH的个数可以更多,以避免漏检第一信号。
(2)第一组配置参数中的监测周期小于第二组配置参数中的监测周期。可以理解的是,一般情况下,激活时间的时域长度要小于非激活时间的时域长度,以便于使得终端更好地节省功耗。在这种情况下,由于激活时间的时域长度较小,并且终端需要多次在激活时间内监测第一信号,因此搜索空间在激活时间内的监测周期应该比较小。相应的,由于非激活时间的时域长度较大,并且终端仅需要在非激活时间内监测一次第一信号,因此搜索空间在非激活时间内的监测周期应该比较大。
(3)第一组配置参数中的时域长度大于第二组配置参数中的时域长度。可以理解的是,由于终端需要多次在激活时间内监测第一信号,因此搜索空间在激活时间内的时域长度应该比较大。相应的,由于终端仅需要在非激活时间内监测一次第一信号,因此搜索空间在非激活时间内的时域长度应该比较小。
现有的SearchSpace IE仅能用于为一个搜索空间配置一组配置参数,因此现有的SearchSpace IE不适用于图6所示的技术方案。
为此,本申请实施例提出了如下方案:
方案一、本申请实施例提出一种新的信元。该新的信元专门用于配置承载第一信号的搜索空间的配置参数。为了便于描述,下文中将该新的信元可以称为SearchSpaceForPowerSaving IE。
可以理解的是,用于其他目的的搜索空间可以沿用当前的SearchSpace IE来配置相应的配置参数。这样一来,终端可以根据网络设备所下发的信元,获知哪一个搜索空间用于承载第一信号。
示例性的,以第一时间为激活时间,第二时间为非激活时间为例,相比于SearchSpace IE SearchSpaceForPowerSaving IE的区别在于:
(1)若搜索空间在激活时间内的监测周期和偏移值,与搜索空间在非激活时间内的监测周期和偏移值存在区别,则SearchSpaceForPowerSaving IE可以实现为如下形式:
Figure PCTCN2020086350-appb-000005
Figure PCTCN2020086350-appb-000006
其中,monitoringSlotPeriodicityAndOffsetInActiveTime用于指示激活时间对应的监测周期以及偏移值。
monitoringSlotPeriodicityAndOffsetOutActiveTime用于指示非激活时间对应的监测周期以及偏移值。
(2)若搜索空间在激活时间内的时域长度,与搜索空间在非激活时间内的时域长度不相同,则SearchSpaceForPowerSaving IE可以实现为如下形式:
Figure PCTCN2020086350-appb-000007
其中,durationInActiveTime用于指示激活时间对应的时域长度。
durationOutActiveTime用于指示非激活时间对应的时域长度。
(3)对于一个搜索空间来说,若激活时间对应的一个时隙内的待监测的起始符号不同于 非激活时间对应的一个时隙内的待监测的起始符号,则SearchSpaceForPowerSaving IE可以实现为如下形式:
Figure PCTCN2020086350-appb-000008
其中,monitoringSymbolsWithinSlotInActiveTime用于指示激活时间对应的一个时隙内的待监测的起始符号。
monitoringSymbolsWithinSlotOutActiveTime用于指示非激活时间对应的一个时隙内的待监测的起始符号。
(4)若搜索空间在激活时间内的待监测的聚合等级、每个聚合等级对应的候选PDCCH个数,与搜索空间在非激活时间内的待监测的聚合等级、聚合等级对应的候选PDCCH的个数不相同,则SearchSpaceForPowerSaving IE可以实现为如下形式:
Figure PCTCN2020086350-appb-000009
其中,nrofCandidatesInActiveTime用于指示激活时间对应的搜索空间的多个聚合等级,以及多个聚合等级中每一个聚合等级对应的候选PDCCH的个数。
nrofCandidatesInActiveTime用于指示非激活时间对应的搜索空间的多个聚合等级,以及多个聚合等级中每一个聚合对应的候选PDCCH的个数。
可选的,在SearchSpaceForPowerSaving IE可以不包括搜索空间的类型这一配置参数。也即,当搜索空间配置消息采用SearchSpaceForPowerSaving IE时,搜索空间配置消息可以不包 括搜索空间的类型。这样有利于节省信令开销。
可以理解的是,在这种情况下,承载第一信号的搜索空间的类型可以是协议中定义的,或者是网络设备和终端预先协商确定的。例如,承载第一信号的搜索空间可以默认为公共搜索空间,或者,承载第一信号的搜索空间可以默认为UE特定的搜索空间。
方案二、本申请实施例对现有的SearchSpace IE进行改进。改进后的SearchSpace IE可以适用于任一个搜索空间的配置。也即,无论搜索空间的用于是承载第一信号,还是其他目的,该搜索空间对应的搜索空间配置消息均可以采用改进后的SearchSpace IE。
在这种情况下,终端根据改进后的SearchSpace IE中携带的DCI format,来确定对应的搜索空间是否用于承载第一信号。以第一信号为基于PDCCH的功耗节省信号为例,若改进后的SearchSpace IE携带DCI fomat M,则说明终端需要在搜索空间中监测基于PDCCH的功耗节省信号,也即该搜索空间用于承载基于PDCCH的功耗节省信号。其中,DCI format M是前文中定义的功率节省信号对应的DCI format。
示例性的,以第一时间为激活时间,第二时间为非激活时间为例,相比于当前的SearchSpaceIE,改进后的SearchSpace IE的区别在于:
(1)若搜索空间在激活时间内的监测周期和偏移值,与搜索空间在非激活时间内的监测周期和偏移值存在区别,则改进后的SearchSpace IE可以实现为如下形式:
Figure PCTCN2020086350-appb-000010
Figure PCTCN2020086350-appb-000011
其中,monitoringSlotPeriodicityAndOffsetInActiveTime用于指示激活时间对应的监测周期以及偏移值。
monitoringSlotPeriodicityAndOffsetOutActiveTime用于指示非激活时间对应的监测周期以及偏移值。
(2)若搜索空间在激活时间内的时域长度,与搜索空间在非激活时间内的时域长度不相同,则改进后的SearchSpace IE可以实现为如下形式:
Figure PCTCN2020086350-appb-000012
其中,durationInActiveTime用于指示激活时间对应的时域长度。
durationOutActiveTime用于指示非激活时间对应的时域长度。
(3)对于一个搜索空间来说,若激活时间对应的一个时隙内的待监测的起始符号不同于非激活时间对应的一个时隙内的待监测的起始符号,则改进后的SearchSpace IE可以实现为如下形式:
Figure PCTCN2020086350-appb-000013
其中,monitoringSymbolsWithinSlotInActiveTime用于指示激活时间对应的一个时隙内的待监测的起始符号。
monitoringSymbolsWithinSlotOutActiveTime用于指示非激活时间对应的一个时隙内的待 监测的起始符号。
(4)若搜索空间在激活时间内的待监测的聚合等级、每个聚合等级对应的候选PDCCH个数,与搜索空间在非激活时间内的待监测的聚合等级、聚合等级对应的候选PDCCH的个数不相同,则改进后的SearchSpace IE可以实现为如下形式:
Figure PCTCN2020086350-appb-000014
其中,nrofCandidatesInActiveTime用于指示激活时间对应的搜索空间的多个聚合等级,以及多个聚合等级中每一个聚合等级对应的候选PDCCH的个数。
nrofCandidatesInActiveTime用于指示非激活时间对应的搜索空间的多个聚合等级,以及多个聚合等级中每一个聚合对应的候选PDCCH的个数。
另外,从SearchSpaceForPowerSaving IE的示例和改进的SearchSpace IE的示例可以看出,相比较于SearchSpaceForPowerSaving IE,在改进的SearchSpace IE的示例中,nrofCandidatesInActiveTime和nrofCandidatesInActiveTime位于dci-FormatForPowerSaving这一结构体中,以说明nrofCandidatesInActiveTime所指示的激活时间对应的聚合等级以及候选PDCCH的个数适用于功率节省信号,nrofCandidatesInActiveTime所指示的非激活时间对应的聚合等级以及候选PDCCH的个数适用于功率节省信号。
S102、网络设备向终端发送所述搜索空间配置消息,以使得终端接收网络设备发送的搜索空间配置消息。
S103、终端根据所述搜索空间配置消息,确定第一组配置参数和第二组配置参数。
基于图6所示的技术方案,网络设备通过搜索空间配置消息,为终端配置了一个搜索空间的两组配置参数,这两组配置参数对应不同的时间。这样一来,终端可以在不同的时间可以采用对应的一组配置参数,在搜索空间中监测第一信号,以满足不同时间下对于搜索空间的特定要求。
另外,在第一信号用于指示功耗节省信息的情况下,也即第一信号为基于PDCCH的功耗节省信号的情况下,基于图7所示的技术方案,网络设备仅为终端配置一个用于功耗节省信号的搜索空间。这样一来,相比于现有技术需要为终端配置两个用于功耗节省信号的搜索空间的方案,本申请的技术方案可以使得网络设备可以有更多数量的搜索空间可以用于其他目的,有利于网络设备对终端的调度。
如图7所示,为本申请实施例提供的一种搜索空间的配置方法,包括以下步骤:
S201、网络设备向终端发送第一搜索空间配置消息,以使得终端接收网络设备发送的第一搜索空间配置消息。
其中,第一搜索空间配置消息包括搜索空间的第一组配置参数。第一组配置参数对应第一时间。或者说,第一组配置参数是终端在第一时间监测搜索空间中的第一信号时所采用的配置参数。
可选的,第一搜索空间配置消息还包括第一指示信息,该第一指示信息用于指示第一搜索空间配置消息所包括的一组配置参数为第一组配置参数。或者说,该第一指示信息用于指示第一搜索空间配置消息所包括的一组配置参数与第一时间对应。
S202、网络设备向终端发送第二搜索空间配置消息,以使得终端接收网络设备发送的第二搜索空间配置消息。
其中,第二搜索空间配置消息包括搜索空间的第二组配置参数。第二组配置参数对应第二时间。或者说,第二组配置参数是终端在第二时间监测搜索空间中的第一信号时所采用的配置参数。
可选的,第二搜索空间配置消息还包括第二指示信息,该第二指示信息用于指示第二搜索空间配置消息所包括的一组配置参数为第二组配置参数。或者说,该第二指示信息用于指示第二搜索空间配置消息所包括的一组配置参数与第二时间对应。
需要说明的是,第一搜索空间配置消息和第二搜索空间配置消息用于指示同一个搜索空间的配置参数。可选的,第一搜索空间配置消息和第二搜索空间配置消息可以沿用当前的SerachSpace IE,本申请实施例对此不作限定。
本申请实施例对步骤S201和S202的执行顺序不作限定。例如,可以先执行步骤S201,再执行步骤S202。或者,可以先执行步骤S202,再执行步骤S201。又或者,同时执行步骤S201和S202。
S203、终端根据第一搜索空间配置消息确定第一组配置参数,以及根据第二搜索空间配置消息确定第二组配置参数。
基于图7所示的技术方案,网络设备通过两条搜索空间配置消息,来为终端配置同一搜索空间对应的两组配置参数,这两组配置参数适用于不同的时间。从而,终端可以在不同的时间使用对应的一组配置参数来监测第一信号,以满足不同时间下的特殊需求。
另外,在第一信号用于指示功耗节省信息的情况下,也即第一信号为基于PDCCH的功耗节省信号的情况下,基于图7所示的技术方案,网络设备仅为终端配置一个用于功耗节省信号的搜索空间。这样一来,相比于现有技术需要为终端配置两个用于功耗节省信号的搜索空间的方案,本申请的技术方案可以使得网络设备可以有更多数量的搜索空间可以用于其他目的,有利于网络设备对终端的调度。
在基于图6或图7所示的搜索空间的配置方法之后,终端可按照图8所示的方法来监测搜索空间。如图8所示,为本申请实施例提供的一种搜索空间的监测方法,包括以下步骤:
S301、终端在第一时间根据搜索空间的第一组配置参数,在搜索空间中监测第一信号。
可选的,第一时间可以为激活时间。其中,激活时间是指终端需要监听用于数据调度的PDCCH的时间,例如DRX cycle中的on duration,以及定时器drxInactivityTimer运行的时间等。
在本申请实施例中,第一时间可以是网络设备预先为终端配置的,或者终端自身确定的,或者根据协议确定的,对此不作限定。
可选的,步骤301也可以描述为:终端在第一时间根据搜索空间的第一组配置参数,监测第一信号。
作为一种实现方式,终端在第一时间根据第一组配置参数,确定搜索空间所在的时域位置;并根据搜索空间所在的时域位置,对搜索空间进行盲检,以确定搜索空间是否承载了第一信号。其中,搜索空间的盲检流程可参考现有技术,在此不予赘述。
S302、终端在第二时间根据搜索空间的第二组配置参数,在搜索空间中监测第一信号。
其中,第二时间不同于第一时间。第二时间为除第一时间之外的其他时间。
可选的,第二时间为非激活时间。其中,非激活时间是值终端不需要监听用于数据调度的PDCCH的时间,例如DRX cycle中的opportunity for DRX,以及当终端只有一个HARQ进程的情况下定时器HARQ RTT timer运行的时间等。
在本申请实施例中,第二时间可以是网络设备预先为终端配置的,或者终端自身确定的,或者根据协议确定的,对此不作限定。
可选的,步骤302也可以描述为:终端在第二时间根据搜索空间的第二组配置参数,监测第一信号。
作为一种实现方式,终端在第二时间根据第二组配置参数,确定搜索空间所在的时域位置;并根据搜索空间所在的时域位置,对搜索空间进行盲检,以确定搜索空间是否承载了第一信号。
示例性的,如图9所示,终端在激活时间采用第一组配置参数来监测第一信号,在非激活时间采用第二组配置参数来监测第一信号。
基于图8所示的技术方案,终端在不同的时间采用不同的一组配置参数,在搜索空间中监测第一信号,以满足第一信号在不同时间下对搜索空间的特定要求。
另外,在第一信号为基于PDCCH的功耗节省信号的情况下,图8所示的技术方案,可以使得终端仅在一个搜索空间中监测基于PDCCH的功耗节省信号,也即网络设备仅需要利用一个搜索空间来承载基于PDCCH的功耗节省信号,从而可以使得有更多数量的搜索空间可以用于其他目的,有利于网络设备对终端的调度。
上述主要从每一个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,每一个网元,例如网络设备和终端,为了实现上述功能,其包含了执行每一个功能相应的硬件结构或软件模块,或两者结合。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备和终端进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际 实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
图10为本申请实施例提供的一种终端的结构示意图。如图10所示,终端包括通信模块301和处理模块302。其中,通信模块301用于支持终端执行图6中的步骤S102,图7中的步骤S201和S202,和/或用于支持本文描述的技术方案的其他过程。处理模块302用于支持终端执行图6中的步骤S103,图7中的步骤S103,图8中的步骤S301和S302,和/或用于支持本文描述的技术方案的其他过程。
作为一个示例,结合图5所示的终端,图10中的通信模块301可以由图5中的收发器103来实现,图10中的处理模块302可以由图5中的处理器101来实现,本申请实施例对此不作任何限制。
图11为本申请实施例提供的一种网络设备的结构示意图。如图11所示,网络设备包括通信模块401和处理模块402。其中,通信模块401用于支持终端执行图6中的步骤S102,图7中的步骤S201和S202,和/或用于支持本文描述的技术方案的其他过程。处理模块402用于支持终端执行图6中的步骤S101,和/或用于支持本文描述的技术方案的其他过程。
作为一个示例,结合图5所示的网络设备,图11中的通信模块401可以由图5中的收发器203来实现,图11中的处理模块402可以由图5中的处理器201来实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在通信装置上运行时,使得该通信装置执行如图6至图8所示的方法。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行图6至图8所示的方法。
图12为本申请实施例提供的一种芯片的结构示意图。图12所示的芯片可以为通用处理器,也可以为专用处理器。该芯片包括处理器501。其中,处理器501用于支持通信装置执行图6至图8所示的技术方案。
可选的,该芯片还包括收发管脚502,收发管脚502用于接受处理器501的控制,用于支持通信装置执行图6至图8所示的技术方案。
可选的,图12所示的芯片还可以包括:存储介质503。
需要说明的是,图12所示的芯片可以使用下述电路或者器件来实现:一个或多个现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其他适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
上述本申请实施例提供的终端、网络设备、计算机存储介质、计算机程序产品、芯片均用于执行上文所提供的方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的 有益效果,在此不再赘述。
尽管在此结合各实施例对本申请进行了描述,然而,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种搜索空间的监测方法,其特征在于,所述方法包括:
    终端在第一时间根据搜索空间的第一组配置参数,在所述搜索空间中监测第一信号;
    所述终端在第二时间根据所述搜索空间的第二组配置参数,在所述搜索空间中监测第一信号。
  2. 根据权利要求1所述的搜索空间的监测方法,其特征在于,所述方法还包括:
    所述终端接收网络设备发送的搜索空间配置消息,所述搜索空间消息参数包括第一组配置参数和第二组配置参数,所述第一组配置参数对应第一时间,所述第二组配置参数对应第二时间。
  3. 根据权利要求1或2所述的搜索空间的监测方法,其特征在于,所述第一组配置参数和所述第二组配置参数中任一组配置参数包括以下参数中的至少一项:
    搜索空间的类型、聚合等级、聚合等级对应的候选物理下行控制信道PDCCH的数量、监测周期、偏移值、时域长度、以及一个时隙中待监测的起始符号。
  4. 根据权利要求3所述的搜索空间的监测方法,其特征在于,所述第一组配置参数与所述第二组配置参数在至少一个配置参数上存在不同。
  5. 根据权利要求4所述的搜索空间的监测方法,其特征在于,所述第一时间为激活时间,所述第二时间为非激活时间。
  6. 根据权利要求5所述的搜索空间的监测方法,其特征在于,所述第一组配置参数与所述第二组配置参数在至少一个配置参数上存在不同,至少包括以下情形之一:
    对于同一聚合等级,所述第一组配置参数中的候选PDCCH的个数小于所述第二组配置参数中的候选PDCCH的个数;
    所述第一组配置参数中的监测周期小于所述第二组配置参数中的监测周期;
    所述第一组配置参数中的时域长度大于所述第二组配置参数中的时域长度。
  7. 根据权利要求1至6任一项所述的搜索空间的监测方法,其特征在于,所述第一信号用于指示功率节省信息。
  8. 一种搜索空间的配置方法,其特征在于,所述方法包括:
    网络设备生成搜索空间配置消息,所述搜索空间配置消息包括第一组配置参数和第二组配置参数,所述第一组配置参数是终端在第一时间监测搜索空间中的第一信号时所采用的配置参数,所述第二组配置参数是终端在第二时间监测搜索空间中的第一信号时所采用的配置参数;
    所述网络设备向终端发送所述搜索空间配置消息。
  9. 根据权利要求8所述的搜索空间的配置方法,其特征在于,所述第一组配置参数和所述第二组配置参数中任一组配置参数包括以下参数中的至少一项:
    搜索空间的类型、聚合等级、聚合等级对应的候选物理下行控制信道PDCCH的个数、监测周期、偏移值、时域长度、以及一个时隙中待监测的起始符号。
  10. 根据权利要求9所述的搜索空间的配置方法,其特征在于,所述第一组配置参数与所述第二组配置参数在至少一个配置参数上存在不同。
  11. 根据权利要求10所述的搜索空间的配置方法,其特征在于,所述第一时间为激活时间,所述第二时间为非激活时间。
  12. 根据权利要求11所述的搜索空间的配置方法,其特征在于,所述第一组配置参数与所述第二组配置参数在至少一个配置参数上存在不同,至少包括以下情形之一:
    对于同一聚合等级,所述第一组配置参数中的候选PDCCH的个数小于所述第二组配置参数中的候选PDCCH的个数;
    所述第一组配置参数中的监测周期小于所述第二组配置参数中的监测周期;
    所述第一组配置参数中的时域长度大于所述第二组配置参数中的时域长度。
  13. 根据权利要求8至12任一项所述的搜索空间的配置方法,其特征在于,所述第一信号用于指示功率节省信息。
  14. 一种终端,其特征在于,包括:一个或多个处理器;存储器;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述终端执行时,使得所述终端执行以下步骤:
    在第一时间根据搜索空间的第一组配置参数,在所述搜索空间中监测第一信号;
    在第二时间根据所述搜索空间的第二组配置参数,在所述搜索空间中监测第一信号。
  15. 根据权利要求14所述的终端,其特征在于,当所述指令被所述终端执行时,还使得所述终端执行以下步骤:
    接收网络设备发送的搜索空间配置消息,所述搜索空间消息参数包括第一组配置参数和第二组配置参数,所述第一组配置参数对应第一时间,所述第二组配置参数对应第二时间。
  16. 根据权利要求14或15所述的终端,其特征在于,所述第一组配置参数和所述第二组配置参数中任一组配置参数包括以下参数中的至少一项:
    搜索空间的类型、聚合等级、聚合等级对应的候选物理下行控制信道的数量、监测周期、偏移值、时域长度、以及一个时隙中待监测的起始符号。
  17. 根据权利要求16所述的终端,其特征在于,所述第一组配置参数与所述第二组配置参数在至少一个配置参数上存在不同。
  18. 根据权利要求17所述的终端,其特征在于,所述第一时间为激活时间,所述第二时间为非激活时间。
  19. 根据权利要求18所述的终端,其特征在于,所述第一组配置参数与所述第二组配置参数在至少一个配置参数上存在不同,至少包括以下情形之一:
    对于同一聚合等级,所述第一组配置参数中的候选PDCCH的个数小于所述第二组配置参数中的候选PDCCH的个数;
    所述第一组配置参数中的监测周期小于所述第二组配置参数中的监测周期;
    所述第一组配置参数中的时域长度大于所述第二组配置参数中的时域长度。
  20. 根据权利要求14至19任一项所述的终端,其特征在于,所述第一信号用于指示功率节省信息。
  21. 一种网络设备,其特征在于,包括:一个或多个处理器;存储器;以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述网络设备执行时,使得所述网络设备执行以下步骤:
    生成搜索空间配置消息,所述搜索空间配置消息包括第一组配置参数和第二组配置参数,所述第一组配置参数是终端在第一时间监测搜索空间中的第一信号时所采用的配置参数,所述第二组配置参数是终端在第二时间监测搜索空间中的第一信号时所采用的配置参数;
    向终端发送所述搜索空间配置消息。
  22. 根据权利要求21所述的网络设备,其特征在于,所述第一组配置参数和所述第二组配置参数中任一组配置参数包括以下参数中的至少一项:
    搜索空间的类型、聚合等级、聚合等级对应的候选物理下行控制信道PDCCH的个数、 监测周期、偏移值、时域长度、以及一个时隙中待监测的起始符号。
  23. 根据权利要求22所述的网络设备,其特征在于,所述第一组配置参数与所述第二组配置参数在至少一个配置参数上存在不同。
  24. 根据权利要求23所述的网络设备,其特征在于,所述第一时间为激活时间,所述第二时间为非激活时间。
  25. 根据权利要求24所述的网络设备,其特征在于,所述第一组配置参数与所述第二组配置参数在至少一个配置参数上存在不同,至少包括以下情形之一:
    对于同一聚合等级,所述第一组配置参数中的候选PDCCH的个数小于所述第二组配置参数中的候选PDCCH的个数;
    所述第一组配置参数中的监测周期小于所述第二组配置参数中的监测周期;
    所述第一组配置参数中的时域长度大于所述第二组配置参数中的时域长度。
  26. 根据权利要求21至25任一项所述的网络设备,其特征在于,所述第一信号用于指示功率节省信息。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被处理器执行时,使得所述处理器执行如权利要求1至7任一项所述的搜索空间的监测方法,或者使得所述处理器执行如权利要求8至13任一项所述的搜索空间的配置方法。
  28. 一种芯片,其特征在于,包括处理器,当所述处理器执行指令时,所述处理器执行如权利要求1至7任一项所述的搜索空间的监测方法,或者所述处理器执行如权利要求8至13任一项所述的搜索空间的配置方法。
PCT/CN2020/086350 2019-04-30 2020-04-23 搜索空间的监测、配置方法及装置 WO2020221093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910364474.7 2019-04-30
CN201910364474.7A CN111865536B (zh) 2019-04-30 2019-04-30 搜索空间的监测、配置方法及装置

Publications (1)

Publication Number Publication Date
WO2020221093A1 true WO2020221093A1 (zh) 2020-11-05

Family

ID=72965095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086350 WO2020221093A1 (zh) 2019-04-30 2020-04-23 搜索空间的监测、配置方法及装置

Country Status (2)

Country Link
CN (1) CN111865536B (zh)
WO (1) WO2020221093A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978423A (zh) * 2022-05-10 2022-08-30 中国信息通信研究院 一种下行控制信令检测方法和设备
CN114978446A (zh) * 2021-02-24 2022-08-30 华为技术有限公司 一种物理下行控制信道监测的方法及装置
CN114978423B (zh) * 2022-05-10 2024-05-31 中国信息通信研究院 一种下行控制信令检测方法和设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115707120A (zh) * 2021-08-06 2023-02-17 大唐移动通信设备有限公司 数据传输方法、装置、网络侧设备及终端
CN117643137A (zh) * 2022-06-24 2024-03-01 北京小米移动软件有限公司 一种传输配置信息的方法、装置、设备及可读存储介质
WO2024036527A1 (zh) * 2022-08-17 2024-02-22 北京小米移动软件有限公司 搜索空间配置方法、装置、通信设备及存储介质
CN117793921A (zh) * 2022-09-27 2024-03-29 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170041877A1 (en) * 2013-09-26 2017-02-09 Blackberry Limited Discontinuous reception configuration
CN109257823A (zh) * 2018-08-10 2019-01-22 华为技术有限公司 监测信号的方法和装置
CN109417762A (zh) * 2018-10-11 2019-03-01 北京小米移动软件有限公司 搜索空间参数配置和调整方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584460B (zh) * 2012-08-11 2019-02-22 Lg电子株式会社 在无线通信系统中接收下行链路控制信道的方法和设备
US10594428B2 (en) * 2016-03-31 2020-03-17 Sony Corporation Terminal device, base station device, and communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170041877A1 (en) * 2013-09-26 2017-02-09 Blackberry Limited Discontinuous reception configuration
CN109257823A (zh) * 2018-08-10 2019-01-22 华为技术有限公司 监测信号的方法和装置
CN109417762A (zh) * 2018-10-11 2019-03-01 北京小米移动软件有限公司 搜索空间参数配置和调整方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on UE power saving schemes with adaption to UE traffic", 3GPP TSG RAN WG1 #96 R1-1903344, 22 February 2019 (2019-02-22), XP051601021 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978446A (zh) * 2021-02-24 2022-08-30 华为技术有限公司 一种物理下行控制信道监测的方法及装置
CN114978423A (zh) * 2022-05-10 2022-08-30 中国信息通信研究院 一种下行控制信令检测方法和设备
CN114978423B (zh) * 2022-05-10 2024-05-31 中国信息通信研究院 一种下行控制信令检测方法和设备

Also Published As

Publication number Publication date
CN111865536A (zh) 2020-10-30
CN111865536B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2020221093A1 (zh) 搜索空间的监测、配置方法及装置
US20190141767A1 (en) Interleaving Radio Access Technologies
WO2020088688A1 (zh) 资源配置方法及装置
US10834730B2 (en) Transmission direction configuration method, device, and system
WO2020259254A1 (zh) 搜索空间的监测方法及装置
WO2021062612A1 (zh) 通信方法及装置
WO2020143551A1 (zh) 一种信道检测方法及设备
EP4171144A1 (en) Physical downlink control channel (pdcch) monitoring method and apparatus, and terminal
WO2021036375A1 (zh) 一种通信方法和装置
WO2018202022A1 (zh) 用于传输缓存状态报告的方法和装置
CN111436085A (zh) 通信方法及装置
JP2022539694A (ja) ダウンリンク制御チャネルのモニタリングに関するユーザ装置
EP4207884A1 (en) Communication method and device
WO2024082813A1 (zh) Harq进程的分配方法、装置、基站及存储介质
WO2021027551A1 (zh) 一种通信方法及装置
CN116349162A (zh) 跨载波调度方法、终端设备和接入网设备
WO2020051889A1 (zh) 一种数据传输方法、控制信息发送方法及设备
WO2022206864A1 (zh) 非连续接收控制方法、装置及系统
EP4138475A1 (en) Method, apparatus and system for determining resource
WO2021036763A1 (zh) 监测周期的调整方法及装置
KR20230128028A (ko) 사용자 장비에 대한 향상된 불연속 수신 및 절전
WO2019041261A1 (zh) 一种通信方法及设备
WO2021208981A1 (zh) 一种目标信息发送方法、接收方法和装置
US12010651B2 (en) Wireless communication method, terminal, and network device
WO2023098574A1 (zh) 一种传输指示方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799396

Country of ref document: EP

Kind code of ref document: A1