WO2020143551A1 - 一种信道检测方法及设备 - Google Patents

一种信道检测方法及设备 Download PDF

Info

Publication number
WO2020143551A1
WO2020143551A1 PCT/CN2020/070323 CN2020070323W WO2020143551A1 WO 2020143551 A1 WO2020143551 A1 WO 2020143551A1 CN 2020070323 W CN2020070323 W CN 2020070323W WO 2020143551 A1 WO2020143551 A1 WO 2020143551A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
timer
control channel
downlink control
terminal device
Prior art date
Application number
PCT/CN2020/070323
Other languages
English (en)
French (fr)
Inventor
薛丽霞
陈铮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020217025226A priority Critical patent/KR102652733B1/ko
Priority to EP20738400.9A priority patent/EP3905793A4/en
Publication of WO2020143551A1 publication Critical patent/WO2020143551A1/zh
Priority to US17/372,293 priority patent/US20210337409A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular, to a channel detection method and device.
  • the base station transmits a physical downlink shared channel (PDSCH) to the terminal device, and the PDSCH is generally scheduled through control information carried in the physical downlink control channel (physical downlink control channel, PDCCH).
  • the control information is, for example, Downlink control information (DCI). Therefore, in order to correctly receive the PDSCH, the terminal device needs to detect the PDCCH first, and obtain the relevant information required for receiving the PDSCH according to the DCI carried by the PDCCH, such as the location and size of the PDSCH time-frequency resource or multi-antenna configuration information.
  • DCI Downlink control information
  • packet-based data flow is usually bursty, with data transmission for a period of time, but there may be no data transmission for a longer period of time. If the terminal device continuously detects the PDCCH, it may do useless work for a long time, and the power consumption of the terminal device is relatively large.
  • Embodiments of the present application provide a channel detection method and device, which are used to reduce power consumption of a terminal device.
  • a first channel detection method includes: a terminal device detects a first signal on n transmission opportunities within a detection period, where n is a positive integer; when the terminal device transmits on the n When the first signal is detected on at least one transmission opportunity, the terminal device detects the downlink control channel and/or the second signal within the first time period in the detection period; or, when the terminal device is No first signal is detected on the n transmission opportunities, and the terminal device does not detect a downlink control channel during the detection period.
  • the method may be executed by a first communication device.
  • the first communication device may be a terminal device or a communication device capable of supporting the functions required by the method by the terminal device, and of course, may be other communication devices, such as a chip system.
  • the first communication device is a terminal device.
  • the first signal may be sent, if the network device does not schedule data within a period of time after n transmission opportunities, the network device may not send the first signal, then the terminal The device cannot detect the first signal at n transmission opportunities. At this time, the terminal device may not detect the downlink control channel within the second time period, thereby reducing the chance of the terminal device doing useless work and saving the power consumption of the terminal device.
  • the first time period is counted by a first timer, and the timing duration of the first timer is the length of the first time period .
  • the terminal device can count the first time period through the first timer, so that the start and end positions of the first time period can be clarified.
  • the method in a case where the terminal device detects a downlink control channel and a second signal within a first time period in the detection period, the method It also includes: when the terminal device detects the second signal within the timing duration of the first timer, the terminal device resets the first timer, and resets the first timing Detect the downlink control channel within the timing duration of the device; or, when the terminal device detects the second signal within the timing duration of the first timer and the second signal indicates to continue to detect the downlink control channel , The terminal device resets the first timer, and detects the downlink control channel within the timing duration of the reset first timer.
  • the terminal device detects the second signal within the timing duration of the first timer, it indicates that the subsequent network device may send a downlink control channel. Therefore, the terminal device can detect the downlink control channel, and the terminal device can also reset the second signal according to the second signal.
  • a timer for example, the network device may have more data to send. By resetting the first timer, the terminal device can receive the downlink control channel within a sufficient time, and try to ensure that the terminal device can completely receive the data.
  • the second signal can be implemented in different ways, where the second signal can be used as an energy-saving signal by the signal itself. In this case, the terminal device can determine how to process the second signal according to whether it receives the second signal.
  • the content is not limited, and the implementation is relatively simple.
  • the second signal can also be used for different indications based on the content carried by the second signal. After receiving the second signal, the terminal device needs to determine the content specifically indicated by the second signal to determine the next operation. This way Make the indication of the second signal more clear.
  • the method in a possible implementation manner of the first aspect, in a case where the terminal device detects a downlink control channel and a second signal within a first time period in the detection period, the method It also includes: within the timing duration of the first timer, when the terminal device has not detected the second signal, detecting the downlink control channel.
  • the network device may send both the downlink control channel and the second signal, even if the terminal device does not detect the second signal, it may detect the downlink control channel, so as to ensure timely reception of the downlink control channel.
  • the method further includes: When the terminal device detects the second signal within the timing duration of the first timer, the terminal device resets the first timer and resets the timing duration of the first timer after resetting Detect the downlink control channel internally; or when the terminal device detects the second signal within the timing duration of the first timer and the second signal indicates that the downlink control channel is detected, the terminal device Setting the first timer, and detecting the downlink control channel within the timing duration of the first timer after resetting.
  • the terminal device detects the second signal within the timing duration of the first timer, it indicates that the subsequent network device may send a downlink control channel. Therefore, the terminal device can detect the downlink control channel, and the terminal device can also reset the second signal according to the second signal.
  • a timer for example, the network device may have more data to send. By resetting the first timer, the terminal device can receive the downlink control channel within a sufficient time, and try to ensure that the terminal device can completely receive the data.
  • the second signal can be implemented in different ways, where the second signal can be used as an energy-saving signal by the signal itself. In this case, the terminal device can determine how to process the second signal according to whether it receives the second signal.
  • the content is not limited, and the implementation is relatively simple.
  • the second signal can also be used for different indications based on the content carried by the second signal. After receiving the second signal, the terminal device needs to determine the content specifically indicated by the second signal to determine the next operation. This way Make the indication of the second signal more clear.
  • the method further includes: Within the timing duration of the first timer, when the terminal device has not detected the second signal, the downlink control channel is not detected.
  • the network device sends the downlink control channel after sending the second signal, so if the terminal device does not detect the second signal, there is no need to detect the downlink control channel, which can reduce the power consumption of the terminal device.
  • the method further includes: when the terminal device detects the second signal within a timing duration of the first timer and the When the second signal instructs to suspend detection of the downlink control channel, the terminal device suspends detection of the downlink control channel within a third time period.
  • the terminal device If the second signal indicates to suspend the detection of the downlink control channel, indicating that the network device may not send the downlink control channel for a period of time in the future, then the terminal device enters a "sleep" state during the third period of time, and within the third period of time , The terminal device may suspend detection of the downlink control channel, or suspend detection of the second signal to reduce power consumption.
  • the method further includes: when the terminal device detects the second signal within a timing duration of the first timer and the The second signal instructs to pause the detection of the downlink control channel and keep the first timer running.
  • the terminal device suspends the detection of the downlink control channel, it can still keep the first timer running to realize the continuous timing.
  • the method further includes: when the first timer expires, the terminal device stops detecting the downlink control channel and the second signal.
  • the network device When the first timer expires, the network device no longer sends the downlink control channel and the second signal, for example, the data transmission process may be completed, then the terminal device may also stop detecting the downlink control channel and the second signal to reduce Low power consumption.
  • the terminal device when the first timer is running, the terminal device does not detect the first signal.
  • the network device may also send a first signal.
  • the first signal is a UE group-specific signal.
  • the network device may continue to send the first signal. Then, for the terminal device whose first timer has started running, it may no longer detect the first signal to normally complete other detection processes.
  • the terminal device periodically detects the second signal within a timing duration of the first timer.
  • the network device may periodically send the second signal, and the detection of the second signal by the terminal device may also be periodic.
  • the detection period of the second signal by the terminal device may be less than or equal to the detection period of the first signal by the terminal device.
  • the detection period of the second signal by the terminal device may be greater than the detection period of the first signal by the terminal device. No restrictions.
  • the first signal is used to indicate the duration of the first time period.
  • the duration of the first time period can be indicated by the first signal, and the terminal device can determine the duration of the first time period after receiving the first signal. Or the terminal device may also determine the duration of the first time period in other ways, for example, it may also be specified in a protocol, etc., without specific limitation.
  • the n transmission opportunities are n consecutive transmission opportunities.
  • n transmission opportunities may be continuous, which can facilitate the detection of the terminal device.
  • n transmission opportunities may be discontinuous between each other, or part of the n transmission opportunities may be continuous, and this part of the transmission opportunities and the remaining transmission opportunities are discontinuous, no specific restrictions.
  • the first signal is generated based on a first sequence
  • the second signal is generated based on a second sequence
  • the first sequence belongs to A first sequence set
  • the second sequence belongs to a second sequence set
  • the first sequence set is a subset of the second sequence set
  • the first signal carries a first state value
  • the second The signal carries a second state value
  • the first state value belongs to a first state value set
  • the second information state value belongs to a second state value set
  • the first state value set is a subset of the second state value set .
  • the first signal and the second signal may be generated based on a sequence, or may not be generated based on a sequence, for example, in the form of signaling, that is, bits of the information domain are channel-coded and then transmitted.
  • signaling that is, bits of the information domain are channel-coded and then transmitted.
  • the detection cycle is a DRX cycle
  • the starting position of the first time period is the starting position of a DRX cycle
  • the terminal device is Only the first timer is started during the first time period.
  • the first signal may be combined with the DRX mechanism.
  • the time starting position of the first time period may be the time starting position of a DRX cycle, and the period that the terminal device detects the first signal may be the DRX cycle directly.
  • the DRX The on-duration timer of the cycle is 0 ms.
  • the terminal device only starts the first timer at the beginning of the DRX cycle. At this time, it is considered that the inactive timer is gone. Or, in this case, during the activation time of the DRX cycle, the terminal device only starts the first timer at the starting position of the DRX cycle.
  • the first timer may also be an inactivity timer, which starts at the beginning of the DRX cycle, or, as long as the terminal device detects the first signal, the inactivity timer starts. In this case, there is no on timer Too.
  • the running time of the first timer may be the activation time of the DRX cycle.
  • the embodiment of the present application replaces the two original timers in the DRX cycle with one timer (first timer). Compared with the current solution, the solution of the embodiment of the present application is simpler.
  • a second channel detection method includes: the network device determines to schedule data for the terminal device within a detection period; the network device sends the first on n transmission opportunities within the detection period Signal, the first signal is used to indicate data scheduling, and n is a positive integer.
  • the method may be performed by a second communication device, which may be a network device or a communication device capable of supporting the network device to achieve the functions required by the method, and of course may be other communication devices, such as a chip system.
  • a second communication device is a network device.
  • the method further includes: the network device sending a downlink control channel and/or a second signal within a first time period in the detection period .
  • the first time period is counted by a first timer, and the timing duration of the first timer is the length of the first time period .
  • the method in a possible implementation manner of the second aspect, in a case where the network device sends a downlink control channel and a second signal within a first time period in the detection period, the method It also includes: when the network device sends a second signal within the timing duration of the first timer, the network device resets the first timer, and resets the first timer The downlink control channel is sent within the timing duration of; or when the network device sends the second signal within the timing duration of the first timer and the second signal indicates to continue to detect the downlink control channel, The network device resets the first timer, and sends the downlink control channel within the timing duration of the reset first timer.
  • the method in a possible implementation manner of the second aspect, in a case where the network device sends a downlink control channel and a second signal within a first time period in the detection period, the method It also includes: within the timing duration of the first timer, when the network device has not sent the second signal, sending the downlink control channel.
  • the method further includes: When the network device sends the second signal within the timing duration of the first timer, the network device resets the first timer, and within the timing duration of the first timer after the reset Sending the downlink control channel; or, when the network device sends the second signal within the timing duration of the first timer and the second signal indicates detection of the downlink control channel, the network device resets The first timer, and the downlink control channel is sent within the timing duration of the first timer after resetting.
  • the method further includes: Within the timing duration of the first timer, when the network device has not sent the second signal, the downlink control channel is not sent.
  • the method further includes: when the network device sends the second signal within the timing duration of the first timer and the first When two signals instruct to suspend detection of the downlink control channel, the network device suspends sending the downlink control channel within a third time period.
  • the method further includes: when the network device sends the second signal within the timing duration of the first timer and the first When the two signals instruct to suspend the detection of the downlink control channel, keep the first timer to continue running.
  • the method further includes: when the first timer expires, the network device stops sending the downlink control channel and the second signal.
  • the network device when the first timer runs, the network device does not send the first signal.
  • the network device periodically sends the second signal within a timing duration of the first timer.
  • the first signal is used to indicate the duration of the first time period.
  • the n transmission opportunities are n consecutive transmission opportunities.
  • the first signal is generated based on a first sequence
  • the second signal is generated based on a second sequence
  • the first sequence belongs to a first sequence set
  • the second sequence belongs to a second sequence set
  • the The first sequence set is a subset of the second sequence set
  • the first signal carries a first state value
  • the second signal carries a second state value
  • the first state value belongs to a first state value set
  • the second information state value belongs to a second state value set
  • the first state value set is a subset of the second state value set.
  • the detection period is a DRX period
  • the starting position of the first time period is the starting position of a DRX period
  • the network device is Only the first timer is started during the first time period.
  • a first communication device may be a terminal device or a chip in the terminal device.
  • the device may include a processing unit and a transceiver unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the terminal device may further include a storage unit, the storage unit may be a memory; the storage unit is used to store instructions, the processing The unit executes the instructions stored in the storage unit, so that the terminal device performs the corresponding function in the first aspect described above.
  • the processing unit may be a processor, and the transceiving unit may be an input/output interface, a pin, or a circuit, etc.; the processing unit executes instructions stored in the storage unit to enable the terminal
  • the device performs the corresponding function in the first aspect described above.
  • the storage unit may be a storage unit within the chip (eg, registers, cache, etc.), or a storage unit located outside the chip within the terminal device (eg, only Read memory, random access memory, etc.).
  • a second communication device may be a network device or a chip in the network device.
  • the device may include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the network device may further include a storage unit, which may be a memory; the storage unit is used to store instructions, the processing The unit executes the instructions stored by the storage unit, so that the network device performs the corresponding function in the first aspect described above.
  • the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin, or a circuit, etc.; the processing unit executes instructions stored in the storage unit to enable the network
  • the device performs the corresponding function in the first aspect described above.
  • the storage unit may be a storage unit within the chip (eg, registers, cache, etc.), or a storage unit located outside the chip within the network device (eg, only Read memory, random access memory, etc.).
  • a communication system may include the first communication apparatus according to the third aspect, the third communication apparatus according to the fifth aspect, or the fifth communication apparatus according to the seventh aspect And the second communication device according to the fourth aspect, the fourth communication device according to the sixth aspect, or the sixth communication device according to the eighth aspect.
  • a computer storage medium stores instructions which, when run on a computer, cause the computer to execute the first aspect or any possible design of the first aspect. The method.
  • a computer storage medium in which instructions are stored in a computer-readable storage medium, which when executed on a computer, causes the computer to execute the second aspect or any of the possible designs of the second aspect The method.
  • a computer program product containing instructions, where the computer program product stores instructions that, when run on a computer, cause the computer to perform the first aspect or any possible design of the first aspect The method described in.
  • a computer program product containing instructions that store instructions, which when run on a computer, cause the computer to perform the second aspect or any possible design of the second aspect The method described in.
  • the network device may not send the first signal, then the terminal device cannot detect the first signal on n transmission opportunities At this time, the terminal device may not detect the downlink control channel within the second time period, thereby reducing the probability of the terminal device doing useless work and saving the power consumption of the terminal device.
  • Figure 1 is a schematic diagram of a downlink time-frequency resource grid
  • Figure 2 is a schematic diagram of a REG
  • Figure 3 is a schematic diagram of the search space
  • FIG. 5 is a schematic diagram of a terminal device detecting candidate PDCCHs in a search space set at a certain time interval
  • Figure 6 is a schematic diagram of the DRX cycle
  • FIG. 7 is a schematic diagram of the working mode of the terminal device in the DRX cycle
  • Figure 8 is a schematic diagram of DRX energy consumption
  • FIG. 9 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a channel detection method provided by an embodiment of this application.
  • 11A-11B are schematic diagrams of n transmission opportunities being n consecutive transmission opportunities in the embodiment of the present application.
  • FIG. 12 is a schematic diagram of a terminal device detecting a first signal and a second signal in an embodiment of this application;
  • FIG. 13 is a schematic diagram of a terminal device detecting a first signal in an embodiment of this application.
  • FIG. 14 is a schematic diagram of a communication device capable of implementing functions of a terminal device provided by an embodiment of the present application;
  • 15 is a schematic diagram of a communication device capable of implementing functions of a network device provided by an embodiment of the present application
  • 16A-16B are two schematic diagrams of a communication device provided by an embodiment of the present application.
  • Terminal devices including devices that provide voice and/or data connectivity to users, for example, may include handheld devices with wireless connection capabilities, or processing devices connected to wireless modems.
  • the terminal device may communicate with the core network via a radio access network (RAN) and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device (D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote), access point (access point (AP), remote terminal (remote) terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user) and so on.
  • IoT internet of things
  • a mobile phone or referred to as a "cellular" phone
  • a computer with a mobile terminal device
  • a portable, pocket-sized, handheld, mobile device built into the computer and so on.
  • PCS personal communication services
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, devices with limited storage capacity, or devices with limited computing power. Examples include bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions that do not depend on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various types of smart bracelets, smart helmets, smart jewelry, etc. for sign monitoring.
  • the various terminal devices described above are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), they can be regarded as on-board terminal devices.
  • the on-board terminal devices are also called on-board units (OBU, for example) ).
  • Network equipment for example, including access network (access network, AN) equipment, such as a base station (for example, an access point), may refer to equipment that communicates with a wireless terminal device through one or more cells at an air interface in the access network
  • a network device in V2X technology is a road side unit (RSU).
  • the base station can be used to convert received air frames and Internet Protocol (IP) packets to each other as a router between the terminal equipment and the rest of the access network, where the rest of the access network can include an IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the LTE system or advanced long term evolution-advanced (LTE-A), or may also include fifth-generation mobile communication technology (the 5 th generation, 5G) new radio (new radio, NR) system next node B (next generation node B, gNB ) or may include an access network cloud (cloud radio access network, cloud RAN )
  • the centralized unit (CU) and distributed unit (DU) in the system are not limited in the embodiments of the present application.
  • a downlink control channel such as PDCCH, or an enhanced physical downlink control channel (enhanced physical downlink control channel, PDCCH), or other downlink control channel, which is not specifically limited.
  • system and “network” in the embodiments of the present application can be used interchangeably.
  • “At least one” means one or more, and “multiple” means two or more.
  • the character “/” generally indicates that the related object is a “or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • At least one item (a) in a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be a single or multiple .
  • the embodiments of the present application refer to ordinal numbers such as "first” and "second" to distinguish between multiple objects, and are not used to limit the order, timing, priority, or Importance.
  • first signal and the second signal are only for distinguishing different signals, and do not indicate differences in the content, priority, transmission order, or importance of the two signals.
  • the basic unit in the frequency domain is a subcarrier, and the subcarrier spacing (SCS) may be 15KHz or 30KHz.
  • the unit of uplink/downlink frequency domain resources is a physical resource block (PRB), and each PRB is composed of 12 consecutive subcarriers in the frequency domain.
  • PRB physical resource block
  • FIG. 1 Represents the number of resource blocks (resource blocks, RBs) for one downlink scheduling.
  • An RB includes 12 consecutive subcarriers in the frequency domain.
  • Each element on the resource grid is called a resource element (RE)
  • RE is the smallest physical resource and contains one sub-carrier within an orthogonal frequency division multiplexing (OFDM) symbol.
  • the grid of uplink time-frequency resources is similar to that of downlink.
  • the basic time unit for downlink resource scheduling is a slot.
  • a slot consists of 14 OFDM symbols in time.
  • the base station transmits the PDSCH to the terminal device, and the PDSCH is generally scheduled through the control information carried in the PDCCH, for example, the DCI. Therefore, in order to correctly receive the PDSCH, the terminal device needs to detect the PDCCH first, and obtain the relevant information required for receiving the PDSCH according to the DCI carried by the PDCCH, such as the location and size of the PDSCH time-frequency resource or multi-antenna configuration information.
  • PDCCH is transmitted in a control-resource set (CORESET).
  • CORESET includes multiple PRBs in the frequency domain and 1 to 3 OFDM symbols in the time domain, and these OFDM symbols can be located anywhere in the slot. .
  • a control channel unit (control-channel element, CCE) is a basic unit that constitutes a PDCCH, and each CCE in CORESET will have a corresponding index number.
  • a given PDCCH can be composed of 1, 2, 4, 8, or 16 CCEs.
  • the number of CCEs that constitute a PDCCH can be determined by the DCI payload size and the required coding rate. Among them, the number of CCEs constituting the PDCCH is also called an aggregation level (aggregation level, AL).
  • the base station can adjust the aggregation level of the PDCCH according to the status of the actually transmitted wireless channel to implement link adaptive transmission.
  • CCE is a logical concept. Therefore, one CCE corresponds to 6 REGs (resource-element groups, resource unit groups) on physical resources. One REG occupies one OFDM symbol in the time domain and one RB in the frequency domain. Refer to Figure 2.
  • the search space is a set of candidate PDCCHs (PDCCH candidates) at a certain aggregation level. Since the aggregation level of the PDCCH actually transmitted by the base station is variable with time, and because there is no relevant signaling to inform the terminal device, the terminal device needs to blindly detect the PDCCH at different aggregation levels. Among them, the PDCCH to be blindly checked is called a candidate PDCCH, and there may be multiple candidate PDCCHs under a certain aggregation level. Refer to FIG. 3 for a schematic diagram of the search space. The terminal device decodes all candidate PDCCHs composed of CCEs in the search space. If the cyclic redundancy check (cyclic redundancy check, CRC) check passes, the content of the decoded PDCCH is considered to be the terminal device Effectively, the terminal device can continue to process the related information after decoding.
  • CRC cyclic redundancy check
  • the base station may configure one or more search space sets for the terminal device, where each search space set includes one or more The search space corresponding to the aggregation level. That is, one search space set may correspond to one or more aggregation levels, and one search space set may include one or more aggregation level candidate PDCCHs.
  • the base station When the base station configures the search space set for the terminal device, it will configure an index number for each search space set.
  • the search space set will include the candidate PDCCH, and the candidate PDCCHs are located in the corresponding CORESET, so the index number of the search space set will be the same as the search space.
  • the index number of the CORESET where the candidate PDCCH included in the set is located is associated, and the CORESET associated with the search space set determines the CCE index of the candidate PDCCH of the search space set in CORESET.
  • the CCE index number of each candidate PDCCH in CORESET can refer to FIG. 4
  • the slanted boxes represent candidate PDCCHs.
  • the terminal device detects candidate PDCCHs in the search space set at a certain time interval. Therefore, some time domain configuration information is configured for each search space set, including:
  • Detection period the time interval for detecting the search space set, the unit is time slot;
  • Slot offset the slot offset from the start of the detection period to the actual detection search space set, and the slot offset is less than the value of the detection period
  • Number of time slots the number of time slots in the search space set is continuously detected, and the number of time slots is less than the value of the detection period;
  • Symbol position the position of the start symbol of CORESET associated with the search space set in each time slot.
  • each parameter is introduced with specific examples.
  • the detection period is 10 slots
  • the slot offset is 3 slots
  • the number of slots is 2 slots
  • the CORESET associated with the search space set is one that occupies 2 OFDM symbols CORESET
  • symbol position is OFDM symbol 0 and OFDM symbol 7 in the time slot.
  • the terminal device detects the candidate PDCCH of the search space set in CORESET on symbols 0 and 7 in slot 3 and slot 4 in each detection period of 10 slots, and CORESET is in the time domain Occupies 2 OFDM symbols.
  • the terminal device can be in different states, one of which is the radio resource control (radio resource control (RRC)_CONNECTED) state.
  • RRC radio resource control
  • the terminal device In the RRC_CONNECTED state, the terminal device has established an RRC context, that is, the parameters necessary for communication between the terminal device and the radio access network are known to both.
  • the RRC_CONNECTED state is mainly used for data transmission between the wireless access network and the terminal equipment.
  • packet-based data streams are usually bursty, with data transmission for a period of time, but no data transmission for a long period of time. If the terminal device continuously detects the PDCCH, it may do useless work for a long time, and the power consumption of the terminal device is relatively large.
  • the NR system can be configured with a discontinuous reception (DRX) processing mechanism for the terminal device.
  • DRX discontinuous reception
  • the terminal device can stop detecting the PDCCH and stop the corresponding data transmission to reduce power consumption, thereby Increase battery life.
  • the base station can configure the DRX cycle (DRX cycle) for the terminal device in the RRC_CONNECTED state.
  • the DRX cycle contains a "duration" time zone, as shown in FIG. 6.
  • the terminal device can detect the PDCCH.
  • the terminal device starts a timer at the time starting position of each DRX cycle (that is, the time starting position of "Onduration"), and the time length of the timer is the time length of "onduration".
  • the timer can be Called the DRX-onduration timer (drx-ondurationtimer), referred to as the duration timer, the duration of the duration timer is generally in the range of 1 to 1200ms, the terminal device detects within the duration of the duration timer PDCCH.
  • the terminal device If the terminal device does not detect the PDCCH within the duration of the duration timer, then when the duration timer expires, the terminal device enters a sleep state, that is, the terminal device can close the receiving circuit during the remaining period of the DRX cycle, Thereby reducing the power consumption of the terminal device. If the terminal device detects the PDCCH within the duration of the duration timer, the terminal device will start the inactive timer (drx-inactivity timer) in the DRX mechanism. If the terminal device continues to detect the PDCCH within the running time of the inactive timer, the terminal device will restart the inactive timer so that the inactive timer restarts counting.
  • the terminal device After the timer restarts counting, if the terminal device detects the PDCCH again, the terminal device will reset the inactive timer again, so that the inactive timer restarts counting, and so on. If the inactive timer is running, even if the originally configured duration timer expires (that is, the on duration expires), the terminal device still needs to continue to detect the PDCCH until the inactive timer expires, as shown in FIG. 7.
  • DRX downlink retransmission timer also called drx-retransmissiontimerDL
  • DRX uplink retransmission timer also called drx-retransmissiontimerUL
  • FIG. 8 is a schematic diagram of DRX energy consumption.
  • the terminal device needs to first wake up from sleep, turn on the radio frequency and baseband circuits, obtain time-frequency synchronization, and then detect the PDCCH during the "onduration" time period. These processes require a lot of energy consumption. Generally speaking, data transmission tends to be bursty and sparse in time. If the base station does not have any data scheduling for the terminal equipment during the "onduration" time period, it is unnecessary for the terminal equipment. energy consumption.
  • the terminal device If the terminal device detects the PDCCH within the running time of the duration timer, as described above, the terminal device will start an inactive timer. Considering the delay requirement of scheduling data, the running time of the inactive timer is generally much larger than the running time of the duration timer.
  • the terminal device enters the sleep state (where the triangle in FIG. 8 indicates (The area shown may indicate the process of gradually reducing the energy consumption of the terminal device).
  • the base station performs data scheduling for the terminal device, the terminal device will start/reset the inactive timer, and it will continue to detect the PDCCH for a long period of time, and the base station may not have any data scheduling for the terminal device during this time. , Then the terminal equipment also generates unnecessary energy consumption.
  • the first signal may be used to indicate whether the network device will schedule data in the next time. If the network device does not schedule data for a period of time after n times, the network device may not If the first signal is sent, then the terminal device cannot detect the first signal at n times. At this time, the terminal device may not detect the downlink control channel within the second time period, thereby reducing the chance of the terminal device doing useless work and saving Power consumption of terminal equipment.
  • FIG. 9 is an application scenario of an embodiment of the present application.
  • FIG. 9 includes a network device and a terminal device.
  • the network device works, for example, in an evolved universal mobile communication system terrestrial wireless access (Evolved UMTS terrestrial radio access, E-UTRA) system, or works in an NR system.
  • E-UTRA evolved universal mobile communication system terrestrial wireless access
  • one network device can serve multiple terminal devices, and each terminal device in all or part of the terminal devices served by one network device can achieve energy saving in the manner of the embodiment of the present application.
  • Fig. 9 is only taking one of the terminal devices as an example.
  • the network device in FIG. 9 is, for example, a base station.
  • the eNB may correspond to, corresponding to the network device 5G 5G system, e.g. gNB.
  • FIG. 10 is a flowchart of the method.
  • the method is applied to the network architecture shown in FIG. 9 as an example.
  • the method may be performed by two communication devices, such as a first communication device and a second communication device, where the first communication device may be a network device or a network device capable of supporting the functions required by the method Communication device, or the first communication device may be a terminal device or a communication device capable of supporting the functions required by the method by the terminal device, and of course may be other communication devices, such as a chip system. The same is true for the second communication device.
  • the second communication device may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, or the second communication device may be a terminal device or a device capable of supporting the terminal device to implement the method.
  • the communication device with the required function can also be other communication devices, such as a chip system.
  • the first communication device may be a network device
  • the second communication device is a terminal device
  • the first communication device and the second communication device are both networks
  • the device, or both the first communication device and the second communication device are terminal devices, or the first communication device is a network device
  • the second communication device is a communication device capable of supporting the functions required by the method by the terminal device, and so on.
  • the network device is, for example, a base station.
  • the method is performed by the network device and the terminal device as an example, that is, the first communication device is a network device and the second communication device is a terminal device as an example.
  • the network device described below for performing the embodiment shown in FIG. 10 may be the network device in the network architecture shown in FIG. 9.
  • the terminal device mentioned may be the terminal device in the network architecture shown in FIG. 9.
  • the terminal device detects the first signal on n transmission opportunities within a detection period, where n is a positive integer;
  • the terminal device detects the first signal on at least one of the n transmission opportunities, the terminal device detects the downlink control channel and/or during the first time period in the detection period. Or a second signal; or, when the terminal device does not detect the first signal on the n transmission opportunities, the terminal device does not detect the downlink control channel during the detection period.
  • the network device may configure the terminal device to detect the first type of signal, where the signal of the first type may be called a first signal, or a first wake-up signal (WUS) , Or as the first power saving signal.
  • the network device may also configure the terminal device to detect a second type of signal, where the signal of the second type may be referred to as a second signal, or as a second WUS signal, or as The second energy saving signal. That is to say, the network device can only configure the terminal device to detect the first type of signal, then the terminal device can only detect the first signal, or can configure the terminal device to detect the first type of signal and the second type of signal, then the terminal device will Detect the first signal and the second signal.
  • the first signal may be a UE-specific signal, that is, a signal for a terminal device, or may be a UE-group-specific signal, that is, for each of a terminal device group
  • the second signal may be a UE-specific signal or a UE group-specific signal, which is not specifically limited.
  • the terminal device may detect the first signal according to a certain detection period, for example, the duration of one detection period is the first duration, then the terminal device may detect the first signal every first duration, for example, the first duration may be expressed as P1, that is to say, the terminal device can detect the first signal according to the period P1, and in each detection, the terminal device can detect the first signal on n transmission opportunities (occasion), or the terminal device can detect n transmission opportunities Detect the first signal.
  • the value of n can be semi-statically configured to the terminal device through high-layer signaling, such as RRC signaling or media access control (MAC) layer signaling.
  • the n transmission opportunities may be n consecutive transmission opportunities, that is to say, the n transmission opportunities are continuous.
  • the n transmission opportunities may be consecutive n OFDM symbols in a time slot.
  • the network device may send the first signal on each of the n transmission opportunities, thereby improving Reliability and coverage of the first signal, or the network device may send the first signal only on some of the n transmission opportunities.
  • the network device may send the first signal in any one or more of the multiple time slots where the n transmission opportunities are located, thereby improving the flexibility of the network device in scheduling data.
  • the number of time slots where n transmission opportunities are located may be less than or equal to n, for example, the number of time slots where n transmission opportunities are located is equal to n, then one transmission opportunity is located In a time slot, or the number of time slots where n transmission opportunities are located is less than n, there may be multiple transmission opportunities in one time slot, and the number of transmission opportunities included in different time slots may be the same or different , No specific restrictions. Let n transmission opportunities be continuous transmission opportunities, which facilitates the detection of terminal equipment and reduces the detection complexity of terminal equipment.
  • the n transmission opportunities may also be n discontinuous transmission opportunities, for example, two of the n transmission opportunities are not continuous, or there are at least two neighbors between the n transmission opportunities Transmission opportunities are not continuous.
  • the n transmission opportunities may be discontinuous n OFDM symbols in a time slot, or the n transmission opportunities may be located in multiple discontinuous time slots, without specific limitation.
  • the first signal when the network device has data scheduling, the first signal may be sent, or the first signal may be considered to be an energy-saving signal. Then, if the terminal device does not detect the first signal on n transmission opportunities within a detection period, it means that the network device does not have data scheduling in the next time, or that the terminal device needs to save energy, then the terminal device can Enter the "sleep (or sleep)" state, no need to detect the downlink control channel, nor need to detect the second signal, until the next detection cycle arrives, the terminal equipment then detects the first signal on the n transmission opportunities in the next detection cycle . In this way, the terminal device realizes energy saving.
  • the terminal device may continue to detect within the first time period, for example, the terminal device may The downlink control channel and the second signal are detected, or the second signal is detected within the first time period, or the downlink control channel is detected within the first time period.
  • the terminal device may detect the downlink control channel and the second signal within the first time period, or detect the second signal within the first time period, or detect within the first time period Downlink control channel, and if the first signal is a UE group-specific signal, the terminal device can detect the second signal within the first time period, because if it is a UE group-specific signal, the network device may not "wake up" the group at the same time All terminal devices receive the downlink control channel, so the terminal device can first detect the second signal within the first time period.
  • the first signal is a UE group specific signal
  • the terminal device can also detect the downlink control channel and the second signal within the first time period, or detect the second signal within the first time period. Signal, or detect the downlink control channel during the first time period.
  • FIG. 10 takes the network device sending the first signal to the terminal device as an example, and reference may be made to S103 in FIG. 10. Since the network device does not necessarily send the first signal to the terminal device, S103 is indicated by a dotted line. The network device sends the first signal and the terminal device detects the first signal. The order of these two steps may be uncertain. For example, the network device may send the first signal first, the terminal device may detect the first signal, or the terminal device may also The first signal is detected at the same time when the network device sends the first signal, or the terminal device may start to detect the first signal before the network device sends the first signal, which is not specifically limited.
  • FIG. 10 also takes the network device sending the second signal to the terminal device as an example, and reference may be made to S104 in FIG. 10. Since the network device does not necessarily send the second signal to the terminal device, S104 is indicated by a dotted line.
  • the network device sends the first signal and the terminal device detects the second signal.
  • the order of these two steps may be uncertain. For example, the network device may send the first signal first, the terminal device detects the first signal, and then the network device sends The second signal, the terminal device detects the second signal, of course, the specific is not limited. Similarly, the network device sends the second signal and the terminal device detects the second signal. The order of these two steps may be uncertain.
  • the network device may send the second signal first, and then the terminal device detects the second signal, or the terminal The device may also detect the second signal at the same time when the network device sends the second signal, or the terminal device may start to detect the second signal before the network device sends the second signal, which is not specifically limited.
  • the network device When the network device sends the second signal, it can also send periodically, then the terminal device can periodically detect the second signal within the timing duration of the first timer (or within the running time of the first timer).
  • the length of the detection period and the length of the detection period of the first signal may be equal or may not be equal, for example, the detection period of the first signal has been represented by P1, and the length of the detection period of the second signal is represented by P2, then P2 may be less than or equal to P1.
  • the detection period of the second signal may be the search space where the DCI format (format) 1-1/DCI format 0-1 (or other DCI formats, such as DCI format 0-0/1-0) detected by the terminal device is located.
  • the detection period of the set (or the transmission opportunity of the search space set) is determined, then the terminal device can simultaneously detect the downlink control channel and the second signal, and the detection efficiency is higher, or the detection period of the second signal can also be the first
  • the detection period of the search space set associated with the two signals for example, the network device may configure the index number of the search space set associated with the second signal.
  • the terminal device detects the downlink control channel and the second signal.
  • the terminal device may start the first timer, and the first time period may pass the first timer Come to time, in other words, the time duration of the first timer is the length of the first time period.
  • the network device may also start the first timer.
  • the transmission opportunity where the terminal device detects the first signal for the first time may be any one of the n transmission opportunities.
  • the terminal device may start the first timer immediately after detecting the first signal for the first time; or, the terminal device may also start the first timer at a predefined time-domain position after the first detection of the first signal, for example
  • Start the first timer for example, the terminal device may start the first timer at a pre-defined time domain position after n transmission opportunities, for example, the pre-defined time domain position may be the last in the time domain among the n transmission opportunities A time slot with a transmission opportunity at a distance of m, m is greater than or equal to 0, for example,
  • the timer, or m 1, the terminal equipment starts the first timer in the first time slot after the time slot where the last transmission opportunity of the n transmission opportunities is located, etc.; or, due to this embodiment
  • the terminal device also needs to detect the downlink control channel within the first time period, so the terminal device can also start the first timer at the first moment closest to the last transmission opportunity among the n transmission opportunities, where,
  • the first moment refers to the time when the terminal device detects the search space set, that is to say, the terminal device may detect the search space set at multiple times after n transmission opportunities, then the terminal device can be used to detect the search space set At the moment, the moment closest to the last one of the n transmission opportunities is selected to start the first timer, so that within the first time period, the terminal device can directly detect the downlink control channel, making the detection more timely.
  • the terminal device starts the first timer is not limited in the embodiment of the present application.
  • whether the terminal device detects the second signal within the timing duration of the first timer may not affect the detection of the downlink control channel by the terminal device. For example, the terminal device detects the downlink control channel and the second signal within the first time period. When the second signal has not been detected, the terminal device may continue to detect the downlink control channel, and when the second signal is detected, or When the second signal is detected, and the second signal instructs to reset the first timer (or instructs to continue to detect the downlink control channel), it may also be considered that the second signal indicates "active" or "wake” "up” state, the terminal device can still continue to detect the downlink control channel.
  • the terminal device will detect the second signal within the first time period, although the terminal device continues to detect the downlink control channel, the timing duration of the first timer will not change, and the first timer will continue to run. If the terminal device does not detect the second signal until the first timer expires, that is, the end of the first time period, the terminal device will detect the downlink control channel and the second signal, and the terminal device will stop detecting the downlink Control channel and second signal.
  • the terminal device can continue to detect the downlink control channel, and the terminal device will also reset the first timer, that is, clear the first timer, so that the first timer restarts timing, the terminal device Continue to detect the downlink control channel and the second signal within the timing duration of the first timer after reset.
  • the network device also resets the first timer.
  • the downlink control channel and/or the second signal can be sent within the timing duration of the reset first timer.
  • neither the downlink control channel nor the downlink control channel can be sent. Send the second signal.
  • the terminal device detects the second signal within the timing duration of the first timer after reset, or the terminal device detects the second signal within the timing duration of the first timer after reset and the second signal indicates reset
  • the first timer (or, the second signal indicates to continue to detect the downlink control channel)
  • the terminal device may continue to detect the downlink control channel, and the terminal device will reset the first timer again, that is, the first timer Cleared to make the first timer restart timing again.
  • the terminal device continues to detect the downlink control channel and the second signal within the timing duration of the first timer after resetting again. Among them, the network device will reset the first timer again.
  • the timer for example, may send the downlink control channel and/or the second signal within the timing duration of the first timer after resetting, and of course, may neither send the downlink control channel nor the second signal, etc. analogy.
  • the second signal may be sent, or the second signal may be considered to be an energy-saving signal.
  • the network device may not need to send the second signal, and the terminal device cannot detect the second signal within the first time period, and ends at the first time period
  • the terminal device stops detecting the downlink control channel and the second signal the network device has also completed the transmission, and the terminal device has completed the detection of all downlink control channels sent by the network device, and the terminal device is to a certain extent. Realized energy saving.
  • the network device may send the second signal, or the network device sends the second signal, and the second signal indicates reset
  • the first timer (or instruct to continue to detect the downlink control channel)
  • the terminal device can reset the first timer according to the second signal, and detect the downlink control channel within the timing duration of the reset first timer, the network device
  • the first timer may also be reset, and the downlink control channel may be sent within the timing duration of the reset first timer, of course, the downlink control channel may not be sent. It can be seen that by sending the second signal, the length of time that the terminal device detects the downlink control channel can be lengthened, so that the terminal device can more completely detect the downlink control channel sent by the network device.
  • the network device sends a second signal, and the second signal indicates that the first timer is not to be reset (or indicates that the detection of the downlink control channel is suspended). It may also be considered that the second signal indicates “sleep (sleep) )" state, then the terminal device may stop detecting the downlink control channel when it detects the second signal, and the terminal device may not be suitable to stop detecting the downlink control channel for a long time, so the terminal device may stop detecting the downlink control within the third time period Channel, and the terminal device may not detect the second signal within the third time period, that is, if the transmission opportunity of the second signal occurs within the third time period, the UE may not detect the second signal on the transmission opportunity.
  • the third period of time may be regarded as the "sleep time" of the terminal device, and the terminal device may enter the "sleep" state within the third period of time.
  • the "sleep" state may refer to a state where the terminal device stops detecting the downlink control channel and the second signal.
  • the length of the third time period may be configured by higher layer signaling, or may be specified by a protocol, or may be indicated by a second signal indicating that the first timer is not to be reset (or that the detection of the downlink control channel is suspended).
  • the terminal device can keep the first timer running, then if the third time period ends before the first timer expires, that is, the terminal device wakes up before the first timer expires, the terminal The device may continue to detect the downlink control channel and the second signal within the remaining time of the first timer, and if the third time period ends when the first timer expires, or only after the first timer expires, the terminal The device stops detecting the downlink control channel and the second signal when the first timer expires.
  • the network device can send the second signal when there is data scheduling (the second signal can be used as an energy-saving signal). In this case, there is no restriction on the information carried by the second signal. Then, if the network device does not send the second signal The second signal, that is, the terminal device will not reset the first timer as long as it cannot detect the second signal. When the first timer expires, the terminal device will stop detecting the downlink control channel and the second signal; and if the network The device sends a second signal, and the terminal device will reset the first timer when it detects the second signal and continue to detect the downlink control channel.
  • This implementation of the second signal is relatively simple, and the terminal device can determine how to operate according to whether the second signal is detected.
  • the network device may indicate whether to perform data scheduling (or as an energy-saving signal) through the information carried in the second information.
  • the network device may send the second signal, and the information carried in the second signal may indicate
  • the second signal carries 1 bit of information, if the value of this 1 bit is "0", it means that the first timer is not reset (or the detection of the downlink control channel is suspended), if this 1 bit The value of is "1", indicating that the first timer is reset (or the downlink control channel continues to be detected).
  • the terminal device detects the second signal and determines that the second signal indicates that the first timing is not to be reset (Or instruct to suspend detection of the downlink control channel), the terminal device stops detecting the downlink control channel within the third time period; or, the network device sends a second signal and the second signal instructs to reset the first timer (or instructs to continue to detect downlink Control channel), the terminal device detects the second signal and determines that the second signal instructs to reset the first timer (or instructs to continue to detect the downlink control channel), and the terminal device resets the first timer and continues to detect the downlink control channel.
  • This implementation of the second signal can indicate more clearly.
  • the network device may also send the first signal.
  • the first signal is a UE group-specific signal.
  • the network device may send the first signal multiple times. A signal, for a terminal device, even if it is within the running time of the first timer, it can still receive the first signal sent by the network device.
  • the terminal device may not detect the first signal when the first timer is running, that is, during the running time of the first timer, the terminal device does not detect the first signal. One signal, even if the network device sends the first signal, the terminal device does not receive it.
  • the network device may indicate the length of the first time period through a first signal, or the length of the first time period may also be specified by a protocol.
  • the first timer will have a corresponding time duration after reset, and the time duration after the first timer reset and the time duration of the first timer before reset may or may not be equal , No specific restrictions. If the timing duration of the first timer after reset is not equal to the timing duration of the first timer before reset, then the timing duration of the first timer after reset may be indicated by the network device, or specified by a protocol, etc. .
  • the network device may indicate the length of the first time period through the first signal. After the UE enters the first time period, if the second signal or the downlink control channel is detected, the first timer is started or reset. The length of the first timer and the length of the first time period may or may not be equal.
  • FIG. 12 it is an example of a process of detecting the first signal and the second signal by the terminal device in the first implementation manner.
  • the terminal device detects the first signal on the two transmission opportunities shown on the left side of FIG. 12, and if the first signal is not detected on the two transmission opportunities, the terminal device will go to sleep In the state, until the next detection period arrives, the terminal device detects the first signal on the 2 transmission opportunities in the next detection period, and the 2 transmission opportunities in the next detection period are the 2 transmission opportunities shown on the right side of FIG. 12. If the terminal device detects the first signal on one of the two transmission opportunities, the terminal device will start the first timer to enter the first time period.
  • the terminal device In the first time period, the terminal device detects the downlink control channel and detects the second signal at the period P2.
  • the position shown by the slanted box in FIG. 12 indicates the position where the terminal device detects the second signal. For example, if the second signal is not detected for the first time, the terminal device continues to detect the downlink control channel, keep the first timer running, and the second signal is detected for the second time, and the second signal indicates to continue to detect the downlink control channel ( It is shown in FIG. 12 as the second signal indicating the detection of the downlink control channel.
  • the indication “continue to detect the downlink control channel” and the indication “detect the downlink control channel” can be understood as the same concept, and the two can be mutually Change), the terminal device resets the first timer, and continues to detect the downlink control channel and the second signal within the timing duration of the reset first timer.
  • the terminal device stops detecting the downlink control channel and enters the sleep state.
  • the terminal device After the terminal device wakes up from the sleep state, the first timer has not timed out, the terminal device continues to detect the downlink control channel and the second signal, and until the first timer expires, the terminal device stops detecting the downlink control channel and the second signal . From the first time period until the first timer expires, that is, all the running time of the first timer is considered as the "active time" of the terminal device.
  • the terminal device detects the second signal.
  • the terminal device may start the first timer, and the first time period is used to pass the first
  • the timer counts in other words, the duration of the first timer is the length of the first time period.
  • the transmission opportunity for the first detection of the first signal by the terminal device may be any one of the n transmission opportunities.
  • point 1 for the detection of the terminal device. The relevant description in the first implementation manner when the first signal is reached will not be described in detail.
  • whether the terminal device detects the second signal within the timing duration of the first timer will affect the detection of the downlink control channel by the terminal device. For example, the terminal device detects the second signal within the first time period. When the second signal has not been detected, the terminal device does not detect the downlink control channel, but detects the second signal or detects the second signal, and The second signal instructs to reset the first timer (or instructs to detect the downlink control channel), it may also be considered that the second signal indicates the "active" state at this time, and the terminal device may reset the first timer and start Check the downlink control channel.
  • the "active" state may refer to a state where the first timer is reset and the downlink control channel is started to be detected.
  • the terminal device may detect the second signal again after detecting the second signal for the first time. If the terminal device detects the second signal again, or the terminal device detects again The second signal, and the second signal instructs to reset the first timer (or instructs to detect the downlink control channel), then the terminal device may reset the first timer and continue to detect the downlink control channel.
  • the terminal device If the terminal device does not detect the second signal until the first timer expires, that is, the end of the first time period, the terminal device will detect the second signal, and the terminal device will stop detecting the second signal. In this case, although the terminal device has not yet detected the downlink control channel, since the second signal is no longer detected, it is equivalent to the end of the detection of the downlink control channel by the terminal device.
  • the terminal device detects the second signal for the first time in the first time period, or the terminal device detects the second signal for the first time in the first time period and the second signal instructs to reset the first timer (or, The second signal indicates to detect the downlink control channel)
  • the terminal device starts to detect the downlink control channel, and the terminal device will also reset the first timer, that is, clear the first timer, so that the first timer restarts
  • the terminal device starts to detect the downlink control channel within the timing duration of the first timer after resetting, or may continue to detect the second signal.
  • the terminal device can continue to detect the downlink control channel, and the terminal device will reset the first timer again, that is, the first timer Performing clearing causes the first timer to restart counting again, and the terminal device continues to detect the downlink control channel within the timing duration of the first timer after resetting again, and continues to detect the second signal, and so on.
  • the network device may send a second signal when there is data scheduling, and the second signal may be regarded as an energy-saving signal. For example, if the network device has no data scheduling within the first time period, the network device may not need to send the second signal, and the terminal device cannot detect the second signal within the first time period, and therefore does not detect the downlink control channel.
  • the terminal equipment has realized energy saving to a certain extent.
  • the network device may send the second signal, or the network device sends the second signal, and the second The signal instructs to reset the first timer (or instructs to detect the downlink control channel), the terminal device can reset the first timer according to the second signal, and detect the downlink control channel within the timing duration of the reset first timer It can be seen that by sending the second signal, the length of time that the terminal device detects the downlink control channel can be lengthened, so that the terminal device can more completely detect the downlink control channel sent by the network device.
  • the network device sends a second signal, and the second signal indicates that the first timer is not to be reset (or indicates that the downlink control channel is not to be detected, or indicates that the downlink control channel is to be suspended).
  • the signal indicates the "sleep" state, then the terminal device can stop detecting the downlink control channel when it detects the second signal, and the terminal device may not be suitable for stopping the detection of the downlink control channel for a long time, so the terminal device can be in the third time period Stop detecting the downlink control channel during the third period of time can be regarded as the "sleep time" of the terminal device, and the terminal device can enter the "sleep" state within the third period of time.
  • the length of the third time period may be configured by higher layer signaling, or may be specified by a protocol, or may be used to indicate that the first timer is not to be reset (or to indicate that the downlink control channel is not to be detected, or to instruct to suspend detection of the downlink control channel )'S second signal indication.
  • the terminal device can keep the first timer running, then if the third time period ends before the first timer expires, that is, the terminal device wakes up before the first timer expires, the terminal The device may continue to detect the second signal within the remaining time of the first timer, and if the third period of time ends when the first timer expires, or ends after the first timer expires, the terminal device is in the first When the timer expires, it stops detecting the downlink control channel and the second signal.
  • the network device can indicate the data scheduling by sending the second signal (or as an energy-saving signal). In this case, there is no restriction on the information carried by the second signal. Then, if the network device does not send the second signal, That is, as long as the terminal device cannot detect the second signal, it will not reset the first timer or detect the downlink control channel. When the first timer times out, the terminal device will stop detecting the second signal; and if the network The device sends a second signal. When the terminal device detects the second signal, it resets the first timer and detects the downlink control channel.
  • This implementation of the second signal is relatively simple, and the terminal device can determine how to operate according to whether the second signal is detected.
  • the network device may indicate whether to perform data scheduling (or as an energy-saving signal) through the information carried in the second information.
  • the network device may send the second signal, and the information carried in the second signal may indicate
  • the second signal carries 1 bit of information. If the value of this 1 bit is "0", it means that the first timer is not reset (or, it indicates that the downlink control channel is not detected, or that the downlink control detection is suspended. Channel), if the value of these 1 bits is "1", it means that the first timer is reset (or the downlink control channel is detected).
  • the terminal device detects the second signal and determines the second signal
  • the two signals indicate that the first timer is not to be reset (or that the downlink control channel is not detected, or that the downlink control channel detection is suspended), and the terminal device stops detecting the downlink control channel within the third time period; or, the network device sends the second Signal and the second signal instructs to reset the first timer (or instructs to detect the downlink control channel), the terminal device detects the second signal and determines that the second signal instructs to reset the first timer (or instructs to detect the downlink control channel), The terminal device resets the first timer and detects the downlink control channel.
  • This implementation of the second signal can indicate more clearly.
  • the network device may also send the first signal.
  • the first signal is a UE group-specific signal.
  • the network device may send the first signal multiple times. One signal, for a terminal device, even if it is within the running time of the first timer, it can still receive the first signal sent by the network device.
  • the terminal device may not detect the first signal when the first timer is running, that is, during the running time of the first timer, the terminal device does not detect the first signal. One signal, even if the network device sends the first signal, the terminal device does not receive it.
  • the network device may indicate the length of the first time period through a first signal, or the length of the first time period may also be specified by a protocol.
  • the first timer will have a corresponding time duration after reset, and the time duration after the first timer reset and the time duration of the first timer before reset may or may not be equal , No specific restrictions. If the timing duration of the first timer after reset is not equal to the timing duration of the first timer before reset, then the timing duration of the first timer after reset may be indicated by the network device, or specified by a protocol, etc. .
  • the network device may indicate the length of the first time period through a first signal. After the UE enters the first time period, if a second signal is detected, the first timer is started or reset, the first timing The length of the device and the length of the first time period may or may not be equal.
  • the terminal device detects the first signal on the two transmission opportunities shown on the left side of FIG. 12, and if the first signal is not detected on the two transmission opportunities, the terminal device will go to sleep In the state, until the next detection period arrives, the terminal device detects the first signal on the 2 transmission opportunities in the next detection period, and the 2 transmission opportunities in the next detection period are the 2 transmission opportunities shown on the right side of FIG. 12. If the terminal device detects the first signal on one of the two transmission opportunities, the terminal device will start the first timer to enter the first time period.
  • the terminal device detects the second signal in the period P2, and the position shown by the hatched frame in FIG. 12 indicates the position where the terminal device detects the second signal. For example, if the second signal is not detected for the first time, the terminal device does not detect the downlink control channel and keeps the first timer running, while the second signal is detected for the second time, and the second signal indicates that the downlink control channel is detected, then The terminal device resets the first timer, and detects the downlink control channel and the second signal within the timing duration of the reset first timer. When the second signal is detected again for the third time, and the second signal instructs to suspend the detection of the downlink control channel, the terminal device stops detecting the downlink control channel and enters the sleep state.
  • the terminal device After the terminal device wakes up from the sleep state, the first timer has not timed out, then the terminal device continues to detect the second signal until the first timer times out, the terminal device stops detecting the downlink control channel and the second signal. From the first time period until the first timer expires, it is considered as the "activation time" of the terminal device.
  • the terminal device detects the downlink control channel.
  • the network device only configures the terminal device to detect the first type of signal, that is, the first signal, the network device does not send the second signal, and the terminal device does not detect the second signal.
  • the terminal device may start the first timer, and the first time period is used to pass the first
  • the timer counts in other words, the duration of the first timer is the length of the first time period.
  • the transmission opportunity for the first detection of the first signal by the terminal device may be any one of the n transmission opportunities.
  • point 1 for the detection of the terminal device. The relevant description in the first implementation manner when the first signal is reached will not be described in detail.
  • the network device may indicate the length of the first time period through the first signal, then the terminal device may determine the first time period according to the first signal after detecting the first signal (for example, after detecting the first signal for the first time)
  • the duration, or the duration of the first time period may also be specified by a protocol, or may be indicated by the network device through other signaling (such as high-level signaling).
  • There is no limit to the length of the first time period for example, it may be one slot or multiple slots, or it may be one symbol or multiple symbols.
  • the first signal may indicate the length of the first time period, or the first time period.
  • the first signal can indicate the first time period through 1 bit. If the value of this bit is "1", it means that the first time period is the first half of the period P1, and if the value of this bit is "1" "0" indicates that the first period of time is the second half of period P1.
  • the first signal indicates the first time period through 2 bits, the high-order bits of these 2 bits are used to represent the first half of period P1, and the low-order bits of these 2 bits are used to represent the second half of period P1 Period, if the value of the high-order bit of these 2 bits is "1", it means that the first period is the first half of period P1, and if the value of the low-order bit of these 2 bits is "1" , Indicating that the first time period is the second half of period P1.
  • the first time period can also be indicated by more bits in the first signal, or the first time period can also be indicated by the same bits but in different ways, and so on.
  • the embodiment of the present application does not limit how to pass The first signal indicates the first time period.
  • FIG. 13 it is an example of the process of detecting the first signal by the terminal device in the third implementation manner.
  • the terminal device detects the first signal on the two transmission opportunities shown on the left of FIG. 13, and if the first signal is not detected on the two transmission opportunities, the terminal device will go to sleep In the state, until the next detection period arrives, the terminal device detects the first signal on the 2 transmission opportunities in the next detection period.
  • the 2 transmission opportunities in the next detection period are the 2 transmission opportunities shown on the right side of FIG. 13. If the terminal device detects the first signal on one of the two transmission opportunities, the terminal device may enter the first time period, where the length of the first time period is obtained by the terminal device according to the first signal.
  • the terminal device In the first time period, the terminal device detects the downlink control channel, where the terminal device also detects the downlink control channel according to the detection period of the search space set, and the detection period of the search space set is the position shown by the slanted box in FIG. 13, Until the first timer expires, the terminal device stops detecting the downlink control channel.
  • the first time period can be regarded as the "activation time" of the terminal device.
  • the three implementation manners of the terminal device when the first signal is detected, and which implementation manner to choose in a specific application may be specified by a protocol or configured by a network device.
  • both the first signal and the second signal may be generated based on the sequence.
  • the first signal may be generated based on the first sequence
  • the second signal may be generated based on the second sequence
  • the first sequence belongs to the first sequence set
  • the second sequence belongs to the second sequence set
  • the first sequence set may be the second A subset of a sequence collection.
  • the first sequence set includes sequence 1
  • the second sequence set includes sequence 1 and sequence 2.
  • the sequences in the embodiments of the present application refer to the information before modulation
  • the first sequence and the second sequence may be the same sequence, for example, the first sequence and the second sequence are both sequence 1, but based on the first
  • the first modulation method can be used when generating the first signal in the sequence
  • the second modulation method can be used when generating the second signal based on the first sequence.
  • the first modulation method and the second modulation method are different, that is, based on the same sequence, the The modulation method generates different signals. In this way, the required sequence can be saved.
  • the terminal device detects the first signal and the second signal at different times, the terminal device will only detect the first signal on n transmission opportunities, and will only detect the first signal within the timing duration of the first timer.
  • the first sequence and the second sequence can be the same sequence, and there is no limitation on the modulation method when generating the corresponding signal, for example, the first modulation can be used when generating the first signal based on the first sequence Way, the first modulation method can also be used when generating the second signal based on the first sequence, because the terminal device will detect the first signal and the second signal at different timings, so even if the first signal and the second signal are exactly the same, It will not affect the resolution of the terminal device.
  • the same sequence can correspond to different signals, and the functions of different signals are different.
  • the terminal device when the sequence corresponds to the first signal, the terminal device can detect the downlink within the first time period after receiving the first signal The control channel and/or the second signal, or when the sequence corresponds to the second signal, the terminal device may detect the downlink control channel after receiving the second signal, or may enter the "sleep" state within a third time period. For example, if the first signal is generated based on sequence 1, and the second signal is generated based on sequence 1, and the modulation method used is the same, then when sequence 1 corresponds to the first signal, the terminal device can receive the first signal after receiving the first signal. Detect the downlink control channel and/or the second signal during the time period, or when the sequence 1 corresponds to the second signal, the terminal device may detect the downlink control channel after receiving the second signal, or may enter the sleep state within the third time period Wait.
  • the first signal and the second signal may not be generated based on the sequence.
  • the first signal and the second signal are both in the form of signaling, that is, the bits of the information domain are channel-coded and then transmitted.
  • the first signal carries the first state value
  • the second signal carries the second state value
  • the first state value belongs to the first state value set
  • the second information state value belongs to the second state value set
  • the first state value set is the first A subset of the two-state value set.
  • the first state value carried by the first signal is 2 bits
  • the second state value carried by the second signal is also 2 bits
  • the second state value set is [00,01, 10,11]
  • the first state value set is a subset of the second state value set. For example, if the first state value is 00 and the second state value is 00, the terminal device can detect the downlink control channel and/or the second signal within the first time period after receiving the first state value 00, and the terminal device is receiving After the second state value of 00, the downlink control channel can be detected, or the sleep state can be entered in the third time period.
  • the terminal device can detect the downlink control channel and/or the second signal within the first time period after receiving the first state value 00, and the terminal device receives the first After the second state value of 01, the downlink control channel can be detected, or it can enter the sleep state within the third time period.
  • the first signal and the second signal can be uniformly designed, that is, designed into the same channel or signal form, reducing the difficulty of standardization.
  • the first signal and the second signal in the embodiment of the present application are not bound to the DRX cycle, that is, the UE may also be configured to detect the first signal and/or without the DRX mechanism.
  • Second signal That is to say, both the first signal and the second signal have nothing to do with the DRX cycle and have nothing to do with the DRX mechanism, which helps to improve the flexibility of the network device scheduling, and does not need to wait for the DRX cycle to achieve energy saving terminal equipment, improve the terminal equipment Energy saving effect.
  • the first signal may also be combined with the DRX mechanism, then in the embodiment of the present application, the time start position of the first time period may be the time start position of a DRX cycle, the terminal device detects The period of the first signal may be directly the DRX period.
  • the on-duration timer of the DRX period is 0 ms.
  • the terminal device is at the starting position of the DRX period. Only the first timer is turned on, at this time it is considered that the inactive timer is gone. Or, in this case, during the activation time of the DRX cycle, the terminal device only starts the first timer at the starting position of the DRX cycle.
  • the first timer may also be an inactivity timer, which is started at the beginning of the DRX cycle, or, as long as the terminal device detects the first signal, the inactivity timer is started, at which time, the ontimer timer is gone, or ,
  • the duration of onduration timer is 0ms.
  • the running time of the first timer may be the activation time of the DRX cycle.
  • the terminal device may start a DRX cycle, and the time start position of the first time period is the time start position of the DRX cycle.
  • the terminal device will start the duration timer after entering a DRX cycle. If the terminal device detects the PDCCH within the duration of the duration timer, the terminal device will also turn on the inactivation in the DRX mechanism. A timer to detect the PDCCH within the timing duration of the inactive timer.
  • the first time period is counted by the first timer, that is to say, the terminal device only needs to start a timer at the time starting position of the first time period.
  • the first timer may be reset according to the second signal, but there is no need to start other timers.
  • the first timer in the embodiment of the present application is not a duration timer in the current DRX cycle Is not an inactive timer, but the first timer replaces the original duration timer and inactive timer in the DRX cycle, saving the number of timers and simplifying the terminal equipment. Energy saving process.
  • FIG. 14 shows a schematic structural diagram of a communication device 1400.
  • the communication device 1400 can realize the functions of the terminal device mentioned above.
  • the communication apparatus 1400 may be the terminal device described above, or may be a chip provided in the terminal device described above.
  • the communication device 1400 may include a processor 1401 and a transceiver 1402.
  • the processor 1401 may be used to execute S101 and S102 in the embodiment shown in FIG. 10, and/or other processes used to support the technology described herein, for example, may be executed by the terminal device described above All other processes or some other processes except the sending and receiving process.
  • the transceiver 1402 may be used to perform S103 and S104 in the embodiment shown in FIG. 10, and/or to support other processes of the technology described herein, for example, may perform all the operations performed by the terminal device described above The sending and receiving process or part of the sending and receiving process.
  • the processor 1401 is configured to detect the first signal on n transmission opportunities within a detection period, where n is a positive integer;
  • the processor 1401 When the processor 1401 detects the first signal on at least one of the n transmission opportunities, the processor 1401 is further configured to detect the downlink control channel and/or during the first time period in the detection period The second signal; or, when the processor 1401 does not detect the first signal on the n transmission opportunities, the processor 1401 does not detect the downlink control channel during the detection period.
  • the first time period is counted by a first timer, and the timing duration of the first timer is the length of the first time period.
  • the processor 1401 detects the downlink control channel and the second signal within the first time period in the detection period, the processor 1401 is further used to:
  • the processor 1401 When the processor 1401 detects the second signal within the timing duration of the first timer, the processor 1401 resets the first timer and within the timing duration of the reset first timer Detect the downlink control channel; or
  • the processor 1401 When the processor 1401 detects the second signal within the timing duration of the first timer and the second signal indicates to continue to detect the downlink control channel, the processor 1401 resets the first timer, and Detecting the downlink control channel within the timing duration of the first timer after resetting.
  • the processor 1401 detects the downlink control channel and the second signal within the first time period in the detection period, the processor 1401 is further used to:
  • the downlink control channel is detected.
  • the processor 1401 when the processor 1401 detects the second signal within the first time period in the detection period, the processor 1401 is further configured to:
  • the processor 1401 When the processor 1401 detects the second signal within the timing duration of the first timer, the processor 1401 resets the first timer and within the timing duration of the reset first timer Detect the downlink control channel; or
  • the processor 1401 When the processor 1401 detects the second signal within the timing duration of the first timer and the second signal indicates detection of a downlink control channel, the processor 1401 resets the first timer and restarts The downlink control channel is detected within the timing duration of the first timer after being set.
  • the processor 1401 when the processor 1401 detects the second signal within the first time period in the detection period, the processor 1401 is further configured to: at the timing duration of the first timer Internally, when the processor 1401 has not detected the second signal, it does not detect the downlink control channel.
  • the processor 1401 is further configured to: when the processor 1401 detects the second signal within the timing duration of the first timer and the second signal instructs to suspend detection of the downlink control channel At this time, the processor 1401 pauses to detect the downlink control channel during the third time period.
  • the processor 1401 is further configured to: when the processor 1401 detects the second signal within the timing duration of the first timer and the second signal instructs to suspend detection of the downlink control channel Time, keep the first timer to continue running.
  • the processor 1401 is further configured to: when the first timer expires, the processor 1401 stops detecting the downlink control channel and the second signal.
  • the processor 1401 when the first timer is running, the processor 1401 does not detect the first signal.
  • the processor 1401 periodically detects the second signal within the timing duration of the first timer.
  • the first signal is used to indicate the duration of the first time period.
  • the n transmission opportunities are n consecutive transmission opportunities.
  • the first signal is generated based on a first sequence
  • the second signal is generated based on a second sequence
  • the first sequence belongs to a first sequence set
  • the second sequence belongs to a second sequence set
  • the The first sequence set is a subset of the second sequence set
  • the first signal carries a first state value
  • the second signal carries a second state value
  • the first state value belongs to a first state value set
  • the second information state value belongs to a second state value set
  • the first state value set is a subset of the second state value set.
  • the detection cycle is a DRX cycle
  • the starting position of the first time period is the starting position of a DRX cycle
  • the communication device 1400 only Start the first timer.
  • FIG. 15 shows a schematic structural diagram of a communication device 1500.
  • the communication apparatus 1500 can realize the functions of the second terminal device mentioned above.
  • the communication apparatus 1500 may be the network device described above, or may be a chip provided in the network device described above.
  • the communication device 1500 may include a processor 1501 and a transceiver 1502.
  • the processor 1501 may be used to perform all other operations or part of other operations performed by the network device in the embodiment shown in FIG. 10 except for the sending and receiving operations, for example, the network device determines to perform on the terminal device within a detection period
  • the step of data scheduling, the step of starting or restarting the first timer, and/or other processes for supporting the technology described herein, for example, other than the sending and receiving process performed by the network device described above may be performed All processes.
  • the transceiver 1502 may be used to perform S103 and S104 in the embodiment shown in FIG. 10, and/or to support other processes of the technology described herein, for example, may perform all the operations performed by the network device described above The sending and receiving process or part of the sending and receiving process.
  • the processor 1501 is configured to determine data scheduling for the terminal device within a detection period
  • the transceiver 1502 is configured to send a first signal on n transmission opportunities within the detection period, where the first signal is used to indicate data scheduling, and n is a positive integer.
  • the transceiver 1502 is further configured to send the downlink control channel and/or the second signal during the first time period in the detection period.
  • the first time period is counted by a first timer, and the timing duration of the first timer is the length of the first time period.
  • the processor 1501 is further configured to:
  • the processor 1501 resets the first timer, and the transceiver 1502 resets the first timer after the reset Sending the downlink control channel within a regular duration;
  • the processor 1501 resets the first timer and transmits and receives The transmitter 1502 sends the downlink control channel within the timing duration of the first timer after resetting.
  • the transceiver 1502 in the case that the transceiver 1502 sends the downlink control channel and the second signal within the first time period in the detection period, the transceiver 1502 is further used to: at the first timing Within the timing duration of the transmitter, when the transceiver 1502 has not yet transmitted the second signal, the downlink control channel is transmitted.
  • the processor 1501 resets the first timer, and the transceiver 1502 resets the first timer after the reset Sending the downlink control channel within a regular duration;
  • the processor 1501 resets the first timer and passes the transceiver 1502
  • the downlink control channel is sent within the timing duration of the first timer after reset.
  • the transceiver 1502 when the transceiver 1502 sends the second signal within the first time period in the detection period, the transceiver 1502 is further configured to: at the timing duration of the first timer Inwardly, when the transceiver 1502 has not yet sent the second signal, it does not send the downlink control channel.
  • the transceiver 1502 is further configured to: when the transceiver 1502 sends the second signal within the timing duration of the first timer and the second signal indicates to suspend detection of the downlink control channel , Suspend sending the downlink control channel within the third time period.
  • the processor 1501 is further configured to: when the transceiver 1502 sends the second signal within the timing duration of the first timer and the second signal indicates to suspend detection of the downlink control channel To keep the first timer running.
  • the transceiver 1502 is further configured to: when the first timer expires, stop sending the downlink control channel and the second signal.
  • the transceiver 1502 when the first timer is running, the transceiver 1502 does not send the first signal.
  • the transceiver 1502 periodically sends the second signal within the timing duration of the first timer.
  • the first signal is used to indicate the duration of the first time period.
  • the n transmission opportunities are n consecutive transmission opportunities.
  • the first signal is generated based on a first sequence
  • the second signal is generated based on a second sequence
  • the first sequence belongs to a first sequence set
  • the second sequence belongs to a second sequence set
  • the The first sequence set is a subset of the second sequence set
  • the first signal carries a first state value
  • the second signal carries a second state value
  • the first state value belongs to a first state value set
  • the second information state value belongs to a second state value set
  • the first state value set is a subset of the second state value set.
  • the detection period is a DRX period
  • the starting position of the first time period is the starting position of a DRX period
  • the communication device 1500 only Start the first timer.
  • the communication device 1400 or the communication device 1500 may also be implemented by the structure of the communication device 1600 as shown in FIG. 16A.
  • the communication device 1600 can realize the functions of the terminal device or network device mentioned above.
  • the communication device 1600 may include a processor 1601.
  • the processor 1601 may be used to execute S101 and S102 in the embodiment shown in FIG. 10, and/or to support the Other processes of technology, for example, all other processes or part of other processes except the transceiving process performed by the terminal device described above can be performed; or, the communication device 1600 is used to implement the network device mentioned above
  • the function of the processor 1601 may be used to perform all other operations or part of other operations performed by the network device in the embodiment shown in FIG. 10 except for the transceiver operation.
  • the network device determines that the terminal The step of data scheduling by the device, the step of starting or restarting the first timer, and/or other processes for supporting the technology described herein.
  • the communication device 1600 can pass the field-programmable gate array (field-programmable gate array, FPGA), application-specific integrated circuit (ASIC), system chip (SoC), central processor (central processor) unit, CPU, network processor (NP), digital signal processing circuit (digital) processor (DSP), microcontroller (micro controller unit, MCU), or programmable controller (programmable logic device, PLD) or other integrated chips, the communication device 1600 may be set in the terminal device or network device of the embodiment of the present application, so that the terminal device or network device implements the method provided by the embodiment of the present application.
  • field-programmable gate array field-programmable gate array
  • ASIC application-specific integrated circuit
  • SoC system chip
  • central processor central processor
  • CPU central processor
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller microcontroller
  • MCU microcontroller
  • PLD programmable logic device
  • the communication device 1600 may include a transceiver component for communicating with other devices.
  • the transceiving component may be used to execute S103 and S104 in the embodiment shown in FIG. 10, and/or to support the Other processes of the described technology.
  • a transceiver component is a communication interface. If the communication device 1600 is a terminal device or a network device, the communication interface may be a transceiver in the terminal device or the network device, such as the transceiver 1402 or the transceiver 1502, and the transceiver is, for example, a terminal.
  • a radio frequency transceiver component in a device or a network device or, if the communication device 1600 is a chip provided in a terminal device or a network device, the communication interface may be an input/output interface of the chip, such as input/output pins.
  • the communication device 1600 may further include a memory 1602, as shown in FIG. 16B, wherein the memory 1602 is used to store computer programs or instructions, and the processor 1601 is used to decode and execute these computer programs or instruction. It should be understood that these computer programs or instructions may include the functional programs of the above terminal devices or network devices.
  • the terminal device can enable the terminal device to implement the function of the terminal device in the method provided in the embodiment shown in FIG. 10 of the embodiment of the present application.
  • the network device can enable the network device to implement the function of the network device in the method provided in the embodiment shown in FIG. 10 of the embodiment of the present application.
  • the function programs of these terminal devices or network devices are stored in a memory external to the communication device 1600.
  • the function program of the terminal device is decoded and executed by the processor 1601, part or all of the content of the function program of the terminal device is temporarily stored in the memory 1602.
  • the function program of the network device is decoded and executed by the processor 1601, part or all of the content of the function program of the network device is temporarily stored in the memory 1602.
  • the function programs of these terminal devices or network devices are set in the memory 1602 stored in the communication device 1600.
  • the communication device 1600 may be set in the terminal device of the embodiment of the present application.
  • the function program of the network device is stored in the memory 1602 inside the communication device 1600, the communication device 1600 may be set in the network device of the embodiment of the present application.
  • part of the content of the functional programs of these terminal devices is stored in a memory outside the communication device 1600, and other parts of the functional programs of these terminal devices are stored in the memory 1602 inside the communication device 1600 .
  • part of the content of the function program of these network devices is stored in the memory outside the communication device 1600, and the other part of the content program of the function program of these network devices is stored in the memory 1602 inside the communication device 1600.
  • the communication device 1400, the communication device 1500, and the communication device 1600 are presented in the form of dividing each function module corresponding to each function, or may be presented in the form of dividing each function module in an integrated manner.
  • the "module” herein may refer to an ASIC, a processor and memory that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the communication device 1400 provided by the embodiment shown in FIG. 14 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 1401, and the transceiver module may be implemented by the transceiver 1402.
  • the processing module may be used to execute S101 and S102 in the embodiment shown in FIG. 10, and/or to support other processes described in the technology described herein, for example, may execute other than the terminal device described above. All other processes or some other processes except the sending and receiving process.
  • the transceiver module may be used to perform S103 and S104 in the embodiment shown in FIG.
  • the transceiver module may include a transceiver component that communicates with a network device, and may also include a transceiver component that communicates with other terminal devices.
  • the processing module is used to detect the first signal on n transmission opportunities within a detection period, where n is a positive integer;
  • the processing module When the processing module detects the first signal on at least one of the n transmission opportunities, the processing module is further used to detect the downlink control channel and/or the second in the first period of the detection period Signal; or, when the processing module does not detect the first signal on the n transmission opportunities, the processing module does not detect the downlink control channel during the detection period.
  • the first time period is counted by a first timer, and the timing duration of the first timer is the length of the first time period.
  • the processing module detects the downlink control channel and the second signal within the first time period in the detection period, the processing module is further used to:
  • the processing module When the processing module detects the second signal within the timing duration of the first timer, the processing module resets the first timer and detects the location within the timing duration of the reset first timer The downlink control channel; or
  • the processing module When the processing module detects the second signal within the timing duration of the first timer and the second signal indicates to continue to detect the downlink control channel, the processing module resets the first timer and resets Detect the downlink control channel within the timing duration of the first timer.
  • the processing module detects the downlink control channel and the second signal within the first time period in the detection period, the processing module is further used to:
  • the downlink control channel is detected.
  • the processing module in the case where the processing module detects the second signal within the first time period in the detection period, the processing module is further configured to:
  • the processing module When the processing module detects the second signal within the timing duration of the first timer, the processing module resets the first timer and detects the location within the timing duration of the reset first timer Describe the downlink control channel; or
  • the processing module When the processing module detects the second signal within the timing duration of the first timer and the second signal indicates detection of a downlink control channel, the processing module resets the first timer, and after the reset Detect the downlink control channel within the timing duration of the first timer.
  • the processing module in a case where the processing module detects the second signal within the first time period in the detection period, the processing module is further configured to: within the timing duration of the first timer, When the processing module has not detected the second signal, it does not detect the downlink control channel.
  • the processing module is further configured to: when the processing module detects the second signal within the timing duration of the first timer and the second signal instructs to suspend detection of the downlink control channel, The processor 1401 pauses to detect the downlink control channel during the third time period.
  • the processing module is further configured to: when the processing module detects the second signal within the timing duration of the first timer and the second signal instructs to suspend detection of the downlink control channel, Keep the first timer running.
  • the processing module is further configured to: when the first timer expires, the processing module stops detecting the downlink control channel and the second signal.
  • the processing module when the first timer runs, the processing module does not detect the first signal.
  • the processing module periodically detects the second signal within the timing duration of the first timer.
  • the first signal is used to indicate the duration of the first time period.
  • the n transmission opportunities are n consecutive transmission opportunities.
  • the first signal is generated based on a first sequence
  • the second signal is generated based on a second sequence
  • the first sequence belongs to a first sequence set
  • the second sequence belongs to a second sequence set
  • the The first sequence set is a subset of the second sequence set
  • the first signal carries a first state value
  • the second signal carries a second state value
  • the first state value belongs to a first state value set
  • the second information state value belongs to a second state value set
  • the first state value set is a subset of the second state value set.
  • the detection cycle is a DRX cycle
  • the start position of the first time period is the start position of a DRX cycle
  • the communication device is only turned on during the first time period The first timer.
  • the communication device 1500 provided by the embodiment shown in FIG. 15 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 1501
  • the transceiver module may be implemented by the transceiver 1502.
  • the processing module may be used to perform all other operations or part of other operations performed by the network device in the embodiment shown in FIG. 10 except for the transceiver operation, for example, the network device determines to perform data on the terminal device within a detection period
  • the scheduling step, the step of starting or restarting the first timer, and/or other processes for supporting the technology described herein, for example, other than the transceiving process performed by the network device described above may be performed All processes.
  • the transceiver module may be used to perform S103 and S104 in the embodiment shown in FIG. 10, and/or to support other processes of the technology described herein, for example, may perform all the transceivers performed by the network device described above The process or part of the sending and receiving process.
  • the processing module is used to determine data scheduling for the terminal device within a detection period
  • the transceiver module is used to send a first signal on n transmission opportunities in the detection period, where the first signal is used to indicate data scheduling, and n is a positive integer.
  • the transceiver module is further configured to send the downlink control channel and/or the second signal within the first time period in the detection period.
  • the first time period is counted by a first timer, and the timing duration of the first timer is the length of the first time period.
  • the processing module is further configured to:
  • the processing module resets the first timer, and within the reset timing duration of the first timer through the transceiver module Send the downlink control channel;
  • the processing module resets the first timer and uses the transceiver module to Sending the downlink control channel within the timing duration of the first timer after resetting.
  • the transceiver module in a case where the transceiver module sends the downlink control channel and the second signal within the first period of time in the detection period, the transceiver module is further used to: Within the timing duration, when the transceiver module has not yet sent the second signal, the downlink control channel is sent.
  • the processing module resets the first timer, and within the reset timing duration of the first timer through the transceiver module Send the downlink control channel;
  • the processing module When the transceiver module sends the second signal within the timing duration of the first timer and the second signal indicates detection of a downlink control channel, the processing module resets the first timer, and resets The downlink control channel is sent within the timing duration of the first timer after being set.
  • the transceiver module in a case where the transceiver module sends the second signal within a first time period in the detection period, the transceiver module is further configured to: within the timing duration of the first timer, When the transceiver module has not yet sent the second signal, it does not send the downlink control channel.
  • the transceiver module is further configured to: when the transceiver module sends the second signal within the timing duration of the first timer and the second signal instructs to suspend detection of the downlink control channel, Sending the downlink control channel is suspended during the third time period.
  • the processing module is further configured to: when the transceiver module sends the second signal within the timing duration of the first timer and the second signal instructs to suspend detection of the downlink control channel, keep The first timer continues to run.
  • the transceiver module is further configured to: when the first timer expires, stop sending the downlink control channel and the second signal.
  • the transceiver module when the first timer runs, the transceiver module does not send the first signal.
  • the transceiver module periodically sends the second signal within the timing duration of the first timer.
  • the first signal is used to indicate the duration of the first time period.
  • the n transmission opportunities are n consecutive transmission opportunities.
  • the first signal is generated based on a first sequence
  • the second signal is generated based on a second sequence
  • the first sequence belongs to a first sequence set
  • the second sequence belongs to a second sequence set
  • the The first sequence set is a subset of the second sequence set
  • the first signal carries a first state value
  • the second signal carries a second state value
  • the first state value belongs to a first state value set
  • the second information state value belongs to a second state value set
  • the first state value set is a subset of the second state value set.
  • the detection cycle is a DRX cycle
  • the start position of the first time period is the start position of a DRX cycle
  • the communication device is only turned on during the first time period The first timer.
  • the communication device 1400, the communication device 1500, and the communication device 1600 provided by the embodiments of the present application can be used to execute the method provided by the embodiment shown in FIG. 10, for the technical effects that can be obtained, reference may be made to the above method embodiments, here No longer.
  • each flow and/or block in the flowchart and/or block diagram and a combination of the flow and/or block in the flowchart and/or block diagram may be implemented by computer program instructions.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device A device for realizing the functions specified in one block or multiple blocks of one flow or multiple blocks of a flowchart.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another, for example, the computer instructions may be passed from a website site, computer, server or data center Wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital universal disc (DVD)), or semiconductor media (eg, solid state disk (SSD) ))Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道检测方法及设备,用于减小终端设备的功耗。其中的一种信道检测方法包括:终端设备在一个检测周期内的n个传输机会上检测第一信号;当终端设备在n个传输机会中的至少一个传输机会上检测到第一信号时,终端设备在检测周期中的第一时间段内检测下行控制信道和/或第二信号;或者,当终端设备在n个传输机会上均未检测到第一信号,终端设备在检测周期内不检测下行控制信道。如果网络设备在n个传输机会之后的一段时间内不调度数据,则网络设备可以不发送第一信号,那么终端设备在n个传输机会上就检测不到第一信号,此时终端设备在第二时间段内就可以不检测下行控制信道,从而减少终端设备做无用功的几率,也节省终端设备的功耗。

Description

一种信道检测方法及设备
相关申请的交叉引用
本申请要求在2019年01月11日提交国家知识产权局、申请号为201910028855.8、申请名称为“一种信道检测方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信道检测方法及设备。
背景技术
目前,基站会向终端设备传输物理下行共享信道(physical downlink shared channel,PDSCH),而PDSCH一般是通过物理下行控制信道(physical downlink control channel,PDCCH)中承载的控制信息来调度,控制信息例如为下行控制信息(downlink control information,DCI)。因此,为了正确接收PDSCH,终端设备需要先检测PDCCH,根据PDCCH承载的DCI获得用于接收PDSCH所需要的相关信息,例如PDSCH时频资源位置和大小,或多天线配置信息等。
一般而言,基于包的数据流通常是突发性的,在一段时间内有数据传输,但在接下来的一段较长的时间内可能没有数据传输。如果终端设备持续检测PDCCH,可能在很长时间内是做无用功,而且对于终端设备来说功耗较大。
发明内容
本申请实施例提供一种信道检测方法及设备,用于减小终端设备的功耗。
第一方面,提供第一种信道检测方法,该方法包括:终端设备在一个检测周期内的n个传输机会上检测第一信号,n为正整数;当所述终端设备在所述n个传输机会中的至少一个传输机会上检测到第一信号时,所述终端设备在所述检测周期中的第一时间段内检测下行控制信道和/或第二信号;或者,当所述终端设备在所述n个传输机会上均未检测到第一信号,所述终端设备在所述检测周期内不检测下行控制信道。
该方法可由第一通信装置执行,第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。这里以第一通信装置是终端设备为例。
在本申请实施例中,如果网络设备有数据调度,则可以发送第一信号,如果网络设备在n个传输机会之后的一段时间内不调度数据,则网络设备可以不发送第一信号,那么终端设备在n个传输机会上就检测不到第一信号,此时终端设备在第二时间段内就可以不检测下行控制信道,从而减少终端设备做无用功的几率,也节省终端设备的功耗。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一时间段通过第一定时器进行计时,所述第一定时器的定时时长为所述第一时间段的长度。
终端设备可以通过第一定时器来对第一时间段进行计时,从而可以明确第一时间段的 起止位置。
结合第一方面,在第一方面的一种可能的实施方式中,在所述终端设备在所述检测周期中的第一时间段内检测下行控制信道和第二信号的情况下,所述方法还包括:当所述终端设备在所述第一定时器的定时时长内检测到第二信号时,所述终端设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道;或者,当所述终端设备在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示继续检测下行控制信道时,所述终端设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道。
如果终端设备在第一定时器的定时时长内检测到了第二信号,表明后续网络设备可能会发送下行控制信道,因此终端设备可以检测下行控制信道,而且终端设备还可以根据第二信号重置第一定时器,例如网络设备可能有较多的数据发送,通过重置第一定时器,使得终端设备能够在较为充足的时间内接收下行控制信道,尽量保证终端设备能够完整接收数据。第二信号可以有不同的实现方式,其中,第二信号可以通过信号本身来作为节能信号,在这种情况下,终端设备根据是否接收第二信号就可以确定应如何处理,对于第二信号承载的内容并不作限制,实现较为简单。或者,第二信号也可以通过第二信号所承载的内容来进行不同的指示,终端设备在接收第二信号后需要确定第二信号具体指示的内容,从而确定下一步的操作,这种方式可以使得第二信号的指示更为明确。
结合第一方面,在第一方面的一种可能的实施方式中,在所述终端设备在所述检测周期中的第一时间段内检测下行控制信道和第二信号的情况下,所述方法还包括:在所述第一定时器的定时时长内,当所述终端设备尚未检测到所述第二信号时,对所述下行控制信道进行检测。
因为网络设备可能既发送下行控制信道也发送第二信号,因此即使终端设备未检测到第二信号,也可以检测下行控制信道,从而尽量保证对于下行控制信道的及时接收。
结合第一方面,在第一方面的一种可能的实施方式中,在所述终端设备在所述检测周期中的第一时间段内检测第二信号的情况下,所述方法还包括:当所述终端设备在所述第一定时器的定时时长内检测到第二信号时,所述终端设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道;或当所述终端设备在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示检测下行控制信道时,所述终端设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道。
如果终端设备在第一定时器的定时时长内检测到了第二信号,表明后续网络设备可能会发送下行控制信道,因此终端设备可以检测下行控制信道,而且终端设备还可以根据第二信号重置第一定时器,例如网络设备可能有较多的数据发送,通过重置第一定时器,使得终端设备能够在较为充足的时间内接收下行控制信道,尽量保证终端设备能够完整接收数据。第二信号可以有不同的实现方式,其中,第二信号可以通过信号本身来作为节能信号,在这种情况下,终端设备根据是否接收第二信号就可以确定应如何处理,对于第二信号承载的内容并不作限制,实现较为简单。或者,第二信号也可以通过第二信号所承载的内容来进行不同的指示,终端设备在接收第二信号后需要确定第二信号具体指示的内容,从而确定下一步的操作,这种方式可以使得第二信号的指示更为明确。
结合第一方面,在第一方面的一种可能的实施方式中,在所述终端设备在所述检测周 期中的第一时间段内检测第二信号的情况下,所述方法还包括:在所述第一定时器的定时时长内,当所述终端设备尚未检测到所述第二信号时,不对下行控制信道进行检测。
在这种情况下,网络设备会在发送第二信号后再发送下行控制信道,因此如果终端设备未检测到第二信号,则无需检测下行控制信道,这样可以减小终端设备的功耗。
结合第一方面,在第一方面的一种可能的实施方式中,所述方法还包括:当所述终端设备在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示暂停检测下行控制信道时,所述终端设备在第三时间段内暂停检测所述下行控制信道。
如果第二信号指示暂停检测下行控制信道,表明网络设备在未来的一段时间内可能不会发送下行控制信道,那么终端设备在第三时间段内例如进入“睡眠”状态,在第三时间段内,终端设备可以暂停检测下行控制信道,也可以暂停检测第二信号,以减小功耗。
结合第一方面,在第一方面的一种可能的实施方式中,所述方法还包括:当所述终端设备在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示暂停检测下行控制信道时,保持所述第一定时器继续运行。
如果第二信号指示暂停检测下行控制信道,终端设备虽然暂停检测下行控制信道,但是依然可以保持第一定时器继续运行,以实现继续计时。
结合第一方面,在第一方面的一种可能的实施方式中,所述方法还包括:当所述第一定时器超时时,所述终端设备停止检测所述下行控制信道和所述第二信号。
在第一定时器超时时,网络设备不再发送下行控制信道和第二信号,例如数据发送过程可能已完毕,那么终端设备也可以停止检测所述下行控制信道和所述第二信号,以减小功耗。
结合第一方面,在第一方面的一种可能的实施方式中,当所述第一定时器运行时,所述终端设备不检测所述第一信号。
在第一定时器运行时,网络设备有可能还会发送第一信号,例如第一信号是UE组特定信号,那么为了照顾到一组终端设备的需求,网络设备可能会持续发送第一信号。那么对于第一定时器已开始运行的终端设备来说,可以不再检测第一信号,以正常完成其他检测过程。
结合第一方面,在第一方面的一种可能的实施方式中,所述终端设备在所述第一定时器的定时时长内周期性检测所述第二信号。
网络设备可以周期性发送第二信号,则终端设备对于第二信号的检测也可以是周期性的。例如,终端设备对于第二信号的检测周期可以小于或等于终端设备对于第一信号的检测周期,当然也可能终端设备对于第二信号的检测周期大于终端设备对于第一信号的检测周期,具体的不做限制。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一信号用于指示所述第一时间段的时长。
例如第一时间段的时长可以他通过第一信号来指示,则终端设备接收第一信号后就可以确定第一时间段的时长。或者终端设备也可以通过其他方式确定第一时间段的时长,例如还可以通过协议规定等方式,具体的不做限制。
结合第一方面,在第一方面的一种可能的实施方式中,所述n个传输机会为n个连续的传输机会。
例如,n个传输机会可以是连续的,这样可以方便终端设备的检测。或者n个传输机 会也可以两两之间均不连续,或者n个传输机会也可以有部分传输机会连续,而这部分传输机会和剩余的传输机会不连续,具体的不做限制。
结合第一方面,在第一方面的一种可能的实施方式中,所述第一信号是基于第一序列生成的,所述第二信号是基于第二序列生成的,所述第一序列属于第一序列集合,所述第二序列属于第二序列集合,所述第一序列集合为所述第二序列集合的子集;或,所述第一信号承载第一状态值,所述第二信号承载第二状态值,所述第一状态值属于第一状态值集合,所述第二信息状态值属于第二状态值集合,所述第一状态值集合为第二状态值集合的子集。
在本申请实施例中,第一信号和第二信号可以是基于序列生成的,或者也可以不是基于序列生成的,例如是信令的形式,也就是对信息域的比特进行信道编码后传输。当然除此之外也还可以有其它的生成方式,较为灵活。
结合第一方面,在第一方面的一种可能的实施方式中,所述检测周期为DRX周期,所述第一时间段的起始位置为一个DRX周期的起始位置,所述终端设备在所述第一时间段内只开启第一定时器。
作为一种实施方式,第一信号可以与DRX机制相结合。那么在本申请实施例中,第一时间段的时间起始位置可以是一个DRX周期的时间起始位置,终端设备检测第一信号的周期可以直接为DRX周期,在这种情况下,该DRX周期的on duration timer的计时时长是0ms,在该DRX周期的激活时间内,终端设备在该DRX周期的起始位置上只开启第一定时器,此时认为非激活定时器就没有了。或者,在这种情况下,在该DRX周期的激活时间内,终端设备在该DRX周期的起始位置上只开启第一定时器,此时认为on duration timer和非激活定时器都没有了。或者,第一定时器也可以是inactivity timer,inactivity timer在DRX周期的起始位置处启动,或者,只要终端设备检测到第一信号就启动inactivity timer,在这种情况下,on duration timer就没有了。其中,第一定时器的运行时间可以是该DRX周期的激活时间。本申请实施例通过一个定时器(第一定时器)代替了DRX周期中原有的两个定时器,相对于现在的方案来说,本申请实施例的方案更为简单。
第二方面,提供第二种信道检测方法,该方法包括:网络设备确定在一个检测周期内对于终端设备进行数据调度;所述网络设备在所述检测周期内的n个传输机会上发送第一信号,所述第一信号用于指示数据调度,n为正整数。
该方法可由第二通信装置执行,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。这里以第二通信装置是网络设备为例。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:所述网络设备在所述检测周期中的第一时间段内发送下行控制信道和/或第二信号。
结合第二方面,在第二方面的一种可能的实施方式中,所述第一时间段通过第一定时器进行计时,所述第一定时器的定时时长为所述第一时间段的长度。
结合第二方面,在第二方面的一种可能的实施方式中,在所述网络设备在所述检测周期中的第一时间段内发送下行控制信道和第二信号的情况下,所述方法还包括:当所述网络设备在所述第一定时器的定时时长内发送第二信号时,所述网络设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内发送所述下行控制信道;或者,当所述网络设备在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示继续检测 下行控制信道时,所述网络设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内发送所述下行控制信道。
结合第二方面,在第二方面的一种可能的实施方式中,在所述网络设备在所述检测周期中的第一时间段内发送下行控制信道和第二信号的情况下,所述方法还包括:在所述第一定时器的定时时长内,当所述网络设备尚未发送所述第二信号时,发送所述下行控制信道。
结合第二方面,在第二方面的一种可能的实施方式中,在所述网络设备在所述检测周期中的第一时间段内发送第二信号的情况下,所述方法还包括:当所述网络设备在所述第一定时器的定时时长内发送第二信号时,所述网络设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内发送所述下行控制信道;或,当所述网络设备在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示检测下行控制信道时,所述网络设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内发送所述下行控制信道。
结合第二方面,在第二方面的一种可能的实施方式中,在所述网络设备在所述检测周期中的第一时间段内发送第二信号的情况下,所述方法还包括:在所述第一定时器的定时时长内,当所述网络设备尚未发送所述第二信号时,不发送下行控制信道。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:当所述网络设备在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示暂停检测下行控制信道时,所述网络设备在第三时间段内暂停发送所述下行控制信道。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:当所述网络设备在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示暂停检测下行控制信道时,保持所述第一定时器继续运行。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:当第一定时器超时时,所述网络设备停止发送所述下行控制信道和所述第二信号。
结合第二方面,在第二方面的一种可能的实施方式中,当所述第一定时器运行时,所述网络设备不发送所述第一信号。
结合第二方面,在第二方面的一种可能的实施方式中,所述网络设备在所述第一定时器的定时时长内周期性发送所述第二信号。
结合第二方面,在第二方面的一种可能的实施方式中,所述第一信号用于指示所述第一时间段的时长。
结合第二方面,在第二方面的一种可能的实施方式中,其特征在于,所述n个传输机会为n个连续的传输机会。
结合第二方面,在第二方面的一种可能的实施方式中,
所述第一信号是基于第一序列生成的,所述第二信号是基于第二序列生成的,所述第一序列属于第一序列集合,所述第二序列属于第二序列集合,所述第一序列集合为所述第二序列集合的子集;或,
所述第一信号承载第一状态值,所述第二信号承载第二状态值,所述第一状态值属于第一状态值集合,所述第二信息状态值属于第二状态值集合,所述第一状态值集合为第二状态值集合的子集。
结合第二方面,在第二方面的一种可能的实施方式中,所述检测周期为DRX周期, 所述第一时间段的起始位置为一个DRX周期的起始位置,所述网络设备在所述第一时间段内只开启第一定时器。
关于第二方面或第二方面的各种可能的实施方式所带来的技术效果,可以参考对第一方面或第一方面的各种可能的实施方式的技术效果的介绍。
第三方面,提供第一种通信装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是终端设备时,该处理单元可以是处理器,该收发单元可以是收发器;该终端设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备执行上述第一方面中相应的功能。当该装置是终端设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该终端设备执行上述第一方面中相应的功能,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第四方面,提供第二种通信装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是网络设备时,该处理单元可以是处理器,该收发单元可以是收发器;该网络设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该网络设备执行上述第一方面中相应的功能。当该装置是网络设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该网络设备执行上述第一方面中相应的功能,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该网络设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第五方面,提供一种通信系统,该通信系统可以包括第三方面所述的第一种通信装置、第五方面所述的第三种通信装置或第七方面所述的第五种通信装置,以及包括第四方面所述的第二种通信装置、第六方面所述的第四种通信装置或第八方面所述的第六种通信装置。
第六方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第七方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第八方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第九方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
在本申请实施例中,如果网络设备在n个传输机会之后的一段时间内不调度数据,则网络设备可以不发送第一信号,那么终端设备在n个传输机会上就检测不到第一信号,此时终端设备在第二时间段内就可以不检测下行控制信道,从而减少终端设备做无用功的几 率,也节省终端设备的功耗。
附图说明
图1为下行时频资源网格示意图;
图2为一个REG的示意图;
图3为搜索空间的示意图;
图4为候选PDCCH在CORESET内的CCE索引号的一种示意图;
图5为终端设备以一定的时间间隔检测搜索空间集合中的候选PDCCH的示意图;
图6为DRX周期的示意图;
图7为终端设备在DRX周期内的工作方式示意图;
图8为DRX能耗示意图;
图9为本申请实施例的一种应用场景示意图;
图10为本申请实施例提供的一种信道检测方法的流程图;
图11A~图11B为本申请实施例中n个传输机会是n个连续的传输机会的示意图;
图12为本申请实施例中终端设备检测第一信号和第二信号的一种示意图;
图13为本申请实施例中终端设备检测第一信号的一种示意图;
图14为本申请实施例提供的能够实现终端设备的功能的通信装置的一种示意图;
图15为本申请实施例提供的能够实现网络设备的功能的通信装置的一种示意图;
图16A~图16B为本申请实施例提供的一种通信装置的两种示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency  identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5 th generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
3)下行控制信道,例如PDCCH,或者增强的物理下行控制信道(enhanced physical downlink control channel,PDCCH),或者是其他的下行控制信道,具体的不做限制。
4)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信号和第二信号,只是为了区分不同的信号,而并不是表示这两种信号的内容、优先级、发送顺序或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
在NR系统中,频域上的基本单位为一个子载波,子载波间隔(subcarrier spacing,SCS)可以为15KHz或30KHz等。在NR系统的物理层中,上/下行频域资源的单位是物理资源 块(physical resource block,PRB),每个PRB由频域上12个连续的子载波组成。请参考图1,为下行时频资源网格。图1中的
Figure PCTCN2020070323-appb-000001
表示一次下行调度的资源块(resource block,RB)的个数,一个RB在频域上包括12个连续的子载波,资源网格上的每个元素称为一个资源元素(resource element,RE),RE为最小的物理资源,包含一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号内的一个子载波。上行时频资源的网格与下行是类似的。在NR系统中,下行资源调度的基本时间单位是一个时隙(slot),一般而言,一个slot在时间上由14个OFDM符号组成。
目前,基站会向终端设备传输PDSCH,而PDSCH一般是通过PDCCH中承载的控制信息来调度,控制信息例如为DCI。因此,为了正确接收PDSCH,终端设备需要先检测PDCCH,根据PDCCH承载的DCI获得用于接收PDSCH所需要的相关信息,例如PDSCH时频资源位置和大小,或多天线配置信息等。PDCCH是在控制资源集合(control-resource set,CORESET)中传输,CORESET在频域上包括多个PRB,在时域上包括1到3个OFDM符号,且这些OFDM符号可位于slot内的任意位置。
控制信道单元(control-channel element,CCE)是构成PDCCH的基本单位,在CORESET中的每个CCE都会有一个对应的索引号。一个给定的PDCCH可由1、2、4、8或16个CCE构成,对于构成一个PDCCH的CCE的数量,可以由DCI载荷大小(DCI payload size)和所需的编码速率决定。其中,构成PDCCH的CCE的数量也被称为聚合等级(aggregation level,AL)。基站可根据实际传输的无线信道的状态,对PDCCH的聚合等级进行调整,实现链路自适应传输。CCE是逻辑概念,因此,一个CCE与物理资源上的6个REG(resource-element group,资源单元组)相对应,一个REG在时域占用一个OFDM符号,在频域占用一个RB,对此可参考图2。
搜索空间(search space)是某个聚合等级下的候选PDCCH(PDCCH candidate)的集合。由于基站实际发送的PDCCH的聚合等级随时间是可变的,而且由于没有相关信令告知终端设备,因此终端设备需要在不同聚合等级下盲检PDCCH。其中,待盲检的PDCCH称为候选PDCCH,某个聚合等级下可以有多个候选PDCCH。可参考图3,为搜索空间的示意。终端设备会在搜索空间内对由CCE构成的所有候选PDCCH进行译码,如果循环冗余校验(cyclic redundancy check,CRC)校验通过,则认为所译码的PDCCH的内容对该终端设备是有效的,终端设备可以继续处理译码后的相关信息。
在NR系统中,为了更好地控制盲检测下行控制信道的复杂度,基站可为终端设备配置一个或多个搜索空间集合(search space set),其中,每个搜索空间集合包括一个或多个聚合等级对应的搜索空间。即,一个搜索空间集合可以对应于一个或多个聚合等级,一个搜索空间集合可以包括一个或多个聚合等级下的候选PDCCH。
基站为终端设备配置搜索空间集合时,会为每个搜索空间集合配置一个索引号,搜索空间集合会包括候选PDCCH,候选PDCCH都位于相应的CORESET中,因此搜索空间集合的索引号会与搜索空间集合所包括的候选的PDCCH所在的CORESET的索引号相关联,而搜索空间集合所关联的CORESET决定了该搜索空间集合的候选PDCCH在CORESET内的CCE索引。例如,CORESET中一共有24个CCE,搜索空间集合中对应于聚合等级AL=2的候选PDCCH的数量为6,那么每个候选PDCCH在CORESET内的CCE索引号可以参考图4,图4中画斜线的方框表示候选PDCCH。
在时域上,终端设备以一定的时间间隔检测搜索空间集合中的候选PDCCH,因此对 于每个搜索空间集合会配置一些时域配置信息,包括:
检测周期:检测搜索空间集合的时间间隔,单位为时隙;
时隙偏移:检测周期开始到实际检测搜索空间集合之间的时隙偏移量,且该时隙偏移量小于检测周期的取值;
时隙数量:连续检测搜索空间集合的时隙数量,且时隙数量小于检测周期的取值;
符号位置:每个时隙内,搜索空间集合关联的CORESET的起始符号的位置。
为了方便理解,以具体例子介绍各参数的含义。如图5所示,其中,检测周期为10个时隙,时隙偏移为3个时隙,时隙数量为2个时隙,搜索空间集合相关联的CORESET为一个占用2个OFDM符号的CORESET,符号位置为时隙内OFDM符号0和OFDM符号7。在这个示例中,终端设备在每个10个时隙的检测周期内的时隙3和时隙4内的符号0和符号7上检测CORESET内搜索空间集合的候选PDCCH,且CORESET在时域上占用2个OFDM符号。
在NR系统中,终端设备可以处于不同的状态,其中的一种状态为无线资源控制(radio resource control,RRC)_连接(CONNECTED)状态。在RRC_CONNECTED状态下,终端设备已经建立了RRC上下文(context),即,终端设备与无线接入网之间通信所必需的参数对于两者是已知的。RRC_CONNECTED状态主要用于无线接入网与终端设备进行数据传输。
一般而言,基于包的数据流通常是突发性的,在一段时间内有数据传输,但在接下来的一段较长时间内没有数据传输。如果终端设备持续检测PDCCH,可能在很长时间内是做无用功,而且对于终端设备来说功耗较大。
目前,NR系统中可以为终端设备配置非连续接收(discontinuous reception,DRX)处理机制,在没有数据传输的时候,可以通过使终端设备停止检测PDCCH并停止相应数据传输的方式来降低功耗,从而提升电池的使用时间。
在DRX中,基站可为处于RRC_CONNECTED状态的终端设备配置DRX周期(DRX cycle),DRX cycle中包含一个“持续时间(on duration)”的时间区域,如图6所示。
在“on duration”的时间内,终端设备可以检测PDCCH。终端设备在每一个DRX cycle的时间起始位置(也就是“On duration”的时间起始位置)开启一个定时器,该定时器的时间长度即为“on duration”的时间长度,该定时器可以称之为DRX-持续时间定时器(drx-ondurationtimer),简称持续时间定时器,该持续时间定时器的计时时长的范围一般为1~1200ms,终端设备在该持续时间定时器的计时时长内检测PDCCH。如果在该持续时间定时器的计时时长内终端设备没有检测到PDCCH,那么在该持续时间定时器超时时,终端设备进入睡眠状态,即终端设备在DRX cycle的其余时间段内可以关闭接收电路,从而降低终端设备的功耗。如果在持续时间定时器的计时时长内终端设备检测到了PDCCH,那么终端设备就会开启DRX机制中的非激活定时器(drx-inactivitytimer)。如果在非激活定时器的运行时间内,终端设备继续检测到了PDCCH,那么终端设备会重置(restart)该非激活定时器,使得该非激活定时器重新开始计数,同理,在该非激活定时器重新开始计数后,如果终端设备又检测到了PDCCH,则终端设备会再次重置该非激活定时器,使得该非激活定时器重新开始计数,以此类推。如果非激活定时器正在运行,则即使本来配置的持续时间定时器超时(即on duration时间结束),终端设备依然需要继续检测PDCCH,直到非激活定时器超时,如图7所示。
在DRX机制中,还有其它一些定时器,例如DRX下行重传定时器(也可以称为drx-retransmissiontimerDL)/DRX上行重传定时器(也可以称为drx-retransmissiontimerUL)。如果上述定时器中(包括持续时间定时器、非激活定时器、DRX下行重传定时器或DRX上行重传定时器等)的任意一个正在运行,那么终端设备就会处于“激活时间(active time)”。在DRX机制中,如果终端设备处于“active time”,那么终端设备就需要检测PDCCH。需注意的是,可能还有其它一些情况会让终端设备处于“active time”,这里不再多描述。
在NR系统中,终端设备会工作在更大的射频与基带带宽。图8为DRX能耗示意图,对于DRX机制,在一个DRX cycle中,终端设备需要首先从睡眠状态唤醒,开启射频和基带电路,获取时频同步,然后在“on duration”时间段内检测PDCCH,这些过程需要不少能耗。而一般而言,数据传输在时间上往往具有突发性和稀疏性,如果在“on duration”时间段内基站对终端设备没有任何数据调度的话,那么对于终端设备而言就产生了不必要的能量消耗。而如果终端设备在持续时间定时器的运行时间内检测到PDCCH,如前面所描述,终端设备就会开启一个非激活定时器。考虑到调度数据的时延需求,非激活定时器的运行时间一般是远大于持续时间定时器的运行时间,在非激活定时器超时时,终端设备进入睡眠状态(其中,图8中的三角形所示的区域可以表示终端设备的能耗逐渐减小的过程)。当基站给终端设备进行一次数据调度,终端设备会开启/重置非激活定时器,则会在很长的一段的时间内继续检测PDCCH,而这段时间内基站对终端设备可能没有任何数据调度,那么对于终端设备而言同样产生了不必要的能量消耗。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,例如第一信号可以用于指示在接下来的时间里网络设备是否会有数据调度,如果网络设备在n个时刻之后的一段时间内不调度数据,则网络设备可以不发送第一信号,那么终端设备在n个时刻上就检测不到第一信号,此时终端设备在第二时间段内就可以不检测下行控制信道,从而减少终端设备做无用功的几率,也节省终端设备的功耗。
请参见图9,为本申请实施例的一种应用场景。在图9中包括一个网络设备以及一个终端设备。其中,该网络设备例如工作在演进的通用移动通信系统陆地无线接入(evolved UMTS terrestrial radio access,E-UTRA)系统中,或者工作在NR系统。当然,在本申请实施例中,一个网络设备可以服务于多个终端设备,而一个网络设备所服务的全部或部分终端设备中的每个终端设备都可以通过本申请实施例的方式实现节能,图9只是以其中的一个终端设备为例。
图9中的网络设备例如为基站。其中,网络设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4 th generation,4G)系统中可以对应eNB,在5G系统中对应5G中的网络设备,例如gNB。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供一种信道检测方法,请参见图10,为该方法的流程图。在下文的介绍过程中,以该方法应用于图9所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第二通信装置可以是终端设备或能 够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置可以是网络设备,第二通信装置是终端设备,或者第一通信装置和第二通信装置都是网络设备,或者第一通信装置和第二通信装置都是终端设备,或者第一通信装置是网络设备,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例,也就是,以第一通信装置是网络设备、第二通信装置是终端设备为例。如果将本实施例应用在图9所示的网络架构,下文中所述的用于执行图10所示的实施例的网络设备可以是图9所示的网络架构中的网络设备,下文中所述的终端设备可以是图9所示的网络架构中的终端设备。
S101、终端设备在一个检测周期内的n个传输机会上检测第一信号,n为正整数;
S102、当所述终端设备在所述n个传输机会中的至少一个传输机会上检测到第一信号时,所述终端设备在所述检测周期中的第一时间段内检测下行控制信道和/或第二信号;或者,当所述终端设备在所述n个传输机会上均未检测到第一信号,所述终端设备在所述检测周期内不检测下行控制信道。
在本申请实施例中,网络设备可以配置终端设备检测第一类型的信号,其中,类型为第一类型的信号可称为第一信号,或者称为第一唤醒信号(wake up signal,WUS),或者称为第一节能(power saving)信号。作为一种可选的实施方式,网络设备还可以配置终端设备检测第二类型的信号,其中,类型为第二类型的信号可称为第二信号,或者称为第二WUS信号,或者称为第二节能信号。也就是说,网络设备可以只配置终端设备检测第一类型的信号,那么终端设备只会检测第一信号,或者可以配置终端设备检测第一类型的信号和第二类型的信号,那么终端设备会检测第一信号和第二信号。例如,第一信号可以是UE特定(UE specific)信号,也就是针对一个终端设备的信号,或者也可以是UE组特定(UE-group specific)信号,也就是针对一个终端设备组中的每个终端设备的信号,同理,第二信号可以是UE特定信号,或者也可以是UE组特定信号,具体的不做限制。
例如,终端设备可以按照检测一定的检测周期来检测第一信号,例如一个检测周期的时长为第一时长,则终端设备可以每隔第一时长检测第一信号,例如可以将第一时长表示为P1,也就是说,终端设备可以按照周期P1检测第一信号,在每次检测时,终端设备可以检测n个传输机会(occasion)上的第一信号,或者说终端设备可以在n个传输机会上检测第一信号。其中,n的值可以通过高层信令半静态配置给终端设备,高层信令例如为RRC信令或媒体接入控制(media access control,MAC)层信令等。
作为一种实施方式,n个传输机会可以是n个连续的传输机会,也就是说n个传输机会是连续的。例如,n个传输机会可以是一个时隙内的连续的n个OFDM符号,如图11A所示,网络设备可以在这n个传输机会中的每个传输机会上均发送第一信号,从而提高第一信号的可靠性以及覆盖能力,或者网络设备也可以只在这n个传输机会中的部分传输机会上发送第一信号,图11A以n=2为例;或者,这n个传输机会可以位于多个连续的时隙中,虽然n个传输机会所在的时隙连续,但这n个传输机会之间可能不连续,如图11B所示,但是在这种情况下,也认为n个传输机会是n个连续的传输机会。网络设备可以在n个传输机会所在的多个时隙中的任意一个或多个时隙上发送第一信号,从而提升网络设备调度数据的灵活性。其中,如果n个传输机会位于多个时隙中,则n个传输机会所在的时 隙的数量可以小于或等于n,例如n个传输机会所在的时隙的数量等于n,则一个传输机会位于一个时隙中,或者,n个传输机会所在的时隙的数量小于n,则可能有多个传输机会位于一个时隙中,且不同的时隙所包括的传输机会的数量可能相同也可能不同,具体的不做限制。令n个传输机会是连续的传输机会,更加便于终端设备的检测,降低终端设备的检测复杂度。
或者,作为另一种实施方式,n个传输机会也可以是n个不连续的传输机会,例如n个传输机会之间两两都不连续,或者n个传输机会之间有至少两个相邻的传输机会不连续。例如,n个传输机会可以是一个时隙内的不连续的n个OFDM符号,或者,n个传输机会可以位于多个不连续的时隙中,具体的不做限制。
在本申请实施例中,在网络设备有数据调度时,可以发送第一信号,也可以认为第一信号是节能信号。那么,如果终端设备在一个检测周期内的n个传输机会上均未检测到第一信号,也就表明网络设备在接下来的时间里没有数据调度,或者表明终端设备需要节能,则终端设备可以进入“睡眠(或称为睡眠)”状态,无需检测下行控制信道,也无需检测第二信号,直到下一个检测周期到来,终端设备再在下一个检测周期内的n个传输机会上检测第一信号。通过这种方式使得终端设备实现节能。
而如果终端设备在一个检测周期内的n个传输机会中的至少一个传输机会上检测到第一信号,那么终端设备可以在第一时间段内继续检测,例如终端设备可以在第一时间段内检测下行控制信道和第二信号,或者在第一时间段内检测第二信号,或者在第一时间段内检测下行控制信道。例如,如果第一信号是UE特定信号,那么终端设备可以在第一时间段内检测下行控制信道和第二信号,或者在第一时间段内检测第二信号,或者在第一时间段内检测下行控制信道,而如果第一信号是UE组特定信号,那么终端设备可以在第一时间段内检测第二信号,因为如果是UE组特定信号,则网络设备可能不会同时“唤醒”该组所有终端设备来接收下行控制信道,因此终端设备在第一时间段内可以先检测第二信号。当然这只是举例,具体的不限于此,例如第一信号是UE组特定信号,终端设备也是可以在第一时间段内检测下行控制信道和第二信号,或者在第一时间段内检测第二信号,或者在第一时间段内检测下行控制信道。
其中,图10以网络设备向终端设备发送了第一信号为例,可参考图10中的S103。由于网络设备不一定会向终端设备发送第一信号,因此S103通过虚线表示。网络设备发送第一信号和终端设备检测第一信号,这两个步骤的先后顺序可能是不确定的,例如网络设备可能先发送第一信号,终端设备再检测第一信号,或者终端设备也有可能在网络设备发送第一信号的同时检测第一信号,或者终端设备还有可能在网络设备发送第一信号之前就开始检测第一信号,具体的不做限制。
图10也以网络设备向终端设备发送了第二信号为例,可参考图10中的S104。由于网络设备也不一定会向终端设备发送第二信号,因此S104通过虚线表示。另外,网络设备发送第一信号和终端设备检测第二信号,这两个步骤的先后顺序可能是不确定的,例如网络设备可能先发送第一信号,终端设备检测第一信号,然后网络设备发送第二信号,终端设备检测第二信号,当然,具体的不做限制。同理,网络设备发送第二信号和终端设备检测第二信号,这两个步骤的先后顺序可能是不确定的,例如网络设备可能先发送第二信号,终端设备再检测第二信号,或者终端设备也有可能在网络设备发送第二信号的同时检测第二信号,或者终端设备还有可能在网络设备发送第二信号之前就开始检测第二信号,具体 的不做限制。
网络设备在发送第二信号时也可以周期性发送,则终端设备可以在第一定时器的定时时长内(或者为第一定时器的运行时间内)周期性检测第二信号,第二信号的检测周期的长度和第一信号的检测周期的长度可以相等,或者也可以不相等,例如已经将第一信号的检测周期用P1表示,再将第二信号的检测周期的长度用P2表示,则P2可以小于或等于P1。其中,第二信号的检测周期可以由终端设备检测的DCI格式(format)1-1/DCI format 0-1(或者为其它DCI格式,例如DCI格式0-0/1-0)所在的搜索空间集合的检测周期(或者说搜索空间集合的传输机会(occasion))确定,那么终端设备可以同步检测下行控制信道和第二信号,检测效率较高,或者,第二信号的检测周期也可以是第二信号所关联的搜索空间集合的检测周期,例如网络设备可以配置与第二信号所关联的搜索空间集合的索引号。
为了避免混乱,下文将分别介绍终端设备的不同的检测情况。
1、终端设备在检测到第一信号时的第一种实施方式,终端设备检测下行控制信道和第二信号。
在这种实施方式下,如果终端设备在n个传输机会中的一个传输机会上第一次检测到第一信号,那么终端设备可以启动第一定时器,第一时间段可通过第一定时器来计时,换句话说,第一定时器的计时时长就是第一时间段的长度。另外,网络设备也可以启动第一定时器。其中,终端设备第一次检测到第一信号的传输机会可能是n个传输机会中的任意一个传输机会。终端设备可以在第一次检测到第一信号后立刻启动第一定时器;或者,终端设备也可以在第一次检测到第一信号之后的预定义的时域位置启动第一定时器,例如预定义的时域位置可以是与第一次检测到第一信号的传输机会所在的时隙之间的距离为m的时隙,m大于或等于0,如果m=0,那么终端设备也就是在第一次检测到第一信号的时隙启动第一定时器;或者,终端设备无论在n个传输机会中的哪个传输机会上检测到第一信号,都可以在n个传输机会结束后再启动第一定时器,例如终端设备可以在n个传输机会之后的预定义的时域位置启动第一定时器,例如预定义的时域位置可以是与n个传输机会中在时域上的最后一个传输机会所在的时隙之间的距离为m的时隙,m大于或等于0,例如m=0,那么终端设备就是在n个传输机会中的最后一个传输机会所在的时隙启动第一定时器,或者m=1,终端设备就是在n个传输机会中的最后一个传输机会所在的时隙之后的第一个时隙启动第一定时器,等等;或者,由于在这种实施方式中终端设备在第一时间段内还需要检测下行控制信道,因此终端设备也可以在与n个传输机会中的最后一个传输机会之间的距离最近的第一时刻启动第一定时器,其中,第一时刻是指终端设备检测搜索空间集合的时刻,也就是说,终端设备可能在n个传输机会之后的多个时刻都可以检测搜索空间集合,那么终端设备可以在用于检测搜索空间集合的时刻中,选择与n个传输机会中的最后一个传输机会之间的距离最近的时刻启动第一定时器,这样在第一时间段内,终端设备可以直接检测下行控制信道,使得检测较为及时。具体的,终端设备究竟在何时启动第一定时器,本申请实施例不做限制。
在这种实施方式下,终端设备在第一定时器的定时时长内是否检测到第二信号,可以并不影响终端设备对于下行控制信道的检测。例如,终端设备在第一时间段内是检测下行控制信道和第二信号,在尚未检测到第二信号时,终端设备可以继续对下行控制信道进行检测,而在检测到第二信号时,或者在检测到第二信号,且第二信号指示重置第一定时器 (或指示继续检测下行控制信道),也可以认为此时第二信号指示的是“激活(active)”或“唤醒(wake up)”状态,终端设备还是可以继续对下行控制信道进行检测。
但,如果终端设备在第一时间段内尚未检测到第二信号,终端设备虽然继续对下行控制信道进行检测,而第一定时器的定时时长却不会改变,第一定时器会继续运行,如果直到第一定时器超时,也就是到第一时间段结束,终端设备都未检测到第二信号,则终端设备对下行控制信道和第二信号的检测也就结束,终端设备会停止检测下行控制信道和第二信号。
而如果终端设备在第一时间段内检测到了第二信号,或者终端设备在第一时间段内检测到了第二信号且第二信号指示重置第一定时器(或者,第二信号指示继续检测下行控制信道),终端设备可以继续对下行控制信道进行检测,并且终端设备还会重置第一定时器,也就是对第一定时器进行清零,使得第一定时器重新开始计时,终端设备在重置后的第一定时器的定时时长内继续检测下行控制信道和第二信号。其中,网络设备也会重置第一定时器,例如可以在重置后的第一定时器的定时时长内发送下行控制信道和/或第二信号,当然也可以既不发送下行控制信道也不发送第二信号。如果终端设备在重置后的第一定时器的定时时长内检测到了第二信号,或者终端设备在重置后的第一定时器的定时时长内检测到了第二信号且第二信号指示重置第一定时器(或者,第二信号指示继续检测下行控制信道),终端设备可以继续对下行控制信道进行检测,并且终端设备还会再次重置第一定时器,也就是对第一定时器进行清零,使得第一定时器再次重新开始计时,终端设备在再次重置后的第一定时器的定时时长内继续检测下行控制信道和第二信号,其中,网络设备也会再次重置第一定时器,例如可以在重置后的第一定时器的定时时长内发送下行控制信道和/或第二信号,当然也可以既不发送下行控制信道也不发送第二信号,等等,以此类推。
在网络设备有数据调度时,可以发送第二信号,也可以认为第二信号是节能信号。例如,如果网络设备的数据调度在第一时间段内即可实现,则网络设备可以无需发送第二信号,则终端设备在第一时间段内检测不到第二信号,在第一时间段结束时终端设备就会停止检测下行控制信道和第二信号,而此时网络设备也已经完成了发送,终端设备也完成了对网络设备发送的所有下行控制信道的检测,且终端设备在一定程度上实现了节能。或者,如果网络设备的数据调度在第一时间段内无法完成,需要延长终端设备的接收时间,则网络设备可以发送第二信号,或者,网络设备发送第二信号,且第二信号指示重置第一定时器(或者,指示继续检测下行控制信道),终端设备根据第二信号可以重置第一定时器,并在重置后的第一定时器的定时时长内检测下行控制信道,网络设备也可以重置第一定时器,并在重置后的第一定时器的定时时长内发送下行控制信道,当然也可以不发送下行控制信道。可见,通过发送第二信号,可以拉长终端设备检测下行控制信道的时间长度,使得终端设备能够较为完整地检测到网络设备所发送的下行控制信道。
还有一种情况,网络设备发送第二信号,且第二信号指示不重置第一定时器(或者,指示暂停检测下行控制信道),也可以认为此时第二信号指示的是“睡眠(sleep)”状态,那么终端设备在检测到第二信号时,可以停止检测下行控制信道,而终端设备可能不适宜于长久停止检测下行控制信道,因此终端设备可以在第三时间段内停止检测下行控制信道,而且终端设备在第三时间段内可以不检测第二信号,即如果第二信号的传输机会出现在第三时间段内时,UE可以在该传输机会上不检测第二信号。第三时间段可以认为是终端设备的“睡眠时间(sleep duration)”,终端设备在第三时间段内可以进入“睡眠”状态。其 中,“睡眠(sleep)”状态可以是指终端设备停止检测下行控制信道和第二信号的状态。第三时间段的长度可以通过高层信令配置,或者可以通过协议规定,或者也可以由用于指示不重置第一定时器(或者,指示暂停检测下行控制信道)的第二信号指示。而在第三时间段内,终端设备可以保持第一定时器继续运行,那么如果第三时间段在第一定时器超时之前结束,也就是终端设备在第一定时器超时之前醒来,则终端设备可以在第一定时器剩余的计时时间内继续检测下行控制信道和第二信号,而如果第三时间段在第一定时器超时时结束,或者在第一定时器超时之后才能结束,则终端设备在第一定时器超时时停止检测下行控制信道和第二信号。
其中,网络设备可以在有数据调度时发送第二信号(第二信号可以作为节能信号),在这种情况下,对于第二信号所承载的信息并不作限制,那么,如果网络设备不发送第二信号,也就是终端设备只要检测不到第二信号,就不会重置第一定时器,在第一定时器超时时,终端设备就会停止检测下行控制信道和第二信号;而如果网络设备发送第二信号,终端设备检测到第二信号时就会重置第一定时器,并继续检测下行控制信道。第二信号的这种实现方式较为简单,终端设备根据是否检测到第二信号就可以确定应如何操作。
或者,网络设备可以通过第二信息所承载的信息来指示是否进行数据调度(或者作为节能信号),在这种情况下,网络设备可以发送第二信号,第二信号承载的信息不同则可以指示不同的情况,例如第二信号承载1比特(bit)的信息,如果这1比特的取值为“0”,表明不重置第一定时器(或者暂停检测下行控制信道),如果这1比特的取值为“1”,表明重置第一定时器(或者继续检测下行控制信道)。例如,网络设备发送第二信号且第二信号指示不重置第一定时器(或者指示暂停检测下行控制信道),则终端设备检测到第二信号且确定第二信号指示不重置第一定时器(或者指示暂停检测下行控制信道),终端设备在第三时间段内停止检测下行控制信道;或者,网络设备发送第二信号且第二信号指示重置第一定时器(或者指示继续检测下行控制信道),则终端设备检测到第二信号且确定第二信号指示重置第一定时器(或者指示继续检测下行控制信道),终端设备重置第一定时器,并继续检测下行控制信道。第二信号的这种实现方式,可以指示更为明确。
在第一定时器的运行时间内,网络设备还有可能发送第一信号,例如第一信号是UE组特定信号,那么网络设备为了照顾到一组终端设备的需求,有可能会多次发送第一信号,则对于一个终端设备来说,即使已处在第一定时器的运行时间内,还是可以接收网络设备发送的第一信号。但本申请实施例中,为了避免终端设备的混乱,可以使得终端设备在第一定时器运行时不检测第一信号,也就是说,在第一定时器的运行时间内,终端设备不检测第一信号,即使网络设备发送了第一信号,终端设备也不接收。
作为一种实施方式,网络设备可以通过第一信号指示第一时间段的长度,或者第一时间段的长度也可以由协议规定。另外,第一定时器在重置之后还会有相应的定时时长,而第一定时器重置之后的定时时长,和第一定时器在重置之前的定时时长,可以相等,也可以不相等,具体的不做限制。第一定时器在重置之后的定时时长如果与第一定时器在重置之前的定时时长不相等,那么第一定时器在重置之后的定时时长可以由网络设备指示,或者通过协议规定等。
作为一种实施方式,网络设备可以通过第一信号指示第一时间段的长度,UE进入第一时间段后,如果检测到第二信号或下行控制信道就启动或重置第一定时器,所述第一定时器的长度与第一时间段的长度,可以相等,也可以不相等。
可参考图12,为在第一种实施方式下,终端设备检测第一信号和第二信号的过程的一种示例。图12中以n=2为例,终端设备在图12左边所示的2个传输机会上检测第一信号,如果在这2个传输机会上未检测到第一信号,则终端设备会进入睡眠状态,直到下一个检测周期到来,终端设备再在下一个检测周期内的2个传输机会上检测第一信号,下一个检测周期的2个传输机会为图12右边所示的2个传输机会。而如果终端设备在这两个传输机会上的一个传输机会上检测到了第一信号,终端设备会启动第一定时器,以进入第一时间段。在第一时间段,终端设备检测下行控制信道,且以周期P2检测第二信号,图12中的斜线框所示的位置就表示终端设备检测第二信号的位置。例如第一次没检测到第二信号,则终端设备继续检测下行控制信道,保持第一定时器继续运行,而在第二次检测到了第二信号,且第二信号指示继续检测下行控制信道(在图12中表示为第二信号指示检测下行控制信道,在本申请实施例中,指示“继续检测下行控制信道”和指示“检测下行控制信道”,可以理解为相同的概念,二者可互换),则终端设备重置第一定时器,并在重置的第一定时器的定时时长内继续检测下行控制信道,以及检测第二信号。在第三次又检测到了第二信号,且第二信号指示暂停检测下行控制信道,则终端设备停止检测下行控制信道,进入睡眠状态。例如终端设备在从睡眠状态醒来后第一定时器还未超时,则终端设备继续检测下行控制信道和第二信号,直到第一定时器超时时,终端设备停止检测下行控制信道和第二信号。从第一时间段开始,直到第一定时器超时之前,即第一定时器的所有运行时间,都认为是终端设备的“激活时间(active time)”。
2、终端设备在检测到第一信号时的第二种实施方式,终端设备检测第二信号。
在这种实施方式下,如果终端设备在n个传输机会中的一个传输机会上第一次检测到第一信号,那么终端设备可以启动第一定时器,第一时间段就用于通过第一定时器来计时,换句话说,第一定时器的计时时长就是第一时间段的长度。其中,终端设备第一次检测到第一信号的传输机会可能是n个传输机会中的任意一个传输机会,关于终端设备启动第一定时器的时机,可以参考第1点中对于终端设备在检测到第一信号时的第一种实施方式中的相关描述,不多赘述。
在这种实施方式下,终端设备在第一定时器的定时时长内是否检测到第二信号,会影响终端设备对于下行控制信道的检测。例如,终端设备在第一时间段内检测第二信号,在尚未检测到第二信号时,终端设备不检测下行控制信道,而在检测到第二信号时,或者在检测到第二信号,且第二信号指示重置第一定时器(或指示检测下行控制信道),也可以认为此时第二信号指示的是“激活(active)”状态,终端设备可以重置第一定时器,且开始检测下行控制信道。其中,“激活(active)”状态可以是指重置第一定时器,且开始检测下行控制信道的状态。当然,由于第二信号是周期性发送的,终端设备在第一次检测到第二信号后,还可能再次检测到第二信号,如果终端设备再次检测到第二信号,或者终端设备再次检测到第二信号,且第二信号指示重置第一定时器(或指示检测下行控制信道),则终端设备可以重置第一定时器,且继续检测下行控制信道。
如果直到第一定时器超时,也就是到第一时间段结束,终端设备都未检测到第二信号,则终端设备对第二信号的检测也就结束,终端设备会停止检测第二信号,在这种情况下,虽然终端设备还未检测下行控制信道,但由于已经不再检测第二信号,则相当于终端设备对下行控制信道的检测也就结束了。
而如果终端设备在第一时间段内第一次检测到了第二信号,或者终端设备在第一时间 段内第一次检测到了第二信号且第二信号指示重置第一定时器(或者,第二信号指示检测下行控制信道),终端设备开始对下行控制信道进行检测,并且终端设备还会重置第一定时器,也就是对第一定时器进行清零,使得第一定时器重新开始计时,终端设备在重置后的第一定时器的定时时长内开始检测下行控制信道,也可以继续检测第二信号。之后,如果终端设备在重置后的第一定时器的定时时长内检测到了第二信号,或者终端设备在重置后的第一定时器的定时时长内检测到了第二信号且第二信号指示重置第一定时器(或者,第二信号指示检测下行控制信道),终端设备可以继续对下行控制信道进行检测,并且终端设备还会再次重置第一定时器,也就是对第一定时器进行清零,使得第一定时器再次重新开始计时,终端设备在再次重置后的第一定时器的定时时长内继续检测下行控制信道,也继续检测第二信号,以此类推。
网络设备在有数据调度时,可以发送第二信号,可以认为第二信号是节能信号。例如,如果网络设备在第一时间段内无数据调度,则网络设备可以无需发送第二信号,则终端设备在第一时间段内检测不到第二信号,也就不会检测下行控制信道,使得终端设备在一定程度上实现了节能。或者,如果网络设备有数据调度,且数据调度在第一时间段内无法完成,需要延长终端设备的接收时间,则网络设备可以发送第二信号,或者,网络设备发送第二信号,且第二信号指示重置第一定时器(或者,指示检测下行控制信道),终端设备根据第二信号可以重置第一定时器,并在重置后的第一定时器的定时时长内检测下行控制信道,可见,通过发送第二信号,可以拉长终端设备检测下行控制信道的时间长度,使得终端设备能够较为完整地检测到网络设备所发送的下行控制信道。
还有一种情况,网络设备发送第二信号,且第二信号指示不重置第一定时器(或者,指示不检测下行控制信道,或指示暂停检测下行控制信道),也可以认为此时第二信号指示的是“睡眠”状态,那么终端设备在检测到第二信号时,可以停止检测下行控制信道,而终端设备可能不适宜于长久停止检测下行控制信道,因此终端设备可以在第三时间段内停止检测下行控制信道,第三时间段可以认为是终端设备的“睡眠时间”,终端设备在第三时间段内可以进入“睡眠”状态。第三时间段的长度可以通过高层信令配置,或者可以通过协议规定,或者也可以由用于指示不重置第一定时器(或者,指示不检测下行控制信道,或指示暂停检测下行控制信道)的第二信号指示。而在第三时间段内,终端设备可以保持第一定时器继续运行,那么如果第三时间段在第一定时器超时之前结束,也就是终端设备在第一定时器超时之前醒来,则终端设备可以在第一定时器剩余的计时时间内继续检测第二信号,而如果第三时间段在第一定时器超时时结束,或者在第一定时器超时之后才能结束,则终端设备在第一定时器超时时停止检测下行控制信道和第二信号。
其中,网络设备可以通过发送第二信号来指示数据调度(或者作为节能信号),在这种情况下,对于第二信号所承载的信息并不作限制,那么,如果网络设备不发送第二信号,也就是终端设备只要检测不到第二信号,就不会重置第一定时器,也不检测下行控制信道,在第一定时器超时时,终端设备就会停止检测第二信号;而如果网络设备发送第二信号,终端设备检测到第二信号时就会重置第一定时器,并检测下行控制信道。第二信号的这种实现方式较为简单,终端设备根据是否检测到第二信号就可以确定应如何操作。
或者,网络设备可以通过第二信息所承载的信息来指示是否进行数据调度(或者作为节能信号),在这种情况下,网络设备可以发送第二信号,第二信号承载的信息不同则可以指示不同的情况,例如第二信号承载1比特的信息,如果这1比特的取值为“0”,表明 不重置第一定时器(或者,指示不检测下行控制信道,或指示暂停检测下行控制信道),如果这1比特的取值为“1”,表明重置第一定时器(或者检测下行控制信道)。例如,网络设备发送第二信号且第二信号指示不重置第一定时器(或者,指示不检测下行控制信道,或指示暂停检测下行控制信道),则终端设备检测到第二信号且确定第二信号指示不重置第一定时器(或者,指示不检测下行控制信道,或指示暂停检测下行控制信道),终端设备在第三时间段内停止检测下行控制信道;或者,网络设备发送第二信号且第二信号指示重置第一定时器(或者指示检测下行控制信道),则终端设备检测到第二信号且确定第二信号指示重置第一定时器(或者指示检测下行控制信道),终端设备重置第一定时器,并检测下行控制信道。第二信号的这种实现方式,可以指示更为明确。
在第一定时器的运行时间内,网络设备还有可能发送第一信号,例如第一信号是UE组特定信号,那么网络设备为了照顾到一组终端设备的需求,有可能会多次发送第一信号,则对于一个终端设备来说,即使已处在第一定时器的运行时间内,还是可以接收网络设备发送的第一信号。但本申请实施例中,为了避免终端设备的混乱,可以使得终端设备在第一定时器运行时不检测第一信号,也就是说,在第一定时器的运行时间内,终端设备不检测第一信号,即使网络设备发送了第一信号,终端设备也不接收。
作为一种实施方式,网络设备可以通过第一信号指示第一时间段的长度,或者第一时间段的长度也可以由协议规定。另外,第一定时器在重置之后还会有相应的定时时长,而第一定时器重置之后的定时时长,和第一定时器在重置之前的定时时长,可以相等,也可以不相等,具体的不做限制。第一定时器在重置之后的定时时长如果与第一定时器在重置之前的定时时长不相等,那么第一定时器在重置之后的定时时长可以由网络设备指示,或者通过协议规定等。
作为一种实施方式,网络设备可以通过第一信号指示第一时间段的长度,UE进入第一时间段后,如果检测到第二信号就启动或重置第一定时器,所述第一定时器的长度与第一时间段的长度,可以相等,也可以不相等。
在第二种实施方式下,终端设备检测第一信号和第二信号的过程的一种示例也可以参考图12。图12中以n=2为例,终端设备在图12左边所示的2个传输机会上检测第一信号,如果在这2个传输机会上未检测到第一信号,则终端设备会进入睡眠状态,直到下一个检测周期到来,终端设备再在下一个检测周期内的2个传输机会上检测第一信号,下一个检测周期的2个传输机会为图12右边所示的2个传输机会。而如果终端设备在这两个传输机会上的一个传输机会上检测到了第一信号,终端设备会启动第一定时器,以进入第一时间段。在第一时间段,终端设备以周期P2检测第二信号,图12中的斜线框所示的位置就表示终端设备检测第二信号的位置。例如第一次没检测到第二信号,则终端设备不检测下行控制信道,保持第一定时器继续运行,而在第二次检测到了第二信号,且第二信号指示检测下行控制信道,则终端设备重置第一定时器,并在重置的第一定时器的定时时长内检测下行控制信道,以及检测第二信号。在第三次又检测到了第二信号,且第二信号指示暂停检测下行控制信道,则终端设备停止检测下行控制信道,进入睡眠状态。例如终端设备在从睡眠状态醒来后第一定时器还未超时,则终端设备继续检测第二信号,直到第一定时器超时时,终端设备停止检测下行控制信道和第二信号。从第一时间段开始,直到第一定时器超时之前,都认为是终端设备的“激活时间”。
3、终端设备在检测到第一信号时的第三种实施方式,终端设备检测下行控制信道。
在这种实施方式下,网络设备只配置终端设备检测第一类型的信号,也就是检测第一信号,网络设备不会发送第二信号,终端设备也不会检测第二信号。
在这种实施方式下,如果终端设备在n个传输机会中的一个传输机会上第一次检测到第一信号,那么终端设备可以启动第一定时器,第一时间段就用于通过第一定时器来计时,换句话说,第一定时器的计时时长就是第一时间段的长度。其中,终端设备第一次检测到第一信号的传输机会可能是n个传输机会中的任意一个传输机会,关于终端设备启动第一定时器的时机,可以参考第1点中对于终端设备在检测到第一信号时的第一种实施方式中的相关描述,不多赘述。
网络设备可以通过第一信号指示第一时间段的长度,那么终端设备在检测到第一信号后(例如在第一次检测到第一信号后)就可以根据第一信号确定第一时间段的时长,或者第一时间段的时长也可以通过协议规定,或者可以由网络设备通过其他信令(例如高层信令)指示。对于第一时间段的长度也不做限制,例如可以是1个时隙或多个时隙,或者也可以是一个符号或多个符号。
例如第一信号可以指示第一时间段的长度,或者说是指示第一时间段。例如第一信号可以通过1个比特来指示第一时间段,如果这1比特取值为“1”,就表明第一时间段是周期P1的前半个周期,而如果这1比特取值为“0”,就表明第一时间段是周期P1的后半个周期。或者,第一信号通过2个比特来指示第一时间段,这2个比特中的高位比特用于表示周期P1的前半个周期,这2个比特中的低位比特用于表示周期P1的后半个周期,如果这2个比特中的高位比特的取值为“1”,表明第一时间段是周期P1的前半个周期,而如果这2个比特中的低位比特的取值为“1”,就表明第一时间段是周期P1的后半个周期,当然,在这2个比特中的高位比特的取值为“1”时,这2个比特中的低位比特的取值就是“0”,在这2个比特中的低位比特的取值为“1”时,这2个比特中的高位比特的取值就是“0”。当然还可以在第一信号中通过更多的比特来指示第一时间段,或者也可以通过相同的比特但是不同的方式来指示第一时间段,等等,本申请实施例并不限制如何通过第一信号指示第一时间段。
可参考图13,为在第三种实施方式下,终端设备检测第一信号的过程的一种示例。图13中以n=2为例,终端设备在图13左边所示的2个传输机会上检测第一信号,如果在这2个传输机会上未检测到第一信号,则终端设备会进入睡眠状态,直到下一个检测周期到来,终端设备再在下一个检测周期内的2个传输机会上检测第一信号,下一个检测周期的2个传输机会为图13右边所示的2个传输机会。而如果终端设备在这两个传输机会上的一个传输机会上检测到了第一信号,则终端设备可以进入第一时间段,其中第一时间段的长度是终端设备根据第一信号获得的。在第一时间段,终端设备检测下行控制信道,其中,终端设备也是按照搜索空间集合的检测周期来检测下行控制信道,搜索空间集合的检测周期是图13中的斜线框所示的位置,直到第一定时器超时时,终端设备停止检测下行控制信道。第一时间段可以认为是终端设备的“激活时间”。
如上介绍了终端设备在检测到第一信号时的三种实施方式,在具体应用中究竟选择哪种实施方式,可以由协议规定,或者由网络设备配置等。
在本申请实施例中,第一信号和第二信号都可以是基于序列生成的。第一信号可以是基于第一序列生成的,第二信号可以是基于第二序列生成的,第一序列属于第一序列集合,第二序列属于第二序列集合,第一序列集合可以是第二序列集合的子集。例如,第一序列 集合包括序列1,第二序列集合包括序列1和序列2。
或者,本申请实施例中的序列都是指调制之前的信息,那么,第一序列和第二序列可以是相同的序列,例如第一序列和第二序列都是序列1,但是在基于第一序列生成第一信号时可以采用第一调制方式,在基于第一序列生成第二信号时可以采用第二调制方式,第一调制方式和第二调制方式不同,也就是基于同一个序列、以不同的调制方式生成不同的信号,通过这种方式可以节省所需的序列。
或者,因为终端设备对第一信号和第二信号的检测时机是不同的,终端设备只会在n个传输机会上检测第一信号,而又只会在第一定时器的定时时长内检测第二信号,因此,第一序列和第二序列可以是相同的序列,而对于在生成相应的信号时的调制方式也不做限制,例如在基于第一序列生成第一信号时可以采用第一调制方式,在基于第一序列生成第二信号时也可以采用第一调制方式,因为终端设备会在不同的时机分别检测第一信号和第二信号,因此即使第一信号和第二信号完全相同,也不会影响终端设备的解析。也可以理解为,同一个序列可以对应不同的信号,而不同的信号的功能是不同的,例如该序列对应第一信号时,终端设备在接收第一信号后可以在第一时间段内检测下行控制信道和/或第二信号,或者,该序列对应第二信号时,终端设备在接收第二信号后可以检测下行控制信道,或者可以在第三时间段内进入“睡眠”状态等。例如,基于序列1生成第一信号,基于序列1生成第二信号,且采用的调制方式是相同的,那么,在序列1对应第一信号时,终端设备在接收第一信号后可以在第一时间段内检测下行控制信道和/或第二信号,或者,在序列1对应第二信号时,终端设备在接收第二信号后可以检测下行控制信道,或者可以在第三时间段内进入睡眠状态等。
或者,第一信号和第二信号也可以不是基于序列生成的,例如第一信号和第二信号都是信令的形式,也就是对信息域的比特进行信道编码后传输。例如,第一信号承载第一状态值,第二信号承载第二状态值,第一状态值属于第一状态值集合,第二信息状态值属于第二状态值集合,第一状态值集合为第二状态值集合的子集。例如第一信号所承载的第一状态值为2比特,第二信号所承载的第二状态值也为2比特,第一状态值集合[00],第二状态值集合为[00,01,10,11],可以看到,第一状态值集合是第二状态值集合的子集。例如,第一状态值为00,第二状态值也为00,则终端设备在接收第一状态值00后可以在第一时间段内检测下行控制信道和/或第二信号,终端设备在接收第二状态值00后可以检测下行控制信道,或者可以在第三时间段内进入睡眠状态等。或者,第一状态值为00,第二状态值为01,则终端设备在接收第一状态值00后可以在第一时间段内检测下行控制信道和/或第二信号,终端设备在接收第二状态值01后可以检测下行控制信道,或者可以在第三时间段内进入睡眠状态等。通过这种方式,第一信号和第二信号可以进行统一设计,即设计成同一信道或信号的形式,减少标准化的难度。
作为一种实施方式,本申请实施例中的第一信号和第二信号都是不与DRX周期绑定的,即UE在没有配置DRX机制的情况下,也可以配置检测第一信号和/或第二信号。也就是说,第一信号和第二信号都跟DRX周期无关,与DRX机制无关,这有助于提高网络设备调度的灵活性,而且无需等到DRX周期时终端设备才能实现节能,提升了终端设备的节能效果。
或者,作为一种实施方式,第一信号也可以与DRX机制相结合,那么在本申请实施例中,第一时间段的时间起始位置可以是一个DRX周期的时间起始位置,终端设备检测 第一信号的周期可以直接为DRX周期,在这种情况下,该DRX周期的on duration timer的计时时长是0ms,在该DRX周期的激活时间内,终端设备在该DRX周期的起始位置上只开启第一定时器,此时认为非激活定时器就没有了。或者,在这种情况下,在该DRX周期的激活时间内,终端设备在该DRX周期的起始位置上只开启第一定时器,此时认为on duration timer和非激活定时器都没有了。或者,第一定时器也可以是inactivity timer,inactivity timer在DRX周期的起始位置处启动,或者,只要终端设备检测到第一信号就启动inactivity timer,此时,on duration timer就没有了,或者,on duration timer的计时时长是0ms。其中,第一定时器的运行时间可以是该DRX周期的激活时间。
或者理解为,终端设备在检测到第一信号后,可以启动一个DRX周期,则第一时间段的时间起始位置就是该DRX周期的时间起始位置。在目前的DRX周期中,终端设备在进入一个DRX周期后会启动持续时间定时器,如果在持续时间定时器的计时时长内终端设备检测到了PDCCH,那么终端设备还会开启DRX机制中的非激活定时器,以在非激活定时器的定时时长内检测PDCCH。但是在本申请实施例中,第一时间段是通过第一定时器来计时的,也就是说,终端设备只需要在第一时间段的时间起始位置启动一个定时器即可,在后续的过程中可能会根据第二信号来重置第一定时器,但是无需再启动其他的定时器,可以理解为,本申请实施例中的第一定时器不是目前的DRX周期中的持续时间定时器,也不是非激活定时器,而是用第一定时器这一个定时器代替了原本的DRX周期中的持续时间定时器和非激活定时器,节省了定时器的数量,也简化了终端设备的节能过程。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图14示出了一种通信装置1400的结构示意图。该通信装置1400可以实现上文中涉及的终端设备的功能。该通信装置1400可以是上文中所述的终端设备,或者可以是设置在上文中所述的终端设备中的芯片。该通信装置1400可以包括处理器1401和收发器1402。其中,处理器1401可以用于执行图10所示的实施例中的S101和S102,和/或用于支持本文所描述的技术的其他过程,例如可以执行前文中所述的终端设备所执行的除了收发过程之外的全部的其他过程或部分的其他过程。收发器1402可以用于执行图10所示的实施例中的S103和S104,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的终端设备所执行的全部的收发过程或部分的收发过程。
例如,处理器1401,用于在一个检测周期内的n个传输机会上检测第一信号,n为正整数;
当处理器1401在所述n个传输机会中的至少一个传输机会上检测到第一信号时,处理器1401还用于在所述检测周期中的第一时间段内检测下行控制信道和/或第二信号;或者,当处理器1401在所述n个传输机会上均未检测到第一信号,处理器1401在所述检测周期内不检测下行控制信道。
在一种可能的实施方式中,所述第一时间段通过第一定时器进行计时,所述第一定时器的定时时长为所述第一时间段的长度。
在一种可能的实施方式中,在处理器1401在所述检测周期中的第一时间段内检测下行控制信道和第二信号的情况下,处理器1401还用于:
当处理器1401在所述第一定时器的定时时长内检测到第二信号时,处理器1401重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道;或 者
当处理器1401在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示继续检测下行控制信道时,处理器1401重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道。
在一种可能的实施方式中,在处理器1401在所述检测周期中的第一时间段内检测下行控制信道和第二信号的情况下,处理器1401还用于:
在所述第一定时器的定时时长内,当处理器1401尚未检测到所述第二信号时,对所述下行控制信道进行检测。
在一种可能的实施方式中,在处理器1401在所述检测周期中的第一时间段内检测第二信号的情况下,处理器1401还用于:
当处理器1401在所述第一定时器的定时时长内检测到第二信号时,处理器1401重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道;或
当处理器1401在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示检测下行控制信道时,处理器1401重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道。
在一种可能的实施方式中,在处理器1401在所述检测周期中的第一时间段内检测第二信号的情况下,处理器1401还用于:在所述第一定时器的定时时长内,当处理器1401尚未检测到所述第二信号时,不对下行控制信道进行检测。
在一种可能的实施方式中,处理器1401还用于:当处理器1401在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示暂停检测下行控制信道时,处理器1401在第三时间段内暂停检测所述下行控制信道。
在一种可能的实施方式中,处理器1401还用于:当处理器1401在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示暂停检测下行控制信道时,保持所述第一定时器继续运行。
在一种可能的实施方式中,处理器1401还用于:当第一定时器超时时,处理器1401停止检测所述下行控制信道和所述第二信号。
在一种可能的实施方式中,当所述第一定时器运行时,处理器1401不检测所述第一信号。
在一种可能的实施方式中,处理器1401在所述第一定时器的定时时长内周期性检测所述第二信号。
在一种可能的实施方式中,所述第一信号用于指示所述第一时间段的时长。
在一种可能的实施方式中,所述n个传输机会为n个连续的传输机会。
在一种可能的实施方式中,
所述第一信号是基于第一序列生成的,所述第二信号是基于第二序列生成的,所述第一序列属于第一序列集合,所述第二序列属于第二序列集合,所述第一序列集合为所述第二序列集合的子集;或,
所述第一信号承载第一状态值,所述第二信号承载第二状态值,所述第一状态值属于第一状态值集合,所述第二信息状态值属于第二状态值集合,所述第一状态值集合为第二状态值集合的子集。
在一种可能的实施方式中,所述检测周期为DRX周期,所述第一时间段的起始位置 为一个DRX周期的起始位置,所述通信装置1400在所述第一时间段内只开启第一定时器。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图15示出了一种通信装置1500的结构示意图。该通信装置1500可以实现上文中涉及的第二终端设备的功能。该通信装置1500可以是上文中所述的网络设备,或者可以是设置在上文中所述的网络设备中的芯片。该通信装置1500可以包括处理器1501和收发器1502。其中,处理器1501可以用于执行图10所示的实施例中网络设备执行的除了收发操作之外的全部的其他操作或部分的其他操作,例如网络设备确定在一个检测周期内对于终端设备进行数据调度的步骤,启动或重启第一定时器的步骤,和/或用于支持本文所描述的技术的其他过程,例如可以执行前文中所述的网络设备所执行的除了收发过程之外的其他的所有过程。收发器1502可以用于执行图10所示的实施例中的S103和S104,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的网络设备所执行的全部的收发过程或部分的收发过程。
例如,处理器1501,用于确定在一个检测周期内对于终端设备进行数据调度;
收发器1502,用于在所述检测周期内的n个传输机会上发送第一信号,所述第一信号用于指示数据调度,n为正整数。
在一种可能的实施方式中,收发器1502,还用于在所述检测周期中的第一时间段内发送下行控制信道和/或第二信号。
在一种可能的实施方式中,所述第一时间段通过第一定时器进行计时,所述第一定时器的定时时长为所述第一时间段的长度。
在一种可能的实施方式中,在收发器1502在所述检测周期中的第一时间段内发送下行控制信道和第二信号的情况下,处理器1501还用于:
当收发器1502在所述第一定时器的定时时长内发送第二信号时,处理器1501重置所述第一定时器,并通过收发器1502在重置后的所述第一定时器的定时时长内发送所述下行控制信道;或者
当收发器1502在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示继续检测下行控制信道时,处理器1501重置所述第一定时器,并通过收发器1502在重置后的所述第一定时器的定时时长内发送所述下行控制信道。
在一种可能的实施方式中,在收发器1502在所述检测周期中的第一时间段内发送下行控制信道和第二信号的情况下,收发器1502还用于:在所述第一定时器的定时时长内,当收发器1502尚未发送所述第二信号时,发送所述下行控制信道。
在一种可能的实施方式中,在收发器1502在所述检测周期中的第一时间段内发送第二信号的情况下,
当收发器1502在所述第一定时器的定时时长内发送第二信号时,处理器1501重置所述第一定时器,并通过收发器1502在重置后的所述第一定时器的定时时长内发送所述下行控制信道;或
当收发器1502在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示检测下行控制信道时,处理器1501重置所述第一定时器,并通过收发器1502在重置后的所述第一定时器的定时时长内发送所述下行控制信道。
在一种可能的实施方式中,在收发器1502在所述检测周期中的第一时间段内发送第 二信号的情况下,收发器1502还用于:在所述第一定时器的定时时长内,当收发器1502尚未发送所述第二信号时,不发送下行控制信道。
在一种可能的实施方式中,收发器1502还用于:当收发器1502在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示暂停检测下行控制信道时,在第三时间段内暂停发送所述下行控制信道。
在一种可能的实施方式中,处理器1501还用于:当收发器1502在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示暂停检测下行控制信道时,保持所述第一定时器继续运行。
在一种可能的实施方式中,收发器1502还用于:当第一定时器超时时,停止发送所述下行控制信道和所述第二信号。
在一种可能的实施方式中,当所述第一定时器运行时,收发器1502不发送所述第一信号。
在一种可能的实施方式中,收发器1502在所述第一定时器的定时时长内周期性发送所述第二信号。
在一种可能的实施方式中,所述第一信号用于指示所述第一时间段的时长。
在一种可能的实施方式中,所述n个传输机会为n个连续的传输机会。
在一种可能的实施方式中,
所述第一信号是基于第一序列生成的,所述第二信号是基于第二序列生成的,所述第一序列属于第一序列集合,所述第二序列属于第二序列集合,所述第一序列集合为所述第二序列集合的子集;或,
所述第一信号承载第一状态值,所述第二信号承载第二状态值,所述第一状态值属于第一状态值集合,所述第二信息状态值属于第二状态值集合,所述第一状态值集合为第二状态值集合的子集。
在一种可能的实施方式中,所述检测周期为DRX周期,所述第一时间段的起始位置为一个DRX周期的起始位置,所述通信装置1500在所述第一时间段内只开启第一定时器。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将通信装置1400或通信装置1500通过如图16A所示的通信装置1600的结构实现。该通信装置1600可以实现上文中涉及的终端设备或网络设备的功能。该通信装置1600可以包括处理器1601。
其中,在该通信装置1600用于实现上文中涉及的终端设备的功能时,处理器1601可以用于执行图10所示的实施例中的S101和S102,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的终端设备所执行的除了收发过程之外的全部的其他过程或部分的其他过程;或者,在该通信装置1600用于实现上文中涉及的网络设备的功能时,处理器1601可以用于执行图10所示的实施例中网络设备执行的除了收发操作之外的全部的其他操作或部分的其他操作,例如网络设备确定在一个检测周期内对于终端设备进行数据调度的步骤,启动或重启第一定时器的步骤,和/或用于支持本文所描述的技术的其他过程。
其中,通信装置1600可以通过现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on  chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片实现,则通信装置1600可被设置于本申请实施例的终端设备或网络设备中,以使得终端设备或网络设备实现本申请实施例提供的方法。
在一种可选的实现方式中,该通信装置1600可以包括收发组件,用于与其他设备进行通信。其中,在该通信装置1600用于实现上文中涉及的终端设备或网络设备的功能时,收发组件可以用于执行图10所示的实施例中的S103和S104,和/或用于支持本文所描述的技术的其它过程。例如,一种收发组件为通信接口,如果通信装置1600为终端设备或网络设备,则通信接口可以是终端设备或网络设备中的收发器,例如收发器1402或收发器1502,收发器例如为终端设备或网络设备中的射频收发组件,或者,如果通信装置1600为设置在终端设备或网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
在一种可选的实现方式中,该通信装置1600还可以包括存储器1602,可参考图16B,其中,存储器1602用于存储计算机程序或指令,处理器1601用于译码和执行这些计算机程序或指令。应理解,这些计算机程序或指令可包括上述终端设备或网络设备的功能程序。当终端设备的功能程序被处理器1601译码并执行时,可使得终端设备实现本申请实施例图10所示的实施例所提供的方法中终端设备的功能。当网络设备的功能程序被处理器1601译码并执行时,可使得网络设备实现本申请实施例图10所示的实施例所提供的方法中网络设备的功能。
在另一种可选的实现方式中,这些终端设备或网络设备的功能程序存储在通信装置1600外部的存储器中。当终端设备的功能程序被处理器1601译码并执行时,存储器1602中临时存放上述终端设备的功能程序的部分或全部内容。当网络设备的功能程序被处理器1601译码并执行时,存储器1602中临时存放上述网络设备的功能程序的部分或全部内容。
在另一种可选的实现方式中,这些终端设备或网络设备的功能程序被设置于存储在通信装置1600内部的存储器1602中。当通信装置1600内部的存储器1602中存储有终端设备的功能程序时,通信装置1600可被设置在本申请实施例的终端设备中。当通信装置1600内部的存储器1602中存储有网络设备的功能程序时,通信装置1600可被设置在本申请实施例的网络设备中。
在又一种可选的实现方式中,这些终端设备的功能程序的部分内容存储在通信装置1600外部的存储器中,这些终端设备的功能程序的其他部分内容存储在通信装置1600内部的存储器1602中。或,这些网络设备的功能程序的部分内容存储在通信装置1600外部的存储器中,这些网络设备的功能程序的其他部分内容存储在通信装置1600内部的存储器1602中。
在本申请实施例中,通信装置1400、通信装置1500及通信装置1600对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
另外,图14所示的实施例提供的通信装置1400还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器1401实现,收发模块可通 过收发器1402实现。其中,处理模块可以用于执行图10所示的实施例中的S101和S102,和/或用于支持本文所描述的技术的其他过程,例如可以执行前文中所述的终端设备所执行的除了收发过程之外的全部的其他过程或部分的其他过程。收发模块可以用于执行图10所示的实施例中的S103和S104,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的终端设备所执行的全部的收发过程或部分的收发过程。收发模块可以包括与网络设备通信的收发组件,还可以包括与其他终端设备通信的收发组件。
例如,处理模块,用于在一个检测周期内的n个传输机会上检测第一信号,n为正整数;
当处理模块在所述n个传输机会中的至少一个传输机会上检测到第一信号时,处理模块还用于在所述检测周期中的第一时间段内检测下行控制信道和/或第二信号;或者,当处理模块在所述n个传输机会上均未检测到第一信号,处理模块在所述检测周期内不检测下行控制信道。
在一种可能的实施方式中,所述第一时间段通过第一定时器进行计时,所述第一定时器的定时时长为所述第一时间段的长度。
在一种可能的实施方式中,在处理模块在所述检测周期中的第一时间段内检测下行控制信道和第二信号的情况下,处理模块还用于:
当处理模块在所述第一定时器的定时时长内检测到第二信号时,处理模块重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道;或者
当处理模块在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示继续检测下行控制信道时,处理模块重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道。
在一种可能的实施方式中,在处理模块在所述检测周期中的第一时间段内检测下行控制信道和第二信号的情况下,处理模块还用于:
在所述第一定时器的定时时长内,当处理模块尚未检测到所述第二信号时,对所述下行控制信道进行检测。
在一种可能的实施方式中,在处理模块在所述检测周期中的第一时间段内检测第二信号的情况下,处理模块还用于:
当处理模块在所述第一定时器的定时时长内检测到第二信号时,处理模块重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道;或
当处理模块在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示检测下行控制信道时,处理模块重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道。
在一种可能的实施方式中,在处理模块在所述检测周期中的第一时间段内检测第二信号的情况下,处理模块还用于:在所述第一定时器的定时时长内,当处理模块尚未检测到所述第二信号时,不对下行控制信道进行检测。
在一种可能的实施方式中,处理模块还用于:当处理模块在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示暂停检测下行控制信道时,处理器1401在第三时间段内暂停检测所述下行控制信道。
在一种可能的实施方式中,处理模块还用于:当处理模块在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示暂停检测下行控制信道时,保持所述第一定 时器继续运行。
在一种可能的实施方式中,处理模块还用于:当第一定时器超时时,处理模块停止检测所述下行控制信道和所述第二信号。
在一种可能的实施方式中,当所述第一定时器运行时,处理模块不检测所述第一信号。
在一种可能的实施方式中,处理模块在所述第一定时器的定时时长内周期性检测所述第二信号。
在一种可能的实施方式中,所述第一信号用于指示所述第一时间段的时长。
在一种可能的实施方式中,所述n个传输机会为n个连续的传输机会。
在一种可能的实施方式中,
所述第一信号是基于第一序列生成的,所述第二信号是基于第二序列生成的,所述第一序列属于第一序列集合,所述第二序列属于第二序列集合,所述第一序列集合为所述第二序列集合的子集;或,
所述第一信号承载第一状态值,所述第二信号承载第二状态值,所述第一状态值属于第一状态值集合,所述第二信息状态值属于第二状态值集合,所述第一状态值集合为第二状态值集合的子集。
在一种可能的实施方式中,所述检测周期为DRX周期,所述第一时间段的起始位置为一个DRX周期的起始位置,所述通信装置在所述第一时间段内只开启第一定时器。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图15所示的实施例提供的通信装置1500还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器1501实现,收发模块可通过收发器1502实现。其中,处理模块可以用于执行图10所示的实施例中网络设备执行的除了收发操作之外的全部的其他操作或部分的其他操作,例如网络设备确定在一个检测周期内对于终端设备进行数据调度的步骤,启动或重启第一定时器的步骤,和/或用于支持本文所描述的技术的其他过程,例如可以执行前文中所述的网络设备所执行的除了收发过程之外的其他的所有过程。收发模块可以用于执行图10所示的实施例中的S103和S104,和/或用于支持本文所描述的技术的其它过程,例如可以执行前文中所述的网络设备所执行的全部的收发过程或部分的收发过程。
例如,处理模块,用于确定在一个检测周期内对于终端设备进行数据调度;
收发模块,用于在所述检测周期内的n个传输机会上发送第一信号,所述第一信号用于指示数据调度,n为正整数。
在一种可能的实施方式中,收发模块,还用于在所述检测周期中的第一时间段内发送下行控制信道和/或第二信号。
在一种可能的实施方式中,所述第一时间段通过第一定时器进行计时,所述第一定时器的定时时长为所述第一时间段的长度。
在一种可能的实施方式中,在收发模块在所述检测周期中的第一时间段内发送下行控制信道和第二信号的情况下,处理模块还用于:
当收发模块在所述第一定时器的定时时长内发送第二信号时,处理模块重置所述第一定时器,并通过收发模块在重置后的所述第一定时器的定时时长内发送所述下行控制信道;或者
当收发模块在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示继续检测下行控制信道时,处理模块重置所述第一定时器,并通过收发模块在重置后的所述第一定时器的定时时长内发送所述下行控制信道。
在一种可能的实施方式中,在收发模块在所述检测周期中的第一时间段内发送下行控制信道和第二信号的情况下,收发模块还用于:在所述第一定时器的定时时长内,当收发模块尚未发送所述第二信号时,发送所述下行控制信道。
在一种可能的实施方式中,在收发模块在所述检测周期中的第一时间段内发送第二信号的情况下,
当收发模块在所述第一定时器的定时时长内发送第二信号时,处理模块重置所述第一定时器,并通过收发模块在重置后的所述第一定时器的定时时长内发送所述下行控制信道;或
当收发模块在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示检测下行控制信道时,处理模块重置所述第一定时器,并通过收发模块在重置后的所述第一定时器的定时时长内发送所述下行控制信道。
在一种可能的实施方式中,在收发模块在所述检测周期中的第一时间段内发送第二信号的情况下,收发模块还用于:在所述第一定时器的定时时长内,当收发模块尚未发送所述第二信号时,不发送下行控制信道。
在一种可能的实施方式中,收发模块还用于:当收发模块在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示暂停检测下行控制信道时,在第三时间段内暂停发送所述下行控制信道。
在一种可能的实施方式中,处理模块还用于:当收发模块在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示暂停检测下行控制信道时,保持所述第一定时器继续运行。
在一种可能的实施方式中,收发模块还用于:当第一定时器超时时,停止发送所述下行控制信道和所述第二信号。
在一种可能的实施方式中,当所述第一定时器运行时,收发模块不发送所述第一信号。
在一种可能的实施方式中,收发模块在所述第一定时器的定时时长内周期性发送所述第二信号。
在一种可能的实施方式中,所述第一信号用于指示所述第一时间段的时长。
在一种可能的实施方式中,所述n个传输机会为n个连续的传输机会。
在一种可能的实施方式中,
所述第一信号是基于第一序列生成的,所述第二信号是基于第二序列生成的,所述第一序列属于第一序列集合,所述第二序列属于第二序列集合,所述第一序列集合为所述第二序列集合的子集;或,
所述第一信号承载第一状态值,所述第二信号承载第二状态值,所述第一状态值属于第一状态值集合,所述第二信息状态值属于第二状态值集合,所述第一状态值集合为第二状态值集合的子集。
在一种可能的实施方式中,所述检测周期为DRX周期,所述第一时间段的起始位置为一个DRX周期的起始位置,所述通信装置在所述第一时间段内只开启第一定时器。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功 能描述,在此不再赘述。
由于本申请实施例提供的通信装置1400、通信装置1500及通信装置1600可用于执行图10所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (46)

  1. 一种信道检测方法,其特征在于,包括:
    终端设备在一个检测周期内的n个传输机会上检测第一信号,n为正整数;
    当所述终端设备在所述n个传输机会中的至少一个传输机会上检测到第一信号时,所述终端设备在所述检测周期中的第一时间段内检测下行控制信道和/或第二信号;或者,当所述终端设备在所述n个传输机会上均未检测到第一信号,所述终端设备在所述检测周期内不检测下行控制信道。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时间段通过第一定时器进行计时,所述第一定时器的定时时长为所述第一时间段的长度。
  3. 根据权利要求2所述的方法,其特征在于,在所述终端设备在所述检测周期中的第一时间段内检测下行控制信道和第二信号的情况下,所述方法还包括:
    当所述终端设备在所述第一定时器的定时时长内检测到第二信号时,所述终端设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道;或者,
    当所述终端设备在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示继续检测下行控制信道时,所述终端设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道。
  4. 根据权利要求2或3所述的方法,其特征在于,在所述终端设备在所述检测周期中的第一时间段内检测下行控制信道和第二信号的情况下,所述方法还包括:
    在所述第一定时器的定时时长内,当所述终端设备尚未检测到所述第二信号时,对所述下行控制信道进行检测。
  5. 根据权利要求2所述的方法,其特征在于,在所述终端设备在所述检测周期中的第一时间段内检测第二信号的情况下,所述方法还包括:
    当所述终端设备在所述第一定时器的定时时长内检测到第二信号时,所述终端设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道;或
    当所述终端设备在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示检测下行控制信道时,所述终端设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道。
  6. 根据权利要求2或5所述的方法,其特征在于,在所述终端设备在所述检测周期中的第一时间段内检测第二信号的情况下,所述方法还包括:
    在所述第一定时器的定时时长内,当所述终端设备尚未检测到所述第二信号时,不对下行控制信道进行检测。
  7. 根据权利要求2~6任一项所述的方法,其特征在于,所述方法还包括:
    当所述终端设备在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示暂停检测下行控制信道时,所述终端设备在第三时间段内暂停检测所述下行控制信道。
  8. 根据权利要求2~7任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一定时器超时时,所述终端设备停止检测所述下行控制信道和所述第二信号。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,当所述第一定时器运行时,所述终端设备不检测所述第一信号。
  10. 根据权利要求1~9任一项所述的方法,其特征在于,所述第一信号用于指示所述第一时间段的时长。
  11. 根据权利要求1~10任一项所述的方法,其特征在于,
    所述第一信号是基于第一序列生成的,所述第二信号是基于第二序列生成的,所述第一序列属于第一序列集合,所述第二序列属于第二序列集合,所述第一序列集合为所述第二序列集合的子集;或,
    所述第一信号承载第一状态值,所述第二信号承载第二状态值,所述第一状态值属于第一状态值集合,所述第二信息状态值属于第二状态值集合,所述第一状态值集合为第二状态值集合的子集。
  12. 一种信道检测方法,其特征在于,包括:
    网络设备确定在一个检测周期内对于终端设备进行数据调度;
    所述网络设备在所述检测周期内的n个传输机会上发送第一信号,所述第一信号用于指示数据调度,n为正整数。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述检测周期中的第一时间段内发送下行控制信道和/或第二信号。
  14. 根据权利要求13所述的方法,其特征在于,所述第一时间段通过第一定时器进行计时,所述第一定时器的定时时长为所述第一时间段的长度。
  15. 根据权利要求14所述的方法,其特征在于,在所述网络设备在所述检测周期中的第一时间段内发送下行控制信道和第二信号的情况下,所述方法还包括:
    当所述网络设备在所述第一定时器的定时时长内发送第二信号时,所述网络设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内发送所述下行控制信道;或者
    当所述网络设备在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示继续检测下行控制信道时,所述网络设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内发送所述下行控制信道。
  16. 根据权利要求14或15所述的方法,其特征在于,在所述网络设备在所述检测周期中的第一时间段内发送下行控制信道和第二信号的情况下,所述方法还包括:
    在所述第一定时器的定时时长内,当所述网络设备尚未发送所述第二信号时,发送所述下行控制信道。
  17. 根据权利要求14所述的方法,其特征在于,在所述网络设备在所述检测周期中的第一时间段内发送第二信号的情况下,所述方法还包括:
    当所述网络设备在所述第一定时器的定时时长内发送第二信号时,所述网络设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内发送所述下行控制信道;或
    当所述网络设备在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示检测下行控制信道时,所述网络设备重置所述第一定时器,并在重置后的所述第一定时器的定时时长内发送所述下行控制信道。
  18. 根据权利要求14或17所述的方法,其特征在于,在所述网络设备在所述检测周期中的第一时间段内发送第二信号的情况下,所述方法还包括:
    在所述第一定时器的定时时长内,当所述网络设备尚未发送所述第二信号时,不发送下行控制信道。
  19. 根据权利要求14~17任一项所述的方法,其特征在于,所述方法还包括:
    当所述网络设备在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示暂停检测下行控制信道时,所述网络设备在第三时间段内暂停发送所述下行控制信道。
  20. 根据权利要求14~19任一项所述的方法,其特征在于,所述方法还包括:
    当第一定时器超时时,所述网络设备停止发送所述下行控制信道和所述第二信号。
  21. 根据权利要求14~20任一项所述的方法,其特征在于,当所述第一定时器运行时,所述网络设备不发送所述第一信号。
  22. 根据权利要求14~21任一项所述的方法,其特征在于,所述第一信号用于指示所述第一时间段的时长。
  23. 根据权利要求14~22任一项所述的方法,其特征在于,
    所述第一信号是基于第一序列生成的,所述第二信号是基于第二序列生成的,所述第一序列属于第一序列集合,所述第二序列属于第二序列集合,所述第一序列集合为所述第二序列集合的子集;或,
    所述第一信号承载第一状态值,所述第二信号承载第二状态值,所述第一状态值属于第一状态值集合,所述第二信息状态值属于第二状态值集合,所述第一状态值集合为第二状态值集合的子集。
  24. 一种终端设备,其特征在于,包括:
    处理器,用于在一个检测周期内的n个传输机会上检测第一信号,n为正整数;
    所述处理器,还用于当在所述n个传输机会中的至少一个传输机会上检测到第一信号时,在所述检测周期中的第一时间段内检测下行控制信道和/或第二信号,或者,当在所述n个传输机会上均未检测到第一信号,在所述检测周期内不检测下行控制信道。
  25. 根据权利要求24所述的终端设备,其特征在于,所述第一时间段通过第一定时器进行计时,所述第一定时器的定时时长为所述第一时间段的长度。
  26. 根据权利要求25所述的终端设备,其特征在于,在所述处理器在所述检测周期中的第一时间段内检测下行控制信道和第二信号的情况下,所述处理器还用于:
    当在所述第一定时器的定时时长内检测到第二信号时,重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道;或者
    当在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示继续检测下行控制信道时,重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道。
  27. 根据权利要求25或26所述的终端设备,其特征在于,在所述处理器在所述检测周期中的第一时间段内检测下行控制信道和第二信号的情况下,所述处理器还用于:
    在所述第一定时器的定时时长内,当尚未检测到所述第二信号时,对所述下行控制信道进行检测。
  28. 根据权利要求25所述的终端设备,其特征在于,在所述处理器在所述检测周期中的第一时间段内检测第二信号的情况下,所述处理器还用于:
    当在所述第一定时器的定时时长内检测到第二信号时,重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道;或
    当在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示检测下行控制信道时,重置所述第一定时器,并在重置后的所述第一定时器的定时时长内检测所述下行控制信道。
  29. 根据权利要求25或28所述的终端设备,其特征在于,在所述处理器在所述检测周期中的第一时间段内检测第二信号的情况下,所述处理器还用于:
    在所述第一定时器的定时时长内,当尚未检测到所述第二信号时,不对下行控制信道进行检测。
  30. 根据权利要求25~29任一项所述的终端设备,其特征在于,所述处理器还用于:
    当在所述第一定时器的定时时长内检测到所述第二信号且所述第二信号指示暂停检测下行控制信道时,在第三时间段内暂停检测所述下行控制信道。
  31. 根据权利要求25~30任一项所述的终端设备,其特征在于,所述处理器还用于:
    当第一定时器超时时,停止检测所述下行控制信道和所述第二信号。
  32. 根据权利要求24~31任一项所述的终端设备,其特征在于,所述处理器还用于当所述第一定时器运行时,不检测所述第一信号。
  33. 根据权利要求24~32任一项所述的终端设备,其特征在于,所述第一信号用于指示所述第一时间段的时长。
  34. 根据权利要求24~33任一项所述的终端设备,其特征在于,
    所述第一信号是基于第一序列生成的,所述第二信号是基于第二序列生成的,所述第一序列属于第一序列集合,所述第二序列属于第二序列集合,所述第一序列集合为所述第二序列集合的子集;或,
    所述第一信号承载第一状态值,所述第二信号承载第二状态值,所述第一状态值属于第一状态值集合,所述第二信息状态值属于第二状态值集合,所述第一状态值集合为第二状态值集合的子集。
  35. 一种网络设备,其特征在于,包括:
    处理器,用于确定在一个检测周期内对于终端设备进行数据调度;
    收发器,用于在所述检测周期内的n个传输机会上发送第一信号,所述第一信号用于指示数据调度,n为正整数。
  36. 根据权利要求35所述的网络设备,其特征在于,所述收发器还用于:
    在所述检测周期中的第一时间段内发送下行控制信道和/或第二信号。
  37. 根据权利要求36所述的网络设备,其特征在于,所述第一时间段通过第一定时器进行计时,所述第一定时器的定时时长为所述第一时间段的长度。
  38. 根据权利要求37所述的网络设备,其特征在于,在所述收发器在所述检测周期中的第一时间段内发送下行控制信道和第二信号的情况下,所述处理器还用于:
    当所述收发器在所述第一定时器的定时时长内发送第二信号时,重置所述第一定时器,并通过所述收发器在重置后的所述第一定时器的定时时长内发送所述下行控制信道;或者
    当所述收发器在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示继续检测下行控制信道时,重置所述第一定时器,并通过所述收发器在重置后的所述第一定时器的定时时长内发送所述下行控制信道。
  39. 根据权利要求37或38所述的网络设备,其特征在于,在所述收发器在所述检测周期中的第一时间段内发送下行控制信道和第二信号的情况下,所述收发器还用于:
    在所述第一定时器的定时时长内,当尚未发送所述第二信号时,发送所述下行控制信道。
  40. 根据权利要求37所述的网络设备,其特征在于,在所述收发器在所述检测周期中的第一时间段内发送第二信号的情况下,所述处理器还用于:
    当所述收发器在所述第一定时器的定时时长内发送第二信号时,重置所述第一定时器,并通过所述收发器在重置后的所述第一定时器的定时时长内发送所述下行控制信道;或
    当所述收发器在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示检测下行控制信道时,重置所述第一定时器,并通过所述收发器在重置后的所述第一定时器的定时时长内发送所述下行控制信道。
  41. 根据权利要求37或40所述的网络设备,其特征在于,在所述收发器在所述检测周期中的第一时间段内发送第二信号的情况下,所述收发器还用于:
    在所述第一定时器的定时时长内,当尚未发送所述第二信号时,不发送下行控制信道。
  42. 根据权利要求37~40任一项所述的网络设备,其特征在于,所述收发器还用于:
    当在所述第一定时器的定时时长内发送所述第二信号且所述第二信号指示暂停检测下行控制信道时,在第三时间段内暂停发送所述下行控制信道。
  43. 根据权利要求37~42任一项所述的网络设备,其特征在于,所述收发器还用于:
    当第一定时器超时时,所述收发器停止发送所述下行控制信道和所述第二信号。
  44. 根据权利要求37~43任一项所述的网络设备,其特征在于,所述收发器还用于当所述第一定时器运行时,不发送所述第一信号。
  45. 根据权利要求37~44任一项所述的网络设备,其特征在于,所述第一信号用于指示所述第一时间段的时长。
  46. 根据权利要求37~45任一项所述的网络设备,其特征在于,
    所述第一信号是基于第一序列生成的,所述第二信号是基于第二序列生成的,所述第一序列属于第一序列集合,所述第二序列属于第二序列集合,所述第一序列集合为所述第二序列集合的子集;或,
    所述第一信号承载第一状态值,所述第二信号承载第二状态值,所述第一状态值属于第一状态值集合,所述第二信息状态值属于第二状态值集合,所述第一状态值集合为第二状态值集合的子集。
PCT/CN2020/070323 2019-01-11 2020-01-03 一种信道检测方法及设备 WO2020143551A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217025226A KR102652733B1 (ko) 2019-01-11 2020-01-03 채널 모니터링 방법 및 디바이스
EP20738400.9A EP3905793A4 (en) 2019-01-11 2020-01-03 CHANNEL DETECTION METHOD AND APPARATUS
US17/372,293 US20210337409A1 (en) 2019-01-11 2021-07-09 Channel monitoring method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028855.8 2019-01-11
CN201910028855.8A CN111436102A (zh) 2019-01-11 2019-01-11 一种信道检测方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/372,293 Continuation US20210337409A1 (en) 2019-01-11 2021-07-09 Channel monitoring method and device

Publications (1)

Publication Number Publication Date
WO2020143551A1 true WO2020143551A1 (zh) 2020-07-16

Family

ID=71520997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070323 WO2020143551A1 (zh) 2019-01-11 2020-01-03 一种信道检测方法及设备

Country Status (5)

Country Link
US (1) US20210337409A1 (zh)
EP (1) EP3905793A4 (zh)
KR (1) KR102652733B1 (zh)
CN (1) CN111436102A (zh)
WO (1) WO2020143551A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11895651B2 (en) * 2019-05-02 2024-02-06 Comcast Cable Communications, Llc Wireless communications for a sidelink
CN113972965B (zh) * 2020-07-24 2023-08-22 维沃移动通信有限公司 业务的处理方法、装置及相关设备
JP2023537283A (ja) * 2020-08-06 2023-08-31 富士通株式会社 上りリンク信号の送受信方法及び装置
WO2022151311A1 (en) * 2021-01-15 2022-07-21 Zte Corporation Discontinuous reception configuration for sidelink operation
WO2023221129A1 (zh) * 2022-05-20 2023-11-23 深圳传音控股股份有限公司 信道检测方法、通信设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595573A (zh) * 2012-02-02 2012-07-18 电信科学技术研究院 一种配置drx参数的方法、系统和设备
CN103200653A (zh) * 2012-01-05 2013-07-10 华为技术有限公司 非连续接收的方法及装置
US20140050100A1 (en) * 2011-04-27 2014-02-20 Hytera Communications Corp., Ltd HYT Tower, Hi-Tech Industrial Park North Realization method, apparatus and system for remote monitoring
CN108235412A (zh) * 2017-12-19 2018-06-29 中兴通讯股份有限公司 一种电能优化的方法、装置、系统及用户设备
WO2019007389A1 (zh) * 2017-07-05 2019-01-10 维沃移动通信有限公司 盲检测方法、信号发送方法、相关设备和系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101779421B1 (ko) * 2009-11-30 2017-10-10 엘지전자 주식회사 복수의 컴포넌트 캐리어를 지원하는 무선통신 시스템에서 신호를 수신하는 단말 장치 및 그 방법
US8929319B2 (en) * 2011-12-23 2015-01-06 Blackberry Limited Updating scheduling request resources
EP2835021B1 (en) * 2012-04-05 2016-07-06 Optis Cellular Technology, LLC Advanced wakeup for reception of paging configuration information
US9526112B2 (en) * 2013-09-30 2016-12-20 Apple Inc. Control signaling optimization for LTE communications
US20150351153A1 (en) * 2014-05-30 2015-12-03 Qualcomm Incorporated Enhanced physical harq indicator channel decoding
US10021711B2 (en) * 2016-03-23 2018-07-10 Qualcomm Incorporated Methods and apparatus for reducing resource contention
WO2017171922A1 (en) * 2016-04-01 2017-10-05 Intel IP Corporation Definition of downlink subframes for license assisted access secondary cell for discontinuous reception operation
US10485000B2 (en) * 2016-09-28 2019-11-19 Sharp Kabushiki Kaisha User equipment, base stations and methods
US10212755B1 (en) * 2017-03-13 2019-02-19 Sprint Communications Company L.P. Wireless access point control of discontinuous reception (DRX) parameters for user equipment (UE)
US10594468B2 (en) * 2017-09-29 2020-03-17 Mediatek Inc. Efficient bandwidth adaptation for a wideband carrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140050100A1 (en) * 2011-04-27 2014-02-20 Hytera Communications Corp., Ltd HYT Tower, Hi-Tech Industrial Park North Realization method, apparatus and system for remote monitoring
CN103200653A (zh) * 2012-01-05 2013-07-10 华为技术有限公司 非连续接收的方法及装置
CN102595573A (zh) * 2012-02-02 2012-07-18 电信科学技术研究院 一种配置drx参数的方法、系统和设备
WO2019007389A1 (zh) * 2017-07-05 2019-01-10 维沃移动通信有限公司 盲检测方法、信号发送方法、相关设备和系统
CN108235412A (zh) * 2017-12-19 2018-06-29 中兴通讯股份有限公司 一种电能优化的方法、装置、系统及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO ET AL.: "3GPP TSG-RAN2 #101 R2-1801758", UE BEHAVIOUR ON DRX TIMER OPERATION, 13 February 2018 (2018-02-13), XP051398951 *

Also Published As

Publication number Publication date
EP3905793A4 (en) 2022-03-02
KR20210111847A (ko) 2021-09-13
CN111436102A (zh) 2020-07-21
EP3905793A1 (en) 2021-11-03
US20210337409A1 (en) 2021-10-28
KR102652733B1 (ko) 2024-03-28

Similar Documents

Publication Publication Date Title
WO2020143551A1 (zh) 一种信道检测方法及设备
US9237478B2 (en) Discontinuous reception (DRX) reconfiguration
WO2021204215A1 (zh) 一种drx控制方法及装置
WO2021159244A1 (zh) 一种寻呼方法及装置
WO2020094110A1 (zh) 接收信号的方法、发送信号的方法及其装置
WO2020224552A1 (zh) 唤醒终端设备的方法、装置、网络设备和终端设备
WO2020221268A1 (zh) 检测或发送下行控制信道的方法和装置
WO2020221093A1 (zh) 搜索空间的监测、配置方法及装置
WO2021017603A1 (zh) 一种节能信号的传输方法、基站及终端设备
WO2021062612A1 (zh) 通信方法及装置
US20210337477A1 (en) Communication method and apparatus
US20210168809A1 (en) Communication method, device, and apparatus
CN111757436A (zh) 一种非连续接收的方法及设备
WO2021073020A1 (zh) 一种通信方法及装置
WO2020200119A1 (zh) 一种信号检测方法及设备
WO2022206864A1 (zh) 非连续接收控制方法、装置及系统
WO2021228192A1 (zh) 一种通信方法及装置
WO2022151284A1 (zh) 半静态调度资源配置方法、半静态调度方法及装置
WO2024125348A1 (zh) 通信方法和装置
WO2024067292A1 (zh) 下行控制信息的传输方法和装置
WO2022206363A1 (zh) 一种通信方法及装置
WO2022150975A1 (zh) 一种通信方法及装置
WO2020057563A1 (zh) 一种信息发送、接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020738400

Country of ref document: EP

Effective date: 20210728

ENP Entry into the national phase

Ref document number: 20217025226

Country of ref document: KR

Kind code of ref document: A