WO2024067292A1 - 下行控制信息的传输方法和装置 - Google Patents

下行控制信息的传输方法和装置 Download PDF

Info

Publication number
WO2024067292A1
WO2024067292A1 PCT/CN2023/120044 CN2023120044W WO2024067292A1 WO 2024067292 A1 WO2024067292 A1 WO 2024067292A1 CN 2023120044 W CN2023120044 W CN 2023120044W WO 2024067292 A1 WO2024067292 A1 WO 2024067292A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
cell
dci
dormant
dormant bwp
Prior art date
Application number
PCT/CN2023/120044
Other languages
English (en)
French (fr)
Inventor
花梦
彭金磷
王轶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067292A1 publication Critical patent/WO2024067292A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application relates to the field of wireless communications, and more specifically, to a method and device for transmitting downlink control information.
  • the feature of scheduling one cell with two cells is introduced in the new radio (NR) communication system, that is, both the primary cell (PCell) and the secondary cell (SCell) can send downlink control information (DCI) through the physical downlink control channel (PDCCH) to schedule the data transmission of the PCell.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the SCell when the SCell is deactivated or the activated downlink (DL) bandwidth part (BWP) of the SCell is the dormant DL BWP, although the PDCCH for scheduling PCell data transmission is not sent on the SCell, it is still necessary to determine the size of the DCI for scheduling PCell data transmission on the SCell, thereby determining the size of the DCI for scheduling PCell data transmission on the PCell.
  • DL downlink
  • BWP bandwidth part
  • the present application provides a method and device for transmitting downlink control information, which helps to accurately determine the size of DCI and improve the performance of information transmission.
  • a method for transmitting downlink control information which is executed by a terminal device, and includes: determining the number of information bits of the first downlink control information DCI according to the first bandwidth part BWP of the first cell.
  • the first BWP is the first non-dormant BWP corresponding to the activation time or the first non-dormant BWP corresponding to the activation time
  • the first DCI is carried on the physical downlink control channel PDCCH candidate on the second cell, and the first DCI is used to schedule data transmission in the third cell.
  • the first cell is a secondary cell of the terminal device, and the second cell is the main cell or secondary cell of the terminal device, and the first cell is different from the second cell. According to the number of information bits of the first DCI, the first DCI is monitored on the PDCCH candidate on the second cell.
  • the rules for determining the size of the DCI for scheduling data transmission of the main cell on the main cell are re-established, which helps to accurately determine the size of the DCI and improve the performance of information transmission.
  • the method before monitoring the first DCI, further includes: receiving a second DCI, and switching the downlink activated BWP of the first cell to a dormant BWP according to the second DCI.
  • the first BWP when the second DCI is received within the activation time, the first BWP is the first non-dormant BWP corresponding to the activation time; or, when the second DCI is received outside the activation time, the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the method before monitoring the first DCI, the method further includes: receiving a second DCI, and switching the downlink activation BWP of the first cell to a dormant BWP according to the second DCI.
  • the second DCI format is DCI format 0_1 or DCI format 1_1
  • the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the second DCI format is DCI format 2_6
  • the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the first BWP when the first cell is deactivated and the first activated downlink BWP used when the first cell configured by the network device for the terminal device switches from a deactivated state to an activated state is a dormant BWP, the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the terminal device when the first activated downlink BWP used when the first cell configured by the network device for the terminal device switches from a deactivated state to an activated state is a dormant BWP, the terminal device does not need to make further judgments and directly determines the number of information bits of the first DCI based on the first non-dormant BWP corresponding to the activation time, which is simple and efficient and helps save power consumption.
  • the first activated downlink BWP used when the first cell configured by the network device for the terminal device is switched from a deactivated state to an activated state is a dormant BWP, and the terminal device is not configured with the first non-dormant BWP corresponding to the activation time
  • the first BWP is the first non-dormant BWP corresponding to the activation time
  • the first BWP is the first non-dormant BWP corresponding to the activation time
  • the first non-dormant BWP corresponding to the activation time is at least one of the following: the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is received within the activation time; or, the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the format of the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is DCI format 0_1 or DCI format 1_1.
  • the first non-dormant BWP corresponding to the first cell outside the activation time is at least one of the following: the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is received outside the activation time; or, the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the format of the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is DCI format 2_6.
  • the method before monitoring the first DCI on the PDCCH candidate on the second cell, the method also includes: receiving cross-carrier scheduling configuration information, the cross-carrier scheduling configuration information is used to instruct the terminal device to monitor the PDCCH candidates on the first cell and the second cell, the PDCCH candidate on the first cell is used to carry the third DCI, the PDCCH candidate on the second cell is used to carry the first DCI, and the third DCI is used to schedule data transmission in the third cell.
  • a method for transmitting downlink control information is provided.
  • the method is executed by a network device, and includes: determining the number of information bits of first downlink control information DCI according to a first bandwidth part BWP of a first cell, the first BWP is the first non-dormant BWP corresponding to the activation time or the first non-dormant BWP corresponding to outside the activation time, the first DCI is carried on a physical downlink control channel PDCCH candidate on a second cell, the first DCI is used to schedule data transmission in a third cell, the first cell is a secondary cell, the second cell is a primary cell or a secondary cell, and the first cell is different from the second cell; and sending the first DCI on the PDCCH candidate on the second cell.
  • the solution disclosed in the present application redefines the rules for determining the size of the DCI for scheduling data transmission of the main cell on the main cell when the main cell and the secondary cell schedule data transmission of the main cell and the secondary cell is deactivated or the activated BWP of the secondary cell is a dormant BWP, which helps to accurately determine the size of the DCI and improve the performance of information transmission.
  • the method before sending the first DCI, further includes: sending a second DCI, where the second DCI is used to instruct the terminal device to switch the downlink activation BWP of the first cell to a sleep BWP, wherein when the second DCI is sent within the activation time, the first BWP is the first non-sleep BWP corresponding to the activation time; or, when the second DCI is sent outside the activation time, the first BWP is the first non-sleep BWP corresponding to the activation time.
  • the method before sending the first DCI, the method also includes: sending a second DCI, the second DCI is used to instruct the terminal device to switch the downlink activation BWP of the first cell to a sleep BWP, wherein, when the second DCI format is DCI format 0_1 or DCI format 1_1, the first BWP is the first non-sleep BWP corresponding to the activation time; or, when the second DCI format is DCI format 2_6, the first BWP is the first non-sleep BWP corresponding to the activation time.
  • the first BWP when the first cell is deactivated and the first activated downlink BWP used when the first cell configured by the network device for the terminal device switches from a deactivated state to an activated state is a dormant BWP, the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the first activated downlink BWP used when the first cell configured by the network device for the terminal device is switched from a deactivated state to an activated state is a dormant BWP
  • the network device does not configure the first non-dormant BWP corresponding to the activation time for the terminal device
  • the first BWP is the first non-dormant BWP corresponding outside the activation time
  • the first activated downlink BWP used when the first cell configured by the network device for the terminal device is switched from a deactivated state to an activated state is a dormant BWP
  • the network device configures the first non-dormant BWP corresponding to the activation time for the terminal device the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the first non-dormant BWP corresponding to the activation time of the first cell is at least one of the following: the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from the dormant BWP to the non-dormant BWP, The DCI indicating that the downlink activation BWP of the first cell is switched to the dormant BWP is sent within the activation time; or, the first non-dormant BWP is used when the downlink activation BWP of the first cell is switched from the dormant BWP to the non-dormant BWP, wherein the format of the DCI indicating that the downlink activation BWP of the first cell is switched to the dormant BWP is DCI format 0_1 or DCI format 1_1.
  • the first non-dormant BWP corresponding to the first cell outside the activation time is at least one of the following: the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is sent outside the activation time; or, the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the format of the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is DCI format 2_6.
  • the method before sending the first DCI on the PDCCH candidate on the second cell, the method further includes: sending cross-carrier scheduling configuration information, the cross-carrier scheduling configuration information being used to instruct the terminal device to monitor the PDCCH candidates on the first cell and the second cell, the PDCCH candidate on the first cell being used to carry the third DCI, the PDCCH candidate on the second cell being used to carry the first DCI, and the third DCI being used to schedule data transmission in the third cell.
  • a method for transmitting downlink control information which is executed by a terminal device, and includes: when a first cell is deactivated, determining the number of information bits of the first downlink control information DCI according to the first bandwidth part BWP of the first cell.
  • the first BWP is the downlink activation BWP used before the first cell is deactivated
  • the first DCI is carried on the physical downlink control channel PDCCH candidate on the second cell
  • the first DCI is used to schedule data transmission in the third cell.
  • the first cell is a secondary cell of the terminal device
  • the second cell is a primary cell or a secondary cell of the terminal device
  • the first cell is different from the second cell. According to the number of information bits of the first DCI, the first DCI is monitored on the PDCCH candidate on the second cell.
  • the solution disclosed in the present application when the primary cell and the secondary cell schedule data transmission of the primary cell and the secondary cell is deactivated, re-establishes the rules for determining the DCI size for scheduling data transmission of the primary cell on the primary cell, which helps to accurately determine the size of the DCI and improve the performance of information transmission.
  • the method before determining the number of information bits of the first DCI, the method further includes: determining a first activated downlink BWP that is not configured and is used when the first cell switches from a deactivated state to an activated state.
  • the method before monitoring the first DCI, the method also includes: receiving cross-carrier scheduling configuration information, the cross-carrier scheduling configuration information is used to instruct the terminal device to monitor PDCCH candidates on the first cell and the second cell, the PDCCH candidates on the first cell are used to carry the third DCI, the PDCCH candidates on the second cell are used to carry the first DCI, and the third DCI is used to schedule data transmission in the third cell.
  • a method for transmitting downlink control information which is executed by a network device, and includes: when a first cell is deactivated, determining the number of information bits of the first downlink control information DCI according to the first bandwidth part BWP of the first cell.
  • the first BWP is the downlink activation BWP used before the first cell is deactivated, and the first DCI is carried on the physical downlink control channel PDCCH candidate on the second cell, and the first DCI is used to schedule data transmission of the third cell.
  • the first cell is a secondary cell of a terminal device, and the second cell is a primary cell or a secondary cell of a terminal device, and the first cell is different from the second cell.
  • the first DCI is sent on the PDCCH candidate on the second cell.
  • the solution disclosed in the present application when the primary cell and the secondary cell schedule data transmission of the primary cell and the secondary cell is deactivated, re-establishes the rules for determining the DCI size for scheduling data transmission of the primary cell on the primary cell, which helps to accurately determine the size of the DCI and improve the performance of information transmission.
  • the method before determining the number of information bits of the first DCI, the method further includes: not configuring the first activated downlink BWP for the terminal device to be used when the first cell switches from a deactivated state to an activated state.
  • the method before sending the first DCI, the method also includes: sending cross-carrier scheduling configuration information, the cross-carrier scheduling configuration information is used to instruct the terminal device to monitor PDCCH candidates in the first cell and the second cell, the PDCCH candidates on the first cell are used to carry the third DCI, the PDCCH candidates on the second cell are used to carry the first DCI, and the third DCI is used to schedule data transmission in the third cell.
  • a transmission device for downlink control information is provided.
  • the device is used to implement the function of the terminal device in the first aspect or is itself a terminal device.
  • the device includes: a processing unit, used to determine the number of information bits of the first downlink control information DCI according to the first bandwidth part BWP of the first cell.
  • the first BWP is the first non-dormant BWP corresponding to the activation time or the first non-dormant BWP corresponding to the activation time.
  • the first DCI is carried on the physical downlink control channel PDCCH candidate on the second cell, and the first DCI is used to schedule data transmission in the third cell.
  • the first cell is the secondary cell of the terminal device, and the second cell is the main cell of the terminal device or The first cell is a secondary cell, and the first cell is different from the second cell.
  • the transceiver unit is configured to monitor the first DCI on the PDCCH candidate on the second cell according to the number of information bits of the first DCI.
  • the transceiver unit is further used to receive a second DCI
  • the processing unit is further used to switch the downlink activation BWP of the first cell to a dormant BWP according to the second DCI.
  • the first BWP is the first non-dormant BWP corresponding to the activation time; or, when the second DCI is received outside the activation time, the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the transceiver unit is further used to receive a second DCI
  • the processing unit is further used to switch the downlink activation BWP of the first cell to a dormant BWP according to the second DCI.
  • the second DCI format is DCI format 0_1 or DCI format 1_1
  • the first BWP is the first non-dormant BWP corresponding to the activation time
  • the second DCI format is DCI format 2_6
  • the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the first BWP when the first cell is deactivated and the first activated downlink BWP used when the first cell configured by the network device for the terminal device switches from a deactivated state to an activated state is a dormant BWP, the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the first activated downlink BWP used when the first cell configured by the network device for the terminal device is switched from a deactivated state to an activated state is a dormant BWP, and the terminal device is not configured with the first non-dormant BWP corresponding to the activation time
  • the first BWP is the first non-dormant BWP corresponding to the activation time outside the activation time; or, when the first cell is deactivated, the first activated downlink BWP used when the first cell configured by the network device for the terminal device is switched from a deactivated state to an activated state is a dormant BWP, and the terminal device is configured with the first non-dormant BWP corresponding to the activation time, the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the first non-dormant BWP corresponding to the activation time of the first cell is at least one of the following: the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is received within the activation time; or, the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the format of the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is DCI format 0_1 or DCI format 1_1.
  • the first non-dormant BWP corresponding to the first cell outside the activation time is at least one of the following: the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is received outside the activation time; or, the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the format of the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is DCI format 2_6.
  • the transceiver unit is also used to receive cross-carrier scheduling configuration information, and the cross-carrier scheduling configuration information is used to instruct the terminal device to monitor PDCCH candidates in the first cell and the second cell, the PDCCH candidates on the first cell are used to carry the third DCI, the PDCCH candidates on the second cell are used to carry the first DCI, and the third DCI is used to schedule data transmission in the third cell.
  • a transmission device for downlink control information is provided.
  • the device is used to implement the function of the network device in the second aspect or is itself a network device.
  • the device includes: a processing unit, used to determine the number of information bits of the first downlink control information DCI according to the first bandwidth part BWP of the first cell, the first BWP is the first non-dormant BWP corresponding to the activation time or the first non-dormant BWP corresponding to the activation time, the first DCI is carried on the physical downlink control channel PDCCH candidate on the second cell, the first DCI is used to schedule data transmission in the third cell, the first cell is a secondary cell, the second cell is a primary cell or a secondary cell, and the first cell is different from the second cell; a transceiver unit, used to send the first DCI on the PDCCH candidate on the second cell.
  • the transceiver unit is further used to send a second DCI, and the second DCI is used to instruct the terminal device to switch the downlink activation BWP of the first cell to a dormant BWP.
  • the first BWP is the first non-dormant BWP corresponding to the activation time; or, when the second DCI is sent outside the activation time, the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the transceiver unit is also used to send a second DCI, and the second DCI is used to instruct the terminal device to switch the downlink activation BWP of the first cell to a sleep BWP, wherein, when the second DCI format is DCI format 0_1 or DCI format 1_1, the first BWP is the first non-sleep BWP corresponding to the activation time; or, when the second DCI format is DCI format 2_6, the first BWP is the first non-sleep BWP corresponding to the activation time.
  • the first BWP when the first cell is deactivated and the first activated downlink BWP used when the first cell configured by the network device for the terminal device switches from a deactivated state to an activated state is a dormant BWP, the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the first activated downlink BWP used when the first cell configured by the network device for the terminal device switches from a deactivated state to an activated state is a dormant BWP, and the network device does not configure the first non-dormant BWP corresponding to the activation time for the terminal device, the first BWP is the first non-dormant BWP corresponding outside the activation time; or, when the first cell is deactivated, the first activated downlink BWP used when the first cell configured by the network device for the terminal device switches from a deactivated state to an activated state is a dormant BWP, and when the network device configures the first non-dormant BWP corresponding to the activation time for the terminal device, the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the first non-dormant BWP corresponding to the activation time of the first cell is at least one of the following: the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is sent within the activation time; or, the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the format of the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is DCI format 0_1 or DCI format 1_1.
  • the first non-dormant BWP corresponding to the first cell outside the activation time is at least one of the following: the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is sent outside the activation time; or, the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the format of the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is DCI format 2_6.
  • the transceiver unit is also used to send cross-carrier scheduling configuration information, and the cross-carrier scheduling configuration information is used to instruct the terminal device to monitor PDCCH candidates in the first cell and the second cell, the PDCCH candidates on the first cell are used to carry the third DCI, the PDCCH candidates on the second cell are used to carry the first DCI, and the third DCI is used to schedule data transmission in the third cell.
  • a communication device comprising a processor and an interface circuit, wherein the interface circuit is used to receive signals from other communication devices outside the communication device and transmit them to the processor or send signals from the processor to other communication devices outside the communication device, and the processor is used to implement the method in any possible implementation manner of the first aspect or the third aspect through a logic circuit or executing code instructions.
  • a communication device comprising a processor and an interface circuit, wherein the interface circuit is used to receive signals from other communication devices outside the communication device and transmit them to the processor or to send signals from the processor to other communication devices outside the communication device, and the processor is used to implement the method in any possible implementation of the second aspect or the fourth aspect through a logic circuit or by executing code instructions.
  • a computer-readable storage medium in which a computer program or instruction is stored.
  • the method in any possible implementation manner of the first to fourth aspects is implemented.
  • a computer program product comprising instructions, which, when executed, implements the method in any possible implementation manner of the first to fourth aspects.
  • a computer program which includes codes or instructions. When the codes or instructions are executed, the method in any possible implementation manner of the first to fourth aspects is implemented.
  • a chip system including a processor and a memory, for implementing the method in any possible implementation of the first to fourth aspects.
  • the chip system is composed of a chip, and also includes a chip and other discrete devices.
  • a communication system including a terminal device and a network device.
  • the terminal device is used to implement the methods of each implementation mode in the above-mentioned first aspect or third aspect
  • the network device is used to implement the methods of each implementation mode in the above-mentioned second aspect or fourth aspect.
  • the communication system also includes other devices that interact with the terminal device or network device in the solution provided in the embodiment of the present application.
  • FIG1 is a schematic diagram of the architecture of a mobile communication system used in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a DRX cycle and a PDCCH monitoring opportunity.
  • FIG3 is a schematic diagram of a DRX cycle and a radio frame.
  • FIG. 4 is a schematic diagram of an example of a method for transmitting downlink control information provided in the present application.
  • FIG5 is a flowchart of a first specific example of a method for transmitting downlink control information provided in the present application.
  • FIG6 is a flowchart of a second specific example of a method for transmitting downlink control information provided in the present application.
  • FIG. 7 is a schematic diagram of an example of a communication device provided in the present application.
  • FIG8 is another schematic diagram of a communication device provided in the present application.
  • FIG1 is a schematic diagram of the architecture of a mobile communication system used in an embodiment of the present application.
  • the communication system 100 may include one or more network devices, for example, the network device 101 shown in FIG1 .
  • the communication system 100 may also include one or more terminal devices, for example, the terminal device 102, the terminal device 103, and the terminal device 104 shown in FIG1 .
  • the communication system 100 may support sidelink communication technology, for example, sidelink communication between the terminal device 102 and the terminal device 103, sidelink communication between the terminal device 102 and the terminal device 104, etc.
  • Figure 1 is only a schematic diagram, and the communication system may also include other network devices, such as core network device 105 and wireless relay devices and wireless backhaul devices not shown in Figure 1.
  • the embodiments of the present application do not limit the number of network devices and terminal devices included in the mobile communication system.
  • the terminal device in the embodiment of the present application is a device with wireless transceiver function, which can send signals to network devices or receive signals from network devices.
  • the terminal device can also be called a terminal, a user equipment (UE), a mobile station, a mobile terminal, etc.
  • the terminal can be widely used in various scenarios, for example, device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things (IOT), virtual reality, augmented reality, industrial control, automatic driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • MTC machine-type communication
  • IOT Internet of Things
  • virtual reality augmented reality
  • industrial control automatic driving
  • telemedicine smart grid
  • smart furniture smart office
  • smart wear smart transportation
  • smart city etc.
  • the terminal can be a mobile phone, a tablet computer, a computer with wireless transceiver function, a wearable device, a vehicle, an airplane, a ship, a robot, a mechanical arm, a smart home device, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • the network device in the embodiment of the present application can be a wireless access device that a terminal accesses to a communication system by wireless means.
  • the network device can be a base station, an evolved NodeB (eNodeB), a transmission reception point (TRP), a next generation base station (next generation NodeB, gNB) in a fifth generation (5th generation, 5G) mobile communication system, a next generation base station in a sixth generation (6th generation, 6G) mobile communication system, a base station in a future mobile communication system, or an access node in a WiFi system, etc.; it can also be a module or unit that completes part of the functions of a base station, for example, a centralized unit (CU) or a distributed unit (DU).
  • CU centralized unit
  • DU distributed unit
  • the CU completes the functions of the radio resource control (RRC) protocol and the packet data convergence protocol (PDCP) of the base station, and can also complete the function of the service data adaptation protocol (SDAP);
  • the DU completes the functions of the radio link control layer and the medium access control (MAC) layer of the base station, and can also complete the functions of part of the physical layer or all of the physical layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • the DU completes the functions of the radio link control layer and the medium access control (MAC) layer of the base station, and can also complete the functions of part of the physical layer or all of the physical layer.
  • 3GPP 3rd Generation Partnership Project
  • the network device can be a macro base station, a micro base station or an indoor station, a relay node or a donor node, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • the embodiments of the present application can be applied to downlink signal transmission or uplink signal transmission.
  • the sending device is a network device and the corresponding receiving device is a terminal.
  • the sending device is a terminal and the corresponding receiving device is a network device.
  • Network devices and terminals, and terminals and terminals can communicate through authorized spectrum, can also communicate through unlicensed spectrum, or can communicate through both authorized spectrum and unlicensed spectrum.
  • Network devices and terminals, and terminals and terminals can communicate through spectrum below 6 gigahertz (GHz), can communicate through spectrum above 6 GHz, or can use spectrum below 6 GHz and spectrum above 6 GHz at the same time.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used between network devices and terminals.
  • the functions of the network device may also be performed by a module (such as a chip) in the network device, or by a package.
  • the control subsystem containing the network device function is executed.
  • the control subsystem containing the network device function here can be the control center in the above application scenarios such as smart grid, industrial control, smart transportation, smart city, etc.
  • the terminal function can also be executed by a module in the terminal (such as a chip or modem) or by a device containing the terminal function.
  • a carrier is a radio signal with a specific frequency, bandwidth, and format that is emitted by a network device or a terminal's radio frequency device. It is the main body used to carry information in wireless communications.
  • the carrier used by network devices to send information is called a downlink carrier, and the carrier used by terminals to send information is called an uplink carrier.
  • each network device can be divided into one or more cells.
  • a cell can be configured with a downlink carrier and optionally an uplink carrier.
  • the cell that provides service to it is called a serving cell.
  • CA Carrier aggregation
  • DC dual connectivity
  • NR supports carrier aggregation and dual connection technology.
  • Terminals that support CA or DC can transmit data on multiple carriers at the same time to increase the data transmission rate.
  • each carrier in CA is also called a component carrier (CC).
  • CC component carrier
  • the terminal Under DC, the terminal establishes connections with multiple cells, which are divided into two groups: master cell group (MCG) and secondary cell group (SCG). If dual connection is not established, the group of cells communicating with the terminal is MCG.
  • MCG master cell group
  • SCG secondary cell group
  • the "PCell" in SCG is the primary secondary cell (PSCell), and other cells in MCG and SCG are secondary cells (SCell).
  • the terminal can use the PCell under the MCG and the SCell under the MCG for data transmission at the same time through the carrier aggregation technology, or can also use the PSCell under the SCG and the SCell under the SCG for data transmission at the same time through the carrier aggregation technology.
  • PCell refers to the PCell of MCG
  • SCell refers to the SCell in MCG
  • PCell refers to the PSCell of SCG
  • SCell refers to the SCell in SCG
  • BWP Bandwidth part
  • a BWP is a continuous frequency resource on a carrier.
  • a BWP When a BWP is configured and activated, it is called an activated BWP.
  • a terminal In the current version of the protocol, a terminal can only have one downlink activated BWP on a downlink carrier and one uplink activated BWP on an uplink carrier.
  • the uplink data and control information sent by the terminal are sent in the uplink activated BWP, and the downlink data and control information are received in the downlink activated BWP.
  • NR supports triggering BWP switching through DCI of scheduling data.
  • DCI is carried in the physical downlink control channel (PDCCH).
  • the DCI format 1_1 or DCI format 1_2 for scheduling the physical downlink shared channel (PDSCH) can carry the downlink BWP switching instruction, and the DCI format 0_1 or DCI format 0_2 for scheduling the physical uplink shared channel (PUSCH) can also carry the uplink BWP switching instruction.
  • the terminal After receiving the above DCI, the terminal will switch to the new BWP indicated by the DCI to send or receive data.
  • the BWP switching here refers to the switching between non-dormant BWPs in the activated BWP.
  • the current 3GPP version 16 introduces the SCell dormancy mechanism.
  • the uplink and downlink transmissions of the dormant SCell will stop, but the terminal will still perform periodic measurements on this cell, and its measurement information will be reported to the network equipment through other non-dormancy cells.
  • the switching between the dormancy behavior and non-dormancy behavior of the SCell is achieved through BWP switching.
  • the terminal on the SCell will switch from the currently downlink activated BWP to the dormant BWP.
  • the terminal does not need to perform PDCCH monitoring on the dormant BWP, or, if the SCell is cross-carrier scheduled.
  • the terminal When the terminal detects the scheduled carrier in the SCell, the terminal does not need to detect the PDCCH that schedules the SCell on the corresponding scheduling carrier.
  • the identifier (identifier, ID) of the Dormant BWP is indicated by the dormantBWP-Id (dormant BWP identifier) information element in the RRC signaling.
  • the switching between the dormancy and non-dormancy states of the SCell is indicated by DCI.
  • C-DRX discontinuous reception
  • Method 1 The SCell dormancy indication field in DCI format 0_1 or 1_1 indicates whether the SCell is dormancy or non-dormancy. At this time, DCI can schedule data at the same time.
  • Method 2 Use a specific field in DCI format 1_1 to indicate whether the SCell is dormancy or non-dormancy. In this case, DCI cannot schedule data at the same time.
  • Method 3 Use the SCell dormancy indication field in DCI format 2_6 to indicate whether the SCell is dormancy or non-dormancy.
  • the term “within active time” includes two situations: one is when the terminal is not configured with C-DRX (or the terminal has not entered C-DRX mode); the other is when the terminal is in the active time period in C-DRX mode; outside active time refers to the inactive time period when the terminal is in C-DRX mode.
  • the activation time and activation time outside the activation time in this application are both for a specific terminal.
  • the network device can configure the identifier of the first non-dormant BWP corresponding to the activation time through the firstWithinActiveTimeBWP-Id information element in the RRC signaling, and configure the identifier of the first BWP corresponding to the activation time through the firstOutsideActiveTimeBWP-Id information element.
  • a PDCCH indicating that the downlink active BWP of this cell is switched from dormant BWP to non-dormant BWP is received in the non-C-DRX mode of a cell, or in the active period of the C-DRX mode, then when the state of this cell is switched from dormancy to non-dormancy, the downlink BWP with the ID firstWithinActiveTimeBWP-Id is activated; if a PDCCH indicating that the downlink active BWP of this cell is switched from dormant BWP to non-dormant BWP is received in the inactive period of the C-DRX mode of a cell, then when the state of this cell is switched from dormancy to non-dormancy, the downlink BWP with the ID firstOutsideActiveTimeBWP-Id is activated.
  • Supporting the reception of SCell sleep indications with DCI format 0_1/1_1 during the activation time and supporting the reception of SCell sleep indications with DCI format 2_6 outside the activation time are two terminal capabilities.
  • the terminal may not support these two capabilities, or support one or both of these two capabilities, and inform the network device of the capabilities it supports through capability reporting.
  • the network device may be configured with dormantBWP-Id.
  • the network device may configure firstWithinActiveTimeBWP-Id or not; for terminals that report support for receiving SCell sleep indication capabilities with DCI format 2_6 outside the activation time, the network device may configure firstOutsideActiveTimeBWP-Id or not.
  • the network device For terminals that have not reported the ability to support receiving SCell sleep indication with DCI format 0_1/1_1 within the activation time, the network device cannot configure firstWithinActiveTimeBWP-Id; for terminals that have not reported the ability to support receiving SCell sleep indication with DCI format 2_6 outside the activation time, the network device cannot configure firstOutsideActiveTimeBWP-Id.
  • the C-DRX mechanism is introduced below.
  • the terminal can periodically monitor the PDCCH according to the DRX cycle configured by the network device.
  • a DRX cycle usually includes two time periods: active time and non-active time, where the non-active time can also be called outside active time.
  • the terminal needs to monitor the PDCCH when monitoring the PDCCH; while during the non-active time, the terminal does not need to monitor the PDCCH, thereby saving terminal power consumption.
  • the activation time includes the time the activation period timer (drx-onDurationTimer) runs.
  • the network device configures the length of drx-onDurationTimer to the terminal through RRC signaling.
  • the parameter drx-LongCycle of the Long DRX cycle length and the parameter start offset (drx-StartOffset) used to determine the subframe where the DRX cycle starts, as well as the time slot offset (drx-SlotOffset) within the subframe where the DRX cycle starts are also configured. If the Long DRX cycle is used, when the subframe number satisfies the following formula (1), the terminal starts drx-onDurationTimer (hereinafter abbreviated as onDurationTimer):
  • SFN is the system frame number, and modulo represents the modulo operation.
  • the system frame can also be called a radio frame.
  • a radio frame is 10ms.
  • a radio frame may consist of multiple subframes, and each subframe may consist of one or more time slots.
  • the onDurationTimer is started after the DRX subframe offset drx-SlotOffset at the start of the Long DRX cycle, where the inactive time corresponds to the Opportunity for DRX.
  • onDurationTimer is started after the subframe offset drx-SlotOffset at the beginning of the short DRX cycle.
  • the activation time may also include: the running time of drx-InactivityTimer (sleep timer referred to as InactivityTimer), drx-RetransmissionTimerDL (referred to as downlink retransmission timer RetransmissionTimerDL) and drx-RetransmisionTimerUL (referred to as uplink reselection timer RetransmisionTimerUL).
  • InactivityTimer the running time of drx-InactivityTimer
  • drx-RetransmissionTimerDL referred to as downlink retransmission timer RetransmissionTimerDL
  • drx-RetransmisionTimerUL referred to as uplink reselection timer RetransmisionTimerUL.
  • the C-DRX parameters configured by the network device to the terminal through RRC signaling may be specifically shown in Table 1, including the triggering conditions of drx-InactivityTimer, drx-RetransmissionTimerDL and drx-RetransmisionTimerUL, that is, when there is corresponding data transmission, these three timers will be started.
  • the activation time may also include: the running period of ra-ContentionResolutionTimer (used for conflict resolution during random access) or msgB-ResponseWindow (used for 2-step random access conflict resolution); the waiting period after the terminal sends a scheduling request (SR) on PUCCH; the period when the terminal has not received a PDCCH indicating a new transmission after successfully receiving a non-contention-based random access response (RAR).
  • SR scheduling request
  • RAR non-contention-based random access response
  • PCell does not support activation/deactivation, but SCell supports activation/deactivation.
  • SCell When SCell is in the deactivated state:
  • the network device can configure the identifier of the first activated downlink BWP used when the terminal switches from the deactivated state to the activated state through the RRC information element firstActiveDownlinkBWP-Id, and can also configure the identifier of the first activated uplink BWP used when the terminal switches from the deactivated state to the activated state through the RRC information element firstActiveUplinkBWP-Id.
  • the terminal enters the activated state from the deactivated state the downlink BWP with the ID firstActiveDownlinkBWP-Id and the uplink BWP with the ID firstActiveUplinkBWP-Id in the cell are activated.
  • the cell that sends the DCI corresponding to the data channel is called the scheduling cell or the main scheduling cell (scheduling cell); the cell that sends the data channel is called the scheduled cell (scheduled cell). If the data channel and the DCI that schedules the data channel are sent in the same cell, that is, this cell is both a scheduling cell and a scheduled cell, then we call this cell a self-scheduling cell. If the data channel and the DCI that schedules the data channel are sent in different cells, then we call the cell that carries the DCI the scheduling cell, and the cell that carries the data channel is called the scheduled cell.
  • This form of scheduling is called cross-carrier scheduling (CCS).
  • One main scheduling cell can correspond to multiple scheduled cells, that is, one main scheduling cell can send DCI to schedule the data of multiple scheduled cells.
  • DCI format There are multiple DCI formats (DCI format).
  • the DCI format related to this application includes DCI format 0_1, DCI format 0_2, DCI format 1_1 and DCI format 1_2.
  • DCI format 0_1 and 0_2 schedule the uplink data of the terminal, that is, schedule the transmission of PUSCH;
  • DCI format 1_1 and 1_2 schedule the downlink data of the terminal, that is, schedule the transmission of PDSCH.
  • DCI and DCI format can be replaced with each other.
  • the first DCI can be replaced by the first DCI format
  • the second DCI can be replaced by the second DCI format.
  • DCI format please refer to Section 7.3.1 of 3GPP Technical Specification 38.212 V16.10.0.
  • DCI size Downlink control information
  • CRC cyclic redundancy check
  • the terminal may adopt different receiving methods.
  • the number of DCI sizes is usually reduced by DCI size alignment. If the DCI sizes of two DCI formats are different, the DCI size alignment is generally performed by adding 0s after the payload of the DCI format with the shorter DCI size until the DCI sizes of the two DCI formats are the same.
  • both PCell and SCell can send DCI through PDCCH to schedule data transmission of PCell.
  • both PCell and SCell can schedule data transmission of PCell, for a certain DCI format, the DCI size of PCell scheduling on PCell and the DCI size of PCell scheduling on SCell need to be aligned.
  • scheduling data transmission on PCell can be referred to as scheduling PCell.
  • DCI format 0_1 For a terminal configured to schedule PCell via SCell, if the number of information bits of DCI format 0_1 for scheduling PCell on PCell is not equal to the number of information bits of DCI format 0_1 for scheduling PCell on SCell, 0s shall be appended after the DCI format 0_1 with fewer bits until the payload sizes of the two DCI format 0_1s are the same.
  • the payload size alignment of DCI format 0_2, DCI format 1_1, and DCI format 1_2 is the same as that of DCI format 0_1.
  • the PDCCH for scheduling the PCell is not sent on the SCell.
  • the size of the DCI for scheduling the PCell on the PCell and the DCI for scheduling the PCell on the SCell need to be aligned, the size of the DCI for scheduling the PCell on the SCell still needs to be determined, thereby determining the size of the DCI for scheduling the PCell on the PCell.
  • the terminal determines the number of information bits of DCI format 0_1, DCI format 0_2, DCI format 1_1 or DCI format 1_2 carried by the PDCCH on the PCell based on the DL BWP with ID firstActiveDownlinkBWP-Id in the SCell. If the activated DL BWP of the SCell is the dormant DL BWP, the terminal determines the number of information bits of DCI format 0_1, DCI format 0_2, DCI format 1_1 or DCI format 1_2 carried by the PDCCH on the PCell according to the DL BWP with ID firstWithinActiveTimeBWP-Id in the SCell.
  • both cells can be called the master cell, and some fields in the DCI are related to the master cell, such as the SCell dormancy indication field and the transmission configuration indication (TCI) field.
  • SCell dormancy indication field if the scheduling cell is PCell, the DCI format 0_1 and DCI format 1_1 sent on the scheduling cell may include the SCell dormancy indication field; if the scheduling cell is SCell, the DCI format 0_1 and DCI format 1_1 sent on the scheduling cell do not include the SCell dormancy indication field.
  • this field can be included in DCI format 1_1 and DCI format 1_2.
  • DCI format 1_1 if the RRC signaling sent by the network device to the terminal does not include the tci-PresentInDCI information element, that is, TCI configuration through DCI is not enabled, the TCI field is 0 bits; if the RRC signaling sent by the network device to the terminal includes the tci-PresentInDCI information element, that is, TCI configuration through DCI is enabled, the TCI field is 3 bits.
  • the tci-PresentInDCI information element is a related parameter in the control resource set configuration, and the control resource set is configured on the main cell
  • the tci-PresentInDCI information element configuration of different main cells can be different, so whether the TCI field is included in DCI format 1_1 is related to the configuration of the main cell.
  • DCI format 1_2 if the RRC signaling sent by the network device to the terminal does not include the tci-PresentDCI-1-2-r16 information element, the TCI field is 0 bit; if the RRC signaling sent by the network device to the terminal includes the tci-PresentDCI-1-2-r16 information element, the tci-PresentDCI-1-2-r16 information element indicates the number of bits of the TCI field in DCI format 1_2, and tci-PresentDCI-1-2-r16 can be configured as 1, 2, or 3.
  • tci-PresentDCI-1-2-r16 is a related parameter in the control resource set configuration, and the control resource set is configured on the main cell
  • the configuration of tci-PresentDCI-1-2-r16 of different main cells can be different, so whether the TCI field is included in DCI format 1_2 and the number of bits of the TCI field are related to the configuration of the main cell.
  • determining the number of information bits of DCI according to BWP ID can be understood as determining the DCI field related to the main cell configuration in DCI according to the BWP configuration, such as the SCell dormancy indication field and TCI field in DCI.
  • the first activated downlink BWP used when the SCell switches from the deactivated state to the activated state may be set to the dormant BWP.
  • the terminal will not be able to determine the number of information bits in the DCI format carried by the PDCCH on the PCell based on the DL BWP with the ID firstActiveDownlinkBWP-Id in the SCell. Because the terminal does not need to monitor the control channel on the dormant BWP, the control channel resource set is not configured, so the size of the SCell dormancy indication field in the DCI cannot be confirmed, resulting in the inability to determine the number of information bits in the DCI format carried by the PDCCH on the SCell.
  • the number of information bits in the DCI format carried by the PDCCH on the PCell must be aligned with the number of information bits in the DCI format carried by the PDCCH on the SCell, the number of information bits in the DCI format carried by the PDCCH on the PCell cannot be determined without knowing the number of information bits in the DCI format carried by the PDCCH on the SCell.
  • the network device may not have configured firstActiveDownlinkBWP-Id for the terminal. In this case, the terminal cannot determine the number of information bits in the DCI format carried by the PDCCH on the PCell based on the DL BWP with the ID firstActiveDownlinkBWP-Id in the SCell.
  • the terminal when the activated DL BWP of the SCell is the dormant DL BWP, regardless of the terminal's status and mode, the terminal is directly set to determine the number of information bits in the DCI format carried by the PDCCH on the PCell based on the DL BWP with the ID firstWithinActiveTimeBWP-Id in the SCell. As a result, the number of information bits in the DCI format may not be obtained.
  • the terminal cannot determine the number of information bits of the DCI format carried by the PDCCH on the PCell according to the DL BWP with the ID firstWithinActiveTimeBWP-Id in the SCell.
  • the present application proposes a method and device for transmitting downlink control information, in the hope of accurately determining the size of the DCI for scheduling primary cell data transmission on the primary cell, thereby improving the performance of information transmission.
  • the terminal may be a terminal in FIG1 (eg, terminal 102, terminal 103, or terminal 104), and the network device may be network device 101 in FIG1.
  • FIG4 is a schematic flowchart of an example of a downlink control information transmission method provided in the present application.
  • the terminal determines the number of information bits of a first DCI according to a first BWP of the first cell, the first DCI is carried on a PDCCH candidate in the second cell, and the first DCI is used to schedule data transmission in a third cell.
  • the network device determines the number of information bits of the first DCI according to the first BWP of the first cell.
  • the first BWP is the first non-dormant BWP corresponding to the activation time, the first non-dormant BWP corresponding to the activation time, or the downlink activation BWP used before the first cell is deactivated.
  • the first cell may be a secondary cell of the terminal, and the second cell may be a primary cell or a secondary cell of the terminal. It should be noted that the first cell is different from the second cell, that is, when the first cell and the second cell are both secondary cells of the terminal, the two secondary cells are different secondary cells.
  • the third cell may be the first cell or the second cell, and the third cell may also be a cell other than the first cell and the second cell. The status of the cell, carrier, and BWP in this application are all for a specific terminal.
  • PDCCH candidates on the second cell are necessarily configured to carry the first DCI.
  • at least one PDCCH candidate is configured to carry the first DCI. That is, the PDCCH candidate on the second cell here refers to the PDCCH candidate configured to carry the first DCI.
  • the first non-dormant BWP corresponding to the activation time of the first cell is: the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from a dormant BWP to a non-dormant BWP, wherein the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is received within the activation time; or, the format of the DCI indicating that the downlink activation BWP of the first cell is switched to a dormant BWP is DCI format 0_1 or DCI format 1_1.
  • the first non-dormant BWP corresponding to the activation time of the first cell is: the first non-dormant BWP used when the downlink activation BWP of the first cell is switched from the dormant BWP to the non-dormant BWP, wherein the DCI indicating that the downlink activation BWP of the first cell is switched to the dormant BWP is received outside the activation time; or, the format of the DCI indicating that the downlink activation BWP of the first cell is switched to the dormant BWP is DCI format 2_6.
  • the way in which the network device determines the number of information bits of the first DCI according to the first BWP of the first cell is the same as the way in which the terminal determines the number of information bits of the first DCI according to the first BWP of the first cell.
  • S420 The terminal monitors the first DCI on the PDCCH candidate on the second cell according to the number of information bits of the first DCI.
  • the network device sends the first DCI on the PDCCH candidate on the second cell according to the number of information bits of the first DCI.
  • the terminal monitors DCI on the PDCCH candidate means that the terminal attempts to perform blind detection on the PDCCH on the time-frequency resources corresponding to the PDCCH candidate, and performs decoding and CRC verification according to the DCI size. If the verification is successful, it is considered that a DCI is successfully received on the PDCCH candidate; if the verification fails, it is considered that no PDCCH is detected on the PDCCH candidate.
  • the solution disclosed in the present application is that when both the main cell (second cell) and the secondary cell (first cell) can schedule data transmission of the main cell, and the secondary cell is deactivated or the downlink activation BWP of the secondary cell is a dormant BWP, the rules for determining the size of the DCI for scheduling data transmission of the main cell on the main cell are re-established, which helps to accurately determine the size of the DCI and improve the performance of information transmission.
  • the network device and the terminal need to determine the first BWP first.
  • the process of the network device and the terminal determining the first BWP of the first cell can be divided into two different embodiments shown in Figures 5 and 6.
  • the activated BWP of the first cell is a dormant BWP, that is, the first cell is in a dormant state.
  • the network device and the terminal can determine the first BWP according to the time or DCI format of sending and receiving the DCI indicating that the first cell enters the dormant state, and whether the terminal is configured with the first activated downlink BWP used when switching from the deactivated state to the activated state.
  • the specific processing process is as follows:
  • the network device sends to the terminal an identifier of the first activated downlink BWP used when the first cell is switched from a deactivated state to an activated state.
  • the terminal receives the identifier of the first activated downlink BWP used when the first cell switches from the deactivated state to the activated state.
  • the identifier may be the firstActiveDownlinkBWP-Id information element in the RRC signaling, which indicates that the first cell switches from the deactivated state to the activated state.
  • the network device may also send to the terminal an identifier of the first activated uplink BWP used when the first cell is switched from the deactivated state to the activated state, and the terminal may also receive an identifier of the first activated uplink BWP used when the first cell is switched from the deactivated state to the activated state.
  • the identifier may be the firstActiveUplinkBWP-Id information element in the RRC signaling, which indicates the first activated uplink BWP used when the first cell is switched from the deactivated state to the activated state.
  • the network device sends the identifier of the first non-dormant BWP corresponding to the activation time to the terminal, and the identifier may be the firstWithinActiveTimeBWP-Id information element in the RRC signaling.
  • the terminal receives the identifier of the first non-dormant BWP corresponding to the activation time.
  • the network device sends the identifier of the first non-dormant BWP corresponding to the activation time to the terminal, and the identifier may be the firstOutsideActiveTimeBWP-Id information element in the RRC signaling.
  • the terminal receives the identifier of the first non-dormant BWP corresponding to the activation time.
  • S504 The network device sends cross-carrier scheduling configuration information to the terminal.
  • the terminal receives the cross-carrier scheduling configuration information.
  • the cross-carrier scheduling configuration information is used to instruct the terminal to monitor PDCCH candidates on the first cell and the second cell.
  • the PDCCH candidate on the first cell is used to carry the third DCI
  • the PDCCH candidate on the second cell is used to carry the first DCI
  • the first DCI and the third DCI are used to schedule data transmission in the third cell.
  • the cross-carrier scheduling configuration information is used to instruct the terminal to monitor the third DCI on the first cell and monitor the first DCI on the second cell.
  • firstActiveDownlinkBWP-Id, firstActiveUplinkBWP-Id, firstWithinActiveTimeBWP-Id, firstOutsideActiveTimeBWP-Id and carrier scheduling configuration information can be carried in different messages or signaling, or partially carried in the same message or signaling, or all carried in the same message or signaling (in this case, steps S501, S502, S503 and S504 are the same step), and this application does not limit it.
  • the network device sends a second DCI to the terminal, instructing the terminal to switch the downlink activated BWP of the first cell to a dormant BWP.
  • the terminal receives the second DCI, and after receiving the second DCI, switches the downlink activated BWP of the first cell to the dormant BWP according to the second DCI, that is, switches the first cell to the dormant state.
  • the network device can obtain or determine the identification information of the dormant BWP (i.e., dormantBWP-Id), and send the identification information of the dormant BWP to the terminal through RRC signaling. Since the network device and the terminal need to determine the number of information bits of the first DCI according to the first BWP, and the first BWP can be the first non-dormant BWP corresponding to the activation time or the first non-dormant BWP corresponding to the activation time, the network device and the terminal need to determine the first BWP,
  • S506 The network device determines a first BWP.
  • S507 The terminal determines a first BWP.
  • the terminal is not configured with the first activated downlink BWP used when switching from the deactivated state to the activated state, then the first BWP is the downlink activated BWP used before the first cell is deactivated.
  • the fact that the terminal is not configured with the first activated downlink BWP to be used when switching from a deactivated state to an activated state can be understood as the network device has never configured the first activated downlink BWP to be used when the first cell switches from a deactivated state to an activated state for the terminal; or, the network device has configured the first activated downlink BWP to be used when the first cell switches from a deactivated state to an activated state for the terminal through the firstActiveDownlinkBWP-Id information element, but later released it.
  • Mode 2 If the sending time of the second DCI is within the activation time, then the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the activation time refers to the activation time in the C-DRX mode, or in the non-C-DRX mode. It should be understood that in the embodiment of the present application, the time when the network device sends the second DCI is the same as the time when the terminal receives the second DCI, or the time when the network device sends the second DCI is in the same time period as the time when the terminal receives the second DCI (because there may be air interface transmission delay).
  • Mode 3 If the sending time of the second DCI is outside the activation time, then the first BWP is the first non-dormant BWP corresponding to outside the activation time.
  • Mode 4 If the second DCI format is DCI format 0_1 or DCI format 1_1, then the first BWP is the first non-dormant BWP corresponding to the activation time.
  • Mode 5 If the second DCI format is DCI format 2_6, then the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the first cell is in a deactivated state.
  • the network device and the terminal may respectively The first BWP is determined by determining whether the first activated downlink BWP used when switching from the deactivated state to the activated state, the first activated downlink BWP used when the first cell switches from the deactivated state to the activated state is a sleep BWP, or whether the terminal is configured with the first non-sleep BWP corresponding to the activation time.
  • S601 is the same as S501 and will not be described in detail here.
  • S602 is the same as S502, except that, in the embodiment shown in FIG. 6 , S602 is an optional step.
  • S603 is the same as S503, except that, in the embodiment shown in FIG6 , S603 is an optional step.
  • S604 is the same as S504 and will not be described in detail here.
  • the network device sends a deactivation signaling to the terminal, instructing the terminal to deactivate the first cell.
  • the network device determines a first BWP.
  • S607 The terminal determines a first BWP.
  • the terminal is not configured with the first activated downlink BWP used when switching from the deactivated state to the activated state, then the first BWP is the downlink activated BWP used before the first cell is deactivated.
  • the fact that the terminal is not configured with the first activated downlink BWP used when the first cell switches from a deactivated state to an activated state can be understood as the network device has never configured the first activated downlink BWP used when the first cell switches from a deactivated state to an activated state for the terminal; or, the network device has configured the first activated downlink BWP used when the first cell switches from a deactivated state to an activated state for the terminal through the firstActiveDownlinkBWP-Id information element, but later released it.
  • the terminal is configured with the first activated downlink BWP used when switching from the deactivated state to the activated state, and the first activated downlink BWP used when switching from the deactivated state to the activated state is not the sleep BWP, then the first BWP is the first activated downlink BWP used when the first cell switches from the deactivated state to the activated state.
  • the network device may obtain or determine the identification information of the dormant BWP (i.e., dormantBWP-Id), and send the identification information of the dormant BWP to the terminal through RRC signaling.
  • dormantBWP-Id may be carried in the same message or signaling as firstWithinActiveTimeBWP-Id and/or firstOutsideActiveTimeBWP-Id.
  • the network device and the terminal further determine that firstActiveDownlinkBWP-Id is not equal to dormantBWP-Id.
  • the terminal is configured with the first activated downlink BWP used when switching from the deactivated state to the activated state, but the first activated downlink BWP used when switching from the deactivated state to the activated state is the sleep BWP, and the terminal is configured with the first non-sleep BWP corresponding to the activation time, then the first BWP is the first non-sleep BWP corresponding to the activation time.
  • the network device and the terminal do not make any judgment, and directly determine that the first BWP is the first non-sleep BWP corresponding to the activation time, which is simple and efficient and saves computing power.
  • the terminal is not configured with the first non-dormant BWP corresponding to the activation time, but is configured with the first non-dormant BWP corresponding to the activation time, then the first BWP is the first non-dormant BWP corresponding to the activation time.
  • the network device and the terminal may continue to execute S410 and S420 shown in FIG. 4 .
  • the solution disclosed in the present application is that when both the main cell (second cell) and the secondary cell (first cell) can schedule data transmission of the main cell, and the secondary cell is deactivated or the downlink activation BWP of the secondary cell is a dormant BWP, the rules for determining the size of the DCI for scheduling data transmission of the main cell on the main cell are re-established, which helps to accurately determine the size of the DCI and improve the performance of information transmission.
  • the network device and the terminal include hardware structures and/or software modules corresponding to the execution of each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 7 and FIG. 8 are schematic diagrams of possible communication devices provided in the embodiments of the present application. These communication devices can be used to implement the functions of the terminal or network device in the above method embodiment, and thus can also achieve the beneficial effects of the above method embodiment.
  • the communication device can be one of the terminals 102 to 104 shown in FIG. 1, or it can be a network device shown in FIG. 1.
  • the network device 101 may also be a module (such as a chip) applied to a terminal or a network device.
  • the communication device 700 includes a processing unit 710 and a transceiver unit 720.
  • the communication device 700 is used to implement the functions of the terminal or network device in the method embodiments shown in Figs. 4 to 6 above.
  • the processing unit 710 is used to determine the number of information bits of the first downlink control information DCI according to the first bandwidth part BWP of the first cell; the transceiver unit 720 is used to monitor the first DCI on the PDCCH candidate on the second cell according to the number of information bits of the first DCI.
  • the transceiver unit 720 is further used to receive a second DCI, and the processing unit 710 is further used to switch the downlink activated BWP of the first cell to a dormant BWP according to the second DCI.
  • the transceiver unit 720 is further used to receive cross-carrier scheduling configuration information.
  • the processing unit 710 is used to determine the number of information bits of the first downlink control information DCI according to the first bandwidth part BWP of the first cell; the transceiver unit 720 is used to send the first DCI on the PDCCH candidate on the second cell.
  • the transceiver unit 720 is further configured to send a second DCI, configured to instruct the terminal to switch the downlink activated BWP of the first cell to a dormant BWP.
  • the transceiver unit 720 is further used to send cross-carrier scheduling configuration information.
  • processing unit 710 and the transceiver unit 720 For a more detailed description of the processing unit 710 and the transceiver unit 720, reference may be made to the relevant description in the method embodiment shown in FIG. 4 .
  • the communication device 800 includes a processor 810 and an interface circuit 820.
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 may be a transceiver or an input/output interface.
  • the communication device 800 may further include a memory 830 for storing instructions executed by the processor 810 or storing input data required by the processor 810 to execute instructions or storing data generated after the processor 810 executes instructions.
  • the processor 810 is used to implement the function of the processing unit 710
  • the interface circuit 820 is used to implement the function of the transceiver unit 720 .
  • the terminal chip When the above communication device is a chip applied to a terminal, the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as a radio frequency module or an antenna), and the information is sent by the network device to the terminal; or the terminal chip sends information to other modules in the terminal (such as a radio frequency module or an antenna), and the information is sent by the terminal to the network device.
  • the network device module implements the function of the network device in the above-mentioned method embodiment.
  • the network device module receives information from other modules in the network device (such as a radio frequency module or an antenna), and the information is sent by the terminal to the network device; or, the network device module sends information to other modules in the network device (such as a radio frequency module or an antenna), and the information is sent by the network device to the terminal.
  • the network device module here can be a baseband chip of the network device, or it can be a DU or other module.
  • the DU here can be a DU under the open radio access network (O-RAN) architecture.
  • OF-RAN open radio access network
  • the processor in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented in hardware or in software instructions that can be executed by a processor.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a network device or a terminal.
  • the processor and the storage medium can also be present in a network device or a terminal as discrete components.
  • all or part of the embodiments may be implemented by software, hardware, firmware or any combination thereof.
  • all or part of the embodiments may be implemented in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the computer program or instructions When the computer program or instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user device or other programmable device.
  • the computer program or instructions may be stored in a computer-readable storage medium or downloaded from a computer-readable storage medium. The storage medium is transmitted to another computer-readable storage medium.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available medium can be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it can also be an optical medium, such as a digital video disk; it can also be a semiconductor medium, such as a solid-state drive.
  • the computer-readable storage medium can be a volatile or non-volatile storage medium, or can include both volatile and non-volatile types of storage media.
  • “at least one” means one or more, and “more than one” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the previous and next associated objects are in an “or” relationship; in the formula of the present application, the character “/” indicates that the previous and next associated objects are in a “division” relationship.
  • “Including at least one of A, B and C” can mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种下行控制信息的传输方法和装置,该方法包括:终端根据辅小区SCell的激活时间内对应的首个非休眠带宽部分BWP或者激活时间之外对应的首个非休眠BWP确定第一下行控制信息DCI的信息比特数,根据第一DCI的信息比特数,在主小区PCell上的PDCCH候选上监测第一DCI。其中,第一DCI用于调度PCell和/或SCell的数据传输。本申请所揭示的方案,有助于准确确定DCI的大小,提升信息传输的性能。

Description

下行控制信息的传输方法和装置
本申请要求于2022年9月30日提交中国专利局、申请号为202211230567.9、申请名称为“下行控制信息的传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,并且更具体地,涉及下行控制信息的传输方法和装置。
背景技术
随着通信技术的发展,在新一代无线(new radio,NR)通信系统中引入了两个小区调度一个小区的特性,即主小区(primary cell,PCell)和辅小区(secondary cell,SCell)都可以通过物理下行控制信道(physical downlink control channel,PDCCH)发送下行控制信息(downlink control information,DCI),调度PCell的数据传输。通常,对于一个特定的DCI格式,PCell上调度PCell数据传输的DCI和SCell上调度PCell数据传输的DCI的大小需要进行对齐。
因此,当SCell被去激活或者SCell的激活下行(downlink,DL)带宽部分(bandwidth part,BWP)为休眠DL BWP时,尽管SCell上不发送调度PCell数据传输的PDCCH,仍需要确定SCell上调度PCell数据传输的DCI的大小,从而确定PCell上调度PCell数据传输的DCI的大小。
因此,亟需一种方法,能够准确确定在主小区上调度主小区数据传输的DCI的大小,提升信息传输的性能。
发明内容
本申请提供一种下行控制信息的传输方法和装置,有助于准确确定DCI的大小,提升信息传输的性能。
第一方面,提供了一种下行控制信息的传输方法,该方法由终端设备执行,包括:根据第一小区的第一带宽部分BWP确定第一下行控制信息DCI的信息比特数。其中,第一BWP为激活时间内对应的首个非休眠BWP或者激活时间之外对应的首个非休眠BWP,第一DCI承载在第二小区上的物理下行控制信道PDCCH候选上,第一DCI用于调度第三小区的数据传输。第一小区为终端设备的辅小区,第二小区为终端设备的主小区或者辅小区,第一小区不同于第二小区。根据第一DCI的信息比特数,在第二小区上的PDCCH候选上监测第一DCI。
本申请所揭示的方案,在主小区(第二小区)和辅小区(第一小区)调度主小区的数据传输,辅小区被去激活或者辅小区的激活BWP为休眠BWP时,重新制定了确定在主小区上调度主小区数据传输DCI大小的规则,有助于准确确定DCI的大小,提升信息传输的性能。
结合第一方面,在第一方面的某些实现方式中,在监测第一DCI之前,上述方法还包括:接收第二DCI,根据第二DCI将第一小区的下行激活BWP切换为休眠BWP。其中,当第二DCI是在激活时间内接收到时,第一BWP为激活时间内对应的首个非休眠BWP;或者,当第二DCI是在激活时间外接收到时,第一BWP为激活时间外对应的首个非休眠BWP。
结合第一方面,在第一方面的另一些实现方式中,在监测第一DCI之前,上述方法还包括:接收第二DCI,根据第二DCI将第一小区的下行激活BWP切换为休眠BWP。其中,当第二DCI格式为DCI格式0_1或者DCI格式1_1时,第一BWP为激活时间内对应的首个非休眠BWP。或者,当第二DCI格式为DCI格式2_6时,第一BWP为激活时间外对应的首个非休眠BWP。
结合第一方面,在第一方面的又一些实现方式中,当第一小区被去激活,且网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP时,第一BWP为激活时间内对应的首个非休眠BWP。这样做,网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP时,终端设备无需进行进一步的判断,直接根据激活时间内对应的首个非休眠BWP确定第一DCI的信息比特数,简单高效,有利于节省功耗。
结合第一方面,在第一方面的再一些实现方式中,当第一小区被去激活,网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP,且终端设备没有被配置激活时间内对应的首个非休眠BWP时,第一BWP为激活时间外对应的首个非休眠BWP;或者,当第一小区被去激活,网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP,且终端设备被配置了激活时间内对应的首个非休眠BWP时,第一BWP为激活时间内对应的首个非休眠BWP。
结合第一方面,在第一方面的某些实现方式中,激活时间内对应的首个非休眠BWP为以下至少一项:第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI是在激活时间内接收到的;或者,第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI的格式为DCI格式0_1或者DCI格式1_1。
结合第一方面,在第一方面的某些实现方式中,第一小区的激活时间外对应的首个非休眠BWP为以下至少一项:第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI是在激活时间外接收到的;或者,第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI的格式为DCI格式2_6。
结合第一方面,在第一方面的某些实现方式中,在第二小区上的PDCCH候选上监测第一DCI之前,方法还包括:接收跨载波调度配置信息,跨载波调度配置信息用于指示终端设备在第一小区和第二小区上监测PDCCH候选,第一小区上的PDCCH候选用于承载第三DCI,第二小区上的PDCCH候选用于承载第一DCI,第三DCI用于调度第三小区的数据传输。
第二方面,提供了一种下行控制信息的传输方法。该方法由网络设备执行,包括:根据第一小区的第一带宽部分BWP确定第一下行控制信息DCI的信息比特数,第一BWP为激活时间内对应的首个非休眠BWP或者激活时间之外对应的首个非休眠BWP,第一DCI承载在第二小区上的物理下行控制信道PDCCH候选上,第一DCI用于调度第三小区的数据传输,第一小区为辅小区,第二小区为主小区或者辅小区,第一小区不同于第二小区;在第二小区上的PDCCH候选上发送第一DCI。
本申请所揭示的方案,在主小区和辅小区调度主小区的数据传输,辅小区被去激活或者辅小区的激活BWP为休眠BWP时,重新制定了确定在主小区上调度主小区数据传输DCI大小的规则,有助于准确确定DCI的大小,提升信息传输的性能。
结合第二方面,在第二方面的某些实现方式中,在发送第一DCI之前,上述方法还包括:发送第二DCI,第二DCI用于指示终端设备将第一小区的下行激活BWP切换为休眠BWP,其中,当第二DCI是在激活时间内发送时,第一BWP为激活时间内对应的首个非休眠BWP;或者,当第二DCI是在激活时间外发送时,第一BWP为激活时间外对应的首个非休眠BWP。
结合第二方面,在第二方面的另一些实现方式中,在发送第一DCI之前,上述方法还包括:发送第二DCI,第二DCI用于指示终端设备将第一小区的下行激活BWP切换为休眠BWP,其中,当第二DCI格式为DCI格式0_1或者DCI格式1_1时,第一BWP为激活时间内对应的首个非休眠BWP;或者,当第二DCI格式为DCI格式2_6时,第一BWP为激活时间外对应的首个非休眠BWP。
结合第二方面,在第二方面的又一些实现方式中,当第一小区被去激活,且网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP时,第一BWP为激活时间内对应的首个非休眠BWP。
结合第二方面,在第二方面的再一些实现方式中,当第一小区被去激活,网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP,且网络设备没有为终端设备配置激活时间内对应的首个非休眠BWP时,第一BWP为激活时间外对应的首个非休眠BWP;或者,当第一小区被去激活,网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP,且网络设备为终端设备配置激活时间内对应的首个非休眠BWP时,第一BWP为激活时间内对应的首个非休眠BWP。
结合第二方面,在第二方面的某些实现方式中,第一小区的激活时间内对应的首个非休眠BWP为以下至少一项:第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP, 其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI是在激活时间内发送的;或者,第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI的格式为DCI格式0_1或者DCI格式1_1。
结合第二方面,在第二方面的某些实现方式中,第一小区的激活时间外对应的首个非休眠BWP为以下至少一项:第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI是在激活时间外发送的;或者,第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI的格式为DCI格式2_6。
结合第二方面,在第二方面的某些实现方式中,在第二小区上的PDCCH候选上发送第一DCI之前,上述方法还包括:发送跨载波调度配置信息,跨载波调度配置信息用于指示终端设备在第一小区和第二小区上监测PDCCH候选,第一小区上的PDCCH候选用于承载第三DCI,第二小区上的PDCCH候选用于承载第一DCI,第三DCI用于调度第三小区的数据传输。
第三方面,提供了一种下行控制信息的传输方法,该方法由终端设备执行,包括:当第一小区被去激活时,根据第一小区的第一带宽部分BWP确定第一下行控制信息DCI的信息比特数。其中,第一BWP为第一小区被去激活之前使用的下行激活BWP,第一DCI承载在第二小区上的物理下行控制信道PDCCH候选上,第一DCI用于调度第三小区的数据传输。第一小区为终端设备的辅小区,第二小区为终端设备的主小区或者辅小区,第一小区不同于第二小区。根据第一DCI的信息比特数,在第二小区上的PDCCH候选上监测第一DCI。
本申请所揭示的方案,在主小区和辅小区调度主小区的数据传输,辅小区被去激活时,重新制定了确定在主小区上调度主小区数据传输DCI大小的规则,有助于准确确定DCI的大小,提升信息传输的性能。
结合第三方面,在第三方面的某些实现方式中,在确定第一DCI的信息比特数之前,上述方法还包括:确定没有被配置第一小区从去激活态切换为激活态时使用的首个激活下行BWP。
结合第三方面,在第三方面的某些实现方式中,在监测第一DCI之前,方法还包括:接收跨载波调度配置信息,跨载波调度配置信息用于指示终端设备在第一小区和第二小区上监测PDCCH候选,第一小区上的PDCCH候选用于承载第三DCI,第二小区上的PDCCH候选用于承载第一DCI,第三DCI用于调度第三小区的数据传输。
第四方面,提供了一种下行控制信息的传输方法,该方法由网络设备执行,包括:当第一小区被去激活时,根据第一小区的第一带宽部分BWP确定第一下行控制信息DCI的信息比特数。其中,第一BWP为第一小区被去激活之前使用的下行激活BWP,第一DCI承载在第二小区上的物理下行控制信道PDCCH候选上,第一DCI用于调度第三小区的数据传输。第一小区为终端设备的辅小区,第二小区为终端设备的主小区或者辅小区,第一小区不同于第二小区。在第二小区上的PDCCH候选上发送第一DCI。
本申请所揭示的方案,在主小区和辅小区调度主小区的数据传输,辅小区被去激活时,重新制定了确定在主小区上调度主小区数据传输DCI大小的规则,有助于准确确定DCI的大小,提升信息传输的性能。
结合第四方面,在第四方面的某些实现方式中,在确定第一DCI的信息比特数之前,上述方法还包括:没有为终端设备配置第一小区从去激活态切换为激活态时使用的首个激活下行BWP。
结合第四方面,在第四方面的某些实现方式中,在发送第一DCI之前,方法还包括:发送跨载波调度配置信息,跨载波调度配置信息用于指示终端设备在第一小区和第二小区上监测PDCCH候选,第一小区上的PDCCH候选用于承载第三DCI,第二小区上的PDCCH候选用于承载第一DCI,第三DCI用于调度第三小区的数据传输。
第五方面,提供了一种下行控制信息的传输装置。该装置用于实现第一方面中终端设备的功能或者本身即为终端设备。该装置包括:处理单元,用于根据第一小区的第一带宽部分BWP确定第一下行控制信息DCI的信息比特数。其中,第一BWP为激活时间内对应的首个非休眠BWP或者激活时间之外对应的首个非休眠BWP,第一DCI承载在第二小区上的物理下行控制信道PDCCH候选上,第一DCI用于调度第三小区的数据传输。第一小区为终端设备的辅小区,第二小区为终端设备的主小区或 者辅小区,第一小区不同于第二小区。收发单元,用于根据第一DCI的信息比特数,在第二小区上的PDCCH候选上监测第一DCI。
结合第五方面,在第五方面的某些实现方式中,收发单元还用于接收第二DCI,处理单元还用于根据第二DCI将第一小区的下行激活BWP切换为休眠BWP。其中,当第二DCI是在激活时间内接收到时,第一BWP为激活时间内对应的首个非休眠BWP;或者,当第二DCI是在激活时间外接收到时,第一BWP为激活时间外对应的首个非休眠BWP。
结合第五方面,在第五方面的另一些实现方式中,收发单元还用于接收第二DCI,处理单元还用于根据第二DCI将第一小区的下行激活BWP切换为休眠BWP。其中,当第二DCI格式为DCI格式0_1或者DCI格式1_1时,第一BWP为激活时间内对应的首个非休眠BWP;或者,当第二DCI格式为DCI格式2_6时,第一BWP为激活时间外对应的首个非休眠BWP。
结合第五方面,在第五方面的又一些实现方式中,当第一小区被去激活,且网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP时,第一BWP为激活时间内对应的首个非休眠BWP。
结合第五方面,在第五方面的再一些实现方式中,当第一小区被去激活,网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP,且终端设备没有被配置激活时间内对应的首个非休眠BWP时,第一BWP为激活时间外对应的首个非休眠BWP;或者,当第一小区被去激活,网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP,且终端设备被配置了激活时间内对应的首个非休眠BWP时,第一BWP为激活时间内对应的首个非休眠BWP。
结合第五方面,在第五方面的某些实现方式中,第一小区的激活时间内对应的首个非休眠BWP为以下至少一项:第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI是在激活时间内接收到的;或者,第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI的格式为DCI格式0_1或者DCI格式1_1。
结合第五方面,在第五方面的某些实现方式中,第一小区的激活时间外对应的首个非休眠BWP为以下至少一项:第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI是在激活时间外接收到的;或者,第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI的格式为DCI格式2_6。
结合第五方面,在第五方面的某些实现方式中,收发单元还用于接收跨载波调度配置信息,跨载波调度配置信息用于指示终端设备在第一小区和第二小区上监测PDCCH候选,第一小区上的PDCCH候选用于承载第三DCI,第二小区上的PDCCH候选用于承载第一DCI,第三DCI用于调度第三小区的数据传输。
第六方面,提供了一种下行控制信息的传输装置。该装置用于实现第二方面中网络设备的功能或者本身即为网络设备。该装置包括:处理单元,用于根据第一小区的第一带宽部分BWP确定第一下行控制信息DCI的信息比特数,第一BWP为激活时间内对应的首个非休眠BWP或者激活时间之外对应的首个非休眠BWP,第一DCI承载在第二小区上的物理下行控制信道PDCCH候选上,第一DCI用于调度第三小区的数据传输,第一小区为辅小区,第二小区为主小区或者辅小区,第一小区不同于第二小区;收发单元,用于在第二小区上的PDCCH候选上发送第一DCI。
结合第六方面,在第六方面的某些实现方式中,收发单元还用于发送第二DCI,第二DCI用于指示终端设备将第一小区的下行激活BWP切换为休眠BWP。其中,当第二DCI是在激活时间内发送时,第一BWP为激活时间内对应的首个非休眠BWP;或者,当第二DCI是在激活时间外发送时,第一BWP为激活时间外对应的首个非休眠BWP。
结合第六方面,在第六方面的另一些实现方式中,收发单元还用于发送第二DCI,第二DCI用于指示终端设备将第一小区的下行激活BWP切换为休眠BWP,其中,当第二DCI格式为DCI格式0_1或者DCI格式1_1时,第一BWP为激活时间内对应的首个非休眠BWP;或者,当第二DCI格式为DCI格式2_6时,第一BWP为激活时间外对应的首个非休眠BWP。
结合第六方面,在第六方面的又一些实现方式中,当第一小区被去激活,且网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP时,第一BWP为激活时间内对应的首个非休眠BWP。
结合第六方面,在第六方面的再一些实现方式中,当第一小区被去激活,网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP,且网络设备没有为终端设备配置激活时间内对应的首个非休眠BWP时,第一BWP为激活时间外对应的首个非休眠BWP;或者,当第一小区被去激活,网络设备为终端设备配置的第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP,且网络设备为终端设备配置激活时间内对应的首个非休眠BWP时,第一BWP为激活时间内对应的首个非休眠BWP。
结合第六方面,在第六方面的某些实现方式中,第一小区的激活时间内对应的首个非休眠BWP为以下至少一项:第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI是在激活时间内发送的;或者,第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI的格式为DCI格式0_1或者DCI格式1_1。
结合第六方面,在第六方面的某些实现方式中,第一小区的激活时间外对应的首个非休眠BWP为以下至少一项:第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI是在激活时间外发送的;或者,第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI的格式为DCI格式2_6。
结合第六方面,在第六方面的某些实现方式中,收发单元还用于发送跨载波调度配置信息,跨载波调度配置信息用于指示终端设备在第一小区和第二小区上监测PDCCH候选,第一小区上的PDCCH候选用于承载第三DCI,第二小区上的PDCCH候选用于承载第一DCI,第三DCI用于调度第三小区的数据传输。
第七方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面或第三方面的任意可能的实现方式中的方法。
第八方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面或第四方面的任意可能的实现方式中的方法。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第一方面至第四方面的任意可能的实现方式中的方法。
第十方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第一方面至第四方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第一方面至第四方面的任意可能的实现方式中的方法。
第十二方面,提供一种芯片系统,该芯片系统包括处理器,还包括存储器,用于实现前述第一方面至第四方面的任意可能的实现方式中的方法。该芯片系统由芯片构成,也包含芯片和其他分立器件。
第十三方面,提供了一种通信系统,包括终端设备和网络设备。
其中,终端设备用于实现上述第一方面或第三方面中的各实现方式的方法,网络设备用于实现上述第二方面或第四方面中各实现方式中的方法。
在一种可能的设计中,该通信系统还包括本申请实施例提供的方案中与终端设备或网络设备进行交互的其他设备。
附图说明
图1是本申请的实施例应用的移动通信系统的架构示意图。
图2是DRX周期与PDCCH监听时机的示意图。
图3是DRX周期与无线帧的示意图。
图4是本申请提供的下行控制信息的传输方法的一例示意图。
图5是本申请提供的下行控制信息的传输方法第一种具体示例的流程示意图。
图6是本申请提供的下行控制信息的传输方法第二种具体示例的流程示意图。
图7是本申请提供的通信装置的一例示意图。
图8是本申请提供的通信装置的另一例示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请的实施例应用的移动通信系统的架构示意图。
如图1所示,该通信系统100可以包括一个或多个网络设备,例如,图1所示的网络设备101。该通信系统100还可以包括一个或多个终端设备,例如,图1所示的终端设备102、终端设备103以及终端设备104等。其中,通信系统100可以支持侧行链路(sidelink)通信技术,例如,终端设备102和终端设备103之间的侧行通信,终端设备102和终端设备104之间的侧行通信等。
应理解,图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括核心网设备105以及在图1中未画出的无线中继设备和无线回传设备。本申请的实施例对该移动通信系统中包括的网络设备和终端设备的数量不做限定。
本申请实施例中的终端设备是具有无线收发功能的设备,可以向网络设备发送信号,或接收来自网络设备的信号。终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
本申请实施例中的网络设备可以是终端通过无线方式接入到通信系统中的无线接入设备。网络设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制(radio resource control,RRC)协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。网络设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输。对于下行信号传输,发送设备是网络设备,对应的接收设备是终端。对于上行信号传输,发送设备是终端,对应的接收设备是网络设备。
网络设备和终端之间以及终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端之间以及终端和终端之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端之间所使用的频谱资源不做限定。
在本申请的实施例中,网络设备的功能也可以由网络设备中的模块(如芯片)来执行,也可以由包 含有网络设备功能的控制子系统来执行。这里的包含有网络设备功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
为了更好的介绍本申请的实施方式,在介绍本申请实施例之前,首先介绍本申请实施例相关的概念。
一、小区(cell)和载波(carrier)
1)载波
载波是网络设备或终端的射频设备发射出来的、有特定频率、带宽、制式的无线电信号,它是无线通信中用来承载信息的主体。其中,网络设备用来发送信息的载波称为下行载波,终端用来发送信息的载波称为上行载波。
2)小区
每个网络设备的覆盖范围可以被划分为一个或多个小区。在目前的NR标准中,一个小区可以被配置一个下行载波,可选地还可以被配置一个上行载波。针对终端而言,为其提供服务的小区称为服务小区。
3)载波聚合(carrier aggregation,CA)和双连接(dual connectivity,DC)
为了实现高速传输,NR中支持载波聚合和双连接技术。支持CA或DC的终端可以同时在多个载波上进行数据传输,提高数据传输速率。其中,CA中的每个载波又称为成员载波(component carrier,CC)。在DC下,终端和多个小区建立连接,这些小区分为两组:主小区组(master cell group,MCG)和辅小区组(secondary cell group,SCG)。如果没有建立双连接,那么和终端通信的一组小区就是MCG。SCG中的“PCell”是主辅小区(primary secondary cell,PSCell),MCG和SCG中的其他小区是辅小区(secondary cell,SCell)。
终端可以通过载波聚合技术同时使用MCG下的PCell和MCG下的SCell进行数据传输,或者,也可以通过载波聚合技术同时使用SCG下的PSCell和SCG下的SCell进行数据传输。
在本申请的后续描述中,应用于MCG时,PCell指的是MCG的PCell,SCell指的是MCG中的SCell;应用于SCG时,PCell指SCG的PSCell,SCell指的是SCG中的SCell。
二、带宽部分(bandwidth part,BWP)及其切换
1)BWP
NR引入了BWP的概念。一个BWP是一个载波上的一段连续频率资源。当一个BWP被配置并且激活后,这个BWP被称为激活BWP。在目前版本协议中,一个终端在一个下行载波上只能有一个下行激活BWP,在一个上行载波上只能有一个上行激活BWP。终端上行发送的数据和控制信息在上行激活BWP内发送,下行的数据和控制信息都在下行激活BWP内接收。
一个载波中可以有一个或多个BWP,一个载波中的BWP的带宽小于等于这个载波的带宽。
2)BWP的切换
为使终端能够根据业务需要在不同时刻在不同的BWP上收发数据,NR支持通过调度数据的DCI来触发BWP切换。其中,DCI承载在物理下行控制信道(physical downlink control channel,PDCCH)中。
调度物理下行共享信道(physical downlink shared channel,PDSCH)的DCI格式(format)1_1或DCI format 1_2中可以承载下行BWP切换指令,调度物理上行共享信道(physical uplink shared channel,PUSCH)的DCI format 0_1或DCI format 0_2中也可以承载上行BWP切换指令。终端在收到上述DCI后,将切换到DCI指示的新的BWP上进行数据的发送或接收。需要注意的是,这里的BWP切换是指激活BWP中的非休眠BWP之间的切换。
三、载波休眠
当前3GPP版本16(release 16,R16)中引入了SCell的休眠(dormancy)机制。休眠的(dormant)SCell的上下行传输都会停止,但是终端对这个小区还会进行周期测量,其测量信息通过其他的非休眠小区上报给网络设备。SCell的Dormancy行为和non-dormancy(非休眠)行为之间的切换是通过BWP切换实现的。当某个SCell被指示为dormancy,那么在该SCell上终端将从当前下行激活的BWP切换到dormant BWP,在dormant BWP上终端不需要进行PDCCH监测,或者,在该SCell是跨载波调度 中的被调度载波时,终端不需要检测对应的调度载波上调度该SCell的PDCCH。Dormant BWP的标识(identifier,ID)通过RRC信令中的dormantBWP-Id(休眠BWP标识)信元指示。
SCell的dormancy和non-dormancy状态之间的切换是通过DCI来指示。
1)在连接态且没有进入连接态不连续接收(connected mode discontinuous reception,C-DRX)模式时(后续简称为非C-DRX模式),或者C-DRX模式下的激活时间段,有以下两种指示方式:
方式1:通过DCI format 0_1或者1_1中的辅小区休眠指示(SCell dormancy indication)域指示SCell是dormancy还是non-dormancy。此时,DCI可以同时调度数据。
方式2:通过DCI format 1_1中的特定域指示SCell是dormancy还是non-dormancy。此时,DCI不可以同时调度数据。
2)在C-DRX模式下的非激活时间段,有一种指示方式:
方式3:通过DCI format 2_6中的SCell dormancy indication域指示SCell是dormancy还是non-dormancy。
本文中,如果没有特殊说明,激活时间内(within active time)包含两种情况,一是终端没有配置C-DRX(或者说终端没有进入C-DRX模式)的时候,二是终端处于C-DRX模式下的激活时间段;激活时间外(outside active time)是指终端处于C-DRX模式下的非激活时间段。
本申请中的激活时间内和激活时间外都是针对某个具体的终端而言的。
针对一个小区,网络设备可以通过RRC信令中的firstWithinActiveTimeBWP-Id信元配置激活时间内对应的首个非休眠BWP的标识,通过firstOutsideActiveTimeBWP-Id信元配置激活时间之外对应的首个BWP的标识。如果在一个小区的非C-DRX模式下,或者C-DRX模式下的激活时间段收到一个指示这个小区的下行激活BWP从dormant BWP切换到非dormant BWP的PDCCH,那么当这个小区的状态从dormancy切换到non-dormancy时,激活ID为firstWithinActiveTimeBWP-Id的下行BWP;如果在一个小区的C-DRX模式下的非激活时间段收到一个指示这个小区的下行激活BWP从dormant BWP切换到非dormant BWP的PDCCH,那么当这个小区的状态从dormancy切换到non-dormancy时,激活ID为firstOutsideActiveTimeBWP-Id的下行BWP。
支持在激活时间内接收DCI格式为0_1/1_1的SCell休眠指示和支持在激活时间外接收DCI格式为2_6的SCell休眠指示是两种终端能力。终端可以不支持这两种能力,或者支持这两种能力中的一种或两种,并通过能力上报告诉网络设备自己支持的能力情况。
对于上报支持上述两个能力中至少一种的终端,网络设备可以配置dormantBWP-Id。
对于上报支持在激活时间内接收DCI格式为0_1/1_1的SCell休眠指示能力的终端,网络设备可以配置firstWithinActiveTimeBWP-Id,也可以不配置firstWithinActiveTimeBWP-Id;对于上报支持在激活时间外接收DCI格式为2_6的SCell休眠指示能力的终端,网络设备可以配置firstOutsideActiveTimeBWP-Id,也可以不配置firstOutsideActiveTimeBWP-Id。
对于未上报支持在激活时间内接收DCI格式为0_1/1_1的SCell休眠指示能力的终端,网络设备不能配置firstWithinActiveTimeBWP-Id;对于未上报支持在激活时间外接收DCI格式为2_6的SCell休眠指示能力的终端,网络设备不能配置firstOutsideActiveTimeBWP-Id。
下面介绍C-DRX机制。在C-DRX机制中,终端可以根据网络设备配置的DRX周期,周期性监听PDCCH。如图2所示,在一个DRX周期中通常包含两个时间段:激活时间(active time)和非激活时间(non-active time),其中,非激活时间又可以称为激活时间外(outside active time)。在active time内,终端需要在PDCCH监听时机监听PDCCH;而在non-active time内,终端不需要不监听PDCCH,从而节省终端功耗。
激活时间包括激活期定时器(drx-onDurationTimer)运行的时间。网络设备通过RRC信令向终端配置drx-onDurationTimer的长度。以DRX长周期(Long DRX cycle)为例,还会配置Long DRX cycle长度的参数drx-LongCycle和用于确定DRX周期开始的子帧的参数起始偏移量(drx-StartOffset),以及DRX周期开始的子帧内时隙偏移量(drx-SlotOffset)。如果使用Long DRX cycle,当子帧号满足如下公式(1),终端开启drx-onDurationTimer(后文简写为onDurationTimer):
[(SFN×10)+subframe number]modulo(drx-LongCycle)=drx-StartOffset(1)
其中,SFN为系统帧号,modulo表示取模运算。系统帧也可以称作无线帧,一个无线帧为10ms, 一个无线帧可由多个子帧组成,每个子帧由一个或多个时隙组成。如图3所示,在Long DRX cycle开始的DRX子帧偏移drx-SlotOffset之后开启onDurationTimer,其中,非激活时间对应Opportunity for DRX。
如果使用DRX短周期short DRX cycle,当子帧号满足以下公式(2),终端开启drx-onDurationTimer:[(SFN×10)+subframe number]modulo(drx-ShortCycle)=(drx-StartOffset)modulo(drx-ShortCycle)(2)
即在short DRX cycle开始的子帧偏移drx-SlotOffset之后开启onDurationTimer。
尽管图中未示出,在C-DRX机制中,激活时间内还可以包括:drx-InactivityTimer(休眠定时器简称InactivityTimer),drx-RetransmissionTimerDL(简称下行重传定时器RetransmissionTimerDL)以及drx-RetransmisionTimerUL(简称上行重选定时器RetransmisionTimerUL)运行的时间。网络设备通过RRC信令向终端配置的C-DRX参数具体可以如表1所示,其中包括drx-InactivityTimer,drx-RetransmissionTimerDL以及drx-RetransmisionTimerUL触发的条件,即当有对应的数据传输时,这三个定时器才会启动。
表1 C-DRX参数表格示例

激活时间还可以包括:ra-ContentionResolutionTimer(用于在随机接入过程中冲突解决)或者msgB-ResponseWindow(用于2-step随机接入冲突解决)运行期间;终端在PUCCH上发送了调度请求(scheduling request,SR)之后的等待期间;终端在成功接收到基于非竞争的随机接入响应(random access response,RAR)之后还未收到指示新传的PDCCH期间。
四、小区激活和去激活
PCell是不支持激活/去激活的,SCell支持激活/去激活。SCell处于去激活状态时:
1)在SCell上不发送探测参考信号(sounding reference signal,SRS);
2)不上报SCell的信道状态信息(channel state information,CSI);
3)不在SCell上的上行共享信道(uplink shared channel,UL-SCH)上传输;
4)不在SCell上的随机接入信道(random access channel,RACH)上传输;
5)不监听SCell上的物理下行控制信道PDCCH;
6)不在SCell上传输(physical uplink control channel,PUCCH)。
针对一个小区,网络设备可以通过RRC信元firstActiveDownlinkBWP-Id配置终端从去激活态切换为激活态时使用的首个激活下行BWP的标识,还可以通过RRC信元firstActiveUplinkBWP-Id配置终端从去激活态切换为激活态时使用的首个激活上行BWP的标识。当终端从去激活状态进入激活状态时,激活该小区中ID为firstActiveDownlinkBWP-Id的下行BWP和ID为firstActiveUplinkBWP-Id的上行BWP。
五、跨载波调度
发送数据信道对应的DCI的小区称为调度小区或主调小区(scheduling cell);发送数据信道的小区称为被调小区(scheduled cell)。如果数据信道和调度该数据信道的DCI是在同一个小区内发送的,也就是说,这个小区既是调度小区,也是被调度小区,那么我们称这个小区是一个自调度(self-scheduling)小区。如果数据信道和调度该数据信道的DCI是在不同小区发送的,那么我们称承载DCI的小区为调度小区,承载数据信道的小区叫做被调小区。这种调度形式被称为跨载波调度(cross carrier scheduling,CCS)。一个主调小区上可对应多个被调小区,也就是一个主调小区可以发送DCI对多个被调小区的数据进行调度。
六、下行控制信息
1)下行控制信息的格式
DCI存在多种DCI格式(DCI format)。和本申请有关的DCI format包括DCI format 0_1、DCI format 0_2、DCI format 1_1和DCI format 1_2。其中,DCI format 0_1和0_2进行终端上行数据的调度,即调度PUSCH的传输;DCI format 1_1和1_2进行终端下行数据的调度,即调度PDSCH的传输。
本申请中,如果没有特殊说明,DCI和DCI格式可以互相替换。例如第一DCI可以替换为第一DCI格式,第二DCI可以替换为第二DCI格式。有关DCI format更详细的描述可以参考3GPP技术规范38.212V16.10.0的7.3.1节。
2)下行控制信息的大小
下行控制信息的大小(DCI size)有两种理解,第一种是DCI中的信息比特(bit)的大小,第二种是包含DCI中的信息bit的大小和循环冗余校验(cyclic redundancy check,CRC)的大小。其中,DCI中的信息bit的大小又称为有效载荷(payload)大小。在NR系统中,CRC的bit位宽为24。
3)DCI size对齐
当DCI size不同时,终端可能会采用不同的接收方式,为了减少终端的接收复杂度,通常会通过DCI size对齐的方式来减小DCI size的个数。如果两个DCI format的DCI size不同,要进行DCI size对齐,一般采用的方式是在DCI size较短的DCI format的有效负载后面补0,直到这两个DCI format的DCI size相同。
七、两个小区调度一个小区
NR在版本17(release 17,R17)中引入了两个小区调度一个小区的特性,即PCell和SCell都可以通过PDCCH发送DCI,调度PCell的数据传输。在PCell和SCell都可以调度PCell的数据传输时,对于某个DCI format来说,PCell上调度PCell的DCI和SCell上调度PCell的DCI size需要进行对齐。在本申请中,调度PCell上的数据传输可以简称为调度PCell。
对于一个配置了可以通过SCell调度PCell的终端,如果的PCell上的调度PCell的DCI format 0_1的信息bit的个数不等于的SCell上的调度PCell的DCI format 0_1的信息bit的个数,那么应在bit数少的DCI format 0_1后附加0,直到两个DCI format 0_1的载荷大小相同。DCI format 0_2、DCI format1_1和DCI format 1_2的载荷大小对齐方式和DCI format 0_1相同。
当SCell被去激活或者SCell的激活DL BWP为休眠DL BWP时,SCell上不发送调度PCell的PDCCH,但是因为PCell上调度PCell的DCI和SCell上调度PCell的DCI的size需要进行对齐,仍需要确定SCell上调度PCell的DCI的size,从而确定PCell上调度PCell的DCI的大小。例如,当SCell被去激活,终端根据SCell中ID为firstActiveDownlinkBWP-Id的DL BWP确定PCell上PDCCH承载的DCI格式0_1、DCI format 0_2、DCI format 1_1或者DCI format 1_2的信息比特数。如果SCell的激活DL BWP为休眠DL BWP,则终端根据SCell中ID为firstWithinActiveTimeBWP-Id的DL BWP确定PCell上PDCCH承载的DCI格式0_1、DCI format 0_2、DCI format 1_1或者DCI format 1_2的信息比特数。
当两个小区都可以调度一个小区时,这两个小区都可以称为主调小区,DCI中的部分域与主调小区有关,例如:SCell dormancy indication域和传输配置指示(transmission configuration indication,TCI)域。对于SCell dormancy indication域,如果调度小区是PCell,在调度小区上发送的DCI format 0_1和DCI format 1_1中可以包括SCell dormancy indication域;如果调度小区是SCell,在调度小区上发送的DCI format 0_1和DCI format 1_1中不包括SCell dormancy indication域。对于TCI域,DCI format 1_1和DCI format 1_2上可以包含这个域。在DCI format 1_1中,如果网络设备发送给终端的RRC信令中没有包括tci-PresentInDCI信元,也就是说没有使能通过DCI配置TCI,则TCI域为0bit;如果网络设备给发送的RRC信令中包括tci-PresentInDCI信元,也就是使能了通过DCI配置TCI,则TCI域为3bit。因为tci-PresentInDCI信元是控制资源集合配置中的相关参数,而控制资源集合是配置在主调小区上的,不同的主调小区的tci-PresentInDCI信元配置可以不同,所以DCI format 1_1中是否包含TCI域和主调小区的配置有关。在DCI format 1_2中,如果网络设备发送给终端的RRC信令中没有包括tci-PresentDCI-1-2-r16信元,则TCI域为0bit;如果网络设备发送给终端的RRC信令中包括tci-PresentDCI-1-2-r16信元,则tci-PresentDCI-1-2-r16信元指示DCI format 1_2中TCI域的bit数,tci-PresentDCI-1-2-r16可以配置为1、2或3。因为tci-PresentDCI-1-2-r16是控制资源集合配置中的相关参数,而控制资源集合是配置在主调小区上的,不同的主调小区的tci-PresentDCI-1-2-r16的配置可以不同,所以DCI format1_2中是否包含TCI域以及TCI域的比特数和主调小区的配置有关。在本申请中,根据BWP ID确定DCI的信息比特数可以理解为根据BWP配置确定DCI中和主调小区配置相关的DCI域,例如DCI中的SCell dormancy indication域、TCI域等。
但是,当SCell被去激活之后,SCell又从去激活态切换为激活态时使用的首个激活下行BWP有可能设置为休眠BWP,此时终端将无法根据SCell中ID为firstActiveDownlinkBWP-Id的DL BWP确定PCell上PDCCH承载的DCI格式的信息比特数。因为休眠BWP上不需要终端监测控制信道,所以不配置控制信道资源集合,从而DCI中的SCell dormancy indication域的大小无法确认,导致SCell上PDCCH承载的DCI格式的信息比特数无法被确定。因为PCell上PDCCH承载的DCI格式的信息比特数要和SCell上PDCCH承载的DCI格式的信息比特数对齐,不知道SCell上PDCCH承载的DCI格式的信息比特数,PCell上PDCCH承载的DCI格式的信息比特数也就无法被确定。并且,网络设备可能并没有给终端配置firstActiveDownlinkBWP-Id,此时终端也无法根据SCell中ID为firstActiveDownlinkBWP-Id的DL BWP确定PCell上PDCCH承载的DCI格式的信息比特数。此外,当SCell的激活DL BWP为休眠DL BWP时,不考虑终端的状态和模式,直接设置终端根据SCell中ID为firstWithinActiveTimeBWP-Id的DL BWP确定PCell上PDCCH承载的DCI格式的信息比特数,有可能无法得到该DCI格式的信息比特数。例如终端只被配置了firstOutsideActiveTimeBWP-Id,并未 被配置firstWithinActiveTimeBWP-Id,终端就无法根据SCell中ID为firstWithinActiveTimeBWP-Id的DL BWP确定PCell上PDCCH承载的DCI格式的信息比特数。
基于此,本申请提出了一种下行控制信息的传输方法和装置,以期望能够准确确定在主小区上调度主小区数据传输的DCI的大小,提升信息传输的性能。
下面以终端和网络设备的之间的交互为例,对本申请的技术方案进行详细描述。其中,终端可以是图1中的终端(例如终端102、终端103或终端104),网络设备可以是图1中的网络设备101。
图4是本申请提供的下行控制信息传输方法的一例示意性流程图。
S410,终端根据第一小区的第一BWP确定第一DCI的信息比特数,第一DCI承载在第二小区上的PDCCH候选上,第一DCI用于调度第三小区的数据传输。
对应的,网络设备根据第一小区的第一BWP确定第一DCI的信息比特数。
其中,第一BWP为激活时间内对应的首个非休眠BWP、激活时间之外对应的首个非休眠BWP或者第一小区被去激活之前使用的下行激活BWP。第一小区可以是终端的辅小区,第二小区可以是终端的主小区或者辅小区。需要说明的是,第一小区不同于第二小区,即当第一小区和第二小区都是终端的辅小区时,这两个辅小区是不同的辅小区。第三小区可以是第一小区或第二小区,第三小区还可以是除第一小区和第二小区外的一个小区。本申请中的小区、载波、BWP的状态都是针对某个具体的终端而言的。
需要说明的是,并不是第二小区上的所有PDCCH候选都一定被配置可以用于承载第一DCI。在第二小区上,至少有一个PDCCH候选被配置用于承载第一DCI。也就是说,这里的第二小区上的PDCCH候选是指被配置用于承载第一DCI的PDCCH候选。
第一小区的激活时间内对应的首个非休眠BWP为:第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI是在激活时间内接收到的;或者,指示第一小区的下行激活BWP切换为休眠BWP的DCI的格式为DCI格式0_1或者DCI格式1_1。
第一小区的激活时间外对应的首个非休眠BWP为:第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示第一小区的下行激活BWP切换为休眠BWP的DCI是激活时间外接收到的;或者,指示第一小区的下行激活BWP切换为休眠BWP的DCI的格式为DCI格式2_6。
在本申请实施例中,网络设备根据第一小区的第一BWP确定第一DCI的信息比特数的方式和终端根据第一小区的第一BWP确定第一DCI的信息比特数的方式相同。
S420,终端根据第一DCI的信息比特数,在第二小区上的PDCCH候选上监测第一DCI。
对应的,网络设备根据第一DCI的信息比特数在第二小区上的PDCCH候选上发送第一DCI。
其中,终端在PDCCH候选上监测DCI是指终端尝试在PDCCH候选所对应的时频资源上对PDCCH进行盲检测,并根据DCI大小进行译码和CRC校验。如果校验成功,则认为在该PDCCH候选上成功接收到了一个DCI;如果校验失败,则认为在该PDCCH候选上没有检测到PDCCH。
本申请所揭示的方案,在主小区(第二小区)和辅小区(第一小区)均可以调度主小区的数据传输,辅小区被去激活或者辅小区的下行激活BWP为休眠BWP时,重新制定了确定在主小区上调度主小区数据传输DCI大小的规则,有助于准确确定DCI的大小,提升信息传输的性能。
在本申请中,在执行S410之前,网络设备和终端需要先确定第一BWP,根据第一小区的不同状态可以将网络设备和终端确定第一小区的第一BWP的过程分为图5和图6所示的两种不同实施例。
在图5所述的实施例中,第一小区的激活BWP为休眠BWP,也即第一小区处于休眠态。网络设备和终端可以分别根据发送和接收到指示第一小区进入休眠态的DCI的时刻或者DCI格式,以及终端是否被配置了从去激活态切换为激活态时使用的首个激活下行BWP确定第一BWP。作为示例,具体处理过程如下:
S501,可选的,网络设备向终端发送第一小区从去激活态切换为激活态时使用的首个激活下行BWP的标识。
对应的,终端接收第一小区从去激活态切换为激活态时使用的首个激活下行BWP的标识。其中,该标识可以为RRC信令中的firstActiveDownlinkBWP-Id信元,该标识指示第一小区从去激活态切换为 激活态时使用的首个激活下行BWP。可选的,网络设备还可以向终端发送第一小区从去激活态切换为激活态时使用的首个激活上行BWP的标识,终端还可以接收第一小区从去激活态切换为激活态时使用的首个激活上行BWP的标识。该标识可以为RRC信令中的firstActiveUplinkBWP-Id信元,该标识指示第一小区从去激活态切换为激活态时使用的首个激活上行BWP。
S502,网络设备向终端发送激活时间内对应的首个非休眠BWP的标识,该标识可以为RRC信令中的firstWithinActiveTimeBWP-Id信元。对应的,终端接收该激活时间内对应的首个非休眠BWP的标识。
S503,网络设备向终端发送激活时间外对应的首个非休眠BWP的标识,该标识可以为RRC信令中的firstOutsideActiveTimeBWP-Id信元。对应的,终端接收该激活时间外对应的首个非休眠BWP的标识。
S504,网络设备向终端发送跨载波调度配置信息。对应的,终端接收该跨载波调度配置信息。
具体的,跨载波调度配置信息用于指示终端在第一小区和第二小区上监测PDCCH候选。其中,第一小区上的PDCCH候选用于承载第三DCI,第二小区上的PDCCH候选用于承载第一DCI,第一DCI和第三DCI用于调度第三小区的数据传输。换句话说,跨载波调度配置信息用于指示终端在第一小区上监测第三DCI,在第二小区上监测第一DCI。
应理解,上述firstActiveDownlinkBWP-Id、firstActiveUplinkBWP-Id、firstWithinActiveTimeBWP-Id、firstOutsideActiveTimeBWP-Id和载波调度配置信息可以承载于不同的消息或信令,也可以部分承载于同一条消息或信令,也可以全部承载于同一条消息或信令(此时步骤S501、S502、S503和S504为同一步骤),本申请对其不作限定。
S505,网络设备向终端发送第二DCI,指示将第一小区的下行激活BWP切换为休眠BWP。
对应的,终端接收第二DCI,并在接收到第二DCI后,根据第二DCI将第一小区的下行激活BWP切换为休眠BWP,也就是说将第一小区切换为休眠态。
具体的,在S505之前,网络设备可以获取或确定休眠BWP的标识信息(即dormantBWP-Id),并通过RRC信令将休眠BWP的标识信息发送给终端。由于网络设备和终端需要根据第一BWP来确定第一DCI的信息比特数,而第一BWP可以是激活时间内对应的首个非休眠BWP或者激活时间外对应的首个非休眠BWP,因此网络设备和终端需要确定第一BWP,
S506,网络设备确定第一BWP。
S507,终端确定第一BWP。
具体可以有以下五种方式:
方式1:
如果终端没有被配置从去激活态切换为激活态时使用的首个激活下行BWP,那么第一BWP为第一小区被去激活之前使用的下行激活BWP。
终端没有被配置从去激活态切换为激活态时使用的首个激活下行BWP可以理解为,网络设备从始至终没有为终端配置第一小区从去激活态切换为激活态时使用的首个激活下行BWP;或者,网络设备通过firstActiveDownlinkBWP-Id信元为终端配置过第一小区从去激活态切换为激活态时使用的首个激活下行BWP,但后来进行了释放。
方式2:如果第二DCI的发送时刻处于激活时间内,那么第一BWP为激活时间内对应的首个非休眠BWP。
其中,激活时间内是指处于C-DRX模式的激活时间内,或者处于非C-DRX模式下。应理解,在本申请实施例中,网络设备发送第二DCI的时刻与终端接收第二DCI的时刻为同一时刻,或者,网络设备发送第二DCI的时刻与终端接收第二DCI的时刻在相同时间段(因为可能存在空口传输时延)。
方式3:如果第二DCI的发送时刻处于激活时间外,那么第一BWP为激活时间外对应的首个非休眠BWP。
方式4:如果第二DCI格式为DCI格式0_1或者DCI格式1_1,那么第一BWP为激活时间内对应的首个非休眠BWP。
方式5:如果第二DCI格式为DCI格式2_6,那么第一BWP为激活时间外对应的首个非休眠BWP。
在图6所述的实施例中,第一小区处于去激活态。网络设备和终端可以分别根据终端是否被配置 了从去激活态切换为激活态时使用的首个激活下行BWP、第一小区从去激活态切换为激活态时使用的首个激活下行BWP是否为睡眠BWP或者终端是否被配置了激活时间内对应的首个非休眠BWP确定第一BWP。
S601与S501相同,在此不再赘述。
S602与S502内容相同,不同的是,在图6所示的实施例中,S602为可选的步骤。
S603与S503内容相同,不同的是,在图6所示的实施例中,S603为可选的步骤。
S604与S504相同,在此不再赘述。
S605,网络设备向终端发送去激活信令,指示终端将第一小区去激活。
S606,网络设备确定第一BWP。
S607,终端确定第一BWP。
具体可以有以下四种方式:
方式6:
如果终端没有被配置从去激活态切换为激活态时使用的首个激活下行BWP,那么第一BWP为第一小区被去激活之前使用的下行激活BWP。
终端没有被配置第一小区从去激活态切换为激活态时使用的首个激活下行BWP可以理解为,网络设备从始至终没有为终端配置第一小区从去激活态切换为激活态时使用的首个激活下行BWP;或者,网络设备通过firstActiveDownlinkBWP-Id信元为终端配置过第一小区从去激活态切换为激活态时使用的首个激活下行BWP,但后来进行了释放。
方式7:
如果终端被配置了从去激活态切换为激活态时使用的首个激活下行BWP,且从去激活态切换为激活态时使用的首个激活下行BWP不是睡眠BWP,那么第一BWP为第一小区从去激活态切换为激活态时使用的首个激活下行BWP。
具体的,在S605之前,网络设备可以获取或确定休眠BWP的标识信息(即dormantBWP-Id),并通过RRC信令将休眠BWP的标识信息发送给终端。可选的,为了减少信令开销,dormantBWP-Id可以与firstWithinActiveTimeBWP-Id和/或firstOutsideActiveTimeBWP-Id承载于同一条消息或信令中。在此情况下,网络设备和终端进一步确定firstActiveDownlinkBWP-Id不等于dormantBWP-Id。
方式8:
如果终端被配置了从去激活态切换为激活态时使用的首个激活下行BWP,但从去激活态切换为激活态时使用的首个激活下行BWP是睡眠BWP,且终端被配置了激活时间内对应的首个非休眠BWP,那么第一BWP为激活时间内对应的首个非休眠BWP。
在该方式中,在确定S601和S602已被执行后,网络设备和终端不进行任何判断,直接确定第一BWP为激活时间内对应的首个非休眠BWP,简单高效,节省计算功耗。
方式9:
如果终端没有被配置激活时间内对应的首个非休眠BWP,但被配置了激活时间外对应的首个非休眠BWP,那么第一BWP为激活时间外对应的首个非休眠BWP。
这样,在通过上述图5所示的方法(包括方式1至方式5)和图6所示的方法(包括方式6至方式9)确定第一BWP后,网络设备和终端可以继续执行图4中所示S410和S420。
本申请所揭示的方案,在主小区(第二小区)和辅小区(第一小区)均可以调度主小区的数据传输,辅小区被去激活或者辅小区的下行激活BWP为休眠BWP时,重新制定了确定在主小区上调度主小区数据传输DCI大小的规则,有助于准确确定DCI的大小,提升信息传输的性能。
可以理解的是,为了实现上述实施例中功能,网络设备和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图7和图8为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端102至104中的一个,也可以是如图1所示的网 络设备101,还可以是应用于终端或网络设备的模块(如芯片)。
如图7所示,通信装置700包括处理单元710和收发单元720。通信装置700用于实现上述图4至图6中所示的方法实施例中终端或网络设备的功能。
当通信装置700用于实现图4所示的方法实施例中终端的功能时:处理单元710,用于根据第一小区的第一带宽部分BWP确定第一下行控制信息DCI的信息比特数;收发单元720,用于根据第一DCI的信息比特数,在第二小区上的PDCCH候选上监测第一DCI。
可选的,收发单元720还用于接收第二DCI,处理单元710还用于根据第二DCI将第一小区的下行激活BWP切换为休眠BWP。
可选的,收发单元720还用于接收跨载波调度配置信息。
当通信装置700用于实现图4所示的方法实施例中网络设备的功能时:处理单元710,用于根据第一小区的第一带宽部分BWP确定第一下行控制信息DCI的信息比特数;收发单元720,用于在第二小区上的PDCCH候选上发送第一DCI。
可选的,收发单元720还用于发送第二DCI,用于指示终端将第一小区的下行激活BWP切换为休眠BWP。
可选的,收发单元720还用于发送跨载波调度配置信息。
有关上述处理单元710和收发单元720更详细的描述可以参考图4所示的方法实施例中相关描述。
如图8所示,通信装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,通信装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当通信装置800用于实现图4所示的方法时,处理器810用于实现上述处理单元710的功能,接口电路820用于实现上述收发单元720的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给网络设备的。
当上述通信装置为应用于网络设备的模块时,该网络设备模块实现上述方法实施例中网络设备的功能。该网络设备模块从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给网络设备的;或者,该网络设备模块向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端的。这里的网络设备模块可以是网络设备的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端中。处理器和存储介质也可以作为分立组件存在于网络设备或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存 储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (26)

  1. 一种下行控制信息的传输方法,其特征在于,包括:
    根据第一小区的第一带宽部分BWP确定第一下行控制信息DCI的信息比特数,所述第一BWP为激活时间内对应的首个非休眠BWP或者激活时间之外对应的首个非休眠BWP,所述第一DCI承载在第二小区上的物理下行控制信道PDCCH候选上,所述第一DCI用于调度第三小区的数据传输,所述第一小区为辅小区,所述第二小区为主小区或者辅小区,所述第一小区不同于所述第二小区;
    根据所述第一DCI的信息比特数,在所述第二小区上的PDCCH候选上监测所述第一DCI。
  2. 根据权利要求1所述的方法,其特征在于,在监测所述第一DCI之前,所述方法还包括:
    接收第二DCI;
    根据所述第二DCI将所述第一小区的下行激活BWP切换为休眠BWP,其中,
    当所述第二DCI是在激活时间内接收到时,所述第一BWP为所述激活时间内对应的首个非休眠BWP;或者,
    当所述第二DCI是在激活时间外接收到时,所述第一BWP为所述激活时间外对应的首个非休眠BWP。
  3. 根据权利要求1所述的方法,其特征在于,在监测所述第一DCI之前,所述方法还包括:
    接收第二DCI;
    根据所述第二DCI将所述第一小区的下行激活BWP切换为休眠BWP,其中,
    当所述第二DCI格式为DCI格式0_1或者DCI格式1_1时,所述第一BWP为所述激活时间内对应的首个非休眠BWP;或者,
    当所述第二DCI格式为DCI格式2_6时,所述第一BWP为所述激活时间外对应的首个非休眠BWP。
  4. 根据权利要求1所述的方法,其特征在于,当所述第一小区被去激活,且网络设备为终端设备配置的所述第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP时,所述第一BWP为所述激活时间内对应的首个非休眠BWP。
  5. 根据权利要求1所述的方法,其特征在于,
    当所述第一小区被去激活,网络设备为终端设备配置的所述第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP,且所述终端设备没有被配置所述激活时间内对应的首个非休眠BWP时,所述第一BWP为所述激活时间外对应的首个非休眠BWP;或者,
    当所述第一小区被去激活,网络设备为终端设备配置的所述第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP,且所述终端设备被配置了所述激活时间内对应的首个非休眠BWP时,所述第一BWP为所述激活时间内对应的首个非休眠BWP。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一小区的所述激活时间内对应的首个非休眠BWP为以下至少一项:
    所述第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示所述第一小区的下行激活BWP切换为所述休眠BWP的DCI是在激活时间内接收到的;或者,
    所述第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示所述第一小区的下行激活BWP切换为所述休眠BWP的DCI的格式为DCI格式0_1或者DCI格式1_1。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一小区的所述激活时间外对应的首个非休眠BWP为以下至少一项:
    所述第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示所述第一小区的下行激活BWP切换为所述休眠BWP的DCI是在激活时间外接收到的;或者,
    所述第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其 中,指示所述第一小区的下行激活BWP切换为所述休眠BWP的DCI的格式为DCI格式2_6。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,在监测所述第一DCI之前,所述方法还包括:
    接收跨载波调度配置信息,所述跨载波调度配置信息用于指示所述终端设备在所述第一小区和所述第二小区上监测PDCCH候选,所述第一小区上的PDCCH候选用于承载第三DCI,所述第二小区上的PDCCH候选用于承载所述第一DCI,所述第三DCI用于调度所述第三小区的数据传输。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一小区的所述激活时间内对应的首个非休眠BWP为所述第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示所述第一小区的下行激活BWP切换为所述休眠BWP的DCI是在所述第一小区的非连接态不连续接收C-DRX模式下,或者C-DRX模式下的激活时间段收到的。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一小区的所述激活时间外对应的首个非休眠BWP为所述第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示所述第一小区的下行激活BWP切换为所述休眠BWP的DCI是在所述第一小区的C-DRX模式下的非激活时间段收到的。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第三小区为所述第二小区。
  12. 一种下行控制信息的传输方法,其特征在于,包括:
    根据第一小区的第一带宽部分BWP确定第一下行控制信息DCI的信息比特数,所述第一BWP为激活时间内对应的首个非休眠BWP或者激活时间之外对应的首个非休眠BWP,所述第一DCI承载在第二小区上的物理下行控制信道PDCCH候选上,所述第一DCI用于调度第三小区的数据传输,所述第一小区为辅小区,所述第二小区为主小区或者辅小区,所述第一小区不同于所述第二小区;
    在所述第二小区上的PDCCH候选上发送所述第一DCI。
  13. 根据权利要求12所述的方法,其特征在于,在发送所述第一DCI之前,所述方法还包括:
    发送第二DCI,所述第二DCI用于指示终端设备将所述第一小区的下行激活BWP切换为休眠BWP,其中,
    当所述第二DCI是在激活时间内发送时,所述第一BWP为所述激活时间内对应的首个非休眠BWP;或者,
    当所述第二DCI是在激活时间外发送时,所述第一BWP为所述激活时间外对应的首个非休眠BWP。
  14. 根据权利要求12所述的方法,其特征在于,在发送所述第一DCI之前,所述方法还包括:
    发送第二DCI,所述第二DCI用于指示终端设备将所述第一小区的下行激活BWP切换为休眠BWP,其中,
    当所述第二DCI格式为DCI格式0_1或者DCI格式1_1时,所述第一BWP为所述激活时间内对应的首个非休眠BWP;或者,
    当所述第二DCI格式为DCI格式2_6时,所述第一BWP为所述激活时间外对应的首个非休眠BWP。
  15. 根据权利要求12所述的方法,其特征在于,当所述第一小区被去激活,且网络设备为终端设备配置的所述第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP时,所述第一BWP为所述激活时间内对应的首个非休眠BWP。
  16. 根据权利要求12所述的方法,其特征在于,
    当所述第一小区被去激活,网络设备为终端设备配置的所述第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP,且所述网络设备没有为所述终端设备配置所述激活时间内对应的首个非休眠BWP时,所述第一BWP为所述激活时间外对应的首个非休眠BWP;或者,
    当所述第一小区被去激活,网络设备为终端设备配置的所述第一小区从去激活态切换为激活态时使用的首个激活下行BWP为休眠BWP,且所述网络设备为所述终端设备配置所述激活时间内对应的首个非休眠BWP时,所述第一BWP为所述激活时间内对应的首个非休眠BWP。
  17. 根据权利要求12至16中任一项所述的方法,其特征在于,所述第一小区的所述激活时间内对应的首个非休眠BWP为以下至少一项:
    所述第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示所述第一小区的下行激活BWP切换为所述休眠BWP的DCI是在激活时间内发送的;或者,
    所述第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示所述第一小区的下行激活BWP切换为所述休眠BWP的DCI的格式为DCI格式0_1或者DCI格式1_1。
  18. 根据权利要求12至17中任一项所述的方法,其特征在于,所述第一小区的所述激活时间外对应的首个非休眠BWP为以下至少一项:
    所述第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示所述第一小区的下行激活BWP切换为所述休眠BWP的DCI是在激活时间外发送的;或者,
    所述第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示所述第一小区的下行激活BWP切换为所述休眠BWP的DCI的格式为DCI格式2_6。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,在发送所述第一DCI之前,所述方法还包括:
    发送跨载波调度配置信息,所述跨载波调度配置信息用于指示所述终端设备在所述第一小区和所述第二小区上监测PDCCH候选,所述第一小区上的PDCCH候选用于承载第三DCI,所述第二小区上的PDCCH候选用于承载所述第一DCI,所述第三DCI用于调度所述第三小区的数据传输。
  20. 根据权利要求12至19中任一项所述的方法,其特征在于,所述第一小区的所述激活时间内对应的首个非休眠BWP为所述第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示所述第一小区的下行激活BWP切换为所述休眠BWP的DCI是在所述第一小区的非连接态不连续接收C-DRX模式下,或者C-DRX模式下的激活时间段收到的。
  21. 根据权利要求12至20中任一项所述的方法,其特征在于,所述第一小区的所述激活时间外对应的首个非休眠BWP为所述第一小区的下行激活BWP从休眠BWP切换为非休眠BWP时使用的首个非休眠BWP,其中,指示所述第一小区的下行激活BWP切换为所述休眠BWP的DCI是在所述第一小区的C-DRX模式下的非激活时间段收到的。
  22. 根据权利要求12至21中任一项所述的方法,其特征在于,所述第三小区为所述第二小区。
  23. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1至11中任一项所述的方法,或者,
    使得所述通信装置执行如权利要求12至22中任一项所述的方法。
  24. 一种通信装置,包括用于执行如权利要求1至11中任一项所述方法的模块,或包括用于执行如权利要求12至22中任一项所述方法的模块。
  25. 一种计算机程序,包括计算机指令,当所述计算机指令被通信装置执行时,使得所述通信装置实现如权利要求1至11中任一项所述的方法或实现如权利要求12至22中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得如权利要求1至22中任一项所述方法被执行。
PCT/CN2023/120044 2022-09-30 2023-09-20 下行控制信息的传输方法和装置 WO2024067292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211230567.9 2022-09-30
CN202211230567.9A CN117812744A (zh) 2022-09-30 2022-09-30 下行控制信息的传输方法和装置

Publications (1)

Publication Number Publication Date
WO2024067292A1 true WO2024067292A1 (zh) 2024-04-04

Family

ID=90432139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120044 WO2024067292A1 (zh) 2022-09-30 2023-09-20 下行控制信息的传输方法和装置

Country Status (2)

Country Link
CN (1) CN117812744A (zh)
WO (1) WO2024067292A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200313833A1 (en) * 2019-03-28 2020-10-01 Yunjung Yi Cross-Carrier Scheduling Activation for a Dormant Cell
US20220046662A1 (en) * 2020-08-06 2022-02-10 Qualcomm Incorporated Managing deactivation or dormancy of a component carrier in cross component carrier or multiple component carrier scheduling
WO2022151418A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种通信方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200313833A1 (en) * 2019-03-28 2020-10-01 Yunjung Yi Cross-Carrier Scheduling Activation for a Dormant Cell
US20220046662A1 (en) * 2020-08-06 2022-02-10 Qualcomm Incorporated Managing deactivation or dormancy of a component carrier in cross component carrier or multiple component carrier scheduling
WO2022151418A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种通信方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Remaining issues for support of efficient and low latency serving cell", 3GPP DRAFT; R1-2000645, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051852979 *

Also Published As

Publication number Publication date
CN117812744A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
US11785550B2 (en) Method for efficient rediscovery and medium access for wake-up radios
CN111345050B (zh) 对无线通信设备能力的临时处理
CN112567670B (zh) 用于在功率节省与通信效率之间平衡的动态c-drx配置以及使用dci激活载波分量
WO2021204215A1 (zh) 一种drx控制方法及装置
WO2020063896A1 (zh) 信号处理的方法和装置
WO2020221093A1 (zh) 搜索空间的监测、配置方法及装置
WO2020143551A1 (zh) 一种信道检测方法及设备
CN114731653A (zh) 用于带宽部分切换操作的通信方法和用户设备
KR20220065007A (ko) 반송파 집성을 위한 접속된 불연속 수신
US20220369418A1 (en) Methods and devices for signal processing
CN113261385B (zh) 无线通信中的灵活下行链路控制信号监测
WO2017193386A1 (zh) 一种计数方法及装置
WO2022151418A1 (zh) 一种通信方法及装置
US20220386409A1 (en) Method for determining an initiation of random access procedure for a user equipment configured with power savings, and network node thereof
WO2022082799A1 (zh) 跨载波调度方法、终端设备和接入网设备
WO2020143747A1 (zh) 通信方法和装置
WO2024067292A1 (zh) 下行控制信息的传输方法和装置
WO2022082772A1 (zh) 一种数据传输方法和相关装置
US11864112B2 (en) Apparatus, method and computer program
WO2020143490A1 (zh) 通信方法及装置
WO2024067294A1 (zh) 下行控制信息的传输方法和装置
WO2020057526A1 (zh) 一种无线通信方法和装置
WO2024093903A1 (zh) 一种通信方法、装置、系统及存储介质
WO2022206363A1 (zh) 一种通信方法及装置
EP4124143A1 (en) Method and apparatus for pdcch skipping and scheduling request

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870524

Country of ref document: EP

Kind code of ref document: A1