WO2017193386A1 - 一种计数方法及装置 - Google Patents

一种计数方法及装置 Download PDF

Info

Publication number
WO2017193386A1
WO2017193386A1 PCT/CN2016/082088 CN2016082088W WO2017193386A1 WO 2017193386 A1 WO2017193386 A1 WO 2017193386A1 CN 2016082088 W CN2016082088 W CN 2016082088W WO 2017193386 A1 WO2017193386 A1 WO 2017193386A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
terminal
timer
cell
drx
Prior art date
Application number
PCT/CN2016/082088
Other languages
English (en)
French (fr)
Inventor
酉春华
黄曲芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16901341.4A priority Critical patent/EP3451763A4/en
Priority to PCT/CN2016/082088 priority patent/WO2017193386A1/zh
Priority to CN201680085592.9A priority patent/CN109155990A/zh
Publication of WO2017193386A1 publication Critical patent/WO2017193386A1/zh
Priority to US16/188,267 priority patent/US20190082492A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a counting method and apparatus.
  • the LTE system introduces a discontinuous reception (DRX) technology, and the DRX cycle includes an activation period and a sleep period.
  • the terminal periodically wakes up to enter the activation period, and listens to the Physical Downlink Control Channel (PDCCH) during the activation period to detect whether there is downlink data or uplink grant arrival, and does not monitor the PDCCH channel during the sleep period.
  • PDCH Physical Downlink Control Channel
  • the terminal will start the corresponding DRX timer according to the conditions, such as the on Duration Timer, the DRX-inactivity Timer, the DRX-Retransmission Timer, and the DRX uplink.
  • the rex timer (drx-ULRetransmission Timer), the contention resolution timer (mac-ContentionResolution Timer), etc., wherein the onDuration Timer, the drx-inactivity Timer, and the mac-Contention Resolution Timer are configured according to the terminal, and all the serving cells are used.
  • the same timer, and the drx-Retransmission Timer, drx-ULRetransmission Timer is configured according to the HARQ process of the serving cell, and each HARQ process maintains a corresponding drx-Retransmission Timer or drx-ULRetransmission Timer.
  • the terminal starts the on Duration Timer after the sleep period ends.
  • the terminal continuously monitors the PDCCH during activation. If the terminal has uplink grant or downlink data arrives on any of the serving cells, the terminal starts or restarts the drx-Inactivity Timer. Otherwise, the on Duration Timer will go directly to the sleep period after timeout. If the terminal does not successfully receive downlink data during the activation, it will start or restart the drx-Retransmission after the Hybrid Automatic Repeat reQuest (HARQ) Return Time Timer (HARQ RTT) (such as 8ms).
  • HARQ Hybrid Automatic Repeat reQuest
  • HARQ RTT Return Time Timer
  • the Timer is for downlink asynchronous HARQ retransmission
  • the drx-ULRetransmission Timer is for uplink asynchronous HARQ retransmission.
  • the terminal waits for retransmission of data during the drx-ULRetransmission Timer or the drx-Retransmission Timer. If the drx-Retransmission Timer or the drx-ULRetransmission Timer expires and the corresponding data has not been retransmitted, the terminal may directly enter the sleep period. In short, the length of the activation period depends on the on Duration Timer, drx-Inactivity Timer, drx-ULRetransmission Timer, and drx-Retransmission Timer.
  • PDCCH-subframes are counted in PDCCH-subframes to determine the duration of the activation period.
  • PDCCH-subframe is: if the carrier aggregation cell adopts the Time Division Duplexing (TDD) system, all downlink subframes transmitted by the base station in the carrier aggregation cell can be defined as a PDCCH subframe. If the carrier aggregation cell is not all in the Frequency Division Duplexing (FDD) system, there are two cases: the first one is the TDD system and the other is the partial TDD system.
  • TDD Time Division Duplexing
  • the terminal is based on a special cell (SPCell), if the subframe sent by the base station in the SPCell is a downlink. Frame, then the subframe transmitted by the base station is the PDCCH subframe.
  • the SPCell is a primary cell (PCell) or a primary secondary cell (PSCell) of the secondary base station. If the terminal can receive and send the message at the same time in the carrier aggregation cell, the subframe of any one cell is a downlink subframe, and the PDCCH subframe can be determined at this time. However, in this case, the cell that is scheduled to be cross-carrier scheduled needs to be removed. Subframe.
  • PCell, SCell1, SCell2, and SCell3 are all serving cell aggregation carriers of the terminal. If SCell2 is used to perform SCell3 cross-carrier scheduling, the subframe of SCell3 needs to be removed when determining the PDCCH subframe.
  • the mac-contentionresolution Timer is also counted by PDCCH-subframe. This timer is applicable to contention-based random access messages.
  • the base station (Evolutional Node B, eNB) sends a message 2, that is, a random access response message.
  • the terminal sends a message 3, and the specific content of the message is many, such as a Buffer Status Report (BSR), s-TMSI, and the like.
  • BSR Buffer Status Report
  • s-TMSI s-TMSI
  • the eNB sends a message 4, that is, a contention resolution message. After the terminal successfully sends the message 3, The mac-contentionresolution Timer is started to wait for the delivery of message 4.
  • LAA License Assisted Access
  • UE User Equipment
  • LBT Listen Before Talk
  • the FDD frame structure will not be applicable to the unlicensed cell.
  • the frame structure adopted by the unlicensed cell may be a flexible uplink and downlink frame structure. In one transmission opportunity, it may be a full downlink subframe, or a full uplink subframe, or a partial downlink transmission subframe + a partial uplink subframe + Some special subframes.
  • the terminal when calculating the PDCCH subframe, the terminal needs to distinguish whether the transmission on the current subframe is an uplink transmission, and whether the downlink transmission is a WiFI transmission.
  • the PDCCH subframe is misjudged.
  • the terminal side since the DRX timer of the terminal is counted according to the PDCCH subframe, the terminal side When the DRX timer is counted on the base station side, the terminal cannot accurately determine the subframe direction in the LAA cell, which causes the DRX timer to be inconsistent on the terminal side and the base station side, which in turn affects data scheduling.
  • the embodiment of the present invention provides a method and a device for counting data.
  • the solution of the DRX timer in the carrier aggregation scenario of the existing LAA cell is inconsistent in the terminal side and the base station side, which affects the data scheduling problem.
  • a counting method for carrier aggregation of a first cell and a second cell In the scene, including:
  • the terminal acquires the subframe K1 of the first cell and the subframe K2 of the second cell;
  • the terminal determines a PDCCH subframe in the subframe K2, and determines a listening subframe in the subframe K1 and the subframe K2;
  • the terminal controls the DRX timer to count based on the PDCCH subframe, and monitors the PDCCH based on the listening subframe to learn that downlink data and/or uplink grant arrives;
  • the first cell is a cell that needs to perform channel idle detection
  • the second cell is a cell that does not need channel idle detection.
  • the terminal determines the PDCCH subframe in the subframe of the cell that does not need to perform channel idle detection, controls the counting of the DRX timer based on the PDCCH subframe, and does not need to perform channel idle detection in the cell that needs to perform channel idle detection.
  • the monitoring subframe is determined in the cell, and the PDCCH is monitored on the monitoring subframe, so that the carrier aggregation of the cell that needs to perform channel idle detection and the cell that does not need to perform channel idle detection can be accurately determined on the terminal side when the DRX timer is counted. PDCCH subframes for counting to achieve efficient scheduling.
  • the terminal when the terminal determines the PDCCH subframe in the subframe K2, the terminal may be implemented by: determining, by the terminal, that the subframe K2 includes at least one special subframe and/or Or a downlink subframe; wherein the special subframe includes a subframe that performs uplink transmission and/or downlink transmission in a time division manner.
  • the terminal when the terminal determines the listening subframe in the subframe K1 and the subframe K2, the terminal may be implemented by: determining, by the terminal, the subframe K1 and the subframe K2 A subframe that is a non-uplink subframe is a listening subframe.
  • the DRX timer is a duration timer or a DRX inactivity timer or a DRX retransmission timer or a contention resolution timer.
  • a counting method comprising:
  • the base station sends configuration information to the terminal, where the configuration information includes at least one duration information of the DRX timer.
  • the base station Sending, by the base station, indication information to the terminal, where the indication information is used to indicate that the terminal is from the One time length information is selected from the at least one time length information in the configuration information as the duration of the DRX timer.
  • the base station when the base station sends the configuration information to the terminal, the base station sends the configuration message to the terminal by using a radio resource control message, where the configuration information includes a DRX timer. At least one duration information.
  • the base station when the base station sends the indication information to the terminal, the base station sends the indication message to the terminal by using a physical layer indication message or a medium access control message.
  • the DRX timer is a duration timer or a DRX inactivity timer or a DRX retransmission timer or a contention resolution timer.
  • the base station sends configuration information to the terminal, and configures at least one candidate duration information for the DRX timer in advance, and sends the indication information to the terminal, thereby instructing the terminal to select one of the at least one duration information in the configuration information.
  • the time length information is used as the duration of the DRX timer, so that the terminal counts the DRX timer based on the duration of the DRX timer and the preset counting rule of the DRX timer, so that the terminal uses the base station as the terminal in advance.
  • the duration of the configured DRX timer is the same as that of the DRX timer. This prevents the DRX timer from being inconsistent between the terminal and the base station and affects data scheduling.
  • a counting method comprising:
  • the terminal receives the indication information sent by the base station, where the indication information is used to indicate that the terminal selects one duration information from the at least one duration information in the configuration information as the duration of the DRX timer;
  • the terminal counts the DRX timer based on a duration of the DRX timer and a preset counting rule of the DRX timer.
  • the terminal receives configuration information of the at least one duration information including the DRX timer sent by the base station, and instructs the terminal to select one of the at least one duration information in the configuration information.
  • the duration information is used as the indication information of the duration of the DRX timer, and the terminal counts the DRX timer based on the duration of the DRX timer and the preset counting rule of the DRX timer, so that the terminal uses the base station as
  • the duration of the DRX timer pre-configured by the terminal adopts a unified DRX timer counting rule to prevent the DRX timer from being inconsistent in understanding between the terminal and the base station and affecting data scheduling.
  • a counting device is provided, the counting device being applied to a terminal, comprising an obtaining unit, a determining unit and a processing unit, wherein:
  • the acquiring unit is configured to acquire the subframe K1 of the first cell and the subframe K2 of the second cell;
  • a determining unit configured to determine a PDCCH subframe in the subframe K2, and determine a listening subframe in the subframe K1 and the subframe K2;
  • a processing unit configured to control, according to the PDCCH subframe, a DRX timer to perform counting, and monitor the PDCCH based on the listening subframe to learn that downlink data and/or uplink grant arrives;
  • the first cell is a cell that needs to perform channel idle detection
  • the second cell is a cell that does not need channel idle detection.
  • the determining unit when determining the PDCCH subframe in the subframe K2, is specifically configured to: determine that the subframe K2 includes at least one special subframe and/or a downlink subframe. ;
  • the special subframe includes a subframe that performs uplink transmission and/or downlink transmission in a time division manner.
  • the determining unit determines the listening subframe in the subframe K1 and the subframe K2
  • the determining unit is specifically configured to:
  • the subframes in the subframe K1 and the subframe K2 that are non-uplink subframes are the monitoring subframes.
  • the DRX timer is a duration timer or a DRX inactivity timer or a DRX retransmission timer or a contention resolution timer.
  • a counting device is provided, the counting device being applied to a base station, including a first sending unit and a second sending unit, wherein:
  • a first sending unit configured to send configuration information to the terminal, where the configuration information includes DRX timing At least one duration information of the device.
  • the second sending unit is configured to send the indication information to the terminal, where the indication information is used to instruct the terminal to select one duration information from the at least one duration information in the configuration information as the duration of the DRX timer.
  • the first sending unit is configured to:
  • the second sending unit is configured to:
  • the indication message is sent to the terminal by a physical layer indication message or a medium access control message.
  • the DRX timer is a duration timer or a DRX inactivity timer or a DRX retransmission timer or a contention resolution timer.
  • a counting device is provided, the counting device being applied to a terminal, comprising a receiving unit and a processing unit, wherein:
  • a receiving unit configured to receive configuration information that is sent by the base station and includes at least one duration information of the DRX timer
  • the receiving unit is further configured to receive indication information that is sent by the base station, where the indication information is used to indicate that one duration information is selected from the at least one duration information in the configuration information as a duration of the DRX timer;
  • a processing unit configured to determine a duration of the DRX timer based on the indication information
  • the processing unit is further configured to count the DRX timer based on a duration of the DRX timer and a preset counting rule of the DRX timer.
  • a terminal device comprising a processor, a memory, and a communication device, wherein the memory stores a computer readable program, and the processor controls the program by running a program in the memory
  • the communication device implements the counting method involved in the first aspect.
  • a network device comprising a processor, a memory, a transceiver, wherein the memory stores a computer readable program, and the processor controls the program by running a program in the memory
  • the transceiver implements the counting method involved in the second aspect.
  • a ninth aspect a terminal device is provided, the device comprising a processor, a memory, and a communication device, wherein the memory stores a computer readable program, and the processor controls the program by running a program in the memory
  • the communication device implements the counting method involved in the third aspect.
  • the counting scheme provided by the embodiment of the present invention in the carrier aggregation scenario of the LAA cell, avoids inconsistency between the base station side and the terminal side when the DRX timer is counted, and affects data scheduling.
  • Figure 1 is a schematic diagram of a DRX cycle
  • FIG. 2 is a schematic structural diagram of a system in an embodiment of the present invention.
  • FIG. 3 is a flowchart of a counting method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of on Duration Timer counting in a carrier aggregation scenario of an LAA cell according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a drx-inactivity Timer count in a carrier aggregation scenario of a LAA cell according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a drx-Retransmission Timer count in a carrier aggregation scenario of a LAA cell according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of another counting method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a counting device according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a counting device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a counting apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a counting device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a counting apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a counting device according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • 5G 5G
  • the base station which may be referred to as a Radio Access Network (RAN) device, is a device that accesses the terminal to the wireless network, including but not limited to: an evolved Node B (eNB). ), radio network controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), BaseBand Unit (BBU), WIFI Access Point (AP), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • home base station for example, Home evolved NodeB, or Home Node B, HNB
  • BBU BaseBand Unit
  • AP WIFI Access Point
  • the terminal that is, the UE, which may also be called a mobile terminal (Mobile Terminal), a mobile user equipment, etc., may communicate with one or more core networks via a radio access network (for example, a Radio Access Network, RAN for short).
  • the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device,
  • the wireless access network exchanges languages and/or data, which is not limited by the present invention.
  • CA Carrier Aggregation
  • LTE-A Long Term Evolution Advanced
  • LTE-A Long Term Evolution Advanced
  • CA technology which supports aggregation of multiple component carriers (CCs). It includes CC aggregation in the same frequency band, adjacent or non-adjacent CC aggregation in the same frequency band, and CC aggregation in different frequency bands.
  • the terminal can decide the maximum according to the size of its own capabilities. When using several carriers for uplink and downlink transmission.
  • the aggregated component carrier includes a primary component carrier (PCC) and at least one secondary component carrier (SCC), wherein the component carriers belong to the same base station, and the PCC is used for control.
  • the transmission of the surface can also be used for the transmission of the user plane; the SCC is used for the transmission of the user plane.
  • the cell corresponding to the PCC is a PCell, and the cell corresponding to the SCC is an SCell.
  • the PCell is a cell initially accessed by the terminal and is responsible for radio resource control (RRC) communication with the terminal.
  • the SCell is added during RRC reconfiguration to provide additional radio resources.
  • the PCell is determined at the time of connection establishment; the SCell is added/modified/released by the RRC Connection Reconfiguration message after the initial security activation procedure.
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • the wireless communication network 100 may include at least one base station 110 and a core network device 130 for supporting the terminal 120 for communication.
  • base station 110 can be an evolved NodeB (eNB) in LTE that can support or manage at least one authorized cell and/or at least one LAA cell.
  • eNB evolved NodeB
  • DC Dual Connectivity
  • the base station 110 can implement the functions of the primary base station and/or the secondary base station.
  • the core network device 130 may include a Mobile Management Entity (MME).
  • MME Mobile Management Entity
  • the scenario involved is that the carrier aggregation of the LAA cell and the authorized cell provides a counting scheme of the DRX timer.
  • the carrier aggregation of the LAA cell and the authorized cell to which the embodiment of the present invention is applicable mainly includes the following scenarios:
  • TDD cell+LAA cell that is, carrier aggregation of a TDD cell and a LAA cell, where a TDD cell is used as a primary cell.
  • Scenario 2 FDD cell + TDD cell + LAA cell, that is, carrier aggregation of a TDD cell, an FDD cell, and an LAA cell.
  • the scenario includes two scenarios. In the first scenario, the FDD cell is used as the primary cell, and the TDD cell and the LAA are used. The cell serves as a secondary cell; in the second case, the TDD cell serves as a primary cell, and the FDD cell and the LAA cell serve as secondary cells.
  • TDD cell+TDD cell+LAA cell that is, carrier aggregation of the TDD cell, the TDD cell, and the LAA cell.
  • the TDD cell can adopt the same uplink-downlink ratio mode, and can also adopt different uplink-downlink ratios.
  • eIMTA TDD cell+LAA cell that is, carrier aggregation of the eIMTA TDD cell and the LAA cell
  • the eIMTA TDD cell is used as the primary cell
  • the LAA cell is used as the secondary cell.
  • the eIMTA TDD refers to the uplink and downlink ratio of the dynamic TDD.
  • the eNB notifies the multiple uplink and downlink ratios of the TDD. The specific use depends on the indication of the eNB, so that the uplink and downlink data can be flexibly adapted. flow.
  • LAA Cell+LAA cell(s) that is, carrier aggregation of multiple LAA cells, where one LAA cell is used as the primary cell, and the remaining LAA cells are used as secondary cells.
  • the embodiment of the present invention provides a method and a device for counting.
  • the solution of the DRX timer in the carrier aggregation scenario of the existing LAA cell is inconsistent in the terminal side and the base station side, and affects the data scheduling problem.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • FIG. 3 is a flowchart of a counting method according to an embodiment of the present invention.
  • the method is applied to a carrier aggregation scenario of a first cell and a second cell.
  • the first cell is in the foregoing scenario.
  • the LAA cell, the second cell is an authorized cell in the above scenario, such as a TDD cell and/or an FDD cell.
  • the method includes the following steps:
  • Step 30 The terminal acquires the subframe K1 of the first cell and the subframe K2 of the second cell.
  • the first cell is a cell that needs to perform channel idle detection
  • the second cell is a cell that does not need to perform channel idle detection.
  • the base station may send a downlink transmission in the subframe K1, or allocate an uplink transmission resource for the terminal to perform uplink transmission, or not transmit any transmission.
  • the number of the first cells may be one or more, and the number of the second cells may also be one or more. If the number of the first cells is multiple, the subframe K1 is a set of subframes of multiple cells. If the number of the second cells is multiple, the subframe K2 is a set of subframes of multiple cells.
  • Step 31 The terminal determines a PDCCH subframe in the subframe K2, and determines a listening subframe in the subframe K1 and the subframe K2.
  • the terminal determines that the subframe K2 includes at least one special subframe and/or a downlink subframe, and is considered to be one PDCCH subframe.
  • the special subframe includes a subframe that performs uplink transmission and/or downlink transmission in a time division manner.
  • the subframe includes two dimension information: a time domain dimension (such as a subframe standard duration of 1 millisecond, ms) and a frequency domain dimension (such as a spectrum resource of a certain bandwidth size).
  • the PDCCH subframe is described from a time domain dimension, and the frequency domain dimension may not be limited.
  • the terminal determines that the subframes that are non-uplink subframes in the subframe K1 and the subframe K2 are the monitoring subframes.
  • the non-uplink subframe is a downlink subframe or a special subframe.
  • all subframes in the subframe K1 are downlink subframes or all subframes are special subframes, or some downlink subframes exist in all subframes, or some special subframes exist in all subframes.
  • the terminal is always determined as a listening subframe of the first cell, and the listening subframe of the first cell is a set of subframes in which all subframes in the subframe K1 include a downlink subframe or a special subframe; similarly, the subframe K2
  • the terminal is always determined to be a first subframe.
  • the listening subframe of the second cell, the listening subframe of the second cell is a set of subframes in the subframe K2 that include a downlink subframe or a special subframe.
  • the listening subframe includes a listening subframe of the first cell and a listening subframe of the second cell.
  • the terminal can learn by detecting the reference signal and/or the downlink control information of the first cell.
  • the subframe of the first cell is a non-uplink subframe
  • the subframe of the current second cell is a non-uplink subframe according to a rule of a subframe type, such as FDD or TDD.
  • the downlink control information can be used to indicate the time domain location of the special subframe of the terminal.
  • the terminal determines the PDCCH subframe in the subframe K1 and the subframe K2, and may specifically adopt the following two implementation manners.
  • the terminal determines a PDCCH subframe in the subframe K1 and the subframe K2
  • the K1 subframe includes an uplink transmission, or a downlink transmission, or any other non-long-term evolution (Long Term Evolution, LTE)/Long Term Evolution-Advanced (LTE-A)/Long Term Evolution-Advanced Pro (LTE-Ap) transmission of different air interface technologies, such as Wi- Fi transmission
  • the K2 subframe includes uplink transmission and/or downlink transmission, and the terminal is always determined to be one PDCCH subframe.
  • the terminal determines a PDCCH subframe in the subframe K1 and the subframe K2 when the terminal determines that the K1 subframe includes a downlink transmission, and/or, the terminal determines the K2 sub-frame
  • the frame contains downlink transmission, and the terminal is always determined to be one PDCCH subframe.
  • the terminal may be configured to detect that the subframe of the current first cell includes the downlink transmission by detecting the reference signal and/or the downlink control information of the first cell.
  • Step 32 The terminal controls the DRX timer to count based on the PDCCH subframe, and monitors the PDCCH based on the listening subframe to learn downlink data and/or uplink grant arrival.
  • the terminal monitors the PDCCH in the listening subframe, including the subframe monitoring PDCCH in which all subframes in the subframe K1 and the subframe K2 include non-uplink subframes.
  • the DRX timer is a duration timer or a DRX inactivity timer or a DRX retransmission timer or a DRX uplink retransmission timer or a contention resolution timer.
  • the PCell is a TDD cell with an uplink-downlink ratio mode of 2
  • the SCell cell is a LAA cell
  • the frame structure used is a flexible frame structure.
  • the first cell is a TDD cell
  • the second cell is an LAA cell.
  • the terminal wakes up in the subframe n+2 to enter the activation period, turns on the On Duration Timer and listens to the LAA.
  • the PDCCH of the cell is an uplink subframe by monitoring the indication information of the downlink control information from subframe n+4 to subframe n+9.
  • the terminal determines the subframe in the TDD cell as the downlink subframe or the subframe of the special subframe as the PDCCH subframe, that is, the subframe n+5, the subframe n+6, the subframe n+10, and the subframe n+11 are
  • the PDCCH subframe is counted for the on Duration Timer on the PDCCH subframe; the subframe in which the subframe in the LAA cell and the TDD cell is a non-uplink subframe is determined as the listening subframe, and the terminal does not receive the uplink grant indication in the LAA cell.
  • the subframe n+10, the subframe n+11, the subframe n+12, the subframe n+13, and the subframe n+14 are indication information of the uplink subframe, so in the subframe n+2, the subframe n+ 3.
  • Sub-frame n+5, sub-frame n+6, sub-frame n+10, sub-frame n+11, sub-frame n+12, sub-frame n+13, sub-frame n+14 determine the listening sub-frame, specific In sub-frame n+2, subframe n+3, subframe n+5, subframe n+6, subframe n+10, subframe n+1, subframe n+12, subframe n+13
  • the cell reference signal of the LAA cell is detected to learn the listening subframe of the LAA cell
  • the listening subframe of the TDD cell is the downlink subframe of the TDD cell in the uplink and downlink ratio mode, in the listening subframe.
  • the PDCCH on the TDD cell and the LAA cell is monitored, and the arrival of the downlink data and/or the uplink grant is known.
  • the terminal subframe n+2 does not count on the Duration of the Timer, but needs to listen to the PDCCH of the LAA cell.
  • the on Duration Timer is not counted, but the PDCCH of the LAA cell needs to be monitored.
  • Frame n+4 neither monitors the PDCCH of the TDD cell and the LAA cell nor counts the on Duration Timer.
  • the terminal does not need to monitor the PDCCH of the TDD cell and the LAA cell, nor count the on Duration Timer.
  • the terminal learns that the current subframe transmission is based on the indication information of the reference signal and the downlink control information of the LAA cell not detected. Wi-Fi transmission, so only the PDCCH of the TDD cell needs to be monitored.
  • the terminal cannot detect the cell reference signal, so the PDCCH of the LAA cell is not monitored. And without monitoring the PDCCH of the TDD cell.
  • the terminal learns that the current subframe is a downlink subframe of the LAA cell according to the cell reference signal of the LAA cell, so the LAA cell is monitored. PDCCH, but does not need to listen to the PDCCH of the TDD cell.
  • DRX timers such as drx-Inactivity Timer, drx-Retransmission Timer, drx-ULRetransmission Timer, mac-contention resolution Timer, the specific counting rule and the listening PDCCH rule are the same as above.
  • the same terminal wakes up when the subframe n+2, enters the activation period, starts on Duration Timer, and the counting rule is analyzed as above.
  • the subframe n+5 there is downlink data arrival.
  • the drx-Inactivity Timer is started, the DRX activation time is extended, the specific counting rule and the PDCCH rule are monitored, just like the on Duration Timer. That is, the PDCCH is counted on the PDCCH subframe, and the PDCCH of the TDD cell and the LAA cell is monitored on the listening subframe to learn the arrival of the downlink data and/or the uplink grant.
  • the same terminal wakes up when the subframe n+2, enters the activation period, starts the On Duration Timer, and the counting rule is analyzed as above.
  • the downlink data is received in subframe n+5, but the terminal does not successfully decode the data.
  • the terminal starts the drx-Retransmission Timer timer in a subsequent subframe to wait for retransmission of data and prolong the activation time.
  • Specific counting rules and monitoring PDCCH rules like on Duration Timer. That is, the PDCCH is counted on the PDCCH subframe, and the PDCCH of the TDD cell and the LAA cell is monitored on the listening subframe to learn the arrival of the downlink data and/or the uplink grant.
  • the terminal determines the PDCCH subframe in the subframe of the cell that does not need to perform channel idle detection, that is, the subframe of the authorized cell, and controls the counting of the DRX timer based on the PDCCH subframe, and needs to perform channel idle detection.
  • the cell that is, the LAA cell and the cell that does not need to perform channel idle detection, that is, the subframe of the authorized cell, determines the listening subframe, and monitors the PDCCH on the monitoring subframe, so that in the carrier aggregation of the LAA cell, the DRX timer counts on the terminal side.
  • the PDCCH subframe for counting can be accurately determined to achieve efficient scheduling.
  • FIG. 7 is a flowchart of another counting method according to an embodiment of the present invention. The method includes the following steps:
  • Step 71 The base station sends configuration information to the terminal, where the configuration information includes at least one duration information of the DRX timer.
  • the DRX timer is a duration timer or a DRX inactivity timer or a DRX retransmission timer or a DRX uplink retransmission timer or a contention resolution timer.
  • the base station sends the configuration message to the terminal by using a radio resource control message, where the configuration information includes at least one duration information of the DRX timer.
  • the base station carries configuration information including at least one duration information of the DRX timer in an RRC Link Reconfiguration message and sends the configuration information to the terminal.
  • Step 72 The base station sends the indication information to the terminal, where the indication information is used to indicate that the terminal selects one duration information from the at least one duration information in the configuration information as the duration of the DRX timer.
  • the base station sends the indication message to the terminal by using a physical layer indication message or a media access control message.
  • the base station may use direct signaling indication or indirect signaling indication.
  • the base station configures three durations for the on Duration timer in advance, which are respectively T1, T2, and T3.
  • the base station selects the duration T2 as the duration of the On Duration Timer according to the busy condition of the current channel, and notifies the terminal of the on Duration by the physical layer indication message.
  • the duration of the Timer is T2.
  • the base station configures three durations for the on Duration timer, which are respectively T1, T2, and T3.
  • the base station sends a mapping relationship between the duration of the Duration Duration and the Transmission Time Interval (TTI) to the terminal, assuming an On Duration.
  • the mapping relationship between the duration of the Timer and the TTI is that the subframe number is divided by 3 and 1 corresponding to T1, the subframe number is divided by 3 and 2 corresponding to T2, and the subframe number can be divided by 3 corresponding to T3, and the terminal can be based on the current frame.
  • the number and/or subframe number infer which duration of the On Duration Time to use. For example, subframe 1 corresponds to T1, subframe 2 corresponds to T2, and subframe 3 corresponds to T3. Therefore, the terminal indicates the downlink transmission according to the PDCCH received on the subframe, and determines the duration of the current DRX timer. According to the feedback of the terminal to the downlink transmission, the base station determines which duration of the terminal is currently used.
  • Step 73 The terminal determines a duration of the DRX timer based on the indication information.
  • Step 74 The terminal is based on the duration of the DRX timer and the preset DRX timing.
  • the counting rule of the device counts the DRX timer.
  • the counting rule of the DRX timer is determined by the base station and the terminal in advance, and follows a unified counting rule, so that the DRX timer does not understand the inconsistency between the terminal side and the base station side when counting, which affects data scheduling.
  • the DRX timer is a duration timer or a DRX inactivity timer or a DRX retransmission timer or a DRX uplink retransmission timer or a contention resolution timer.
  • the base station sends configuration information to the terminal, and configures at least one candidate duration information for the DRX timer in advance, and sends the indication information to the terminal, thereby instructing the terminal to at least from the configuration information.
  • Selecting a duration information as the duration of the DRX timer and the terminal counts the DRX timer based on the duration of the DRX timer and the preset counting rule of the DRX timer, so that the terminal
  • the time limit of the DRX timer pre-configured by the base station is adopted, and the unified DRX timer counting rule is adopted to prevent the DRX timer from being inconsistent in understanding between the terminal and the base station, thereby affecting data scheduling.
  • FIG. 8 is a schematic structural diagram of an apparatus 800 according to an embodiment of the present invention.
  • the apparatus 800 includes an obtaining unit 801, a determining unit 802, and a processing unit 803, where:
  • An obtaining unit 801, configured to acquire a subframe K1 of the first cell and a subframe K2 of the second cell;
  • a determining unit 802 configured to determine a PDCCH subframe in the subframe K2, and determine a listening subframe in the subframe K1 and the subframe K2;
  • the processing unit 803 is configured to control, according to the PDCCH subframe, a DRX timer to perform counting, and monitor the PDCCH based on the listening subframe to learn that downlink data and/or uplink grant arrives;
  • the first cell is a cell that needs to perform channel idle detection
  • the second cell is a cell that does not need channel idle detection.
  • the determining unit 802 when the determining, by the determining unit 802, the PDCCH subframe in the subframe K2, the determining unit 802 is specifically configured to: Determining that the subframe K2 includes at least one special subframe and/or a downlink subframe;
  • the special subframe includes a subframe that performs uplink transmission and/or downlink transmission in a time division manner.
  • the determining unit 802 determines the listening subframe in the subframe K1 and the subframe K2
  • the determining unit 802 is specifically configured to:
  • the subframes in the subframe K1 and the subframe K2 that are non-uplink subframes are the monitoring subframes.
  • the DRX timer is a duration timer or a DRX inactivity timer or a DRX retransmission timer or a contention resolution timer.
  • the device 800 involved in the foregoing embodiments may be a separate component, or may be integrated into other components.
  • the foregoing device 800 provided by the embodiment of the present invention may be a terminal in an existing communication network, or may be integrated in the terminal. Parts within the terminal.
  • each of the above “units” may be through a specific application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or others that provide the above functions.
  • ASIC application-specific integrated circuit
  • processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or others that provide the above functions.
  • the device is implemented.
  • FIG. 9 is a schematic structural diagram of a terminal 900 according to an embodiment of the present invention.
  • the terminal 900 is applied to a first cell and a second cell.
  • the terminal 900 includes a processor 901, a memory 902, and a communication device 903.
  • the program code for executing the scheme of the present invention is stored in the memory 902 and controlled by the processor 901 for execution.
  • the program stored in the memory 902 is used by the instruction processor 901 to perform the counting method, including: acquiring, by the communication device 903, the subframe K1 of the first cell and the subframe K2 of the second cell; in the subframe K2 Determining a PDCCH subframe, determining a listening subframe in the subframe K1 and the subframe K2; controlling the DRX timer to count based on the PDCCH subframe, and monitoring the PDCCH based on the listening subframe to learn downlink data and/or uplink Authorized to arrive.
  • the first cell is a cell that needs to perform channel idle detection, and the second cell is not needed.
  • the frame includes subframes for uplink transmission and/or downlink transmission by time division.
  • the processor 901 determines the listening subframe in the subframe K1 and the subframe K2, specifically, the processor 901 is configured to:
  • the subframes in the subframe K1 and the subframe K2 that are non-uplink subframes are the monitoring subframes.
  • the DRX timer is a duration timer or a DRX inactivity timer or a DRX retransmission timer or a contention resolution timer.
  • the terminal 900 of the present embodiment can be used to implement all the functions of the terminal in FIG. 3 in the foregoing method embodiment.
  • the specific implementation process reference may be made to the description of the terminal execution method in the foregoing method embodiment, and details are not described herein again. .
  • the processor 901 involved in the foregoing terminal 900 may be a general-purpose central processing unit (CPU), a microprocessor, a specific application integrated circuit, or one or more program programs for controlling the present invention. Execution of the integrated circuit.
  • One or more memories included in the computer system which may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) Or other types of dynamic storage devices that can store information and instructions, or disk storage. These memories are connected to the processor via a bus.
  • Communication device 903 may be a physical module capable of transceiving functions to communicate with other devices or communication networks.
  • a memory 902 such as a RAM, holds an operating system and a program for executing the inventive arrangements.
  • the operating system is a program that controls the running of other programs and manages system resources.
  • the memory 902 and the communication device 903 may be connected to the processor 901 via a bus, or may be respectively connected to the processor 901 through a dedicated connection line.
  • the processor 901 By designing the processor 901, the code corresponding to the method shown in FIG. 3 of the embodiment of the present invention is solidified into the chip, so that the chip can perform the method shown in FIG. 3 during operation. How to design and program the processor 901 is a technique well known to those skilled in the art, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a device 1000 according to an embodiment of the present invention.
  • the apparatus 1000 includes a first sending unit 1001 and a second sending unit 1002, where:
  • the first sending unit 1001 is configured to send configuration information to the terminal, where the configuration information includes at least one duration information of the DRX timer.
  • the second sending unit 1002 is configured to send the indication information to the terminal, where the indication information is used to instruct the terminal to select one duration information from the at least one duration information in the configuration information as the duration of the DRX timer.
  • the first sending unit 1001 is configured to:
  • the second sending unit 1002 is configured to:
  • the indication message is sent to the terminal by a physical layer indication message or a medium access control message.
  • the DRX timer is a duration timer or a DRX inactivity timer or a DRX retransmission timer or a contention resolution timer.
  • the device 1000 involved in the foregoing embodiments may be a separate component, or may be integrated into other components.
  • the foregoing device 1000 provided by the embodiment of the present invention may be a base station in an existing communication network, or may be integrated in Components within the base station.
  • each of the above “units” may be implemented by an ASIC, a processor and memory executing one or more software or firmware programs, integrated logic circuitry, and/or other devices that provide the functionality described above.
  • FIG. 11 is a schematic structural diagram of a device 1100 according to an embodiment of the present invention.
  • the device 1100 may be a base station or other devices located on the base station.
  • the device 1100 includes a processor 1101, a memory 1102, a transceiver 1103, and program code for executing the inventive scheme is stored in the memory 1102 and controlled by the processor 1101 for execution.
  • the program stored in the memory 1102 is used by the instruction processor 1101 to perform a counting method, including: transmitting, by the transceiver 1103, configuration information to the terminal, the configuration information including at least one duration information of the DRX timer; and the transceiver 1103 to the terminal
  • the indication information is used to indicate that the terminal selects one duration information from the at least one duration information in the configuration information as the duration of the DRX timer.
  • the transceiver 1103 is configured to:
  • the transceiver 1103 is configured to:
  • the indication message is sent to the terminal by a physical layer indication message or a medium access control message.
  • the DRX timer is a duration timer or a DRX inactivity timer or a DRX retransmission timer or a contention resolution timer.
  • the device 1100 of this embodiment may be used to implement all the functions of the base station in FIG. 7 in the foregoing method embodiment.
  • the specific implementation process reference may be made to the related description of the method for performing the base station in FIG. 7 in the foregoing method embodiment. Let me repeat.
  • the processor 1101 involved in the apparatus 1100 described above may be a general purpose central processing unit, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the program of the present invention.
  • One or more memories included in the computer system which may be ROM) or other types of static storage devices that can store static information and instructions, random access memory RAM or other types of dynamic storage devices that can store information and instructions, It can be disk storage. These memories are connected to the processor via a bus.
  • the transceiver 1103 can be a physical module capable of transceiving functions to communicate with other devices or communication networks.
  • a memory 1102 such as a RAM, holds an operating system and a program for executing the inventive arrangements.
  • the operating system is a program that controls the running of other programs and manages system resources.
  • the memory 1102 and the transceiver 1103 may be connected to the processor 1101 via a bus, or may be respectively connected to the processor 1101 via a dedicated connection line.
  • the processor 1101 By designing the processor 1101, the code corresponding to the execution process of the method base station shown in FIG. 7 of the embodiment of the present invention is solidified into the chip, so that the chip can execute the execution process of the base station shown in FIG. 7 during operation. .
  • How to design and program the processor 1101 is a technique well known to those skilled in the art, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of a device 1200 according to an embodiment of the present invention.
  • the apparatus 1200 includes a receiving unit 1201 and a processing unit 1202, wherein:
  • the receiving unit 1201 is configured to receive configuration information that is sent by the base station and includes at least one duration information of the DRX timer.
  • the receiving unit 1201 is further configured to receive indication information that is sent by the base station, where the indication information is used to indicate that one duration information is selected from the at least one duration information in the configuration information as a duration of the DRX timer;
  • the processing unit 1202 is configured to determine, according to the indication information, a duration of the DRX timer.
  • the processing unit 1202 is further configured to count the DRX timer based on a duration of the DRX timer and a preset counting rule of the DRX timer.
  • the device 1200 involved in the foregoing embodiments may be a separate component, or may be integrated into other components.
  • the foregoing apparatus 1200 provided by the embodiment of the present invention may be a terminal in an existing communication network, or may be integrated in the terminal. Parts within the terminal.
  • each of the above “units” may be implemented by a specific application integrated circuit, a processor and memory executing one or more software or firmware programs, integrated logic circuits, and/or others may provide the above-described functions
  • the device can be implemented.
  • FIG. 13 is a schematic structural diagram of a terminal 1300 according to an embodiment of the present invention.
  • the terminal 1300 includes a processor 1301 .
  • the memory 1302, the communication device 1303, and the program code for executing the scheme of the present invention are stored in the memory 1302 and controlled by the processor 1301 for execution.
  • the program stored in the memory 1302 is used by the instruction processor 1301 to perform the counting method, including: receiving, by the communication device 1303, configuration information of the at least one duration information including the DRX timer sent by the base station; receiving, by the communication device 1303, the indication information sent by the base station, The indication information is used to indicate that a duration information is selected from the at least one duration information in the configuration information as a duration of the DRX timer; determining a duration of the DRX timer based on the indication information; based on the DRX The duration of the timer and the preset counting rule of the DRX timer are counted for the DRX timer.
  • terminal 1300 of this embodiment may be used to implement all the functions of the terminal in FIG. 7 in the foregoing method embodiment.
  • the terminal execution method in the foregoing method embodiment and details are not described herein again. .
  • the processor 1301 involved in the foregoing terminal 1300 may be a general-purpose central processing unit, a microprocessor, an application specific integrated circuit, or one or more integrated systems for controlling the execution of the program of the present invention. Circuit.
  • the one or more memories included in the computer system may be ROM or other types of static storage devices that may store static information and instructions, RAM or other types of dynamic storage devices that may store information and instructions, or may be disk storage. These memories are connected to the processor via a bus.
  • the communication device 1303 may be a physical module capable of transceiving functions to communicate with other devices or communication networks.
  • a memory 1302 such as a RAM, holds an operating system and a program for executing the inventive scheme.
  • the operating system is a program that controls the running of other programs and manages system resources.
  • the memory 1302 and the communication device 1303 may be connected to the processor 1301 via a bus, or may be respectively connected to the processor 1301 through a dedicated connection line.
  • the processor 1301 By designing the processor 1301, the code corresponding to the method executed by the terminal in the embodiment of the present invention is solidified into the chip, so that the chip can execute the execution process of the terminal in the method shown in FIG. 7 during operation. .
  • How to design and program the processor 1301 is a technique well known to those skilled in the art, and details are not described herein again.
  • FIG. 1 These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种计数方法及装置,应用于第一小区与第二小区的载波聚合场景中。该方法为,终端获取所述第一小区的子帧K1以及所述第二小区的子帧K2;所述终端在子帧K2中确定PDCCH子帧,在子帧K1和子帧K2中确定监听子帧;所述终端基于所述PDCCH子帧,控制DRX定时器进行计数,并基于所述监听子帧监听PDCCH,以获知下行数据和/或上行授权到达;所述第一小区为需做信道空闲检测的小区,所述第二小区为不需做信道空闲检测的小区。这样DRX定时器计数时在终端侧能够准确确定出用于计数的PDCCH子帧,以实现高效的调度。

Description

一种计数方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种计数方法及装置。
背景技术
为了使终端省电,LTE系统引入了非连续接收(Discontinuous reception,DRX)技术,DRX周期包括激活期和休眠期。终端会周期性的醒来进入激活期,在激活期去监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),检测是否有下行数据或上行授权到达,在休眠期不监听PDCCH信道。
在激活期间终端会根据条件启动相应的DRX定时器,如持续时间定时器(on Duration Timer),DRX静止定时器(drx-Inactivity Timer),DRX重传定时器(drx-Retransmission Timer),DRX上行重传定时器(drx-ULRetransmission Timer),竞争解决定时器(mac-ContentionResolution Timer)等,其中,onDuration Timer,drx-Inactivity Timer,mac-Contention Resolution Timer是按照终端配置的,所有的服务小区都使用相同的定时器,而drx-Retransmission Timer,drx-ULRetransmission Timer是按服务小区的HARQ进程配置的,每一个HARQ进程维护一个相应的drx-Retransmission Timer或drx-ULRetransmission Timer。
具体的,终端在休眠期结束后启动on Duration Timer。终端在激活期间不停的监听PDCCH,如果在任意一个服务小区上终端有上行授权或下行数据到达,那么终端启动或重启drx-Inactivity Timer。否则,on Duration Timer超时后直接进入休眠期。终端在激活期间如果未成功接收下行数据,那么会在混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)回程时间定时器(HARQ Round Timer,HARQ RTT)(如8ms)后启动或重启drx-Retransmission Timer,或启动或重启drx-ULRetransmission Timer,其中drx-Retransmission  Timer是针对下行异步HARQ重传,而drx-ULRetransmission Timer是针对上行异步HARQ重传。终端在drx-ULRetransmission Timer或drx-Retransmission Timer定时器期间等待重传数据,如果drx-Retransmission Timer或drx-ULRetransmission Timer超时,还没重传相应的数据,那么终端就可能直接进入休眠期。总之,激活期的长度取决于on Duration Timer、drx-Inactivity Timer,drx-ULRetransmission Timer和drx-Retransmission Timer等。
这些定时器计数是按PDCCH子帧(PDCCH-subframe)计数,以确定激活期的时长。所谓PDCCH-subframe就是:如果载波聚合小区都采用非时分双工(Time Division Duplexing,TDD)制式,基站在载波聚合小区中发送的所有下行子帧(subframe)则均可定义为PDCCH子帧。如果载波聚合小区采用的不全是频分双工(Frequency Division Duplexing,FDD)制式,则有两种情况:第一种全是TDD制式,另一种是部分TDD制式。在这两种情况下,如果终端在多个载波聚合小区下不能够同时接收和发送消息,则终端以特殊小区(Special Cell,SPCell)为准,如果基站在SPCell中发送的子帧是下行子帧,那么基站发送的子帧就是PDCCH子帧。其中,SPCell为主小区(Primary Cell,PCell)或辅基站的主小区(Primary Secondary Cell,PSCell)。如果终端在载波聚合小区下能够同时接收和发送消息,那么只要任意一个小区的子帧为下行子帧,此时就可确定为PDCCH子帧,不过,这种情况需要除去跨载波调度的小区的子帧。例如,PCell,SCell1,SCell2,SCell3都是终端的载波聚合的服务小区,若采用SCell2跨载波调度SCell3,那么在确定PDCCH子帧时需要除去SCell3的子帧。
另外,mac-contentionresolution Timer也是按PDCCH-subframe计数的。这个定时器适用于基于竞争的随机接入的消息,基于竞争的随机接入主要有四步:第一步,终端发送消息1,即前导序列。第二步,基站(Evolutional Node B,eNB)发送消息2,即随机接入响应消息。第三步,终端发送消息3,消息的具体内容很多,比如缓存状态报告(Buffer Status Report,BSR)、s-TMSI等。第四步,eNB发送消息4,即竞争解决消息。终端在成功发送消息3后,就 会启动mac-contentionresolution Timer,以等待消息4的下发。
LTE引入辅助授权接入(License Assisted Access,LAA)小区之后,并与授权小区载波聚合。在载波聚合小区中,所有小区都是子帧对齐的,即统一的子帧边界和子帧号。同时,3GPP规定,针对LAA小区上的数据传输,无论是eNB还是用户设备(User Equipment,UE),它们在发送任何数据前都要先完成(Listen Before Talk,LBT)过程。如果LBT成功,信道能量检测低于一定门限,则认为信道空闲,数据可正常发送;否则,认为信道忙碌,数据不能发送。
由于非授权小区使用的是非授权频谱,而非授权频谱没有对称的上下行频谱,所以FDD帧结构不会适用于非授权小区。对于TDD模式,尽管有一定数量的上下行配比。但是还是不够灵活,不能根据上下行数据量合理的安排帧结构,从而有效的使用每一次抢占到的传输机会。eNB或终端成功抢占到信道资源的使用权称为传输机会。所以非授权小区采用的帧结构可以为灵活上下行的帧结构,在一个传输机会中,可以是全下行子帧,或者,全上行子帧,或者,部分下行传输子帧+部分上行子帧+部分特殊子帧。
在这种帧结构中,终端在计算PDCCH子帧时,需要区分当前子帧上的传输是上行传输,下行传输还是WiFI传输。但是,现有技术中,终端在区分LAA小区的子帧上的传输方向时,容易出现PDCCH子帧的误判,进一步的,由于终端的DRX定时器是根据PDCCH子帧进行计数,这样终端侧和基站侧在进行DRX定时器计数时,由于终端在LAA小区无法准确判断出子帧方向,从而导致DRX定时器在终端侧和基站侧理解不一致,继而影响数据调度。
发明内容
本发明实施例提供一种计数方法及装置,已解决现有的LAA小区的载波聚合场景下,DRX定时器在终端侧和基站侧理解不一致,影响数据调度的问题。
第一方面,提供一种计数方法,应用于第一小区与第二小区的载波聚合 场景中,包括:
终端获取所述第一小区的子帧K1以及所述第二小区的子帧K2;
所述终端在子帧K2中确定PDCCH子帧,在子帧K1和子帧K2中确定监听子帧;
所述终端基于所述PDCCH子帧,控制DRX定时器进行计数,并基于所述监听子帧监听PDCCH,以获知下行数据和/或上行授权到达;
所述第一小区为需做信道空闲检测的小区,所述第二小区为不需做信道空闲检测的小区。
上述设计中,终端在不需做信道空闲检测的小区的子帧中确定PDCCH子帧,基于PDCCH子帧控制DRX定时器的计数,在需要做信道空闲检测的小区和不需做信道空闲检测的小区中确定监听子帧,在监听子帧上监听PDCCH,这样在需要做信道空闲检测的小区和不需做信道空闲检测的小区的载波聚合下,DRX定时器计数时在终端侧能够准确确定出用于计数的PDCCH子帧,以实现高效的调度。
在第一方面的基础上,可选的,所述终端在子帧K2中确定PDCCH子帧时,可通过如下方式实现:所述终端确定所述子帧K2中包含至少一个特殊子帧和/或下行子帧;其中,所述特殊子帧包括通过时分方式进行上行传输和/或下行传输的子帧。
在第一方面的基础上,可选的,所述终端在子帧K1和子帧K2中确定监听子帧时,可通过如下方式实现:所述终端确定所述子帧K1和所述子帧K2中为非上行子帧的子帧为监听子帧。
在第一方面的基础上,可选的,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或竞争解决定时器。
第二方面,提供一种计数方法,包括:
基站向终端发送配置信息,所述配置信息包括DRX定时器的至少一个时长信息。
所述基站向所述终端发送指示信息,所述指示信息用于指示终端从所述 配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长。
在第二方面的基础上,可选的,所述基站向终端发送配置信息时,包括:所述基站通过无线资源控制消息向所述终端发送所述配置消息,所述配置信息包括DRX定时器的至少一个时长信息。
在第二方面的基础上,可选的,所述基站向所述终端发送指示信息时,所述基站通过物理层指示消息或媒体接入控制消息向所述终端发送所述指示消息。
在第二方面的基础上,可选的,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或竞争解决定时器。
上述设计中,基站向终端发送配置信息,预先为DRX定时器配置至少一个备选的时长信息,并通过向终端发送指示信息,从而指示终端从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长,使终端基于DRX定时器的时长和预设的所述DRX定时器的计数规则,针对所述DRX定时器进行计数,这样,由于终端利用基站为终端预先配置的DRX定时器的时长,采用统一的DRX定时器计数规则,避免DRX定时器在终端和基站理解不一致而影响数据调度。
第三方面,提供一种计数方法,包括:
终端接收基站发送的包括DRX定时器的至少一个时长信息的配置信息;
所述终端接收基站发送的指示信息,所述指示信息用于指示所述终端从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长;
所述终端基于所述指示信息确定所述DRX定时器的时长;
所述终端基于所述DRX定时器的时长和预设的所述DRX定时器的计数规则,针对所述DRX定时器进行计数。
上述设计中,终端接收基站发送的包括DRX定时器的至少一个时长信息的配置信息,和指示终端从所述配置信息中的至少一个时长信息中选择一个 时长信息作为所述DRX定时器的时长的指示信息,终端基于DRX定时器的时长和预设的所述DRX定时器的计数规则,针对所述DRX定时器进行计数,这样,由于终端利用基站为终端预先配置的DRX定时器的时长,采用统一的DRX定时器计数规则,避免DRX定时器在终端和基站理解不一致而影响数据调度。
第四方面,提供一种计数装置,该计数装置应用于终端,包括获取单元、确定单元和处理单元,其中:
获取单元用于获取所述第一小区的子帧K1以及所述第二小区的子帧K2;
确定单元,用于在子帧K2中确定PDCCH子帧,在子帧K1和子帧K2中确定监听子帧;
处理单元,用于基于所述PDCCH子帧,控制DRX定时器进行计数,并基于所述监听子帧监听PDCCH,以获知下行数据和/或上行授权到达;
所述第一小区为需做信道空闲检测的小区,所述第二小区为不需做信道空闲检测的小区。
在第四方面的基础上,可选的,所述确定单元在子帧K2中确定PDCCH子帧时,具体用于:确定所述子帧K2中包含至少一个特殊子帧和/或下行子帧;
其中,所述特殊子帧包括通过时分方式进行上行传输和/或下行传输的子帧。
在第四方面的基础上,可选的,所述确定单元在子帧K1和子帧K2中确定监听子帧时,具体用于:
确定所述子帧K1和所述子帧K2中为非上行子帧的子帧为监听子帧。
在第四方面的基础上,可选的,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或竞争解决定时器。
第五方面,提供一种计数装置,该计数装置应用于基站,包括第一发送单元和第二发送单元,其中:
第一发送单元,用于向终端发送配置信息,所述配置信息包括DRX定时 器的至少一个时长信息。
第二发送单元,用于向所述终端发送指示信息,所述指示信息用于指示终端从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长。
在第五方面的基础上,可选的,所述第一发送单元用于:
通过无线资源控制消息向所述终端发送所述配置消息,所述配置信息包括DRX定时器的至少一个时长信息。
在第五方面的基础上,可选的,所述第二发送单元用于:
通过物理层指示消息或媒体接入控制消息向所述终端发送所述指示消息。
可选的,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或竞争解决定时器。
第六方面,提供一种计数装置,该计数装置应用于终端,包括接收单元和处理单元,其中:
接收单元,用于接收基站发送的包括DRX定时器的至少一个时长信息的配置信息;
所述接收单元,还用于接收基站发送的指示信息,所述指示信息用于指示从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长;
处理单元,用于基于所述指示信息确定所述DRX定时器的时长;
所述处理单元,还用于基于所述DRX定时器的时长和预设的所述DRX定时器的计数规则,针对所述DRX定时器进行计数。
第七方面,提供一种终端设备,该设备包括处理器、存储器、通信器件,其中,所述存储器中存有计算机可读程序,所述处理器通过运行所述存储器中的程序,控制所述通信器件,实现第一方面涉及的计数方法。
第八方面,提供一种网络设备,该设备包括处理器、存储器、收发器,其中,所述存储器中存有计算机可读程序,所述处理器通过运行所述存储器中的程序,控制所述收发器,实现第二方面涉及的计数方法。
第九方面,提供一种终端设备,该设备包括处理器、存储器、通信器件,其中,所述存储器中存有计算机可读程序,所述处理器通过运行所述存储器中的程序,控制所述通信器件,实现第三方面涉及的计数方法。
相较于现有技术,采用本发明实施例提供的计数方案,在LAA小区的载波聚合场景下,DRX定时器计数时,避免基站侧和终端侧理解不一致,影响数据调度。
附图说明
图1为DRX周期示意图;
图2为本发明实施例中的系统架构示意图;
图3为本发明实施例提供的一种计数方法的流程图;
图4为本发明实施例提供的一种LAA小区的载波聚合场景下on Duration Timer计数示意图;
图5为本发明实施例提供的一种LAA小区的载波聚合场景下drx-Inactivity Timer计数示意图;
图6为本发明实施例提供的一种LAA小区的载波聚合场景下drx-Retransmission Timer计数示意图;
图7为本发明实施例提供的另一种计数方法的流程图;
图8为本发明实施例提供的一种计数装置结构示意图;
图9为本发明实施例提供的一种计数设备结构示意图;
图10为本发明实施例提供的一种计数装置结构示意图;
图11为本发明实施例提供的一种计数设备结构示意图;
图12为本发明实施例提供的一种计数装置结构示意图;
图13为本发明实施例提供的一种计数设备结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的技术方案,可以应用于长期演进(Long Term Evolution,简称LTE)系统,未来演进的4.5G或5G系统等,本发明并不限定。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、基站又可以称之为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)、WIFI接入点(Access Point,AP)等。
2)、终端,即UE,也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,简称RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据,本发明并不限定。
3)、载波聚合(Carrier Aggregation,CA)。长期演进的后续演进(Long Term Evolution Advanced,LTE-A)系统为了满足单用户峰值速率和系统容量提升的要求,引入了CA技术,该技术支持多个成员载波(Component Carrier,CC)的聚合,包括在相同频带内的CC聚合,相同频带内相邻或不相邻的CC聚合,以及不同频带内的CC聚合。终端根据自己的能力大小决定最多可以同 时利用几个载波进行上下行传输。
4)、主小区(PCell)和辅小区(SCell)。在聚合的多个成员载波中,包括一个主成员载波(Primary Component Carrier,PCC)和至少一个辅成员载波(Secondary Component Carrier,SCC),其中,这些成员载波都属于同一个基站,PCC用于控制面的传输,也可以用于用户面的传输;SCC用于用户面的传输。PCC对应的小区为PCell,SCC对应的小区为SCell。PCell是终端初始接入的小区,负责与终端之间的无线资源控制(radio resource control,RRC)通信。SCell是在RRC重配置时添加的,用于提供额外的无线资源。PCell是在连接建立(connection establishment)时确定的;SCell是在初始安全激活流程(initial security activation procedure)之后,通过RRC连接重配置消息(RRC Connection Reconfiguration)添加/修改/释放的。
5)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本发明实施例以LTE通信系统为例,但不限于此。如图2所示,在LTE通信系统的架构示意图中,无线通信网络100可以包括至少一个基站110和核心网设备130,用以支撑终端120进行通信。例如,基站110可以是LTE中的演进型基站(evolved NodeB,eNB),该基站110可以支持或管理至少一个授权小区和/或至少一个LAA小区。采用双连接(Dual Connectivity,DC)模式的终端120需要和网络通信时,可以同时从至少两个基站110接收数据,即至少两个基站110为终端120提供服务。其中,基站110可以实现主基站和/或辅基站的功能。核心网设备130可以包括移动性管理实体(Mobile Management Entity,MME)。
本发明实施例,涉及的场景为LAA小区与授权小区的载波聚合下,提供DRX定时器的计数方案。具体的,本发明实施例适用的LAA小区与授权小区的载波聚合主要包括以下场景:
场景一:TDD cell+LAA cell,即TDD小区与LAA小区的载波聚合,其中TDD小区作为主小区。
场景二:FDD cell+TDD cell+LAA cell,即TDD小区、FDD小区与LAA小区的载波聚合,这种场景下包括包括两种情形,第一种情形下FDD小区作为主小区,TDD小区与LAA小区作为辅小区;第二种情形下TDD小区作为主小区,FDD小区与LAA小区作为辅小区。
场景三:TDD cell+TDD cell+LAA cell,即TDD小区、TDD小区与LAA小区的载波聚合,这种场景下TDD小区可以采用相同的上下行配比模式,也可以采用不同的上下行配比模式,其中的一个TDD小区作为主小区,其余的TDD小区和LAA小区作为辅小区。
场景四:eIMTA TDD cell+LAA cell,即eIMTA TDD小区与LAA小区的载波聚合,eIMTA TDD小区作为主小区,LAA小区作为辅小区。其中,eIMTA TDD是指动态TDD上下行配比,对于支持eIMTA的UE,eNB通知多套TDD上下行配比,具体使用那一套取决于eNB的指示,这样就可以较为灵活的适应上下行数据流量。
场景五:LAA Cell+LAA cell(s),即多个LAA小区的载波聚合,其中一个LAA小区作为主小区,其余的LAA小区作为辅小区。
针对上述场景本发明实施例提供一种计数方法及装置,已解决现有的LAA小区的载波聚合场景下,DRX定时器在终端侧和基站侧理解不一致,影响数据调度的问题。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
请参考图3,其为本发明实施例提供的一种计数方法的流程图,该方法应用于第一小区与第二小区的载波聚合场景中,可选的,第一小区为上述场景中的LAA小区,第二小区为上述场景中的授权小区,如TDD小区和/或FDD小区。如图3所示,该方法包括如下步骤:
步骤30:终端获取第一小区的子帧K1以及第二小区的子帧K2。
其中,所述第一小区为需做信道空闲检测的小区,所述第二小区为不需做信道空闲检测的小区。
具体的,基站在所述子帧K1中可以发送下行传输,或分配上行传输资源以便终端进行上行传输,或不发送任何传输。
需要说明的是,在具体实施时,第一小区的数量可以为1个或者多个,同理第二小区的数量也可以为1个或多个。若所述第一小区的数量为多个时,那么所述子帧K1为多个小区的子帧的集合。若所述第二小区的数量为多个时,那么所述子帧K2为多个小区的子帧的集合。
步骤31:终端在子帧K2中确定PDCCH子帧,在子帧K1和子帧K2中确定监听子帧。
具体的,所述终端确定所述子帧K2中包含至少一个特殊子帧和/或下行子帧就认为是一个PDCCH子帧。
其中,所述特殊子帧包括通过时分方式进行上行传输和/或下行传输的子帧。所述子帧包含两个维度信息:时域维度(比如子帧标准时长为1毫秒,ms)和频域维度(比如一定带宽大小的频谱资源)。所述PDCCH子帧是从时域维度描述,频域维度可以不做限制。
具体的,所述终端确定所述子帧K1和所述子帧K2中为非上行子帧的子帧为监听子帧。其中,非上行子帧为下行子帧或特殊子帧。具体的,子帧K1中所有的子帧都是下行子帧或所有的子帧都是特殊子帧或所有的子帧中存在部分下行子帧或所有的子帧中存在部分特殊子帧时,终端始终确定为一个第一小区的监听子帧,该第一小区的监听子帧为子帧K1中所有的子帧包含下行子帧或特殊子帧的子帧的集合;同理,子帧K2中所有的子帧都是下行子帧或所有的子帧都是特殊子帧或所有的子帧中存在部分下行子帧或所有的子帧中存在部分特殊子帧时,终端始终确定为一个第二小区的监听子帧,该第二小区的监听子帧为子帧K2中所有的子帧包含下行子帧或特殊子帧的子帧的集合。监听子帧包括第一小区的监听子帧和第二小区的监听子帧。
可选的,终端可通过检测第一小区的参考信号和/或下行控制信息获知当 前第一小区的子帧为非上行子帧,以及,根据事先协议约定的子帧类型的规则,如FDD或TDD,获知当前第二小区的子帧为非上行子帧。下行控制信息可用于指示终端特殊子帧的时域位置。
一种可能的实施方式中,所述终端在子帧K1和子帧K2中确定PDCCH子帧,具体可以通过以下两种实施方式。
第一种实施方式,所述终端在子帧K1和子帧K2中确定PDCCH子帧时,若所述K1子帧中包含有上行传输,或下行传输,或其他任何非长期演进(Long Term Evolution,LTE)/长期演进技术升级版(Long Term Evolution-Advanced,LTE-A)/长期演进技术升级版的升级版(Long Term Evolution-Advanced Pro,LTE-Ap)的不同空口技术的传输,比如Wi-Fi传输,以及所述K2子帧中包含上行传输和/或下行传输,终端始终确定为一个PDCCH子帧。
第二种实施方式,所述终端在子帧K1和子帧K2中确定PDCCH子帧时,所述终端确定所述K1子帧中包含有下行传输,和/或,所述终端确定所述K2子帧中包含有下行传输,终端始终确定为一个PDCCH子帧。可选的,所述终端可通过检测第一小区的参考信号和/或下行控制信息获知当前第一小区的子帧包含有下行传输。
步骤32:终端基于所述PDCCH子帧,控制DRX定时器进行计数,并基于所述监听子帧监听PDCCH,以获知下行数据和/或上行授权到达。
具体的,终端在所述监听子帧监听PDCCH,包括终端在子帧K1和子帧K2中所有的子帧包含非上行子帧的子帧监听PDCCH。
需要说明的是,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或DRX上行重传定时器或竞争解决定时器。
下面以上述场景一的实施场景为例,来详细说明图3中的计数方法。
如图4所示,TDD小区与LAA小区的载波聚合下,PCell为上下行配比模式为2的TDD小区,SCell小区为LAA小区,使用的帧结构为灵活的帧结构。此时,第一小区为TDD小区,第二小区为LAA小区。
终端在子帧n+2时醒来进入激活期,开启on Duration Timer并监听LAA 小区的PDCCH,通过监听获知下行控制信息的指示信息为子帧n+4到子帧n+9为上行子帧。终端将TDD小区中的子帧为下行子帧或特殊子帧的子帧确定为PDCCH子帧,即子帧n+5、子帧n+6、子帧n+10、子帧n+11为PDCCH子帧,在PDCCH子帧上针对on Duration Timer计数;将LAA小区和TDD小区中的子帧为非上行子帧的子帧确定为监听子帧,由于终端没有接收到上行授权指示LAA小区中的子帧n+10、子帧n+11、子帧n+12、子帧n+13、子帧n+14为上行子帧的指示信息,因此在子帧n+2、子帧n+3、子帧n+5、子帧n+6、子帧n+10、子帧n+11、子帧n+12、子帧n+13、子帧n+14确定监听子帧,具体的,在在子帧n+2、子帧n+3、子帧n+5、子帧n+6、子帧n+10、子帧n+11、子帧n+12、子帧n+13、子帧n+14中检测LAA小区的小区参考信号获知LAA小区的监听子帧,TDD小区的监听子帧是根据上下行配比模式中的TDD小区的下行子帧,在所述监听子帧上监听TDD小区和LAA小区的PDCCH,已获知下行数据和/或上行授权的到达。
因此,终端子帧n+2不做on Duration Timer计数,但是需要监听LAA小区的PDCCH,同理,在子帧n+3也不做on Duration Timer计数,但是需要监听LAA小区的PDCCH,在子帧n+4既不用监听TDD小区和LAA小区的PDCCH,也不计数on Duration Timer。同理,在子帧n+7到子帧n+9,终端既不用监听TDD小区和LAA小区的PDCCH,也不计数on Duration Timer。在子帧n+5和子帧n+6,由于PCell都有下行传输,所以需要计数on Duration Timer,并需要监听TDD小区的PDCCH。对于子帧n+10和n+11,由于PCell都有下行传输,所以需要计数on Duration Timer,终端根据没检测出LAA小区的参考信号和下行控制信息的指示信息,获知当前子帧的传输为Wi-Fi传输,所以只需要监听TDD小区的PDCCH。对于子帧n+12到子帧n+14,由于PCell都没有下行传输,所以不需要计数on Duration Timer,而且在子帧n+12,终端不能检测小区参考信号,所以不用监听LAA小区的PDCCH,以及不用监听TDD小区的PDCCH。在子帧n+13到子帧n+14,终端根据LAA小区的小区参考信号获知当前子帧为LAA小区的下行子帧,所以监听LAA小区的 PDCCH,但是不用监听TDD小区的PDCCH。
同理,对于其他DRX定时器,如drx-Inactivity Timer,drx-Retransmission Timer,drx-ULRetransmission Timer,mac-contentionresolution Timer,具体的计数规则和监听PDCCH规则跟上面一样。
以drx-Inactivity Timer为例,如图5所示,同样终端在子帧n+2的时候醒来,进入激活期,启动on Duration Timer,计数规则如上分析。在子帧n+5时候,有下行数据到达,此时启动drx-Inactivity Timer,延长DRX激活时间,具体的计数规则和监听PDCCH规则,如同on Duration Timer。即在PDCCH子帧上计数,在监听子帧上监听TDD小区和LAA小区的PDCCH,以获知下行数据和/或上行授权的到达。
以drx-Retransmission Timer为例,如图6所示,同样终端在子帧n+2的时候醒来,进入激活期,启动on Duration Timer,计数规则如上分析。在子帧n+5接收到下行数据,但是终端没有成功解码出数据。此时终端在之后的某一个子帧启动drx-Retransmission Timer定时器,以等待重传数据,延长激活时间。具体的计数规则和监听PDCCH规则,如同on Duration Timer。即在PDCCH子帧上计数,在监听子帧上监听TDD小区和LAA小区的PDCCH,以获知下行数据和/或上行授权的到达。
综上所述,上述实施例中,终端在不需做信道空闲检测的小区即授权小区的子帧中确定PDCCH子帧,基于PDCCH子帧控制DRX定时器的计数,在需要做信道空闲检测的小区即LAA小区和不需做信道空闲检测的小区即授权小区的子帧中确定监听子帧,在监听子帧上监听PDCCH,这样在LAA小区的载波聚合下,DRX定时器计数时在终端侧能够准确确定出用于计数的PDCCH子帧,以实现高效的调度。
请参考图7,其为本发明实施例提供的另一种计数方法的流程图,该方法包括如下步骤:
步骤71:基站向终端发送配置信息,所述配置信息包括DRX定时器的至少一个时长信息。
其中,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或DRX上行重传定时器或竞争解决定时器。
可选的,所述基站通过无线资源控制消息向所述终端发送所述配置消息,所述配置信息包括DRX定时器的至少一个时长信息。
例如,基站将包括DRX定时器的至少一个时长信息的配置信息携带在RRC链接重配置消息中发送至终端。
步骤72:所述基站向所述终端发送指示信息,所述指示信息用于指示终端从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长。
可选的,所述基站通过物理层指示消息或媒体接入控制消息向所述终端发送所述指示消息。
具体的,基站在发送指示消息时,可以采用直接信令指示,也可以采用间接信令指示。
例如,基站为on Duration Timer提前配置三个时长,分别是T1、T2和T3,基站根据当前信道的忙碌情况实时选择时长T2作为on Duration Timer的时长,通过物理层指示消息通知终端使用的on Duration Timer的时长为T2。
又例如,基站为on Duration Timer提前配置三个时长,分别是T1、T2和T3,基站将on Duration Timer的时长与传输时间间隔(Transmission Time Interval,TTI)的映射关系发送至终端,假设on Duration Timer的时长与TTI的映射关系为子帧号除3余1的对应于T1,子帧号除3余2的对应于T2,子帧号能够整除3的对应于T3,终端可以根据当前的帧号和/或子帧号推断出使用哪一个on Duration Time的时长。比如:子帧1对应于T1,子帧2对应于T2,子帧3对应于T3。因此,终端根据子帧上接收到的PDCCH指示下行传输,确定当前DRX定时器的时长。根据终端对下行传输的反馈,从而基站确定终端当前具体使用哪一个时长。
步骤73:所述终端基于所述指示信息确定所述DRX定时器的时长;
步骤74:所述终端基于所述DRX定时器的时长和预设的所述DRX定时 器的计数规则,针对所述DRX定时器进行计数。
具体的,所述DRX定时器的计数规则由基站和终端事先协商确定,遵循统一的计数规则,从而避免DRX定时器在计数时在终端侧和基站侧理解不一致,影响数据调度。
其中,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或DRX上行重传定时器或竞争解决定时器。
综上所述,上述实施例中,基站向终端发送配置信息,预先为DRX定时器配置至少一个备选的时长信息,并通过向终端发送指示信息,从而指示终端从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长,终端基于DRX定时器的时长和预设的所述DRX定时器的计数规则,针对所述DRX定时器进行计数,这样,由于终端利用基站为终端预先配置的DRX定时器的时长,采用统一的DRX定时器计数规则,避免DRX定时器在终端和基站理解不一致而影响数据调度。
基于上述实施例提供的计数方法,参考图8所示,本发明实施例提供一种装置800,该装置800应用于终端,所述终端应用于第一小区与第二小区的载波聚合场景中,图8所示为本发明实施例提供的装置800的结构示意图,如图8所示,该装置800包括获取单元801、确定单元802和处理单元803,其中:
获取单元801,用于获取所述第一小区的子帧K1以及所述第二小区的子帧K2;
确定单元802,用于在子帧K2中确定PDCCH子帧,在子帧K1和子帧K2中确定监听子帧;
处理单元803,用于基于所述PDCCH子帧,控制DRX定时器进行计数,并基于所述监听子帧监听PDCCH,以获知下行数据和/或上行授权到达;
所述第一小区为需做信道空闲检测的小区,所述第二小区为不需做信道空闲检测的小区。
可选的,所述确定单元802在子帧K2中确定PDCCH子帧时,具体用于: 确定所述子帧K2中包含至少一个特殊子帧和/或下行子帧;
其中,所述特殊子帧包括通过时分方式进行上行传输和/或下行传输的子帧。
可选的,所述确定单元802在子帧K1和子帧K2中确定监听子帧时,具体用于:
确定所述子帧K1和所述子帧K2中为非上行子帧的子帧为监听子帧。
可选的,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或竞争解决定时器。
本发明实施例上述涉及的装置800,可以是独立的部件,也可以是集成于其他部件中,例如本发明实施例提供的上述装置800可以是现有通信网络中的终端,也可以是集成于终端内的部件。
需要说明的是,本发明实施例中的装置800的各个单元的功能实现以及交互方式可以进一步参照相关方法实施例的描述,在此不再赘述。
另外,以上各“单元”可以通过特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件来实现。
基于同一发明构思,参考图9所示,本发明实施例提供一种终端900,图9所示为本发明实施例提供的终端900的结构示意图,终端900应用于第一小区与第二小区的载波聚合场景中。如图9所示,终端900包括处理器901,存储器902、通信器件903,执行本发明方案的程序代码保存在存储器902中,并由处理器901来控制执行。
存储器902中存储的程序用于指令处理器901执行计数方法,包括:通过所述通信器件903获取所述第一小区的子帧K1以及所述第二小区的子帧K2;在子帧K2中确定PDCCH子帧,在子帧K1和子帧K2中确定监听子帧;基于所述PDCCH子帧,控制DRX定时器进行计数,并基于所述监听子帧监听PDCCH,以获知下行数据和/或上行授权到达。
其中,所述第一小区为需做信道空闲检测的小区,所述第二小区为不需 做信道空闲检测的小区。
可选的,所述处理器901在子帧K2中确定PDCCH子帧时,具体用于:确定所述子帧K2中包含至少一个特殊子帧和/或下行子帧;其中,所述特殊子帧包括通过时分方式进行上行传输和/或下行传输的子帧。
可选的,所述处理器901在子帧K1和子帧K2中确定监听子帧时,具体用于:
确定所述子帧K1和所述子帧K2中为非上行子帧的子帧为监听子帧。
可选的,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或竞争解决定时器。
可以理解的是,本实施例的终端900可用于实现上述方法实施例图3中涉及终端的所有功能,其具体实现过程可以参照上述方法实施例中终端执行方法的相关描述,此处不再赘述。
可以理解的是,本发明实施例上述终端900中涉及的处理器901可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路,或一个或多个用于控制本发明方案程序执行的集成电路。计算机系统中包括的一个或多个存储器,可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是磁盘存储器。这些存储器通过总线与处理器相连接。
通信器件903可以是能够实现收发功能的实体模块,以便与其他设备或通信网络通信。
存储器902,如RAM,保存有操作系统和执行本发明方案的程序。操作系统是用于控制其他程序运行,管理系统资源的程序。
这些存储器902、通信器件903可以通过总线与处理器901相连接,或者也可以通过专门的连接线分别与处理器901连接。
通过对处理器901进行设计编程,将本发明实施例图3中所示的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行图3所示的方法。 如何对处理器901进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
基于上述实施例提供的计数方法,参考图10所示,本发明实施例提供一种计数装置1000,该装置1000应用于基站,图10所示为本发明实施例提供的装置1000的结构示意图,如图10所示,该装置1000包括第一发送单元1001、第二发送单元1002,其中:
第一发送单元1001,用于向终端发送配置信息,所述配置信息包括DRX定时器的至少一个时长信息。
第二发送单元1002,用于向所述终端发送指示信息,所述指示信息用于指示终端从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长。
可选的,所述第一发送单元1001用于:
通过无线资源控制消息向所述终端发送所述配置消息,所述配置信息包括DRX定时器的至少一个时长信息。
可选的,所述第二发送单元1002用于:
通过物理层指示消息或媒体接入控制消息向所述终端发送所述指示消息。
可选的,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或竞争解决定时器。
本发明实施例上述涉及的装置1000,可以是独立的部件,也可以是集成于其他部件中,例如本发明实施例提供的上述装置1000可以是现有通信网络中的基站,也可以是集成于基站内的部件。
需要说明的是,本发明实施例中的装置1000的各个单元的功能实现以及交互方式可以进一步参照相关方法实施例的描述,在此不再赘述。
另外,以上各“单元”可以通过ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件来实现。
基于同一发明构思,参考图11所示,本发明实施例提供一种网络设备1100, 图11所示为本发明实施例提供的设备1100的结构示意图,该设备1100可以为基站,或位于所述基站上的其他设备。如图11所示,该设备1100包括处理器1101,存储器1102、收发器1103,执行本发明方案的程序代码保存在存储器1102中,并由处理器1101来控制执行。
存储器1102中存储的程序用于指令处理器1101执行计数方法,包括:通过收发器1103向终端发送配置信息,所述配置信息包括DRX定时器的至少一个时长信息;通过收发器1103向所述终端发送指示信息,所述指示信息用于指示终端从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长。
可选的,所述收发器1103用于:
通过无线资源控制消息向所述终端发送所述配置消息,所述配置信息包括DRX定时器的至少一个时长信息。
可选的,所述收发器1103用于:
通过物理层指示消息或媒体接入控制消息向所述终端发送所述指示消息。
可选的,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或竞争解决定时器。
可以理解的是,本实施例的设备1100可用于实现上述方法实施例图7中涉及基站的所有功能,其具体实现过程可以参照上述方法实施例图7中基站执行方法的相关描述,此处不再赘述。
可以理解的是,本发明实施例上述设备1100中涉及的处理器1101可以是一个通用中央处理器,微处理器,ASIC,或一个或多个用于控制本发明方案程序执行的集成电路。计算机系统中包括的一个或多个存储器,可以是ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是磁盘存储器。这些存储器通过总线与处理器相连接。
收发器1103可以是能够实现收发功能的实体模块,以便与其他设备或通信网络通信。
存储器1102,如RAM,保存有操作系统和执行本发明方案的程序。操作系统是用于控制其他程序运行,管理系统资源的程序。
这些存储器1102、收发器1103可以通过总线与处理器1101相连接,或者也可以通过专门的连接线分别与处理器1101连接。
通过对处理器1101进行设计编程,将本发明实施例图7中所示的方法基站的执行过程所对应的代码固化到芯片内,从而使芯片在运行时能够执行图7所示基站的执行过程。如何对处理器1101进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
基于上述实施例提供的计数方法,参考图12所示,本发明实施例提供一种计数装置1200,该装置1200应用于终端,图12所示为本发明实施例提供的装置1200的结构示意图,如图12所示,该装置1200包括接收单元1201和处理单元1202,其中:
接收单元1201,用于接收基站发送的包括DRX定时器的至少一个时长信息的配置信息;
所述接收单元1201,还用于接收基站发送的指示信息,所述指示信息用于指示从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长;
处理单元1202,用于基于所述指示信息确定所述DRX定时器的时长;
所述处理单元1202,还用于基于所述DRX定时器的时长和预设的所述DRX定时器的计数规则,针对所述DRX定时器进行计数。
本发明实施例上述涉及的装置1200,可以是独立的部件,也可以是集成于其他部件中,例如本发明实施例提供的上述装置1200可以是现有通信网络中的终端,也可以是集成于终端内的部件。
需要说明的是,本发明实施例中的装置1200的各个单元的功能实现以及交互方式可以进一步参照相关方法实施例的描述,在此不再赘述。
另外,以上各“单元”可以通过特定应用集成电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功 能的器件来实现。
基于同一发明构思,参考图13所示,本发明实施例提供一种终端1300,图13所示为本发明实施例提供的终端1300的结构示意图,如图13所示,终端1300包括处理器1301,存储器1302、通信器件1303,执行本发明方案的程序代码保存在存储器1302中,并由处理器1301来控制执行。
存储器1302中存储的程序用于指令处理器1301执行计数方法,包括:通过通信器件1303接收基站发送的包括DRX定时器的至少一个时长信息的配置信息;通过通信器件1303接收基站发送的指示信息,所述指示信息用于指示从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长;基于所述指示信息确定所述DRX定时器的时长;基于所述DRX定时器的时长和预设的所述DRX定时器的计数规则,针对所述DRX定时器进行计数。
可以理解的是,本实施例的终端1300可用于实现上述方法实施例图7中涉及终端的所有功能,其具体实现过程可以参照上述方法实施例中终端执行方法的相关描述,此处不再赘述。
可以理解的是,本发明实施例上述终端1300中涉及的处理器1301可以是一个通用中央处理器,微处理器,特定应用集成电路,或一个或多个用于控制本发明方案程序执行的集成电路。计算机系统中包括的一个或多个存储器,可以是ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM或者可存储信息和指令的其他类型的动态存储设备,也可以是磁盘存储器。这些存储器通过总线与处理器相连接。
通信器件1303可以是能够实现收发功能的实体模块,以便与其他设备或通信网络通信。
存储器1302,如RAM,保存有操作系统和执行本发明方案的程序。操作系统是用于控制其他程序运行,管理系统资源的程序。
这些存储器1302、通信器件1303可以通过总线与处理器1301相连接,或者也可以通过专门的连接线分别与处理器1301连接。
通过对处理器1301进行设计编程,将本发明实施例图7中终端所执行的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行图7所示的方法中终端的执行过程。如何对处理器1301进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令处理器完成,所述的程序可以存储于计算机可读存储介质中,所述存储介质是非短暂性(英文:non-transitory)介质,例如随机存取存储器,只读存储器,快闪存储器,硬盘,固态硬盘,磁带(英文:magnetic tape),软盘(英文:floppy disk),光盘(英文:optical disc)及其任意组合。
本发明是参照本发明实施例的方法和设备各自的流程图和方框图来描述的。应理解可由计算机程序指令实现流程图和方框图中的每一流程和方框、以及流程图和方框图中的流程和方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和方框图一个方框或多个方框中指定的功能的装置。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (18)

  1. 一种计数方法,其特征在于,应用于第一小区与第二小区的载波聚合场景中,包括:
    终端获取所述第一小区的子帧K1以及所述第二小区的子帧K2;
    所述终端在子帧K2中确定物理下行控制信道PDCCH子帧,在子帧K1和子帧K2中确定监听子帧;
    所述终端基于所述PDCCH子帧,控制非连续接收DRX定时器进行计数,并基于所述监听子帧监听PDCCH,以获知下行数据和/或上行授权到达;
    所述第一小区为需做信道空闲检测的小区,所述第二小区为不需做信道空闲检测的小区。
  2. 如权利要求1所述的方法,其特征在于,所述终端在子帧K2中确定PDCCH子帧,包括:
    所述终端确定所述子帧K2中包含至少一个特殊子帧和/或下行子帧;
    其中,所述特殊子帧包括通过时分方式进行上行传输和/或下行传输的子帧。
  3. 如权利要求1所述的方法,其特征在于,所述终端在子帧K1和子帧K2中确定监听子帧,包括:
    所述终端确定所述子帧K1和所述子帧K2中为非上行子帧的子帧为监听子帧。
  4. 如权利要求1所述的方法,其特征在于,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或竞争解决定时器。
  5. 一种计数方法,其特征在于,包括:
    基站向终端发送配置信息,所述配置信息包括非连续接收DRX定时器的至少一个时长信息;
    所述基站向所述终端发送指示信息,所述指示信息用于指示终端从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的 时长。
  6. 如权利要求5所述的方法,其特征在于,所述基站向终端发送配置信息,包括:
    所述基站通过无线资源控制消息向所述终端发送所述配置消息,所述配置信息包括DRX定时器的至少一个时长信息。
  7. 如权利要求5所述的方法,其特征在于,所述基站向所述终端发送指示信息,包括:
    所述基站通过物理层指示消息或媒体接入控制消息向所述终端发送所述指示消息。
  8. 如权利要求5所述的方法,其特征在于,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或竞争解决定时器。
  9. 一种计数方法,其特征在于,包括:
    终端接收基站发送的包括非连续接收DRX定时器的至少一个时长信息的配置信息;
    所述终端接收基站发送的指示信息,所述指示信息用于指示所述终端从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长;
    所述终端基于所述指示信息确定所述DRX定时器的时长;
    所述终端基于所述DRX定时器的时长和预设的所述DRX定时器的计数规则,针对所述DRX定时器进行计数。
  10. 一种终端,其特征在于,所述终端应用于第一小区与第二小区的载波聚合场景中,包括:
    通信器件,用于收发无线信号;
    处理器,用于通过所述通信器件获取所述第一小区的子帧K1以及所述第二小区的子帧K2;在子帧K2中确定物理下行控制信道PDCCH子帧,在子帧K1和子帧K2中确定监听子帧;基于所述PDCCH子帧,控制非连续接收DRX定时器进行计数,并基于所述监听子帧监听PDCCH,以获知下行数据 和/或上行授权到达;
    所述第一小区为需做信道空闲检测的小区,所述第二小区为不需做信道空闲检测的小区。
  11. 如权利要求10所述的终端,其特征在于,所述处理器在子帧K2中确定PDCCH子帧时,具体用于:
    确定所述子帧K2中包含至少一个特殊子帧和/或下行子帧;
    其中,所述特殊子帧包括通过时分方式进行上行传输和/或下行传输的子帧。
  12. 如权利要求10所述的终端,其特征在于,所述处理器在子帧K1和子帧K2中确定监听子帧时,具体用于:
    确定所述子帧K1和所述子帧K2中为非上行子帧的子帧为监听子帧。
  13. 如权利要求10所述的终端,其特征在于,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或竞争解决定时器。
  14. 一种网络设备,其特征在于,包括:
    处理器,用于生成配置信息;
    收发器,用于向终端发送配置信息,所述配置信息包括非连续接收DRX定时器的至少一个时长信息;
    所述收发器,还用于向所述终端发送指示信息,所述指示信息用于指示终端从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长。
  15. 如权利要求14所述的网络设备,其特征在于,所述收发器用于:
    通过无线资源控制消息向所述终端发送所述配置消息,所述配置信息包括DRX定时器的至少一个时长信息。
  16. 如权利要求14所述的网络设备,其特征在于,所述收发器用于:
    通过物理层指示消息或媒体接入控制消息向所述终端发送所述指示消息。
  17. 如权利要求14所述的网络设备,其特征在于,所述DRX定时器为持续时间定时器或DRX静止定时器或DRX重传定时器或竞争解决定时器。
  18. 一种终端,其特征在于,包括:
    通信器件,用于接收基站发送的包括非连续接收DRX定时器的至少一个时长信息的配置信息;
    所述通信器件,还用于接收基站发送的指示信息,所述指示信息用于指示所述终端从所述配置信息中的至少一个时长信息中选择一个时长信息作为所述DRX定时器的时长;
    处理器,用于基于所述指示信息确定所述DRX定时器的时长;
    所述处理器,还用于基于所述DRX定时器的时长和预设的所述DRX定时器的计数规则,针对所述DRX定时器进行计数。
PCT/CN2016/082088 2016-05-13 2016-05-13 一种计数方法及装置 WO2017193386A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16901341.4A EP3451763A4 (en) 2016-05-13 2016-05-13 COUNTER METHOD AND DEVICE
PCT/CN2016/082088 WO2017193386A1 (zh) 2016-05-13 2016-05-13 一种计数方法及装置
CN201680085592.9A CN109155990A (zh) 2016-05-13 2016-05-13 一种计数方法及装置
US16/188,267 US20190082492A1 (en) 2016-05-13 2018-11-12 Counting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/082088 WO2017193386A1 (zh) 2016-05-13 2016-05-13 一种计数方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/188,267 Continuation US20190082492A1 (en) 2016-05-13 2018-11-12 Counting method and apparatus

Publications (1)

Publication Number Publication Date
WO2017193386A1 true WO2017193386A1 (zh) 2017-11-16

Family

ID=60266958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/082088 WO2017193386A1 (zh) 2016-05-13 2016-05-13 一种计数方法及装置

Country Status (4)

Country Link
US (1) US20190082492A1 (zh)
EP (1) EP3451763A4 (zh)
CN (1) CN109155990A (zh)
WO (1) WO2017193386A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111418176A (zh) * 2017-11-27 2020-07-14 瑞典爱立信有限公司 Mac层与phy层之间用于传输的通信的系统和方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6840857B2 (ja) 2017-03-23 2021-03-10 エルジー エレクトロニクス インコーポレイティド 下りリンク信号を受信する方法及びユーザ機器
US20220256513A1 (en) * 2019-07-03 2022-08-11 Lg Electronics Inc. Method and apparatus for enhancing discontinuous reception procedure in wireless communication system to which for carrier aggregation scheme is applied

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143565A (zh) * 2010-12-20 2011-08-03 华为技术有限公司 一种发送方法、基站及终端
CN102932881A (zh) * 2011-08-10 2013-02-13 中兴通讯股份有限公司 一种非连续接收方法及系统
CN103391549A (zh) * 2012-05-10 2013-11-13 中兴通讯股份有限公司 一种不连续接收的动态配置方法、终端和基站
CN104023347A (zh) * 2013-03-01 2014-09-03 电信科学技术研究院 一种drx定时器计数的方法、系统和设备
EP2919551A1 (en) * 2014-03-11 2015-09-16 LG Electronics Inc. Method for counting a drx (discontinuous reception) timer in a carrier aggregation system and a device therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102821454B (zh) * 2011-06-10 2017-11-10 中兴通讯股份有限公司 Drx模式下终端保持上行同步的处理方法及装置
KR20140014544A (ko) * 2012-07-24 2014-02-06 주식회사 팬택 다중 요소 반송파 시스템에서 불연속 수신 장치 및 방법
US10856224B2 (en) * 2014-11-06 2020-12-01 Samsung Electronics Co., Ltd. Method and system for enabling discontinuous reception (DRX) over an unlicensed band in cellular networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102143565A (zh) * 2010-12-20 2011-08-03 华为技术有限公司 一种发送方法、基站及终端
CN102932881A (zh) * 2011-08-10 2013-02-13 中兴通讯股份有限公司 一种非连续接收方法及系统
CN103391549A (zh) * 2012-05-10 2013-11-13 中兴通讯股份有限公司 一种不连续接收的动态配置方法、终端和基站
CN104023347A (zh) * 2013-03-01 2014-09-03 电信科学技术研究院 一种drx定时器计数的方法、系统和设备
EP2919551A1 (en) * 2014-03-11 2015-09-16 LG Electronics Inc. Method for counting a drx (discontinuous reception) timer in a carrier aggregation system and a device therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3451763A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111418176A (zh) * 2017-11-27 2020-07-14 瑞典爱立信有限公司 Mac层与phy层之间用于传输的通信的系统和方法
CN111418176B (zh) * 2017-11-27 2023-03-14 瑞典爱立信有限公司 Mac层与phy层之间用于传输的通信的装置和方法

Also Published As

Publication number Publication date
CN109155990A (zh) 2019-01-04
EP3451763A1 (en) 2019-03-06
US20190082492A1 (en) 2019-03-14
EP3451763A4 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
US11212747B2 (en) Power saving operations for communication systems
US10772151B2 (en) Beam management in discontinuous reception
EP4284111A2 (en) Power-saving active bwp
US11166234B2 (en) Uplink transmission in power saving mode
US11997517B2 (en) Synchronization detection based on radio link monitoring in power saving mode
US9936394B2 (en) Method for processing data after unlicensed spectrum is released, and user equipment
CN109076352B (zh) 用于共享频带的增强型不连续接收设计方案
US20200137821A1 (en) Beam Management for Cells in Wireless Communications
AU2021258085B2 (en) Efficient power utilization for enhanced component carriers
KR101984848B1 (ko) Lte 라이센스 지원형 액세스 동작에서의 drx 핸들링
EP3363248B1 (en) Techniques for downlink scheduling and uplink scheduling in a shared radio frequency spectrum band
JP7478751B2 (ja) ダウンリンク制御チャネルのモニタリングに関するユーザ装置
US20170238252A1 (en) Enabling power efficient dual connectivity with reduced delay impact
US20220210860A1 (en) Methods for data transmission and user equipment using the same
US20190082492A1 (en) Counting method and apparatus
US20220338178A1 (en) User equipment and base station involved in control channel signaling
US20230292314A1 (en) Method of uplink resource allocation and user equipment thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016901341

Country of ref document: EP

Effective date: 20181130