WO2024093903A1 - 一种通信方法、装置、系统及存储介质 - Google Patents

一种通信方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2024093903A1
WO2024093903A1 PCT/CN2023/127705 CN2023127705W WO2024093903A1 WO 2024093903 A1 WO2024093903 A1 WO 2024093903A1 CN 2023127705 W CN2023127705 W CN 2023127705W WO 2024093903 A1 WO2024093903 A1 WO 2024093903A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
dci
time
time period
indication information
Prior art date
Application number
PCT/CN2023/127705
Other languages
English (en)
French (fr)
Inventor
花梦
高飞
彭金磷
王轶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093903A1 publication Critical patent/WO2024093903A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method, device, system and storage medium.
  • New radio introduces the concept of BandWidth Part (BWP).
  • BWP BandWidth Part
  • a terminal device can only have one active downlink BWP on a downlink carrier and one active uplink BWP on an uplink carrier.
  • the service requirements of the terminal device at different times may be different, and the requirements for transmission bandwidth are also different.
  • the base station can activate different BWPs at different times through downlink control information (DCI) according to the service requirements to achieve the purpose of saving power consumption of the terminal device.
  • DCI downlink control information
  • the activated BWP on the scheduled cell is in an ambiguous period, that is, there is no valid activated BWP. Since the size of DCI may be related to the activated BWP configuration of the scheduled cell, if the base station and the terminal device have different perceptions of the DCI size, the DCI cannot be sent and received normally.
  • the DCI size is ambiguous (i.e., the size of the DCI may not be determined), resulting in the problem that the DCI cannot be correctly sent and/or received. There is currently no corresponding solution.
  • the embodiments of the present application provide a communication method, device, system and storage medium to solve the problem that in a scenario where BWP switching occurs in a controlled cell, when the activated BWP of the controlled cell is in an ambiguous period, DCI size ambiguity causes DCI to be unable to be correctly sent and/or received.
  • a communication method which can be applied to a terminal device, and the method includes: receiving first downlink control information (DCI) sent by a network device, the first DCI including first indication information for indicating that a first cell performs a bandwidth part (BWP) switching, or including second indication information for indicating that the first cell enters sleep or non-sleep; determining a first time period, and stopping monitoring or stopping receiving a second DCI sent by the network device for scheduling the first cell within the first time period, or discarding the received second DCI, or stopping monitoring or stopping receiving a third DCI sent by the network device for scheduling at least one cell in a first cell group within the first time period, or discarding the received third DCI; wherein the at least one cell includes a second cell, the second cell is different from the first cell, and the second cell and the first cell belong to the first cell group.
  • DCI downlink control information
  • BWP bandwidth part
  • the terminal device may not receive the second DCI for scheduling the first cell within the first time period thereafter, or discard the received second DCI.
  • the terminal device may not receive the third DCI used to schedule the first cell group (i.e., the scheduled cell group) or discard the received third DCI within the first time period thereafter.
  • the size of the third DCI may not be determined due to the BWP switching of the first cell in the scheduled cell group (the operation of the first cell entering sleep/non-sleep is achieved through BWP switching), and the activated BWP in the first cell is in an ambiguous period (i.e., there is no valid activated BWP in the scheduled cell), resulting in the third DCI not being correctly sent and/or received.
  • the first DCI is sent on a physical downlink control channel (PDCCH) of a third cell (i.e., the main cell), the third cell is different from the first cell, and the third cell is the same as or different from the second cell.
  • PDCCH physical downlink control channel
  • determining the first time period includes: determining the first time period according to the sending time of the first DCI and the BWP switching delay. This can ensure that the second DCI or the third DCI received is not received or discarded during the time when the terminal device performs the BWP switching operation. Further, the terminal device can also receive the DCI sent by the network device as promptly as possible after the BWP switching is completed.
  • the starting time of the first time period is: the end time of the first three symbols of the first time slot of the third cell where the first DCI is located, wherein the first time slot is the time slot where the first DCI is located; or, the end time of the physical downlink control channel PDCCH carrying the first DCI; or, the start time of the first time slot, wherein the first time slot is the time slot where the first DCI is located.
  • the time period of no sending and no receiving can be advanced, thereby avoiding the situation where the terminal device and the network device have different perceptions of the DCI size during this period.
  • the end time of the first time period is the start time of the time slot indicated by the time slot offset in the time domain resource indication field of the first DCI; or, when the first DCI includes the first indication information and the first indication information indicates that the first cell performs downlink BWP switching, the end time of the first time period is the start time of the first downlink time slot after the first time interval from the start time of the first time slot; or, when the first DCI includes the first indication information and the first indication information indicates that the first cell performs uplink BWP switching, the end time of the first time period is the start time of the first uplink time slot after the first time interval from the start time of the first time slot.
  • the first time interval is related to the BWP switching delay.
  • the first time interval is equal to T BWPswitchDelay +Y; wherein the value of T BWPswitchDelay is determined according to the minimum value of the subcarrier spacing of the third cell, the subcarrier spacing of the BWP before the first cell is switched, and the subcarrier spacing of the BWP after the first cell is switched; the value of Y includes: when the first cell and the third cell are not the same cell, the value of Y is equal to 1; or when the first cell and the third cell are the same cell, the value of Y is equal to 0; or when the frequency points of the first cell and the third cell are within the frequency domain range FR2-2, the value of Y is determined according to the 120KHz subcarrier spacing.
  • the length of the first time period during which DCI cannot be sent or received can be reduced to improve spectrum utilization.
  • the end time of the first time period is the start time of the first downlink time slot after the second time interval from the start time of the first time slot; or, when the first DCI includes the second indication information and the second indication information indicates uplink BWP dormancy of the first cell, the end time of the first time period is the start time of the first uplink time slot after the second time interval from the start time of the first time slot.
  • the second time interval is related to the BWP switching delay.
  • the second time interval is equal to T BWPswitchDelay +X, or when the first DCI is not sent as the first three symbols in a time slot of the third cell, the second time interval is equal to T BWPswitchDelay +X + Z.
  • T BWPswitchDelay is determined according to the minimum value of the subcarrier spacing of the third cell, the subcarrier spacing of the dormant BWP of the first cell, and the subcarrier spacing of the activated BWP before or after switching of the first cell;
  • the value of X is equal to 1, the unit of X is time slot, and the time slot corresponds to the minimum value of the subcarrier spacing of the third cell, the subcarrier spacing of the dormant BWP of the first cell, and the subcarrier spacing of the activated BWP before or after switching of the first cell; or, when the frequency points of the first cell and the third cell are within the frequency domain range FR2-2, the value of X is determined according to the 120KHz subcarrier spacing; the value of Z is equal to 1, the unit of Z is time slot, and the time slot corresponds to the subcarrier spacing of the third cell.
  • stopping monitoring or stopping receiving the second DCI sent by the network device for scheduling the first cell within the first time period, or discarding the received second DCI includes: stopping monitoring or stopping receiving the second DCI sent by the network device for scheduling uplink data transmission of the first cell within the first time period, or discarding the received second DCI; or, when the first indication information is used to indicate that the first cell performs a downlink BWP switching, stopping monitoring or stopping receiving the second DCI sent by the network device for scheduling the first cell within the first time period, or discarding the received second DCI, includes: stopping monitoring or stopping receiving the second DCI sent by the network device for scheduling downlink data transmission of the first cell within the first time period. DCI, or discard the received second DCI.
  • stopping monitoring or stopping receiving the third DCI sent by the network device for scheduling at least one cell in the first cell group within the first time period, or discarding the received third DCI includes: stopping monitoring or stopping receiving the third DCI sent by the network device for scheduling uplink data transmission of at least one cell in the first cell group within the first time period, or discarding the received third DCI; or, when the first indication information is used to indicate that the first cell performs downlink BWP switching, stopping monitoring or stopping receiving the third DCI sent by the network device for scheduling at least one cell in the first cell group within the first time period, or discarding the third DCI, includes: stopping monitoring or stopping receiving the third DCI sent by the network device for scheduling downlink data transmission of at least one cell in the first cell group within the first time period, or discarding the third DCI.
  • the method before receiving the first DCI sent by the network device, the method further includes: receiving third indication information sent by the network device, the third indication information being used to indicate that the terminal device operates in frequency division duplex mode in the first cell.
  • stopping monitoring or stopping receiving the second DCI sent by the network device for scheduling the first cell within the first time period, or discarding the received second DCI includes: stopping monitoring or stopping receiving the second DCI sent by the network device for scheduling the first cell within the first time period, or discarding the received second DCI; wherein the second DCI includes DCI for scheduling uplink data transmission of the first cell and DCI for scheduling downlink data transmission of the first cell.
  • stopping monitoring or stopping receiving the third DCI sent by the network device for scheduling at least one cell in the first cell group within the first time period, or discarding the received third DCI includes: stopping monitoring or stopping receiving the third DCI sent by the network device for scheduling uplink data transmission of at least one cell in the first cell group within the first time period, or discarding the received third DCI.
  • the method further includes: stopping monitoring or stopping receiving a fourth DCI sent by a network device for scheduling downlink data transmission of at least one cell in the first cell group within the first time period, or discarding the received fourth DCI.
  • the method before receiving the first DCI sent by the network device, the method further includes: receiving fourth indication information sent by the network device, where the fourth indication information is used to indicate that the terminal device operates in time division duplex mode in the first cell.
  • a communication method which can be applied to a network device, and the method includes: sending a first DCI to a terminal device, wherein the first DCI includes first indication information for indicating that the first cell performs BWP switching, or includes second indication information for indicating that the first cell enters sleep or non-sleep mode; determining a second time period, and stopping or not allowing the sending of a second DCI for scheduling the first cell to the terminal device within the second time period, or stopping or not allowing the sending of a third DCI for scheduling at least one cell in the first cell group to the terminal device within the second time period; wherein the at least one cell includes a second cell, the second cell is different from the first cell, and the second cell and the first cell belong to the first cell group.
  • the start time of the second time period is:
  • the third cell is different from the first cell, and the third cell is the same as or different from the second cell.
  • the end time of the second time period is the start time of the time slot indicated by the time slot offset in the time domain resource indication field of the first DCI; or, when the first DCI includes the first indication information and the first indication information indicates that the first cell performs downlink BWP switching, the end time of the second time period is the start time of the first downlink time slot after the first time interval from the start time of the first time slot; or, when the first DCI includes the first indication information and the first indication information indicates that the first cell performs uplink BWP switching, the end time of the second time period is the start time of the first uplink time slot after the first time interval from the start time of the first time slot.
  • the first time interval is related to the BWP switching delay.
  • the first time interval is equal to T BWPswitchDelay + Y.
  • the value of T BWPswitchDelay is calculated based on the subcarrier spacing of the third cell, the subcarrier spacing of the BWP before the first cell switching, and the subcarrier spacing of the BWP after the first cell switching.
  • the value of Y includes: when the first cell and the third cell are not the same cell, the value of Y is equal to 1; or when the first cell and the third cell are the same cell, the value of Y is equal to 0; or when the frequency points of the first cell and the third cell are within the frequency domain range FR2-2, the value of Y is determined according to the 120KHz subcarrier spacing.
  • the end time of the second time period is the start time of the first downlink time slot after the second time interval from the start time of the first time slot; or, when the first DCI includes the second indication information, and the second indication information indicates that the uplink BWP of the first cell is dormant, the end time of the second time period is the start time of the first uplink time slot after the second time interval from the start time of the first time slot.
  • the second time interval is related to the BWP switching delay.
  • the second time interval is equal to T BWPswitchDelay +X, or when the first DCI is not sent as the first three symbols in a time slot of the third cell, the second time interval is equal to T BWPswitchDelay +X+Z; wherein the value of T BWPswitchDelay is determined according to the minimum value of the subcarrier spacing of the third cell, the subcarrier spacing of the dormant BWP of the first cell, and the subcarrier spacing of the activated BWP before or after switching of the first cell; the value of X is equal to 1, the unit of X is time slot, and the time slot corresponds to the minimum value of the subcarrier spacing of the third cell, the subcarrier spacing of the dormant BWP of the first cell, and the subcarrier spacing of the activated BWP before or after switching of the first cell; or, when the frequencies of the first cell and the third cell
  • stopping or not allowing the second DCI for scheduling the first cell to be sent to the terminal device within the second time period includes: stopping or not allowing the second DCI for scheduling uplink data transmission of the first cell to be sent to the terminal device within the second time period; or, when the first indication information is used to indicate that the first cell performs a downlink BWP switching, stopping or not allowing the second DCI for scheduling the first cell to be sent to the terminal device within the second time period includes: stopping or not allowing the second DCI for scheduling downlink data transmission of the first cell to be sent to the terminal device within the second time period.
  • stopping or not allowing the third DCI for scheduling at least one cell in the first cell group to be sent to the terminal device within the second time period includes: stopping or not allowing the third DCI for scheduling uplink data transmission of at least one cell in the first cell group to be sent to the terminal device within the second time period; or, when the first indication information is used to indicate that the first cell performs a downlink BWP switching, stopping or not allowing the third DCI for scheduling downlink data transmission of at least one cell in the first cell group to be sent to the terminal device within the second time period includes: stopping or not allowing the third DCI for scheduling downlink data transmission of at least one cell in the first cell group to be sent to the terminal device within the second time period.
  • the method before sending the first DCI to the terminal device, the method further includes:
  • stopping or not allowing the second DCI for scheduling the first cell to be sent to the terminal device within the second time period includes: stopping or not allowing the second DCI for scheduling the first cell to be sent to the terminal device within the second time period; wherein the second DCI includes a DCI for scheduling uplink data transmission of the first cell and a DCI for scheduling downlink data transmission of the first cell.
  • the stopping or not allowing the sending of the second DCI for scheduling the first cell to the terminal device within the second time period includes: stopping or not allowing the sending of the third DCI for scheduling uplink data transmission of at least one cell in the first cell group to the terminal device within the second time period.
  • the method further includes: stopping or not allowing sending a fourth DCI for scheduling downlink data transmission of at least one cell in the first cell group to the terminal device during the second time period.
  • the method before sending the first DCI to the terminal device, the method further includes: sending fourth indication information to the terminal device, the fourth indication information being used to indicate that the terminal device operates in time division duplex mode in the first cell.
  • a communication method which can be used for a terminal device, and the method includes: receiving a first DCI sent by a network device, wherein the first DCI includes first indication information for indicating that a first cell performs a BWP switch, or includes second indication information for indicating that the first cell enters sleep or non-sleep mode; determining a first time period, and stopping monitoring or stopping receiving a first DCI format sent by the network device within the first time period, or discarding the received first DCI format.
  • the first DCI format can be used to simultaneously schedule data transmission of two or more cells, the first cell belongs to a first cell group, and the first cell group is a collection of all scheduled cells that can be scheduled by the first DCI format.
  • a communication method which can be applied to a network device, and the method includes: sending a first DCI to a terminal device, wherein the first DCI includes first indication information for indicating that the first cell performs a BWP switch, or includes second indication information for indicating that the first cell enters sleep or non-sleep mode; determining a second time period, and stopping or not allowing the first DCI format to be sent to the terminal device during the second time period.
  • the first DCI format can be used to simultaneously schedule data transmission of two or more cells, the first cell belongs to a first cell group, and the first cell group is a collection of all scheduled cells that can be scheduled by the first DCI format.
  • a communication device comprising: a processing unit and a transceiver unit.
  • the transceiver unit is used to receive a first downlink control information DCI sent by a network device, wherein the first DCI includes a first indication information for indicating that the first cell performs a bandwidth partial BWP switching, or includes a second indication information for indicating that the first cell enters sleep or non-sleep mode;
  • the processing unit is used to determine a first time period; and, within the first time period, stop monitoring or stop receiving a second DCI sent by the network device for scheduling the first cell, or discard the received second DCI, or within the first time period, stop monitoring or stop receiving a third DCI sent by the network device for scheduling at least one cell in the first cell group, or discard the received third DCI; wherein the at least one cell includes a second cell, the second cell is different from the first cell, and the second cell and the first cell belong to the first cell group.
  • a communication device comprising a processing unit and a transceiver unit.
  • the transceiver unit is used to send a first downlink control information DCI to a terminal device, wherein the first DCI includes a first indication information for indicating that the first cell performs a bandwidth partial BWP switching, or includes a second indication information for indicating that the first cell enters sleep or non-sleep mode;
  • the processing unit is used to determine a second time period; and, within the second time period, stop or disallow the sending of a second DCI for scheduling the first cell to the terminal device, or stop or disallow the sending of a third DCI for scheduling at least one cell in the first cell group to the terminal device within the second time period; wherein the at least one cell includes a second cell, the second cell is different from the first cell, and the second cell and the first cell belong to the first cell group.
  • a communication system comprising: a terminal device for executing any method described in the first aspect above, and a terminal device for executing any method described in the second aspect above.
  • a communication system comprising: a terminal device for executing any method described in the third aspect above, and a terminal device for executing any method described in the fourth aspect above.
  • a communication device comprising: one or more processors; wherein, when instructions of one or more computer programs are executed by the one or more processors, the communication device executes the method described in any one of the first aspect or the third aspect, or executes the method described in any one of the second aspect or the fourth aspect.
  • a computer-readable storage medium wherein the computer-readable storage medium includes a computer program.
  • the computing device executes the method described in any one of the first aspect or the third aspect, or executes the method described in any one of the second aspect and the fourth aspect.
  • a chip is provided, which is coupled to a memory and is used to read and execute program instructions stored in the memory to implement the method described in any one of the first aspect or the third aspect above, or to implement the method described in any one of the second aspect or the fourth aspect above.
  • a computer program product is provided.
  • the computer program product When the computer program product is called by a computer, the computer executes the method described in any one of the first or third aspects, or executes the method described in any one of the second or fourth aspects.
  • FIG1 is a schematic diagram of a BWP configured in a carrier
  • FIG. 2a , FIG. 2b , FIG. 2c , and FIG. 2d are schematic diagrams of BWP switching in the related art, respectively;
  • FIG3a and FIG3b are schematic diagrams of sleep switching in the related art respectively.
  • FIG4 is a schematic diagram of scheduling through a new DCI format in the related art
  • FIG5a is a schematic diagram of a related art in which DCI cannot be normally sent/received due to a BWP switching delay in a one-to-one cross-carrier scheduling scenario;
  • FIG5b is a schematic diagram of a related art in which DCI cannot be normally sent/received due to a BWP switching delay in a one-to-many cross-carrier scheduling scenario
  • FIG6 is a schematic diagram of the architecture of a mobile communication system used in an embodiment of the present application.
  • FIG7 is a flow chart of a communication method implemented on a terminal side according to an embodiment of the present application.
  • 8a and 8b are schematic diagrams of the start time and the end time of the first time period when the BWP is switched in the embodiment of the present application, respectively;
  • 9a and 9b are schematic diagrams of the start time and end time of the first time period during sleep switching in an embodiment of the present application, respectively;
  • FIG10 is a flow chart of a communication method implemented on a network device side according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a time deviation between a second time period determined by a network device and a first time period determined by a terminal device in an embodiment of the present application;
  • FIG12 is a schematic diagram of a flow chart of the interaction between a terminal device and a network device in an embodiment of the present application
  • FIG. 13a and FIG. 13b are schematic flow diagrams of a communication method implemented on a terminal side according to another embodiment of the present application.
  • FIG. 14a and FIG. 14b are flowchart diagrams of communication methods implemented on the network side according to another embodiment of the present application.
  • 15 is a schematic diagram of a time deviation between a second time period determined by a network device and a first time period determined by a terminal device in another embodiment of the present application;
  • FIG16 , FIG17 , and FIG18 are schematic diagrams of the structures of the communication devices adopted in the embodiments of the present application.
  • a, b and c can represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a, b and c.
  • a, b and c can be single or multiple.
  • the terms "first”, “second”, etc. are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence.
  • the terms “include” and “have” and any variations thereof are intended to cover non-exclusive inclusions, such as, for example, inclusion of a series of steps or units. Methods, systems, products or apparatus are not necessarily limited to those steps or units explicitly listed, but may include other steps or units not explicitly listed or inherent to these processes, methods, products or apparatus.
  • the NR defines a variety of subcarrier spacings (SCS).
  • SCS subcarrier spacings
  • the SCS number ⁇ corresponds to 2 ⁇ ⁇ 15kHz.
  • the SCS numbers ⁇ 0 to 4 correspond to 15KHz, 30KHz, 60KHz, 120KHz and 240KHz respectively.
  • the duration of a symbol in NR is the inverse of the subcarrier spacing.
  • Each symbol is preceded by a cyclic prefix.
  • a time slot contains 14 symbols; when the cyclic prefix is an extended cyclic prefix, a time slot contains 12 symbols.
  • a carrier is a radio signal with a specific frequency, bandwidth, and format, that is, an electromagnetic wave, emitted by the radio frequency equipment of a base station or terminal device. It is the main body used to carry information in wireless mobile communications. Among them, the carrier used by the base station for transmission is called a downlink carrier, and the carrier used by the terminal device for transmission is called an uplink carrier.
  • a cell is described by a high layer (such as a protocol layer above the physical layer, such as a radio resource control layer, a media access control layer, etc.) from the perspective of resource management or mobility management.
  • the coverage of each network device can be divided into one or more cells.
  • a cell can be configured with a downlink carrier and, optionally, an uplink carrier.
  • the cell that provides service for it is called a service cell.
  • the cell involved in the embodiments of the present application may also be a service cell.
  • NR has carrier aggregation (CA) and dual connectivity (DC) technologies.
  • CA carrier aggregation
  • DC dual connectivity
  • Terminal devices that support CA and/or DC can transmit data on multiple carriers at the same time to increase the data transmission rate.
  • the terminal device establishes links with multiple cells, which are divided into two groups: master cell group (MCG) And secondary cell group (SCG). If dual link is not performed, the group of cells that communicate with the terminal device is MCG.
  • the primary cell in MCG is (primary cell, PCell)
  • the primary cell in SCG is the primary secondary cell (PSCell)
  • other cells in MCG and SCG are secondary cells (SCell).
  • the PCell under MCG and the SCell under MCG are combined through carrier aggregation technology.
  • the PSCell under SCG and the SCell under SCG are also combined through carrier aggregation technology.
  • Each carrier in CA is also called a component carrier or component carrier (CC).
  • a BWP is a continuous frequency resource on a carrier. There can be one or more BWPs in a carrier, and the bandwidth of a BWP in a carrier is less than or equal to the bandwidth of the carrier.
  • a BWP When a BWP is configured and activated, it is called an active BWP.
  • a terminal device In the current version of the protocol, a terminal device can only have one active downlink BWP (active downlink BWP) on a downlink carrier, and can only have one active uplink BWP (active uplink BWP) on an uplink carrier.
  • active downlink BWP active downlink BWP
  • active uplink BWP active uplink BWP
  • the data and control information sent by the terminal device uplink are sent in the uplink active BWP, and the downlink data and control information are received in the downlink active BWP.
  • Fig. 1 shows the BWP configured in a carrier.
  • three BWPs are configured in a 50MHz carrier, namely BWP1, BWP2 and BWP3, where BWP2 is the currently activated BWP.
  • the terminal device may have different service requirements and transmission bandwidth requirements at different times.
  • the base station can activate different BWPs at different times according to service requirements to save power consumption of the terminal device.
  • NR supports triggering the terminal device to switch BWP in the DCI of the scheduling data.
  • DCI is carried in the physical downlink control channel (PDCCH) of NR.
  • PDCCH physical downlink control channel
  • the DCI contains a BWP indication field. If the BWP identifier (ID) indicated by the BWP indication field in a DCI is different from the ID of the currently activated BWP, then this DCI triggers a BWP switch; if the BWP ID indicated by the BWP indication field in a DCI is the same as the ID of the currently activated BWP, then this DCI does not trigger a BWP switch.
  • a DCI format (DCI format) in which a BWP indication field indicates a BWP switch can only be sent within the first 3 symbols of a slot.
  • the terminal device If the terminal device detects a DCI format whose BWP indication field indicates the activation of downlink BWP switching of a cell, the terminal device does not need to receive or transmit on this cell during the period from the end of the first 3 symbols of a slot of the scheduling cell of the PDCCH carrying this DCI format received by the terminal device to the start time of the slot indicated by the slot offset in the time domain resource indication field of this DCI format.
  • the terminal device If the terminal device detects a DCI format whose BWP indication field indicates the activation of uplink BWP switching of a cell, the terminal device does not need to receive or transmit on this cell during the period from the end of the first 3 symbols of a slot of the scheduling cell where the PDCCH carrying this DCI format is received by the terminal device to the start time of the slot indicated by the slot offset in the time domain resource indication field of this DCI format.
  • the spectrum of NR is divided into paired spectrum and unpaired spectrum.
  • Frequency division duplex (FDD) is used in the symmetrical spectrum
  • time division duplex (TDD) is used in the asymmetric spectrum.
  • FDD mode the uplink BWP and downlink BWP of a cell can be switched independently, and the number of uplink BWPs and the number of downlink BWPs can be the same or different.
  • FDD mode uplink BWP switching and downlink BWP switching can be performed independently.
  • the uplink BWP and downlink BWP of a cell are paired, and the center frequency of the uplink BWP and the downlink BWP in a pair of uplink and downlink BWPs is the same, and the bandwidth can be different.
  • the switching of BWP occurs simultaneously in the uplink and downlink, that is, it can switch from one pair of BWPs to another pair of BWPs.
  • working in FDD mode can be replaced by “working in symmetric spectrum”
  • working in TDD mode can be replaced by “working in asymmetric spectrum”.
  • Switching a terminal device from one BWP to another requires at least the following operations:
  • the above operations require a certain amount of processing delay.
  • the NR standard limits the processing delay capability of the terminal device: for DCI-based BWP switching, after the terminal device receives a BWP switching request in a downlink time slot n (slot n) of a serving cell, the terminal device needs to be able to receive the physical downlink shared channel (PDSCH) on the new BWP of this serving cell in the first downlink slot or uplink slot after the time interval (T BWPswitchDelay +Y, in time slots) starting from the start time of slot n for downlink activation BWP switching.
  • PDSCH physical downlink shared channel
  • the terminal device For uplink activation BWP switching, the terminal device needs to be able to receive the physical downlink shared channel (PDSCH) on the new BWP of this serving cell in the first downlink slot or uplink slot after the time interval (T BWPswitchDelay +Y, in time slots).
  • the physical uplink shared channel (PUSCH) is sent on the new BWP of the cell.
  • the value of the time interval T BWPswitchDelay in T BWPswitchDelay +Y is determined by looking up Table 1 according to the minimum SCS among the subcarrier spacing (SCS) of the scheduling cell, the SCS of the BWP before the switching of the scheduled cell, and the SCS of the BWP after the switching.
  • SCS subcarrier spacing
  • the cell that sends the control channel corresponding to the data channel is called the scheduling cell, also called the main scheduling cell; the cell that sends the data channel is called the scheduled cell.
  • the control channel is carried on the downlink carrier of a cell to schedule the uplink and downlink data channels of this cell.
  • This cell is a self-scheduling cell.
  • This cell is both a scheduling cell and a scheduled cell.
  • the control channel is carried on the downlink carrier of a cell to schedule the uplink and downlink data channels of another cell.
  • the cell that carries the control channel is called the scheduling cell, and the cell that carries the uplink and downlink data channels is called the scheduled cell.
  • This form of scheduling is called cross-carrier scheduling (CCS).
  • One main scheduling cell can correspond to multiple scheduled cells, that is, one main scheduling cell can send control channels to schedule data for multiple scheduled cells.
  • the terminal device reports the BWP switching delay type as Type 1.
  • the terminal device reports the BWP switching delay type as Type 1.
  • the terminal device reports the BWP switching delay type as Type 1.
  • the terminal device does not receive or send on the tuned cell.
  • the terminal device reports the BWP switching delay type as Type 1.
  • the BWP switching delay T BWPswitchDelay 2slots is determined according to the smaller SCS.
  • Y 1slot, where the slot is the slot corresponding to 30KHz.
  • 3GPP Rel-16 introduces the dormancy mechanism of SCell.
  • the uplink and downlink transmission of Dormancy SCell will be stopped, but periodic measurement will be performed on this cell, and its measurement information will be reported to the base station through other cells (PUCCH cells).
  • PUCCH cells the base station
  • the switching between the dormancy behavior and non-dormancy behavior of SCell is achieved through BWP switching.
  • the terminal device on this SCell will switch from the currently downlink activated BWP to the dormant BWP.
  • the terminal device does not need to monitor the PDCCH on the dormant BWP, or, when the SCell is the scheduled carrier in cross-carrier scheduling, the terminal device does not need to detect the PDCCH scheduling the SCell on the corresponding scheduling carrier.
  • the ID of Dormant BWP is dormantBWP-Id.
  • the switching between dormancy and non-dormancy of the SCell is indicated through other fields in the DCI. Specifically, there are the following ways to indicate.
  • ⁇ Method 1 The SCell dormancy indication field in DCI format 0_1 or DCI format 1_1 indicates whether the SCell is dormancy or non-dormancy, and DCI can schedule data at the same time.
  • ⁇ Method 2 Use a specific field in DCI format 1_1 to indicate whether the SCell is dormancy or non-dormancy. DCI cannot schedule data at the same time.
  • ⁇ Method three Use the SCell dormancy indication field in DCI format 2_6 to indicate whether the SCell is dormancy or non-dormancy.
  • the uplink BWP In TDD mode, because the switching of uplink and downlink BWPs is bound, when the downlink BWP of a cell switches from the current downlink activated BWP to the dormant BWP, the uplink BWP also switches to the uplink BWP with ID dormantBWP-Id; when the downlink BWP of a cell comes out of the dormant BWP and switches to the downlink BWP with ID firstWithinActiveTimeBWP-Id or the downlink BWP with ID firstOutsideActiveTimeBWP-Id, the uplink BWP also switches to the uplink BWP with ID firstWithinActiveTimeBWP-Id or the uplink BWP with ID firstOutsideActiveTimeBWP-Id.
  • the transmission on the uplink BWP will stop, including data channels, control channels, sounding reference signals (SRS), physical random access channels (PRACH), etc.
  • SRS sounding reference signals
  • PRACH physical random access channels
  • the terminal device needs to complete the activation of the BWP switch within the following time:
  • T dormantBWPswitchDelay T BWPswitchDelay + X (in time slots), if the dormancy indication is received in the first three orthogonal frequency-division multiplexing (OFDM) symbols of a slot in the serving cell receiving the dormancy indication;
  • OFDM orthogonal frequency-division multiplexing
  • T dormantBWPswitchDelay T BWPswitchDelay + X + Z (in time slots), if the dormancy indication is not received within the first 3 OFDM symbols of a slot of the serving cell receiving the dormancy indication.
  • T BWPswitchDelay is determined by the SCS of the serving cell indicated by the terminal device receiving dormancy, the time at which BWP switching occurs, and the time at which BWP switching occurs.
  • the minimum SCS between the SCS of the dormant BWP of the serving cell and the SCS of the activated BWP before or after the handover is determined by referring to Table 1 in the previous text.
  • X 1 slot, where slot corresponds to the smallest SCS among the SCS of the serving cell where the terminal device receives dormancy indication, the SCS of the dormant BWP of the serving cell where BWP switching occurs, and the SCS of the activated BWP before or after switching. If the scheduling cell and the scheduled cell are within the frequency range 2-2 (Frequency Range 2-2, FR2-2), the value of X is determined according to SCS 120KHz.
  • Z 1 slot, where slot corresponds to the SCS of the service cell where the terminal device receives dormancy indication.
  • the terminal device detects a DCI format including a dormancy indication in slot n of the primary cell, which indicates downlink BWP dormancy of a secondary cell, then within the above time period T dormantBWPswitchDelay , the terminal device does not need to receive or send on the secondary cell.
  • PDCCH carries downlink control information (DCI), and there are multiple DCI formats.
  • DCI downlink control information
  • Table 2 shows some DCI formats and their uses.
  • a DCI with the format DCI format 0_0/1_0/0_1/0_2/1_1/1_2 can be used to schedule data transmission on a cell, which can be called a single-cell scheduling DCI format.
  • Fig. 4 shows a schematic diagram of scheduling through the above new DCI format.
  • PUSCH can be scheduled on the scheduled cells 1 to 3 through DCI format 0_X
  • PDSCH can be scheduled on the scheduled cells 1 to 3 through DCI format 1_X.
  • DCI size Downlink control information
  • the size of the information bits in the DCI is also called the payload size.
  • the bit width of the CRC is 24, so if the size of the information bits is the same, the size of the information bits plus the CRC bits is also the same.
  • the receiving method of the terminal device may be different. In order to reduce the reception complexity of the terminal device, it is hoped that the possibility of DCI size should not be too much. In order to reduce the number of DCI sizes, if the DCI sizes of two DCI formats are different, DCI size alignment may be required. The general method is to add 0 after the payload of the DCI format with a shorter DCI size until the DCI sizes are the same.
  • the DCI carried by the PDCCH sent on the scheduling cell may contain CIF. High-level signaling configures different CIF values for different scheduled cells. After receiving a DCI, the terminal device can determine which scheduled cell the DCI is scheduled for based on the CIF value.
  • CIF carrier indicator field
  • the carrier indication field in DCI format 0_1/1_1 is 0 or 3 bits, and the configuration parameter cif-Presence for the scheduling cell indicates whether the CIF field exists.
  • the carrier indication field in DCI format 0_2/1_2 is 0, 1, 2 or 3 bits, and the base station will configure carrierIndicatorSizeDCI-0-2 and carrierIndicatorSizeDCI-1-2. These two parameters define the number of bits in the carrier indication field of DCI format 0_2/1_2.
  • a first indication field to indicate the cell group currently scheduled by the DCI. For example, as shown in Table 4, it is designed to be 2 bits to indicate 4 carrier combinations.
  • the first indication field When the first indication field is 0, it indicates scheduling CC1; when the first indication field is 1, it indicates scheduling CC2 and CC3; when the first indication field is 2, it indicates scheduling CC0 and CC2; when the first indication field is 3, it indicates scheduling CC0, CC1, CC2 and CC3.
  • a DCI formatted as a multi-cell scheduling DCI format can schedule data transmission on multiple cells, but not every DCI formatted as a multi-cell scheduling DCI format schedules data transmission on multiple cells at the same time.
  • Multiple cells indicated by a value of the first indicator field of a multi-cell scheduling DCI format constitute a scheduled cell group, and the number of cells in each of these scheduled cell groups is greater than or equal to 1, and the number of cells in at least one of the scheduled cell groups is greater than or equal to 2.
  • Table 4 when the two bits of the first indicator field are 01, this DCI can schedule two cells, namely CC2 and CC3, and when the two bits of the first indicator field are 00, this DCI can schedule one cell, namely CC1.
  • All cells that can be scheduled by a multi-cell scheduling DCI format constitute a cell group, and the number of cells in this cell group is greater than or equal to 2.
  • the corresponding scheduling cell group includes CC0, CC1, CC2 and CC3.
  • the first indication field may also be designed in other ways.
  • the first indication field is used to indicate both the adjusted cell group and the BWP ID.
  • the first indication field may have multiple different values corresponding to the same adjusted cell group.
  • some fields are related to the activated BWP configuration of the scheduled cell.
  • some fields in the DCI for scheduling uplink transmission may be related to the configuration of the uplink activated BWP
  • some fields in the DCI for scheduling downlink transmission may be related to the configuration of the downlink activated BWP, for example:
  • Frequency domain resource assignment field The size and content of this field in the DCI for scheduling uplink transmission are related to the configuration (bandwidth and center frequency offset) of the uplink activated BWP of the scheduled cell; the size and content of this field in the DCI for scheduling downlink transmission are related to the configuration (bandwidth and center frequency offset) of the downlink activated BWP of the scheduled cell.
  • bit width of some DCI fields may be related to the activated BWP configuration of the first cell.
  • DCI format 1_X is related to the downlink target BWP configuration of the first cell
  • DCI format 0_X is related to the uplink target BWP configuration of the first cell, which may include: a DCI field that indicates information to each cell in the co-scheduled cells by joint indication, and the DCI field may be a DCI field that indicates information only to the first cell, or it may be a DCI field that indicates information to a cell group including the first cell, wherein the cell group here is a subset of cells that can be scheduled by DCI format 0_X or 1_X.
  • it may include:
  • DCI format 0_X determines the bit width according to the txConfig configuration in the uplink target BWP of the first cell
  • PTRS-UplinkConfig if PTRS-UplinkConfig is not configured in the uplink target BWP of the first cell, this field is 0 bit; otherwise, this field is 2 bits;
  • SRS resource indicator SRS resource indicator
  • the terminal device monitors a DCI format means that the terminal device attempts to perform blind detection on the control channel on the time-frequency resources corresponding to the control channel candidate, and performs decoding and CRC check according to the number of information bits (or DCI size) of the DCI format. If the check succeeds, it is considered that a DCI format has been successfully received on the control channel candidate; if the check fails, it is considered that no control channel has been detected on the control channel candidate. That is, when the terminal monitors a DCI format, it needs to know the DCI size of this DCI format.
  • the activated BWP on the scheduled cell is in an ambiguous period, that is, there is no valid activated BWP. Because the DCI size is related to the activated BWP configuration of the scheduled cell, if the base station and the terminal device have different understandings of the DCI size, the DCI cannot be sent and received normally.
  • Problem scenario 1 In one-to-one cross-carrier scheduling, that is, cross-carrier scheduling where one master cell corresponds to one slave cell, if the master cell indicates the slave cell to perform BWP switching using the BWP indication field in the DCI, due to the BWP switching delay, the activated BWP on the slave cell is in an ambiguous period, that is, there is no valid activated BWP. If the master cell sends DCI to schedule the slave cell, the base station and the terminal device may have different perceptions of the DCI size, which may result in the inability to send and/or receive DCI normally.
  • the base station sends DCI1 on the main cell to indicate switching from the current downlink BWP of the main cell to the target downlink BWP of the controlled cell, and indicates the PDSCH time-frequency resources in the target downlink BWP of the controlled cell. Due to the existence of BWP switching delay, the target BWP of the controlled cell has not been activated during the time period related to the BWP switching delay, that is, the target BWP on the controlled cell is in an ambiguous period.
  • One possible situation is: if during this period of time, the base station wants to send DCI2 to schedule the PDSCH of the scheduled cell, since there is no valid activated BWP on the current scheduled cell, the base station cannot determine the size and content of the frequency domain resource indication field according to the configuration of the activated BWP on the scheduled cell (such as bandwidth and center frequency offset), and therefore cannot determine the size of DCI2, so the base station cannot send the DCI2 normally.
  • the base station sends DCI2 to schedule the PDSCH of the scheduled cell. Since there is no valid activated BWP on the current scheduled cell, the terminal device cannot activate the BWP according to the configuration of the activated BWP on the scheduled cell (such as The size and content of the frequency domain resource indication field are determined by the frequency domain width and center frequency offset, and thus the DCI size cannot be determined, so the terminal device cannot normally receive the DCI2.
  • Problem scenario 2 In one-to-many cross-carrier scheduling, that is, in cross-carrier scheduling where one master cell corresponds to multiple slave cells (for example, using DCI format 0_X or 1_X), if the master cell indicates a slave cell to perform BWP switching using the BWP indication field, or the master cell indicates a slave cell to perform dormancy BWP switching using dormancy, due to the BWP switching delay, the activated BWP on the slave cell is in an ambiguous period during the time period related to the BWP switching delay, that is, there is no valid activated BWP.
  • the master cell may also have a DCI ambiguity problem in scheduling other slave cells, because the DCI size of DCI format 0_X or 1_X may be affected by the activated BWP of this slave cell.
  • the base station sends DCI1 (DCI format 0_X) on the main cell to indicate switching from the current downlink BWP of the main cell to the target downlink BWP of the controlled cell 1, and indicates the PDSCH time-frequency resources in the target downlink BWP of the controlled cell 1. Due to the existence of the BWP switching delay, the target BWP of the controlled cell 1 has not been activated during the time period related to the BWP switching delay, that is, the target BWP on the controlled cell 1 is in an ambiguous period.
  • DCI1 DCI format 0_X
  • One possible situation is: if during this period of time, the base station wants to send DCI2 to schedule the PDSCH of the scheduled cell, since there is no valid activated BWP on the current scheduled cell 1, the base station cannot determine the size and content of the frequency domain resource indication field according to the configuration of the activated BWP on the scheduled cell 1 (such as bandwidth and center frequency offset), and therefore cannot determine the size of DCI2, so the base station cannot send the DCI2 normally.
  • DCI2 DCI format 0_X
  • the terminal device Since there is no valid activated BWP on the current scheduled cell 1, the terminal device cannot determine the size and content of the frequency domain resource indication field according to the configuration of the activated BWP on the scheduled cell (such as bandwidth and center frequency offset), and therefore cannot determine the DCI size, so the terminal device cannot receive the DCI2 normally.
  • the DCI cannot be correctly sent and/or received because the DCI size is ambiguous when the activated BWP is in the ambiguous period due to BWP switching in the scheduled cell.
  • the embodiment of the present application provides a communication method and related devices.
  • the network device can stop or not allow the transmission of DCI, and the terminal device can stop receiving DCI, thereby solving the problem that the DCI size may not be determined when the activated BWP in the controlled cell is in an ambiguous period (i.e., there is no valid activated BWP in the controlled cell) due to BWP switching, resulting in the DCI being unable to be correctly sent and/or received.
  • DCI and DCI formats may be interchangeable.
  • the mobile communication system includes a core network device 110, a wireless access network device 120 and at least one terminal device (such as the terminal device 130 and the terminal device 140 in the figure).
  • the terminal device is connected to the wireless access network device by wireless means, and the wireless access network device is connected to the core network device by wireless or wired means.
  • the core network device and the wireless access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the wireless access network device can be integrated on the same physical device, or the functions of part of the core network device and part of the wireless access network device can be integrated on one physical device.
  • the terminal device can be fixed or movable.
  • Figure 6 is only a schematic diagram, and the communication system can also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not drawn in Figure 6.
  • the embodiment of the present application does not limit the number of core network devices, wireless access network devices and terminal devices included in the mobile communication system.
  • the wireless access network device is an access device that the terminal device uses to access the mobile communication system wirelessly. It can be a base station NodeB, an evolved base station eNodeB, a base station in an NR mobile communication system, a base station in a future mobile communication system, or an access node in a WiFi system.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • Terminal equipment can also be called terminal, user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • Terminal equipment can be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in self-driving, a wireless terminal in remote medical surgery, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, etc.
  • Wireless access network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on the water. It can also be deployed on airplanes, balloons and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the wireless access network device and the terminal device.
  • the embodiments of the present application can be applied to downlink signal transmission, uplink signal transmission, and device-to-device (D2D) signal transmission.
  • the sending device is a wireless access network device
  • the corresponding receiving device is a terminal device.
  • the sending device is a terminal device
  • the corresponding receiving device is a wireless access network device.
  • D2D signal transmission the sending device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the transmission direction of the signal in the embodiments of the present application is not limited.
  • the wireless access network equipment and the terminal equipment, as well as the terminal equipment and the terminal equipment, may communicate through the licensed spectrum, or may communicate through the unlicensed spectrum, or may communicate through both the licensed spectrum and the unlicensed spectrum.
  • the wireless access network equipment and the terminal equipment, as well as the terminal equipment and the terminal equipment may communicate through the spectrum below 6 GHz, or may communicate through the spectrum above 6 GHz, or may communicate through both the spectrum below 6 GHz and the spectrum above 6 GHz.
  • the embodiments of the present application do not limit the spectrum resources used between the wireless access network equipment and the terminal equipment.
  • FIG. 7 shows a flow chart of a communication method implemented on the terminal device side provided by an embodiment of the present application.
  • the process can be applied to the process of a master cell (referred to as the third cell in this embodiment) scheduling a controlled cell (referred to as the first cell in this embodiment of the present application).
  • the process shown in FIG. 7 can be applied to a one-to-one cross-carrier scheduling scenario.
  • the process may include the following steps:
  • a terminal device receives a first DCI sent by a network device, where the first DCI includes first indication information for instructing a first cell to perform a BWP switch, or includes second indication information for instructing the first cell to enter sleep or non-sleep mode.
  • instructing the first cell to enter dormancy or non-dormancy can also be expressed as instructing the first cell to enter dormancy or exit dormancy, or as instructing the first cell to perform a dormancy BWP (dormancy BWP) switch, or as instructing the downlink activation BWP of the first cell to switch from a non-dormancy BWP to a dormancy BWP, or from a dormancy BWP to a non-dormancy BWP.
  • dormancy BWP dormancy BWP
  • the first DCI used to schedule the first cell to perform BWP switching may be DCI format 0_0, or DCI format 0_1, or DCI format 0_2, or DCI format 1_0, or DCI format 1_1, or DCI format 1_2, which is not limited in this embodiment of the present application.
  • the first DCI used to schedule the first cell to enter sleep or non-sleep mode may be DCI format 0_1, or DCI format 1_1, or DCI format 2_6, which is not limited in this embodiment of the present application.
  • the first indication information is carried in a BWP indication field in the first DCI, that is, the first cell is instructed to perform BWP switching through the BWP indication field.
  • the second indication information is carried in other indication fields other than the BWP indication field in the first DCI, that is, the other indication fields are used to indicate whether the first cell enters sleep or non-sleep mode.
  • the SCell dormancy indication field in DCI format 0_1 or DCI format 1_1 can be used to indicate whether the SCell is dormancy or non-dormancy
  • the specific field in DCI format 1_1 can be used to indicate whether the SCell is dormancy or non-dormancy.
  • the SCell dormancy indication field in DCI format 2_6 can be used to indicate whether the SCell is dormancy or non-dormancy.
  • the first DCI is sent on the PDCCH of a third cell (ie, the main scheduling cell), and the third cell is different from the first cell.
  • This implementation method can achieve cross-carrier scheduling.
  • the first DCI may be sent within the first 3 symbols of a time slot, or may not be sent within the first 3 symbols of a time slot.
  • the terminal device determines a first time period.
  • the terminal device can determine the start time and end time of the first time period based on the sending/receiving time of the first DCI and the BWP switching delay. This can ensure that the second DCI sent by the network device for scheduling the first cell is not received during the time when the terminal device performs the BWP switching operation, or the received second DCI is discarded. Furthermore, after the first time period, that is, after ensuring that the BWP switching of the terminal device is completed, the terminal device can receive the DCI sent by the network device as promptly as possible.
  • the start time of the first time period may be one of the following start times:
  • First start time the end time of the first 3 symbols of the first time slot of the third cell where the first DCI is located (i.e., the time slot where the first DCI is located). This method of determining the start time of the first time period can be applied to the case where the first DCI is sent within the first 3 symbols of a time slot.
  • Second start time end time of the PDCCH carrying the first DCI. This method of determining the start time of the first time period can be applied to the case where the first DCI is sent within the first 3 symbols of a time slot, and can also be applied to the case where the first DCI is not sent within the first 3 symbols of a time slot.
  • the third starting time is the starting time of the first time slot (i.e., the time slot where the first DCI is located).
  • This method for determining the starting time of the first time period can be applicable to the case where the first DCI is sent within the first 3 symbols of a time slot, and can also be applicable to the case where the first DCI is not sent within the first 3 symbols of a time slot.
  • the end time of the first time period may be one of the following end times:
  • First end time the start time of the time slot indicated by the slot offset (slot offset) in the time domain resource indication field of the first DCI.
  • the end time of the first time period is the start time of the first time slot (i.e., the time slot where the first DCI is located) and the start time of the first downlink time slot after the first time interval.
  • the third end time when the first indication information indicates that the first cell performs uplink BWP switching, the end time of the first time period is the start time of the first time slot (i.e., the time slot where the first DCI is located) and the start time of the first uplink time slot after the first time interval.
  • the first time interval is related to the BWP switching delay.
  • the first time interval is equal to T BWPswitchDelay +Y
  • the value of T BWPswitchDelay is determined according to the minimum value of the subcarrier spacing of the third cell (i.e., the main cell), the subcarrier spacing of the BWP before the first cell (i.e., the tuned cell) is switched, and the subcarrier spacing of the BWP after the first cell is switched.
  • the specific method for determining the T BWPswitchDelay value and the Y value can refer to the relevant content of the previous text.
  • the value of Y is equal to 1, and when the first cell and the third cell are the same cell, the value of Y is equal to 0.
  • the value of Y is determined according to the 120KHz subcarrier spacing.
  • the first time period is described below in conjunction with FIG. 8a and FIG. 8b. These examples are described by taking the scenario where the subcarrier spacing of the main cell and the modulated cell is the same, that is, the time slots of the main cell and the modulated cell are aligned as an example.
  • Example 1 The start time of the first time period is the first start time, and the end time is the first end time.
  • the start time of the first time period is: the end time of the first three symbols of slot n of the main cell where the first DCI is located;
  • the time period during which the first cell cannot send or receive as defined in the current protocol is defined as the first time period, and the implementation is simple.
  • Example 2 The start time of the first time period is the first start time mentioned above, and the end time is the second end time mentioned above (when the first DCI indicates that the first cell performs downlink BWP switching) or the third end time (when the first DCI indicates that the first cell performs uplink BWP switching).
  • the start time of the first time period is: the end time of the first three symbols of slot n of the third cell where the first DCI is located;
  • Example 2 can reduce the length of the first time period during which DCI cannot be sent or received, thereby improving spectrum utilization, if the terminal device capability permits.
  • Example 3 The start time of the first time period is the second start time, and the end time is the first end time.
  • the start time of the first time period is: the end time of the PDCCH carrying the first DCI;
  • Example 3 can advance the first time period, thereby avoiding the situation where the terminal device and the network device have different perceptions of the DCI size during this period.
  • Example 4 The start time of the first time period is the second start time mentioned above, and the end time is the second end time mentioned above (when the first DCI indicates that the first cell performs downlink BWP switching) or the third end time (when the first DCI indicates that the first cell performs uplink BWP switching).
  • the start time of the first time period is: the end time of the PDCCH carrying the first DCI;
  • Example 5 The start time of the first time period is the third start time, and the end time is the first end time.
  • the starting time of the first time period is: the starting time of slot n where the first DCI is located;
  • Example 5 can advance the first time period to avoid the situation where the network device and the terminal device have different perceptions of the DCI size during this period.
  • Example 6 The start time of the first time period is the third start time mentioned above, and the end time is the second end time mentioned above (when the first DCI indicates that the first cell performs downlink BWP switching) or the third end time (when the first DCI indicates that the first cell performs uplink BWP switching).
  • the starting time of the first time period is: the starting time of slot n where the first DCI is located;
  • the start time of the first time period may be one of the first start time, the second start time and the third start time, and the end time of the first time period may be one of the following end times:
  • the end time of the first time period is from the start time of the first time slot (i.e., the time slot where the first DCI is located) to the start time of the first downlink time slot after the second time interval.
  • the end time of the first time period is from the start time of the first time slot (i.e., the time slot where the first DCI is located) to the start time of the first uplink time slot after the second time interval.
  • the second time interval is related to the BWP switching delay.
  • the second time interval when the first DCI is sent as the first 3 symbols in a time slot of the third cell (the main cell), the second time interval is equal to T BWPswitchDelay +X, and when the first DCI is not sent as the first 3 symbols in a time slot of the third cell (the main cell), the second time interval is equal to T BWPswitchDelay +X+Z.
  • T BWPswitchDelay is determined according to the minimum value among the subcarrier spacing of the third cell (the main cell), the subcarrier spacing of the dormant BWP of the first cell (the cell being modulated), and the subcarrier spacing of the activated BWP before or after the first cell is switched.
  • the specific method for determining the value of T BWPswitchDelay can refer to the relevant content of the previous text.
  • the value of X is equal to 1, and the unit of X is time slot, which corresponds to the subcarrier spacing of the third cell, the subcarrier spacing of the dormant BWP of the first cell, and the activated BWP before or after the first cell is switched.
  • the value of X is determined according to the 120KHz subcarrier spacing.
  • the value of Z is equal to 1, and the unit of Z is time slot, which corresponds to the subcarrier spacing of the third cell.
  • Example 7 When the first DCI is sent in the first 3 symbols of a time slot, the start time of the first time period is the above-mentioned first start time, and the end time is the above-mentioned fourth end time (when the first DCI indicates that the first cell is performing downlink BWP sleep) or the fifth end time (when the first DCI indicates that the first cell is performing uplink BWP sleep).
  • the start time of the first time period is: the end time of the first three symbols of slot n of the main cell where the first DCI is located;
  • the end time of the first time period is: starting from the start time of slot n, the start time of the first downlink slot after the second time interval T dormantBWPswitchDelay (the figure assumes that the first slot after the time interval T dormantBWPswitchDelay is a downlink slot).
  • Example 8 When the first DCI is sent in the first 3 symbols of a time slot, the start time of the first time period is the second start time mentioned above, and the end time is the fourth end time mentioned above (when the first DCI indicates that the first cell is performing downlink BWP sleep) or the fifth end time (when the first DCI indicates that the first cell is performing uplink BWP sleep).
  • the start time of the first time period is: the end time of the PDCCH carrying the first DCI;
  • Example 9 When the first DCI is sent in the first 3 symbols of a time slot, the start time of the first time period is the third start time mentioned above, and the end time is the fourth end time mentioned above (when the first DCI indicates that the first cell is performing downlink BWP sleep) or the fifth end time (when the first DCI indicates that the first cell is performing uplink BWP sleep).
  • the start time of the first time period is the start time of slot n where the first DCI is located;
  • Example 10 shows the start time and end time of the first time period when the first DCI is not sent in the first 3 symbols of a time slot, as shown in Figure 9b.
  • the method for determining the start time and end time of the first time period is similar to that of Example 8, except that the value of the second time interval T dormantBWPswitchDelay is different.
  • the second time interval T dormantBWPswitchDelay 5 slots.
  • Example 11 shows the start time and end time of the first time period when the first DCI is not sent in the first 3 symbols of a time slot, as shown in Figure 9b.
  • the method for determining the start time and end time of the first time period is similar to that of Example 9, except that the value of the second time interval T dormantBWPswitchDelay is different.
  • the second time interval T dormantBWPswitchDelay 5 slots.
  • S703 The terminal device stops monitoring or stops receiving the second DCI sent by the network device for scheduling the first cell within the first time period. Or discard the received second DCI used to schedule the first cell.
  • the second DCI used to schedule the first cell may be DCI format 0_0, or DCI format 0_1, or DCI format 0_2, or DCI format 1_0, or DCI format 1_1, or DCI format 1_2, which is not limited in the embodiments of the present application.
  • uplink BWP switching and downlink BWP switching are performed independently. That is, in FDD mode, if the DCI for scheduling downlink data transmission (e.g., DCI format 1_1/1_2/1_X) is not DCI size aligned with the DCI for scheduling uplink data transmission, then during the uplink BWP switching process, only the sending and receiving of the uplink data scheduling DCI can be restricted; similarly, if the DCI for scheduling uplink data transmission (e.g., DCI format 0_1/0_2/0_X) is not DCI size aligned with the DCI for scheduling downlink data transmission, then during the downlink BWP switching process, only the sending and receiving of the downlink data scheduling DCI can be restricted.
  • DCI for scheduling downlink data transmission e.g., DCI format 1_1/1_2/1_X
  • the DCI for scheduling uplink data transmission e.g., DCI format 0_1/0_2/0_X
  • the terminal device may stop monitoring or stop receiving the second DCI for scheduling uplink data transmission of the first cell within a first time period, or discard the received second DCI for scheduling uplink data transmission of the first cell.
  • the terminal device may stop monitoring or stop receiving the second DCI for scheduling uplink data transmission of the first cell within a first time period, or discard the received second DCI for scheduling downlink data transmission of the first cell.
  • the terminal device may also include the following steps: the terminal device receives the third indication information sent by the network device, and the third indication information is used to indicate that the terminal device operates in FDD mode in the first cell.
  • the terminal device receives the third indication information sent by the network device, and the third indication information is used to indicate that the terminal device operates in FDD mode in the first cell.
  • the timing of sending the DCI can be increased as much as possible to improve the spectrum utilization efficiency.
  • the terminal device may stop monitoring or stop receiving the second DCI for scheduling downlink data transmission of the first cell within a first time period, or discard the received second DCI for scheduling data transmission of the first cell.
  • the second DCI includes a DCI for scheduling downlink data transmission of the first cell and a DCI for scheduling uplink data transmission of the first cell.
  • the terminal device may also include the following steps: the terminal device receives fourth indication information sent by the network device, and the fourth indication information is used to indicate that the terminal device operates in TDD mode in the first cell.
  • FIG. 10 shows a flow chart of a communication method implemented on the network device side provided by an embodiment of the present application.
  • the process can be applied to the process of a master cell (referred to as the third cell in this embodiment) scheduling a controlled cell (referred to as the first cell in this embodiment of the present application).
  • the process shown in FIG. 10 can be applied to a one-to-one cross-carrier scheduling scenario.
  • the process may include the following steps:
  • a network device sends a first DCI to a terminal device, where the first DCI includes first indication information for instructing a first cell to perform a BWP switch, or includes second indication information for instructing the first cell to enter sleep or non-sleep mode.
  • the network device determines a second time period.
  • the method for the network device to determine the second time period is the same as the method for the terminal device to determine the first time period.
  • the relevant method please refer to the relevant content in the process shown in Figure 7.
  • the second time period determined by the network device and the first time period determined by the terminal device have a start time of the end time of the first three symbols of slot n of the main cell where the first DCI is located, and an end time of the start time of the first downlink time slot after the time interval T BWPswitchDelay +Y from the start time of the time slot where the first DCI is located.
  • the second time period is determined based on the timing of the network device, and the first time period is determined based on the timing of the terminal device, so there may be a deviation between the second time period and the first time period in absolute time.
  • Figure 11 shows the time deviation between the second time period determined by the network device and the first time period determined by the terminal device. As shown in the figure, due to the existence of air interface delay, there is a time deviation between the second time period determined by the network device and the first time period determined by the terminal device.
  • S1003 The network device stops or is not allowed to send a second DCI for scheduling the first cell to the terminal device within a second time period.
  • the network device sends third indication information to the terminal device, where the third indication information is used to indicate that the terminal device operates in the FDD mode in the first cell.
  • the network device may stop or be not allowed to send a second DCI for scheduling uplink data transmission of the first cell to the terminal device within a second time period.
  • the network device may stop or be not allowed to send a second DCI for scheduling downlink data transmission of the first cell to the terminal device within a second time period.
  • FIG. 12 shows a schematic diagram of a process flow of interaction between a network device and a terminal device provided in an embodiment of the present application. As shown in the figure, the process includes:
  • the network device sends third indication information to the terminal device, where the third indication information is used to indicate that the terminal device operates in the FDD mode in the first cell (the modulated cell), or the network device sends fourth indication information to the terminal device, where the fourth indication information is used to indicate that the terminal device operates in the TDD mode in the first cell (the modulated cell). This step is optional.
  • the network device sends a first DCI to the terminal device, where the first DCI includes first indication information for instructing the first cell to perform BWP switching, or includes second indication information for instructing the first cell to enter sleep or non-sleep mode.
  • the network device determines a second time period, and stops or is not allowed to send a second DCI for scheduling the first cell to the terminal device during the second time period.
  • a second time period For a specific implementation, please refer to FIG. 10 .
  • the terminal device determines a first time period, and stops monitoring or receiving the second DCI sent by the network device for scheduling the first cell within the first time period, or discards the received second DCI for scheduling the first cell.
  • the terminal device determines a first time period, and stops monitoring or receiving the second DCI sent by the network device for scheduling the first cell within the first time period, or discards the received second DCI for scheduling the first cell.
  • FIG. 7 For specific implementation, please refer to FIG. 7 .
  • the network device may not execute step 1203, in which case the terminal device executes step 1204; optionally, the network device executes step 1203, and the terminal device may not execute step 1204; optionally, the network device executes step 1203, and the terminal device executes step 1204.
  • each step in FIG12 may refer to the aforementioned embodiment.
  • the embodiment of the present application does not limit the execution order of step 1203 and step 1204 in Figure 12.
  • the network device may not send the second DCI for scheduling the first cell to the terminal device in a subsequent second time period, and/or the terminal device may stop monitoring or stop receiving the second DCI or discard the received second DCI in a subsequent first time period.
  • FIG13a and FIG13b respectively show a schematic flow diagram of a communication method implemented on the terminal device side provided by an embodiment of the present application.
  • the processes of FIG13a and FIG13b can be applied to a process in which a main scheduling cell (referred to as the third cell in this embodiment) schedules multiple scheduled cells, and the processes shown in FIG13a and FIG13b can be applied to a one-to-many cross-carrier scheduling scenario.
  • a main scheduling cell referred to as the third cell in this embodiment
  • the process may include the following steps:
  • a terminal device receives a first DCI sent by a network device, where the first DCI includes first indication information for instructing a first cell to perform a BWP switch, or includes second indication information for instructing the first cell to enter sleep or non-sleep mode.
  • the terminal device determines a first time period.
  • the terminal device stops monitoring or stops receiving the third DCI sent by the network device for scheduling at least one cell in the first cell group within the first time period, or discards the received third DCI for scheduling at least one cell in the first cell group; wherein the at least one cell includes a second cell, the second cell is different from the first cell, and the second cell and the first cell belong to the first cell group.
  • the format of the third DCI is the first DCI format.
  • the first DCI format can be used to schedule data transmission of two or more cells at the same time.
  • the first cell group is a set of all scheduled cells that can be scheduled by the first DCI format, and the number of cells in the first cell group is greater than or equal to 2.
  • the first cell and the second cell belong to the first cell group, and the first cell is different from the second cell.
  • the first DCI format includes a first indication field.
  • the first indication field in a DCI formatted as the first DCI format is used to indicate the scheduled cell group scheduled by this DCI.
  • the first indication field can have multiple values, and the first cell group is the set of all scheduled cells that can be indicated by the first indication field, that is, the first cell group is the set of all scheduled cells that can be indicated by all values of the first indication field.
  • the first DCI format is a multi-cell scheduling DCI format. It can be understood that the first DCI format can be used to simultaneously schedule uplink data transmission and/or downlink data transmission of two or more cells.
  • the first DCI format can be used to simultaneously schedule downlink data channels of two or more cells, that is, a DCI formatted as the first DCI format simultaneously schedules at least one downlink data channel on each of two or more cells.
  • the first DCI format can be used to simultaneously schedule uplink data channels of two or more cells, that is, a DCI formatted as the first DCI format simultaneously schedules at least one uplink data channel on each of two or more cells.
  • the first DCI format can be used to simultaneously schedule uplink data channels and/or downlink data channels of two or more cells, that is, a DCI formatted as the first DCI format simultaneously schedules at least one data channel on each of two or more cells, which can be an uplink data channel or a downlink data channel.
  • the downlink data channel can be a PDSCH
  • the uplink data channel can be a PUSCH.
  • the third DCI used to schedule at least one cell in the first cell group may be DCI format 0_X or DCI format 1_X, which is not limited in the embodiments of the present application.
  • DCI format 0_X or 1_X can schedule one or more cells in the co-scheduled cells by joint indication.
  • DCI format 0_X may include a DCI domain that indicates information for each cell in the first cell group.
  • the DCI domain may be a DCI domain that indicates information only to a cell in the first cell group, or it may be a DCI domain that indicates information to multiple cells in the first cell group.
  • the first cell group here is a subset of the cells that can be scheduled by DCI format 0_X or 1_X.
  • the first cell group includes the first cell and the second cell
  • the third DCI is used to schedule the second cell.
  • the second cell may be the same as or different from the third cell (the third cell is the main cell of the first DCI).
  • the third DCI may also schedule multiple cells including the second cell, which belong to the first cell group.
  • the main cell (the third cell) of the first DCI is different from the cell being scheduled (the first cell).
  • the terminal device may stop monitoring or stop receiving the third DCI used to schedule uplink data transmission of at least one cell in the first cell group within the first time period, or discard the received third DCI.
  • the terminal device may stop monitoring or stop receiving the third DCI sent by the network device for scheduling downlink data transmission of at least one cell in the first cell group within the first time period, or discard the received third DCI.
  • the terminal device may also include the following steps: the terminal device receives the third indication information sent by the network device, and the third indication information is used to indicate that the terminal device operates in FDD mode in the first cell.
  • the terminal device may stop monitoring or stop receiving the third DCI used to schedule uplink data transmission in at least one cell in the first cell group within the first time period, or discard the received third DCI. Furthermore, before receiving the first DCI sent by the network device, the terminal device may also include the following steps: the terminal device receives the third indication information sent by the network device, and the third indication information is used to indicate that the terminal device operates in FDD mode in the first cell.
  • the terminal device may stop monitoring or stop receiving the third DCI sent by the network device for scheduling uplink data transmission of at least one cell in the first cell group within the first time period, or discard the received third DCI; wherein the at least one cell includes a second cell, the second cell is different from the first cell, and the second cell and the first cell belong to the first cell group.
  • the format of the third DCI is the first DCI format.
  • the first DCI format can be used to schedule uplink data transmission of two or more cells at the same time.
  • the first cell group is a set of all scheduled cells that can be scheduled by the first DCI format, and the first cell and the second cell belong to the first cell group. Further, the terminal device may stop monitoring or stop receiving the fourth DCI sent by the network device for scheduling downlink data transmission of at least one cell in the first cell group within the first time period, or discard the received fourth DCI; wherein the at least one cell includes a third cell, the third cell is different from the first cell, and the third cell and the first cell belong to the second cell group.
  • the format of the fourth DCI is the second DCI format.
  • the second DCI format can be used to schedule downlink data transmission of two or more cells at the same time.
  • the second cell group is a set of all scheduled cells that can be scheduled by the second DCI format, and the first cell and the third cell belong to the second cell group. Furthermore, before receiving the first DCI sent by the network device, the terminal device may also include the following steps: the terminal device receives the third indication information sent by the network device, and the third indication information is used to indicate that the terminal device operates in TDD mode in the first cell.
  • the process may include the following steps:
  • the terminal device receives a first DCI sent by a network device, where the first DCI includes a DCI for instructing the first cell to perform BWP
  • the first indication information of the switching may include second indication information for indicating that the first cell enters sleep or non-sleep mode.
  • the terminal device determines a first time period.
  • the terminal device stops monitoring or stops receiving the first DCI format sent by the network device within the first time period, or discards the received first DCI format.
  • the first DCI format can be used to schedule data transmission of two or more cells at the same time, the first cell belongs to a first cell group, and the first cell group is a collection of all scheduled cells that can be scheduled by the first DCI format.
  • the first DCI format includes a first indication field.
  • the first indication field in a DCI formatted as the first DCI format is used to indicate the scheduled cell group scheduled by this DCI.
  • the first indication field can have multiple values, and the first cell group is the set of all scheduled cells that can be indicated by the first indication field, that is, the first cell group is the set of all scheduled cells that can be indicated by all values of the first indication field.
  • the first DCI format is a multi-cell scheduling DCI format. It can be understood that the first DCI format can be used to simultaneously schedule uplink data transmission and/or downlink data transmission of two or more cells.
  • the first DCI format can be used to simultaneously schedule downlink data channels of two or more cells, that is, a DCI formatted as the first DCI format simultaneously schedules at least one downlink data channel on each of two or more cells.
  • the first DCI format can be used to simultaneously schedule uplink data channels of two or more cells, that is, a DCI formatted as the first DCI format simultaneously schedules at least one uplink data channel on each of two or more cells.
  • the first DCI format can be used to simultaneously schedule uplink data channels and/or downlink data channels of two or more cells, that is, a DCI formatted as the first DCI format simultaneously schedules at least one data channel on each of two or more cells, which can be an uplink data channel or a downlink data channel.
  • the downlink data channel can be a PDSCH
  • the uplink data channel can be a PUSCH.
  • the terminal device stops monitoring or stops receiving or discards the first DCI format sent by the network device within a first time period; wherein the first DCI format can be used to simultaneously schedule uplink data transmission of two or more cells, the first cell belongs to a first cell group, and the first cell group is a collection of all scheduled cells that can be scheduled by the first DCI format.
  • the terminal device may also include the following steps: the terminal device receives third indication information sent by the network device, and the third indication information is used to indicate that the terminal device operates in FDD mode in the first cell.
  • the terminal device stops monitoring or stops receiving or discards the first DCI format sent by the network device within a first time period; wherein the first DCI format can be used to simultaneously schedule downlink data transmission of two or more cells, the first cell belongs to a first cell group, and the first cell group is a collection of all scheduled cells that can be scheduled by the first DCI format.
  • the terminal device may also include the following steps: the terminal device receives third indication information sent by the network device, and the third indication information is used to indicate that the terminal device operates in FDD mode in the first cell.
  • the terminal device stops monitoring or stops receiving or discards the first DCI format sent by the network device within a first time period; wherein the first DCI format can be used to simultaneously schedule uplink data transmission of two or more cells, the first cell belongs to a first cell group, and the first cell group is a collection of all scheduled cells that can be scheduled by the first DCI format, and the terminal device stops monitoring or stops receiving or discards the second DCI format sent by the network device within the first time period; wherein the second DCI format can be used to simultaneously schedule downlink data transmission of two or more cells, the first cell belongs to a second cell group, and the second cell group is a collection of all scheduled cells that can be scheduled by the second DCI format.
  • the terminal device may also include the following steps: the terminal device receive
  • FIG14a and FIG14b respectively show a schematic flow diagram of a communication method implemented on the network device side provided by an embodiment of the present application.
  • the processes of FIG14a and FIG14b can be applied to a process in which a main scheduling cell (referred to as the third cell in this embodiment) schedules multiple scheduled cells, and the processes shown in FIG14a and FIG14b can be applied to a one-to-many cross-carrier scheduling scenario.
  • a main scheduling cell referred to as the third cell in this embodiment
  • the process may include the following steps:
  • the network device sends a first DCI to the terminal device, where the first DCI includes first indication information for instructing the first cell to perform BWP switching, or includes second indication information for instructing the first cell to enter sleep or non-sleep mode.
  • S1402 The network device determines a second time period.
  • the method for the network device to determine the second time period is the same as the method for the terminal device to determine the first time period.
  • the second time period is determined based on the timing of the network device, and the first time period is determined based on the timing of the terminal device, so there may be a deviation in absolute time between the second time period and the first time period.
  • the network device stops or is not allowed to send a third DCI for scheduling at least one cell in a first cell group to the terminal device within a second time period; wherein the at least one cell includes a second cell, the second cell is different from the first cell, and the second cell and the first cell belong to the first cell group.
  • the network device sends third indication information to the terminal device, where the third indication information is used to indicate that the terminal device operates in the FDD mode in the first cell.
  • the network device may stop or be not allowed to send a third DCI for scheduling uplink data transmission of at least one cell in the first cell group to the terminal device within a second time period.
  • the network device may stop or be not allowed to send a third DCI for scheduling downlink data transmission of at least one cell in the first cell group to the terminal device within a second time period.
  • the process may include the following steps:
  • the network device sends a first DCI to the terminal device, where the first DCI includes first indication information for instructing the first cell to perform BWP switching, or includes second indication information for instructing the first cell to enter sleep or non-sleep mode.
  • S1411 The network device determines a second time period.
  • the method for the network device to determine the second time period is the same as the method for the terminal device to determine the first time period.
  • the network device stops or is not allowed to send the first DCI format to the terminal device in the second time period.
  • the first DCI format can be used to schedule data transmission of two or more cells at the same time, the first cell belongs to a first cell group, and the first cell group is a collection of all scheduled cells that can be scheduled by the first DCI format.
  • the first DCI format includes a first indication field.
  • the first indication field in a DCI formatted as the first DCI format is used to indicate the scheduled cell group scheduled by this DCI.
  • the first indication field can have multiple values, and the first cell group is the set of all scheduled cells that can be indicated by the first indication field, that is, the first cell group is the set of all scheduled cells that can be indicated by all values of the first indication field.
  • the first DCI format is a multi-cell scheduling DCI format. It can be understood that the first DCI format can be used to simultaneously schedule uplink data transmission and/or downlink data transmission of two or more cells.
  • the first DCI format can be used to simultaneously schedule downlink data channels of two or more cells, that is, a DCI formatted as the first DCI format simultaneously schedules at least one downlink data channel on each of two or more cells.
  • the first DCI format can be used to simultaneously schedule uplink data channels of two or more cells, that is, a DCI formatted as the first DCI format simultaneously schedules at least one uplink data channel on each of two or more cells.
  • the first DCI format can be used to simultaneously schedule uplink data channels and/or downlink data channels of two or more cells, that is, a DCI formatted as the first DCI format simultaneously schedules at least one data channel on each of two or more cells, which can be an uplink data channel or a downlink data channel.
  • the downlink data channel can be a PDSCH
  • the uplink data channel can be a PUSCH.
  • the terminal device stops monitoring or stops receiving or discards the first DCI format sent by the network device within a first time period; wherein the first DCI format can be used to simultaneously schedule uplink data transmission of two or more cells, the first cell belongs to a first cell group, and the first cell group is a collection of all scheduled cells that can be scheduled by the first DCI format.
  • the terminal device may also include the following steps: the terminal device receives third indication information sent by the network device, and the third indication information is used to indicate that the terminal device operates in FDD mode in the first cell.
  • the terminal device stops monitoring or stops receiving or discards the first DCI format sent by the network device within a first time period; wherein the first DCI format can be used to simultaneously schedule downlink data transmission of two or more cells, the first cell belongs to a first cell group, and the first cell group is a collection of all scheduled cells that can be scheduled by the first DCI format.
  • the terminal device may also include the following steps: the terminal device receives third indication information sent by the network device, and the third indication information is used to indicate that the terminal device operates in FDD mode in the first cell.
  • the terminal device stops monitoring or stops receiving or discards the first DCI format sent by the network device within a first time period; wherein the first DCI format can be used to simultaneously schedule uplink data transmission of two or more cells, the first cell belongs to a first cell group, and the first cell group is a collection of all scheduled cells that can be scheduled by the first DCI format, and the terminal device stops monitoring or stops receiving or discards the second DCI format sent by the network device within the first time period; wherein the second DCI format can be used to simultaneously schedule downlink data transmission of two or more cells, the first cell belongs to a second cell group, and the second cell group is a collection of all scheduled cells that can be scheduled by the second DCI format.
  • the terminal device may also include the following steps: the terminal device receive
  • FIG. 15 shows a schematic diagram of a process flow of interaction between a network device and a terminal device provided in an embodiment of the present application. As shown in the figure, the process includes:
  • the network device sends third indication information to the terminal device, where the third indication information is used to indicate that the terminal device operates in the FDD mode in the first cell (the modulated cell), or the network device sends fourth indication information to the terminal device, where the fourth indication information is used to indicate that the terminal device operates in the TDD mode in the first cell (the modulated cell). This step is optional.
  • the network device sends fifth indication information to the terminal device, the fifth indication information is used to indicate that one DCI can be used to schedule one or more cells in the first cell group (including scheduling uplink transmission or downlink transmission of these cells), and the first cell group includes the first cell. This step is optional.
  • the network device sends a first DCI to the terminal device, where the first DCI includes first indication information for instructing the first cell to perform BWP switching, or includes second indication information for instructing the first cell to enter sleep or non-sleep status.
  • the network device determines a second time period, and stops or is not allowed to send a third DCI for scheduling at least one cell in a first cell group to the terminal device within the second time period; wherein the at least one cell includes a second cell, the second cell is different from the first cell, and the second cell and the first cell belong to the first cell group.
  • the network device determines a second time period, and stops or is not allowed to send the first DCI format to the terminal device during the second time period.
  • the terminal device determines a first time period, and stops monitoring or receiving a third DCI sent by a network device for scheduling at least one cell in a first cell group within the first time period, or discards the received third DCI for scheduling at least one cell in the first cell group; wherein the at least one cell includes a second cell, the second cell is different from the first cell, and the second cell and the first cell belong to the first cell group.
  • the terminal device determines a first time period, and stops monitoring or stops receiving a first DCI format sent by the network device within the first time period, or discards the received first DCI format.
  • the network device may not execute step 1504, in which case the terminal device executes step 1505; optionally, the network device executes step 1504, and the terminal device may not execute step 1505; optionally, the network device executes step 1504, and the terminal device executes step 1505.
  • each step in FIG15 may refer to the aforementioned embodiment.
  • the network device may not send the third DCI for scheduling the second cell in the first cell group (i.e., the scheduled cell group) to the terminal device in the second time period thereafter, and/or the terminal device may not receive or discard the received third DCI in the first time period thereafter.
  • the size of the third DCI may not be determined when the second cell in the scheduled cell group undergoes BWP switching (the operation of the first cell entering sleep/non-sleep is achieved through BWP switching) due to the first cell in the group undergoing BWP switching (the operation of the first cell entering sleep/non-sleep is achieved through BWP switching), and the activated BWP in the first cell is in an ambiguous period (i.e., there is no valid activated BWP in the scheduled cell), resulting in the problem that the third DCI size cannot be correctly sent and/or received.
  • the network device determines a second time period and may stop or not be allowed to send the second DCI and the third DCI to the terminal device within the second time period.
  • DCI determine a first time period, and stop monitoring or stop receiving the second DCI or discard the received second DCI within the first time period, and stop monitoring or stop receiving the third DCI or discard the received third DCI.
  • the relevant implementation method can refer to the above embodiment, which will not be repeated here.
  • the embodiment of the present application further provides a communication device, which can implement the functions implemented by the terminal device in the above-mentioned embodiment.
  • the communication device 1600 may include a processing unit 1601 and a transceiver unit 1602 .
  • the transceiver unit 1602 is used to receive a first DCI sent by a network device, wherein the first DCI includes first indication information for indicating that the first cell performs a BWP switch, or includes second indication information for indicating that the first cell enters sleep or non-sleep mode.
  • the processing unit 1601 is used to determine a first time period; and, during the first time period, stop monitoring, receiving, or discarding the second DCI sent by the network device for scheduling the first cell received by the transceiver unit 1602, or stop monitoring, receiving, or discarding the third DCI sent by the network device for scheduling at least one cell in the first cell group received by the transceiver unit 1602 during the first time period; wherein the at least one cell includes a second cell, the second cell is different from the first cell, and the second cell and the first cell belong to the first cell group.
  • the method for the processing unit 1601 to determine the start time and the end time of the first time period may refer to the above-mentioned embodiment.
  • the processing unit 1601 is specifically used to: stop monitoring or receiving or discarding the second DCI sent by the network device for scheduling uplink data transmission of the first cell received by the transceiver unit 1602 during the first time period.
  • the processing unit 1601 is specifically used to: stop monitoring or receiving or discarding the second DCI sent by the network device for scheduling downlink data transmission of the first cell received by the transceiver unit 1602 during the first time period.
  • the processing unit 1601 is specifically used to: stop monitoring or receiving or discarding the third DCI sent by the network device for scheduling uplink data transmission of at least one cell in the first cell group received by the transceiver unit 1602 during the first time period.
  • the processing unit 1601 is specifically used to: stop monitoring or receiving or discarding the third DCI sent by the network device for scheduling downlink data transmission of at least one cell in the first cell group received by the transceiver unit 1602 within the first time period.
  • the transceiver unit 1602 before the transceiver unit 1602 receives the first DCI sent by the network device, it also receives third indication information sent by the network device, where the third indication information is used to indicate that the terminal device operates in frequency division duplex mode in the first cell.
  • the processing unit 1601 is specifically used to: stop monitoring or stop receiving the second DCI sent by the network device for scheduling the first cell through the transceiver unit 1602 within the first time period, or discard the second DCI received by the transceiver unit 1602; wherein the second DCI includes DCI for scheduling uplink data transmission of the first cell and DCI for scheduling downlink data transmission of the first cell.
  • the processing unit 1601 is specifically used to: stop monitoring or stop receiving the third DCI sent by the network device for scheduling uplink data transmission of at least one cell in the first cell group through the transceiver unit 1602 within the first time period, or discard the third DCI received by the transceiver unit 1602.
  • the processing unit 1601 is also used to: stop monitoring or stop receiving the fourth DCI sent by the network device for scheduling downlink data transmission of at least one cell in the first cell group through the transceiver unit 1602 within the first time period, or discard the fourth DCI received by the transceiver unit 1602.
  • the transceiver unit 1602 before receiving the first DCI sent by the network device, the transceiver unit 1602 is further used to: receive fourth indication information sent by the network device, and the fourth indication information is used to indicate that the terminal device operates in time division duplex mode in the first cell.
  • the above-mentioned communication device provided in the embodiment of the present application can implement all the method steps implemented by the terminal device in the above-mentioned method embodiment, and can achieve the same technical effect.
  • the parts and beneficial effects of this embodiment that are the same as the method embodiment will not be described in detail here.
  • the embodiment of the present application further provides a communication device, which can implement the functions implemented by the network device in the above-mentioned embodiment.
  • the communication device 1700 may include a processing unit 1701 and a transceiver unit 1702 .
  • the transceiver unit 1702 is configured to send a first downlink control information DCI to the terminal device, wherein the first DCI includes first indication information for instructing the first cell to perform bandwidth part BWP switching, or includes a second indication information for instructing the first cell to enter sleep or non-sleep
  • the processing unit 1701 is configured to determine a second time period; and to stop or not allow the second DCI for scheduling the first cell to be sent to the terminal device through the transceiver unit 1702 during the second time period, or to stop or not allow the third DCI for scheduling at least one cell in the first cell group to be sent to the terminal device through the transceiver unit 1702 during the second time period; wherein the at least one cell includes a second cell, the second cell is different from the first cell, and the second cell and the first cell belong to the first cell group.
  • the method for the processing unit 1701 to determine the start time and the end time of the second time period may refer to the above-mentioned embodiment.
  • the processing unit 1701 is specifically used to: stop or not allow sending the second DCI for scheduling uplink data transmission of the first cell to the terminal device through the transceiver unit 1702 within the second time period.
  • the processing unit 1701 is specifically used to: stop or not allow sending the second DCI for scheduling downlink data transmission of the first cell to the terminal device through the transceiver unit 1702 within the second time period.
  • the processing unit 1701 is specifically used to: stop or not allow sending a third DCI for scheduling uplink data transmission of at least one cell in the first cell group to the terminal device through the transceiver unit 1702 within the second time period.
  • the processing unit 1701 is specifically used to: stop or not allow sending a third DCI for scheduling downlink data transmission of at least one cell in the first cell group to the terminal device through the transceiver unit 1702 within the second time period.
  • the transceiver unit 1702 before sending the first DCI to the terminal device, the transceiver unit 1702 further sends third indication information to the terminal device, where the third indication information is used to indicate that the terminal device operates in a frequency division duplex mode in the first cell.
  • the processing unit 1701 is specifically used to: stop or not allow sending a second DCI for scheduling the first cell to the terminal device through the transceiver unit 1702 within the second time period; wherein the second DCI includes a DCI for scheduling uplink data transmission of the first cell and a DCI for scheduling downlink data transmission of the first cell.
  • the processing unit 1701 is specifically used to: stop or not allow sending a third DCI for scheduling uplink data transmission of at least one cell in the first cell group to the terminal device within the second time period.
  • the processing unit 1701 is further used to: stop or not allow sending a fourth DCI for scheduling downlink data transmission of at least one cell in the first cell group to the terminal device through the transceiver unit 1702 during the second time period.
  • the processing unit 1701 before sending the first DCI to the terminal device, the processing unit 1701 is further used to: send fourth indication information to the terminal device through the transceiver unit 1702, and the fourth indication information is used to indicate that the terminal device operates in time division duplex mode in the first cell.
  • the above-mentioned communication device provided in the embodiment of the present application can implement all the method steps implemented by the network device in the above-mentioned method embodiment, and can achieve the same technical effect.
  • the parts and beneficial effects that are the same as the method embodiment in this embodiment will not be described in detail here.
  • FIG18 only shows the structure required for the communication device 1800 to execute the method shown in the present application, and the present application does not limit the communication device to have more components.
  • the communication device 1800 can be used to execute the steps executed by the relevant device in the above method embodiment, for example, the relevant device can be a terminal device or a network device.
  • the communication device 1800 may include a transceiver 1801, a memory 1803, and a processor 1802, and the transceiver 1801, the memory 1803, and the processor 1802 may be connected via a bus 1804.
  • the transceiver 1801 may be used for the communication device to communicate, such as for sending or receiving signals.
  • the memory 1803 is coupled to the processor 1802 and may be used to store programs and data necessary for the communication device 1800 to implement various functions.
  • the above memory 1803 and the processor 1802 may be integrated or independent of each other.
  • the transceiver 1801 may be a communication port, such as a communication port (or interface) used for communication between network elements.
  • the transceiver 1801 may also be referred to as a transceiver unit or a communication unit.
  • the processor 1802 may be implemented by a processing chip or a processing circuit.
  • the transceiver 1801 may receive or send information wirelessly or by wire.
  • the communication device may include a processor, and the processor calls an external transceiver and/or memory to implement the above functions or steps or operations.
  • the communication device may also include a memory, and the processor calls and executes the program stored in the memory to implement the above functions or steps or operations.
  • the communication device may also include a processor and a transceiver (or communication interface), The processor calls and executes the program stored in the external memory to implement the above functions or steps or operations.
  • the communication device may also include a processor, a memory and a transceiver.
  • a computer-readable storage medium is also provided in the embodiment of the present application, on which program instructions (or computer programs, instructions) are stored.
  • program instructions or computer programs, instructions
  • the computer executes the operations performed by the terminal device or network device in the above-mentioned method embodiment or any possible implementation method of the method embodiment.
  • the present application also provides a computer program product, including program instructions.
  • the computer program product When the computer program product is called and executed by a computer, it can enable the computer to implement the operations performed by a terminal device or a network device in the above-mentioned method embodiment and any possible implementation method of the method embodiment.
  • the present application also provides a chip or a chip system, which is coupled with a transceiver and is used to implement the operations performed by a terminal device or a network device in the above method embodiment or any possible implementation of the method embodiment.
  • the chip system may include the chip, as well as components such as a memory and a communication interface.
  • the present application embodiment further provides a communication system.
  • the communication system includes a terminal device and a network device, the terminal device can perform the operations of the terminal device in the above method embodiment, and the network device can perform the operations of the network device in the above method embodiment.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、装置、系统及存储介质,涉及无线通信技术领域。终端设备接收网络设备发送的第一DCI,第一DCI包括用于指示第一小区进行BWP切换的第一指示信息,或包括用于指示第一小区进入休眠或非休眠的第二指示信息;终端设备确定第一时间段,在第一时间段内停止监测或停止接收或丢弃接收到的用于调度第一小区的第二DCI,或者在第一时间段内停止监测或停止接收或丢弃接收到的用于调度第一小区组中至少一个小区的第三DCI;所述至少一个小区包括第二小区,第二小区和第一小区属于第一小区组。上述方法可以解决在被调小区发生BWP切换的场景下,被调小区的激活BWP处于模糊期时导致的DCI无法被正确发送和/或接收的问题。

Description

一种通信方法、装置、系统及存储介质
相关申请的交叉引用
本申请要求在2022年11月04日提交中国专利局、申请号为202211380041.9、申请名称为“一种通信方法、装置、系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、系统及存储介质。
背景技术
新无线(new radio,NR)引入了带宽部分(BandWidth Part,BWP)的概念。一个终端设备在一个下行载波上只能有一个下行激活BWP(active downlink BWP),在一个上行载波上只能有一个上行激活BWP(active uplink BWP)。终端设备在不同时刻的业务需求可能不同,对传输带宽的需求也不同。基站能够根据业务需求,通过下行控制信息(downlink control Information,DCI)在不同时刻激活不同的BWP,以达到节省终端设备功耗等目的。
在跨载波调度时,被调小区发生BWP切换的时间内,被调小区上的激活BWP处于模糊期,也就是不存在有效的激活BWP。由于DCI的大小可能与被调小区的激活BWP配置有关,因此如果基站和终端设备对DCI大小的认知不同,则无法进行DCI的正常发送和接收。
在被调小区发生BWP切换的场景下,由于被调小区上的激活BWP处于模糊期(即不存在有效的激活BWP),DCI大小模糊(即可能无法确定DCI的大小),因而导致DCI无法被正确发送和/或接收的问题,目前尚未有相应的解决方案。
发明内容
本申请实施例提供一种通信方法、装置、系统及存储介质,用以解决在被调小区发生BWP切换的场景下,当被调小区的激活BWP处于模糊期时,DCI大小模糊而导致的DCI无法被正确发送和/或接收的问题。
第一方面,提供一种通信方法,该方法可以应用于终端设备,该方法包括:接收网络设备发送的第一下行控制信息(DCI),所述第一DCI包括用于指示第一小区进行带宽部分(BWP)切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息;确定第一时间段,并在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区的第二DCI,或丢弃接收到的所述第二DCI,或者在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区的第三DCI,或丢弃接收到的所述第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。
上述实现方式中,在主调小区调度一个被调小区的场景下,如果网络设备通过第一DCI指示第一小区(即被调小区)进行BWP切换,或者指示第一小区进入休眠或非休眠,则终端设备可以在其后的第一时间段内不接收用于调度第一小区的第二DCI,或丢弃接收到的第二DCI,这样可以避免或减少第一小区因为发生BWP切换(第一小区进入休眠/非休眠的操作是通过BWP切换实现的),第一小区中的激活BWP处于模糊期(即被调小区不存在有效的激活BWP)时,第二DCI大小可能无法确定,导致第二DCI无法被正确发送和/或接收的问题。在主调小区调度多个被调小区的场景下,如果网络设备通过第一DCI指示第一小区(即被调小区)进行BWP切换,或者指示第一小区进入休眠或非休眠,则终端设备可以在其后的第一时间段内不接收用于调度第一小区组(即被调小区组)的第三DCI或丢弃接收到的该第三DCI,这样可以避免或减少被调小区组中的第二小区因为该组中的第一小区发生BWP切换(第一小区进入休眠/非休眠的操作是通过BWP切换实现的),第一小区中的激活BWP处于模糊期(即被调小区不存在有效的激活BWP)时,第三DCI大小可能无法确定,导致第三DCI无法被正确发送和/或接收的问题。
可选的,所述第一DCI承载于第三小区(即主调小区)的物理下行控制信道(PDCCH)上发送,所述第三小区与所述第一小区不同,所述第三小区与所述第二小区相同或不同。通过该实现方式可以实 现跨载波调度。
可选的,所述确定第一时间段,包括:根据所述第一DCI的发送时间以及BWP切换时延确定所述第一时间段。这样可以保证在终端设备进行BWP切换操作的时间内不接收或丢弃接收到的所述第二DCI或所述第三DCI,进一步的,还可以使得终端设备能够在保证BWP切换完成后尽可能及时地接收网络设备发送的DCI。
在一种可能的实现方式中,所述第一时间段的起始时间为:所述第一DCI所在的第三小区的第一时隙的前3个符号的结束时间,其中,所述第一时隙为所述第一DCI所在的时隙;或者,承载所述第一DCI的物理下行控制信道PDCCH的结束时间;或者,第一时隙的开始时间,其中,所述第一时隙为所述第一DCI所在的时隙。
上述一些实现方式中,相较于相关技术,可以将不发送不接收的时间段提前,因此可以避免终端设备和网络设备在这段时间内的DCI大小认知不同的情况发生。
在一种可能的实现方式中,在所述第一DCI包括所述第一指示信息的情况下,所述第一时间段的结束时间为所述第一DCI的时域资源指示域中的时隙偏移指示的时隙的起始时间;或者,在所述第一DCI包括所述第一指示信息且所述第一指示信息指示所述第一小区进行下行BWP切换的情况下,所述第一时间段的结束时间为从所述第一时隙的起始时间开始,在第一时间间隔后的第一个下行时隙的起始时间;或者,在所述第一DCI包括所述第一指示信息且所述第一指示信息指示所述第一小区进行上行BWP切换的情况下,所述第一时间段的结束时间为从所述第一时隙的起始时间开始,在第一时间间隔后的第一个上行时隙的起始时间。其中,所述第一时间间隔与BWP切换时延相关。
可选的,所述第一时间间隔等于TBWPswitchDelay+Y;其中,所述TBWPswitchDelay的值根据所述第三小区的子载波间隔、所述第一小区切换前的BWP的子载波间隔以及所述第一小区切换后的BWP的子载波间隔中的最小值确定;所述Y的值包括:在所述第一小区和所述第三小区不是同一小区的情况下,所述Y的值等于1;或者在所述第一小区和所述第三小区是同一小区的情况下,所述Y的值等于0;或者在所述第一小区和所述第三小区的频点在频域范围FR2-2内的情况下,所述Y的取值根据120KHz子载波间隔确定。
上述一些实现方式中,可以在终端设备能力允许的情况下,减少不能收发DCI的第一时间段的长度,提高频谱利用率。
在一种可能的实现方式中,在所述第一DCI包括所述第二指示信息且所述第二指示信息指示所述第一小区的下行BWP休眠的情况下,所述第一时间段的结束时间为从所述第一时隙的起始时间开始,在第二时间间隔后的第一个下行时隙的起始时间;或者,在所述第一DCI包括所述第二指示信息且所述第二指示信息指示所述第一小区的上行BWP休眠的情况下,所述第一时间段的结束时间为从所述第一时隙的起始时间开始,在第二时间间隔后的第一个上行时隙的起始时间。其中,所述第二时间间隔与BWP切换时延相关。
可选的,在所述第一DCI是在所述第三小区的一个时隙内的前3个符号发送的情况下,所述第二时间间隔等于TBWPswitchDelay+X,或者在所述第一DCI不是在所述第三小区的一个时隙内的前3个符号发送的情况下,所述第二时间间隔等于TBWPswitchDelay+X+Z。其中,所述TBWPswitchDelay的值根据所述第三小区的子载波间隔、所述第一小区休眠BWP的子载波间隔、所述第一小区切换前或切换后的激活BWP的子载波间隔中的最小值确定;所述X的值等于1,所述X的单位为时隙,所述时隙对应于所述第三小区的子载波间隔、所述第一小区休眠BWP的子载波间隔、所述第一小区切换前或切换后的激活BWP的子载波间隔中的最小值;或者,在所述第一小区和所述第三小区的频点在频域范围FR2-2内的情况下,所述X的取值根据120KHz子载波间隔确定;所述Z的值等于1,所述Z的单位为时隙,所述时隙对应于所述第三小区的子载波间隔。
在一种可能的实现方式中,在所述第一指示信息用于指示所述第一小区进行上行BWP切换的情况下,所述在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区的第二DCI,或丢弃接收到的所述第二DCI,包括:在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区上行数据传输的第二DCI,或丢弃接收到的所述第二DCI;或者,在所述第一指示信息用于指示所述第一小区进行下行BWP切换的情况下,所述在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区的第二DCI,或丢弃接收到的所述第二DCI,包括:在所述第一时间段内停止监测或停止接收网络设备发送的用于调度所述第一小区下行数据传输的第二 DCI,或丢弃接收到的所述第二DCI。
在一种可能的实现方式中,所述第一指示信息用于指示所述第一小区进行上行BWP切换的情况下,所述在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区的第三DCI,或丢弃接收到的所述第三DCI,包括:在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区上行数据传输的第三DCI,或丢弃接收到的所述第三DCI;或者,在所述第一指示信息用于指示所述第一小区进行下行BWP切换的情况下,所述在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区的第三DCI,或丢弃所述第三DCI,包括:在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区下行数据传输的第三DCI,或丢弃所述第三DCI。
可选的,在接收网络设备发送的第一DCI之前,所述方法还包括:接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示所述终端设备在所述第一小区工作于频分双工模式。
在一种可能的实现方式中,在所述第一指示信息用于指示所述第一小区进行上行BWP切换或下行BWP切换的情况下,所述在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区的第二DCI,或丢弃接收到的所述第二DCI,包括:在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区的第二DCI,或丢弃接收到的所述第二DCI;其中,所述第二DCI包括用于调度所述第一小区上行数据传输的DCI以及用于调度所述第一小区下行数据传输的DCI。
在一种可能的实现方式中,在第一指示信息用于指示第一小区进行上行BWP切换或者下行BWP切换的情况下或用于指示第一小区进入休眠或非休眠的情况下,所述在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区的第三DCI,或丢弃接收到的所述第三DCI,包括:在所述第一时间段内停止监测或停止接收网络设备发送的用于调度第一小区组中至少一个小区上行数据传输的第三DCI,或丢弃接收到的第三DCI。
可选的,所述方法还包括:在所述第一时间段内停止监测或停止接收网络设备发送的用于调度第一小区组中至少一个小区下行数据传输的第四DCI,或丢弃接收到的第四DCI。
在一种可能的实现方式中,在接收网络设备发送的第一DCI之前,所述方法还包括:接收所述网络设备发送的第四指示信息,所述第四指示信息用于指示所述终端设备在所述第一小区工作于时分双工模式。
第二方面,提供一种通信方法,该方法可以应用于网络设备,该方法包括:向终端设备发送第一DCI,所述第一DCI包括用于指示第一小区进行BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息;确定第二时间段,并在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI,或者在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区的第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。
在一种可能的实现方式中,所述第二时间段的起始时间为:
所述第一DCI所在的第三小区的第一时隙的前3个符号的结束时间,其中,所述第一时隙为所述第一DCI所在的时隙;或者,承载所述第一DCI的物理下行控制信道PDCCH的结束时间;或者,第一时隙的开始时间,其中,所述第一时隙为所述第一DCI所在的时隙。
可选的,所述第三小区与所述第一小区不同,所述第三小区与所述第二小区相同或不同。
在一种可能的实现方式中,在所述第一DCI包括所述第一指示信息的情况下:
所述第二时间段的结束时间为所述第一DCI的时域资源指示域中的时隙偏移指示的时隙的起始时间;或者,在所述第一DCI包括所述第一指示信息,且所述第一指示信息指示所述第一小区进行下行BWP切换的情况下,所述第二时间段的结束时间为从所述第一时隙的起始时间开始,在第一时间间隔后的第一个下行时隙的起始时间;或者,在所述第一DCI包括所述第一指示信息,且所述第一指示信息指示所述第一小区进行上行BWP切换的情况下,所述第二时间段的结束时间为从所述第一时隙的起始时间开始,在第一时间间隔后的第一个上行时隙的起始时间。其中,所述第一时间间隔与BWP切换时延相关。
可选的,所述第一时间间隔等于TBWPswitchDelay+Y。其中,所述TBWPswitchDelay的值根据所述第三小区的子载波间隔、所述第一小区切换前的BWP的子载波间隔以及所述第一小区切换后的BWP的子载 波间隔中的最小值确定;所述Y的值包括:在所述第一小区和所述第三小区不是同一小区的情况下,所述Y的值等于1;或者在所述第一小区和所述第三小区是同一小区的情况下,所述Y的值等于0;或者在所述第一小区和所述第三小区的频点在频域范围FR2-2内的情况下,所述Y的取值根据120KHz子载波间隔确定。
在一种可能的实现方式中,在所述第一DCI包括所述第二指示信息,且所述第二指示信息指示所述第一小区的下行BWP休眠的情况下,所述第二时间段的结束时间为从所述第一时隙的起始时间开始,在第二时间间隔后的第一个下行时隙的起始时间;或者,在所述第一DCI包括所述第二指示信息,且所述第二指示信息指示所述第一小区的上行BWP休眠的情况下,所述第二时间段的结束时间为从所述第一时隙的起始时间开始,在第二时间间隔后的第一个上行时隙的起始时间。其中,所述第二时间间隔与BWP切换时延相关。
可选的,在所述第一DCI是在所述第三小区的一个时隙内的前3个符号发送的情况下,所述第二时间间隔等于TBWPswitchDelay+X,或者在所述第一DCI不是在所述第三小区的一个时隙内的前3个符号发送的情况下,所述第二时间间隔等于TBWPswitchDelay+X+Z;其中,所述TBWPswitchDelay的值根据所述第三小区的子载波间隔、所述第一小区休眠BWP的子载波间隔、所述第一小区切换前或切换后的激活BWP的子载波间隔中的最小值确定;所述X的值等于1,所述X的单位为时隙,所述时隙对应于所述第三小区的子载波间隔、所述第一小区休眠BWP的子载波间隔、所述第一小区切换前或切换后的激活BWP的子载波间隔中的最小值;或者,在所述第一小区和所述第三小区的频点在频域范围FR2-2内的情况下,所述X的取值根据120KHz子载波间隔确定;所述Z的值等于1,所述Z的单位为时隙,所述时隙对应于所述第三小区的子载波间隔。
在一种可能的实现方式中,在所述第一指示信息用于指示所述第一小区进行上行BWP切换的情况下,所述在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI,包括:在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区上行数据传输的第二DCI;或者,在所述第一指示信息用于指示所述第一小区进行下行BWP切换的情况下,所述在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI,包括:在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区下行数据传输的第二DCI。
在一种可能的实现方式中,在所述第一指示信息用于指示所述第一小区进行上行BWP切换的情况下,所述在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区的第三DCI,包括:在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区的上行数据传输的第三DCI;或者,在所述第一指示信息用于指示所述第一小区进行下行BWP切换的情况下,所述在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区的第三DCI,包括:在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区的下行数据传输的第三DCI。
在一种可能的实现方式中,在向终端设备发送第一DCI之前,所述方法还包括:
向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述终端设备在所述第一小区工作于频分双工模式。
在一种可能的实现方式中,在所述第一指示信息用于指示所述第一小区进行上行BWP切换或下行BWP切换的情况下,所述在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI,包括:在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI;其中,所述第二DCI包括用于调度所述第一小区上行数据传输的DCI以及用于调度所述第一小区下行数据传输的DCI。
在一种可能的实现方式中,在第一指示信息用于指示第一小区进行上行BWP切换或者下行BWP切换的情况下或用于指示第一小区进入休眠或非休眠的情况下,所述在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI,包括:在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区上行数据传输的第三DCI。
可选的,所述方法还包括:在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区下行数据传输的第四DCI。
可选的,在向所述终端设备发送第一DCI之前,所述方法还包括:向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述终端设备在所述第一小区工作于时分双工模式。
第三方面,提供一种通信方法,该方法可以用于终端设备,该方法包括:接收网络设备发送的第一DCI,所述第一DCI包括用于指示第一小区进行BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息;确定第一时间段,并在第一时间段内停止监测或停止接收网络设备发送的第一DCI格式,或丢弃接收到的第一DCI格式。其中,第一DCI格式能够用于同时调度两个或两个以上小区的数据传输,第一小区属于第一小区组,第一小区组为第一DCI格式能够调度的所有被调小区的集合。
第四方面,提供一种通信方法,该方法可以应用于网络设备,该方法包括:向终端设备发送第一DCI,所述第一DCI包括用于指示第一小区进行BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息;确定第二时间段,在第二时间段内停止或不被允许向该终端设备发送第一DCI格式。其中,第一DCI格式能够用于同时调度两个或两个以上小区的数据传输,第一小区属于第一小区组,第一小区组为第一DCI格式能够调度的所有被调小区的集合。
第五方面,提供一种通信装置,包括:处理单元和收发单元。所述收发单元,用于接收网络设备发送的第一下行控制信息DCI,所述第一DCI包括用于指示第一小区进行带宽部分BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息;所述处理单元,用于确定第一时间段;以及,在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区的第二DCI,或丢弃接收到的所述第二DCI,或者在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区的第三DCI,或丢弃接收到的所述第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。
第六方面,提供一种通信装置,包括处理单元和收发单元。所述收发单元,用于向终端设备发送第一下行控制信息DCI,所述第一DCI包括用于指示第一小区进行带宽部分BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息;所述处理单元,用于确定第二时间段;以及,在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI,或者在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区的第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。
第七方面,提供一种通信系统,包括:用于执行上述第一方面任一项所述方法的终端设备,以及用于执行上述第二方面任一项所述方法的终端设备。
第八方面,提供一种通信系统,包括:用于执行上述第三方面任一项所述方法的终端设备,以及用于执行上述第四方面任一项所述方法的终端设备。
第九方面,提供一种通信装置,包括:一个或多个处理器;其中,当一个或多个计算机程序的指令被所述一个或多个处理器执行时,使得所述通信装置执行上述第一方面或第三方面任一项所述的方法,或者执行上述第二方面或第四方面任一项所述的方法。
第十方面,提供一种计算机可读存储介质,所述计算机可读存储介质包括计算机程序,当计算机程序在计算设备上运行时,使得所述计算设备执行上述第一方面或第三方面任一项所述的方法,或者执行上述第二方面和第四方面任一项所述的方法。
第十一方面,提供一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现上述第一方面或第三方面任一项所述的方法,或者实现上述第二方面或第四方面任一项所述的方法。
第十二方面,提供一种计算机程序产品,所述计算机程序产品在被计算机调用时,使得所述计算机执行上述第一方面或第三方面任一项所述的方法,或者执行上述第二方面或第四方面任一项所述的方法。
以上第二方面到第十二方面的有益效果,请参见第一方面的有益效果,不重复赘述。
附图说明
图1为一个载波中配置的BWP的示意图;
图2a、图2b、图2c和图2d分别为相关技术中BWP切换的示意图;
图3a、图3b分别为相关技术中休眠切换的示意图;
图4为相关技术中通过新的DCI格式进行调度的示意图;
图5a为相关技术中在一对一的跨载波调度场景中因存在BWP切换时延导致DCI无法正常发送/接收的示意图;
图5b为相关技术中在一对多的跨载波调度场景中因存在BWP切换时延导致DCI无法正常发送/接收的示意图;
图6为本申请实施例应用的移动通信系统的架构示意图;
图7为本申请实施例提供的在终端侧实现的通信方法的流程示意图;
图8a、图8b分别为本申请实施例中在BWP切换时的第一时间段的起始时间和结束时间的示意图;
图9a、图9b分别为本申请实施例中在休眠切换时的第一时间段的起始时间和结束时间的示意图;
图10为本申请实施例提供的在网络设备侧实现的通信方法的流程示意图;
图11为本申请实施例中网络设备确定出的第二时间段与终端设备确定出的第一时间段之间的时间偏差的示意图;
图12为本申请实施例中终端设备和网络设备交互的流程示意图;
图13a、图13b分别为本申请另外的实施例提供的在终端侧实现的通信方法的流程示意图;
图14a、图14b分别为本申请另外的实施例提供的在网络侧实现的通信方法的流程示意图;
图15为本申请另外的实施例中网络设备确定出的第二时间段与终端设备确定出的第一时间段之间的时间偏差的示意图;
图16、图17和图18分别为本申请实施例通过的通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步的详细描述。
应理解,本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c。其中a、b和c分别可以是单个,也可以是多个。术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面先对本申请实施例中涉及的相关技术进行说明。
(一)子载波间隔、符号和时隙。
NR中定义了多种子载波间隔(SubCarrier Spacing,SCS)。SCS序号μ对应的SCS为2μ·15kHz。例如序号μ为0~4的SCS,分别对应15KHz、30KHz、60KHz、120KHz和240KHz。
NR中的一个符号的持续时间是子载波间隔的倒数。每个符号之前会有循环前缀。在循环前缀为标准循环前缀时,一个时隙包含14个符号;在循环前缀为拓展循环前缀时,一个时隙包含12个符号。
(二)载波和小区。
载波(carrier)是基站或终端设备的射频设备发射出来的、有特定频率、带宽、制式的无线电信号,即电磁波,它是无线移动通信中用来承载信息的主体。其中,基站用来进行发送的载波称为下行载波,终端设备用来进行发送的载波称为上行载波。
小区(cell)是高层(例如无线资源控制层、媒体接入控制层等在物理层之上的协议层)从资源管理或移动性管理的角度来描述的。每个网络设备的覆盖范围可以被划分为一个或多个小区。在目前的NR标准中,一个小区可以被配置一个下行载波,可选地,还可以被配置一个上行载波。针对终端设备而言,为其提供服务的小区称为服务小区。本申请实施例中所涉及的小区也可以是服务小区。
为了实现高速传输,NR中有载波聚合(carrier aggregation,CA)和双连接(dual connectivity,DC)技术。支持CA和/或DC的终端设备可以同时在多个载波上进行数据传输,提高数据传输速率。
双链接下,终端设备和多个小区建立链接,这些小区分为两组:主小区组(master cell group,MCG) 和辅小区组(secondary cell group,SCG)。如果没有进行双链接,那么和终端设备通信的一组小区就是MCG。MCG中的主小区为(primary cell,PCell),SCG中的主小区是主辅小区(primary secondary cell,PSCell),MCG和SCG中的其他小区是辅小区(secondary cell,SCell)。MCG下的PCell和MCG下的SCell通过载波聚合技术联合在一起。SCG下的PSCell和SCG下的SCell也是通过载波聚合技术联合在一起。CA中的每个载波又称为成员载波或成分载波(component carrier,CC)。
(三)BWP及其切换。
NR引入了BWP的概念。一个BWP是一个载波上的一段连续频率资源。一个载波中可以有一个或多个BWP,一个载波中的BWP的带宽小于或等于这个载波的带宽。当一个BWP被配置并且激活后,这个BWP被称为激活BWP。在目前版本协议中,一个终端设备在一个下行载波上只能有一个下行激活BWP(active downlink BWP),在一个上行载波上只能有一个上行激活BWP(active uplink BWP)。一般来说,终端设备上行发送的数据和控制信息在上行激活BWP内发送,下行的数据和控制信息在下行激活BWP内接收。
示例性的,图1示出了一个载波中配置的BWP。如图1所示,一个50MHz的载波中配置了3个BWP,分别为BWP1、BWP2和BWP3,其中BWP2为当前激活的BWP。
终端设备在不同的时刻,业务需求可能不同,对传输带宽的需求也不同。基站能够根据业务需求,在不同时刻激活不同的BWP,以达到节省终端设备功耗等目的。NR支持使用在调度数据的DCI中触发终端设备进行BWP切换。其中,DCI承载在NR的物理下行控制信道(physical downlink ccontrol channel,PDCCH)中。
DCI中包含BWP指示域,如果一个DCI中的BWP指示域指示的BWP标识(identifier,ID)和当前的激活BWP的ID不同,则这个DCI触发了BWP切换;如果一个DCI中的BWP指示域指示的BWP ID和当前的激活BWP的ID相同,则这个DCI不触发BWP切换。一个BWP指示域指示BWP切换的DCI格式(DCI format)只能在一个时隙(slot)的前3个符号内发送。
如果终端设备监测到一个DCI format,其BWP指示域指示了一个小区的激活下行BWP切换,则从终端设备接收到承载这个DCI format的PDCCH的调度小区的一个slot的前3个符号的结束开始,到这个DCI format的时域资源指示域中的时隙偏移(slot offset)指示的那个slot的起始时间之间的这段时间内,终端设备不需要在这个小区上接收或者发送。
如果终端设备监测到一个DCI format,其BWP指示域指示了一个小区的激活上行BWP切换,则从终端设备接收到承载这个DCI format的PDCCH的调度小区的一个slot的前3个符号的结束开始,到这个DCI format的时域资源指示域中的slot offset指示的那个slot的起始时间之间的这段时间内,终端设备不需要在这个小区上接收或者发送。
NR的频谱分为对称频谱(paired spectrum)和非对称频谱(unpaired spectrum)。对称频谱上使用频分双工(frequency division duplex,FDD),非对称频谱中使用时分双工(time division duplex,TDD)。在FDD模式下,一个小区的上行BWP和下行BWP可以独立切换,上行BWP的个数和下行BWP的个数可以相同也可以不同。在FDD模式下,上行BWP切换和下行BWP切换可以独立进行。在TDD模式下,一个小区的上行BWP和下行BWP是配对的,一对上下行BWP中的上行BWP和下行BWP的中心频点相同,带宽可以不同。在TDD模式下,BWP的切换是上下行同时发生的,也就是可以从一对BWP切换到另一对BWP。
其中,“工作在FDD模式下”可以替换为“工作在对称谱时”,“工作在TDD模式下”可以替换为“工作在非对称谱时”。
终端设备从一个BWP切换到另一个BWP至少需要进行如下操作:
1、接收并解析出DCI中的BWP切换指示;
2、射频器件切换到新BWP,包括中心频率切换、采样率切换等操作;
3、BWP配置参数切换为新BWP的配置参数,应用配置参数,正常工作。
完成上述操作需要一定的处理延时。NR标准中对终端设备的这个处理延时能力进行了限制:对于基于DCI的BWP切换,终端设备在一个服务小区的下行时隙n(slot n)接收到BWP切换请求后,从slot n的起始时间开始,时间间隔(TBWPswitchDelay+Y,以时隙为单位)后的第一个下行slot或者上行slot上,针对下行激活BWP切换,终端设备需要能够在这个服务小区的新BWP上接收物理下行共享信道(physical downlink shared channel,PDSCH),针对上行激活BWP切换,终端设备需要能够在这个服务 小区的新BWP上发送物理上行共享信道(physical uplink shared channel,PUSCH)。
其中,如果终端设备接收到BWP切换请求的服务小区和执行BWP切换的服务小区是同一个小区,则Y=0;如果终端设备接收到BWP切换请求的服务小区和执行BWP切换的服务小区不是同一个小区,则Y=1slot。如果调度小区和被调小区在频域范围2-2(Frequency Range 2-2,FR2-2)范围内,Y的取值根据SCS 120KHz确定。
在终端设备接收到BWP切换请求的服务小区和执行BWP切换的服务小区不是同一个小区的情况下,TBWPswitchDelay+Y中时间间隔TBWPswitchDelay的取值根据调度小区的子载波间隔(SCS)、被调小区切换前的BWP的SCS和切换后的BWP的SCS中最小的SCS,查表1确定。
表1:BWP切换时延:
发送数据信道对应的控制信道的小区称为调度小区(scheduling cell),又叫主调小区;发送数据信道的小区称为被调小区(scheduled cell)。一个小区的下行载波上承载控制信道,进行这个小区的上下行数据信道调度,这个小区是一个自调度(self-scheduling)小区。这个小区既是调度小区,也是被调度小区。一个小区的下行载波上承载控制信道,进行另一个小区的上下行数据信道调度,则承载控制信道的小区叫做调度小区,承载上下行数据信道的小区叫做被调小区。这种调度形式被称为跨载波调度(cross carrier scheduling,CCS)。一个主调小区上可对应多个被调小区,也就是一个主调小区可以发送控制信道进行多个被调小区的数据调度。
以下给出一些场景下的BWP切换示例:
示例1:如图2a所示,在下行自调度(主调小区和被调小区是同一个)的场景下,切换前后BWP的SCS相同,都为30KHz,即μ=1。终端设备上报BWP切换时延类型为Type 1,此时BWP切换时延TBWPswitchDelay=2slots,Y=0。从终端设备在主调小区的slot n接收到指示下行BWP切换的DCI format后,在调度小区的slot n的前3个符号的结束开始,到这个DCI format的时域资源指示域中的slot offset指示的那个slot(本示例中slot offset=3)的起始时间之间的这段时间内,终端设备在这个小区上不接收或者不发送。
示例2:如图2b所述,在上行自调度(主调小区和被调小区是同一个)的场景下,切换前后BWP的SCS相同,都为30KHz,即μ=1。终端设备上报BWP切换时延类型为Type 1,此时BWP切换时延TBWPswitchDelay=2slots,Y=0。从终端设备在主调小区的slot n接收到指示上行BWP切换的DCI format后,在调度小区的slot n的前3个符号的结束开始,到这个DCI format的时域资源指示域中的slot offset指示的那个slot(本示例中slot offset=3)的起始时间之间的这段时间内,终端设备在这个小区上不接收或者不发送。
示例3:如图2c所示,在下行跨载波调度(主调小区和被调小区不同)的场景下,主调小区的SCS、被调小区切换前后BWP的SCS都为30KHz,即μ=1。终端设备上报BWP切换时延类型为Type 1,此时BWP切换时延TBWPswitchDelay=2slots,Y=1slot。从终端设备在主调小区的slot n接收到指示跨载波下行BWP切换的DCI format后,在被调小区的slot n的前3个符号的结束开始,到这个DCI format的 时域资源指示域中的slot offset指示的那个slot(本示例中slot offset=4)的起始时间之间的这段时间内,终端设备在被调小区上不接收或者不发送。
示例4:如图2d所示,在下行跨载波调度(主调小区和被调小区不同)的场景下,主调小区的SCS为30KHz,即μ=1、被调小区切换前后BWP的SCS都为60KHz,即μ=2。终端设备上报BWP切换时延类型为Type 1,此时根据较小的SCS确定BWP切换时延TBWPswitchDelay=2slots,另外,Y=1slot,这里的slot是30KHz对应的slot。从终端设备在主调小区的slot n接收到指示上行跨载波BWP切换的DCI format后,在被调小区的slot n的前3个符号的结束开始,到这个DCI format的时域资源指示域中的slot offset指示的那个slot(本示例中slot offset=7)的起始时间之间的这段时间内,终端设备在被调小区上不接收或者不发送。
(四)载波休眠。
(1)载波休眠/非休眠的指示。
3GPP Rel-16引入SCell的休眠(dormancy)机制。Dormancy SCell的上下行传输都会停止,但是对这个小区还进行周期测量,其测量信息通过其他的小区(PUCCH小区)上报给基站。SCell的Dormancy行为和non-dormancy(非休眠)行为之间的切换是通过BWP切换实现的。当某个SCell被指示为dormancy时,那么在该SCell上终端设备将从当前下行激活的BWP切换到dormant BWP,在dormant BWP上终端设备不需要进行PDCCH监测,或者,在该SCell是跨载波调度中的被调度载波时,终端设备不需要检测对应的调度载波上的调度该SCell的PDCCH。Dormant BWP的ID为dormantBWP-Id。
和前文所述的使用DCI中的BWP指示域指示BWP切换不同,SCell的Dormancy和non-dormancy之间的切换通过DCI中的其他域指示,具体的,有以下几种方式指示。
●在非不连续接收(Discontinuous reception,DRX)模式,或者DRX模式下的激活时间段,有两种指示方式:
■方式一:通过DCI format 0_1或者DCI format 1_1中的SCell dormancy indication(辅载波休眠指示)域指示SCell是dormancy还是non-dormancy,DCI可以同时调度数据。
■方式二:通过DCI format 1_1中的特定域指示SCell是dormancy还是non-dormancy,DCI不可以同时调度数据。
●在DRX模式下的非激活时间段,有一种指示方式:
■方式三:通过DCI format 2_6中的SCell dormancy indication(辅载波休眠指示)域指示SCell是dormancy还是non-dormancy。
在TDD模式下,因为上下行BWP的切换是绑定的,所以一个小区的下行BWP从当前下行激活的BWP切换到dormant BWP的同时,上行BWP也切换到ID为dormantBWP-Id的上行BWP;一个小区的下行BWP从dormant BWP出来,切换到ID为firstWithinActiveTimeBWP-Id的下行BWP或者ID为firstOutsideActiveTimeBWP-Id的下行BWP时,上行BWP也切换到ID为firstWithinActiveTimeBWP-Id的上行BWP或者ID为firstOutsideActiveTimeBWP-Id的上行BWP。
在FDD模式下,因为上下行BWP的切换是独立的,所以一个小区的下行BWP从当前下行激活的BWP切换到dormant BWP时,其上行BWP并不发生切换;类似的,一个小区的下行BWP从dormant BWP出来,切换到ID为firstWithinActiveTimeBWP-Id的下行BWP或者ID为firstOutsideActiveTimeBWP-Id的下行BWP时,上行BWP也不发生切换。当SCell进入dormancy态时,虽然这时上行BWP没发生切换,但是上行BWP上的发送都会停止,包括数据信道、控制信道、探测参考信号(sounding reference signal,SRS)、物理随机接入信道(physical random access channel,PRACH)等。
(2)Dormancy BWP的切换时延。
如果一个DCI将dormant BWP切换为non dormant BWP,或者将non dormant BWP切换为dormant BWP,终端设备需要在以下时间内完成激活BWP切换:
-TdormantBWPswitchDelay=TBWPswitchDelay+X(以时隙为单位),如果dormancy指示是在接收dormancy指示的服务小区的一个slot的前3个正交频分复用(orthogonal frequency-division multiplexing,OFDM)符号收到的;
-TdormantBWPswitchDelay=TBWPswitchDelay+X+Z(以时隙为单位),如果dormancy指示不是在接收dormancy指示的服务小区的一个slot的前3个OFDM符号内收到的。
其中,TBWPswitchDelay的取值根据终端设备收到dormancy指示的服务小区的SCS、发生BWP切换的 服务小区的dormant BWP的SCS和切换前或者切换后的激活BWP的SCS中最小的SCS,查前文中的表1确定。
X=1slot,这里的slot对应于终端设备收到dormancy指示的服务小区的SCS、发生BWP切换的服务小区的dormant BWP的SCS和切换前或者切换后的激活BWP的SCS中最小的SCS。如果调度小区和被调小区在频域范围2-2(Frequency Range 2-2,FR2-2)范围内,则X的取值根据SCS 120KHz确定。
Z=1slot,这里的slot对应于终端设备收到dormancy指示的服务小区的SCS。
如果终端设备在主小区的slot n上检测到了一个包含dormancy指示的DCI format,其指示了一个辅小区的下行BWP休眠,则在上述时间段TdormantBWPswitchDelay内,这个终端设备不需要在这个辅小区上接收或者发送。
以下给出一些场景下的BWP休眠切换示例:
示例1:如图3a所示,dormancy指示是在接收dormancy指示的服务小区的一个slot的前3个OFDM符号收到的,因此TdormantBWPswitchDelay=TBWPswitchDelay+X。终端设备收到dormancy指示的服务小区的SCS、发生BWP切换的服务小区的dormant BWP的SCS和切换前或者切换后的激活BWP的SCS都为30KHz,即μ=1,所以X=1slot,这里的slot是30KHz对应的slot。终端设备上报BWP切换时延类型为Type 1,此时TBWPswitchDelay=2slots,因此TdormantBWPswitchDelay+X=3slots。从该3个符号的结束时间开始,到TdormantBWPswitchDelay结束时间的这段时间内,终端设备不在发生dormancy BWP切换的小区上接收或发送。
示例2:如图3b所示,dormancy指示不是在接收dormancy指示的服务小区的一个slot的前3个OFDM符号收到的,因此TdormantBWPswitchDelay=TBWPswitchDelay+X+Z。终端设备收到dormancy指示的服务小区的SCS、发生BWP切换的服务小区的dormant BWP的SCS和切换前或者切换后的激活BWP的SCS都为30KHz,即μ=1,所以X=1slot,Z=1slot,这里的slot是30KHz对应的slot。终端设备上报BWP切换时延类型为Type 1,此时TBWPswitchDelay=2slots,因此TdormantBWPswitchDelay+X=4slots。从接收到dormancy指示的符号结束时间开始,到TdormantBWPswitchDelay结束时间的这段时间内,终端设备不在发生dormancyBWP切换的小区上接收或发送。
(五)下行控制信息。
(1)下行控制信息格式和大小。
PDCCH承载下行控制信息(DCI),DCI存在多种DCI格式(DCI format)。表2示例性示出了部分DCI format及其用途。
表2:DCI format及其用途:
一个DCI格式为DCI format 0_0/1_0/0_1/0_2/1_1/1_2的DCI可以用来调度一个小区上的数据传输,可以称为单小区调度DCI格式。
目前标准中在讨论两种新的DCI格式,这两种DCI格式可以用来同时调度两个或两个以上的小区的数据传输,可以称为多小区调度DCI格式,如表3所示:
表3:新的DCI format及其用途:
示例性的,图4示出了通过上述新的DCI格式进行调度的示意图。如图所示,通过DCI format 0_X可以在被调小区1~3上调度PUSCH,通过DCI format 1_X可以在被调小区1~3上调度PDSCH。
下行控制信息的大小(DCI size)有两种理解,第一种是仅包含DCI中的信息比特的大小,第二种是包含DCI中的信息比特的大小和循环冗余校验(Cyclic Redundancy Check,CRC)的大小。其中,DCI中的信息比特的大小又称为有效载荷(payload)大小。在NR系统中,CRC的比特位宽为24,所以如果信息比特的大小相同,则信息比特加上CRC比特的大小也相同。
对于不同的DCI size,终端设备的接收方式可能不同,为了减少终端设备的接收复杂度,希望DCI size的可能性不能过多。为了减少DCI size的个数,如果两个DCI format的DCI size不同,可能要进行DCI size对齐,一般采用的方式是在DCI size较短的DCI format的有效负载后面补0,直到DCI size相同。
(2)下行控制信息内容。
1、载波指示域:
在DCI format 0_1/0_2/1_1/1_2中都存在载波指示域(Carrier indicator field,CIF)。在小区间存在跨载波调度,且可以调度多个被调小区时,调度小区上发送的PDCCH承载的DCI中可能包含CIF。高层信令给不同的被调小区(scheduled cell)配置不同的CIF值。终端设备收到一个DCI后,可以根据CIF值确定这个DCI是调度哪个被调小区的。
DCI format 0_1/1_1中的载波指示域为0或3bit,针对调度小区(scheduling cell)的配置参数cif-Presence指示CIF域是否存在。DCI format 0_2/1_2中的载波指示域为0、1、2或3bit,基站会配置carrierIndicatorSizeDCI-0-2,carrierIndicatorSizeDCI-1-2。这两个参数定义了DCI format 0_2/1_2的载波指示域的比特数。
在上述两种新的多小区调度DCI格式(DCI format 0_X和DCI format 1_X)中,类似CIF域,可能会存在第一指示域,用来指示当前DCI调度的小区组。例如,如表4所示,设计成2bit指示4种载波组合。第一指示域为0时,指示调度CC1;第一指示域为1时,指示调度CC2和CC3;第一指示域为2时,指示调度CC0和CC2;第一指示域为3时,指示调度CC0、CC1、CC2和CC3。
表4:第一指示域的值对应的载波组合:
一个DCI格式为多小区调度DCI格式的DCI可以调度多个小区上的是数据传输,但并不是每一个DCI格式为多小区调度DCI格式的DCI都同时调度多个小区上的数据传输。一个多小区调度DCI格式的第一指示域的一种取值指示的多个小区构成一个被调小区组,这些被调小区组中的每个被调小区组中的小区数大于或等于1,至少有一个被调小区组中的小区数大于或等于2。如表4所示,在第一指示域的两比特取值为01时,这个DCI可以调度两个小区,即CC2和CC3,在第一指示域的两比特取值为00时,这个DCI可以调度一个小区,即CC1。
一个多小区调度DCI格式可以调度的所有小区构成一个小区组,这个小区组中的小区数大于或等于2。例如,对于表3所示这个示例中的多小区调度DCI format,其对应的这个调度小区组包括CC0、CC1、CC2和CC3。
第一指示域还可以有其它的设计方式。例如第一指示域同时用于指示被调小区组和BWP ID。这时第一指示域可能有多个不同的取值对应相同的被调小区组。
2、与被调小区的激活BWP配置有关的域:
在DCI中,有一些域和被调小区的激活BWP配置有关。特别的,调度上行传输的DCI中的某些域可能和上行激活BWP的配置有关,调度下行传输的DCI中的某些域可能和下行激活BWP的配置有关,例如:
频域资源指示(Frequency domain resource assignment)域:调度上行传输的DCI中的这个域的大小和内容与被调小区的上行激活BWP的配置(带宽和中心频偏)有关;调度下行传输的DCI中的这个域的大小和内容与被调小区的下行激活BWP的配置(带宽和中心频偏)有关。
3、DCI format 0_X和1_X中的域:
对于可以调度多个小区的DCI格式1_X/0_X,当一个DCI format 0_X或1_X能够调度的小区中包含第一小区时,有些DCI域的比特位宽有可能和第一小区的激活BWP配置有关。其中,DCI格式1_X和第一小区的下行目标BWP配置有关,DCI格式0_X和第一小区的上行目标BWP配置有关,可能包括:通过联合指示的方式给共调度小区中的每个小区分别指示信息的DCI域,该DCI域可能是仅给第一小区指示信息的DCI域,也可能是给包含第一小区的小区组指示信息的DCI域,其中,这里的小区组是一个DCI format 0_X或1_X能够调度的小区中的一个子集。
具体的,可能包括:
-每传输块(transport block,TB)的新数据指标(New data indicator per TB);
-每TB的冗余版本(Redundancy version per TB);
-预编码信息和层数(Precoding information and number of layers);其中,DCI format 0_X根据第一小区的上行目标BWP中的txConfig配置确定比特位宽;
-相位跟踪参考信号(phase tracking reference signal,PTRS)-解调参考信号(demodulation reference signal,DMRS)联合(PTRS-DMRS association);其中,对于DCI format 0_X,如果第一小区的上行目标BWP中没配置PTRS-UplinkConfig,则这个域为0bit;否则,这个域为2bit;
-天线端口(Antenna port(s));
-探测参考信号(sounding reference signal,SRS)资源指示(SRS resource indicator,SRI);
-物理资源块(physical resource block,PRB)束大小指示(bundling size indicator);其中,对于DCI format 1_X,如果第一小区的下行目标BWP中的prb-BundlingType配置确定比特位宽。
(3)下行控制信息的监测。
终端设备监测一个DCI格式是指终端设备尝试在控制信道候选所对应的时频资源上对控制信道进行盲检测,并根据DCI格式的信息比特数(或DCI size)进行译码和CRC校验。如果校验成功,则认为在该控制信道候选上成功接收到了一个DCI格式;如果校验失败,则认为在该控制信道选上没有检测到控制信道。也就是,终端在监测一个DCI格式时,需要知道这个DCI格式的DCI size。
在跨载波调度时,被调小区发生BWP切换的时间内,被调小区上的激活BWP处于模糊期,也就是不存在有效的激活BWP。因为DCI size和被调小区的激活BWP配置有关,基站和终端设备对DCI size的认知如果不同,则无法进行DCI的正常发送和接收。
具体的,有以下两个问题场景:
问题场景一:在一对一的跨载波调度中,即一个主调小区对应一个被调小区的跨载波调度中,如果主调小区用DCI中的BWP指示域指示了被调小区进行BWP切换,由于存在BWP切换时延,被调小区上的激活BWP处于模糊期,也就是不存在有效的激活BWP。如果主调小区上发送DCI调度被调小区,可能会因为基站和终端设备对DCI size的认知不同,导致无法进行DCI的正常发送和/或接收。
示例性的,如图5a所示,基站在主调小区上发送DCI1,用于指示从主调小区的当前下行BWP切换到被调小区的目标下行BWP,并指示出了被调小区的目标下行BWP中的PDSCH时频资源。由于存在BWP切换时延,在BWP切换时延相关的时间段内,被调小区的目标BWP尚未被激活,即被调小区上的目标BWP处于模糊期。
一种可能的情况是:若在这段时间内,基站想要发送DCI2以调度被调小区的PDSCH,由于当前被调小区上不存在有效的激活BWP,因而基站无法根据被调度小区上的激活BWP的配置(比如带宽和中心频偏)确定频域资源指示域的大小和内容,因而也就无法确定DCI2的size,因而基站无法正常发送该DCI2。
另一种可能的情况是:在这段时间内,基站发送了DCI2以调度被调小区的PDSCH,由于当前被调小区上不存在有效的激活BWP,因而终端设备无法根据被调度小区上的激活BWP的配置(比如带 宽和中心频偏)确定频域资源指示域的大小和内容,因而也就无法确定DCI size,因而终端设备无法正常接收该DCI2。
问题场景二:在一对多的跨载波调度中,即一个主调小区对应多个被调小区的跨载波调度中(比如使用DCI format 0_X或1_X),如果主调小区用BWP指示域指示了一个被调小区进行BWP切换,或者主调小区用dormancy指示了一个被调小区进行dormant BWP切换,由于存在BWP切换时延,在BWP切换时延相关的时间段内,被调小区上的激活BWP处于模糊期,也就是不存在有效的激活BWP。此时,不但主调小区调度这个被调小区有DCI模糊问题,主调小区调度其他被调小区可能也存在DCI模糊问题,因为DCI format 0_X或1_X的DCI size可能会受到这个被调小区的激活BWP的影响。
示例性的,如图5b所示,基站在主调小区上发送DCI1(DCI format 0_X),用于指示从主调小区的当前下行BWP切换到被调小区1的目标下行BWP,并指示出了被调小区1的目标下行BWP中的PDSCH时频资源。由于存在BWP切换时延,在BWP切换时延相关的时间段内,被调小区1的目标BWP尚未被激活,即被调小区1上的目标BWP处于模糊期。
一种可能的情况是:若在这段时间内,基站想要发送DCI2以调度被调小区的PDSCH,由于当前被调小区1上不存在有效的激活BWP,因而基站无法根据被调度小区1上的激活BWP的配置(比如带宽和中心频偏)确定频域资源指示域的大小和内容,因而也就无法确定DCI2的size,因而基站无法正常发送该DCI2。
另一种可能的情况是:在这段时间内,基站发送了DCI2(DCI format 0_X)以调度被调小区的PDSCH,由于当前被调小区1上不存在有效的激活BWP,因而终端设备无法根据被调度小区上的激活BWP的配置(比如带宽和中心频偏)确定频域资源指示域的大小和内容,因而也就无法确定DCI size,因而终端设备无法正常接收该DCI2。
由此可见,在进行跨载波调度时,由于被调小区因为发生BWP切换,激活BWP处于模糊期时DCI size模糊,导致的DCI无法被正确发送和/或接收。
基于此,本申请实施例提供了一种通信方法以及相关装置。采用本申请实施例,在跨载波调度场景下,当被调小区因为发生BWP切换,其激活BWP处于模糊期时,网络设备可以停止或不被允许DCI的发送,终端设备可以停止接收DCI,从而可以解决被调小区因为发生BWP切换,被调小区中的激活BWP处于模糊期(即被调小区不存在有效的激活BWP)时,DCI大小可能无法确定,导致DCI无法被正确发送和/或接收的问题。
本申请实施例中,如果没有特殊说明,DCI和DCI格式可以互相替换。
下面结合附图对本申请实施例进行描述。
参见图6,为本申请实施例应用的移动通信系统的架构示意图。该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图6只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图6中未画出。本申请实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、NR移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面 上;还可以部署在空中的飞机、气球和卫星上。本申请实施例对无线接入网设备和终端设备的应用场景不做限定。
本申请实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是无线接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是无线接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例信号的传输方向不做限定。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6GHz以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
基于上述图6所示的系统架构,图7示出了本申请实施例提供的一种在终端设备侧实现的通信方法的流程示意图。该流程可以应用于一个主调小区(本实施例中称为第三小区)调度一个被调小区(本申请实施例中称为第一小区)的过程,比如,图7所示的流程可以应用于一对一跨载波调度场景。如图所示,该流程可以包括以下步骤:
S701:终端设备接收网络设备发送的第一DCI,所述第一DCI包括用于指示第一小区进行BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息。
可以理解,指示第一小区进入休眠(dormancy)或非休眠(non-dormancy),也可以表述为指示第一小区进入休眠或退出休眠,或者表述为指示第一小区进行休眠BWP(dormancy BWP)切换,或者表述为指示第一小区的下行激活BWP从非休眠BWP切换到休眠BWP,或从休眠BWP切换到非休眠BWP。
一种可能的实现方式中,用于调度第一小区进行BWP切换的第一DCI,可以是DCI format 0_0,或者是DCI format 0_1,或者是DCI format 0_2,或者是DCI format 1_0,或者是DCI format 1_1,或者是DCI format 1_2,本申请实施例对此不作限制。
一种可能的实现方式中,用于调度第一小区进入休眠或非休眠的第一DCI,可以是DCI format 0_1,或者是DCI format 1_1,或者是DCI format 2_6,本申请实施例对此不作限制。
一种可能的实现方式中,所述第一指示信息承载于第一DCI中的BWP指示域,即通过该BWP指示域指示第一小区进行BWP切换。
另一种可能的实现方式中,所述第二指示信息承载于第一DCI中BWP指示域以外的其他指示域,即通过该其他指示域指示第一小区进入休眠或非休眠。比如,在DRX模式或DRX模式下的激活时间段,可以通过DCI format 0_1或者DCI format 1_1中的SCell dormancy indication(辅载波休眠指示)域指示SCell是dormancy还是non-dormancy,还可以通过DCI format 1_1中的特定域指示SCell是dormancy还是non-dormancy。再比如,在DRX模式下的非激活时间段,可以通过DCI format 2_6中的SCell dormancy indication(辅载波休眠指示)域指示SCell是dormancy还是non-dormancy。
可选的,所述第一DCI承载于第三小区(即主调小区)的PDCCH上发送,第三小区与第一小区不同,通过该实现方式可以实现跨载波调度。
可选的,第一DCI可以在一个时隙的前3个符号内发送,也可以不在一个时隙内的前3个符号发送。
S702:终端设备确定第一时间段。
可选的,终端设备可以根据第一DCI的发送/接收时间以及BWP切换时延确定所述第一时间段的起始时间和结束时间。这样可以保证在终端设备进行BWP切换操作的时间内不接收网络设备发送的用于调度第一小区的第二DCI,或者丢弃接收到的所述第二DCI。进一步的,在第一时间段后,即在保证终端设备BWP切换完成后,可以使得终端设备尽可能及时地接收网络设备发送的DCI。
一种可能的实现方式中,所述第一时间段的起始时间可以是以下起始时间中的一个:
第一起始时间:第一DCI所在的第三小区的第一时隙(即第一DCI所在的时隙)的前3个符号的结束时间。这种确定第一时间段的起始时间的方法,可以适用于第一DCI是在一个时隙的前3个符号内发送的情况。
第二起始时间:承载第一DCI的PDCCH的结束时间。这种确定第一时间段的起始时间的方法,可以适用于第一DCI是在一个时隙的前3个符号内发送的情况,也可以适用于第一DCI不是在一个时隙的前3个符号内发送的情况。
第三起始时间:第一时隙(即第一DCI所在的时隙)的开始时间。这种确定第一时间段的起始时间的方法,可以适用于第一DCI是在一个时隙的前3个符号内发送的情况,也可以适用于第一DCI不是在一个时隙的前3个符号内发送的情况。
一种可能的实现方式中,在第一DCI包括上述第一指示信息的情况下,即第一DCI指示第一小区进行BWP切换的情况下,第一时间段的结束时间可以是以下结束时间中的一个:
第一结束时间:第一DCI的时域资源指示域中的时隙偏移(slot offset)指示的时隙的起始时间。
第二结束时间:在第一指示信息指示第一小区进行下行BWP切换的情况下,第一时间段的结束时间为从第一时隙(即第一DCI所在的时隙)的起始时间开始,在第一时间间隔后的第一个下行时隙的起始时间。
第三结束时间:在第一指示信息指示第一小区进行上行BWP切换的情况下,第一时间段的结束时间为从第一时隙(即第一DCI所在的时隙)的起始时间开始,在第一时间间隔后的第一个上行时隙的起始时间。
可选的,所述第一时间间隔与BWP切换时延相关。一种可能的实现方式中,所述第一时间间隔等于TBWPswitchDelay+Y,所述TBWPswitchDelay的值根据第三小区(即主调小区)的子载波间隔、第一小区(即被调小区)切换前的BWP的子载波间隔以及第一小区切换后的BWP的子载波间隔中的最小值确定,TBWPswitchDelay值和Y值的具体确定方法可以参见前文的相关内容。在第一小区和第三小区不是同一小区的情况下,Y的值等于1,在第一小区和第三小区是同一小区的情况下,Y的值等于0。或者,在第一小区和第三小区的频点在频域范围FR2-2内的情况下,Y的取值根据120KHz子载波间隔确定。
在第一DCI指示第一小区进行BWP切换,且第一DCI指示的时隙偏移为slot offset=4的情况下,基于第一时间段的上述几种可能的起始时间和上述几种可能的结束时间,下面结合图8a和图8b,描述第一时间段的几种示例。这些示例以主调小区和被调小区的子载波间隔相同,即主调小区和被调小区时隙对齐的场景为例描述。
示例1:第一时间段的起始时间为上述第一起始时间,结束时间为上述第一结束时间。
具体的,如图8a所示:
第一时间段的起始时间为:第一DCI所在的主调小区的slot n的前3个符号的结束时间;
第一时间段的结束时间为:第一DCI的时域资源指示域中的slot offset=4指示的slot n+4的起始时间。
上述示例1将目前协议中定义的第一小区不能发不能收的时间段定义为第一时间段,实现方式简单。
示例2:第一时间段的起始时间为上述第一起始时间,结束时间为上述第二结束时间(在第一DCI指示第一小区进行下行BWP切换的情况下)或第三结束时间(在第一DCI指示第一小区进行上行BWP切换的情况下)。
具体的,如图8a所示:
第一时间段的起始时间为:第一DCI所在的第三小区的slot n的前3个符号的结束时间;
在第一DCI指示第一小区进行上行BWP切换的情况下,第一时间段的结束时间为:从第一DCI所在的slot n的起始时间开始,时间间隔TBWPswitchDelay+Y=3slots后的第一个上行slot的起始时间(图中假设时间间隔TBWPswitchDelay+Y后的第一个slot为上行slot);
在第一DCI指示第一小区进行下行BWP切换的情况下,第一时间段的结束时间为:从第一DCI所在的slot n的起始时间开始,时间间隔TBWPswitchDelay+Y=3slots后的第一个下行slot的起始时间(图中假设时间间隔TBWPswitchDelay+Y后的第一个slot为下行slot)。
上述示例2相较于上述示例1,可以在终端设备能力允许的情况下,减少不能收发DCI的第一时间段的长度,提高频谱利用率。
示例3:第一时间段的起始时间为上述第二起始时间,结束时间为上述第一结束时间。
具体的,如图8a和图8b所示:
第一时间段的起始时间为:承载第一DCI的PDCCH的结束时间;
第一时间段的结束时间为:第一DCI的时域资源指示域中的slot offset=4指示的slot n+4的起始时 间。
示例3相较于示例1,可以将第一时间段提前,因此可以避免终端设备和网络设备在这段时间内的DCI size认知不同的情况发生。
示例4:第一时间段的起始时间为上述第二起始时间,结束时间为上述第二结束时间(在第一DCI指示第一小区进行下行BWP切换的情况下)或第三结束时间(在第一DCI指示第一小区进行上行BWP切换的情况下)。
具体的,如图8a和图8b所示:
第一时间段的起始时间为:承载第一DCI的PDCCH的结束时间;
在第一DCI指示第一小区进行上行BWP切换的情况下,第一时间段的结束时间为:从第一DCI所在的slot n的起始时间开始,时间间隔TBWPswitchDelay+Y=3slots后的第一个上行slot的起始时间(图中假设时间间隔TBWPswitchDelay+Y后的第一个slot为上行slot);
在第一DCI指示第一小区进行下行BWP切换的情况下,第一时间段的结束时间为:从第一DCI所在的slot n的起始时间开始,时间间隔TBWPswitchDelay+Y=3slots后的第一个下行slot的起始时间(图中假设时间间隔TBWPswitchDelay+Y后的第一个slot为下行slot)。
示例5:第一时间段的起始时间为上述第三起始时间,结束时间为上述第一结束时间。
具体的,如图8a和图8b所示:
第一时间段的起始时间为:第一DCI所在的slot n的开始时间;
第一时间段的结束时间为:第一DCI的时域资源指示域中的slot offset=4指示的slot 4的起始时间。
示例5相较于示例3,可以将第一时间段提前,避免网络设备和终端设备在这段时间内的DCI size认知不同的情况发生。
示例6:第一时间段的起始时间为上述第三起始时间,结束时间为上述第二结束时间(在第一DCI指示第一小区进行下行BWP切换的情况下)或第三结束时间(在第一DCI指示第一小区进行上行BWP切换的情况下)。
具体的,如图8a和图8b所示:
第一时间段的起始时间为:第一DCI所在的slot n的开始时间;
在第一DCI指示第一小区进行上行BWP切换的情况下,第一时间段的结束时间为:从第一DCI所在的slot n的起始时间开始,时间间隔TBWPswitchDelay+Y=3slots后的第一个上行slot的起始时间(图中假设时间间隔TBWPswitchDelay+Y后的第一个slot为上行slot);
在第一DCI指示第一小区进行下行BWP切换的情况下,第一时间段的结束时间为:从第一DCI所在的slot n的起始时间开始,时间间隔TBWPswitchDelay+Y=3slots后的第一个下行slot的起始时间(图中假设时间间隔TBWPswitchDelay+Y后的第一个slot为下行slot)。
一种可能的实现方式中,在第一DCI包括上述第二指示信息的情况下,即第一DCI指示第一小区进行BWP休眠或非休眠的情况下,第一时间段的起始时间可以是上述第一起始时间、第二起始时间和第三起始时间中的一种,第一时间段的结束时间可以是以下结束时间中的一个:
第四结束时间:在第二指示信息指示第一小区的下行BWP休眠的情况下,第一时间段的结束时间为从第一时隙(即第一DCI所在的时隙)的起始时间开始,在第二时间间隔后的第一个下行时隙的起始时间。
第五结束时间:在第二指示信息指示第一小区的上行BWP休眠的情况下,所述第一时间段的结束时间为从第一时隙(即第一DCI所在的时隙)的起始时间开始,在第二时间间隔后的第一个上行时隙的起始时间。
可选的,所述第二时间间隔与BWP切换时延相关。一种可能的实现方式中,在第一DCI是在第三小区(主调小区)的一个时隙内的前3个符号发送的情况下,第二时间间隔等于TBWPswitchDelay+X,在第一DCI不是在第三小区(主调小区)的一个时隙内的前3个符号发送的情况下,第二时间间隔等于TBWPswitchDelay+X+Z。
其中,所述TBWPswitchDelay的值根据第三小区(主调小区)的子载波间隔、第一小区(被调小区)休眠BWP的子载波间隔、第一小区切换前或切换后的激活BWP的子载波间隔中的最小值确定。TBWPswitchDelay值的具体确定方法可以参见前文的相关内容。X的值等于1,X的单位为时隙,该时隙对应于第三小区的子载波间隔、第一小区休眠BWP的子载波间隔、第一小区切换前或切换后的激活BWP 的子载波间隔中的最小值;或者,在第一小区和第三小区的频点在频域范围FR2-2内的情况下,X的取值根据120KHz子载波间隔确定。Z的值等于1,Z的单位为时隙,该时隙对应于第三小区的子载波间隔。
在第一DCI指示第一小区进入BWP休眠或非休眠,且第一DCI指示的时隙偏移为slot offset=3的情况下,基于第一时间段的上述几种可能的起始时间和上述几种可能的结束时间,下面结合图9a和图9b,描述第一时间段的几种示例。
示例7:在第一DCI是在一个时隙的前3个符号发送的情况下,第一时间段的起始时间为上述第一起始时间,结束时间为上述第四结束时间(在第一DCI指示第一小区进行下行BWP休眠的情况下)或第五结束时间(在第一DCI指示第一小区进行上行BWP休眠的情况下)。
具体的,如图9a所示:
第一时间段的起始时间为:第一DCI所在的主调小区的slot n的前3个符号的结束时间;
在第一DCI指示第一小区进行上行BWP休眠的情况下,第一时间段的结束时间为:从slot n的起始时间开始,第二时间间隔TdormantBWPswitchDelay=4slots后的第一个下行slot的起始时间(图中假设时间间隔TdormantBWPswitchDelay后的第一个slot为上行slot);
在第一DCI指示第一小区进行下行BWP休眠的情况下,第一时间段的结束时间为:从slot n的起始时间开始,第二时间间隔TdormantBWPswitchDelay后的第一个下行slot的起始时间(图中假设时间间隔TdormantBWPswitchDelay后的第一个slot为下行slot)。
示例8:在第一DCI是在一个时隙的前3个符号发送的情况下,第一时间段的起始时间为上述第二起始时间,结束时间为上述第四结束时间(在第一DCI指示第一小区进行下行BWP休眠的情况下)或第五结束时间(在第一DCI指示第一小区进行上行BWP休眠的情况下)。
具体的,如图9a所示:
第一时间段的起始时间为:承载第一DCI的PDCCH的结束时间;
在第一DCI指示第一小区进行上行BWP休眠的情况下,第一时间段的结束时间为:从第一DCI所在的slot n的起始时间开始,第二时间间隔TdormantBWPswitchDelay=4slots后的第一个下行slot的起始时间(图中假设时间间隔TdormantBWPswitchDelay后的第一个slot为上行slot);
在第一DCI指示第一小区进行下行BWP休眠的情况下,第一时间段的结束时间为:从第一DCI所在的slot n的起始时间开始,第二时间间隔TdormantBWPswitchDelay=4slots后的第一个下行slot的起始时间(图中假设时间间隔TdormantBWPswitchDelay后的第一个slot为下行slot)。
示例9:在第一DCI是在一个时隙的前3个符号发送的情况下,第一时间段的起始时间为上述第三起始时间,结束时间为上述第四结束时间(在第一DCI指示第一小区进行下行BWP休眠的情况下)或第五结束时间(在第一DCI指示第一小区进行上行BWP休眠的情况下)。
具体的,如图9a所示:
第一时间段的起始时间为第一DCI所在的slot n的开始时间;
在第一DCI指示第一小区进行上行BWP休眠的情况下,第一时间段的结束时间为:从第一DCI所在的slot n的起始时间开始,第二时间间隔TdormantBWPswitchDelay=4slots后的第一个下行slot的起始时间(图中假设时间间隔TdormantBWPswitchDelay后的第一个slot为上行slot);
在第一DCI指示第一小区进行下行BWP休眠的情况下,第一时间段的结束时间为:从第一DCI所在的slot n的起始时间开始,第二时间间隔TdormantBWPswitchDelay=4slots后的第一个下行slot的起始时间(图中假设时间间隔TdormantBWPswitchDelay后的第一个slot为下行slot)。
示例10示出了在第一DCI不是在一个时隙的前3个符号发送的情况下,第一时间段的起始时间和结束时间,如图9b所示。第一时间段的起始时间和结束时间的确定方法与示例8类似,不同的是时间间隔第二时间间隔TdormantBWPswitchDelay的值不同,在第一DCI不是在一个时隙的前3个符号发送的情况下,第二时间间隔TdormantBWPswitchDelay=5slots。
示例11示出了在第一DCI不是在一个时隙的前3个符号发送的情况下,第一时间段的起始时间和结束时间,如图9b所示。第一时间段的起始时间和结束时间的确定方法与示例9类似,不同的是时间间隔第二时间间隔TdormantBWPswitchDelay的值不同,在第一DCI不是在一个时隙的前3个符号发送的情况下,第二时间间隔TdormantBWPswitchDelay=5slots。
S703:终端设备在第一时间段内停止监测或停止接收网络设备发送的用于调度第一小区的第二DCI, 或者丢弃接收到的用于调度第一小区的第二DCI。
一种可能的实现方式中,用于调度第一小区的第二DCI,可以是DCI format 0_0,或者是DCI format0_1,或者是DCI format 0_2,或者是DCI format 1_0,或者是DCI format 1_1,或者是DCI format 1_2,本申请实施例对此不作限制。
在FDD模式下,上行BWP切换和下行BWP切换独立执行。也就是说,在FDD模式下,如果调度下行数据传输的DCI(例如DCI format 1_1/1_2/1_X)没有和调度上行数据传输的DCI进行DCI size对齐,则在进行上行BWP切换过程中,可以只限制上行数据调度DCI的发送和接收;同理,如果调度上行数据传输的DCI(例如DCI format 0_1/0_2/0_X)没有和调度下行数据传输的DCI进行DCI size对齐,则在进行下行BWP切换过程中,可以只限制下行数据调度DCI的发送和接收。
一种可能的实现方式中,在第一DCI中的第一指示信息指示第一小区进行上行BWP切换的情况下,终端设备可以在第一时间段内停止监测或停止接收用于调度第一小区上行数据传输的第二DCI,或丢弃接收到的用于调度第一小区上行数据传输的第二DCI。或者,在第一DCI中的第一指示信息指示第一小区进行下行BWP切换的情况下,终端设备可以在第一时间段内停止监测或停止接收用于调度第一小区上行数据传输的第二DCI,或丢弃接收到的用于调度第一小区下行数据传输的第二DCI。进一步的,终端设备在接收网络设备发送的第一DCI之前,还可能包括以下步骤:终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于指示终端设备在第一小区工作于FDD模式。上述针对FDD模式的实现方式中,考虑到FDD模式下,上行BWP切换和下行BWP切换可能并不互相影响DCI的大小,可以尽可能增加DCI的发送时机,以提高频谱利用效率。
一种可能的实现方式中,在第一DCI中的第一指示信息指示第一小区进行上行BWP切换的情况或者下行BWP切换的情况下,终端设备可以在第一时间段内停止监测或停止接收用于调度第一小区下行数据传输的第二DCI,或丢弃接收到的用于调度第一小区数据传输的第二DCI。其中,第二DCI包含用于调度第一小区下行数据传输的DCI和用于调度第一小区上行数据传输的DCI。进一步的,终端设备在接收网络设备发送的第一DCI之前,还可能包括以下步骤:终端设备接收网络设备发送的第四指示信息,所述第四指示信息用于指示终端设备在第一小区工作于TDD模式。
基于上述图6所示的系统架构,图10示出了本申请实施例提供的一种在网络设备侧实现的通信方法的流程示意图。该流程可以应用于一个主调小区(本实施例中称为第三小区)调度一个被调小区(本申请实施例中称为第一小区)的过程,比如,图10所示的流程可以应用于一对一跨载波调度场景。如图所示,该流程可以包括以下步骤:
S1001:网络设备向终端设备发送第一DCI,所述第一DCI包括用于指示第一小区进行BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息。
所述第一DCI的相关描述可以参见图7所示流程中的相关内容,在此不再重复。
S1002:网络设备确定第二时间段。
网络设备确定第二时间段的方法,与终端设备确定第一时间段的方法相同,相关方法可以参见图7所示流程中的相关内容。举例来说,在第一DCI用于指示进行BWP切换的场景下,网络设备确定出的第二时间段以及终端设备确定出的第一时间段,其起始时间为第一DCI所在的主调小区的slot n的前3个符号的结束时间,其结束时间为从第一DCI所在的时隙的起始时间开始,时间间隔TBWPswitchDelay+Y后的第一个下行时隙的起始时间。
由于存在空间传输的时延,第二时间段是基于网络设备的定时确定的,第一时间段是基于终端设备的定时确定的,所以第二时间段和第一时间段在绝对时间上可能存在偏差。以第一时间段和第二时间段的起始时间为:第一DCI所在的主调小区的slot n的前3个符号的结束时间,以及第一时间段和第二时间段的结束时间为:从第一DCI所在的时隙的起始时间开始,时间间隔TBWPswitchDelay+Y=3slots后的第一个下行slot的起始时间为例,图11示出了网络设备确定出的第二时间段与终端设备确定出的第一时间段之间的时间偏差。如图所示,由于空口时延的存在,网络设备确定出的第二时间段与终端设备确定出的第一时间段之间存在时间偏差。
S1003:网络设备在第二时间段内停止或不被允许向终端设备发送用于调度第一小区的第二DCI。
所述第二DCI的相关描述可以参见图7所示流程中的相关内容,在此不再重复。
一种可能的实现方式中,网络设备向终端设备发送第一DCI之前,还可能包括以下步骤:网络设备向终端设备发送第三指示信息,所述第三指示信息用于指示终端设备在第一小区工作于FDD模式。
一种可能的实现方式中,在主调小区调度一个被调小区的场景下,在第一DCI中的第一指示信息指示第一小区进行上行BWP切换的情况下,网络设备可以在第二时间段内停止或不被允许向该终端设备发送用于调度第一小区上行数据传输的第二DCI。
一种可能的实现方式中,在主调小区调度一个被调小区的场景下,在第一DCI中的第一指示信息指示第一小区进行下行BWP切换的情况下,网络设备可以在第二时间段内停止或不被允许向该终端设备发送用于调度第一小区下行数据传输的第二DCI。
结合图7所示的终端侧的流程,以及图10所示的网络侧的流程,图12示出了本申请实施例提供的一种网络设备和终端设备交互的流程示意图,如图所示,该流程中包括:
1201:网络设备向终端设备发送第三指示信息,所述第三指示信息用于指示终端设备在第一小区(被调小区)工作于FDD模式,或者网络设备向终端设备发送第四指示信息,所述第四指示信息用于指示终端设备在第一小区(被调小区)工作于TDD模式。该步骤为可选步骤。
1202:网络设备向终端设备发送第一DCI,所述第一DCI包括用于指示第一小区进行BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息。
1203:网络设备确定第二时间段,并在第二时间段内停止或不被允许向终端设备发送用于调度第一小区的第二DCI。具体实现方式可以参考图10。
1204:终端设备确定第一时间段,并在第一时间段内停止监测或停止接收网络设备发送的用于调度第一小区的第二DCI,或者丢弃接收到的用于调度第一小区的第二DCI。具体实现方式可以参考图7。
图12中,可选的,网络设备也可能不执行步骤1203,此种情况下,终端设备执行步骤1204;可选的,网络设备执行步骤1203,终端设备可能不执行步骤1204;可选的,网络设备执行步骤1203,并且终端设备执行步骤1204。
图12中各步骤的具体实现方式可以参考前述实施例。
本申请实施例对图12中步骤1203和步骤1204的执行顺序不做限制。
上述实现方式中,在主调小区调度一个被调小区的场景下,如果网络设备通过第一DCI指示第一小区(即被调小区)进行BWP切换,或者指示第一小区进入休眠或非休眠,则网络设备可以在其后的第二时间段内不向该终端设备发送用于调度第一小区的第二DCI,和/或,终端设备可以在其后的第一时间段内停止监测或停止接收第二DCI或丢弃接收到的第二DCI,这样可以避免或减少第一小区因为发生BWP切换(第一小区进入休眠/非休眠的操作是通过BWP切换实现的),第一小区中的激活BWP处于模糊期(即被调小区不存在有效的激活BWP)时,第二DCI大小可能无法确定,导致第二DCI无法被正确发送和/或接收的问题。
基于上述图6所示的系统架构,图13a和图13b分别示出了本申请实施例提供的一种在终端设备侧实现的通信方法的流程示意图。图13a和图13b的流程可以应用于一个主调小区(本实施例中称为第三小区)调度多个被调小区的过程,图13a和图13b所示的流程可以应用于一对多的跨载波调度场景。
如图13a所示,该流程可以包括以下步骤:
S1301:终端设备接收网络设备发送的第一DCI,所述第一DCI包括用于指示第一小区进行BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息。
该步骤的具体实现方式可以参见图7中的相关内容,在此不再重复。
S1302:终端设备确定第一时间段。
该步骤的具体实现方式可以参见图7中的相关内容,在此不再重复。
S1303:终端设备在第一时间段内停止监测或停止接收网络设备发送的用于调度第一小区组中至少一个小区的第三DCI,或者丢弃接收到的用于调度第一小区组中至少一个小区的第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。
第三DCI的格式为第一DCI格式。第一DCI格式能够用于同时调度两个或两个以上小区的数据传输。第一小区组为第一DCI格式能够调度的所有被调小区的集合,第一小区组中的小区数大于等于2。第一小区和所述第二小区属于第一小区组,第一小区和第二小区不同。
示例性地,第一DCI格式中包含第一指示域。一个格式为第一DCI格式的DCI中的第一指示域用来指示这个DCI调度的被调小区组。第一指示域可以有多种取值,第一小区组为第一指示域能够指示的所有被调小区的集合,即第一小区组为第一指示域的所有取值能够指示的所有被调小区的集合。
示例性地,第一DCI格式是一种多小区调度DCI格式。可以理解,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据传输和/或下行数据传输。例如,第一DCI格式能够用于同时调度两个或两个以上小区的下行数据信道,即一个格式为第一DCI格式的DCI同时在两个或两个以上小区中的每个小区上调度至少一个下行数据信道。例如,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据信道,即一个格式为第一DCI格式的DCI同时在两个或两个以上小区中的每个小区上调度至少一个上行数据信道。例如,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据信道和/或下行数据信道,即一个格式为第一DCI格式的DCI同时在两个或两个以上小区中的每个小区上调度至少一个数据信道,可以是上行数据信道,也可以是下行数据信道。其中,下行数据信道可以是PDSCH,上行数据信道可以是PUSCH。
一种可能的实现方式中,用于调度第一小区组中至少一个小区的第三DCI,可以是DCI format 0_X,或者是DCI format 1_X,本申请实施例对此不作限制。
以DCI format 0_X或1_X为例,DCI format 0_X或1_X可以通过联合指示的方式调度共调度小区中的一个或多个小区,比如,DCI format 0_X中可以包括为第一小区组中每个小区分别指示信息的DCI域,该DCI域可能是仅给第一小区组中某个小区指示信息的DCI域,也可能是给第一小区组中多个小区指示信息的DCI域,其中,这里的第一小区组是一个DCI format 0_X或1_X能够调度的小区中的一个子集。
比如,S1301中,第一小区组中包括上述第一小区,还包括第二小区,第三DCI用于调度第二小区。其中,所述第二小区可以与第三小区(所述第三小区为第一DCI的主调小区)相同也可以不同。可选的,第三DCI也可以调度包括第二小区在内的多个小区,这些小区属于上述第一小区组。可选的,第一DCI的主调小区(第三小区)和被调小区(第一小区)不同。
一种可能的实现方式中,在第一指示信息用于指示第一小区进行上行BWP切换的情况下,终端设备可以在第一时间段内停止监测或停止接收用于调度第一小区组中至少一个小区上行数据传输的第三DCI,或丢弃接收到的第三DCI。或者,在第一指示信息用于指示第一小区进行下行BWP切换的情况下,终端设备可以在第一时间段内停止监测或停止接收网络设备发送的用于调度第一小区组中至少一个小区下行数据传输的第三DCI,或丢弃接收到的第三DCI。进一步的,终端设备在接收网络设备发送的第一DCI之前,还可能包括以下步骤:终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于指示终端设备在第一小区工作于FDD模式。
一种可能的实现方式中,在第一指示信息用于指示第一小区进行下行BWP切换的情况下或用于指示第一小区进入休眠或非休眠的情况下,终端设备可以在第一时间段内停止监测或停止接收用于调度第一小区组中至少一个小区下上行数据传输的第三DCI,或丢弃接收到的第三DCI。进一步的,终端设备在接收网络设备发送的第一DCI之前,还可能包括以下步骤:终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于指示终端设备在第一小区工作于FDD模式。
一种可能的实现方式中,在第一指示信息用于指示第一小区进行上行BWP切换或者下行BWP切换的情况下或用于指示第一小区进入休眠或非休眠的情况下,终端设备可以在第一时间段内停止监测或停止接收网络设备发送的用于调度第一小区组中至少一个小区上行数据传输的第三DCI,或丢弃接收到的第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。第三DCI的格式为第一DCI格式。第一DCI格式能够用于同时调度两个或两个以上小区的上行数据传输。第一小区组为第一DCI格式能够调度的所有被调小区的集合,第一小区和所述第二小区属于第一小区组。更进一步,终端设备可以在第一时间段内停止监测或停止接收网络设备发送的用于调度第一小区组中至少一个小区下行数据传输的第四DCI,或丢弃接收到的第四DCI;其中,所述至少一个小区包括第三小区,所述第三小区与所述第一小区不同,所述第三小区和所述第一小区属于所述第二小区组。第四DCI的格式为第二DCI格式。第二DCI格式能够用于同时调度两个或两个以上小区的下行数据传输。第二小区组为第二DCI格式能够调度的所有被调小区的集合,第一小区和所述第三小区属于第二小区组。进一步的,终端设备在接收网络设备发送的第一DCI之前,还可能包括以下步骤:终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于指示终端设备在第一小区工作于TDD模式。
如图13b所示,该流程可以包括以下步骤:
S1310:终端设备接收网络设备发送的第一DCI,所述第一DCI包括用于指示第一小区进行BWP 切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息。
该步骤的具体实现方式可以参见图7中的相关内容,在此不再重复。
S1311:终端设备确定第一时间段。
该步骤的具体实现方式可以参见图7中的相关内容,在此不再重复。
S1312:终端设备在第一时间段内停止监测或停止接收网络设备发送的第一DCI格式,或丢弃接收到的第一DCI格式。其中,第一DCI格式能够用于同时调度两个或两个以上小区的数据传输,第一小区属于第一小区组,第一小区组为第一DCI格式能够调度的所有被调小区的集合。
示例性地,第一DCI格式中包含第一指示域。一个格式为第一DCI格式的DCI中的第一指示域用来指示这个DCI调度的被调小区组。第一指示域可以有多种取值,第一小区组为第一指示域能够指示的所有被调小区的集合,即第一小区组为第一指示域的所有取值能够指示的所有被调小区的集合。
示例性地,第一DCI格式是一种多小区调度DCI格式。可以理解,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据传输和/或下行数据传输。例如,第一DCI格式能够用于同时调度两个或两个以上小区的下行数据信道,即一个格式为第一DCI格式的DCI同时在两个或两个以上小区中的每个小区上调度至少一个下行数据信道。例如,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据信道,即一个格式为第一DCI格式的DCI同时在两个或两个以上小区中的每个小区上调度至少一个上行数据信道。例如,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据信道和/或下行数据信道,即一个格式为第一DCI格式的DCI同时在两个或两个以上小区中的每个小区上调度至少一个数据信道,可以是上行数据信道,也可以是下行数据信道。其中,下行数据信道可以是PDSCH,上行数据信道可以是PUSCH。
一种可能的实现方式中,在第一指示信息用于指示第一小区进行上行BWP切换的情况下,终端设备在第一时间段内停止监测或停止接收或丢弃接收到的网络设备发送的第一DCI格式;其中,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据传输,第一小区属于第一小区组,第一小区组为第一DCI格式能够调度的所有被调小区的集合。进一步的,终端设备在接收网络设备发送的第一DCI之前,还可能包括以下步骤:终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于指示终端设备在第一小区工作于FDD模式。
一种可能的实现方式中,在第一指示信息用于指示第一小区进行下行BWP切换的情况下或用于指示第一小区进入休眠或非休眠的情况下,终端设备在第一时间段内停止监测或停止接收或丢弃接收到的网络设备发送的第一DCI格式;其中,第一DCI格式能够用于同时调度两个或两个以上小区的下行数据传输,第一小区属于第一小区组,第一小区组为第一DCI格式能够调度的所有被调小区的集合。进一步的,终端设备在接收网络设备发送的第一DCI之前,还可能包括以下步骤:终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于指示终端设备在第一小区工作于FDD模式。
一种可能的实现方式中,在第一指示信息用于指示第一小区进行上行BWP切换或者下行BWP切换的情况下或用于指示第一小区进入休眠或非休眠的情况下,终端设备在第一时间段内停止监测或停止接收或丢弃接收到的网络设备发送的第一DCI格式;其中,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据传输,第一小区属于第一小区组,第一小区组为第一DCI格式能够调度的所有被调小区的集合,并且,终端设备在第一时间段内停止监测或停止接收或丢弃接收到的网络设备发送的第二DCI格式;其中,第二DCI格式能够用于同时调度两个或两个以上小区的下行数据传输,第一小区属于第二小区组,第二小区组为第二DCI格式能够调度的所有被调小区的集合。进一步的,终端设备在接收网络设备发送的第一DCI之前,还可能包括以下步骤:终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于指示终端设备在第一小区工作于TDD模式。
基于上述图6所示的系统架构,图14a和图14b分别示出了本申请实施例提供的一种在网络设备侧实现的通信方法的流程示意图。图14a和图14b的流程可以应用于一个主调小区(本实施例中称为第三小区)调度多个被调小区的过程,图14a和图14b所示的流程可以应用于一对多的跨载波调度场景。
如图14a所示,该流程可以包括以下步骤:
S1401:网络设备向终端设备发送第一DCI,所述第一DCI包括用于指示第一小区进行BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息。
所述第一DCI的相关描述可以参见图7所示流程中的相关内容,在此不再重复。
S1402:网络设备确定第二时间段。
网络设备确定第二时间段的方法,与终端设备确定第一时间段的方法相同,相关方法可以参见图7所示流程中的相关内容。
由于存在空间传输的时延,第二时间段是基于网络设备的定时确定的,第一时间段是基于终端设备的定时确定的,所以第二时间段和第一时间段在绝对时间上可能存在偏差。
S1403:网络设备在第二时间段内停止或不被允许向终端设备发送用于调度第一小区组中至少一个小区的第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。
所述第三DCI的相关描述可以参见图13a所示流程中的相关内容,在此不再重复。
一种可能的实现方式中,网络设备向终端设备发送第一DCI之前,还可能包括以下步骤:网络设备向终端设备发送第三指示信息,所述第三指示信息用于指示终端设备在第一小区工作于FDD模式。
一种可能的实现方式中,在第一指示信息用于指示第一小区进行上行BWP切换的情况下,网络设备可以在第二时间段内停止或不被允许向该终端设备发送用于调度第一小区组中至少一个小区上行数据传输的第三DCI。
一种可能的实现方式中,在第一指示信息用于指示第一小区进行下行BWP切换的情况下,网络设备可以在第二时间段内停止或不被允许向该终端设备发送用于调度第一小区组中至少一个小区下行数据传输的第三DCI。
如图14b所述,该流程可以包括以下步骤:
S1410:网络设备向终端设备发送第一DCI,所述第一DCI包括用于指示第一小区进行BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息。
所述第一DCI的相关描述可以参见图7所示流程中的相关内容,在此不再重复。
S1411:网络设备确定第二时间段。
网络设备确定第二时间段的方法,与终端设备确定第一时间段的方法相同,相关方法可以参见图7所示流程中的相关内容。
S1412:网络设备在第二时间段内停止或不被允许向该终端设备发送第一DCI格式。其中,第一DCI格式能够用于同时调度两个或两个以上小区的数据传输,第一小区属于第一小区组,第一小区组为第一DCI格式能够调度的所有被调小区的集合。
示例性地,第一DCI格式中包含第一指示域。一个格式为第一DCI格式的DCI中的第一指示域用来指示这个DCI调度的被调小区组。第一指示域可以有多种取值,第一小区组为第一指示域能够指示的所有被调小区的集合,即第一小区组为第一指示域的所有取值能够指示的所有被调小区的集合。
示例性地,第一DCI格式是一种多小区调度DCI格式。可以理解,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据传输和/或下行数据传输。例如,第一DCI格式能够用于同时调度两个或两个以上小区的下行数据信道,即一个格式为第一DCI格式的DCI同时在两个或两个以上小区中的每个小区上调度至少一个下行数据信道。例如,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据信道,即一个格式为第一DCI格式的DCI同时在两个或两个以上小区中的每个小区上调度至少一个上行数据信道。例如,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据信道和/或下行数据信道,即一个格式为第一DCI格式的DCI同时在两个或两个以上小区中的每个小区上调度至少一个数据信道,可以是上行数据信道,也可以是下行数据信道。其中,下行数据信道可以是PDSCH,上行数据信道可以是PUSCH。
一种可能的实现方式中,在第一指示信息用于指示第一小区进行上行BWP切换的情况下,终端设备在第一时间段内停止监测或停止接收或丢弃接收到的网络设备发送的第一DCI格式;其中,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据传输,第一小区属于第一小区组,第一小区组为第一DCI格式能够调度的所有被调小区的集合。进一步的,终端设备在接收网络设备发送的第一DCI之前,还可能包括以下步骤:终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于指示终端设备在第一小区工作于FDD模式。
一种可能的实现方式中,在第一指示信息用于指示第一小区进行下行BWP切换的情况下或用于指示第一小区进入休眠或非休眠的情况下,终端设备在第一时间段内停止监测或停止接收或丢弃接收到的网络设备发送的第一DCI格式;其中,第一DCI格式能够用于同时调度两个或两个以上小区的下行数据传输,第一小区属于第一小区组,第一小区组为第一DCI格式能够调度的所有被调小区的集合。进 一步的,终端设备在接收网络设备发送的第一DCI之前,还可能包括以下步骤:终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于指示终端设备在第一小区工作于FDD模式。
一种可能的实现方式中,在第一指示信息用于指示第一小区进行上行BWP切换或者下行BWP切换的情况下或用于指示第一小区进入休眠或非休眠的情况下,终端设备在第一时间段内停止监测或停止接收或丢弃接收到的网络设备发送的第一DCI格式;其中,第一DCI格式能够用于同时调度两个或两个以上小区的上行数据传输,第一小区属于第一小区组,第一小区组为第一DCI格式能够调度的所有被调小区的集合,并且,终端设备在第一时间段内停止监测或停止接收或丢弃接收到的网络设备发送的第二DCI格式;其中,第二DCI格式能够用于同时调度两个或两个以上小区的下行数据传输,第一小区属于第二小区组,第二小区组为第二DCI格式能够调度的所有被调小区的集合。进一步的,终端设备在接收网络设备发送的第一DCI之前,还可能包括以下步骤:终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于指示终端设备在第一小区工作于TDD模式。
结合图13a或图13b所示的终端侧的流程,以及图14a或图14b所示的网络侧的流程,图15示出了本申请实施例提供的一种网络设备和终端设备交互的流程示意图,如图所示,该流程中包括:
1501:网络设备向终端设备发送第三指示信息,所述第三指示信息用于指示终端设备在第一小区(被调小区)工作于FDD模式,或者网络设备向终端设备发送第四指示信息,所述第四指示信息用于指示终端设备在第一小区(被调小区)工作于TDD模式。该步骤为可选步骤。
1502:网络设备向终端设备发送第五指示信息,所述第五指示信息用于指示可以用一个DCI调度第一小区组中的一个或多个小区(包括调度这些小区的上行传输或者下行传输),所述第一小区组中包括第一小区。该步骤为可选步骤。
1503:网络设备向终端设备发送第一DCI,所述第一DCI包括用于指示第一小区进行BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息。
1504:网络设备确定第二时间段,并在第二时间段内停止或不被允许向终端设备发送用于调度第一小区组中至少一个小区的第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。
另一种可能的实现方式中,网络设备确定第二时间段,并在第二时间段内停止或不被允许向该终端设备发送第一DCI格式。
具体实现方式可以参考图14a或图14b。
1505:终端设备确定第一时间段,并在第一时间段内停止监测或停止接收网络设备发送的用于调度第一小区组中至少一个小区的第三DCI,或丢弃接收到的用于调度第一小区组中至少一个小区的第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。
另一种可能的实现方式中,终端设备确定第一时间段,并在第一时间段内停止监测或停止接收网络设备发送的第一DCI格式,或丢弃接收到的第一DCI格式。
具体实现方式可以参考图13a或图13b。
图15中,可选的,网络设备也可能不执行步骤1504,此种情况下,终端设备执行步骤1505;可选的,网络设备执行步骤1504,终端设备可能不执行步骤1505;可选的,网络设备执行步骤1504,并且终端设备执行步骤1505。
图15中各步骤的具体实现方式可以参考前述实施例。
本申请实施例对图15中步骤1504和步骤1505的执行顺序不做限制。
上述实现方式中,在主调小区调度多个被调小区的场景下,如果网络设备通过第一DCI指示第一小区(即被调小区)进行BWP切换,或者指示第一小区进入休眠或非休眠,则网络设备可以在其后的第二时间段内不向该终端设备发送用于调度第一小区组(即被调小区组)中的第二小区的第三DCI,和/或,终端设备可以在其后的第一时间段内不接收或丢弃接收到的第三DCI,这样可以避免或减少被调小区组中的第二小区因为该组中的第一小区发生BWP切换(第一小区进入休眠/非休眠的操作是通过BWP切换实现的),第一小区中的激活BWP处于模糊期(即被调小区不存在有效的激活BWP)时,第三DCI大小可能无法确定,导致第三DCI无法被正确发送和/或接收的问题。
在本申请的另一些实施例中,网络设备向终端设备发送第一DCI后,网络设备确定第二时间段,并可以在第二时间段内停止或不被允许向终端设备发送第二DCI和第三DCI。终端设备在接收到第一 DCI后,确定第一时间段,并可以在第一时间段内停止监测或停止接收第二DCI或丢弃接收到的第二DCI,并停止监测或停止接收第三DCI或者丢弃接收到的第三DCI。相关实现方式可以参考前述实施例,在此不再赘述。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可以实现前述实施例中终端设备实现的功能。如图16所示,该通信装置1600可以包括处理单元1601和收发单元1602。
收发单元1602,用于接收网络设备发送的第一DCI,所述第一DCI包括用于指示第一小区进行BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息。处理单元1601,用于确定第一时间段;以及,在所述第一时间段内停止通过收发单元1602监测或接收或丢弃收发单元1602接收到的所述网络设备发送的用于调度所述第一小区的第二DCI,或者在所述第一时间段内停止通过收发单元1602监测或接收或丢弃收发单元1602接收到的所述网络设备发送的用于调度第一小区组中至少一个小区的第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。
可选的,处理单元1601确定第一时间段的起始时间和结束时间的确定方法可以参见前述实施例。
可选的,在所述第一指示信息用于指示所述第一小区进行上行BWP切换的情况下,处理单元1601具体用于:在所述第一时间段内停止通过收发单元1602监测或接收或丢弃收发单元1602接收到的所述网络设备发送的用于调度所述第一小区上行数据传输的第二DCI。
可选的,在所述第一指示信息用于指示所述第一小区进行下行BWP切换的情况下,处理单元1601具体用于:在所述第一时间段内停止通过收发单元1602监测或接收或丢弃收发单元1602接收到的所述网络设备发送的用于调度所述第一小区下行数据传输的第二DCI。
可选的,在所述第一指示信息用于指示所述第一小区进行上行BWP切换的情况下,处理单元1601具体用于:在所述第一时间段内停止通过收发单元1602监测或接收或丢弃收发单元1602接收到的所述网络设备发送的用于调度第一小区组中至少一个小区上行数据传输的第三DCI。
可选的,在所述第一指示信息用于指示所述第一小区进行下行BWP切换的情况下,处理单元1601具体用于:在所述第一时间段内停止通过收发单元1602监测或接收或丢弃收发单元1602接收到的所述网络设备发送的用于调度第一小区组中至少一个小区下行数据传输的第三DCI。
可选的,在收发单元1602接收网络设备发送的第一DCI之前,还接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示所述终端设备在所述第一小区工作于频分双工模式。
可选的,在所述第一指示信息用于指示所述第一小区进行上行BWP切换或下行BWP切换的情况下,处理单元1601具体用于:在所述第一时间段内停止监测或停止通过收发单元1602接收所述网络设备发送的用于调度所述第一小区的第二DCI,或丢弃收发单元1602接收到的所述第二DCI;其中,所述第二DCI包括用于调度所述第一小区上行数据传输的DCI以及用于调度所述第一小区下行数据传输的DCI。
可选的,在第一指示信息用于指示第一小区进行上行BWP切换或者下行BWP切换的情况下或用于指示第一小区进入休眠或非休眠的情况下,处理单元1601具体用于:在所述第一时间段内停止监测或停止通过收发单元1602接收网络设备发送的用于调度第一小区组中至少一个小区上行数据传输的第三DCI,或丢弃收发单元1602接收到的第三DCI。
可选的,处理单元1601还用于:在所述第一时间段内停止监测或停止通过收发单元1602接收网络设备发送的用于调度第一小区组中至少一个小区下行数据传输的第四DCI,或丢弃收发单元1602接收到的第四DCI。
可选的,在接收网络设备发送的第一DCI之前,收发单元1602还用于:接收所述网络设备发送的第四指示信息,所述第四指示信息用于指示所述终端设备在所述第一小区工作于时分双工模式。
可以理解,本申请实施例提供的上述通信装置,能够实现上述方法实施例中终端设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可以实现前述实施例中网络设备实现的功能。如图17所示,该通信装置1700可以包括处理单元1701和收发单元1702。
收发单元1702,用于向终端设备发送第一下行控制信息DCI,所述第一DCI包括用于指示第一小区进行带宽部分BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示 信息。处理单元1701,用于确定第二时间段;以及,在所述第二时间段内停止或不被允许通过收发单元1702向所述终端设备发送用于调度所述第一小区的第二DCI,或者在所述第二时间段内停止或不被允许通过收发单元1702向所述终端设备发送用于调度第一小区组中至少一个小区的第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。
可选的,处理单元1701确定第二时间段的起始时间和结束时间的确定方法可以参见前述实施例。
可选的,在所述第一指示信息用于指示所述第一小区进行上行BWP切换的情况下,处理单元1701具体用于:在所述第二时间段内停止或不被允许通过收发单元1702向所述终端设备发送用于调度所述第一小区上行数据传输的第二DCI。
可选的,在所述第一指示信息用于指示所述第一小区进行下行BWP切换的情况下,处理单元1701具体用于:在所述第二时间段内停止或不被允许通过收发单元1702向所述终端设备发送用于调度所述第一小区下行数据传输的第二DCI。
可选的,在所述第一指示信息用于指示所述第一小区进行上行BWP切换的情况下,处理单元1701具体用于:在所述第二时间段内停止或不被允许通过收发单元1702向所述终端设备发送用于调度第一小区组中至少一个小区的上行数据传输的第三DCI。
可选的,在所述第一指示信息用于指示所述第一小区进行下行BWP切换的情况下,处理单元1701具体用于:在所述第二时间段内停止或不被允许通过收发单元1702向所述终端设备发送用于调度第一小区组中至少一个小区的下行数据传输的第三DCI。
可选的,收发单元1702在向终端设备发送第一DCI之前,还向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述终端设备在所述第一小区工作于频分双工模式。
可选的,在所述第一指示信息用于指示所述第一小区进行上行BWP切换或下行BWP切换的情况下,处理单元1701具体用于:在所述第二时间段内停止或不被允许通过收发单元1702向所述终端设备发送用于调度所述第一小区的第二DCI;其中,所述第二DCI包括用于调度所述第一小区上行数据传输的DCI以及用于调度所述第一小区下行数据传输的DCI。
可选的,在第一指示信息用于指示第一小区进行上行BWP切换或者下行BWP切换的情况下或用于指示第一小区进入休眠或非休眠的情况下,处理单元1701具体用于:在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区上行数据传输的第三DCI。
可选的,处理单元1701还用于:在所述第二时间段内停止或不被允许通过收发单元1702向所述终端设备发送用于调度第一小区组中至少一个小区下行数据传输的第四DCI。
可选的,在向所述终端设备发送第一DCI之前,处理单元1701还用于:通过收发单元1702向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述终端设备在所述第一小区工作于时分双工模式。
可以理解,本申请实施例提供的上述通信装置,能够实现上述方法实施例中网络设备所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
为便于理解,图18中仅示出了通信装置1800执行本申请所示方法所需的结构,本申请并不限制通信装置可具备更多组件。该通信装置1800可用于执行上述方法实施例中相关设备执行的步骤,比如所述相关设备可以是终端设备或网络设备。
该通信装置1800可包括收发器1801、存储器1803以及处理器1802,收发器1801、存储器1803以及处理器1802可以通过总线1804连接。该收发器1801可以用于通信装置进行通信,如用于发送或接收信号。该存储器1803与所述处理器1802耦合,可用于保存通信装置1800实现各功能所必要的程序和数据。以上存储器1803以及处理器1802可集成于一体也可相互独立。
示例性的,该收发器1801可以是通信端口,如网元之间用于通信的通信端口(或称接口)。收发器1801也可被称为收发单元或通信单元。该处理器1802可通过处理芯片或处理电路实现。收发器1801可采用无线方式或有线方式进行信息接收或发送。
另外,根据实际使用的需要,本申请实施例提供的通信装置可包括处理器,由该处理器调用外接的收发器和/或存储器以实现上述功能或步骤或操作。通信装置也可包括存储器,由处理器调用并执行存储器中存储的程序实现上述功能或步骤或操作。或者,通信装置也可包括处理器及收发器(或通信接口), 由处理器调用并执行外接的存储器中存储的程序实现上述功能或步骤或操作。或者,通信装置也可包括处理器、存储器以及收发器。
基于与上述方法实施例相同构思,本申请实施例中还提供一种计算机可读存储介质,其上存储有程序指令(或称计算机程序、指令),该程序指令被处理器执行时,使该计算机执行上述方法实施例、方法实施例的任意一种可能的实现方式中由终端设备或网络设备执行的操作。
基于与上述方法实施例相同构思,本申请还提供一种计算机程序产品,包括程序指令,该计算机程序产品在被计算机调用执行时,可以使得计算机实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端设备或网络设备执行的操作。
基于与上述方法实施例相同构思,本申请还提供一种芯片或芯片系统,该芯片与收发器耦合,用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中由终端设备或网络设备执行的操作。该芯片系统可包括该芯片,以及包括存储器、通信接口等组件。
基于与上述方法实施例相同构思,本申请实施例还提供一种通信系统。可选的,所述通信系统包括终端设备和网络设备,所述终端设备可以执行上述方法实施例中终端设备的操作,所述网络设备可以执行上述方法实施例中网络设备的操作。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    接收网络设备发送的第一下行控制信息DCI,所述第一DCI包括用于指示第一小区进行带宽部分BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息;
    确定第一时间段;
    在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区的第二DCI,或丢弃接收到的所述第二DCI,或者在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区的第三DCI,或丢弃接收到的所述第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。
  2. 如权利要求1所述的方法,其特征在于,所述第一时间段的起始时间为:
    所述第一DCI所在的第三小区的第一时隙的前3个符号的结束时间;或者,
    承载所述第一DCI的物理下行控制信道PDCCH的结束时间;或者,
    所述第一时隙的开始时间;
    其中,所述第一时隙为所述第一DCI所在的时隙。
  3. 如权利要求1或2所述的方法,其特征在于:
    在所述第一DCI包括所述第一指示信息的情况下,所述第一时间段的结束时间为所述第一DCI的时域资源指示域中的时隙偏移指示的时隙的起始时间;或者
    在所述第一DCI包括所述第一指示信息且所述第一指示信息指示所述第一小区进行下行BWP切换的情况下,所述第一时间段的结束时间为从所述第一时隙的起始时间开始,在第一时间间隔后的第一个下行时隙的起始时间;或者
    在所述第一DCI包括所述第一指示信息且所述第一指示信息指示所述第一小区进行上行BWP切换的情况下,所述第一时间段的结束时间为从所述第一时隙的起始时间开始,在第一时间间隔后的第一个上行时隙的起始时间;
    其中,所述第一时间间隔与BWP切换时延相关。
  4. 如权利要求3所述的方法,其特征在于,所述第一时间间隔等于TBWPswitchDelay+Y;
    其中,所述TBWPswitchDelay的值根据所述第一DCI所在的第三小区的子载波间隔、所述第一小区切换前的BWP的子载波间隔以及所述第一小区切换后的BWP的子载波间隔中的最小值确定;
    所述Y的值包括:
    在所述第一小区和所述第三小区不是同一小区的情况下,所述Y的值等于1;或者
    在所述第一小区和所述第三小区是同一小区的情况下,所述Y的值等于0;或者
    在所述第一小区和所述第三小区的频点在频域范围FR2-2内的情况下,所述Y的取值根据120KHz子载波间隔确定。
  5. 如权利要求1或2所述的方法,其特征在于:
    在所述第一DCI包括所述第二指示信息且所述第二指示信息指示所述第一小区的下行BWP休眠的情况下,所述第一时间段的结束时间为从所述第一时隙的起始时间开始,在第二时间间隔后的第一个下行时隙的起始时间;或者
    在所述第一DCI包括所述第二指示信息且所述第二指示信息指示所述第一小区的上行BWP休眠的情况下,所述第一时间段的结束时间为从所述第一时隙的起始时间开始,在第二时间间隔后的第一个上行时隙的起始时间;
    其中,所述第二时间间隔与BWP切换时延相关。
  6. 如权利要求5所述的方法,其特征在于,在所述第一DCI是在第三小区的一个时隙内的前3个符号发送的情况下,所述第二时间间隔等于TBWPswitchDelay+X,或者在所述第一DCI不是在所述第三小区的一个时隙内的前3个符号发送的情况下,所述第二时间间隔等于TBWPswitchDelay+X+Z;
    其中,所述TBWPswitchDelay的值根据所述第三小区的子载波间隔、所述第一小区休眠BWP的子载波间隔、所述第一小区切换前或切换后的激活BWP的子载波间隔中的最小值确定;
    所述X的值等于1,所述X的单位为时隙,所述时隙对应于所述第三小区的子载波间隔、所述第 一小区休眠BWP的子载波间隔、所述第一小区切换前或切换后的激活BWP的子载波间隔中的最小值;或者,在所述第一小区和所述第三小区的频点在频域范围FR2-2内的情况下,所述X的取值根据120KHz子载波间隔确定;
    所述Z的值等于1,所述Z的单位为时隙,所述时隙对应于所述第三小区的子载波间隔。
  7. 如权利要求1-4任一项所述的方法,其特征在于,在所述第一指示信息用于指示所述第一小区进行上行BWP切换的情况下,所述在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区的第二DCI,或丢弃接收到的所述第二DCI,包括:在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区上行数据传输的第二DCI,或丢弃接收到的所述第二DCI;或者
    在所述第一指示信息用于指示所述第一小区进行下行BWP切换的情况下,所述在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区的第二DCI,或丢弃接收到的所述第二DCI,包括:在所述第一时间段内停止监测或停止接收网络设备发送的用于调度所述第一小区下行数据传输的第二DCI,或丢弃接收到的所述第二DCI。
  8. 如权利要求1-4任一项所述的方法,其特征在于,所述第一指示信息用于指示所述第一小区进行上行BWP切换的情况下,所述在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区的第三DCI,或丢弃接收到的所述第三DCI,包括:在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区上行数据传输的第三DCI,或丢弃接收到的所述第三DCI;或者
    在所述第一指示信息用于指示所述第一小区进行下行BWP切换的情况下,所述在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区的第三DCI,或丢弃所述第三DCI,包括:在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区下行数据传输的第三DCI,或丢弃所述第三DCI。
  9. 如权利要求7或8所述的方法,其特征在于,在接收网络设备发送的第一DCI之前,所述方法还包括:
    接收所述网络设备发送的第三指示信息,所述第三指示信息用于指示所述终端设备在所述第一小区工作于频分双工模式。
  10. 如权利要求1-4任一项所述的方法,其特征在于,在所述第一指示信息用于指示所述第一小区进行上行BWP切换或下行BWP切换的情况下,所述在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区的第二DCI,或丢弃接收到的所述第二DCI,包括:
    在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度所述第一小区的第二DCI,或丢弃接收到的所述第二DCI;其中,所述第二DCI包括用于调度所述第一小区上行数据传输的DCI以及用于调度所述第一小区下行数据传输的DCI。
  11. 如权利要求1-4任一项所述的方法,其特征在于,在第一指示信息用于指示第一小区进行上行BWP切换或者下行BWP切换的情况下或用于指示第一小区进入休眠或非休眠的情况下,所述在所述第一时间段内停止监测或停止接收所述网络设备发送的用于调度第一小区组中至少一个小区的第三DCI,或丢弃接收到的所述第三DCI,包括:
    在所述第一时间段内停止监测或停止接收网络设备发送的用于调度第一小区组中至少一个小区上行数据传输的第三DCI,或丢弃接收到的第三DCI。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    在所述第一时间段内停止监测或停止接收网络设备发送的用于调度第一小区组中至少一个小区下行数据传输的第四DCI,或丢弃接收到的第四DCI。
  13. 如权利要求10-12任一项所述的方法,其特征在于,在接收网络设备发送的第一DCI之前,所述方法还包括:
    接收所述网络设备发送的第四指示信息,所述第四指示信息用于指示所述终端设备在所述第一小区工作于时分双工模式。
  14. 如权利要求1-13任一项所述的方法,其特征在于,所述第三DCI的DCI格式能够用于同时调度至少两个小区的数据传输;所述第一小区组为所述第三DCI的DCI格式能够调度的所有被调小区的集合,所述第一小区组中的小区数大于等于2。
  15. 一种通信方法,其特征在于,包括:
    向终端设备发送第一下行控制信息DCI,所述第一DCI包括用于指示第一小区进行带宽部分BWP切换的第一指示信息,或者包括用于指示第一小区进入休眠或非休眠的第二指示信息;
    确定第二时间段;
    在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI,或者在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区的第三DCI;其中,所述至少一个小区包括第二小区,所述第二小区与所述第一小区不同,所述第二小区和所述第一小区属于所述第一小区组。
  16. 如权利要求15所述的方法,其特征在于,所述第二时间段的起始时间为:
    所述第一DCI所在的第三小区的第一时隙的前3个符号的结束时间;或者
    承载所述第一DCI的物理下行控制信道PDCCH的结束时间;或者,
    所述第一时隙的开始时间;
    其中,所述第一时隙为所述第一DCI所在的时隙。
  17. 如权利要求15或16所述的方法,其特征在于:
    在所述第一DCI包括所述第一指示信息的情况下:
    所述第二时间段的结束时间为所述第一DCI的时域资源指示域中的时隙偏移指示的时隙的起始时间;或者
    在所述第一DCI包括所述第一指示信息,且所述第一指示信息指示所述第一小区进行下行BWP切换的情况下,所述第二时间段的结束时间为从所述第一时隙的起始时间开始,在第一时间间隔后的第一个下行时隙的起始时间;或者,
    在所述第一DCI包括所述第一指示信息,且所述第一指示信息指示所述第一小区进行上行BWP切换的情况下,所述第二时间段的结束时间为从所述第一时隙的起始时间开始,在第一时间间隔后的第一个上行时隙的起始时间;
    其中,所述第一时间间隔与BWP切换时延相关。
  18. 如权利要求17所述的方法,其特征在于,所述第一时间间隔等于TBWPswitchDelay+Y;
    其中,所述TBWPswitchDelay的值根据所述第一DCI所在的第三小区的子载波间隔、所述第一小区切换前的BWP的子载波间隔以及所述第一小区切换后的BWP的子载波间隔中的最小值确定;
    所述Y的值包括:
    在所述第一小区和所述第三小区不是同一小区的情况下,所述Y的值等于1;或者
    在所述第一小区和所述第三小区是同一小区的情况下,所述Y的值等于0;或者
    在所述第一小区和所述第三小区的频点在频域范围FR2-2内的情况下,所述Y的取值根据120KHz子载波间隔确定。
  19. 如权利要求15或16所述的方法,其特征在于:
    在所述第一DCI包括所述第二指示信息,且所述第二指示信息指示所述第一小区的下行BWP休眠的情况下,所述第二时间段的结束时间为从所述第一时隙的起始时间开始,在第二时间间隔后的第一个下行时隙的起始时间;或者,
    在所述第一DCI包括所述第二指示信息,且所述第二指示信息指示所述第一小区的上行BWP休眠的情况下,所述第二时间段的结束时间为从所述第一时隙的起始时间开始,在第二时间间隔后的第一个上行时隙的起始时间;
    其中,所述第二时间间隔与BWP切换时延相关。
  20. 如权利要求19所述的方法,其特征在于,在所述第一DCI是在第三小区的一个时隙内的前3个符号发送的情况下,所述第二时间间隔等于TBWPswitchDelay+X,或者在所述第一DCI不是在所述第三小区的一个时隙内的前3个符号发送的情况下,所述第二时间间隔等于TBWPswitchDelay+X+Z;
    其中,所述TBWPswitchDelay的值根据所述第三小区的子载波间隔、所述第一小区休眠BWP的子载波间隔、所述第一小区切换前或切换后的激活BWP的子载波间隔中的最小值确定;
    所述X的值等于1,所述X的单位为时隙,所述时隙对应于所述第三小区的子载波间隔、所述第一小区休眠BWP的子载波间隔、所述第一小区切换前或切换后的激活BWP的子载波间隔中的最小值;或者,在所述第一小区和所述第三小区的频点在频域范围FR2-2内的情况下,所述X的取值根据120KHz 子载波间隔确定;
    所述Z的值等于1,所述Z的单位为时隙,所述时隙对应于所述第三小区的子载波间隔。
  21. 如权利要求15-18任一项所述的方法,其特征在于,在所述第一指示信息用于指示所述第一小区进行上行BWP切换的情况下,所述在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI,包括:在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区上行数据传输的第二DCI;或者
    在所述第一指示信息用于指示所述第一小区进行下行BWP切换的情况下,所述在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI,包括:在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区下行数据传输的第二DCI。
  22. 如权利要求15-18任一项所述的方法,其特征在于,在所述第一指示信息用于指示所述第一小区进行上行BWP切换的情况下,所述在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区的第三DCI,包括:在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区的上行数据传输的第三DCI;或者
    在所述第一指示信息用于指示所述第一小区进行下行BWP切换的情况下,所述在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区的第三DCI,包括:在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区的下行数据传输的第三DCI。
  23. 如权利要求21或22所述的方法,其特征在于,在向终端设备发送第一DCI之前,所述方法还包括:
    向所述终端设备发送第三指示信息,所述第三指示信息用于指示所述终端设备在所述第一小区工作于频分双工模式。
  24. 如权利要求15-18任一项所述的方法,其特征在于,在所述第一指示信息用于指示所述第一小区进行上行BWP切换或下行BWP切换的情况下,所述在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI,包括:
    在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI;其中,所述第二DCI包括用于调度所述第一小区上行数据传输的DCI以及用于调度所述第一小区下行数据传输的DCI。
  25. 如权利要求15-18任一项所述的方法,其特征在于,在第一指示信息用于指示第一小区进行上行BWP切换或者下行BWP切换的情况下或用于指示第一小区进入休眠或非休眠的情况下,所述在所述第二时间段内停止或不被允许向所述终端设备发送用于调度所述第一小区的第二DCI,包括:
    在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区上行数据传输的第三DCI。
  26. 如权利要求25所述的方法,其特征在于,所述方法还包括:
    在所述第二时间段内停止或不被允许向所述终端设备发送用于调度第一小区组中至少一个小区下行数据传输的第四DCI。
  27. 如权利要求24-26任一项所述的方法,其特征在于,在向所述终端设备发送第一DCI之前,所述方法还包括:
    向所述终端设备发送第四指示信息,所述第四指示信息用于指示所述终端设备在所述第一小区工作于时分双工模式。
  28. 如权利要求15-27任一项所述的方法,其特征在于,所述第三DCI的DCI格式能够用于同时调度至少两个小区的数据传输;所述第一小区组为所述第三DCI的DCI格式能够调度的所有被调小区的集合,所述第一小区组中的小区数大于等于2。
  29. 一种通信装置,其特征在于,包括:一个或多个处理器;其中,当一个或多个计算机程序的指令被所述一个或多个处理器执行时,使得所述通信装置执行如权利要求1-14任一项所述的方法,或者执行如权利要求15-28任一项所述的方法。
  30. 一种通信系统,其特征在于,包括用于执行如权利要求1-14任一项所述方法的终端设备,以及用于执行如权利要求15-28任一项所述方法的网络设备。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序,当计算机 程序在计算设备上运行时,使得所述计算设备执行如权利要求1-14任一项所述的方法,或者执行如权利要求15-28任一项所述的方法。
  32. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-14任一项所述的方法,或者实现如权利要求15-28任一项所述的方法。
  33. 一种计算机程序产品,其特征在于,所述计算机程序产品在被计算机调用时,使得所述计算机执行如权利要求1-14任一项所述的方法,或者执行如权利原来权15-28任一项所述的方法。
PCT/CN2023/127705 2022-11-04 2023-10-30 一种通信方法、装置、系统及存储介质 WO2024093903A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211380041.9 2022-11-04
CN202211380041.9A CN117998641A (zh) 2022-11-04 2022-11-04 一种通信方法、装置、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2024093903A1 true WO2024093903A1 (zh) 2024-05-10

Family

ID=90887667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127705 WO2024093903A1 (zh) 2022-11-04 2023-10-30 一种通信方法、装置、系统及存储介质

Country Status (2)

Country Link
CN (1) CN117998641A (zh)
WO (1) WO2024093903A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543254A (zh) * 2020-04-10 2021-10-22 联发科技股份有限公司 对辅小区(scell)休眠指示增强带宽部分(bwp)操作的方法及装置
CN114071667A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 通信的方法、通信装置及系统
WO2022082799A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 跨载波调度方法、终端设备和接入网设备
CN114631357A (zh) * 2020-02-21 2022-06-14 华为技术有限公司 一种通信传输的方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114631357A (zh) * 2020-02-21 2022-06-14 华为技术有限公司 一种通信传输的方法及设备
CN113543254A (zh) * 2020-04-10 2021-10-22 联发科技股份有限公司 对辅小区(scell)休眠指示增强带宽部分(bwp)操作的方法及装置
CN114071667A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 通信的方法、通信装置及系统
WO2022082799A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 跨载波调度方法、终端设备和接入网设备

Also Published As

Publication number Publication date
CN117998641A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US11785550B2 (en) Method for efficient rediscovery and medium access for wake-up radios
CN111345050B (zh) 对无线通信设备能力的临时处理
US20190372719A1 (en) Design of downlink control information for wideband coverage enhancement
US20220279479A1 (en) User Equipment (UE) Grouping Criteria and Mechanisms for False Paging Reduction
CN111264042A (zh) 新无线电中的辅小区激活和去激活增强
US20230156659A1 (en) User equipment and base station involved in paging
EP2858428B1 (en) Wireless communication system, mobile station, base station and communication method
US20220104122A1 (en) Selective Cross-Slot Scheduling for NR User Equipment
WO2021032021A1 (zh) 一种通信方法及装置
JP2023525852A (ja) 切り替え方法及び装置
KR102664557B1 (ko) Dual Connectivity 지원 망에서 RRC_IDLE 상태 단말을 위한 SN(Secondary Node)에서의 V2X 자원 할당 방법 및 장치
WO2022028361A1 (zh) 一种无线接入的方法以及装置
CN114731653A (zh) 用于带宽部分切换操作的通信方法和用户设备
CN117413613A (zh) 跨不同drx组的跨载波调度
US20190082492A1 (en) Counting method and apparatus
KR20220167316A (ko) 무선 통신에서의 향상된 업링크 송신
US20220322288A1 (en) Multimedia Broadcast and Multicast Service (MBMS) Transmission and Reception in Connected State during Wireless Communications
EP3261279B1 (en) Communication device and method for decoding data from a network
CN116349162A (zh) 跨载波调度方法、终端设备和接入网设备
WO2024093903A1 (zh) 一种通信方法、装置、系统及存储介质
WO2021220438A1 (ja) 端末
WO2022155595A1 (en) Enhanced active time power saving for user equipment devices
JP2023534473A (ja) ユーザ機器、スケジューリングノード、ユーザ機器のための方法、およびスケジューリングノードのための方法
CN114270945A (zh) 一种通信方法及装置
WO2024067294A1 (zh) 下行控制信息的传输方法和装置