WO2020221268A1 - 检测或发送下行控制信道的方法和装置 - Google Patents

检测或发送下行控制信道的方法和装置 Download PDF

Info

Publication number
WO2020221268A1
WO2020221268A1 PCT/CN2020/087651 CN2020087651W WO2020221268A1 WO 2020221268 A1 WO2020221268 A1 WO 2020221268A1 CN 2020087651 W CN2020087651 W CN 2020087651W WO 2020221268 A1 WO2020221268 A1 WO 2020221268A1
Authority
WO
WIPO (PCT)
Prior art keywords
priority
pdcch
downlink control
uss
css
Prior art date
Application number
PCT/CN2020/087651
Other languages
English (en)
French (fr)
Inventor
陈铮
薛丽霞
铁晓磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20799012.8A priority Critical patent/EP3958621B1/en
Publication of WO2020221268A1 publication Critical patent/WO2020221268A1/zh
Priority to US17/514,666 priority patent/US20220053470A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • H04L1/0053Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables specially adapted for power saving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and in particular to a method and device for detecting and sending downlink control channels, and a method and device for sending downlink control channels.
  • the transmission of data packets is usually bursty. There are data packets to be transmitted in a period of time, and there may be no data to be transmitted in another period of time. package. Therefore, the terminal device in the 5G mobile communication system receives data packets based on a discontinuous reception (DRX) mechanism. In a DRX cycle, the terminal device usually only turns on the receiving circuit in a part of the time period to detect the downlink control channel, thereby reducing the power consumption of the terminal device.
  • DRX discontinuous reception
  • the terminal device usually detects the downlink control channel within the active time. If the terminal device detects a power saving (PS) signal outside of the active time (out of active time), the terminal device can enter the active time and detect the downlink control channel; if the terminal device does not detect the PS signal outside of the active time, Then the terminal device does not need to enter the activation time and continues to enter the "sleep" state. At this time, the PS signal plays the role of wake up signal (WUS). In addition, the terminal device may detect the PS signal within the activation time, and the PS signal may instruct the terminal device to stop detecting the PDCCH for a period of time within the activation time, or instruct the terminal device to detect the period of the search space set.
  • PS power saving
  • the relevant standards only provide a simple definition of the function of the PS signal, and do not specify how the terminal equipment detects the PS signal. Therefore, how to detect the PS signal is a problem that needs to be solved urgently.
  • This application provides a method for detecting a downlink control channel, so that a terminal device can flexibly detect an energy-saving signal according to its own detection capability.
  • a method for detecting a downlink control channel including: determining a first search space SS set and a second SS set; determining the priority of the second SS set according to the priority of the first SS set, and the first SS The priority of the set is the same as the priority of the second SS set; according to the priority of the first SS set and the priority of the second SS set, determine whether to detect the first physical downlink on the candidate downlink control channel resources of the first SS set
  • the above method can be applied to terminal equipment. If the number of candidate PDCCHs in the first SS set and the second SS set exceeds the blind detection capability of the terminal device, or if the number of non-overlapping CCEs in the first SS set and the second SS set exceeds the blind detection capability of the terminal device , The terminal device may not detect the first PDCCH and the second PDCCH. Otherwise, the terminal device can detect the first PDCCH and the second PDCCH. Since the priority of the first SS set is the same as the priority of the second SS set, the terminal device can use the same processing method for multiple SS sets including the SS set corresponding to the energy-saving signal, which simplifies the terminal device in the second SS. The complexity of detecting energy-saving signals on the set of candidate downlink control channel resources.
  • the first PDCCH carries the first downlink control information DCI
  • the second PDCCH carries the second DCI
  • the size of the first DCI is the same as the size of the second DCI.
  • the first DCI and the second DCI have the same size, which can reduce the complexity of the blind detection and decoding of the terminal device.
  • the candidate downlink control channel resources of the first SS set include candidate downlink control channel resources of the second SS set, and the first SS set and the second SS set are associated with the same control resource set CORESET.
  • the first SS set and the second SS set are associated with the same CORESET, the scrambling sequence of the first PDCCH and the second PDCCH are the same; in addition, the candidate downlink control channel resources of the first SS set include the candidate downlink of the second SS set The control channel resources make part or all of the CCE set of the first PDCCH the same as the CCE set of the second PDCCH, thereby reducing the complexity of the blind detection and decoding of the terminal equipment.
  • the start symbols in the time slot of the candidate downlink control channel resources in the first SS set and the second SS set are the same.
  • the candidate downlink control channel resources in the first SS set and the second SS set have the same starting symbols in the time slot, so that the CCE in the first SS set and the CCE in the second SS set can be detected as one CCE, which reduces The complexity of channel estimation by terminal equipment.
  • the second SS set is a dedicated search space USS set
  • the first SS set is a USS set
  • the format of the first DCI is format 1_0 or format 0_0
  • the cyclic redundancy check CRC of the second DCI is determined by the cell
  • the wireless network temporary identification C-RNTI is scrambled.
  • the DCI of the energy-saving signal can be designed as DCI format 1_0 or DCI format 0_0, and the DCI size corresponding to format 1_0 or format 0_0 is small, so , To meet the testing needs of terminal equipment.
  • the first SS set is a CSS set
  • the type of the first SS set is one of the following types: type 0, type 0A, type 1, type 2. And type 3.
  • the type of the energy saving signal may be one of the above five types.
  • the first SS set includes m first candidate downlink control channels
  • the second SS set includes M second candidate downlink control channels
  • the m first candidate downlink control channels and the M second candidate downlink control channels The aggregation level is the same, m and M are positive integers, and m ⁇ M, and the indexes of the m first candidate downlink control channels are the same as the indexes of the first m candidate downlink control channels of the M second candidate downlink control channels.
  • the method further includes: detecting the second PDCCH on the candidate downlink control channel resources of the second SS set within the DRX activation time.
  • a method for detecting a downlink control channel including: determining a first CSS set; determining a second CSS set, where the priority of the first CSS set is higher than the priority of the second CSS set; The priority of the set and the priority of the second CSS set, determine whether to detect the first PDCCH on the candidate downlink control channel resources of the first CSS set, and determine whether to detect the first PDCCH on the candidate downlink control channel resources of the second CSS set Two PDCCH, the second PDCCH is used to carry energy saving signals.
  • the candidate downlink control channel resources of the first CSS set usually carry relatively important information, such as system messages. Therefore, after setting the priority of the first CSS set to be higher than the priority of the second CSS set, if the blind detection complexity corresponding to the first CSS set and the second CSS set exceeds the maximum blind detection capability of the terminal device, then The terminal device can give up detecting the candidate downlink control channel resources of the second CSS set, thereby reducing the impact of the CSS set corresponding to the energy-saving signal on other CSS sets.
  • the method further includes: determining a first USS set; detecting a third PDCCH on candidate downlink control channel resources of the first USS set; wherein the priority of the first USS set is lower than the priority of the second CSS set Or, the priority of the first USS set is higher than the priority of the second CSS set, and the priority of the first USS set is lower than the priority of the first CSS set.
  • the network device or the communication protocol may determine the priority of the first USS set and the second CSS set according to the content carried by the DCI corresponding to the energy-saving signal. If the content carried by the DCI corresponding to the energy-saving signal is more important, you can set the priority of the second CSS set to be higher than the priority of the first USS set; if the content carried by the DCI corresponding to the energy-saving signal is normal content, you can Set the priority of the second CSS set to be lower than the priority of the first USS set.
  • the above solution enables the terminal device to flexibly detect energy saving signals.
  • the method further includes: determining a second USS set; detecting a fourth PDCCH on candidate downlink control channel resources of the second USS set, where the fourth PDCCH is used to carry energy-saving signals; wherein the priority of the second USS set is The priority is lower than the priority of the first USS set.
  • the terminal device may also detect the PDCCH carrying the energy-saving signal, that is, the fourth PDCCH, on the candidate downlink control channel resources of the USS set.
  • the network device or communication protocol can configure the priority of the second USS set to be lower than that of the first USS set Priority.
  • the identity of the second USS set is the maximum value of the identity of the first USS set and the identity of the second USS set.
  • the method further includes: detecting the second PDCCH and the fourth PDCCH on the candidate downlink control channel resources of the second CSS set and the second USS set within the discontinuous reception DRX activation time.
  • a method for sending a downlink control channel including: determining a first search space SS set and a second SS set; determining the priority of the second SS set according to the priority of the first SS set, and the first SS The priority of the set is the same as the priority of the second SS set; according to the priority of the first SS set and the priority of the second SS set, determine whether to send the first physical downlink on the candidate downlink control channel resources of the first SS set
  • the control channel PDCCH, and determining whether to send the second PDCCH on the candidate downlink control channel resources of the second SS set, the second PDCCH is used to carry the energy-saving signal.
  • the above method can be applied to network equipment. If the number of candidate PDCCHs in the first SS set and the second SS set exceeds the blind detection capability of the terminal device, or if the number of non-overlapping CCEs in the first SS set and the second SS set exceeds the blind detection capability of the terminal device , The network device may not send the first PDCCH and the second PDCCH. Otherwise, the network device may send the first PDCCH and the second PDCCH. Since the priority of the first SS set is the same as the priority of the second SS set, the network device can use the same processing method for multiple SS sets including the SS set corresponding to the energy-saving signal, which simplifies the network device in the second SS. The complexity of detecting energy-saving signals on the set of candidate downlink control channel resources.
  • the first PDCCH carries the first downlink control information DCI
  • the second PDCCH carries the second DCI
  • the size of the first DCI is the same as the size of the second DCI.
  • the first DCI and the second DCI have the same size, which can reduce the complexity of the blind detection and decoding of the terminal device.
  • the candidate downlink control channel resources of the first SS set include candidate downlink control channel resources of the second SS set, and the first SS set and the second SS set are associated with the same control resource set CORESET.
  • the first SS set and the second SS set are associated with the same CORESET, the scrambling sequence of the first PDCCH and the second PDCCH are the same; in addition, the candidate downlink control channel resources of the first SS set include the candidate downlink of the second SS set The control channel resources make part or all of the CCE set of the first PDCCH the same as the CCE set of the second PDCCH, thereby reducing the complexity of the blind detection and decoding of the terminal equipment.
  • the start symbols of the candidate downlink control channel resources in the first SS set and the second SS set are the same in the time slot.
  • the candidate downlink control channel resources in the first SS set and the second SS set have the same starting symbols in the time slot, so that the CCE in the first SS set and the CCE in the second SS set can be detected as one CCE, which reduces The complexity of channel estimation by terminal equipment.
  • the second SS set is a dedicated search space USS set
  • the first SS set is a USS set
  • the format of the first DCI is format 1_0 or format 0_0
  • the cyclic redundancy check CRC of the second DCI is determined by the cell
  • the wireless network temporary identification C-RNTI is scrambled.
  • the DCI of the energy-saving signal can be designed as DCI format 1_0 or DCI format 0_0, and the DCI size corresponding to format 1_0 or format 0_0 is small, so , To meet the testing needs of terminal equipment.
  • the first SS set is a CSS set
  • the type of the first SS set is one of the following types: type 0, type 0A, type 1, type 2. And type 3.
  • the type of the energy saving signal may be one of the above five types.
  • the first SS set includes m first candidate downlink control channels
  • the second SS set includes M second candidate downlink control channels
  • the m first candidate downlink control channels and the M second candidate downlink control channels The aggregation level is the same, m and M are positive integers, and m ⁇ M, and the indexes of the m first candidate downlink control channels are the same as the indexes of the first m candidate downlink control channels of the M second candidate downlink control channels.
  • the method further includes: sending the second PDCCH on the candidate downlink control channel resources of the second SS set within the DRX activation time.
  • a method for sending a downlink control channel including: determining a first CSS set; determining a second CSS set, the priority of the first CSS set is higher than the priority of the second CSS set; The priority of the set and the priority of the second CSS set, determine whether to send the first PDCCH on the candidate downlink control channel resource of the first CSS set, and determine whether to send the first PDCCH on the candidate downlink control channel resource of the second CSS set Two PDCCH, the second PDCCH is used to carry energy saving signals.
  • the candidate downlink control channel resources of the first CSS set usually carry relatively important information, such as system messages. Therefore, after setting the priority of the first CSS set to be higher than the priority of the second CSS set, if the blind detection complexity corresponding to the first CSS set and the second CSS set exceeds the maximum blind detection capability of the terminal device, then The network device can give up sending the candidate downlink control channel resources of the second CSS set, thereby reducing the impact of the CSS set corresponding to the energy-saving signal on other CSS sets.
  • the method further includes: determining a first USS set; sending a third PDCCH on candidate downlink control channel resources of the first USS set; wherein the priority of the first USS set is lower than the priority of the second CSS set Or, the priority of the first USS set is higher than the priority of the second CSS set, and the priority of the first USS set is lower than the priority of the first CSS set.
  • the network device or the communication protocol may determine the priority of the first USS set and the second CSS set according to the content carried by the DCI corresponding to the energy-saving signal. If the content carried by the DCI corresponding to the energy-saving signal is more important, you can set the priority of the second CSS set to be higher than the priority of the first USS set; if the content carried by the DCI corresponding to the energy-saving signal is normal content, you can Set the priority of the second CSS set to be lower than the priority of the first USS set.
  • the above solution enables network equipment to flexibly send energy-saving signals.
  • the method further includes: determining a second USS set; sending a fourth PDCCH on the candidate downlink control channel resources of the second USS set, where the fourth PDCCH is used to carry energy-saving signals; wherein the priority of the second USS set is The priority is lower than the priority of the first USS set.
  • the network device may also send the PDCCH carrying the energy saving signal, that is, the fourth PDCCH, on the candidate downlink control channel resources of the USS set.
  • the network device or communication protocol can configure the priority of the second USS set to be lower than the first USS set Priority.
  • the identity of the second USS set is the maximum value of the identity of the first USS set and the identity of the second USS set.
  • the method further includes: sending the second PDCCH and the fourth PDCCH on the candidate downlink control channel resources of the second CSS set and the second USS set within the DRX activation time of discontinuous reception.
  • a method for detecting a downlink control channel is provided, which is characterized by including: determining a first USS set; determining a second USS set, the priority of the first USS set is higher than the second USS set The priority of; according to the priority of the first USS set and the priority of the second USS set, determine whether to detect the first physical downlink control channel PDCCH on the candidate downlink control channel resources of the first USS set, And, determining whether to detect a second PDCCH on the candidate downlink control channel resources of the second USS set, where the second PDCCH is used to carry an energy-saving signal.
  • the candidate downlink control channel resources of the first USS set usually carry relatively important information. Therefore, after setting the priority of the first USS set to be higher than the priority of the second USS set, if the blind detection complexity corresponding to the first USS set and the second USS set exceeds the maximum blind detection capability of the terminal device, then The terminal device can give up detecting the candidate downlink control channel resources of the second USS set, thereby reducing the influence of the USS set corresponding to the energy-saving signal on other USS sets.
  • the above solution can also prevent the terminal device from detecting the second PDCCH from affecting the scheduling of data by the network device, resulting in an increase in data packet delay and a decrease in throughput.
  • the method further includes: determining a second CSS set; detecting a third PDCCH on candidate downlink control channel resources of the second CSS set, and the third PDCCH is used to carry energy saving signals;
  • the priority of the first USS set is lower than the priority of the second CSS set, or,
  • the priority of the first USS set is higher than the priority of the second CSS set, and the priority of the first USS set is lower than the priority of the second CSS set.
  • the network device or the communication protocol may determine the priority of the first USS set and the second CSS set according to the content carried by the DCI corresponding to the energy-saving signal. If the content carried by the DCI corresponding to the energy-saving signal is more important, you can set the priority of the second CSS set to be higher than the priority of the first USS set; if the content carried by the DCI corresponding to the energy-saving signal is normal content, you can Set the priority of the second CSS set to be lower than the priority of the first USS set.
  • the above solution enables the terminal device to flexibly detect energy saving signals.
  • the method further includes: determining the priority of the second CSS set and the first USS set according to the size of the index number of the second CSS set and the size of the index number of the first USS set .
  • the method further includes: determining a first CSS set; detecting a fourth PDCCH on candidate downlink control channel resources of the first CSS set; wherein the priority of the first CSS set is higher than the priority of the first CSS set.
  • the priority of the first CSS collection is not limited to: determining a first CSS set; detecting a fourth PDCCH on candidate downlink control channel resources of the first CSS set; wherein the priority of the first CSS set is higher than the priority of the first CSS set. The priority of the first CSS collection.
  • the identifier of the second USS set is the maximum value of the identifier of the first USS set and the identifier of the second USS set.
  • the method includes: detecting the first PDCCH and the second PDCCH on the candidate downlink control channel resources of the first USS set and the second USS set during the discontinuous reception DRX activation time.
  • the method further includes: detecting the second PDCCH and the third PDCCH on the candidate downlink control channel resources of the second CSS set and the second USS set within the discontinuous reception DRX activation time.
  • a method for sending a downlink control channel is provided, which is characterized by comprising: determining a first USS set; determining a second USS set, the priority of the first USS set is higher than the second USS set The priority of; according to the priority of the first USS set and the priority of the second USS set, determine whether to send the first physical downlink control channel PDCCH on the candidate downlink control channel resources of the first USS set, And, determining whether to send a second PDCCH on the candidate downlink control channel resources of the second USS set, where the second PDCCH is used to carry an energy-saving signal.
  • the candidate downlink control channel resources of the first USS set usually carry relatively important information. Therefore, after setting the priority of the first CSS set to be higher than the priority of the second USS set, if the blind detection complexity corresponding to the first USS set and the second USS set exceeds the maximum blind detection capability of the terminal device, then The network device can give up sending the candidate downlink control channel resources of the second USS set, thereby reducing the influence of the USS set corresponding to the energy-saving signal on other USS sets.
  • the above solution can also prevent the terminal device from detecting the second PDCCH from affecting the scheduling of data by the network device, resulting in an increase in data packet delay and a decrease in throughput.
  • the method further includes: determining a second CSS set; sending a third PDCCH on the candidate downlink control channel resources of the second CSS set, and the third PDCCH is used to carry energy saving signals;
  • the priority of the first USS set is lower than the priority of the second CSS set, or,
  • the priority of the first USS set is higher than the priority of the second CSS set, and the priority of the first USS set is lower than the priority of the second CSS set.
  • the network device or the communication protocol may determine the priority of the first USS set and the second CSS set according to the content carried by the DCI corresponding to the energy-saving signal. If the content carried by the DCI corresponding to the energy-saving signal is more important, you can set the priority of the second CSS set to be higher than the priority of the first USS set; if the content carried by the DCI corresponding to the energy-saving signal is normal content, you can Set the priority of the second CSS set to be lower than the priority of the first USS set.
  • the above solution enables network equipment to flexibly send energy-saving signals.
  • the method further includes: determining the priority of the second CSS set and the first USS set according to the size of the index number of the second CSS set and the size of the index number of the first USS set .
  • the method further includes: determining a first CSS set; sending a fourth PDCCH on candidate downlink control channel resources of the first CSS set; wherein the priority of the first CSS set is higher than the priority of the first CSS set.
  • the priority of the first CSS collection is not limited to: determining a first CSS set; sending a fourth PDCCH on candidate downlink control channel resources of the first CSS set; wherein the priority of the first CSS set is higher than the priority of the first CSS set. The priority of the first CSS collection.
  • the identifier of the second USS set is the maximum value of the identifier of the first USS set and the identifier of the second USS set.
  • the method includes: sending the first PDCCH and the second PDCCH on the candidate downlink control channel resources of the first USS set and the second USS set within the DRX activation time of discontinuous reception.
  • the method further includes: sending the second PDCCH and the third PDCCH on the candidate downlink control channel resources of the second CSS set and the second USS set within the discontinuous reception DRX activation time.
  • the present application provides a communication device, which may be a terminal device or a chip in the terminal device.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the terminal device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing The unit executes the instructions stored in the storage unit, so that the terminal device executes the method described in the first aspect or the second aspect.
  • the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to make the terminal
  • the device executes the method described in the first aspect, the second aspect, or the fifth aspect, and the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or a terminal device located outside the chip.
  • the storage unit (for example, read only memory, random access memory, etc.).
  • this application provides another communication device, which may be a network device or a chip in the network device.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the network device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing The unit executes the instructions stored in the storage unit, so that the network device executes the method described in the third aspect or the fourth aspect.
  • the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to enable the network
  • the device executes the method described in the third aspect or the fourth aspect or the sixth aspect, and the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be a network device located outside the chip
  • the storage unit for example, read only memory, random access memory, etc.).
  • this application provides a computer-readable storage medium in which a computer program is stored.
  • the processor executes the first aspect or the second aspect or the first aspect. The method described in five aspects.
  • the present application provides another computer-readable storage medium that stores a computer program in the computer-readable storage medium.
  • the processor executes the third or fourth aspect or The method described in the sixth aspect.
  • the present application provides a computer program product, the computer program product comprising: computer program code, when the computer program code is run by a processor, the processor executes the first aspect or the second aspect or the fifth aspect The method described in the aspect.
  • this application provides another computer program product.
  • the computer program product includes computer program code.
  • the processor executes the third aspect or the fourth aspect or the third aspect. The method described in the six aspects.
  • Figure 1 is a schematic diagram of a communication system suitable for the present application
  • Figure 2 is a schematic diagram of a transmission method suitable for the present application
  • Figure 3 is a schematic diagram of a physical transmission resource
  • Figure 4 is a schematic diagram of a resource group
  • Figure 5 is a schematic diagram of a search space set
  • Figure 6 is a schematic diagram of the correspondence between the selected PDCCH and the CCE set when the aggregation level is 2;
  • Figure 7 is a schematic diagram of the DRX mechanism
  • Figure 8 is another schematic diagram of the DRX mechanism
  • Figure 9 is a schematic diagram of an energy saving signal
  • Figure 10 is another schematic diagram of the energy saving signal
  • FIG. 11 is another schematic diagram of the energy saving signal
  • FIG. 12 is a schematic diagram of a method for detecting a downlink control channel provided by the present application.
  • FIG. 13 is a schematic diagram of another method for detecting a downlink control channel provided by the present application.
  • FIG. 14 is a schematic diagram of a communication device provided by the present application.
  • FIG. 15 is a schematic diagram of a terminal device provided by this application.
  • Fig. 16 is a schematic diagram of a network device provided by the present application.
  • FIG. 1 is a schematic diagram of a communication system suitable for this application.
  • the communication system 100 includes a network device 110 and a terminal device 120.
  • the terminal device 120 communicates with the network device 110 through electromagnetic waves, that is, the terminal device 120 can send data to the network device 110, and the network device 110 can also send data to the terminal device 120.
  • the terminal device 120 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the third generation partnership program (3rd generation Partnership project, 3GPP) defined user equipment (user equipment, UE), mobile station (mobile station, MS), soft terminal, home gateway, set-top box, etc., the chip applied to the above equipment can also be called terminal equipment.
  • the network device 110 may be a base station defined by 3GPP, for example, a base station (new generation node B, gNB) in a 5G mobile communication system.
  • the network device 110 may also be a non-3GPP (non-3GPP) access network device, such as an access gateway (AGF).
  • the network device may also be a relay station, an access point, a vehicle-mounted device, a wearable device, and other types of devices.
  • the chips applied to the above-mentioned devices may also be referred to as network devices.
  • wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones. Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the communication system shown in FIG. 1 is only an example, and the communication system applicable to this application is not limited to this.
  • the process in which the terminal device 120 sends data to the network device 110 may be referred to as uplink transmission, and the process in which the network device 110 sends data to the terminal device 120 may be referred to as downlink transmission.
  • uplink transmission the process in which the terminal device 120 sends data to the terminal device 120
  • downlink transmission the process in which the network device 110 sends data to the terminal device 120
  • the terminal devices and network devices below are no longer accompanied by reference numerals.
  • the terminal device For uplink transmission, if the uplink transmission is based on dynamic scheduling, then as shown in Figure 2, the terminal device will receive the downlink control information (DCI) sent by the network device.
  • the DCI carries an indication of the physical uplink shared channel (physical uplink shared channel (PUSCH) occupied time domain resources, frequency domain resources, modulation mode and other indication information.
  • the terminal device can determine which time domain resource and frequency domain resource to send the PUSCH on, and then perform the preparation steps for sending the PUSCH.
  • the preparation steps generally include: coding, modulation, resource mapping and Fourier transform of information.
  • the terminal device sends the prepared PUSCH on the time domain resources and frequency domain resources indicated by the DCI.
  • the terminal device For downlink transmission, if the downlink transmission is based on dynamic scheduling, then as shown in Figure 2, the terminal device will receive the DCI sent by the network device, and the DCI carries indicating the physical downlink shared channel (PDSCH) occupied Indication information such as time domain resources, frequency domain resources, and modulation methods. After receiving the DCI, the terminal device decodes the PDSCH.
  • the decoding process generally includes: resource demapping, inverse Fourier transform, demodulation, and decoding. In the end, if the result of decoding is correct, the reception is correct, and if the result is wrong, the reception fails.
  • DCI is usually carried in a physical downlink control channel (physical downlink control channel, PDCCH).
  • PDCCH physical downlink control channel
  • the PDCCH is equivalent to a carrier, and the carried content is DCI. Since PDCCH and DCI have a one-to-one correspondence, the descriptions of receiving (or "detecting") PDCCH and receiving DCI are equivalent.
  • the PDCCH is transmitted in a control resource set (CORESET).
  • CORESET includes several physical resource blocks (PRB) in the frequency domain and several (for example, 1 to 3) OFDM symbols in the time domain, and can be located at any position in a slot.
  • PRB physical resource blocks
  • Each PRB is composed of 12 consecutive subcarriers in the frequency domain, as shown in Figure 3.
  • each rectangle represents a resource element (resource element, RE).
  • RE is the smallest physical resource and includes a subcarrier in an orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the basic time unit of resource scheduling is a slot.
  • a slot is composed of 14 OFDM symbols in time.
  • One or more time slots form a subframe (subframe).
  • subframe For example, when the subcarrier interval is 15 kHz, each subframe contains one time slot.
  • 10 subframes form a frame (frame), and each frame is identified by a system frame number (SFN).
  • SFN system frame number
  • the period of the SFN is equal to 1024 frames. Therefore, the SFN repeats itself after 1024 frames.
  • One OFDM symbol in the time domain and 12 sub-carriers in the frequency domain constitute a resource element group (REG), that is, one REG includes 12 REs.
  • the 12 REs may have 3 REs for mapping PDCCH demodulation reference signals, and another 9 REs for mapping DCI.
  • the 9 REs are part of the physical resources included in the PDCCH.
  • the PDCCH can also be divided into control channel elements (CCE).
  • CCE control channel elements
  • Each CCE corresponds to 6 REGs. Therefore, a CCE includes 72 REs, of which 18 REs are used for DMRS and 54 REs are used for DCI transmission.
  • CORESET each CCE has a corresponding index number, and the index number of each CCE has a corresponding relationship with the index numbers of the 6 REGs mapped by the CCE.
  • a given PDCCH can be composed of 1, 2, 4, 8 or 16 CCEs.
  • the number of CCEs is determined by the DCI payload size and the required coding rate.
  • the number of CCEs constituting the PDCCH is also called the aggregation level (aggregation level, AL).
  • the search space is a collection of PDCCH candidates (PDCCH candidates) under one aggregation level. Since the aggregation level of the PDCCH actually sent by the network device is variable over time, and there is no related signaling to notify the terminal device, the terminal device needs to blindly detect the PDCCH under different aggregation levels. Among them, the PDCCH to be blindly detected is called a candidate PDCCH. The UE will decode all candidate PDCCHs in the search space. If the cyclic redundancy check (CRC) of the PDCCH passes, the content carried by the decoded PDCCH is considered valid for the UE, and Process relevant information after decoding.
  • CRC cyclic redundancy check
  • the following describes how the terminal device detects the control channel according to the search space, that is, how to determine the CCE index number of the candidate PDCCH.
  • the PDCCH can support multiple aggregation levels, and this information cannot be obtained in advance for the terminal device. Therefore, the terminal device needs to perform blind detection on the PDCCH.
  • the UE detects the PDCCH at the time-frequency position corresponding to the limited CCE, thereby avoiding the increase in the complexity of blind detection.
  • the 5G mobile communication system further improves the flexibility of search space configuration, that is, the aggregation level.
  • the number of candidate PDCCHs corresponding to the aggregation level and the detection period of the search space in the time domain can be configured through high-level parameters, and the terminal device can flexibly control the complexity of blind detection based on these configuration information.
  • the network device may configure one or more search space sets for the terminal device, where each search space set includes one or more aggregation level search spaces.
  • the configuration information of the search space set is shown in Table 1.
  • Figure 5 is a schematic diagram of the search space collection.
  • the detection period is 10 time slots
  • the time slot offset is 3 time slots
  • the number of time slots is 2 time slots.
  • the control resource set index corresponds to a CORESET that occupies 2 OFDM symbols, and the symbol position is within the time slot.
  • the UE starts to detect candidate control channels in the search space set from symbols 0 and 7 in slot 3 and slot 4 in each detection cycle, and CORESET occupies 2 OFDM symbols in the time domain.
  • Search space collections can be divided into two types: common search space (CSS) collections and specific search space collections (specific search space, USS) collections.
  • the PDCCH of the CSS set is mainly used to indicate the transmission of system messages, random access response messages, and paging messages.
  • the CSS set can be a search space set containing the following types of PDCCHs: Type 0, Type 0A, Type 1, Type 2, and Type 3, and can be called Type 0/0A/1/2/3-PDCCH CSS set.
  • the PDCCH of the USS set is used to schedule specific terminal equipment to transmit uplink and downlink data and/or downlink data.
  • DCI Downlink control information
  • DCI size that is, the number of source bits carried by the DCI
  • analysis method e.g., the supported DCI format (DCI format) is shown in Table 2.
  • the DCI format supported by the 5G mobile communication system is shown in Table 2.
  • the network device configures the DCI format of the search space set.
  • the CRC of the DCI with different functions may be scrambled by different radio network temporary identifiers (RNTI).
  • RNTI radio network temporary identifiers
  • the DCI detected by the terminal equipment in the CSS set containing the PDCCH of type 0 and the DCI detected by the terminal equipment in the CSS set of the PDCCH containing the PDCCH of type 0A, the CRC of which is determined by the system Information message (SI)- RNTI scrambling.
  • SI system Information message
  • the DCI is used to schedule system messages, such as system information block (SIB) 1, etc., and the format of the DCI is format 1_0.
  • the terminal device may also determine the CCE index in CORESET of each candidate PDCCH in the configured candidate PDCCH set according to the configuration information of the search space set.
  • the CCE index of the candidate PDCCH in CORESET can be determined according to a given search space function. For example, for the search space set s (determined according to the search space set index parameter in Table 1) associated with the control resource set p (determined according to the control resource set index parameter in Table 1), it is in the time slot Within, the candidate with aggregation level L
  • the CCE index is given by:
  • N CCE,p is the total number of CCEs included in the control resource set p, and the number of CCEs ranges from 0 to N CCE,p -1.
  • n CI 0; otherwise, n CI is the configured carrier indication parameter to ensure that candidate PDCCHs for scheduling different carriers occupy as much as possible non-overlapping CCEs;
  • serving cell is n CI , and search space set is s
  • the 5G mobile communication system defines the upper limit of the blind detection capability of terminal equipment.
  • the ability of blind detection includes the number of candidate PDCCHs and the number of non-overlapping CCEs detected in each slot, as shown in Table 3.
  • Subcarrier width (kHz) Maximum number of candidate PDCCHs in each slot Maximum number of non-overlapping CCEs in each slot 15 44 56 30 36 56 60 twenty two 48 120 20 32
  • the maximum number of candidate PDCCHs limits the complexity of blind detection and decoding for terminal equipment, while the maximum number of non-overlapping CCEs limits the complexity of channel estimation for terminal equipment.
  • the terminal equipment needs to determine the search space set to be detected according to the upper limit of the blind detection capability.
  • the candidate PDCCH of one search space set and the candidate PDCCH of another search space set are located in the same CORESET, and the two candidate PDCCHs have the same CCE set (that is, the number of CCEs included is the same, and The corresponding CCE index is the same) and the same PDCCH scrambling sequence (PDCCH scrambling sequence).
  • the two candidate PDCCHs carry the same DCI size, then the terminal device can calculate the two candidate PDCCHs as the same detection candidate PDCCH (monitored PDCCH candidate). Otherwise, the two candidate PDCCHs are different detection candidate PDCCHs.
  • the UE if the UE needs to detect multiple candidate PDCCHs of the same CORESET on the same CCE, for these candidate PDCCHs, the UE only calculates the CCE as the same non-overlapping CCE. But note that if the two candidate PDCCHs are located in different CORESETs (for example, the CORESET index is different) or the UE receives the corresponding candidate PDCCH on different starting symbols (for example, the CORESET is the same, but at different symbol positions in the slot) At this time, the CCEs of the two candidate PDCCHs are non-overlapped CCEs.
  • the transmission of data packets is usually bursty. There are data packets to be transmitted in a period of time, and there may be no data packets to be transmitted in another period of time. Therefore, the terminal equipment in the 5G mobile communication system receives data packets based on the DRX mechanism. In a DRX cycle, the terminal device usually only turns on the receiving circuit in a part of the time period to detect the downlink control channel, thereby reducing the power consumption of the terminal device.
  • Figure 7 is a schematic diagram of a DRX mechanism.
  • the network device can configure the DRX cycle (DRX cycle) for the terminal device in the connected state, and each DRX cycle includes an "on duration".
  • the terminal device can detect the PDCCH.
  • the terminal device starts a timer at the time start position of each DRX cycle (that is, the time start position of the duration).
  • the length of the timer is the length of the duration.
  • the timer can be called or Duration timer (drx-onDurationTimer), the duration can be 1 ⁇ 1200ms.
  • the terminal device detects the PDCCH within the time range of the duration timer.
  • the terminal device If the terminal device does not detect the PDCCH within the time range of the duration timer, the terminal device enters the sleep state after the duration timer expires, that is, the terminal device can turn off the receiving circuit during the rest of the DRX cycle, thereby reducing Power consumption. If the terminal device detects the PDCCH within the time range of the duration timer, the terminal device will start the inactivity timer (drx-InactivityTimer) in the DRX mechanism. If the terminal device detects the PDCCH again within the running time of the inactive timer, the UE will restart the inactive timer and start counting again. If the deactivation timer is running, even if the duration timer expires (that is, the duration ends), the terminal device still needs to continue to detect the PDCCH until the deactivation timer expires, as shown in Figure 8.
  • the terminal device In the DRX mechanism, there are other timers, such as the DRX downlink retransmission timer (drx-RetransmissionTimerDL) and the DRX uplink retransmission timer (drx-RetransmissionTimerUL). If any one of the above timers (including duration timer, inactive timer, downlink retransmission timer, uplink retransmission timer, etc.) is running, the terminal device will be in the active time (Active Time). It should be noted that there are other situations that make the terminal device active. In the DRX mechanism, if the terminal device is in the active time, the terminal device needs to detect the PDCCH.
  • the DRX downlink retransmissionTimerDL the DRX downlink retransmission timer
  • drx-RetransmissionTimerUL the DRX uplink retransmission timer
  • the terminal device In a DRX cycle, the terminal device needs to wake up from the sleep state, turn on the radio frequency and baseband circuit, obtain time-frequency synchronization, and then detect the PDCCH within the duration. These processes require a lot of energy consumption. Under normal circumstances, data transmission tends to be bursty and sparse in time. If the network device does not have any data scheduling for the terminal device during the duration, unnecessary energy consumption is generated for the terminal device. Therefore, in order to save power consumption, the 5G mobile communication system introduces an energy-saving signal, which can also be referred to as a power-saving channel.
  • the terminal device can detect the energy-saving signal out of active time, which can be called an energy-saving signal transmitted outside the active time.
  • the energy-saving signal can function as WUS, as shown in FIG. 9.
  • the network device may send WUS (ie, energy-saving signal) to the terminal device in the form of discontinuous transmission (DTX) in the WUS opportunity, that is, the network device decides whether to send WUS in the WUS opportunity according to the demand of scheduling data.
  • WUS energy-saving signal
  • DTX discontinuous transmission
  • the terminal device needs to detect WUS within the WUS timing to determine whether the network device has sent WUS.
  • the terminal device is in the sleep state, it can detect and demodulate WUS with extremely low power consumption, such as only turning on some modem functions or using a simple receiving circuit.
  • the terminal device when the terminal device does not detect WUS within the WUS timing or the detected WUS indicates that the UE has no data scheduling within the duration, the terminal device can directly enter the sleep state without detecting the PDCCH within the duration. If the terminal device detects WUS within the WUS timing or the detected WUS indicates that the terminal device has data scheduling within the duration, the terminal device will wake up from the sleep state and can start the timer according to the aforementioned DRX mechanism process to detect PDCCH. At this time, the terminal device needs enough time to turn on all the functions of the modem so that the terminal device can detect the PDCCH and receive the data channel in the DRX cycle.
  • a parameter T is used to represent this time interval.
  • the parameter T can be configured by high-level signaling (the value range is from several milliseconds to hundreds of milliseconds), and the network device can determine the value of the parameter T according to the capability reported by the terminal device.
  • the energy-saving signal transmitted outside the activation time may include some energy-saving information.
  • the energy-saving information may be one or more of the following information: BWP ID; cross-slot or same-slot scheduling indication (Cross-slot or same-slot) scheduling); RS transmission indication (including CSI-RS or TRS); CSI reporting indication; single-carrier or multi-carrier indication (that is, whether the UE uses multiple carriers to receive data); whether the UE detects PDCCH during the DRX activation time; whether the UE " Wake up" and so on.
  • the terminal device In the DRX mechanism, if the terminal device detects the PDCCH within the running time of the duration timer, the terminal device will start an inactive timer. Taking into account the delay requirements of scheduling data, the running time of the inactive timer is generally much longer than the running time of the duration timer. After the terminal device starts or resets the inactive timer, it will continue to detect the PDCCH for a long period of time. During this period, the network device may not have any data scheduling for the terminal device, as shown in Figure 10. As far as equipment is concerned, unnecessary energy consumption is generated during this period.
  • the terminal device can detect the energy saving signal within the DRX activation time.
  • the network device sends an energy-saving signal to the terminal device in the form of DTX, that is, the network device decides whether to send the energy-saving signal according to the demand of scheduling data.
  • the terminal device needs to detect the energy-saving signal to determine whether the network device has sent the energy-saving signal.
  • the energy-saving signal transmitted during the activation time may also include some energy-saving information, which can be one or more of the following information: the terminal device needs to detect or stop detecting the CORESET or search space set or candidate PDCCH of the PDCCH; The period during which the device detects the search space collection; the period during which the terminal detects the PDCCH (PDCCH monitoring periodicity); the terminal device stops detecting the PDCCH for a period of time (PDCCH skipping); the number of terminal devices receiving antennas or multiple-input multiple-output (MIMO ) Number of layers; the terminal device needs to detect or stop detecting the carrier of the PDCCH (for example, it can be a secondary carrier, SCell).
  • the energy saving signal instructs the terminal device to stop detecting the PDCCH for a period of time (PDCCH skipping).
  • the energy-saving signal can instruct the terminal device to stop detecting the PDCCH for a period of time, and this period of time can be called "skipping duration". As shown in Figure 11, for a network device, if the network device determines that it does not need to schedule any data to the terminal device and does not need to send PDCCH for a continuous period of time after the "energy-saving signal opportunity", then the network device can give the terminal device Send the corresponding energy saving signal.
  • the terminal device For a terminal device, if the terminal device detects an energy-saving signal in the "energy-saving signal timing" or the detected energy-saving signal indicates that the terminal device has no data scheduling within the corresponding "stop time”, then the terminal device can be in the "stop time” "PDCCH is not detected during this period, or the terminal device does not detect PDCCH at the PDCCH monitoring occasion within the "stop time” (PDCCH monitoring occasion), and enters the sleep state, but the UE is still in the active time at this time. The terminal device can enter the wake-up state after the "stop time” time to detect the energy saving signal or PDCCH.
  • the terminal device If the terminal device does not detect the energy-saving signal in the "energy-saving signal timing" or the detected energy-saving signal indicates that the terminal device has data scheduling within the corresponding "stop time", the terminal device will continue to detect the PDCCH. In this way, unnecessary energy consumption of terminal equipment can be reduced.
  • energy-saving signals can be designed as downlink control channels.
  • This energy-saving signal can be called PDCCH-based power saving signal/channel (PDCCH-based power saving signal/channel, hereinafter referred to as PDCCH-based power saving signal/channel) Energy-saving signal).
  • the energy saving signal based on the PDCCH may be a UE-specific PDCCH.
  • the PDCCH-based energy saving signal can also be designed as a UE group downlink control channel (UE group PDCCH).
  • the base station configures a group of UEs to detect the same group of PDCCHs, and the group of PDCCHs carries the group DCI.
  • the group DCI contains multiple information bits/information blocks, and each information bit/information block can correspond to one of the UEs in the group.
  • the information field in the DCI carried by the PDCCH-based energy-saving signal may include the aforementioned energy-saving information.
  • the UE determines the SS set to be detected according to the search space set (Search space set, SS set) priority method described below, so as not to exceed the maximum number of candidate control channels and the maximum number of non-overlapping CCEs. Quantity.
  • search space set Search space set, SS set
  • Quantity The meaning of the SS set priority and the method for determining the required detection of the SS set are explained below.
  • the "detection search space set” means detecting PDCCH on candidate control channel resources in the search space.
  • Step 1 The UE first determines the set of search spaces that may need to be detected in the slot;
  • Step 2 The CSS set is prior to the USS set, that is, the UE prioritizes the CSS set as the SS set to be detected.
  • the priority of the CSS set is called the priority of the USS set;
  • Step 3 In the configured USS set, the search space set with a small ID number (see Table 1) is preferred to the search space set with a large ID number;
  • the UE determines whether the USS set corresponding to the ID number is the USS set to be detected according to the order of the ID number from small to large. For a certain numbered USS set, the UE detecting the USS set may increase the number of candidate PDCCHs and the number of non-overlapping CCEs that the UE needs to monitor.
  • the UE detects the USS set and the SS that needs to be detected on the slot
  • the set including CSS set and the USS set that has been determined to be detected has priority over the USS set
  • the UE will not determine the USS set as the USS set to be detected , And the USS set with an ID number greater than the USS set will not be determined as the USS set to be detected; otherwise, the UE will determine the USS set as the USS set to be detected. It can be said that the priority of a USS set with a small ID number is higher than a USS set with a large ID number.
  • Step 4 The base station needs to ensure that the blind detection complexity of the CSS set does not exceed the maximum number value specified in Table 3, that is, the UE can determine the CSS set as the SS set to be detected.
  • the existing methods described above may increase the number of candidate PDCCHs and the number of non-overlapping CCEs that the UE needs to detect in certain time slots.
  • the UE is prevented from detecting some search space sets, which affects the scheduling of the PDSCH by the base station or the transmission of energy-saving signals. Therefore, the terminal device needs a reliable method to detect the energy saving signal.
  • Fig. 12 shows a method for detecting energy saving signals provided by the present application.
  • the method can be applied to terminal equipment, and the method includes:
  • S110 Determine the first SS set and the second SS set.
  • the candidate downlink control channel resources (ie, candidate PDCCH) of the second SS set are used to transmit PDCCH-based energy-saving signals, and the DCI carried by them includes energy-saving information, and its DCI format may be a different one from all DCI formats in Table 2.
  • a new DCI format such as DCI format 3_0, etc.
  • the candidate downlink control channel resources of the first SS set are used to transmit other PDCCHs.
  • the other PDCCHs are different from the PDCCH-based energy-saving signals.
  • the DCI format carried by them is the existing DCI format in the NR R15 standard. Including the DCI format in Table 2, the following is represented by "PDCCH for non-energy-saving signal" or "R15PDCCH".
  • the candidate downlink control channel resources of the first SS set are used to transmit energy saving signals based on PDCCH
  • the candidate downlink control channel resources of the second SS set are used to transmit energy saving signals based on UE-specific PDCCH
  • the first SS The set of candidate downlink control channel resources are used to transmit energy-saving signals based on the UE group (UE group) PDCCH.
  • the candidate downlink control channel resources of the first SS set are used to transmit non-energy-saving signal PDCCH as an example.
  • the first SS set can be referred to as a new radio (NR) SS set
  • the second SS set It is called PS SS set.
  • the terminal device may determine the first SS set and the second SS set at the same time, or may determine the first SS set and the second SS set successively.
  • the method for determining the first SS set and the second SS set can refer to the content described in Table 1 above.
  • S120 Determine the priority of the second SS set according to the priority of the first SS set, where the priority of the first SS set is the same as the priority of the second SS set.
  • the base station when the base station configures the second SS set, it configures the index number of the first SS set associated with the second SS set, and the UE directly determines the first SS set according to the type (such as CSS or USS) or ID number of the first SS set. 2. Priority of the SS set.
  • S130 Determine whether to detect the first physical downlink control channel PDCCH on the candidate downlink control channel resources of the first SS set according to the priority of the first SS set and the priority of the second SS set, and, It is determined whether to detect a second PDCCH on the candidate downlink control channel resources of the second SS set, where the second PDCCH is used to carry an energy-saving signal.
  • the first PDCCH may be the aforementioned "PDCCH without energy saving signal” or "R15 PDCCH”, or may also be a PDCCH carrying an energy saving signal.
  • the second PDCCH is a PDCCH with an energy-saving signal function, which can be understood as the aforementioned PDCCH-based energy-saving signal, and the carried DCI includes energy-saving information.
  • the first PDCCH or the second PDCCH may be other PDCCHs, including "PDCCH for non-energy-saving signals” or “R15PDCCH", or PDCCHs with other functions newly introduced by NR continuing to evolve, such as for base station energy saving, etc. Not limited.
  • the terminal device may determine the number of candidate PDCCHs and the CCEs of the candidate PDCCHs in the first SS set and the second SS set in one time slot based on the configuration information in Table 1.
  • the UE can determine whether to detect the first SS set and the second SS set according to the aforementioned SS set priority method.
  • the terminal device can give up
  • the first PDCCH and the second PDCCH are detected in this time slot.
  • the first SS set and the second SS set are both USS sets.
  • the UE determines not to detect an SS set with a priority higher than the first SS set through the aforementioned SS set priority method, then the UE does not detect the first PDCCH and the second PDCCH in this time slot .
  • the first SS set and the second SS set are both USS sets.
  • the terminal equipment The first PDCCH and the second PDCCH can be detected in this time slot.
  • the first SS set is the CSS set. Since the CSS set has the highest priority, the UE directly determines the first SS set and the second SS set as the SS set to be detected; or the first set is the USS set with a relatively small ID number.
  • the terminal device can flexibly detect the second PDCCH according to the priority of the PS SS set.
  • the terminal device may detect the second PDCCH in the candidate downlink control channel resources of the second SS set within the DRX activation time.
  • the first SS set and the second SS set meet at least one of the following three conditions:
  • the first PDCCH carries the first DCI
  • the second PDCCH carries the second DCI
  • the size of the first DCI is the same as the size of the second DCI.
  • the candidate downlink control channel resources of the first SS set include the candidate downlink control channel resources of the second SS set.
  • the first SS set and the second SS set are associated with the same CORESET, and the UE detects the first SS set within the associated CORESET And the PDCCH in the candidate downlink control channel resources of the second SS set.
  • the start symbols in the time slot of the candidate downlink control channel resources in the first SS set and the second SS set are the same.
  • the first DCI and the second DCI have the same size, which can reduce the complexity of the blind detection and decoding of the terminal device.
  • the first SS set and the second SS set are associated with the same CORESET, the scrambling sequence of the first PDCCH and the second PDCCH are the same; in addition, the candidate downlink control channel resources of the first SS set include the candidate downlink of the second SS set Control channel resources, thereby eliminating the need to increase the number of candidate control signals detected by terminal equipment, and reducing the complexity of blind detection and decoding.
  • the candidate downlink control channel resources in the first SS set and the second SS set have the same starting symbols in the time slot, so that the CCE in the first SS set and the CCE in the second SS set can be detected as one CCE, which reduces The complexity of channel estimation by terminal equipment.
  • Two SS sets that meet the above conditions can be referred to as SS sets with an association relationship.
  • the application of the above solution can reduce or avoid the impact of the newly added PS SS set on the blind detection complexity of the terminal device, which is beneficial for the terminal device to detect the energy-saving signal based on the PDCCH and other PDCCHs in a time slot.
  • the UE can distinguish the first DCI and the second DCI through different RNTIs scrambled on the CRC.
  • the first SS set includes m first candidate downlink control channels
  • the second SS set includes M second candidate downlink control channels
  • the m first candidate downlink control channels and the M second candidate downlink control channels The aggregation level is the same, m and M are positive integers, and m ⁇ M, and the indexes of the m first candidate downlink control channels are the same as the indexes of the first m candidate downlink control channels of the M second candidate downlink control channels.
  • the aggregation level of the second SS set is L
  • the candidate PDCCHs are m candidate PDCCHs with the aggregation level L of the associated first SS set (for example, candidate PDCCHs numbered 0 to m-1).
  • the candidate PDCCH with aggregation level 2 in the PS SS set is the candidate PDCCH corresponding to the CCE index number 2 and 3 in FIG. 6 and the candidate PDCCH corresponding to the CCE index number 6 and 7.
  • the second SS set is the USS set
  • the first SS set is the USS set
  • the format of the first DCI is format 1_0 or format 0_0
  • the CRC of the second DCI is temporarily identified by the cell radio network (cell radio network). temporary identifier, C-RNTI) scrambling.
  • the DCI of the energy-saving signal can be designed as DCI format 1_0 or DCI format 0_0, and the DCI size corresponding to format 1_0 or format 0_0 is small, so , To meet the testing needs of terminal equipment.
  • the first SS set is a CSS set
  • the type of the first SS set is one of the following types: type 0, type 0A, type 1, type 2, and type 3. .
  • the type of the energy saving signal may be one of the above five types.
  • the second SS set is also a type 2 SS set
  • the size of the DCI corresponding to the energy-saving signal can be the same as the paging radio network temporary identifier, P-RNTI)
  • P-RNTI paging radio network temporary identifier
  • the second SS set is also a type 3 SS set
  • the size of the DCI corresponding to the energy-saving signal can be combined with the slot format indicator radio network temporary identifier (Slot format indicator radio).
  • Network temporary identifier (SFI-RNTI) scrambled DCI format 2_0 corresponds to the same DCI size.
  • Fig. 13 shows another method for detecting energy saving signals provided by the present application. This method can be applied to terminal equipment.
  • Method 200 includes:
  • S220 Determine a second CSS set, where the priority of the first CSS set is higher than the priority of the second CSS set.
  • S230 According to the priority of the first CSS set and the priority of the second CSS set, determine whether to detect the first physical downlink control channel PDCCH on the candidate downlink control channel resources of the first CSS set, and determine whether to detect the PDCCH in the second CSS
  • the second PDCCH is detected on the set of candidate downlink control channel resources, and the second PDCCH is used to carry the energy-saving signal.
  • the terminal device may determine the first CSS set and the second CSS set at the same time, or may determine the first CSS set and the second CSS set successively.
  • the method for determining the first CSS set and the second CSS set can refer to the content described in Table 1 above.
  • the first CSS set can be an existing CSS set in the NR R15 standard, and the DCI format carried on the first PDCCH can be DCI formats 2_0, 2_1, 2_2, 2_3, etc.
  • Candidate control of the existing CSS set in the NR R15 standard The DCI format carried on the channel resource.
  • the terminal device may determine the number of PDCCH candidates and the CCEs of the candidate PDCCHs in the first CSS set and the second CSS set in one time slot based on the configuration information in Table 1.
  • the terminal device can detect the first PDCCH in this time slot and give up detecting the second PDCCH.
  • the terminal device can detect the first PDCCH and the second PDCCH in this time slot.
  • the terminal device can flexibly detect the second PDCCH according to the priority of the PSCSS set, avoiding missed detection of the NRCSS set carrying more important information (such as system information) due to the blind detection complexity exceeding the maximum blind detection capability of the terminal device.
  • the method 200 further includes:
  • the priority of the first USS set is lower than the priority of the second CSS set, or,
  • the priority of the first USS set is higher than the priority of the second CSS set, and the priority of the first USS set is lower than the priority of the first CSS set.
  • the network equipment or communication protocol can determine the priority of the NR USS set and the PS CSS set according to the content carried by the DCI corresponding to the energy-saving signal.
  • the third PDCCH has the same characteristics as the first PDCCH, and may be a "PDCCH with no energy-saving signal" or "R15PDCCH", or it may be a PDCCH carrying an energy-saving signal;
  • the first USS set may be an existing USS set in the NR R15 standard
  • the DCI format carried on the third PDCCH may be DCI formats 0_1, 1_1, etc., which are carried on the candidate control channel resources of the USS set in the NR R15 standard The DCI format.
  • the DCI contains energy-saving information shared by a group of UEs, such as the group of UEs that need to detect the PDCCH carrier group, or trigger a group of UEs to "wake up" to enter DRX activation at the same time Time
  • the network device or communication protocol can be set (for example, predefined or high-level signaling configuration).
  • the priority sequence of the above-mentioned SSs is: first CSS set>second CSS set>first USS set.
  • the DCI contains a set of different energy-saving information for each UE in the UE.
  • the energy-saving information of some UEs is BWP ID
  • the energy-saving information of some UEs is reported as CSI.
  • the network device or communication protocol can be set (for example, predefined or high-level signaling configuration).
  • the priority sequence of the above-mentioned SSs is: first CSS set>first USS set>second CSS set.
  • the UE may determine whether to detect the second CSS set and the first USS set according to the aforementioned SS set priority method.
  • the method 200 further includes:
  • S260 Determine the priority of the second CSS set and the first USS set according to the size of the index number of the second CSS set and the size of the index number of the first USS set.
  • the network device or the communication protocol can configure the priority of the two SS sets through the index number of the second CSS set and the index number of the first USS set. For example, the network device or communication protocol may configure a smaller index number for the second CSS set, and configure a larger index number for the first USS set, so that the priority of the second CSS set is higher than the priority of the first USS set Or, the network device or communication protocol can configure a larger index number for the second CSS set, and configure a smaller index number for the first USS set, so that the priority of the second CSS set is lower than that of the first USS set level.
  • the first CSS set has priority over the first USS set and the second CSS set, that is, the UE prioritizes the first CSS set as the SS set to be detected;
  • the search space set with a small ID number (see Table 1) has priority over the search space set with a large ID number; the remaining steps are the same as the SS set priority described above The method is the same.
  • the method 200 further includes:
  • S280 Detect a fourth PDCCH on the candidate downlink control channel resources of the second USS set, where the fourth PDCCH is used to carry energy-saving signals, and the fourth PDCCH has the same characteristics as the second PDCCH described above;
  • the priority of the second USS set is lower than the priority of the first USS set.
  • the terminal device may also detect the PDCCH carrying the energy-saving signal, that is, the fourth PDCCH, on the candidate downlink control channel resources of the USS set.
  • the network device or communication protocol can configure the priority of the second USS set to be lower than that of the first USS set Priority.
  • the priority order of the first CSS set, the first USS set, and the second USS set may be: first CSS set>first USS set>second USS set.
  • the priority can be the first CSS set> the second CSS set> the first USS set> the second USS set or the first CSS set> the first USS set> the first CSS set.
  • the priority of the second USS set may be higher than the priority of the first USS set.
  • the network device or the communication protocol may also configure the index number of the second USS set.
  • the index number of the second USS set is the maximum value of the index number of the first USS set and the index number of the second USS set.
  • the index number of the second USS set is the minimum of the index number of the first USS set and the index number of the second USS set.
  • the terminal device may detect the PDCCH on the candidate downlink control channel resources of the second CSS set and the second USS set within the DRX activation time.
  • This application also provides an embodiment.
  • the terminal equipment For energy-saving signals transmitted outside the DRX activation time, because in the existing communication protocol, the terminal equipment only needs to detect SI-RNTI, random access (RA)-RNTI, and temporary cell outside the DRX activation time.
  • TC TC-RNTI and P-RNTI scrambled DCI, that is, the terminal equipment only needs to detect the candidate control channel resources of the CSS set (type 0/0A/1/2) corresponding to these RNTIs, so when the terminal equipment needs additional When detecting the PS SS set, the possibility of exceeding any of the two upper limits in Table 3 is very small.
  • the standard can stipulate that the network device needs to ensure that when the terminal device detects all the SS sets in the time slot outside the DRX activation time, the number and the number of candidate PDCCHs detected The number of overlapping CCEs does not exceed the corresponding maximum number.
  • the terminal device does not need to detect the candidate PDCCH carrying the energy-saving signal according to the priority of the SS set in the time slot, and directly detects all search space sets in the time slot.
  • the communication method provided by this application is mainly described above from the perspective of the terminal device.
  • the processing procedure of the network device corresponds to the processing procedure of the terminal device.
  • the terminal device detects the PDCCH, which means that the network device may have sent the PDCCH. Therefore, even if the processing procedure of the network device is not clearly stated in the above individual places, those skilled in the art can clearly understand the processing procedure of the network device based on the processing procedure of the terminal device.
  • the communication device includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the present application may divide the communication device into functional units according to the foregoing method examples.
  • each function may be divided into each functional unit, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in this application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 14 shows a schematic structural diagram of a communication device provided by this application.
  • the communication device 1400 may be used to implement the methods described in the foregoing method embodiments.
  • the communication device 1400 may be a chip, a network device or a terminal device.
  • the communication device 1400 includes one or more processors 1401, and the one or more processors 1401 can support the communication device 1400 to implement the method in the method embodiment corresponding to FIG. 13 or FIG. 14.
  • the processor 1401 may be a general-purpose processor or a special-purpose processor.
  • the processor 1401 may be a central processing unit (CPU) or a baseband processor.
  • the baseband processor can be used to process communication data (for example, the energy-saving signal described above), and the CPU can be used to control communication devices (for example, network equipment, terminal equipment, or chips), execute software programs, and process software programs. data.
  • the communication device 1400 may further include a transceiving unit 1405 to implement signal input (reception) and output (transmission).
  • the communication device 1400 may be a chip, and the transceiver unit 1405 may be an input and/or output circuit of the chip, or the transceiver unit 1405 may be a communication interface of the chip, and the chip may be used as a terminal device or a network device or other wireless communication. Components of equipment.
  • the communication device 1400 may include one or more memories 1402 with a program 1404 stored thereon.
  • the program 1404 can be run by the processor 1401 to generate instructions 1403 so that the processor 1401 executes the methods described in the foregoing method embodiments according to the instructions 1403.
  • the memory 1402 may also store data.
  • the processor 1401 may also read data stored in the memory 1402. The data may be stored at the same storage address as the program 1404, or the data may be stored at a different storage address from the program 1404.
  • the processor 1401 and the memory 1402 may be provided separately or integrated together, for example, integrated on a single board or a system on chip (SOC).
  • SOC system on chip
  • the communication device 1400 may further include a transceiver unit 1405 and an antenna 1406.
  • the transceiver unit 1405 may be called a transceiver, a transceiver circuit, or a transceiver, and is used to implement the transceiver function of the communication device through the antenna 1406.
  • the processor 1401 is used to execute:
  • the priority of the first CSS set is higher than the priority of the second CSS set
  • the priority of the first CSS set and the priority of the second CSS set determine whether to detect the first physical downlink control channel PDCCH on the candidate downlink control channel resources of the first CSS set, and determine whether A second PDCCH is detected on the candidate downlink control channel resources of the second CSS set, where the second PDCCH is used to carry an energy-saving signal.
  • the processor 1401 is further configured to execute through the transceiver unit 1405 and the antenna 1406:
  • the first PDCCH is detected on the candidate downlink control channel resources of the second SS set within the DRX active time.
  • processor 1401 is used to execute:
  • the priority of the first CSS set is higher than the priority of the second CSS set
  • the priority of the first CSS set and the priority of the second CSS set determine whether to detect the first PDCCH on the candidate downlink control channel resources of the first CSS set, and determine whether to detect the first PDCCH in the first CSS set.
  • the second PDCCH is detected on the candidate downlink control channel resources of the two CSS sets, and the second PDCCH is used to carry an energy-saving signal.
  • the processor 1401 is further configured to execute: determine the first USS set;
  • the processor 1401 is further configured to perform through the transceiver unit 1405 and the antenna 1406: detecting the third PDCCH on the candidate downlink control channel resources of the first USS set;
  • the priority of the first USS set is lower than the priority of the second CSS set, or,
  • the priority of the first USS set is higher than the priority of the second CSS set, and the priority of the first USS set is lower than the priority of the first CSS set.
  • the processor 1401 is further configured to execute: determining the size of the second CSS set and the first USS set according to the size of the index number of the second CSS set and the size of the index number of the first USS set priority.
  • the processor 1401 is further configured to execute: determining a second USS set;
  • the processor 1401 is further configured to perform through the transceiver unit 1405 and the antenna 1406: detecting a fourth PDCCH on candidate downlink control channel resources of the second USS set, where the fourth PDCCH is used to carry energy saving signals;
  • the priority of the second USS set is lower than the priority of the first USS set.
  • the processor 1401 is further configured to perform through the transceiver unit 1405 and the antenna 1406: detecting the second CSS set on the candidate downlink control channel resources of the second USS set within the DRX activation time PDCCH and the fourth PDCCH.
  • processor 1401 is used to execute:
  • the priority of the first CSS set is higher than the priority of the second CSS set
  • the priority of the first CSS set and the priority of the second CSS set determine whether to transmit the first physical downlink control channel PDCCH on the candidate downlink control channel resources of the first CSS set, and determine whether A second PDCCH is sent on the candidate downlink control channel resources of the second CSS set, and the second PDCCH is used to carry an energy-saving signal.
  • the processor 1401 is further configured to execute through the transceiver unit 1405 and the antenna 1406:
  • the first PDCCH is sent on the candidate downlink control channel resources of the second SS set within the DRX active time.
  • processor 1401 is used to execute:
  • the priority of the first CSS set is higher than the priority of the second CSS set
  • the priority of the first CSS set and the priority of the second CSS set determine whether to transmit the first PDCCH on the candidate downlink control channel resources of the first CSS set, and determine whether to transmit the first PDCCH in the first CSS set.
  • the second PDCCH is sent on the candidate downlink control channel resources of the two CSS sets, and the second PDCCH is used to carry the energy-saving signal.
  • the processor 1401 is further configured to execute: determine the first USS set;
  • the processor 1401 is further configured to execute through the transceiver unit 1405 and the antenna 1406: sending a third PDCCH on the candidate downlink control channel resources of the first USS set;
  • the priority of the first USS set is lower than the priority of the second CSS set, or,
  • the priority of the first USS set is higher than the priority of the second CSS set, and the priority of the first USS set is lower than the priority of the first CSS set.
  • the processor 1401 is further configured to execute: determining the size of the second CSS set and the first USS set according to the size of the index number of the second CSS set and the size of the index number of the first USS set priority.
  • the processor 1401 is further configured to execute: determining a second USS set;
  • the processor 1401 is further configured to perform through the transceiver unit 1405 and the antenna 1406: sending a fourth PDCCH on the candidate downlink control channel resources of the second USS set, where the fourth PDCCH is used to carry energy saving signals;
  • the priority of the second USS set is lower than the priority of the first USS set.
  • the processor 1401 is further configured to perform through the transceiver unit 1405 and the antenna 1406: sending the second CSS set and candidate downlink control channel resources of the second USS set within the DRX activation time. PDCCH and the fourth PDCCH.
  • each step of the foregoing method embodiment may be completed by a logic circuit in the form of hardware or instructions in the form of software in the processor 1401.
  • the processor 1401 may be a CPU, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices , For example, discrete gates, transistor logic devices, or discrete hardware components.
  • This application also provides a computer program product, which, when executed by the processor 1401, implements the communication method described in any method embodiment in this application.
  • the computer program product may be stored in the memory 1402, for example, a program 1404, and the program 1404 is finally converted into an executable object file that can be executed by the processor 1401 after preprocessing, compilation, assembly, and linking.
  • This application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, the communication method described in any method embodiment in this application is implemented.
  • the computer program can be a high-level language program or an executable target program.
  • the computer-readable storage medium is, for example, the memory 1402.
  • the memory 1402 may be a volatile memory or a non-volatile memory, or the memory 1402 may include both a volatile memory and a non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • FIG. 15 shows a schematic structural diagram of a terminal device provided in this application.
  • the terminal device 1500 can be applied to the system shown in FIG. 1 to realize the functions of the terminal device in the foregoing method embodiment.
  • FIG. 15 only shows the main components of the terminal device.
  • the terminal device 1500 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device. For example, the processor receives energy saving signals through an antenna and a control circuit.
  • the memory is mainly used to store programs and data, such as storing communication protocols and data to be sent.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output device is, for example, a touch screen or a keyboard, and is mainly used to receive data input by the user and output data to the user.
  • the processor can read the program in the memory, interpret and execute the instructions contained in the program, and process the data in the program.
  • the processor performs baseband processing on the information to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal to obtain a radio frequency signal, and transmits the radio frequency signal to the antenna in the form of electromagnetic waves. Send outside.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into information And process the information.
  • FIG. 15 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be called a storage medium or a storage device, etc., which is not limited in this application.
  • the processor in FIG. 15 can integrate the functions of the baseband processor and the CPU.
  • the baseband processor and the CPU can also be independent processors, using technologies such as buses. interconnected.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple CPUs to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be referred to as a baseband processing circuit or a baseband processing chip.
  • the CPU may also be called a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or stored in the memory in the form of a program, and the processor executes the program in the memory to realize the baseband processing function.
  • the antenna and control circuit with the transceiver function can be regarded as the transceiver unit 1501 of the terminal device 1500, which is used to support the terminal device to implement the receiving function in the method embodiment, or to support the terminal device to implement the method embodiment.
  • the processor with processing function is regarded as the processing unit 1502 of the terminal device 1500.
  • the terminal device 1500 includes a transceiver unit 1501 and a processing unit 1502.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 1501 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1501 can be regarded as the sending unit, that is, the transceiver unit 1501 includes a receiving unit and a sending unit,
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 1502 may be used to execute programs stored in the memory to control the transceiver unit 1501 to receive signals and/or send signals, so as to complete the functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiver unit 1501 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • FIG. 16 is a schematic structural diagram of a network device provided in this application, and the network device may be, for example, a base station.
  • the base station can be applied to the system shown in Fig. 1 to realize the function of the network device in the above method embodiment.
  • the base station 1600 may include one or more radio frequency units, such as a remote radio unit (RRU) 1601 and at least one baseband unit (BBU) 1602.
  • RRU remote radio unit
  • BBU baseband unit
  • the BBU 1602 may include a distributed unit (DU), or may include a DU and a centralized unit (CU).
  • DU distributed unit
  • CU centralized unit
  • the RRU 1601 may be called a transceiving unit, a transceiver, a transceiving circuit, or a transceiver, and it may include at least one antenna 16011 and a radio frequency unit 16012.
  • the RRU1601 is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for supporting the base station to implement the sending and receiving functions in the method embodiments.
  • BBU1602 is mainly used for baseband processing and control of base stations.
  • the RRU 1601 and the BBU 1602 can be physically set together, or physically separated, that is, a distributed base station.
  • the BBU1602 can also be called a processing unit, which is mainly used to perform baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU 1602 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU1602 can be composed of one or more single boards, and multiple single boards can jointly support a radio access network with a single access standard (for example, a long term evolution (LTE) network), and can also support different access standards. Wireless access network (such as LTE network and NR network).
  • the BBU 1602 also includes a memory 16021 and a processor 16022, and the memory 16021 is used to store necessary instructions and data.
  • the memory 16021 stores the energy saving signal in the foregoing method embodiment.
  • the processor 16022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the operation procedures in the foregoing method embodiments.
  • the memory 16021 and the processor 16022 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the disclosed system, device, and method may be implemented in other ways. For example, some features of the method embodiments described above may be ignored or not implemented.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling, and the foregoing coupling includes electrical, mechanical, or other forms of connection.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship describing associated objects, which means that there can be three types of relationships. For example, A and/or B can mean that there is A alone, and both A and B exist. There are three cases of B.
  • the character “/” in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • At least one of means one of the listed items or any combination thereof, for example, "at least one of A, B, and C” means: A alone, B alone, and C alone , A and B exist at the same time, A and C exist at the same time, B and C exist at the same time, and A, B and C exist at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种检测下行控制信道的方法,包括:确定第一搜索空间SS集合和第二SS集合;根据第一SS集合的优先级确定第二SS集合的优先级,第一SS集合与第二SS集合的优先级相同。如果UE检测第一SS集合与第二SS集合时,UE所需检测的候选PDCCH的数量超出终端设备的盲检测能力,或者,UE所需检测的无重叠CCE的数量超出终端设备的盲检测能力,则终端设备可以不检测第一PDCCH和第二PDCCH。否则,终端设备可以检测第一PDCCH和第二PDCCH。由于第一SS集合与第二SS集合的优先级相同,终端设备可以对包括节能信号对应的SS集合在内的多个SS集合采用相同的处理方式,简化了终端设备检测节能信号的复杂度。

Description

检测或发送下行控制信道的方法和装置
本申请要求于2019年04月30日提交中国专利局、申请号为201910364602.8、申请名称为“检测或发送下行控制信道的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种检测发送下行控制信道的方法和装置,以及一种发送下行控制信道的方法和装置。
背景技术
在第五代(the fifth generation,5G)移动通信系统中,数据包的传输通常是突发性的,在一段时间内存在待传输的数据包,在另一段时间内可能不存在待传输的数据包。因此,5G移动通信系统中的终端设备基于非连续接收(discontinuous reception,DRX)机制接收数据包。在一个DRX周期内,终端设备通常仅在部分时段开启接收电路,检测下行控制信道,从而减小了终端设备的功耗。
终端设备通常在激活时间(active time)内检测下行控制信道。若终端设备在激活时间外(out of Active time)检测到节能(power saving,PS)信号,则终端设备可以进入激活时间并检测下行控制信道;若终端设备在激活时间外未检测到PS信号,则终端设备不需要进入激活时间,继续进入“睡眠”状态。此时,PS信号起到了唤醒信号(wake up signal,WUS)的作用。此外,终端设备可以在激活时间以内检测PS信号,该PS信号可以指示终端设备在激活时间内停止检测PDCCH一段时间,或指示终端设备检测搜索空间集合的周期等。
目前,相关标准仅对PS信号的功能做了简单的定义,对于终端设备如何检测PS信号并没有做详细规定。因此,如何检测PS信号是当前亟需解决的问题。
发明内容
本申请提供了一种检测下行控制信道的方法,使得终端设备能够根据自身的检测能力灵活检测节能信号。
第一方面,提供了一种检测下行控制信道的方法,包括:确定第一搜索空间SS集合和第二SS集合;根据第一SS集合的优先级确定第二SS集合的优先级,第一SS集合的优先级与第二SS集合的优先级相同;根据第一SS集合的优先级和第二SS集合的优先级,确定是否在第一SS集合的候选下行控制信道资源上检测第一物理下行控制信道PDCCH,以及,确定是否在第二SS集合的候选下行控制信道资源上检测第二PDCCH,第二PDCCH用于承载节能信号。
上述方法可以应用于终端设备。若第一SS集合与第二SS集合中的候选PDCCH的数 量超出终端设备的盲检测能力,或者,若第一SS集合与第二SS集合中的无重叠CCE的数量超出终端设备的盲检测能力,则终端设备可以不检测第一PDCCH和第二PDCCH。否则,终端设备可以检测第一PDCCH和第二PDCCH。由于第一SS集合的优先级与第二SS集合的优先级相同,终端设备可以对包括节能信号对应的SS集合在内的多个SS集合采用相同的处理方式,简化了终端设备在第二SS集合的候选下行控制信道资源上检测节能信号的复杂度。
可选地,第一PDCCH承载第一下行控制信息DCI,第二PDCCH承载第二DCI,第一DCI的大小和第二DCI的大小相同。
第一DCI和第二DCI的大小相同,可以减小终端设备盲检测译码的复杂度。
可选地,第一SS集合的候选下行控制信道资源包括第二SS集合的候选下行控制信道资源,第一SS集合和第二SS集合与同一个控制资源集合CORESET相关联。
第一SS集合与第二SS集合与同一个CORESET相关联,则第一PDCCH和第二PDCCH的加扰序列相同;此外,第一SS集合的候选下行控制信道资源包括第二SS集合的候选下行控制信道资源,使得第一PDCCH的部分或全部CCE集合与第二PDCCH的CCE集合相同,从而可以减小终端设备盲检测译码的复杂度。
可选地,第一SS集合与第二SS集合中的候选下行控制信道资源在时隙中的起始符号相同。
第一SS集合与第二SS集合中的候选下行控制信道资源在时隙中的起始符号相同,使得第一SS集合的CCE与第二SS集合的CCE能够作为一个CCE被检测,减小了终端设备进行信道估计的复杂度。
可选地,当第二SS集合为专用搜索空间USS集合时,第一SS集合为USS集合,第一DCI的格式为格式1_0或格式0_0,且第二DCI的循环冗余校验CRC由小区无线网络临时标识C-RNTI加扰。
由于USS中的PDCCH承载的DCI的大小过大会影响终端设备的检测性能,因此,可以将节能信号的DCI设计为DCI格式1_0或DCI格式0_0,格式1_0或格式0_0对应的DCI大小较小,因此,能够满足终端设备的检测需求。
可选地,当第二SS集合为公共搜索空间CSS集合时,第一SS集合为CSS集合,且第一SS集合的类型为以下类型中的一个:类型0、类型0A、类型1、类型2和类型3。
当节能信号对应的CSS集合与另外一个CSS集合(即,第一SS集合)关联时,基于第一SS集合的类型,节能信号的类型可以是上述5种类型中的一个。
可选地,第一SS集合包括m个第一候选下行控制信道,第二SS集合包括M个第二候选下行控制信道,m个第一候选下行控制信道与M个第二候选下行控制信道的聚合等级相同,m和M为正整数,且m≤M,m个第一候选下行控制信道的索引与M个第二候选下行控制信道的前m个候选下行控制信道的索引相同。
可选地,所述方法还包括:在DRX激活时间内第二SS集合的候选下行控制信道资源上检测第二PDCCH。
第二方面,提供了一种检测下行控制信道的方法,包括:确定第一CSS集合;确定第二CSS集合,第一CSS集合的优先级高于第二CSS集合的优先级;根据第一CSS集合的优先级和第二CSS集合的优先级,确定是否在第一CSS集合的候选下行控制信道资源 上检测第一PDCCH,以及,确定是否在第二CSS集合的候选下行控制信道资源上检测第二PDCCH,第二PDCCH用于承载节能信号。
第一CSS集合的候选下行控制信道资源通常承载了比较重要的信息,例如,系统消息。因此,将第一CSS集合的优先级设置为高于第二CSS集合的优先级后,若第一CSS集合和第二CSS集合对应的盲检测复杂度超出了终端设备的最大盲检测能力,则终端设备可以放弃检测第二CSS集合的候选下行控制信道资源,从而减小了节能信号对应的CSS集合对其它CSS集合的影响。
可选地,所述方法还包括:确定第一USS集合;在第一USS集合的候选下行控制信道资源上检测第三PDCCH;其中,第一USS集合的优先级低于第二CSS集合的优先级;或者,第一USS集合的优先级高于第二CSS集合的优先级,且,第一USS集合的优先级低于第一CSS集合的优先级。
网络设备或通信协议可以根据节能信号对应的DCI所承载的内容来决定第一USS集合和第二CSS集合的优先级大小。若节能信号对应的DCI所承载的内容比较重要,则可以设定第二CSS集合的优先级高于第一USS集合的优先级;若节能信号对应的DCI所承载的内容为普通内容,则可以设定第二CSS集合的优先级低于第一USS集合的优先级。上述方案使得终端设备能够灵活检测节能信号。
可选地,所述方法还包括:确定第二USS集合;在第二USS集合的候选下行控制信道资源上检测第四PDCCH,第四PDCCH用于承载节能信号;其中,第二USS集合的优先级低于第一USS集合的优先级。
终端设备还可以在USS集合的候选下行控制信道资源上检测承载节能信号的PDCCH,即,第四PDCCH。为了避免终端设备检测第四PDCCH影响网络设备对数据的调度,导致数据包的时延增大以及吞吐率减小,网络设备或通信协议可以配置第二USS集合的优先级低于第一USS集合的优先级。
可选地,第二USS集合的标识为第一USS集合的标识和第二USS集合的标识中的最大值。
SS集合的标识越大,表示该SS集合的优先级越低。
可选地,所述方法还包括:在非连续接收DRX激活时间内第二CSS集合和第二USS集合的候选下行控制信道资源上检测第二PDCCH和第四PDCCH。
第三方面,提供了一种发送下行控制信道的方法,包括:确定第一搜索空间SS集合和第二SS集合;根据第一SS集合的优先级确定第二SS集合的优先级,第一SS集合的优先级与第二SS集合的优先级相同;根据第一SS集合的优先级和第二SS集合的优先级,确定是否在第一SS集合的候选下行控制信道资源上发送第一物理下行控制信道PDCCH,以及,确定是否在第二SS集合的候选下行控制信道资源上发送第二PDCCH,第二PDCCH用于承载节能信号。
上述方法可以应用于网络设备。若第一SS集合与第二SS集合中的候选PDCCH的数量超出终端设备的盲检测能力,或者,若第一SS集合与第二SS集合中的无重叠CCE的数量超出终端设备的盲检测能力,则网络设备可以不发送第一PDCCH和第二PDCCH。否则,网络设备可以发送第一PDCCH和第二PDCCH。由于第一SS集合的优先级与第二SS集合的优先级相同,网络设备可以对包括节能信号对应的SS集合在内的多个SS集合 采用相同的处理方式,简化了网络设备在第二SS集合的候选下行控制信道资源上检测节能信号的复杂度。
可选地,第一PDCCH承载第一下行控制信息DCI,第二PDCCH承载第二DCI,第一DCI的大小和第二DCI的大小相同。
第一DCI和第二DCI的大小相同,可以减小终端设备盲检测译码的复杂度。
可选地,第一SS集合的候选下行控制信道资源包括第二SS集合的候选下行控制信道资源,第一SS集合和第二SS集合与同一个控制资源集合CORESET相关联。
第一SS集合与第二SS集合与同一个CORESET相关联,则第一PDCCH和第二PDCCH的加扰序列相同;此外,第一SS集合的候选下行控制信道资源包括第二SS集合的候选下行控制信道资源,使得第一PDCCH的部分或全部CCE集合与第二PDCCH的CCE集合相同,从而可以减小终端设备盲检测译码的复杂度。
可选地,第一SS集合与第二SS集合中的候选下行控制信道资源在时隙中的起始符号相同。
第一SS集合与第二SS集合中的候选下行控制信道资源在时隙中的起始符号相同,使得第一SS集合的CCE与第二SS集合的CCE能够作为一个CCE被检测,减小了终端设备进行信道估计的复杂度。
可选地,当第二SS集合为专用搜索空间USS集合时,第一SS集合为USS集合,第一DCI的格式为格式1_0或格式0_0,且第二DCI的循环冗余校验CRC由小区无线网络临时标识C-RNTI加扰。
由于USS中的PDCCH承载的DCI的大小过大会影响终端设备的检测性能,因此,可以将节能信号的DCI设计为DCI格式1_0或DCI格式0_0,格式1_0或格式0_0对应的DCI大小较小,因此,能够满足终端设备的检测需求。
可选地,当第二SS集合为公共搜索空间CSS集合时,第一SS集合为CSS集合,且第一SS集合的类型为以下类型中的一个:类型0、类型0A、类型1、类型2和类型3。
当节能信号对应的CSS集合与另外一个CSS集合(即,第一SS集合)关联时,基于第一SS集合的类型,节能信号的类型可以是上述5种类型中的一个。
可选地,第一SS集合包括m个第一候选下行控制信道,第二SS集合包括M个第二候选下行控制信道,m个第一候选下行控制信道与M个第二候选下行控制信道的聚合等级相同,m和M为正整数,且m≤M,m个第一候选下行控制信道的索引与M个第二候选下行控制信道的前m个候选下行控制信道的索引相同。
可选地,所述方法还包括:在DRX激活时间内第二SS集合的候选下行控制信道资源上发送第二PDCCH。
第四方面,提供了一种发送下行控制信道的方法,包括:确定第一CSS集合;确定第二CSS集合,第一CSS集合的优先级高于第二CSS集合的优先级;根据第一CSS集合的优先级和第二CSS集合的优先级,确定是否在第一CSS集合的候选下行控制信道资源上发送第一PDCCH,以及,确定是否在第二CSS集合的候选下行控制信道资源上发送第二PDCCH,第二PDCCH用于承载节能信号。
第一CSS集合的候选下行控制信道资源通常承载了比较重要的信息,例如,系统消息。因此,将第一CSS集合的优先级设置为高于第二CSS集合的优先级后,若第一CSS 集合和第二CSS集合对应的盲检测复杂度超出了终端设备的最大盲检测能力,则网络设备可以放弃发送第二CSS集合的候选下行控制信道资源,从而减小了节能信号对应的CSS集合对其它CSS集合的影响。
可选地,所述方法还包括:确定第一USS集合;在第一USS集合的候选下行控制信道资源上发送第三PDCCH;其中,第一USS集合的优先级低于第二CSS集合的优先级;或者,第一USS集合的优先级高于第二CSS集合的优先级,且,第一USS集合的优先级低于第一CSS集合的优先级。
网络设备或通信协议可以根据节能信号对应的DCI所承载的内容来决定第一USS集合和第二CSS集合的优先级大小。若节能信号对应的DCI所承载的内容比较重要,则可以设定第二CSS集合的优先级高于第一USS集合的优先级;若节能信号对应的DCI所承载的内容为普通内容,则可以设定第二CSS集合的优先级低于第一USS集合的优先级。上述方案使得网络设备能够灵活发送节能信号。
可选地,所述方法还包括:确定第二USS集合;在第二USS集合的候选下行控制信道资源上发送第四PDCCH,第四PDCCH用于承载节能信号;其中,第二USS集合的优先级低于第一USS集合的优先级。
网络设备还可以在USS集合的候选下行控制信道资源上发送承载节能信号的PDCCH,即,第四PDCCH。为了避免网络设备发送第四PDCCH影响网络设备对数据的调度,导致数据包的时延增大以及吞吐率减小,网络设备或通信协议可以配置第二USS集合的优先级低于第一USS集合的优先级。
可选地,第二USS集合的标识为第一USS集合的标识和第二USS集合的标识中的最大值。
SS集合的标识越大,表示该SS集合的优先级越低。
可选地,所述方法还包括:在非连续接收DRX激活时间内第二CSS集合和第二USS集合的候选下行控制信道资源上发送第二PDCCH和第四PDCCH。
第五方面,提供了一种检测下行控制信道的方法,其特征在于,包括:确定第一USS集合;确定第二USS集合,所述第一USS集合的优先级高于所述第二USS集合的优先级;根据所述第一USS集合的优先级和所述第二USS集合的优先级,确定是否在所述第一USS集合的候选下行控制信道资源上检测第一物理下行控制信道PDCCH,以及,确定是否在所述第二USS集合的候选下行控制信道资源上检测第二PDCCH,所述第二PDCCH用于承载节能信号。
第一USS集合的候选下行控制信道资源通常承载了比较重要的信息。因此,将第一USS集合的优先级设置为高于第二USS集合的优先级后,若第一USS集合和第二USS集合对应的盲检测复杂度超出了终端设备的最大盲检测能力,则终端设备可以放弃检测第二USS集合的候选下行控制信道资源,从而减小了节能信号对应的USS集合对其它USS集合的影响。上述方案还可以避免终端设备检测第二PDCCH影响网络设备对数据的调度,导致数据包的时延增大以及吞吐率减小。
可选地,所述方法还包括:确定第二CSS集合;在所述第二CSS集合的候选下行控制信道资源上检测第三PDCCH,第三PDCCH用于承载节能信号;
其中,所述第一USS集合的优先级低于所述第二CSS集合的优先级,或者,
所述第一USS集合的优先级高于所述第二CSS集合的优先级,且,所述第一USS集合的优先级低于第二CSS集合的优先级。
网络设备或通信协议可以根据节能信号对应的DCI所承载的内容来决定第一USS集合和第二CSS集合的优先级大小。若节能信号对应的DCI所承载的内容比较重要,则可以设定第二CSS集合的优先级高于第一USS集合的优先级;若节能信号对应的DCI所承载的内容为普通内容,则可以设定第二CSS集合的优先级低于第一USS集合的优先级。上述方案使得终端设备能够灵活检测节能信号。
可选地,所述方法还包括:根据所述第二CSS集合的索引号的大小和所述第一USS集合的索引号大小确定所述第二CSS集合和所述第一USS集合的优先级。
可选地,所述方法还包括:确定第一CSS集合;在所述第一CSS集合的候选下行控制信道资源上检测第四PDCCH;其中,所述第一CSS集合的优先级高于所述第一CSS集合的优先级。
可选地,所述第二USS集合的标识为所述第一USS集合的标识和所述第二USS集合的标识中的最大值。
可选地,所述方法包括:在非连续接收DRX激活时间内所述第一USS集合和所述第二USS集合的候选下行控制信道资源上检测所述第一PDCCH和第二PDCCH。
可选地,还包括:在非连续接收DRX激活时间内所述第二CSS集合和所述第二USS集合的候选下行控制信道资源上检测所述第二PDCCH和所述第三PDCCH。
第六方面,提供了一种发送下行控制信道的方法,其特征在于,包括:确定第一USS集合;确定第二USS集合,所述第一USS集合的优先级高于所述第二USS集合的优先级;根据所述第一USS集合的优先级和所述第二USS集合的优先级,确定是否在所述第一USS集合的候选下行控制信道资源上发送第一物理下行控制信道PDCCH,以及,确定是否在所述第二USS集合的候选下行控制信道资源上发送第二PDCCH,所述第二PDCCH用于承载节能信号。
第一USS集合的候选下行控制信道资源通常承载了比较重要的信息。因此,将第一CSS集合的优先级设置为高于第二USS集合的优先级后,若第一USS集合和第二USS集合对应的盲检测复杂度超出了终端设备的最大盲检测能力,则网络设备可以放弃发送第二USS集合的候选下行控制信道资源,从而减小了节能信号对应的USS集合对其它USS集合的影响。上述方案还可以避免终端设备检测第二PDCCH影响网络设备对数据的调度,导致数据包的时延增大以及吞吐率减小。
可选地,所述方法还包括:确定第二CSS集合;在所述第二CSS集合的候选下行控制信道资源上发送第三PDCCH,第三PDCCH用于承载节能信号;
其中,所述第一USS集合的优先级低于所述第二CSS集合的优先级,或者,
所述第一USS集合的优先级高于所述第二CSS集合的优先级,且,所述第一USS集合的优先级低于第二CSS集合的优先级。
网络设备或通信协议可以根据节能信号对应的DCI所承载的内容来决定第一USS集合和第二CSS集合的优先级大小。若节能信号对应的DCI所承载的内容比较重要,则可以设定第二CSS集合的优先级高于第一USS集合的优先级;若节能信号对应的DCI所承载的内容为普通内容,则可以设定第二CSS集合的优先级低于第一USS集合的优先级。 上述方案使得网络设备能够灵活发送节能信号。
可选地,所述方法还包括:根据所述第二CSS集合的索引号的大小和所述第一USS集合的索引号大小确定所述第二CSS集合和所述第一USS集合的优先级。
可选地,所述方法还包括:确定第一CSS集合;在所述第一CSS集合的候选下行控制信道资源上发送第四PDCCH;其中,所述第一CSS集合的优先级高于所述第一CSS集合的优先级。
可选地,所述第二USS集合的标识为所述第一USS集合的标识和所述第二USS集合的标识中的最大值。
可选地,所述方法包括:在非连续接收DRX激活时间内所述第一USS集合和所述第二USS集合的候选下行控制信道资源上发送所述第一PDCCH和第二PDCCH。
可选地,还包括:在非连续接收DRX激活时间内所述第二CSS集合和所述第二USS集合的候选下行控制信道资源上发送所述第二PDCCH和所述第三PDCCH。
第七方面,本申请提供了一种通信装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是终端设备时,该处理单元可以是处理器,该收发单元可以是收发器;该终端设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备执行第一方面或第二方面所述的方法。当该装置是终端设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该终端设备执行第一方面或第二方面或第五方面所述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第八方面,本申请提供了另一种通信装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是网络设备时,该处理单元可以是处理器,该收发单元可以是收发器;该网络设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该网络设备执行第三方面或第四方面所述的方法。当该装置是网络设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该网络设备执行第三方面或第四方面或第六方面所述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该网络设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第九方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第一方面或第二方面或第五方面所述的方法。
第十方面,本申请提供了另一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第三方面或第四方面或第六方面所述的方法。
第十一方面,本申请提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第一方面或第二方面或第五方面所述的方法。
第十二方面,本申请提供了另一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第三方面或第四方面或第六方面所述的方法。
附图说明
图1是一种适用于本申请的通信系统的示意图;
图2是一种适用于本申请的传输方式的示意图;
图3是一种物理传输资源的示意图;
图4是一种资源组的示意图;
图5是一种搜索空间集合的示意图;
图6是聚合等级为2时候选PDCCH与CCE集合的对应关系的示意图;
图7是DRX机制的一个示意图;
图8是DRX机制的另一个示意图;
图9是节能信号的一个示意图;
图10是节能信号的另一个示意图;
图11是节能信号的再一个示意图;
图12是本申请提供的一种检测下行控制信道的方法的示意图;
图13是本申请提供的另一种检测下行控制信道的方法的示意图;
图14是本申请提供的一种通信装置的示意图;
图15是本申请提供的一种终端设备的示意图;
图16是本申请提供的一种网络设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
首先介绍本申请的应用场景,图1是一种适用于本申请的通信系统的示意图。
通信系统100包括网络设备110和终端设备120。终端设备120通过电磁波与网络设备110进行通信,即,终端设备120可以发送数据给网络设备110,网络设备110也可以发送数据给终端设备120。
在本申请中,终端设备120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如,第三代合作伙伴计划(3rd generation partnership project,3GPP)所定义的用户设备(user equipment,UE),移动台(mobile station,MS),软终端,家庭网关,机顶盒等等,应用于上述设备中的芯片也可以称为终端设备。
网络设备110可以是3GPP所定义的基站,例如,5G移动通信系统中的基站(new generation node B,gNB)。网络设备110也可以是非3GPP(non-3GPP)的接入网设备,例如接入网关(access gateway,AGF)。网络设备还可以是中继站、接入点、车载设备、可穿戴设备以及其它类型的设备,应用于上述设备中的芯片也可以称为网络设备。
作为示例而非限定,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋 等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
图1所示的通信系统仅是举例说明,适用于本申请的通信系统不限于此。
在通信系统100中,终端设备120向网络设备110发送数据的过程可以称为上行传输,网络设备110向终端设备120发送数据的过程可以称为下行传输。为了简洁,下文中的终端设备和网络设备不再附带附图标记。
对于上行传输,如果该上行传输是基于动态调度的,那么如图2所示,终端设备会接收到网络设备发送的下行控制信息(downlink control information,DCI),该DCI携带指示物理上行共享信道(physical uplink shared channel,PUSCH)占用的时域资源、频域资源、调制方式等指示信息。终端设备接收到DCI,就可以确定在哪个时域资源和频域资源上发送PUSCH,进而执行发送PUSCH的准备步骤。准备步骤一般包括:对信息的编码、调制、资源映射和傅里叶变换等。最终,终端设备在DCI指示的时域资源和频域资源上发送准备好的PUSCH。
对于下行传输,如果该下行传输是基于动态调度的,那么如图2所示,终端设备会接收到网络设备发送的DCI,该DCI携带指示物理下行共享信道(physical downlink shared channel,PDSCH)占用的时域资源、频域资源、调制方式等指示信息。终端设备接收DCI之后,会对PDSCH进行解码处理,解码处理的过程一般包括:资源解映射、反傅里叶变换、解调和解编码等。最终解编码的结果正确就是接收正确,如果结果错误就是接收失败。
需要说明的是,DCI通常承载于物理下行控制信道(physical downlink control channel,PDCCH)中,PDCCH相当于载体,其承载的内容为DCI。由于PDCCH和DCI是一一对应的,所以接收(或“检测”)PDCCH与接收DCI的描述是等价的。
PDCCH在控制资源集合(control resource set,CORESET)内传输。CORESET在频域上包括若干个物理资源块(physical resource block,PRB),在时域上包括若干个(例如,1到3个)OFDM符号,且可位于时隙(slot)内的任意位置。每个PRB由频域上12个连续子载波组成,如图3所示。
图3中,每个矩形表示一个资源元素(resource element,RE),RE是最小的物理资源,包含一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号内的一个子载波。5G移动通信系统中,资源调度的基本时间单位是一个时隙(slot),一般而言,一个时隙在时间上由14个OFDM符号组成。一个或多个时隙组成一个子帧(subframe),例如,当子载波间隔为15kHz时,每个子帧包含一个时隙。10个子帧组成一个帧(frame),每个帧由一个系统帧号(system frame number,SFN)来标识,SFN的周期等于1024个帧,因此,SFN在1024个帧后自行重复。
时域上的1个OFDM符号和频域上的12个子载波构成1个资源单元组(resource element group,REG),即,1个REG包含12个RE。如图4所示,该12个RE可以有3个RE用于映射PDCCH解调参考信号,另外9个RE用于映射DCI,该9个RE即PDCCH所包括的部分物理资源。
PDCCH还可以划分为控制信道单元(control channel element,CCE)。每个CCE对应6个REG,因此,一个CCE包括72个RE,其中18个RE用于DMRS,54个RE用于DCI传输。在CORESET中,每个CCE都有1个对应的索引号,每个CCE的索引号与该CCE映射的6个REG的索引号存在对应关系。
一个给定的PDCCH可由1、2、4、8或16个CCE构成,CCE的数量由DCI载荷大小(DCI payload size)和所需的编码速率决定,构成PDCCH的CCE数量也被称为聚合等级(aggregation level,AL)。
搜索空间(search space,SS)是1个聚合等级下候选PDCCH(PDCCH candidate)的集合。由于网络设备实际发送的PDCCH的聚合等级随时间可变,而且没有相关信令告知终端设备,因此,终端设备需在不同聚合等级下盲检PDCCH。其中,待盲检的PDCCH称为候选PDCCH。UE会对搜索空间内所有的候选PDCCH进行译码,如果PDCCH的循环冗余校验(cyclic redundancy check,CRC)校验通过,则认为所译码的PDCCH承载的内容对所述UE有效,并处理译码后相关信息。
下面介绍终端设备如何根据搜索空间检测控制信道,即,如何确定候选PDCCH的CCE索引号。
在前面搜索空间的描述中,PDCCH可支持多种聚合等级大小,而这些信息对于终端设备而言无法提前获得,因此,终端设备需对PDCCH进行盲检测。根据前面描述的搜索空间的定义,UE在有限的CCE对应的时频位置上检测PDCCH,从而避免了盲检测复杂度的增加。为了更好地控制盲检测的复杂度,5G移动通信系统进一步提高了搜索空间配置的灵活性,即聚合等级。聚合等级对应的候选PDCCH的数量,以及搜索空间在时域上的检测周期都可通过高层参数进行配置,终端设备基于这些配置信息可灵活控制盲检测的复杂度。
网络设备可为终端设备配置一个或多个搜索空间集合,其中,每个搜索空间集合包括一个或多个聚合等级的搜索空间。搜索空间集合的配置信息如表1所示。
表1
Figure PCTCN2020087651-appb-000001
Figure PCTCN2020087651-appb-000002
图5为搜索空间集合的一个示意图。其中,检测周期为10个时隙,时隙偏移为3个时隙,时隙数量为2个时隙,控制资源集合索引对应一个占用2个OFDM符号的CORESET,符号位置为时隙内的OFDM符号0和OFDM符号7。在上述例子中,UE从每个检测周期内的时隙3和时隙4内的符号0和符号7开始检测搜索空间集合的候选控制信道且CORESET在时域上占用2个OFDM符号。
搜索空间集合可以分为公共搜索空间(common search space,CSS)集合和专用搜索空间集合(specific search space,USS)集合这两种类型。其中,CSS集合的PDCCH主要用于指示传输系统消息、随机接入响应消息以及寻呼消息等。CSS集合可以是包含以下类型的PDCCH的搜索空间集合:类型0、类型0A、类型1、类型2和类型3,可以称为Type0/0A/1/2/3-PDCCH CSS set。USS集合的PDCCH用于调度特定的终端设备传输上下行数据和/或下行数据。
对于不同类型的下行控制信息,如调度下行/上行数据传输,功率控制命令,时隙格式指示,资源抢占指示等,通常对应不同的DCI信息的大小。因此,DCI根据指示信息的类型被分为不同的格式,每一种格式对应了一种DCI的大小(DCI size,即DCI所承载信源比特数量)或解析方式。在NR中,支持的DCI格式(DCI format)如表2所示。基站在配置搜索空间集合时,会配置搜索空间集合的DCI的格式,比如配置为Format 0_1/1_1。
5G移动通信系统支持的DCI格式如表2所示。网络设备在配置搜索空间集合时,会配置该搜索空间集合的DCI格式。
表2
Figure PCTCN2020087651-appb-000003
具有不同功能的DCI的CRC可能被不同的无线网络临时标识(radio network temporary identifier,RNTI)所加扰。例如,终端设备在包含类型0的PDCCH的CSS集合中所检测的DCI,以及终端设备在包含类型0A的PDCCH的CSS集合中所检测的DCI,其CRC被系统信息(system Information message,SI)-RNTI加扰,该DCI用于调度系统消息,比如系统信息块(system information block,SIB)1等,该DCI的格式为格式1_0。
终端设备还可以根据搜索空间集合的配置信息确定配置的候选PDCCH集合中每个候选PDCCH在CORESET内的CCE索引。候选PDCCH在CORESET内的CCE索引可以 根据给定的搜索空间函数确定。例如,对于与控制资源集合p(根据表1中的控制资源集合索引参数确定)关联的搜索空间集合s(根据表1中的搜索空间集合索引参数确定),其在时隙
Figure PCTCN2020087651-appb-000004
内,聚合等级为L的候选
Figure PCTCN2020087651-appb-000005
的CCE索引由下式给出:
Figure PCTCN2020087651-appb-000006
上式中,对于CSS,
Figure PCTCN2020087651-appb-000007
对于USS,
Figure PCTCN2020087651-appb-000008
Y p,-1=n RNTI≠0,D=65537;当pmod3=2时,A 0=39827;当pmod3=1时,A 0=39829时,当pmod3=2时,A 2=39839;N CCE,p为控制资源集合p中包括的CCE的总数,且CCE的编号从0到N CCE,p-1。
若未配置跨载波指示,则n CI=0;反之,n CI为配置的载波指示参数,以保证调度不同载波的候选PDCCH尽可能占用不重叠的CCE;
Figure PCTCN2020087651-appb-000009
Figure PCTCN2020087651-appb-000010
为配置的在聚合等级为L,服务小区为n CI,且搜索空间集合为s的候选控制信道的数量,可通过表1中的候选控制信道数量参数确定;对于CSS,
Figure PCTCN2020087651-appb-000011
对于USS,
Figure PCTCN2020087651-appb-000012
为控制信道资源集合p中,搜索空间集合s内,聚合等级为L对应的所有n CI的最大值。若CORESET中一共有24个CCE,对应聚合等级AL=2的搜索空间内候选PDCCH的数量为6,那么每个候选PDCCH的CCE索引号如图6所示。
为了减少终端设备检测PDCCH的复杂度,5G移动通信系统定义了终端设备的盲检测能力的上限。其中,盲检测的能力包括每个时隙内检测的候选PDCCH的数量和无重叠CCE的数量,如表3所示。
表3
子载波宽度(kHz) 每个时隙内候选PDCCH的最大数量 每个时隙内无重叠CCE的最大数量
15 44 56
30 36 56
60 22 48
120 20 32
最大候选PDCCH的数量限制了终端设备进行盲检测译码的复杂度,而无重叠CCE的最大数量限制了终端设备进行信道估计的复杂度。在一个时隙内,终端设备需要根据盲检测能力的上限确定所需要检测的搜索空间集合。
需要说明的是,如果一个搜索空间集合的候选PDCCH与另一个搜索空间集合的候选PDCCH位于同一个CORESET内,且该两个候选PDCCH具有相同的CCE集合(即,包含的CCE的数量相同,且对应的CCE索引相同)以及相同的PDCCH加扰序列(PDCCH scrambling sequence),同时这两个候选PDCCH所承载DCI大小是一样的,那么终端设备可将这两个候选PDCCH计算为同一个检测候选PDCCH(monitored PDCCH candidate)。否则,这两个候选PDCCH就为不同的检测候选PDCCH。
一般而言,如果UE需要在同一个CCE上需要检测同一CORESET的多个候选PDCCH,那么对于这些候选PDCCH,UE将该CCE只计算为同一个无重叠CCE。但注意 的是,如果两个候选PDCCH位于不同的CORESET(比如所在CORESET索引不同)或UE在不同的起始符号上接收对应的候选PDCCH(比如所在CORESET一样,但位于slot内不同的符号位置)时,这两个候选PDCCH的CCE则为相互无重叠(non-overlapped)的CCE。
下面对本申请所涉及的PS信号做简要介绍。
数据包的传输通常是突发性的,在一段时间内存在待传输的数据包,在另一段时间内可能不存在待传输的数据包。因此,5G移动通信系统中的终端设备基于DRX机制接收数据包。在一个DRX周期内,终端设备通常仅在部分时段开启接收电路,检测下行控制信道,从而减小了终端设备的功耗。
图7是一种DRX机制的示意图。
网络设备可以为处于连接态的终端设备配置DRX周期(DRX cycle),每个DRX周期包含一个“持续时间(on duration)”。在持续时间内,终端设备可以检测PDCCH。终端设备在每一个DRX周期的时间起始位置(即,持续时间的时间起始位置)开启一个定时器,该定时器的时间长度即为持续时间的时间长度,该定时器可以称之为或持续时间定时器(drx-onDurationTimer),时长可以为1~1200ms。终端设备在持续时间定时器的时间范围内检测PDCCH。如果在该持续时间定时器的时间范围内终端设备没有检测到PDCCH,那么持续时间定时器到期后终端设备进入睡眠状态,即终端设备在DRX周期的其余时间段内可以关闭接收电路,从而降低功耗。如果在持续时间定时器的时间范围内终端设备检测到了PDCCH,那么终端设备就会开启DRX机制中的非激活定时器(drx-InactivityTimer)。如果在非激活定时器的运行时间内,终端设备又检测到了PDCCH,那么UE会重置(restart)该非激活定时器并重新开始计时。如果非激活定时器正在运行,那么,即使持续时间定时器超时(即持续时间结束),终端设备依然需要继续检测PDCCH,直到非激活定时器超时,如图8所示。
在DRX机制中,还有其它一些定时器,比如DRX下行重传定时器(drx-RetransmissionTimerDL)和DRX上行重传定时器(drx-RetransmissionTimerUL)。如果上述定时器中(包括持续时间定时器、非激活定时器、下行重传定时器、上行重传定时器等)的任意一个正在运行,那么终端设备就会处于激活时间(Active Time)。需要说明的是,还有其它一些情况会让终端设备处于激活时间。在DRX机制中,如果终端设备处于激活时间,那么终端设备就需要检测PDCCH。
在一个DRX周期内,终端设备需要首先从睡眠状态唤醒,开启射频和基带电路,获取时频同步,然后在持续时间内检测PDCCH,这些过程需要不少能耗。而通常情况下,数据传输在时间上往往具有突发性和稀疏性,如果在持续时间内网络设备对终端设备没有任何数据调度的话,那么对于终端设备而言就产生了不必要的能量消耗。所以为了节省功耗,5G移动通信系统引入了节能信号,节能信号也可被称为节能信道(power saving channel)。
终端设备可以在DRX激活时间以外(out of active time)检测节能信号,可以称为在激活时间外传输的节能信号,该节能信号可以起到WUS的作用,如图9所示。
下面以WUS来说明该节能信号的作用:
对于每一个DRX周期中的持续时间,在其起始时域位置之前存在一个WUS时机(WUS  occasion)。网络设备可以在WUS时机内以不连续发送(discontinuous transmission,DTX)形式向终端设备发送WUS(即,节能信号),即,网络设备根据调度数据的需求决定是否在WUS时机内发送WUS。终端设备需要在WUS时机内通过检测WUS来判断网络设备是否发送了WUS。终端设备处于睡眠状态时可以以极低功耗的状态来检测和解调WUS,比如仅开启部分调制解调器的功能或使用一个简单的接收电路。
如图9所示,当终端设备在WUS时机内没有检测到WUS或检测到的WUS指示UE在持续时间内没有数据调度时,终端设备可以直接进入睡眠状态,无需在持续时间内检测PDCCH。如果终端设备在WUS时机内检测到WUS或检测到的WUS指示终端设备在持续时间内有数据调度,那么终端设备就会从睡眠状态苏醒,可以按照前面所述的DRX机制流程启动定时器,检测PDCCH。此时,终端设备需要足够的时间来开启调制解调器的全部功能,使终端设备能够在DRX周期内检测到PDCCH,接收数据信道。因此,WUS时机与持续时间之间存在一段时间,该段时间可以称之为WUS偏移(WUS offset)或间隔值(gap value)。一般用参数T来表示这段时间间距,参数T可由高层信令配置(数值范围为几毫秒到上百毫秒),网络设备可以根据终端设备上报的能力来确定参数T的值。此外,对于在激活时间外传输的节能信号可能包括一些节能信息,节能信息可以为下述信息中的一个或多个:BWP ID;跨时隙或同时隙调度指示(Cross-slot or same-slot scheduling);RS传输指示(包括CSI-RS或TRS);CSI上报指示;单载波或多载波指示(即指示UE是否使用多个载波接收数据);UE是否在DRX激活时间检测PDCCH;UE是否“唤醒”等。
在DRX机制中,如果终端设备在持续时间定时器的运行时间内检测到PDCCH,终端设备就会开启一个非激活定时器。考虑到调度数据的时延需求,非激活定时器的运行时间一般是远大于持续时间定时器的运行时间。终端设备开启或重置非激活定时器后,会在很长的一段的时间内继续检测PDCCH,而这段时间内网络设备对终端设备可能没有任何数据调度,如图10所示,那么对于终端设备而言,这段时间内就产生了不必要的能量消耗。
为了节省功耗,终端设备可以在DRX激活时间以内检测节能信号。在终端设备的持续时间定时器或非激活定时器运行时间(即,激活时间)内,网络设备以DTX形式向终端设备发送节能信号,即,网络设备根据调度数据的需求决定是否发送节能信号。终端设备需要通过检测节能信号来判断网络设备是否发送了节能信号。对于在激活时间内传输的节能信号,同样可能包括一些节能信息,节能信息可以为下述信息中的一个或多个:终端设备需要检测或停止检测PDCCH的CORESET或搜索空间集合或候选PDCCH;终端设备检测搜索空间集合的周期;终端检测PDCCH的周期(PDCCH monitoring periodicity);终端设备停止检测PDCCH一段时间(PDCCH skipping);终端设备接收天线数或多输入多输出(multiple-input multiple-output,MIMO)层数;终端设备需要检测或停止检测PDCCH的载波(比如可以为辅载波,SCell)。下面以节能信号指示终端设备停止检测PDCCH一段时间(PDCCH skipping)为例进行说明。
节能信号可指示终端设备停止检测PDCCH一段时间,该段时间可以称之为“停止时间”(skipping duration)。如图11所示,对于网络设备而言,如果网络设备确定在“节能信号时机”后的一段连续时间内不需要给终端设备调度任何数据以及不需要发送PDCCH,那么网络设备可以给该终端设备发送相应的节能信号。对于终端设备而言,如果该终端设备在“节能信号时机”内检测到节能信号或检测到的节能信号指示终端设备在对应“停止时 间”内没有数据调度时,那么终端设备可以在“停止时间”这段时间内不检测PDCCH,或者终端设备在“停止时间”内的PDCCH检测时机(PDCCH monitoring occasion)上并不检测PDCCH,并进入睡眠状态,但此时UE仍处于激活时间。终端设备可以在“停止时间”时间后进入苏醒状态检测节能信号或PDCCH。如果终端设备在“节能信号时机”内没有检测到节能信号或检测到的节能信号指示终端设备在对应“停止时间”内有数据调度时,那么终端设备就会继续检测PDCCH。通过这种方式,可以减少终端设备不必要的能量消耗。
为了减小终端设备检测节能信号的复杂度,可以将节能信号设计成下行控制信道,可以称这种节能信号为基于PDCCH的节能信号/信道(PDCCH-based power saving signal/channel,下面简称基于PDCCH的节能信号)。基于PDCCH的节能信号可以为UE特定的PDCCH。但考虑到为了减少网络侧资源的消耗,基于PDCCH的节能信号也可以设计为UE组下行控制信道(UE group PDCCH),基站为一组UE配置检测同一个组PDCCH,该组PDCCH承载了组DCI,用于指示该组UE中每个UE的相应的节能信息(比如是否“唤醒”)。组DCI中包含多个信息比特/信息块,每个信息比特/信息块可对应该组UE中的其中一个UE。对于在DRX激活时间以内或以外检测的节能信号,基于PDCCH的节能信号所承载的DCI中的信息域可以包括前面所述节能信息。
在现有NR标准中,UE根据下面所述搜索空间集合(Search space set,SS set)优先级的方法确定所需要检测的SS set,从而不超过最大候选控制信道的数量和最大无重叠CCE的数量。下面解释SS set优先级的含义以及确定所需要检测SS set的方法,这里“检测搜索空间集合”含义为在搜索空间的候选控制信道资源上检测PDCCH。
步骤1:UE首先确定在该slot内有可能需要检测的搜索空间集合;
步骤2:CSS set优先于USS set,即UE优先将CSS set确定为需要检测的SS set,称为CSS set的优先级大于USS set的优先级;
步骤3:在所配置的USS set内,ID编号(见表1)小的搜索空间集合优先于ID编号大的搜索空间集合;
从ID编号最小的USS set开始,UE按照ID编号从小到大的顺序,分别确定与该ID编号对应的USS set是否为需要检测的USS set。对于某个编号的USS set,UE检测该USS set可能会增加UE所需要监测的候选PDCCH的数量以及无重叠CCE的数量,如果UE在该slot上检测所述USS set和已经确定需要检测的SS set(包括CSS set和已经确定需要检测的USS set,优先于所述USS set)时,超过表3中两个指标的任意一项时,UE不会将该USS set确定为需要检测的USS set,且也不会将ID编号大于所述USS set的USS set确定为需要检测的USS set;否则UE将USS set确定为需要检测的USS set。可以称为ID编号小的USS set的优先级大于ID编号大的USS set。
步骤4:基站需要确保CSS set的盲检测复杂度不超过表3中所规定的最大数量值,即UE可将CSS set确定为需要检测的SS set。
在NR中,由于UE需要额外检测基于PDCCH的节能信号的搜索空间集合,根据上面所述现有方法可能会增加某些时隙内UE需要检测的候选PDCCH的数量以及无重叠CCE的数量,会使UE对一些搜索空间集合不进行检测,影响基站对PDSCH的调度或节能信号的发送。因此,终端设备需要一种可靠的方法来检测节能信号。
图12示出了本申请提供的一种检测节能信号的方法。该方法可以应用于终端设备, 该方法包括:
S110,确定第一SS集合和第二SS集合。
第二SS集合的候选下行控制信道资源(即,候选PDCCH)用于传输基于PDCCH的节能信号,其承载的DCI包括节能信息,其DCI格式可以为一种与表2中所有DCI格式不同的一种新的DCI格式,比如为DCI format 3_0等。第一SS集合的候选下行控制信道资源用于传输其它的PDCCH,所述其它的PDCCH与基于PDCCH的节能信号是不同的,其承载的DCI格式为NR R15现有标准中已有的DCI格式,包括表2中的DCI格式,下面以“非节能信号的PDCCH”或“R15PDCCH”来表示。或者,第一SS集合的候选下行控制信道资源用于传输基于PDCCH的节能信号,比如第二SS集合的候选下行控制信道资源用于传输基于UE特定(UE specific)PDCCH的节能信号,第一SS集合的候选下行控制信道资源用于传输基于UE组(UE group)PDCCH的节能信号。下文以第一SS集合的候选下行控制信道资源传输非节能信号的PDCCH为例进行说明,为了简洁,可以将第一SS集合称为新无线(new radio,NR)SS集合,将第二SS集合称为PS SS集合。
终端设备可以同时确定第一SS集合与第二SS集合,也可以先后确定第一SS集合与第二SS集合。确定第一SS集合与第二SS集合的方法可以参考前文表1所述的内容。
S120,根据第一SS集合的优先级确定第二SS集合的优先级,第一SS集合的优先级与所述第二SS集合的优先级相同。
示例性的,基站配置第二SS集合时,配置与第二SS集合相关联的第一SS集合的索引号,UE直接根据第一SS集合的类型(比如为CSS或USS)或ID号确定第二SS集合的优先级。
S130,根据所述第一SS集合的优先级和所述第二SS集合的优先级,确定是否在所述第一SS集合的候选下行控制信道资源上检测第一物理下行控制信道PDCCH,以及,确定是否在所述第二SS集合的候选下行控制信道资源上检测第二PDCCH,所述第二PDCCH用于承载节能信号。
所述第一PDCCH可以为前面所述的“非节能信号的PDCCH”或“R15PDCCH”,或者也可以为承载节能信号的PDCCH。
所述第二PDCCH即为具有节能信号功能的PDCCH,可以理解为前面所述的基于PDCCH的节能信号,其承载的DCI上包括节能信息。
或者,第一PDCCH或第二PDCCH可以为其它的PDCCH,包括“非节能信号的PDCCH”或“R15PDCCH”,或者NR继续演进所新引入的具有其他功能的PDCCH,比如用于基站节能等,这里不做限定。
终端设备可以基于表1中的配置信息确定一个时隙内第一SS集合与第二SS集合中的候选PDCCH的数量以及候选PDCCH的CCE。
UE可根据前面所述SS set优先级的方法来确定是否检测第一SS集合和第二SS集合。下面为示例:
若在一个时隙内,如果UE在该时隙上检测第一SS集合、第二SS集合和已经确定需要检测的SS set(包括CSS set和已经确定需要检测的USS set,优先级大于或等于第一SS集合)时,UE所需要检测候选PDCCH的数量超出表3所示的最大值,或者,UE所需要检测无重叠CCE的数量超出表3所示的最大值,则终端设备可以放弃在该时隙内检测第 一PDCCH和第二PDCCH。比如第一SS集合、第二SS集合均为USS set。
若在一个时隙内,如果UE通过前面所述SS set优先级的方法确定不检测优先级高于第一SS集合的SS set,那么UE在该时隙内不检测第一PDCCH和第二PDCCH。比如第一SS集合、第二SS集合均为USS set。
若在一个时隙内,如果UE在该时隙上检测第一SS集合、第二SS集合和已经确定需要检测的其它SS set(包括CSS set和已经确定需要检测的USS set,优先级大于或等于第一SS集合)时,UE所需要检测候选PDCCH的数量未超出表3所示的最大值,并且,UE需要检测的无重叠CCE的数量未超出表3所示的最大值,则终端设备可以在该时隙内检测第一PDCCH和第二PDCCH。比如第一SS集合为CSS set,由于CSS set优先级最大,UE直接将第一SS集合、第二SS集合确定为需要检测SS set;或者第一集合为ID编号比较小的USS set。
因此,终端设备可以根据PS SS集合的优先级灵活检测第二PDCCH。
终端设备确定第二SS集合的优先级之后,可以在DRX激活时间内第二SS集合的候选下行控制信道资源中检测第二PDCCH。
可选地,第一SS集合和第二SS集合满足以下三个条件中的至少一个:
第一PDCCH承载第一DCI,第二PDCCH承载第二DCI,第一DCI的大小和第二DCI的大小相同。
第一SS集合的候选下行控制信道资源包括第二SS集合的候选下行控制信道资源,第一SS集合和第二SS集合与同一个CORESET相关联,UE在所关联的CORESET内检测第一SS集合和第二SS集合的候选下行控制信道资源中的PDCCH。
第一SS集合与第二SS集合中的候选下行控制信道资源在时隙中的起始符号相同。
第一DCI和第二DCI的大小相同,可以减小终端设备盲检测译码的复杂度。第一SS集合与第二SS集合与同一个CORESET相关联,则第一PDCCH和第二PDCCH的加扰序列相同;此外,第一SS集合的候选下行控制信道资源包括第二SS集合的候选下行控制信道资源,从而可以不用增加终端设备检测候选控制信达的数量,减少盲检测译码的复杂度。第一SS集合与第二SS集合中的候选下行控制信道资源在时隙中的起始符号相同,使得第一SS集合的CCE与第二SS集合的CCE能够作为一个CCE被检测,减小了终端设备进行信道估计的复杂度。满足上述条件的两个SS集合可以称为具有关联关系的SS集合。
因此,应用上述方案能够减小或避免新增的PS SS集合对终端设备盲检测复杂度的影响,有利于终端设备在一个时隙内检测基于PDCCH的节能信号以及其它PDCCH。
UE可通过CRC上所加扰的不同RNTI来区分第一DCI和第二DCI。
可选地,第一SS集合包括m个第一候选下行控制信道,第二SS集合包括M个第二候选下行控制信道,m个第一候选下行控制信道与M个第二候选下行控制信道的聚合等级相同,m和M为正整数,且m≤M,m个第一候选下行控制信道的索引与M个第二候选下行控制信道的前m个候选下行控制信道的索引相同。
比如第二SS集合聚合等级为L的候选PDCCH有m个,而所关联的第一SS集合聚合等级为L的候选PDCCH有M个(m<=M),那么第二SS集合聚合等级为L的候选PDCCH即为所关联的第一SS集合聚合等级为L的m个候选PDCCH(比如编号为0到m-1的候选PDCCH)。
例如,PS SS集合中聚合等级为2的候选PDCCH有2个,该PS SS集合所关联的搜索空间集合(如,NR SS集合)中聚合等级为2的候选PDCCH有6个,如图6所示,那么PS SS集合中聚合等级为2的候选PDCCH即,图6中CCE索引号为2、3对应的候选PDCCH和CCE索引号为6、7对应的候选PDCCH。
可选地,当第二SS集合为USS集合时,第一SS集合为USS集合,第一DCI的格式为格式1_0或格式0_0,且第二DCI的CRC由小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加扰。
由于USS中的PDCCH承载的DCI的大小过大会影响终端设备的检测性能,因此,可以将节能信号的DCI设计为DCI格式1_0或DCI格式0_0,格式1_0或格式0_0对应的DCI大小较小,因此,能够满足终端设备的检测需求。
可选地,当第二SS集合为CSS集合时,第一SS集合为CSS集合,且第一SS集合的类型为以下类型中的一个:类型0、类型0A、类型1、类型2和类型3。
当节能信号对应的CSS集合与另外一个CSS集合(即,第一SS集合)关联时,基于第一SS集合的类型,节能信号的类型可以是上述5种类型中的一个。
例如,当第一SS集合的类型为类型2时,第二SS集合也为类型2的SS集合,并且,节能信号对应的DCI的大小可以与寻呼无线网络临时标识(paging radio network temporary identifier,P-RNTI)加扰的DCI格式1_0对应的DCI大小相同。
例如,当第一SS集合的类型为类型3时,第二SS集合也为类型3的SS集合,并且,节能信号对应的DCI的大小可以与时隙格式指示无线网络临时标识(Slot format indicator radio network temporary identifier,SFI-RNTI)加扰的DCI格式2_0对应的DCI大小相同。
图13示出了本申请提供的另一种检测节能信号的方法。该方法可以应用于终端设备。方法200包括:
S210,确定第一CSS集合。
S220,确定第二CSS集合,第一CSS集合的优先级高于第二CSS集合的优先级。
S230,根据第一CSS集合的优先级和第二CSS集合的优先级,确定是否在第一CSS集合的候选下行控制信道资源上检测第一物理下行控制信道PDCCH,以及,确定是否在第二CSS集合的候选下行控制信道资源上检测第二PDCCH,第二PDCCH用于承载节能信号。
终端设备可以同时确定第一CSS集合与第二CSS集合,也可以先后确定第一CSS集合与第二CSS集合。确定第一CSS集合与第二CSS集合的方法可以参考前文表1所述的内容。
其中第一CSS集合可以为NR R15标准中已有的CSS集合,第一PDCCH上承载的DCI格式可以为DCI格式2_0、2_1、2_2、2_3等在NR R15标准中已有的CSS集合的候选控制信道资源上承载的DCI格式。
终端设备可以基于表1中的配置信息确定一个时隙内第一CSS集合与第二CSS集合中的候选PDCCH的数量以及候选PDCCH的CCE。
若在一个时隙内,如果UE在该时隙上同时检测第一CSS集合和第二CSS集合时,UE所检测的候选PDCCH的数量超出表3所示的最大值,或者,UE所检测的的无重叠CCE的数量超出表3所示的最大值,则终端设备在该时隙内可以检测第一PDCCH,放弃 检测第二PDCCH。
若在一个时隙内,如果UE在该时隙上同时检测第一CSS集合和第二CSS集合时,UE所检测的候选PDCCH的数量未超出表3所示的最大值,并且,UE所检测的无重叠CCE的数量未超出表3所示的最大值,则终端设备可以在该时隙内检测第一PDCCH和二PDCCH。
因此,终端设备可以根据PS CSS集合的优先级灵活检测第二PDCCH,避免因盲检测复杂度超出终端设备的最大盲检测能力导致承载更重要信息(比如系统信息)的NR CSS集合被漏检。
可选地,方法200还包括:
S240,确定第一USS集合.
S250,在第一USS集合的候选下行控制信道资源上检测第三PDCCH,
其中,第一USS集合的优先级低于第二CSS集合的优先级,或者,
第一USS集合的优先级高于第二CSS集合的优先级,且,第一USS集合的优先级低于第一CSS集合的优先级。
网络设备或通信协议可以根据节能信号对应的DCI所承载的内容来决定NR USS集合和PS CSS集合的优先级大小。
所述第三PDCCH与第一PDCCH具有相同的特征,可以为“非节能信号的PDCCH”或“R15PDCCH”,或者也可以为承载节能信号的PDCCH;
其中第一USS集合可以为NR R15标准中已有的USS集合,第三PDCCH上承载的DCI格式可以为DCI格式0_1、1_1等在NR R15标准中已有的USS集合的候选控制信道资源上承载的DCI格式。
若节能信号对应的DCI所承载的内容比较重要,比如该DCI中包含一组UE所共享的节能信息,比如该组UE需要检测PDCCH的载波组,或者触发一组UE同时“唤醒”进入DRX激活时间,则网络设备或通信协议可以设置(比如预定义或高层信令配置)上述几个SS的优先级先后顺序为:第一CSS set>第二CSS set>第一USS set。
若节能信号对应的DCI所承载的内容的重要性一般,比如该DCI中包含一组UE中每个UE不同的节能信息,比如有些UE的节能信息为BWP ID,有些UE的节能信息为CSI上报等,则网络设备或通信协议可以设置(比如预定义或高层信令配置)上述几个SS的优先级先后顺序为:第一CSS set>第一USS set>第二CSS set。
UE可在此优先级的基础上根据前面所述SS set优先级的方法来确定是否检测第二CSS集合和第一USS集合。
可选地,方法200还包括:
S260,根据第二CSS集合的索引号的大小和第一USS集合的索引号大小确定所述第二CSS集合和所述第一USS集合的优先级。
网络设备或通信协议可以通过第二CSS集合的索引号和第一USS集合的索引号配置该两个SS集合的优先级。例如,网络设备或通信协议可以为第二CSS集合配置较小的索引号,并且为第一USS集合配置较大的索引号,使得第二CSS集合的优先级高于第一USS集合的优先级;或者,网络设备或通信协议可以为第二CSS集合配置较大的索引号,并且为第一USS集合配置较小的索引号,使得第二CSS集合的优先级低于第一USS集合的 优先级。
UE在确定所需要检测的SS set时,第一CSS set优先于第一USS set和第二CSS set,即UE优先将第一CSS set确定为需要检测的SS set;而在所配置的第一USS set(包括多个第一USS set)和第二CSS set内,ID编号(见表1)小的搜索空间集合优先于ID编号大的搜索空间集合;其余步骤与前面所述SS set优先级的方法相同。
可选地,方法200还包括:
S270,确定第二USS集合。
S280,在第二USS集合的候选下行控制信道资源上检测第四PDCCH,第四PDCCH用于承载节能信号,所述第四PDCCH与前面所述第二PDCCH具有相同的特征;
其中,第二USS集合的优先级低于第一USS集合的优先级。
终端设备还可以在USS集合的候选下行控制信道资源上检测承载节能信号的PDCCH,即,第四PDCCH。为了避免终端设备检测第四PDCCH影响网络设备对数据的调度,导致数据包的时延增大以及吞吐率减小,网络设备或通信协议可以配置第二USS集合的优先级低于第一USS集合的优先级。例如,第一CSS集合、第一USS集合和第二USS集合的优先级顺序可以为:第一CSS集合>第一USS集合>第二USS集合。如果UE需要同时检测第二USS set和第二CSS set,优先级可以为第一CSS集合>第二CSS集合>第一USS集合>第二USS集合或第一CSS集合>第一USS集合>第二CSS集合>第二USS集合。
当然,可选的,第二USS集合的优先级可以高于第一USS集合的优先级。
网络设备或通信协议还可以配置第二USS集合的索引号,例如,第二USS集合的索引号为第一USS集合的索引号和第二USS集合的索引号中的最大值。
可选的,第二USS集合的索引号为第一USS集合的索引号和第二USS集合的索引号中的最小值。
终端设备确定第二CSS集合的优先级之后,可以在DRX激活时间内第二CSS集合和第二USS集合的候选下行控制信道资源上检测PDCCH。
本申请还提供了一个实施例。对于在DRX激活时间外传输的节能信号,由于在现有通信协议中,终端设备在DRX激活时间外只需要检测SI-RNTI、随机接入(random access,RA)-RNTI、临时小区(temporary cell,TC)-RNTI以及P-RNTI加扰的DCI,即,终端设备只需要检测这些RNTI所对应的CSS集合(类型0/0A/1/2)的候选控制信道资源,因此当终端设备需要额外检测PS SS集合时,超过表3中两个上限中的任意一项的可能性很小。因此,当终端设备需要在DRX激活时间外检测PS SS集合时,标准可以规定网络设备需要确保终端设备在DRX激活时间外的时隙内检测所有SS集合时,所检测的候选PDCCH的数目和无重叠CCE的数量不超过对应的最大数量即可。
因此,在DRX激活时间外,终端设备在时隙内不需要根据SS集合的优先级检测承载节能信号的候选PDCCH,直接在该时隙上检测所有搜索空间集合。
上文主要从终端设备的角度描述了本申请提供的通信方法,网络设备的处理过程与终端设备的处理过程具有对应关系,例如,终端设备检测PDCCH,意味着网络设备可能发送了该PDCCH。因此,即使上文个别地方未明确写明网络设备的处理过程,本领域技术人员也可以基于终端设备的处理过程清楚地了解网络设备的处理过程。
上文详细介绍了本申请提供的通信方法的示例。可以理解的是,通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图14示出了本申请提供的一种通信装置的结构示意图。通信装置1400可用于实现上述方法实施例中描述的方法。该通信装置1400可以是芯片、网络设备或终端设备。
通信装置1400包括一个或多个处理器1401,该一个或多个处理器1401可支持通信装置1400实现图13或图14所对应方法实施例中的方法。处理器1401可以是通用处理器或者专用处理器。例如,处理器1401可以是中央处理器(central processing unit,CPU)或基带处理器。基带处理器可以用于处理通信数据(例如,上文所述的节能信号),CPU可以用于对通信装置(例如,网络设备、终端设备或芯片)进行控制,执行软件程序,处理软件程序的数据。通信装置1400还可以包括收发单元1405,用以实现信号的输入(接收)和输出(发送)。
例如,通信装置1400可以是芯片,收发单元1405可以是该芯片的输入和/或输出电路,或者,收发单元1405可以是该芯片的通信接口,该芯片可以作为终端设备或网络设备或其它无线通信设备的组成部分。
通信装置1400中可以包括一个或多个存储器1402,其上存有程序1404,程序1404可被处理器1401运行,生成指令1403,使得处理器1401根据指令1403执行上述方法实施例中描述的方法。可选地,存储器1402中还可以存储有数据。可选地,处理器1401还可以读取存储器1402中存储的数据,该数据可以与程序1404存储在相同的存储地址,该数据也可以与程序1404存储在不同的存储地址。
处理器1401和存储器1402可以单独设置,也可以集成在一起,例如,集成在单板或者系统级芯片(system on chip,SOC)上。
通信装置1400还可以包括收发单元1405以及天线1406。收发单元1405可以称为收发机、收发电路或者收发器,用于通过天线1406实现通信装置的收发功能。
在一种可能的设计中,处理器1401用于执行:
确定第一CSS集合;
确定第二CSS集合,所述第一CSS集合的优先级高于所述第二CSS集合的优先级;
根据所述第一CSS集合的优先级和所述第二CSS集合的优先级,确定是否在所述第一CSS集合的候选下行控制信道资源上检测第一物理下行控制信道PDCCH,以及,确定是否在所述第二CSS集合的候选下行控制信道资源上检测第二PDCCH,所述第二PDCCH 用于承载节能信号。
可选地,处理器1401还用于通过收发单元1405以及天线1406执行:
在DRX激活时间内的第二SS集合的候选下行控制信道资源上检测第一PDCCH。
在另一种可能的设计中,处理器1401用于执行:
确定第一CSS集合;
确定第二CSS集合,所述第一CSS集合的优先级高于所述第二CSS集合的优先级;
根据所述第一CSS集合的优先级和所述第二CSS集合的优先级,确定是否在所述第一CSS集合的候选下行控制信道资源上检测第一PDCCH,以及,确定是否在所述第二CSS集合的候选下行控制信道资源上检测第二PDCCH,所述第二PDCCH用于承载节能信号。
可选地,处理器1401还用于执行:确定第一USS集合;
处理器1401还用于通过收发单元1405以及天线1406执行:在所述第一USS集合的候选下行控制信道资源上检测第三PDCCH;
其中,所述第一USS集合的优先级低于所述第二CSS集合的优先级,或者,
所述第一USS集合的优先级高于所述第二CSS集合的优先级,且,所述第一USS集合的优先级低于所述第一CSS集合的优先级。
可选地,处理器1401还用于执行:根据所述第二CSS集合的索引号的大小和所述第一USS集合的索引号大小确定所述第二CSS集合和所述第一USS集合的优先级。
可选地,处理器1401还用于执行:确定第二USS集合;
处理器1401还用于通过收发单元1405以及天线1406执行:在所述第二USS集合的候选下行控制信道资源上检测第四PDCCH,所述第四PDCCH用于承载节能信号;
其中,所述第二USS集合的优先级低于所述第一USS集合的优先级。
可选地,处理器1401还用于通过收发单元1405以及天线1406执行:在DRX激活时间内的所述第二CSS集合和所述第二USS集合的候选下行控制信道资源上检测所述第二PDCCH和所述第四PDCCH。
在另一种可能的设计中,处理器1401用于执行:
确定第一CSS集合;
确定第二CSS集合,所述第一CSS集合的优先级高于所述第二CSS集合的优先级;
根据所述第一CSS集合的优先级和所述第二CSS集合的优先级,确定是否在所述第一CSS集合的候选下行控制信道资源上发送第一物理下行控制信道PDCCH,以及,确定是否在所述第二CSS集合的候选下行控制信道资源上发送第二PDCCH,所述第二PDCCH用于承载节能信号。
可选地,处理器1401还用于通过收发单元1405以及天线1406执行:
在DRX激活时间内的第二SS集合的候选下行控制信道资源上发送第一PDCCH。
在另一种可能的设计中,处理器1401用于执行:
确定第一CSS集合;
确定第二CSS集合,所述第一CSS集合的优先级高于所述第二CSS集合的优先级;
根据所述第一CSS集合的优先级和所述第二CSS集合的优先级,确定是否在所述第一CSS集合的候选下行控制信道资源上发送第一PDCCH,以及,确定是否在所述第二 CSS集合的候选下行控制信道资源上发送第二PDCCH,所述第二PDCCH用于承载节能信号。
可选地,处理器1401还用于执行:确定第一USS集合;
处理器1401还用于通过收发单元1405以及天线1406执行:在所述第一USS集合的候选下行控制信道资源上发送第三PDCCH;
其中,所述第一USS集合的优先级低于所述第二CSS集合的优先级,或者,
所述第一USS集合的优先级高于所述第二CSS集合的优先级,且,所述第一USS集合的优先级低于所述第一CSS集合的优先级。
可选地,处理器1401还用于执行:根据所述第二CSS集合的索引号的大小和所述第一USS集合的索引号大小确定所述第二CSS集合和所述第一USS集合的优先级。
可选地,处理器1401还用于执行:确定第二USS集合;
处理器1401还用于通过收发单元1405以及天线1406执行:在所述第二USS集合的候选下行控制信道资源上发送第四PDCCH,所述第四PDCCH用于承载节能信号;
其中,所述第二USS集合的优先级低于所述第一USS集合的优先级。
可选地,处理器1401还用于通过收发单元1405以及天线1406执行:在DRX激活时间内的所述第二CSS集合和所述第二USS集合的候选下行控制信道资源上发送所述第二PDCCH和所述第四PDCCH。
在各个搜索空间检测或发送节能信号的具体方式可以参见上述方法实施例中的相关描述。
应理解,上述方法实施例的各步骤可以通过处理器1401中的硬件形式的逻辑电路或者软件形式的指令完成。处理器1401可以是CPU、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器1401执行时实现本申请中任一方法实施例所述的通信方法。
该计算机程序产品可以存储在存储器1402中,例如是程序1404,程序1404经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器1401执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的通信方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器1402。存储器1402可以是易失性存储器或非易失性存储器,或者,存储器1402可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM, SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
在通信装置1400为终端设备的情况下,图15示出了本申请提供的一种终端设备的结构示意图。该终端设备1500可适用于图1所示的系统中,实现上述方法实施例中终端设备的功能。为了便于说明,图15仅示出了终端设备的主要部件。
如图15所示,终端设备1500包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及用于对整个终端设备进行控制。例如,处理器通过天线和控制电路接收节能信号。存储器主要用于存储程序和数据,例如存储通信协议和待发送数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置例如是触摸屏或键盘,主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器中的程序,解释并执行该程序所包含的指令,处理程序中的数据。当需要通过天线发送信息时,处理器对待发送的信息进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后得到射频信号,并将射频信号通过天线以电磁波的形式向外发送。当承载信息的电磁波(即,射频信号)到达终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为信息并对该信息进行处理。
本领域技术人员可以理解,为了便于说明,图15仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请对此不做限定。
作为一种可选的实现方式,图15中的处理器可以集成基带处理器和CPU的功能,本领域技术人员可以理解,基带处理器和CPU也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个CPU以增强其处理能力,终端设备的各个部件可以通过各种总线连接。基带处理器也可以被称为基带处理电路或者基带处理芯片。CPU也可以被称为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以程序的形式存储在存储器中,由处理器执行存储器中的程序以实现基带处理功能。
在本申请中,可以将具有收发功能的天线和控制电路视为终端设备1500的收发单元1501,用于支持终端设备实现方法实施例中的接收功能,或者,用于支持终端设备实现方法实施例中的发送功能。将具有处理功能的处理器视为终端设备1500的处理单元1502。如图15所示,终端设备1500包括收发单元1501和处理单元1502。收发单元也可以称为收发器、收发机、收发装置等。可选地,可以将收发单元1501中用于实现接收功能的器件视为接收单元,将收发单元1501中用于实现发送功能的器件视为发送单元,即收发单元1501包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等, 发送单元可以称为发射机、发射器或者发射电路等。
处理器1502可用于执行存储器存储的程序,以控制收发单元1501接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元1501的功能可以考虑通过收发电路或者收发专用芯片实现。
在通信装置1400为网络设备的情况下,图16是本申请提供的一种网络设备的结构示意图,该网络设备例如可以为基站。如图16所示,该基站可应用于如图1所示的系统中,实现上述方法实施例中网络设备的功能。基站1600可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1601和至少一个基带单元(baseband unit,BBU)1602。其中,BBU1602可以包括分布式单元(distributed unit,DU),也可以包括DU和集中单元(central unit,CU)。
RRU1601可以称为收发单元、收发机、收发电路或者收发器,其可以包括至少一个天线16011和射频单元16012。RRU1601主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于支持基站实现方法实施例中的发送功能和接收功能。BBU1602主要用于进行基带处理,对基站进行控制等。RRU1601与BBU1602可以是物理上设置在一起的,也可以物理上分离设置的,即分布式基站。
BBU1602也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如,BBU1602可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
BBU1602可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(例如,长期演进(long term evolution,LTE)网),也可以分别支持不同接入制式的无线接入网(如LTE网和NR网)。BBU1602还包括存储器16021和处理器16022,存储器16021用于存储必要的指令和数据。例如,存储器16021存储上述方法实施例中的节能信号。处理器16022用于控制基站进行必要的动作,例如,用于控制基站执行上述方法实施例中的操作流程。存储器16021和处理器16022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表 示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。此外,“……中的至少一个”表示所列出的各项之一或其任意组合,例如,“A、B和C中的至少一个”表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在A和C,同时存在B和C,同时存在A、B和C这六种情况。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (31)

  1. 一种检测下行控制信道的方法,其特征在于,包括:
    确定第一搜索空间SS集合和第二SS集合;
    根据所述第一SS集合的优先级确定第二SS集合的优先级,所述第一SS集合的优先级与所述第二SS集合的优先级相同;
    根据所述第一SS集合的优先级和所述第二SS集合的优先级,确定是否在所述第一SS集合的候选下行控制信道资源上检测第一物理下行控制信道PDCCH,以及,确定是否在所述第二SS集合的候选下行控制信道资源上检测第二PDCCH,所述第二PDCCH用于承载节能信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一PDCCH承载第一下行控制信息DCI,所述第二PDCCH承载第二DCI,所述第一DCI的大小和所述第二DCI的大小相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一SS集合的候选下行控制信道资源包括所述第二SS集合的候选下行控制信道资源,所述第一SS集合和所述第二SS集合与同一个控制资源集合CORESET相关联。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一SS集合与所述第二SS集合中的候选下行控制信道资源在时隙中的起始符号相同。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,当所述第二SS集合为专用搜索空间USS集合时,所述第一SS集合为USS集合,所述第一DCI的格式为格式1_0或格式0_0,且所述第二DCI的循环冗余校验CRC由小区无线网络临时标识C-RNTI加扰。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,当所述第二SS集合为公共搜索空间CSS集合时,所述第一SS集合为CSS集合,且所述第一SS集合的类型为以下类型中的一个:类型0、类型0A、类型1、类型2和类型3。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一SS集合包括m个第一候选下行控制信道,所述第二SS集合包括M个第二候选下行控制信道,所述m个第一候选下行控制信道与所述M个第二候选下行控制信道的聚合等级相同,m和M为正整数,且m≤M,所述m个第一候选下行控制信道的索引与所述M个第二候选下行控制信道的前m个候选下行控制信道的索引相同。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,还包括:
    在非连续接收DRX激活时间内所述第二SS集合的候选下行控制信道资源上检测所述第二PDCCH。
  9. 一种检测下行控制信道的方法,其特征在于,包括:
    确定第一公共搜索空间CSS集合;
    确定第二CSS集合,所述第一CSS集合的优先级高于所述第二CSS集合的优先级;
    根据所述第一CSS集合的优先级和所述第二CSS集合的优先级,确定是否在所述第一CSS集合的候选下行控制信道资源上检测第一物理下行控制信道PDCCH,以及,确定是否在所述第二CSS集合的候选下行控制信道资源上检测第二PDCCH,所述第二PDCCH 用于承载节能信号。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    确定第一专用搜索空间USS集合;
    在所述第一USS集合的候选下行控制信道资源上检测第三PDCCH;
    其中,所述第一USS集合的优先级低于所述第二CSS集合的优先级,或者,
    所述第一USS集合的优先级高于所述第二CSS集合的优先级,且,所述第一USS集合的优先级低于所述第一CSS集合的优先级。
  11. 根据权利要求10所述的方法,其特征在于,还包括:
    根据所述第二CSS集合的索引号的大小和所述第一USS集合的索引号大小确定所述第二CSS集合和所述第一USS集合的优先级。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,还包括:
    确定第二USS集合;
    在所述第二USS集合的候选下行控制信道资源上检测第四PDCCH,所述第四PDCCH用于承载节能信号;
    其中,所述第二USS集合的优先级低于所述第一USS集合的优先级。
  13. 根据权利要求12所述的方法,其特征在于,所述第二USS集合的标识为所述第一USS集合的标识和所述第二USS集合的标识中的最大值。
  14. 根据权利要求12或13所述的方法,其特征在于,还包括:
    在非连续接收DRX激活时间内所述第二CSS集合和所述第二USS集合的候选下行控制信道资源上检测所述第二PDCCH和所述第四PDCCH。
  15. 一种发送下行控制信道的方法,其特征在于,包括:
    确定第一搜索空间SS集合和第二SS集合;
    根据所述第一SS集合的优先级确定第二SS集合的优先级,所述第一SS集合的优先级与所述第二SS集合的优先级相同;
    根据所述第一SS集合的优先级和所述第二SS集合的优先级,确定是否在所述第一SS集合的候选下行控制信道资源上发送第一物理下行控制信道PDCCH,以及,确定是否在所述第二SS集合的候选下行控制信道资源上发送第二PDCCH,所述第二PDCCH用于承载节能信号。
  16. 根据权利要求15所述的方法,其特征在于,所述第一PDCCH承载第一下行控制信息DCI,所述第二PDCCH承载第二DCI,所述第一DCI的大小和所述第二DCI的大小相同。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一SS集合的候选下行控制信道资源包括所述第二SS集合的候选下行控制信道资源,所述第一SS集合和所述第二SS集合与同一个控制资源集合CORESET相关联。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述第一SS集合与所述第二SS集合中的候选下行控制信道资源在时隙中的起始符号相同。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,当所述第二SS集合为专用搜索空间USS集合时,所述第一SS集合为USS集合,所述第一DCI的格式为格式1_0或格式0_0,且所述第二DCI的循环冗余校验CRC由小区无线网络临时标识C-RNTI 加扰。
  20. 根据权利要求15至18中任一项所述的方法,其特征在于,当所述第二SS集合为公共搜索空间CSS集合时,所述第一SS集合为CSS集合,且所述第一SS集合的类型为以下类型中的一个:类型0、类型0A、类型1、类型2和类型3。
  21. 根据权利要求15至20中任一项所述的方法,其特征在于,所述第一SS集合包括m个第一候选下行控制信道,所述第二SS集合包括M个第二候选下行控制信道,所述m个第一候选下行控制信道与所述M个第二候选下行控制信道的聚合等级相同,m和M为正整数,且m≤M,所述m个第一候选下行控制信道的索引与所述M个第二候选下行控制信道的前m个候选下行控制信道的索引相同。
  22. 根据权利要求15至21中任一项所述的方法,其特征在于,还包括:
    在非连续接收DRX激活时间内所述第二SS集合的候选下行控制信道资源上发送所述第二PDCCH。
  23. 一种发送下行控制信道的方法,其特征在于,包括:
    确定第一公共搜索空间CSS集合;
    确定第二CSS集合,所述第一CSS集合的优先级高于所述第二CSS集合的优先级;
    根据所述第一CSS集合的优先级和所述第二CSS集合的优先级,确定是否在所述第一CSS集合的候选下行控制信道资源上发送第一物理下行控制信道PDCCH,以及,确定是否在所述第二CSS集合的候选下行控制信道资源上发送第二PDCCH,所述第二PDCCH用于承载节能信号。
  24. 根据权利要求23所述的方法,其特征在于,还包括:
    确定第一专用搜索空间USS集合;
    在所述第一USS集合的候选下行控制信道资源上发送第三PDCCH;
    其中,所述第一USS集合的优先级低于所述第二CSS集合的优先级,或者,
    所述第一USS集合的优先级高于所述第二CSS集合的优先级,且,所述第一USS集合的优先级低于所述第一CSS集合的优先级。
  25. 根据权利要求24所述的方法,其特征在于,还包括:
    根据所述第二CSS集合的索引号的大小和所述第一USS集合的索引号大小确定所述第二CSS集合和所述第一USS集合的优先级。
  26. 根据权利要求23至25中任一项所述的方法,其特征在于,还包括:
    确定第二USS集合;
    在所述第二USS集合的候选下行控制信道资源上发送第四PDCCH,所述第四PDCCH用于承载节能信号;
    其中,所述第二USS集合的优先级低于所述第一USS集合的优先级。
  27. 根据权利要求26所述的方法,其特征在于,所述第二USS集合的标识为所述第所述第一USS集合的标识和所述第二USS集合的标识中的最大值。
  28. 根据权利要求26或27所述的方法,其特征在于,还包括:
    在非连续接收DRX激活时间内所述第二CSS集合和所述第二USS集合的候选下行控制信道资源上发送所述第二PDCCH和所述第四PDCCH。
  29. 一种通信装置,其特征在于,包括:用于执行如权利要求1至8中任一项所述的 方法的模块,或用于执行如权利要求9至14中任一项所述的方法的模块,或用于执行如权利要求15至22中任一项所述的方法的模块,或用于执行如权利要求23至28中任一项所述的方法的模块。
  30. 一种通信装置,其特征在于,包括处理器和接口电路,
    所述接口电路用于:接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器,或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置;
    所述处理器用于:通过逻辑电路或执行代码指令用于实现:如权利要求1至8中任一项所述的方法,或如权利要求9至14中任一项所述的方法,或如权利要求15至22中任一项所述的方法,或如权利要求11至21中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有程序或指令,当所述程序或指令被运行时,实现如权利要求1至8中任一项所述的方法,或如权利要求9至14中任一项所述的方法,或如权利要求15至22中任一项所述的方法,或如权利要求11至21中任一项所述的方法。
PCT/CN2020/087651 2019-04-30 2020-04-29 检测或发送下行控制信道的方法和装置 WO2020221268A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20799012.8A EP3958621B1 (en) 2019-04-30 2020-04-29 Method and device for detecting or transmitting downlink control channel
US17/514,666 US20220053470A1 (en) 2019-04-30 2021-10-29 Downlink control channel monitoring or sending method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910364602.8A CN111867015B (zh) 2019-04-30 2019-04-30 检测或发送下行控制信道的方法和装置
CN201910364602.8 2019-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/514,666 Continuation US20220053470A1 (en) 2019-04-30 2021-10-29 Downlink control channel monitoring or sending method and apparatus

Publications (1)

Publication Number Publication Date
WO2020221268A1 true WO2020221268A1 (zh) 2020-11-05

Family

ID=72965760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087651 WO2020221268A1 (zh) 2019-04-30 2020-04-29 检测或发送下行控制信道的方法和装置

Country Status (4)

Country Link
US (1) US20220053470A1 (zh)
EP (1) EP3958621B1 (zh)
CN (1) CN111867015B (zh)
WO (1) WO2020221268A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111601370B (zh) * 2019-05-10 2021-03-23 维沃移动通信有限公司 信息确定方法及用户设备
CN114760705A (zh) * 2021-01-08 2022-07-15 大唐移动通信设备有限公司 接收pdsch的方法、装置及处理器可读存储介质
EP4275440A1 (en) * 2021-01-09 2023-11-15 Qualcomm Incorporated Dci sizes limit and dropping rule for reduced capability ue
KR102514448B1 (ko) * 2021-01-18 2023-03-29 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US20220321285A1 (en) * 2021-04-01 2022-10-06 Qualcomm Incorporated Downlink channel repetition for common search space sets
CN113841347A (zh) * 2021-08-20 2021-12-24 北京小米移动软件有限公司 物理下行控制信道监测方法、装置及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180368112A1 (en) * 2017-06-15 2018-12-20 Apple Inc. Control Channel for UE Power Saving
CN109496446A (zh) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 信道监听方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203627A1 (ko) * 2017-05-02 2018-11-08 엘지전자(주) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
US11153862B2 (en) * 2018-03-22 2021-10-19 Apple Inc. Physical downlink control channel (PDCCH) blind decoding in fifth generation (5G) new radio (NR) systems
US10952199B2 (en) * 2018-03-23 2021-03-16 Samsung Electronics Co., Ltd Method and apparatus for transmitting downlink control information in wireless communication system
US10880879B2 (en) * 2018-03-23 2020-12-29 Samsung Electronics Co., Ltd Method and apparatus for transmitting downlink control information in wireless communication system
EP3629645A4 (en) * 2018-05-09 2020-10-14 LG Electronics Inc. METHOD OF MONITORING BY A TERMINAL OF A CONTROL CHANNEL IN A WIRELESS COMMUNICATION SYSTEM AND TERMINAL USING THE PROCESS
KR20190129721A (ko) * 2018-05-11 2019-11-20 한국전자통신연구원 고신뢰 및 저지연 통신을 위한 신호의 송수신 방법
US11653301B2 (en) * 2018-08-10 2023-05-16 Mediatek Inc. Wake-up signal and preamble design for mobile communications
KR102586001B1 (ko) * 2018-09-21 2023-10-10 삼성전자주식회사 무선 통신 시스템에서 우선 순위를 고려한 물리계층 채널 송수신 방법 및 장치
US11297569B2 (en) * 2018-10-05 2022-04-05 Qualcomm Incorporated Wakeup signaling resource occasions
CN109495234B (zh) * 2019-01-08 2021-07-06 武汉虹信科技发展有限责任公司 一种物理下行控制信道的检测方法及装置
CN111278027B (zh) * 2019-02-02 2021-11-30 维沃移动通信有限公司 节能信号检测方法、资源确定方法及相关设备
US10887839B2 (en) * 2019-03-29 2021-01-05 Qualcomm Incorporated Search space set for wakeup signal
US20220216972A1 (en) * 2019-04-25 2022-07-07 Ntt Docomo, Inc. User terminal and radio communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180368112A1 (en) * 2017-06-15 2018-12-20 Apple Inc. Control Channel for UE Power Saving
CN109496446A (zh) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 信道监听方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "PDCCH Based Power Saving Signal/Channel", 3GPP TSG RAN WG1 MEETING #96BIS R1-1903988, 2 April 2019 (2019-04-02), XP051707079 *
ZTE: "Discussion on PDCCH-based Power Saving Signal", 3GPP TSG RAN WG1 #96BIS R1-1905045, 3 April 2019 (2019-04-03), XP051707372 *

Also Published As

Publication number Publication date
CN111867015A (zh) 2020-10-30
EP3958621B1 (en) 2023-09-13
EP3958621A4 (en) 2022-07-13
CN111867015B (zh) 2023-11-17
EP3958621A1 (en) 2022-02-23
US20220053470A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2020221268A1 (zh) 检测或发送下行控制信道的方法和装置
US20220279479A1 (en) User Equipment (UE) Grouping Criteria and Mechanisms for False Paging Reduction
US20220116875A1 (en) Wake-Up Signal (WUS) Controlled Actions
US20220022174A1 (en) Wireless communication method, terminal device, and network device
WO2020094110A1 (zh) 接收信号的方法、发送信号的方法及其装置
EP3606153A1 (en) Terminal device, base station device, communication method, and integrated circuit
CN111435897A (zh) 信息传输的方法和通信装置
US11184142B2 (en) Discontinuous reception for carrier aggregation
CN111405642B (zh) 一种消息发送方法、接收方法、装置和设备
WO2020143551A1 (zh) 一种信道检测方法及设备
US20210345249A1 (en) Communications method and apparatus
US20210337477A1 (en) Communication method and apparatus
CN114390655B (zh) 无线通信中的节能方案
CN116248241A (zh) 一种通信方法及设备
CN111372302B (zh) 一种通信方法及设备
US20230199716A1 (en) Wireless communication method, and terminal and network device
EP4152859A1 (en) Communication method, apparatus and system
WO2022141299A1 (zh) 参考信号资源的传输方法、设备及存储介质
WO2020088455A1 (zh) 通信方法和通信装置
CN111436099A (zh) 通信方法和通信装置
WO2020200119A1 (zh) 一种信号检测方法及设备
US20220086762A1 (en) Method for transmitting power-saving information, terminal device, and network device
KR20200029358A (ko) 비면허 대역에서 신호의 송수신을 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020799012

Country of ref document: EP

Effective date: 20211117