WO2023159474A1 - 信息传输方法、终端设备和网络设备 - Google Patents

信息传输方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023159474A1
WO2023159474A1 PCT/CN2022/077944 CN2022077944W WO2023159474A1 WO 2023159474 A1 WO2023159474 A1 WO 2023159474A1 CN 2022077944 W CN2022077944 W CN 2022077944W WO 2023159474 A1 WO2023159474 A1 WO 2023159474A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal device
wus
network device
information
Prior art date
Application number
PCT/CN2022/077944
Other languages
English (en)
French (fr)
Inventor
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/077944 priority Critical patent/WO2023159474A1/zh
Publication of WO2023159474A1 publication Critical patent/WO2023159474A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the communication field, and more specifically, to an information transmission method, terminal equipment, network equipment, computer-readable storage medium, computer program product and computer program.
  • Embodiments of the present application provide an information transmission method, a terminal device, a network device, a computer-readable storage medium, a computer program product, and a computer program.
  • An embodiment of the present application provides an information transmission method, including:
  • the terminal device monitors the wake-up signal WUS
  • the WUS includes N signal parts; N is an integer greater than or equal to 1.
  • An embodiment of the present application provides an information transmission method, including:
  • the network device sends a wake-up signal WUS
  • the WUS includes N signal parts; N is an integer greater than or equal to 1.
  • An embodiment of the present application provides a terminal device, including:
  • the first communication unit is configured to monitor the wake-up signal WUS;
  • the WUS includes N signal parts; N is an integer greater than or equal to 1.
  • An embodiment of the present application provides a network device, including:
  • the second communication unit is used to send a wake-up signal WUS;
  • the WUS includes N signal parts; N is an integer greater than or equal to 1.
  • An embodiment of the present application provides a chip configured to implement the foregoing method.
  • the chip includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned method.
  • An embodiment of the present application provides a computer-readable storage medium for storing a computer program, and when the computer program is run by a device, the device is made to execute the above method.
  • An embodiment of the present application provides a computer program product, including computer program instructions, where the computer program instructions cause a computer to execute the foregoing method.
  • An embodiment of the present application provides a computer program that, when running on a computer, causes the computer to execute the above method.
  • the WUS monitored by the terminal device can carry N signal parts, so that the content that the WUS can carry can be divided, so that the WUS can be more flexible while ensuring the energy saving of the terminal device
  • the corresponding signal part is carried, so that it can be more flexibly applied to more scenarios.
  • Fig. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a scenario according to a processing manner of introducing an energy-saving signal in DRX.
  • Fig. 3 is a scene diagram of receiving a paging message according to waking up a terminal device through an energy-saving signal.
  • Fig. 4 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a composition of a terminal device according to an embodiment of the present application.
  • FIG. 6 and FIG. 7 are two schematic diagrams of components of a WUS according to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of an OOK signal generated based on multiple target subcarriers on an OFDM symbol according to yet another embodiment of the present application.
  • Fig. 9 is another schematic flowchart of an information transmission method according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 12 is another schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent ( Standalone, SA) network deployment scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA Standalone
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to Licensed spectrum, where the licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STAION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolutional Node B, eNB or eNodeB
  • gNB network equipment in the network or the network equipment in the future evolved PLMN network or the network equipment in the NTN network, etc.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • FIG. 1 exemplarily shows a communication system 100 .
  • the communication system includes a network device 110 and two terminal devices 120 .
  • the communication system 100 may include multiple network devices 110, and each network device 110 may include other numbers of terminal devices 120 within the coverage area, which is not limited in this embodiment of the present application.
  • the communication system 100 may also include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF), etc.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the network equipment may further include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks for communicating with access network devices.
  • the access network device may be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system or an authorized auxiliary access long-term evolution (LAA- Evolved base station (evolutional node B, abbreviated as eNB or e-NodeB) macro base station, micro base station (also called “small base station”), pico base station, access point (access point, AP), Transmission point (transmission point, TP) or new generation base station (new generation Node B, gNodeB), etc.
  • LTE long-term evolution
  • NR next-generation
  • LAA- Evolved base station evolutional node B, abbreviated as eNB or e-NodeB
  • eNB next-generation
  • NR next-generation
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include network equipment and terminal equipment with communication functions. It may include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra Reliable Low Latency Communications
  • mMTC Massive Machine Type Communications
  • eMBB is aimed at users to obtain multimedia content, services and data, and its demand is growing rapidly; since eMBB may be deployed in different scenarios, such as indoors, urban areas, rural areas, etc., its capabilities and requirements vary greatly , so it must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, electric power automation, telemedicine operations (surgery), traffic safety guarantee, etc.
  • the typical characteristics of mMTC include: high connection density, small data volume, delay-insensitive services, low cost and long service life, etc.
  • RRC_INACTIVE Radio Resource Control
  • RRC_IDLE RRC idle state
  • RRC_ACTIVE RRC active state
  • RRC_CONNECTED RRC connected state
  • the energy-saving signal can be used in combination with the DRX mechanism.
  • the processing method for introducing the energy-saving signal may specifically include: the terminal device receives the energy-saving signal (or called the energy-saving wake-up signal) before the DRX ON duration (activation time).
  • the network device can "wake up" the terminal device through an energy-saving signal, so that the terminal device monitors the PDCCH during DRX On duration after waking up; otherwise, when When a terminal device has no data transmission in a DRX cycle, no energy-saving signal is sent to the terminal device (that is, the terminal device is not "woke up"), so that the terminal device does not need to monitor the PDCCH during DRX On Duration.
  • the above-mentioned energy-saving signal processing method can omit PDCCH monitoring during DRX On duration when the terminal device has no data transmission, thereby realizing energy saving of the terminal device.
  • the energy-saving signal may be carried by DCI (downlink control information, DownLink Control Information) format (format) 2_6.
  • the processing method which may include: the first energy-saving signal indicates to monitor the PDCCH, then after the terminal device receives the first energy-saving signal, at the activation time of the first DRX cycle (the activation time of the first DRX cycle In Figure 2, it is shown as a black box) to monitor the PDCCH; the second energy-saving signal indicates that the PDCCH is not monitored, and the terminal device does not activate the second DRX cycle after receiving the second energy-saving signal (second The activation time of the first DRX cycle is shown as a colorless box in Figure 2 to monitor the PDCCH; the third energy-saving signal indicates that the PDCCH is not monitored, and the terminal device does not monitor the PDCCH in the third DRX after receiving the
  • the PDCCH is monitored; the fourth energy-saving signal indicates to monitor the PDCCH, and the terminal device receives the fourth energy-saving signal.
  • monitor the PDCCH during the activation time of the fourth DRX cycle (the activation time of the fourth DRX cycle is shown as a black box in FIG. 2 ).
  • the enhancement scheme of the R16 search space set group switching is introduced, and the PDCCH monitoring is skipped during the data transmission gap.
  • a scheme that is, a scheme of PDCCH skipping (skip) to realize power saving.
  • control information related to search space set group switching and PDCCH skipping may be carried by the PDCCH.
  • a terminal device in the RRC idle/inactive state receives paging messages through DRX. Since there is a paging occasion (PO) within a DRX cycle, the terminal device only receives paging messages at POs, and does not receive paging messages at times other than POs, so as to save power. However, in actual situations, the probability of a terminal device being paged may not be high. Therefore, if the terminal device periodically detects the PDCCH on the corresponding PO, there is a high probability that the terminal device does not detect the paging message sent to itself. , it will objectively cause a waste of power.
  • PO paging occasion
  • the R17 standard optimizes the energy saving of terminal equipment in the idle state for receiving paging messages, and introduces an energy saving signal similar to the aforementioned energy saving signal, called PEI (paging early indication, paging early indication).
  • PEI paging early indication, paging early indication
  • the PEI is used to indicate whether the terminal equipment receives the paging PDCCH at the PO before the target PO arrives.
  • the above-mentioned energy-saving signal ie, PEI
  • is carried on the PDCCH channel hereinafter referred to as an energy-saving signal based on the PDCCH channel for convenience of description
  • DCI downlink control information, DownLink Control Information format (format) 2_7.
  • Energy saving signal ie PEI).
  • the energy saving signal based on the PDCCH channel may carry more energy saving information, for example, may carry sub-grouping (subgrouping) information, which is used to indicate the terminal equipment subgroup (or UE subgroup) corresponding to the energy saving information.
  • sub-grouping sub-grouping
  • Multiple terminal equipments corresponding to the same PO can be further grouped by UE_ID (identification) to obtain multiple terminal equipment groups. If any terminal device in the terminal device group to which the terminal device belongs needs to be paged, the terminal device needs to receive the paging message on the PO; otherwise, the terminal device does not need to receive the paging message.
  • UE_ID identification
  • the first energy-saving signal indicates that the terminal devices in one or more terminal Frame) or PO (in Figure 3, the PF or PO indicated by the first energy-saving signal is represented as a gray square), then the terminal devices in the terminal device group wake up and listen to the paging on the PF or PO call; the second energy-saving signal indicates not to monitor the PDCCH, that is, indicates that the terminal equipment in one or more terminal equipment groups is in the corresponding PF or PO (in FIG.
  • the PF or PO indicated by the second energy-saving signal does not receive paging, then the terminal equipment in the terminal equipment group may not listen to paging on the PF or PO;
  • the third energy-saving signal indicates that the terminal equipment in one or more terminal equipment groups is Receive paging on the PF or PO (the PF or PO indicated by the third energy-saving signal is shown as a gray square in Figure 3), then the terminal devices in the terminal device group wake up and listen to the paging on the PF or PO call.
  • WUR wake-up receiver
  • WUR has the characteristics of extremely low cost, extremely low complexity, and extremely low power consumption. It mainly receives energy-saving signals based on envelope detection. Therefore, the energy-saving signal received by the WUR is different from the modulation method and waveform of the signal carried by the PDCCH defined by the existing R16 and R17 standards.
  • the energy-saving signal mainly passes through the envelope signal of ASK modulation on the carrier signal.
  • the demodulation of the envelope signal can also be done based on the energy provided by the radio frequency signal to drive the low power consumption circuit, so it can be passive. WUR can also be powered by terminal equipment.
  • this WUR greatly reduces power consumption compared with traditional receivers of terminal equipment. For example, WUR can achieve a power consumption of less than 1mw (milliwatt), which is much lower than Compared with the power consumption of tens to hundreds of mw of traditional receivers. WUR can be combined with the terminal equipment as an additional module of the terminal equipment receiver, or it can be used alone as a wake-up function module of the terminal equipment.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • Fig. 4 is a schematic flowchart of an information transmission method according to an embodiment of the present application. The method can optionally be applied to the system shown in Fig. 1, but is not limited thereto. The method includes at least some of the following.
  • the terminal device monitors a wake-up signal (WUS, wake-up Signal); wherein, the WUS includes N signal parts; N is an integer greater than or equal to 1.
  • the terminal device monitoring the WUS in the above S410 may specifically be: the first component of the terminal device monitors the WUS.
  • the terminal device includes at least the first component and the second component; the power consumption of the first component is lower than that of the second component.
  • the first component of the terminal device monitoring the WUS may refer to: when the terminal device is in an RRC idle state or an RRC inactive state, the first component of the terminal device monitors the WUS. It should also be pointed out that, during the process of the first component of the terminal device monitoring the WUS, the second component of the terminal device may be in a dormant state.
  • the dormant state may refer to that a part of functions or a part of devices of the second component is in an on state, but another part of functions or another part of devices is in an off state or called a wake-up state, and the like.
  • the terminal device may only include the first component and the second component; or, the terminal device may include other components in addition to the first component and the second component, which are not exhaustive in this embodiment.
  • the terminal device may only include the first component and the second component; or, the terminal device may include other components in addition to the first component and the second component, which are not exhaustive in this embodiment.
  • the first component may refer to a low-power receiver in the terminal device, or may be called a wake-up receiver (WUR, wake-up receiver), or may be called a zero-power WUR , or may also be referred to as a low-power WUR, and this embodiment does not exhaustively describe more names thereof.
  • the second component may refer to a main receiver in the terminal device.
  • the terminal device may be composed of a main receiver and a WUR. Further, if the network device requires the terminal device to turn on the second component, that is, the main receiver in FIG. 5 , the network device may send a WUS to the terminal device.
  • the WUR of the terminal device can monitor a wake-up signal (WUS, wake-up signal); when the WUR of the terminal device monitors the WUS, it controls to turn on the main receiver of the terminal device (that is, the aforementioned first two components); in the case that the WUR of the terminal equipment does not monitor the WUS, the main receiver of the terminal equipment can remain in a dormant state.
  • WUS wake-up signal
  • the terminal device can only use WUR (that is, the first component); only when the terminal device has business, the WUR of the terminal device will receive WUS, and then wake up the terminal The main receiver of the device for data transmission and reception.
  • WUR that is, the first component
  • the complexity of the modulation modes supported by the WUR is lower than the complexity of the modulation modes supported by the main receiver.
  • the modulation methods supported by WUR may include one or more of the following modulation methods: amplitude shift keying (amplitude shift keying, ASK), phase shift keying (phase shift keying, PSK), frequency shift Keying (frequency shift keying, FSK), etc.
  • the modulation modes supported by the main receiver may include one or more of the following modulation modes: quadrature phase shift keying (quadrature phase shift keying, QPSK), quadrature amplitude modulation (quadrature amplitude modulation, QAM), Orthogonal frequency division multiplexing (OFDM), etc.
  • the main receiver may also support at least one modulation mode among ASK, PSK, and FSK. This embodiment of the present application does not specifically limit it.
  • the complexity of the modulation waveform supported by the WUR is lower than that supported by the main receiver.
  • the modulation waveform supported by the WUR is simpler than that supported by the main receiver.
  • the transmission rate supported by the WUR is lower than that supported by the main receiver.
  • the bandwidth range supported by the WUR is smaller than that supported by the main receiver, or in other words, the bandwidth supported by the WUR is narrower than that supported by the main receiver.
  • bit rate supported by WUR is lower than the bit rate supported by the main receiver.
  • the first component of the terminal device monitors the WUS, which can save power consumption of the terminal device.
  • the WUR of the terminal equipment uses extremely low power consumption (generally less than 1mw); and, the WUR of the terminal equipment uses ASK or FSK to modulate the signal, which also makes the WUR of the terminal equipment can use an extremely simple
  • the hardware structure and the extremely simple receiving method receive and demodulate the signal.
  • the WUR of the terminal device only needs to use the envelope detection method to receive the signal. Therefore, compared to the traditional mode in which the terminal device always uses the main receiver, this embodiment adopts the WUR of the terminal device to monitor the WUS, which can greatly save the power consumption of the terminal device.
  • the N signal parts include a first signal part, and the first signal part is used to carry target information.
  • the target information includes at least one of the following: wake-up information and paging short message.
  • the above target information is the main information carried by the WUS.
  • the target information may only contain the wake-up information; or, the target information may only contain the paging short message; or, the target information may contain both the wake-up information and the paging message. short message.
  • the paging short message may include at least one of the following: Earthquake and Tsunami Warning System (Earthquake and Tsunami Warning System, ETWS) notification, Commercial Mobile Alert System (Commercial Mobile Alert System, CMAS) notification, whether the system message is updated Instructions.
  • Earthquake and Tsunami Warning System Earthquake and Tsunami Warning System, ETWS
  • Commercial Mobile Alert System Communication Mobile Alert System, CMAS
  • the paging short message may also include other types of notification and/or indication information, which are not exhaustive in this embodiment.
  • the wake-up information may also be referred to as energy-saving indication information.
  • the wake-up information may be used to instruct the terminal device to monitor paging messages; specifically, the wake-up information may be used to indicate whether the terminal device needs to receive a paging message, that is, the wake-up information is used to indicate that the terminal device Whether there is a paging message to be sent on the PO (paging occasion) of the terminal device.
  • the network device may send a WUS to the terminal device, and the first signal part of the WUS carries the wake-up information.
  • the terminal device may be in an RRC idle state or an RRC inactive state.
  • the wake-up information is dedicated to the terminal device; or the wake-up information is shared by a terminal device group, and the terminal device group includes the terminal device; or the wake-up information is dedicated to the first serving cell Yes, the first serving cell is the serving cell where the terminal device is located.
  • the wake-up information may be specific to the terminal device.
  • the network device sends the WUS to the terminal device to wake up the terminal device, and the first signal part of the WUS carries the wake-up information specific to the terminal device.
  • the wake-up information may include: the identifier of the terminal device.
  • the identification of the terminal device can be any one of the following: Temporary Mobile Subscriber Identity (TMSI, Temporary Mobile Subscriber Identity), International Mobile Subscriber Identity (IMSI, International Mobile Subscriber Identity), I-RNTI (Inactive Radio Network Temporary Identifier, non-activated wireless network temporary identifier).
  • the terminal device After receiving the WUS, the terminal device obtains the wake-up information from the first signal part of the WUS, and if the wake-up information includes the identifier of the terminal device, the terminal device may, based on the specific information contained in the wake-up information, Content, perform subsequent processing. For example, if the wake-up information is used to instruct the terminal device to monitor the paging message, the terminal device may wake up the second component (ie, the main receiver) to monitor the paging message.
  • the second component ie, the main receiver
  • the wake-up information is shared by a terminal device group, and the terminal device group includes the terminal device.
  • the number of the terminal device groups may be one or more, which is not limited in this embodiment. That is, the wake-up information may be shared by one or more terminal device groups. Moreover, the terminal device in this embodiment is any one of all the terminal devices in the aforementioned one or more terminal device groups.
  • the network device sends a WUS to all terminal devices in one or more terminal device groups to wake up one or more terminal device groups, and the first signal part of the WUS carries the one or more The wake-up information shared by the terminal device group.
  • the wake-up information may further include one of the following: an identifier of the terminal device group, and a bitmap (bitmap).
  • the identifier of the terminal device group may be identifiers of one or more terminal device groups.
  • the terminal device obtains the wake-up information from the first signal part of the WUS, and if the wake-up information includes the identifier of the terminal device group where the terminal device is located, the terminal The device wakes up and performs subsequent processing based on the specific content contained in the wakeup information. For example, if the wake-up information is used to instruct the terminal devices in the terminal device group to monitor the paging message, then the terminal device may wake up the second component (ie, the main receiver) to monitor the paging message.
  • the second component ie, the main receiver
  • the bitmap may include Q bits, where Q is an integer greater than or equal to 1.
  • Q is an integer greater than or equal to 1.
  • each bit may be used to correspond to a terminal device group, and different bits correspond to different terminal device groups.
  • the value of each bit may be used to indicate whether to wake up the terminal devices in the corresponding terminal device group.
  • the value of each bit may include a binary first value and a binary second value.
  • the binary first value is used to indicate to wake up the terminal equipment in the corresponding terminal equipment group, that is, the binary first value is used to indicate that the terminal equipment in the corresponding terminal equipment group wakes up the second component;
  • the binary second value is used to indicate not to To wake up the terminal devices in the corresponding terminal device group, that is, the binary second value is used to indicate that the terminal devices in the terminal device group do not wake up the second component.
  • the first binary value is different from the second binary value, for example, the first binary value is 1 and the second binary value is 0, or the first binary value is 0 and the second binary value is 1.
  • the terminal device After receiving the WUS, the terminal device obtains the wake-up information from the first signal part of the WUS, and if the wake-up information includes a bitmap, obtains the location of the terminal device from the bitmap.
  • the wake-up information is dedicated to a first serving cell, and the first serving cell is the serving cell where the terminal device is located.
  • the network device sends a WUS to all terminal devices in the first serving cell to wake up all the terminal devices in the first serving cell, and the first signal part of the WUS carries the information in the first serving cell.
  • the wake-up information shared by all terminal devices.
  • all terminal devices in the first serving cell can monitor the WUS.
  • the terminal device is any one of all the terminal devices in the first serving cell.
  • the wake-up information may further include: an identifier of the first serving cell. That is to say, after receiving the WUS, the terminal device obtains the wake-up information from the first signal part of the WUS, if the wake-up information carries the identity of the first serving cell and the first serving cell If the cell is the cell where the terminal device is located, the terminal device wakes up the second component (ie, the main receiver) to monitor the paging message.
  • the second component ie, the main receiver
  • the wake-up information may not carry an identifier or a bitmap. That is to say, after receiving the WUS, the terminal device obtains the wake-up information from the first signal part of the WUS, and if the wake-up information does not carry an identifier or a bitmap, the terminal device directly wakes up the second A component (ie the primary receiver) listens for the paging message.
  • the target information carried in the foregoing first signal part may be expressed as data (Data).
  • the first signal part is used to carry the target information
  • the first signal part may also be used to carry a synchronization sequence, and the synchronization sequence is used by the terminal The devices remain in sync.
  • the synchronization sequence located in one of the following locations:
  • the first signal part may carry a synchronization sequence, or may not carry a synchronization sequence.
  • the number of the synchronization sequences may be one or more.
  • Whether the synchronization sequence is carried in the first signal part, or the number of synchronization sequences carried in the first signal part can be determined according to actual conditions. Specifically, whether the synchronization sequence is carried in the first signal part, or the number of the synchronization sequence carried in the first signal part, may be related to the length of the target information.
  • the first signal part may not carry a synchronization sequence; the first preset number can be set according to the actual situation, for example, it can be 8 bytes or 2byte, or shorter or longer, not exhaustive.
  • the first signal part may carry a synchronization sequence.
  • the number of the synchronization sequence can also be related to the length of the target information, for example, a first correspondence can be preset, and the preset first correspondence can include a preset length and its corresponding preset number
  • the target length can be determined from the preset first correspondence, and the target number corresponding to the target length can be used as the number of synchronization sequences.
  • the one synchronization sequence may be located before the first signal part, or within the first signal part, or after the first signal part.
  • the length of the one synchronization sequence can be configured according to actual conditions, for example, it can be fixed at 8 bits, or it can be longer or shorter, which is not exhaustive here.
  • the specific content of the synchronization sequence can be set according to the actual situation, as long as the communication parties negotiate in advance, it is not limited here.
  • the positions of different synchronization signals in the multiple synchronization signals may be different; among the multiple synchronization signals, any synchronization sequence may be before the first signal part , or located within the first signal portion, or located after the first signal portion.
  • the lengths of different synchronization sequences in multiple synchronization signals can be the same, and the length of each synchronization signal can be configured according to the actual situation, for example, it can be fixed at 8 bits, or it can be longer or shorter , not exhaustive here.
  • the specific content of the different synchronization sequences in the multiple synchronization signals may be the same, and the specific content may be set according to the actual situation, as long as the communication parties negotiate in advance, it is not limited here.
  • the number of the synchronization sequences can be 2, and these 2 synchronization sequences can be expressed as "SYNC 1" and "SYNC 2" as shown in Figure 7, and these two synchronization sequences "SYNC 1" and "SYNC 2", are located within the first signal part. It should be pointed out here that since the first signal part carries the data (data) in the above-mentioned Fig. 7, i.e. the target information, although two synchronous sequences "SYNC 1" and "SYNC 2" are added to the data (data) in Fig.
  • the first signal part is further used to carry reverse bits, and the reverse bits are used to determine an envelope detection threshold.
  • the inverse bit can be expressed as "inverse bit”.
  • the reverse bit is located in some bits of the target information.
  • the reverse bits may be added at positions every specified number of bits in the target information.
  • the specified number can be set according to the actual situation, for example, it can be 10, 20, or more or less, which is not exhaustive here.
  • the reverse bit may be added at any position of the consecutive bits in the target information when there are consecutive bits with the same value exceeding a preset bit quantity threshold.
  • the threshold value of the preset number of bits can be set according to the actual situation, such as 10, 16, 20, or more or less, which are not exhaustive here.
  • the number of reverse bits may be one or more, which is not limited here.
  • the value of the reverse bit is different from the value of some bits of the target information.
  • an inverse bit with a value opposite to that of the bit adjacent to the position may be added.
  • the reverse bit when the reverse bit is in a plurality of consecutive bits with a value of 1, the reverse bit is 0; otherwise, when the reverse bit is in a plurality of consecutive bits with a value of 0,
  • the reverse bit is 1.
  • the threshold value of the preset number of bits can be 10, that is to say, when there are 11 or more partial bits with a value of 1 being continuously transmitted in the target information, any The reverse bit 0 is added at the position of .
  • two reverse bit 0s may be continuously added to some bits, or one reverse bit 0 may be added, and the number thereof is not limited here.
  • the N signal parts of the WUS may include other signal parts in addition to the above-mentioned first signal part, which will be further described below:
  • the N signal parts also include at least one of the following:
  • a second signal part is used to carry a first signal sequence, and the first signal sequence is used to indicate the starting position of the WUS;
  • the third signal part is used to carry a preamble sequence, and the preamble sequence is used for clock synchronization;
  • a fourth signal part, the fourth signal part is used to carry a cyclic redundancy check code (CRC, Cyclic Redundancy Check);
  • CRC Cyclic Redundancy Check
  • a fifth signal part where the fifth signal part is used to carry a second signal sequence, and the second signal sequence is used to indicate the end position of the WUS.
  • the second signal part is used to carry the first signal sequence; wherein, the first signal sequence can be as shown in Figure 6 and Figure 7, specifically "SOW", that is, Start Of WUS (the start of the wake-up signal beginning).
  • SOW Start Of WUS
  • the length of the first signal sequence may be set according to actual conditions.
  • the length of the first signal sequence may be a fixed value, such as 4 bits, or longer or shorter, which is not limited here.
  • the specific content of the first signal sequence can be set according to the actual situation, as long as both communicating parties confirm in advance that they have the same meaning.
  • the first signal sequence may specifically be a special or specified signal sequence, such as 1111 or 1010. Since WUS generally uses OOK modulation, a special signal sequence can be used as the first signal sequence to indicate that WUS starts to transmit, that is, after SOW (ie, the first signal sequence), the specific content of WUS starts to be sent Location.
  • SOW ie, the first signal sequence
  • the terminal device specifically, the first component of the terminal device
  • receives and recognizes the first signal sequence it determines that the SOW is received, and then starts to receive the specific content of the WUS.
  • the specific content of the WUS may refer to the aforementioned target information, and may also include a preamble sequence, a CRC, and the like.
  • the third signal part is used to carry a preamble sequence.
  • the preamble sequence may be represented as a preamble as shown in FIG. 6 or FIG. 7 .
  • the main function of the preamble is to perform clock synchronization.
  • the terminal device In the case of receiving the preamble, the terminal device (specifically, the first component of the terminal device) can obtain clock information (such as system clock frequency, or such as the interval between two modulation symbols), so that subsequent data (that is, the target information carried in the first signal part) can be received based on the clock information.
  • clock information such as system clock frequency, or such as the interval between two modulation symbols
  • the preamble sequence may also be used to indicate signal parameters of the WUS; the signal parameters of the WUS include at least one of the following: signal length and transmission rate.
  • the preamble may only indicate the signal length; or the preamble may only indicate the transmission rate; or, the preamble may indicate both the signal length and the transmission rate.
  • the signal length may refer to the length of all content carried by the WUS, such as 240 bits (or longer or shorter).
  • the signal length may refer to lengths corresponding to the N signal parts carried by the WUS.
  • the signal length may refer to the length of one or more signal parts among all N signal parts.
  • the signal length is only used to indicate that the length of the first signal part is A bit; for another example, the signal length is used to indicate that the length of the first signal part is A bit, the length of the second signal part is B bit, and so on.
  • the transmission rate may specifically refer to the transmission rate of the WUS.
  • the unit of the transmission rate may be kbps per second.
  • the specific value of the transmission rate is not limited in this embodiment.
  • the fourth signal part is used to carry a cyclic redundancy check code (CRC), such as the CRC shown in FIG. 6 or FIG. 7 .
  • CRC cyclic redundancy check code
  • the CRC is used to perform a CRC check on the information carried by the first signal part (that is, Data), so as to check whether the data part received by the WUR is correct.
  • the fifth signal part is used to carry a second signal sequence; the second signal sequence corresponds to the aforementioned first signal sequence.
  • the second signal sequence may be represented as EOW (End Of WUS, end of wake-up signal) as shown in FIG. 6 or FIG. 7 , that is, EOW is used to represent the end position of WUS.
  • the length of the second signal sequence may be set according to actual conditions.
  • the length of the second signal sequence may be a fixed value, such as 4 bits, or longer or shorter, which is not limited here.
  • the specific content of the second signal sequence may be set according to actual conditions.
  • the second signal sequence may be another special or designated signal sequence, such as "1110" or "110".
  • the first signal sequence is also a special or specified signal sequence.
  • the second signal sequence and the first signal sequence may be different special or designated signal sequences, or the second signal sequence and the first signal sequence may be the same special or designated signal sequence. signal sequence.
  • the WUS may not contain other signal parts except the first signal part; or the WUS may contain other signal parts except the first signal part part of the part; or, the WUS may include all of the above N signal parts. All are within the protection scope of this embodiment.
  • different signal parts among the N signal parts use the same symbol length. Or, at least one signal part among the N signal parts adopts a different symbol length from other signal parts.
  • the symbol lengths used by the various signal parts of the above-mentioned WUS may be the same or different.
  • the symbols may refer to OFDM symbols.
  • the symbol lengths used by the M signal parts in the above N signal parts are the same as the first symbol length, and the remaining N-M signals Part of the same symbol length is the second symbol length, wherein the first symbol length is different from the second symbol length.
  • M is an integer smaller than N.
  • At least one signal part among the N signal parts adopts a different symbol length from other signal parts, and different signal parts among the N signal parts may use different symbol lengths. That is, the symbol length used by any one signal part is different from that of other signal parts.
  • the relationship between different symbol lengths may refer to a proportional relationship or a multiple relationship between different symbol lengths.
  • the symbol length of the preamble carried in the third signal part is 1/2 of the symbol length of the target information carried in the first signal part.
  • the relationship between the different symbol lengths may be preset or configured by the network device.
  • the relationship between the different symbol lengths is configured by the network device, specifically, the network may notify the terminal device, such as notifying the terminal device through RRC signaling, DCI or a system broadcast message.
  • different signal parts of the WUS use different symbol lengths, which can be more beneficial to control the overhead of different signal parts. For example, when the length of the preamble (that is, the number of information bits) is constant, using a shorter preamble symbol length can make the total time occupied by the preamble shorter than using a long preamble symbol length.
  • the terminal device when the terminal device receives (or monitors) the WUS, it can analyze and obtain the value of each bit in sequence, and combine the values of all bits in sequence to obtain the entire content of the WUS.
  • the sequential combination may refer to combining according to the sequence of receiving time.
  • the WUS may occupy a part of the frequency spectrum of the primary system (the system corresponding to the primary receiver) or a dedicated spectrum resource during transmission.
  • the above WUS transmission methods can be in the following three ways, respectively:
  • the above WUS is a binary On-Off Keying (OOK, On-Off Keying) signal.
  • OOK On-Off Keying
  • the OOK signal is modulated based on ASK, Amplitude-Shift Keying or Frequency-Shift Keying (FSK, Frequency-Shift Keying).
  • the value of the kth bit in the WUS is determined by the kth amplitude of the OOK signal, and k is an integer greater than or equal to 1.
  • the kth amplitude of the OOK signal may specifically refer to the amplitude of the OOK signal at the kth moment.
  • the amplitude at the kth moment when the terminal equipment (specifically the first component of the terminal equipment) receives the OOK signal is the first amplitude
  • the kth bit in the WUS can be determined
  • the value can be the first value
  • the amplitude at the kth moment when the terminal equipment (specifically the first part of the terminal equipment) receives the OOK signal is the second amplitude
  • the kth in the WUS can be determined
  • the value of the bit is the second value.
  • the first magnitude is different from the second magnitude, for example, the first magnitude may be greater than or equal to a first magnitude threshold, and the second magnitude may be smaller than the first magnitude threshold, or vice versa.
  • the first amplitude threshold can be set according to the actual situation, and can be related to the actual transmission power and path loss of the OOK signal on the network device side, which is not limited in this embodiment.
  • the first value is different from the second value, for example, the first value is 1, and the second value is 0; or, the first value is 0, and the second value is 1.
  • the terminal device specifically the first component of the terminal device
  • the kth bit in the WUS can be determined
  • the value of can be 0; the terminal equipment (specifically the first component of the terminal equipment) receives the OOK signal at the kth moment when the amplitude is greater than or equal to the first amplitude threshold, then it can be determined that the The value of the kth bit is 1; or vice versa.
  • the description here is only for illustration, not as a limitation to this embodiment.
  • the WUS may occupy a section of dedicated frequency domain resources (or dedicated frequency domain resources); or the WUS may occupy a part of frequency domain resources of the primary system (the system corresponding to the primary receiver).
  • the WUS is an OOK signal generated based on multiple target subcarriers on OFDM (Orthogonal Frequency Division Multiplexing) symbols.
  • the above WUS is an OOK signal generated based on multiple target subcarriers on an OFDM symbol. Specifically, it may refer to: the WUS is an OOK signal generated by simulation by generating OFDM waveforms.
  • the value of the i-th bit in the WUS is determined by the signal state received in the first frequency domain at the i-th time domain position, and i is an integer greater than or equal to 1; wherein, the The i th time domain position is where the i th OFDM symbol is located; the first frequency domain range is related to the frequency domain range occupied by the multiple target subcarriers.
  • the ith OFDM symbol is any one of the aforementioned OFDM symbols used to generate the OOK signal.
  • the terminal device determines that the value of the i-th bit is the first value; the terminal device determines that the value of the i-th bit is the second value when the signal state received in the first frequency domain range at the i-th time-domain position is the second signal state.
  • the signal state may specifically refer to an energy value of a signal or an amplitude value of a signal.
  • the signal state may comprise a first signal state or a second signal state.
  • the first signal state is different from the second signal state.
  • the first signal state may refer to a state in which the energy value of the signal is greater than a first energy threshold
  • the second signal state may refer to a state in which the energy value of the signal is less than or a state equal to the first energy threshold, or vice versa.
  • the first signal state may refer to a state in which the amplitude value of the signal is greater than a second amplitude threshold
  • the second signal state may refer to a state in which the amplitude value of the signal is less than or equal to the second amplitude threshold, or on the contrary.
  • the value of the i-th bit can be the first value or the second value.
  • the first value is different from the second value, for example, the first value is 1, and the second value is 0; or, the first value is 0, and the second value is 1.
  • the first frequency domain range is related to the frequency domain range occupied by the multiple target subcarriers, specifically may refer to: the first frequency domain range is the same as the frequency domain range occupied by the multiple target subcarriers; Or, the first frequency domain range is within the frequency domain range occupied by multiple target subcarriers, and the first frequency domain range is smaller than the frequency domain range occupied by the multiple target subcarriers.
  • the size of the aforementioned first frequency domain range may be preset, for example, when the terminal device was in the RRC connection state last time, it may be obtained by receiving any one of DCI, RRC signaling, and system messages. arrived.
  • the foregoing first frequency domain range may be determined based on relevant information of multiple target subcarriers; in this case, it is particularly necessary to obtain relevant information of the multiple target subcarriers in advance, for example, the multiple
  • the relevant information of the target subcarriers may include at least one of the following: subcarrier spacing of the multiple target subcarriers, related configuration of the OFDM symbol, CP length, and number of multiple target subcarriers.
  • the terminal device may determine the frequency domain range occupied by the multiple target subcarriers based on the related information of the multiple target subcarriers, and based on the frequency range occupied by the multiple target subcarriers, domain range, to determine the first frequency domain range.
  • the plurality of target subcarriers may be some subcarriers or all subcarriers in the OFDM symbol.
  • the multiple target subcarriers do not include a central subcarrier. That is to say, at least some of the other subcarriers except the center subcarrier on any OFDM symbol serve as the multiple target subcarriers.
  • all subcarriers except the central subcarrier may be used as the plurality of target subcarriers; or, it may be that at least two of all subcarriers except the central subcarrier are selected as the multiple target subcarriers. Multiple target subcarriers.
  • the multiple target subcarriers are symmetrically distributed around the center subcarrier.
  • Figure 8 shows that the number of multiple target subcarriers on OFDM in the OFDM symbol is 4, that is, the 4 target subcarriers used for WUS transmission; further, referring to Figure 8, the 4 target subcarriers used for WUS transmission
  • the subcarriers are distributed symmetrically around the center subcarrier (shown as a black background square grid pattern in FIG. 8 ).
  • the number of the multiple target subcarriers is configured for the network device or preset. Specifically, in the way of WUS transmission based on multiple target subcarriers on OFDM symbols, the more the number of target subcarriers is, the more beneficial it is to enhance coverage, and it is also suitable for supporting large cell radii. Conversely, a smaller number of target subcarriers is suitable for supporting fewer cells. It should be understood that, in the case of a certain subcarrier spacing, the multiple target subcarriers are proportional to the bandwidth occupied by the WUS. Therefore, the flexible configuration of multiple target subcarriers is also equivalent to the flexible configuration of the bandwidth occupied by the WUS.
  • the number of target subcarriers can be flexibly configured, for example, it can be preset or configured by network equipment.
  • the network device configuration method may be notified by the network device to the terminal device through any one of system message, RRC signaling or DCI.
  • the OFDM symbol does not contain a cyclic prefix CP.
  • the OFDM symbol includes a cyclic prefix CP. That is to say, the WUS is an OOK signal generated based on multiple target subcarriers on the OFDM symbol, that is, when the WUS signal is generated in the OFDM manner, the OFDM symbol may have no CP, or each OFDM symbol may have a CP.
  • the length of the CP is at least partially different from the carrier of the primary system.
  • the length of the CP is configured by the network device or preset.
  • the subcarrier spacing of the multiple target subcarriers is the same as that of the primary system. Alternatively, the subcarrier spacing of the multiple target subcarriers is different from that of the primary system.
  • the subcarrier spacing of the multiple target subcarriers is configured by the network device or preset.
  • Adopting the second method can have the following advantages: OFDM can be implemented using FFT, so it can share the FFT converter with the main system, and the implementation complexity is low; sending OOK signals on multiple subcarriers of OFDM can increase the OOK signal Transmit power to ensure the receiving performance of terminal equipment.
  • the WUS is an OOK signal generated based on a single carrier.
  • the value of the jth bit in the WUS is determined by the signal state received in the second frequency domain at the jth time domain position, and j is an integer greater than or equal to 1; wherein, the second frequency The domain range is related to the frequency domain range occupied by the single carrier.
  • the second frequency domain range is related to the frequency domain range occupied by the single carrier.
  • the second frequency domain range may be preset, or may be configured for a network device, or may be determined based on the frequency domain range occupied by the single carrier.
  • the terminal device determines that the value of the jth bit is the first value ;
  • the terminal device determines that the value of the jth bit is the second value when the signal state received within the second frequency domain range at the jth time domain position is the fourth signal state.
  • the signal state may specifically refer to an energy value of a signal or an amplitude value of a signal.
  • the signal state may comprise a third signal state or a fourth signal state.
  • the third signal state is different from the fourth signal state.
  • the third signal state may refer to a state in which the energy value of the signal is greater than the second energy threshold
  • the fourth signal state may refer to a state in which the energy value of the signal is less than or a state equal to the second energy threshold, or vice versa.
  • the third signal state may refer to a state in which the amplitude value of the signal is greater than a third amplitude threshold
  • the fourth signal state may refer to a state in which the amplitude value of the signal is less than or equal to the third amplitude threshold, or on the contrary.
  • the second energy threshold and the first energy threshold in the aforementioned second manner may be the same or different, and the third amplitude threshold may be the same as or different from the second amplitude threshold in the aforementioned second manner. different.
  • the second energy threshold may be smaller than the first energy threshold
  • the third amplitude threshold may be smaller than the second amplitude threshold. This is because, in the second method, WUS is transmitted through multiple sub-carriers, and the energy or amplitude of the signal may be greater than that of single-carrier transmission WUS in this method. Therefore, the second energy threshold or the third amplitude threshold can be set to be less than The first energy threshold and the second amplitude threshold in the second method ensure that this method can obtain the value of each bit more accurately.
  • the value of the bit can be the first value or the second value.
  • the first value is different from the second value, for example, the first value is 1, and the second value is 0; or, the first value is 0, and the second value is 1.
  • the second frequency domain range is configured by the network device, which may refer to the DCI, RRC signaling, and system message sent from the network device when the terminal device was in the RRC connection state last time. obtained from any of the .
  • the second frequency domain range is determined based on the frequency domain range occupied by the single carrier, which may refer to that the terminal device obtains the frequency domain range occupied by the single carrier in advance, and determines the second frequency domain range.
  • the frequency domain range is equal to the frequency domain range occupied by the single carrier; or, the terminal device acquires the frequency domain range occupied by the single carrier in advance, and determines that the second frequency domain range is occupied by the single carrier Part of the frequency domain range within the frequency domain range of .
  • the WUS monitored by the terminal device can carry N signal parts, so that the content that the WUS can carry can be divided, so that the WUS can also be used while ensuring the energy saving of the terminal device.
  • the corresponding signal part is carried more flexibly, so that it can be more flexibly applied to more scenarios.
  • the above solution also provides designs for the symbol length of the WUS and multiple transmission modes, thereby ensuring a more reasonable transmission of the WUS and suitable for deployment in various scenarios with low power consumption.
  • Fig. 9 is a schematic flowchart of an information transmission method according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Fig. 1, but is not limited thereto.
  • the method includes at least some of the following.
  • the network device sends a wake-up signal WUS; wherein, the WUS includes N signal parts; N is an integer greater than or equal to 1.
  • the N signal parts include a first signal part, and the first signal part is used to carry target information.
  • the target information includes at least one of the following: wake-up information and paging short message.
  • the above target information is the main information carried by the WUS.
  • the target information may only contain the wake-up information; or, the target information may only contain the paging short message; or, the target information may contain both the wake-up information and the paging message. short message.
  • the paging short message may include at least one of the following: Earthquake and Tsunami Warning System (Earthquake and Tsunami Warning System, ETWS) notification, Commercial Mobile Alert System (Commercial Mobile Alert System, CMAS) notification, whether the system message is updated Instructions.
  • Earthquake and Tsunami Warning System Earthquake and Tsunami Warning System, ETWS
  • Commercial Mobile Alert System Communication Mobile Alert System, CMAS
  • the paging short message may also include other types of notification and/or indication information, which are not exhaustive in this embodiment.
  • the wake-up information may also be referred to as energy-saving indication information.
  • the wake-up information may be used to instruct the terminal device to monitor the paging message; specifically, the wake-up information may be used to indicate whether the terminal device needs to receive the paging message, that is, the wake-up information is used to indicate that the terminal device is in its PO( paging timing) whether there is a paging message sent. That is, when the network device needs to wake up the terminal device to monitor the paging message on its PO, the network device may send a WUS to the terminal device, and the first signal part of the WUS carries the wake-up information. Wherein, the terminal device may be in an RRC idle state or an RRC inactive state.
  • the wake-up information is dedicated to the terminal device; or the wake-up information is shared by a group of terminal devices; or the wake-up information is dedicated to the first serving cell.
  • the wake-up information may be specific to the terminal device.
  • the network device sends a WUS to a certain terminal device to wake up the terminal device, and the first signal part of the WUS carries the wake-up information specific to the terminal device.
  • the wake-up information may further include: an identifier of the terminal device.
  • the identification of the terminal device can be any one of the following: Temporary Mobile Subscriber Identity (TMSI, Temporary Mobile Subscriber Identity), International Mobile Subscriber Identity (IMSI, International Mobile Subscriber Identity), I-RNTI (Inactive Radio Network Temporary Identifier, non-activated wireless network temporary identifier).
  • the wake-up information is shared by a group of terminal devices.
  • the number of the terminal device groups may be one or more, which is not limited in this embodiment. That is, the wake-up information may be shared by one or more terminal device groups.
  • the network device sends a WUS to all terminal devices in one or more terminal device groups to wake up one or more terminal device groups, and the first signal part of the WUS carries the one or more The wake-up information shared by the terminal device group.
  • all terminal devices in the above one or more terminal device groups can listen to the WUS.
  • the wake-up information may further include one of the following: an identifier of the terminal device group, and a bitmap (bitmap).
  • the identifier of the terminal device group may be identifiers of one or more terminal device groups.
  • the bitmap may include Q bits, where Q is an integer greater than or equal to 1.
  • Q is an integer greater than or equal to 1.
  • each bit may be used to correspond to a terminal device group, and different bits correspond to different terminal device groups.
  • the value of each bit may be used to indicate whether to wake up the terminal devices in the corresponding terminal device group.
  • the value of each bit may include a binary first value and a binary second value.
  • the binary first value is used to indicate to wake up the terminal equipment in the corresponding terminal equipment group, that is, the binary first value is used to indicate that the terminal equipment in the corresponding terminal equipment group wakes up the second component;
  • the binary second value is used to indicate not to To wake up the terminal devices in the corresponding terminal device group, that is, the binary second value is used to indicate that the terminal devices in the terminal device group do not wake up the second component.
  • the first binary value is different from the second binary value, for example, the first binary value is 1 and the second binary value is 0, or the first binary value is 0 and the second binary value is 1.
  • the wake-up information is dedicated to the first serving cell.
  • the first serving cell is at least one of multiple serving cells of the network device, that is, the number of the first serving cell may be one or more.
  • the network device sends a WUS to all terminal devices in the first serving cell to wake up all the terminal devices in the first serving cell, and the first signal part of the WUS carries the information in the first serving cell.
  • the wake-up information shared by all terminal devices.
  • the wake-up information may further include: an identifier of the first serving cell. Or, in this case, the wake-up information may not carry an identifier or a bitmap.
  • the target information carried in the foregoing first signal part may be expressed as data (Data).
  • the first signal part is used to carry the target information
  • the first signal part may also be used to carry a synchronization sequence, and the synchronization sequence is used by the terminal The devices remain in sync.
  • the synchronization sequence located in one of the following locations:
  • the first signal part may carry a synchronization sequence, or may not carry a synchronization sequence.
  • the number of the synchronization sequences may be one or more.
  • Whether the synchronization sequence is carried in the first signal part, or the number of synchronization sequences carried in the first signal part can be determined according to actual conditions. Specifically, whether the synchronization sequence is carried in the first signal part, or the number of the synchronization sequence carried in the first signal part, may be related to the length of the target information.
  • the first signal part may not carry a synchronization sequence; the first preset number can be set according to the actual situation, for example, it can be 8 bytes or 2byte, or shorter or longer, not exhaustive.
  • the first signal part may carry a synchronization sequence.
  • the number of the synchronization sequence can also be related to the length of the target information, for example, a first correspondence can be preset, and the preset first correspondence can include a preset length and its corresponding preset number
  • the target length can be determined from the preset first correspondence, and the target number corresponding to the target length can be used as the number of synchronization sequences.
  • the one synchronization sequence may be located before the first signal part, or within the first signal part, or after the first signal part.
  • the length of the one synchronization sequence can be configured according to actual conditions, for example, it can be fixed at 8 bits, or it can be longer or shorter, which is not exhaustive here.
  • the specific content of the synchronization sequence can be set according to the actual situation, as long as the communication parties negotiate in advance, it is not limited here.
  • the positions of different synchronization signals in the multiple synchronization signals may be different; among the multiple synchronization signals, any synchronization sequence may be before the first signal part , or located within the first signal portion, or located after the first signal portion.
  • the lengths of different synchronization sequences in multiple synchronization signals can be the same, and the length of each synchronization signal can be configured according to the actual situation, for example, it can be fixed at 8 bits, or it can be longer or shorter , not exhaustive here.
  • the specific content of the different synchronization sequences in the multiple synchronization signals may be the same, and the specific content may be set according to the actual situation, as long as the communication parties negotiate in advance, it is not limited here.
  • the number of the synchronization sequences can be 2, and these 2 synchronization sequences can be expressed as "SYNC 1" and "SYNC 2" as shown in Figure 7, and these two synchronization sequences "SYNC 1" and "SYNC 2", are located within the first signal part. It should be pointed out here that since the first signal part carries the data (data) in the above-mentioned Fig. 7, i.e. the target information, although two synchronous sequences "SYNC 1" and "SYNC 2" are added to the data (data) in Fig.
  • the first signal part is further used to carry reverse bits, and the reverse bits are used to determine an envelope detection threshold.
  • the inverse bit can be expressed as "inverse bit”.
  • the reverse bit is located in some bits of the target information.
  • the reverse bits may be added at positions every specified number of bits in the target information.
  • the specified number can be set according to the actual situation, for example, it can be 10, 20, or more or less, which is not exhaustive here.
  • the reverse bit may be added at any position of the consecutive bits in the target information when there are consecutive bits with the same value exceeding a preset bit quantity threshold.
  • the threshold value of the preset number of bits can be set according to the actual situation, such as 10, 16, 20, or more or less, which are not exhaustive here.
  • the number of reverse bits may be one or more, which is not limited here.
  • an inverse bit with a value opposite to that of the bit adjacent to the position may be added.
  • the value of the inverted bit is different from the bit value of some bits of the target information.
  • the reverse bit is added to a plurality of consecutive bits with a value of 1
  • the reverse bit is 0; otherwise, the reverse bit is added to a plurality of consecutive bits with a value of 0
  • the inverse bit is 1.
  • the threshold value of the preset number of bits can be 10, that is to say, when there are 11 or more partial bits with a value of 1 being continuously transmitted in the target information, any The reverse bit 0 is added at the position of .
  • two reverse bit 0s may be continuously added to some bits, or one reverse bit 0 may be added, and the number thereof is not limited here.
  • the WUS can be a signal modulated by the network equipment using ASK or FSK mode.
  • the terminal equipment specifically, the first part of the terminal equipment
  • the correct signal is detected, that is, there may be a problem that the terminal device (specifically, the first part of the terminal device) cannot determine whether the currently used envelope detection threshold is correct.
  • the network device adds the above reverse bit to assist the terminal device (specifically, the first component of the terminal device) by adding the above-mentioned reverse bit to some bits of the target information (such as the bits that continuously transmit more of the same bit value) Determining the envelope detection threshold, ensuring that the terminal device (specifically, the first part of the terminal device) can resolve the correct target information, and then ensuring that the terminal device (specifically, the first part of the terminal device) correctly parses the WUS All N signal parts of .
  • the N signal parts of the WUS may include other signal parts in addition to the above-mentioned first signal part, which will be further described below:
  • the N signal parts also include at least one of the following:
  • a second signal part is used to carry a first signal sequence, and the first signal sequence is used to indicate the starting position of the WUS;
  • the third signal part is used to carry a preamble sequence, and the preamble sequence is used for clock synchronization;
  • a fourth signal part, the fourth signal part is used to carry a cyclic redundancy check code (CRC, Cyclic Redundancy Check);
  • CRC Cyclic Redundancy Check
  • a fifth signal part where the fifth signal part is used to carry a second signal sequence, and the second signal sequence is used to indicate the end position of the WUS.
  • the second signal part is used to carry the first signal sequence; wherein, the first signal sequence can be as shown in Figure 6 and Figure 7, specifically "SOW", that is, Start Of WUS (the start of the wake-up signal beginning).
  • SOW Start Of WUS
  • the length of the first signal sequence may be set according to actual conditions.
  • the length of the first signal sequence may be a fixed value, such as 4 bits, or longer or shorter, which is not limited here.
  • the specific content of the first signal sequence can be set according to the actual situation, as long as both communicating parties confirm in advance that they have the same meaning.
  • the first signal sequence may specifically be a special or specified signal sequence, such as 1111 or 1010. Since WUS generally uses OOK modulation, a special signal sequence can be used as the first signal sequence to indicate or instruct WUS to start transmission, which means that after SOW (that is, the first signal sequence), it is the specific content of WUS Start sending location.
  • the third signal part is used to carry a preamble sequence.
  • the preamble sequence can be represented as a preamble sequence as shown in Fig. 6 or Fig. 7
  • the main function of the preamble is to perform clock synchronization. That is, clock synchronization is provided to the WUR of the terminal device.
  • the preamble sequence may also be used to indicate signal parameters of the WUS; the signal parameters of the WUS include at least one of the following: signal length and transmission rate.
  • the preamble may only indicate the signal length; or the preamble may only indicate the transmission rate; or, the preamble may indicate both the signal length and the transmission rate.
  • the signal length may refer to the length of all content carried by the WUS, such as 240 bits (or longer or shorter).
  • the signal length may refer to lengths corresponding to the N signal parts carried by the WUS.
  • the signal length may refer to the length of one or more signal parts among all N signal parts.
  • the signal length is only used to indicate that the length of the first signal part is A bit; for another example, the signal length is used to indicate that the length of the first signal part is A bit, the length of the second signal part is B bit, and so on.
  • the transmission rate may specifically refer to the transmission rate of the WUS.
  • the unit of the transmission rate may be kbps per second.
  • the specific value of the transmission rate is not limited in this embodiment.
  • the fourth signal part is used to carry a cyclic redundancy check code (CRC), such as the CRC shown in FIG. 6 or FIG. 7 .
  • CRC cyclic redundancy check code
  • the CRC is used to perform a CRC check on the information carried by the first signal part (that is, Data), so as to check whether the data part received by the WUR is correct.
  • the fifth signal part is used to carry a second signal sequence; the second signal sequence corresponds to the aforementioned first signal sequence.
  • the second signal sequence as shown in FIG. 6 or FIG. 7, may be expressed as EOW (End Of WUS, the end of the wake-up signal), that is, EOW is used to represent the end position of WUS, or the end of WUS transmission.
  • the length of the second signal sequence may be set according to actual conditions.
  • the length of the second signal sequence may be a fixed value, such as 4 bits, or longer or shorter, which is not limited here.
  • the specific content of the second signal sequence may be set according to actual conditions.
  • the second signal sequence may be another special or designated signal sequence, such as "1110" or "110".
  • the first signal sequence is also a special or specified signal sequence.
  • the second signal sequence and the first signal sequence may be different special or designated signal sequences, or the second signal sequence and the first signal sequence may be the same special or designated signal sequence. signal sequence.
  • the WUS may not contain other signal parts except the first signal part; or the WUS may contain other signal parts except the first signal part part of the part; or, the WUS may include all of the above N signal parts. All are within the protection scope of this embodiment.
  • different signal parts among the N signal parts use the same symbol length. Or, at least one signal part among the N signal parts adopts a different symbol length from other signal parts.
  • the symbol lengths used by the various signal parts of the above-mentioned WUS may be the same or different.
  • the symbols may refer to OFDM symbols.
  • the symbol lengths used by the M signal parts in the above N signal parts are the same as the first symbol length, and the remaining N-M signals Part of the same symbol length is the second symbol length, wherein the first symbol length is different from the second symbol length.
  • M is an integer smaller than N.
  • At least one signal part among the N signal parts adopts a different symbol length from other signal parts, and different signal parts among the N signal parts may use different symbol lengths. That is, the symbol length used by any one signal part is different from that of other signal parts.
  • the relationship between different symbol lengths may refer to a proportional relationship or a multiple relationship between different symbol lengths.
  • the symbol length of the preamble carried in the third signal part is 1/2 of the symbol length of the target information carried in the first signal part.
  • the relationship between the different symbol lengths may be preset or configured by the network device.
  • the relationship between the different symbol lengths is configured by the network device.
  • the network device may send first configuration information, and the first configuration information is used to configure the relationship between the different symbol lengths.
  • the network device may send the first configuration information to the terminal device when the terminal device is in an RRC connection state.
  • the first configuration information may be carried by any one of RRC signaling, DCI or system broadcast message.
  • different signal parts of the WUS use different symbol lengths, which can be more beneficial to control the overhead of different signal parts.
  • the length of the preamble that is, the number of information bits
  • using a shorter preamble symbol length can make the total time occupied by the preamble shorter than using a long preamble symbol length.
  • the network device when the network device generates (or monitors) the WUS, it can transmit the WUS based on any of the following three methods; so that the terminal device can analyze and obtain each bit when receiving the WUS The values of all bits are combined sequentially to obtain all the contents of the WUS.
  • the above WUS is a binary On-Off Keying (OOK, On-Off Keying) signal.
  • OOK On-Off Keying
  • the OOK signal is modulated based on ASK, Amplitude-Shift Keying or Frequency-Shift Keying (FSK, Frequency-Shift Keying).
  • the kth amplitude of the OOK signal is determined by the value of the kth bit, and k is an integer greater than or equal to 1.
  • the kth amplitude of the OOK signal may specifically refer to the amplitude of the OOK signal at the kth moment.
  • the network device determines that the value of the k-th bit is the first value, the amplitude of the OOK signal at the k-th moment is set as the first amplitude state;
  • the amplitude of the OOK signal at the kth moment is set to the second amplitude state.
  • the first amplitude state is different from the second amplitude state
  • the first amplitude state may be a first amplitude value or (such as 0)
  • the second amplitude may be a second amplitude value (such as non-zero), Or vice versa.
  • the first amplitude value (or called the first amplitude state) may mean that the network device does not transmit a signal at the corresponding moment
  • the second amplitude value (or called the second amplitude state) may mean that the network device does not transmit a signal at the corresponding moment.
  • the amplitude value produced by the transmitted signal may be a first amplitude value or (such as 0)
  • the second amplitude may be a second amplitude value (such as non-zero), Or vice versa.
  • the first amplitude value (or called the first amplitude state) may mean that the network device does not transmit a signal at the corresponding moment
  • the second amplitude value (or called the second amplitude state) may mean that the network
  • the first value is different from the second value, for example, the first value is 1, and the second value is 0; or, the first value is 0, and the second value is 1.
  • the network device when the network device wants to transmit the WUS, the network device can modulate an OOK signal as the WUS, and then send the WUS.
  • the network device may use its own OOK transmitter to directly modulate or generate the OOK signal.
  • it may include: the network device uses the ASK or FSK modulation mode of its own OOK transmitter to modulate or generate the OOK signal, and use the OOK signal as the WUS; and then transmit it through its own OOK transmitter The WUS.
  • the network device may need to use a separate transmitter to transmit the WUS, and the network device may keep using its own main transmitter to transmit the signal of the main system (such as the NR main system, its signal OFDM signal).
  • the WUS may occupy a section of dedicated frequency domain resources (or dedicated frequency domain resources); or the WUS may occupy a part of frequency domain resources of the primary system (the system corresponding to the primary receiver).
  • the WUS is an OOK signal generated based on multiple target subcarriers on an OFDM symbol.
  • the network device side may use a main transmitter (or called an OFDM transmitter) to generate and transmit the above-mentioned WUS.
  • the WUS may occupy a part of the spectrum (or frequency domain resources) of the primary system, and of course, the WUS may also occupy a section of dedicated spectrum resources.
  • the above WUS is an OOK signal generated based on multiple target subcarriers on an OFDM symbol. Specifically, it may refer to: the WUS is an OOK signal generated by simulation by generating OFDM waveforms.
  • the states of multiple target subcarriers on the ith OFDM symbol are determined by the value of the ith bit; i is an integer greater than or equal to 1.
  • the ith OFDM symbol is any one of the aforementioned OFDM symbols used to generate the OOK signal.
  • the ith bit in the WUS may be any one of all the bits in the WUS.
  • Specifically described method also comprises:
  • the network device determines that the value of the i-th bit is the first value, setting the multiple target subcarriers on the i-th OFDM symbol to the first state;
  • the network device sets the multiple target subcarriers on the ith OFDM symbol to a second state when it is determined that the value of the ith bit is the second value.
  • the value of the i-th bit can be the first value or the second value.
  • the first value is different from the second value, for example, the first value is 1, and the second value is 0; or, the first value is 0, and the second value is 1.
  • the states of the multiple target sub-carrier positions may specifically refer to the amplitudes or levels of the multiple target sub-carrier positions.
  • the states of the plurality of target subcarrier positions may include a first state or a second state.
  • setting the multiple target subcarriers on the ith OFDM symbol to the first state may specifically refer to: setting the multiple target subcarriers on the ith OFDM symbol Carriers are set to high.
  • the setting the multiple target subcarriers on the ith OFDM symbol to the second state may specifically refer to: setting all the multiple target subcarriers to a low level.
  • the setting the multiple target subcarriers on the ith OFDM symbol to the first state may specifically refer to: setting the multiple target subcarriers on the ith OFDM symbol All target subcarriers are set to low level.
  • the setting the multiple target subcarriers on the ith OFDM symbol to the second state may specifically refer to: setting all the multiple target subcarriers to a high level.
  • the plurality of target subcarriers may be some subcarriers or all subcarriers in the OFDM symbol.
  • the multiple target subcarriers do not include a central subcarrier. That is to say, at least some of the other subcarriers except the center subcarrier on any OFDM symbol serve as the multiple target subcarriers.
  • all subcarriers except the central subcarrier may be used as the plurality of target subcarriers; or, it may be that at least two of all subcarriers except the central subcarrier are selected as the multiple target subcarriers. Multiple target subcarriers.
  • the multiple target subcarriers are symmetrically distributed around the center subcarrier.
  • Figure 8 shows that the number of multiple target subcarriers on OFDM in the OFDM symbol is 4, that is, the 4 target subcarriers used for WUS transmission; further, referring to Figure 8, the 4 target subcarriers used for WUS transmission
  • the subcarriers are distributed symmetrically around the center subcarrier (shown as a black background square grid pattern in FIG. 8 ).
  • setting a plurality of target subcarriers to the first state is represented as gray, and then the plurality of target subcarriers used in WUS transmission in the leftmost first column in Fig. 8 are all set to the first state ( For example, each subcarrier is set to a high level, or vice versa), at this time, it may indicate that the value of the corresponding bit in the WUS is the first value, such as 1.
  • the above-mentioned central subcarrier can be set to a specified state. That is, the central subcarriers in all OFDM symbols are set to a designated state.
  • the specified state may be set according to actual conditions, for example, it may refer to a high level or a low level. Exemplarily, it may be that the center subcarriers in all OFDM symbols are all set to high level (or all are set to low level). In this way, the influence of the direct current (DC) subcarrier can be eliminated.
  • DC direct current
  • the subcarrier spacing of the multiple target subcarriers is the same as that of the primary system.
  • the subcarrier spacing of the multiple target subcarriers is different from that of the primary system. That is to say, when the network device transmits the WUS in the primary system, the subcarrier spacing of the WUS may be the same as or different from that of the primary system.
  • the method further includes: the network device sending second configuration information, where the second configuration information is used to configure subcarrier spacing of the multiple target subcarriers.
  • the network device may send the second configuration information to the terminal device when the terminal device is in an RRC connection state.
  • the second configuration information may be carried by any one of RRC signaling, DCI or system broadcast message.
  • the OFDM symbol does not contain a cyclic prefix CP.
  • the OFDM symbol includes a cyclic prefix CP. That is to say, the WUS is an OOK signal generated based on multiple target subcarriers on the OFDM symbol, that is, when the WUS signal is generated using OFDM, the OFDM symbol may not have a CP, or each OFDM symbol may have a CP.
  • the OFDM symbol needs to contain CP (especially when ASK modulation is used to obtain the WUS), and it is even more necessary to use CP to combat multipath fading to prevent WUS inter-symbol interference.
  • the OFDM symbol contains a cyclic prefix CP, the length of the CP is at least partially different from the carrier of the primary system.
  • the method further includes: the network device sending third configuration information, where the third configuration information is used to configure the length of the CP. Further, the network device may send the third configuration information to the terminal device when the terminal device is in an RRC connection state. Wherein, the third configuration information may be carried by any one of RRC signaling, DCI or system broadcast message.
  • the method further includes: the network device sending fourth configuration information, where the fourth configuration information is used to configure the quantity of the multiple target subcarriers.
  • the network device may send the fourth configuration information to the terminal device when the terminal device is in an RRC connection state.
  • the fourth configuration information may be carried by any one of RRC signaling, DCI or system broadcast message.
  • the subcarrier spacing of the main system is 15KHz or 30KHz.
  • the peak rate will not be greater than 14kbps (corresponding to 15KHz) or not greater than 28kbps ( Corresponding to 30KHz), that is to say, the number of bits that can be transmitted within 1ms is no more than 14 or 28.
  • the WUS needs to carry less information content. However, if the WUS needs to carry more information content, it will not be able to meet the requirements of WUS information transmission. Therefore, the plurality of target subcarriers in an OFDM symbol may use a different subcarrier spacing than the primary system. For example, taking the main system as NR as an example, WUS can be transmitted in initial (initial) DL (downlink, DownLink) BWP (bandwidth part, BandWith Part). In order to ensure that the WUS can carry a sufficient amount of information per unit time, the transmission rate of the WUS needs to meet certain requirements, for example, not lower than 100 kbps.
  • the carrier bandwidth of WUS (when using OFDM modulation, the corresponding subcarrier spacing) needs to be large enough, for example, greater than 100KHz; but on the other hand, using a large subcarrier spacing will lead to an increase in CP overhead. Therefore, the subcarrier spacing of WUS
  • the carrier spacing needs to be selected reasonably, and the trade-off between its transmission rate and CP overhead needs to be considered. For example, when the subcarrier interval is 120KHz, the corresponding OFDM symbol time length is 8.33us (microsecond). Considering a cell covering a radius of 600m, the CP length cannot be less than 2us, and the corresponding CP overhead is 2/(2+8.33), which is close to 20%.
  • the subcarrier spacing and/or CP length of the multiple target subcarriers may be different or at least partly different from the carrier of the primary system.
  • Adopting the second method can have the following advantages: OFDM can be implemented using FFT, so it can share the FFT converter with the main system, and the implementation complexity is low; sending OOK signals on multiple subcarriers of OFDM can increase the OOK signal Transmit power to ensure the receiving performance of terminal equipment.
  • the WUS is an OOK signal generated based on a single carrier.
  • the state of the single carrier at the jth time domain position is determined by the value of the jth bit, and j is an integer greater than or equal to 1; wherein, the jth time domain position may refer to the sending of the WUS Any one of all time domain positions.
  • the method also includes:
  • the single carrier at the jth time domain position is set to a fourth state.
  • the value of the bit can be the first value or the second value.
  • the first value is different from the second value, for example, the first value is 1, and the second value is 0; or, the first value is 0, and the second value is 1.
  • the state of the single carrier may specifically refer to the amplitude or level of the single carrier.
  • the states of the plurality of target subcarrier positions may include a third state or a fourth state.
  • setting the single carrier at the jth time domain position to the third state may specifically refer to: setting all of the multiple target subcarriers to a low level.
  • the setting the single carrier at the jth time domain position to the fourth state may specifically refer to: setting the single carrier at the jth time domain position to a high level.
  • the setting the single carrier at the jth time domain position to the third state may specifically refer to: setting all of the multiple target subcarriers to a high level.
  • the setting the single carrier at the jth time domain position to the fourth state may specifically refer to: setting the single carrier at the jth time domain position to a low level.
  • the third state may be the same as or different from the first state in the aforementioned second manner
  • the fourth state may be the same as or different from the second state in the aforementioned second manner.
  • the third state is a high level
  • the magnitude or value of the high level may be greater than that of the first state
  • the low level of the fourth state is the same as the low level of the second state. levels can be the same. This embodiment does not exhaustively enumerate all possible situations.
  • the WUS sent by the network device can carry N signal parts, so that the content that the WUS can carry can be divided, so that the WUS can also be used while ensuring the energy saving of the terminal equipment.
  • the corresponding signal part is carried more flexibly, so that it can be more flexibly applied to more scenarios.
  • the above solution also provides designs for the symbol length of the WUS and multiple transmission modes, thereby ensuring a more reasonable transmission of the WUS and suitable for deployment in various scenarios with low power consumption.
  • Fig. 10 is a schematic diagram of the composition and structure of a terminal device according to an embodiment of the present application, including:
  • the first communication unit 1010 is configured to monitor the wake-up signal WUS;
  • the WUS includes N signal parts; N is an integer greater than or equal to 1.
  • the N signal parts include a first signal part, and the first signal part is used to carry target information.
  • the target information includes at least one of the following: wake-up information and paging short message.
  • the wake-up information is specific to the terminal device
  • the wake-up information is shared by a terminal device group, and the terminal device group includes the terminal device;
  • the wake-up information is dedicated to the first serving cell, and the first serving cell is the serving cell where the terminal device is located.
  • the first signal part is further used to carry a synchronization sequence, and the synchronization sequence is used for the terminal device to maintain synchronization.
  • the synchronization sequence located in one of the following locations:
  • the first signal part is further used to carry reverse bits, and the reverse bits are used to determine an envelope detection threshold.
  • the reverse bit is located in some bits of the target information.
  • the N signal parts also include at least one of the following:
  • a second signal part is used to carry a first signal sequence, and the first signal sequence is used to indicate the starting position of the WUS;
  • the third signal part is used to carry a preamble sequence, and the preamble sequence is used for clock synchronization;
  • a fourth signal part, the fourth signal part is used to carry a cyclic redundancy check code CRC;
  • a fifth signal part where the fifth signal part is used to carry a second signal sequence, and the second signal sequence is used to indicate the end position of the WUS.
  • the preamble sequence is also used to indicate the signal parameters of the WUS;
  • the signal parameters of the WUS include at least one of the following: signal length and transmission rate.
  • At least one signal part among the N signal parts adopts a different symbol length from other signal parts.
  • the relationship between the different symbol lengths is preset or configured by the network device.
  • the WUS is a binary ON/OFF keying OOK signal.
  • the OOK signal is modulated based on the amplitude shift keying method ASK or the frequency shift keying method FSK.
  • the WUS is an OOK signal generated based on multiple target subcarriers on an OFDM symbol.
  • the value of the i-th bit in the WUS is determined by the signal state received in the first frequency domain at the i-th time domain position, and i is an integer greater than or equal to 1;
  • the i th time domain position is the position where the i th OFDM symbol is located; the first frequency domain range is related to the frequency domain range occupied by the multiple target subcarriers.
  • the multiple target subcarriers do not include a central subcarrier.
  • the multiple target subcarriers are symmetrically distributed around the center subcarrier.
  • the subcarrier spacing of the multiple target subcarriers is the same as that of the primary system.
  • the subcarrier spacing of the multiple target subcarriers is different from that of the primary system.
  • the subcarrier spacing of the multiple target subcarriers is configured by the network device or preset.
  • the OFDM symbol does not contain a cyclic prefix CP.
  • the OFDM symbol contains a cyclic prefix CP.
  • the length of the CP is at least partially different from the CP length of the OFDM symbol of the primary system.
  • the length of the CP is configured by the network device or preset.
  • the number of the multiple target subcarriers is configured for the network device or preset.
  • the WUS is an OOK signal generated based on a single carrier.
  • the value of the jth bit in the WUS is determined by the signal state received in the second frequency domain at the jth time domain position, and j is an integer greater than or equal to 1;
  • the second frequency domain range is related to the frequency domain range occupied by the single carrier.
  • the terminal device includes at least the first component and a second component; the power consumption of the first component is lower than that of the second component;
  • the first component includes the first communication unit.
  • the terminal device may further include a first processing unit, and the first processing unit may be used to perform related processing in the method, such as processing such as parsing WUS, which are not exhaustively listed here.
  • the terminal device in the embodiment of the present application can implement the corresponding function of the terminal device in the foregoing method embodiment.
  • each module (submodule, unit or component, etc.) in the terminal device refers to the corresponding description in the above method embodiment, and details are not repeated here.
  • the functions described by each module (submodule, unit or component, etc.) in the terminal device of the embodiment of the application can be realized by different modules (submodules, units or components, etc.), or by the same module (submodule, unit or component, etc.) implementation.
  • the WUS monitored by the terminal device can carry N signal parts, so that the content that the WUS can carry can be divided, so that it can be more flexible in the WUS while ensuring the energy saving of the terminal device The corresponding signal part is carried, so that it can be more flexibly applied to more scenarios.
  • the above solution also provides designs for the symbol length of the WUS and various transmission modes, thereby ensuring a more reasonable transmission of the WUS and suitable for deployment in various scenarios with low power consumption.
  • FIG. 11 is a schematic diagram of the composition and structure of a network device according to an embodiment of the present application, including:
  • the second communication unit 1101 is configured to send a wake-up signal WUS;
  • the WUS includes N signal parts; N is an integer greater than or equal to 1.
  • the N signal parts include a first signal part, and the first signal part is used to carry target information.
  • the target information includes at least one of the following: wake-up information and paging short message.
  • the wake-up information is specific to the terminal device
  • the wake-up information is shared by terminal equipment groups
  • the wake-up information is dedicated to the first serving cell.
  • the first signal part is further used to carry a synchronization sequence, and the synchronization sequence is used for the terminal device to maintain synchronization.
  • the synchronization sequence located in one of the following locations:
  • the first signal part is further used to carry reverse bits, and the reverse bits are used to determine an envelope detection threshold.
  • the reverse bit is located in some bits of the target information.
  • the N signal parts also include at least one of the following:
  • a second signal part is used to carry a first signal sequence, and the first signal sequence is used to indicate the starting position of the WUS;
  • the third signal part is used to carry a preamble sequence, and the preamble sequence is used for clock synchronization;
  • a fourth signal part, the fourth signal part is used to carry a cyclic redundancy check code CRC;
  • a fifth signal part where the fifth signal part is used to carry a second signal sequence, and the second signal sequence is used to indicate the end position of the WUS.
  • the preamble sequence is also used to indicate the signal parameters of the WUS;
  • the signal parameters of the WUS include at least one of the following: signal length and transmission rate.
  • At least one signal part among the N signal parts adopts a different symbol length from other signal parts.
  • the second communication unit is configured to send first configuration information, where the first configuration information is used to configure the relationship between the different symbol lengths.
  • the WUS is a binary ON/OFF keying OOK signal.
  • the OOK signal is modulated based on the amplitude shift keying method ASK or the frequency shift keying method FSK.
  • the WUS is an OOK signal generated based on multiple target subcarriers on an OFDM symbol.
  • the states of multiple target subcarriers on the ith OFDM symbol are determined by the value of the ith bit; i is an integer greater than or equal to 1.
  • the network device also includes:
  • the second processing unit 1102 is configured to set the multiple target subcarriers on the ith OFDM symbol to the first state when it is determined that the value of the ith bit is the first value;
  • the multiple target subcarriers do not include a central subcarrier.
  • the central subcarrier is set to a specified state.
  • the multiple target subcarriers are symmetrically distributed around the center subcarrier.
  • the subcarrier spacing of the multiple target subcarriers is the same as that of the primary system.
  • the subcarrier spacing of the multiple target subcarriers is different from that of the primary system.
  • the second communication unit 1101 is configured to send second configuration information, where the second configuration information is used to configure subcarrier spacing of the multiple target subcarriers.
  • the OFDM symbol does not contain a cyclic prefix CP.
  • the OFDM symbol contains a cyclic prefix CP.
  • the length of the CP is at least partially different from the CP length of the OFDM symbol of the primary system.
  • the second communication unit is configured to send third configuration information 1101, where the third configuration information is used to configure the length of the CP.
  • the second communication unit 1101 is configured to send fourth configuration information, where the fourth configuration information is used to configure the quantity of the multiple target subcarriers.
  • the WUS is an OOK signal generated based on a single carrier.
  • the state of the single carrier at the jth time domain position is determined by the value of the jth bit; j is an integer greater than or equal to 1.
  • the second processing unit 1102 is configured to set the single carrier at the jth time domain position to a third state when it is determined that the value of the jth bit is the first value;
  • the single carrier at the jth time domain position is set to a fourth state.
  • the network device in the embodiment of the present application can implement the corresponding function of the network device in the foregoing method embodiment.
  • each module (submodule, unit or component, etc.) in the network device refers to the corresponding description in the above method embodiments, and details are not repeated here.
  • the functions described by each module (submodule, unit or component, etc.) in the network device of the application embodiment can be realized by different modules (submodule, unit or component, etc.), or by the same module (submodule, unit or component, etc.) implementation.
  • the WUS transmitted by the network equipment can carry N signal parts, so that the content that the WUS can carry can be divided, so that the WUS can be more flexible while ensuring the energy saving of the terminal equipment. Carry the corresponding signal part, so that it can be more flexibly applied to more scenarios.
  • the above solution also provides designs for the symbol length of the WUS and multiple transmission modes, thereby ensuring a more reasonable transmission of the WUS and suitable for deployment in various scenarios with low power consumption.
  • Fig. 13 is a schematic structural diagram of a communication device 1300 according to an embodiment of the present application.
  • the communication device 1300 includes a processor 1310, and the processor 1310 can invoke and run a computer program from a memory, so that the communication device 1300 implements the method in the embodiment of the present application.
  • the communication device 1300 may further include a memory 1320 .
  • the processor 1310 may invoke and run a computer program from the memory 1320, so that the communication device 1300 implements the method in the embodiment of the present application.
  • the memory 1320 may be an independent device independent of the processor 1310 , or may be integrated in the processor 1310 .
  • the communication device 1300 may further include a transceiver 1330, and the processor 1310 may control the transceiver 1330 to communicate with other devices, specifically, to send information or data to other devices, or to receive information from other devices information or data sent.
  • the transceiver 1330 may include a transmitter and a receiver.
  • the transceiver 1330 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1300 may be the network device of the embodiment of the present application, and the communication device 1300 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.
  • the communication device 1300 may be the terminal device in the embodiment of the present application, and the communication device 1300 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a chip 1400 according to an embodiment of the present application.
  • the chip 1400 includes a processor 1410, and the processor 1410 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1400 may further include a memory 1420 .
  • the processor 1410 may invoke and run a computer program from the memory 1420, so as to implement the method performed by the terminal device or the network device in the embodiment of the present application.
  • the memory 1420 may be an independent device independent of the processor 1410 , or may be integrated in the processor 1410 .
  • the chip 1400 may further include an input interface 1430 .
  • the processor 1410 can control the input interface 1430 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 1400 may further include an output interface 1440 .
  • the processor 1410 can control the output interface 1440 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • Chips applied to network devices and terminal devices may be the same chip or different chips.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the aforementioned memories may be volatile memories or nonvolatile memories, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • Fig. 15 is a schematic block diagram of a communication system 1500 according to an embodiment of the present application.
  • the communication system 1500 includes a terminal device 1510 and a network device 1520 .
  • the terminal device 1510 may be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 1520 may be used to realize the corresponding functions realized by the network device in the above method.
  • details are not repeated here.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)), etc.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种信息传输方法、终端设备、计算机可读存储介质、计算机程序产品以及计算机程序。其中方法包括:终端设备监听唤醒信号WUS;其中,所述WUS包含N个信号部分;N为大于等于1的整数。

Description

信息传输方法、终端设备和网络设备 技术领域
本申请涉及通信领域,更具体地,涉及一种信息传输方法、终端设备、网络设备、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
随着技术的发展,对终端设备的节能也更加关注,因此提出终端设备使用更低功耗的接收机的方式,这种方式中,可以根据实际需要唤醒终端设备的主接收机进行相关处理。然而,如何使得终端设备可以更加灵活的适用于更多的场景,就成为需要解决的问题。
发明内容
本申请实施例提供一种信息传输方法、终端设备、网络设备、计算机可读存储介质、计算机程序产品以及计算机程序。
本申请实施例提供一种信息传输方法,包括:
终端设备监听唤醒信号WUS;
其中,所述WUS包含N个信号部分;N为大于等于1的整数。
本申请实施例提供一种信息传输方法,包括:
网络设备发送唤醒信号WUS;
其中,所述WUS包含N个信号部分;N为大于等于1的整数。
本申请实施例提供一种终端设备,包括:
第一通信单元,用于监听唤醒信号WUS;
其中,所述WUS包含N个信号部分;N为大于等于1的整数。
本申请实施例提供一种网络设备,包括:
第二通信单元,用于发送唤醒信号WUS;
其中,所述WUS包含N个信号部分;N为大于等于1的整数。
本申请实施例提供一种芯片,用于实现上述方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述方法。
本申请实施例,终端设备所监听的WUS中,可以携带N个信号部分,这样可以对WUS所能够携带的内容作出划分,从而在保证终端设备的节能的情况下,还能够在WUS中更加灵活的携带相应的信号部分,从而可以更加灵活的适用于更多的场景。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是根据在DRX中引入节能信号的处理方式的一种场景示意图。
图3是根据通过节能信号唤醒终端设备接收寻呼消息的一种场景图。
图4是根据本申请的一实施例的信息传输方法的示意性流程图。
图5是根据本申请的一实施例的终端设备的组成的示意图。
图6和图7是根据本申请一实施例的WUS的组成内容的两种示意图。
图8是根据本申请又一实施例的基于OFDM符号上的多个目标子载波生成的OOK信号的一种示意图。
图9是根据本申请一实施例的信息传输方法的另一种示意性流程图。
图10是根据本申请一实施例的终端设备的示意性框图。
图11是根据本申请的一实施例的网络设备的示意性框图。
图12是根据本申请的一实施例的网络设备的另一种示意性框图。
图13是根据本申请实施例的通信设备示意性框图。
图14是根据本申请实施例的芯片的示意性框图。
图15是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一种可能的实现方式中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一种可能的实现方式中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或 者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信系统100。该通信系统包括一个网络设备110和两个终端设备120。在一种可能的实现方式中,该通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
在一种可能的实现方式中,该通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
为了便于理解本申请实施例,下面对本申请实施例所涉及到的基本流程以及基本概念进行简单说明。应理解,下文所介绍的基本流程以及基本概念并不对本申请实施例产生限定。
5G的主要应用场景为:增强移动超宽带(eMBB,Enhanced Mobile Broadband)、低时延高可靠通信(URLLC,Ultra Reliable Low Latency Communications)、大规模机器类通信(mMTC,massive Machine Type Communications)。其中,eMBB以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速;由于eMBB可能部署在不同的场景中,便如室内,市区,农村等,其能力和需求的差别也比较大,所以必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度、小数据量、时延不敏感业务、低成本和长使用寿命等。
在5G网络环境中,为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义了新的RRC(无线资源控制,Radio Resource Control)状态,即RRC_INACTIVE(RRC非激活)状态。这种状态有别于RRC_IDLE(RRC空闲态)、RRC_ACTIVE(RRC激活态)或RRC_CONNECTED(RRC连接态)。
关于终端设备(或称为UE)的节能,分别进行说明:
第一、针对RRC连接态的终端设备的节能:
在5G的演进中,对UE(即终端设备)的节电提出了更高的要求。例如对于现有的DRX(Discontinuous Reception,非连续接收)机制,在每个on duration(激活时间),UE(即终端设备)需要不断检测PDCCH(物理下行控制信道,Physical Downlink Control CHannel)来判断基站是否调度发给自己的数据传输。对于大部分UE(即终端设备)来说,可能在很长一段时间没有接收数据传输的需要,仍然需要保持定期的唤醒机制来监听可能的下行传输,对于这类UE(即终端设备),节电有进一步优化的空间。
在R16标准中,引入了节能信号,以实现进一步的节能。该节能信号可以与DRX机制结合使用,该引入节能信号的处理方式,具体可以包括:终端设备在DRX ON duration(激活时间)之前,接收节能信号(或称为节能唤醒信号)。也就是,当针对一个终端设备在一个DRX周期有数据传输时,网络设备可以通过节能信号“唤醒”终端设备,以使得所述终端设备在唤醒后,在DRX On duration期间监 听PDCCH;否则,当针对一个终端设备在一个DRX周期没有数据传输时,不向该终端设备发送节能信号(也就是不“唤醒”终端设备),以使得该终端设备在DRX On Duration期间不需要监听PDCCH。相比现有DRX机制,上述引入节能信号的处理方式,能够在终端设备没有数据传输时,省略DRX On duration期间PDCCH监听,从而实现终端设备的节能。其中,所述节能信号,可以由DCI(下行链路控制信息,DownLink Control Information)format(格式)2_6承载。
将终端设备在DRX(Discontinuous Reception,非连续接收)On duration之外的时间被称为非激活时间,在DRX On Duration的时间被称为激活时间,结合图2,对以上在DRX中引入节能信号的处理方式进行说明,可以包括:第一个节能信号指示监听PDCCH,则终端设备在接收到该第一个节能信号后,在第一个DRX周期的激活时间(第一个DRX周期的激活时间在图2中表示为黑色方框)内监听PDCCH;第二个节能信号指示不监听PDCCH,则终端设备在接收到该第二个节能信号后,不在第二个DRX周期的激活时间(第二个DRX周期的激活时间在图2中表示为无颜色方框)内监听PDCCH;第三个节能信号指示不监听PDCCH,则终端设备在接收到该第三个节能信号后,不在第三个DRX周期的激活时间(第三个DRX周期的激活时间在图2中表示为无颜色方框)内监听PDCCH;第四个节能信号指示监听PDCCH,则终端设备在接收到该第四个节能信号后,在第四个DRX周期的激活时间(第四个DRX周期的激活时间在图2中表示为黑色方框)内监听PDCCH。
在R17标准中,为了进一步增强连接态(即RRC连接态)的UE(即终端设备)的节能,引入了R16的搜索空间集合组切换的增强方案,以及在数据传输的间隙跳过PDCCH监听的方案(即PDCCH skipping(跳过)的方案)来实现节电。其中,搜索空间集合组切换和PDCCH skipping相关的控制信息可以是通过PDCCH承载的。
第二、针对RRC-Idle(RRC空闲态)/RRC-inactive(RRC非激活态)态终端设备的节能:
在RRC idle/inactive状态下的终端设备,通过DRX的方式接收寻呼消息。由于在一个DRX周期内存在一个寻呼时机(paging occasion,PO),因此终端设备只在PO接收寻呼消息,而在PO之外的时间不接受寻呼消息,来达到省电的目的。但是实际情况下,终端设备被寻呼到的概率可能并不高,因此,若终端设备周期性的在对应的PO上检测PDCCH,而有很大概率并没有检测到发给自己的寻呼消息,则客观上会造成功率的浪费。
与R16标准针对RRC连接态的终端设备的节能类似,R17标准对空闲态的终端设备接收寻呼消息的节能进行了优化,引入了与前述节能信号类似的一种节能信号,称为PEI(paging early indication,寻呼早期指示)。该PEI用于在目标PO到达之前,指示终端设备是否在该PO接收寻呼PDCCH。上述节能信号(即PEI)承载于PDCCH信道(以下为了方便描述,将其称为基于PDCCH信道的节能信号),具体通过DCI(下行链路控制信息,DownLink Control Information)format(格式)2_7携带该节能信号(即PEI)。
该基于PDCCH信道的节能信号可以承载更多的节能信息,例如,可以承载sub-grouping(子分组)信息,用于指示节能信息对应的终端设备子分组(或UE子分组)。可通过UE_ID(标识)将对应同一个PO的多个终端设备的进一步分组,得到多个终端设备组。若终端设备所在的终端设备组有任何一个终端设备需要被寻呼,则终端设备需要在该PO上接收寻呼消息,否则,终端设备不需要接收寻呼消息。以上通过将终端设备组(或称为终端设备子分组)信息与节能信息结合,可以更加精细的指示在目标PO是否需要接收寻呼的终端设备。比如,通过节能信号唤醒终端设备接收寻呼消息的一种场景,如图3所示:第一个节能信号指示一个或多个终端设备组中的终端设备在对应的PF(寻呼帧,Paging Frame)或者PO(在图3中将第一个节能信号所指示的PF或PO表示为灰色方块)上接收寻呼,则该终端设备组内的终端设备唤醒后,在PF或PO上监听寻呼;第二个节能信号则指示不监听PDCCH,也就是指示一个或多个终端设备组中的终端设备在对应的PF或者PO(在图3中将第二个节能信号所指示的PF或PO表示为无颜色方块)上不接收寻呼,则该终端设备组内的终端设备可以不在PF或PO上监听寻呼;第三个节能信号指示一个或多个终端设备组中的终端设备在对应的PF或者PO(在图3中将第三个节能信号所指示的PF或PO表示为灰色方块)上接收寻呼,则该终端设备组内的终端设备唤醒后,在PF或PO上监听寻呼。
为了终端设备的进一步节电,R18标准计划引入唤醒接收机(WUR,wake-up receiver)接收节能信号的方案。WUR具有极低成本、极低复杂度和极低功耗的特点,其主要通过基于包络检测的方式接收节能信号。因此,WUR接收的节能信号与现有R16、R17标准定义的基于PDCCH承载的信号的调制方式、波形等不同。节能信号主要通过对载波信号进行ASK调制的包络信号。包络信号的解调也可基于无线射频信号提供的能量驱动低功耗电路来完成,因此它可以是无源的。WUR也可以通过终端设备进行供电,无论哪种供电方式,该WUR相比终端设备的传统接收机都极大的降低了功耗,例如WUR可以实现小于1mw(毫瓦)的功耗,远低于传统接收机几十至几百mw的功耗。WUR可以和终端设备 结合在一起,作为终端设备接收机的一个附加模块,也可以单独作为一个终端设备的唤醒功能模块。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
图4是根据本申请一实施例的信息传输方法的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S410、终端设备监听唤醒信号(WUS,wake-up Signal);其中,所述WUS包含N个信号部分;N为大于等于1的整数。
上述S410所述终端设备监听WUS,具体可以为:所述终端设备的第一部件监听所述WUS。其中,所述终端设备至少包含所述第一部件和第二部件;所述第一部件的功耗低于所述第二部件。
所述终端设备的第一部件监听所述WUS,可以指的是:所述终端设备处于RRC空闲态、或RRC非激活态的情况下,所述终端设备的第一部件监听所述WUS。还需要指出的是,在所述终端设备的第一部件监听所述WUS的过程中,所述终端设备的所述第二部件可以处于休眠状态。该休眠状态可以指的是所述第二部件一部分功能或一部分器件处于开启状态,但是另一部分功能或另一部分器件处于关闭状态或称为待唤醒状态等等。所述终端设备可以仅包含上述第一部件和第二部件;或者,所述终端设备除了包含上述第一部件和第二部件之外,还可以包含其他部件,只是本实施例不做穷举。
所述终端设备可以仅包含上述第一部件和第二部件;或者,所述终端设备除了包含上述第一部件和第二部件之外,还可以包含其他部件,只是本实施例不做穷举。
具体的,所述第一部件可以指的是所述终端设备中的低功耗接收机,或者可以称为唤醒接收机(WUR,wake-up receiver),或者可以将其称为零功耗WUR,或者还可以称为低功耗WUR,关于其更多的名称本实施例不做穷举。所述第二部件可以指的是所述终端设备中的主接收机。
示例性的,如图5所示,所述终端设备可以由主接收机以及WUR构成。进一步的,如果网络设备需要终端设备开启第二部件即图5中的主接收机,则所述网络设备可以向所述终端设备发送WUS。相应的,所述终端设备的WUR可以监听唤醒信号(WUS,wake-up signal);在终端设备的WUR监听到所述WUS的情况下,控制开启所述终端设备的主接收机(即前述第二部件);在终端设备的WUR没有监听到所述WUS的情况下,终端设备的主接收机可以保持处于休眠状态。也就是说,在终端设备没有业务或没有寻呼消息时,终端设备可以仅使用WUR(即第一部件);仅当终端设备有业务时,终端设备的WUR才会收到WUS,再唤醒终端设备的主接收机以进行数据收发。
为了便于区分,下文从调制方式、调制波形、传输速率、支持的带宽范围、码率等方面,介绍WUR与主接收机之间的差异:
从二者支持的调制方式来看,WUR支持的调制方式的复杂程度低于主接收机支持的调制方式的复杂程度。在一些实现方式中,WUR支持的调制方式可以包括以下调制方式中的一种或多种:幅移键控(amplitude shift keying,ASK)、相移键控(phase shift keying,PSK)、频移键控(frequency shift keying,FSK)等。相应地,主接收机支持的调制方式可以包括以下调制方式中的一种或多种:正交相移键控(quadrature phase shift keying,QPSK)、正交振幅调制(quadrature amplitude modulation,QAM)、正交频分复用(orthogonal frequency division multiplexing,OFDM)等。当然,在另一些实现方式中,主接收机也可以支持ASK、PSK、FSK中的至少之一的调制方式。本申请实施例对此不作具体限定。
从二者支持的调制波形来看,WUR支持的调制波形的复杂度低于主接收机支持的调制波形的复杂度,或者说,WUR支持的调制波形比主接收机支持的调制波形简单。
从二者支持的传输速率来看,WUR支持的传输速率低于主接收机支持的传输速率。
从二者支持的带宽范围来看,WUR支持的带宽范围小于主接收机支持的带宽范围,或者说,WUR支持的带宽比主接收机支持的带宽窄。
从二者支持的码率来看,WUR支持的码率低于主接收机支持的码率。
本实施例提供的方案中,所述终端设备的第一部件(即WUR)监听所述WUS,可以节省终端设备的功耗。这是由于终端设备的WUR工作时使用极低的功耗(一般小于1mw);并且,终端设备的 WUR使用ASK或FSK的方式对信号进行调制,这也使得终端设备的WUR可以采用极其简单的硬件结构和极其简单的接收方式对信号进行接收和解调,例如,针对ASK信号,终端设备的WUR仅需要使用包络检测的方式对信号进行接收。因此,相对传统的终端设备一直使用主接收机的模式,本实施例采用终端设备的WUR监听WUS,能够极大节省终端设备的功耗。
下面首先针对所述WUS包含的N个信号部分进行说明:
所述N个信号部分中包含第一信号部分,所述第一信号部分用于携带目标信息。所述目标信息包括以下至少之一:唤醒信息,寻呼短消息。
上述目标信息为所述WUS承载的主要信息。
所述目标信息中可以仅包含所述唤醒信息;或者,所述目标信息中可以仅包含所述寻呼短消息;或者,所述目标信息中可以既包含所述唤醒信息又包含所述寻呼短消息。
其中,所述寻呼短消息可以包含以下至少之一:Earthquake and Tsunami Warning System(地震和海啸预警系统,ETWS)通知,Commercial Mobile Alert System(商用移动预警系统,CMAS)通知,系统消息是否更新的指示信息。应理解,以上仅为示例性说明,根据实际的情况或需求,所述寻呼短消息还可以包含其他类型的通知和/或指示信息,只是本实施例不进行穷举。
所述唤醒信息,还可以称为节能指示信息。该唤醒信息可以用于指示所述终端设备监听寻呼消息;具体的,该唤醒信息可以是用于指示所述终端设备是否需要接收寻呼消息,也就是该唤醒信息用于指示所述终端设备在所述终端设备的PO(寻呼时机)上是否有寻呼消息发送。比如,在网络设备需要唤醒终端设备以在其PO上监听寻呼消息的时候,该网络设备可以向所述终端设备发送WUS,该WUS的第一信号部分中携带所述唤醒信息。其中,所述终端设备可以是处于RRC空闲态或RRC非激活态。
进一步地,所述唤醒信息为所述终端设备专属的;或者所述唤醒信息为终端设备组共享的,所述终端设备组中包含所述终端设备;或者所述唤醒信息为第一服务小区专用的,所述第一服务小区为所述终端设备所在的服务小区。
分别来说:
在第一种情况中,所述唤醒信息可以为所述终端设备专属的。
也就是网络设备为唤醒该终端设备,而向该终端设备发送的WUS,所述WUS的所述第一信号部分中携带所述终端设备专属的所述唤醒信息。
应理解,这种情况下,所述唤醒信息中可以包括:所述终端设备的标识。其中,所述终端设备的标识可以为以下任意之一:可以采用临时移动用户识别码(TMSI,Temporary Mobile Subscriber Identity)、国际移动用户识别码(IMSI,International Mobile Subscriber Identity)、I-RNTI(Inactive Radio Network Temporary Identifier,非激活无线网络临时标识)。
终端设备在接收到该WUS后,从该WUS的第一信号部分中获取到所述唤醒信息,若该唤醒信息中包含所述终端设备的标识,则终端设备可以基于所述唤醒信息包含的具体内容,执行后续处理。比如该唤醒信息用于指示所述终端设备监听寻呼消息,则所述终端设备可以唤醒第二部件(即主接收机)监听所述寻呼消息。
在第二种情况中,所述唤醒信息为终端设备组共享的,所述终端设备组中包含所述终端设备。
所述终端设备组的数量可以为一个或多个,本实施例不对其进行限定。即所述唤醒信息可以为一个或多个终端设备组共享的。并且,本实施例中所述终端设备为前述一个或多个终端设备组的全部终端设备中的任意之一。
也就是网络设备为唤醒一个或多个终端设备组,而向该一个或多个终端设备组的全部终端设备发送的WUS,所述WUS的所述第一信号部分中携带所述一个或多个终端设备组共享的所述唤醒信息。
应理解,这种情况下,所述唤醒信息中还可以包括以下之一:所述终端设备组的标识、比特图(bitmap)。
具体来说,所述终端设备组的标识可以为一个或多个终端设备组的标识。相应的,终端设备在接收到该WUS后,从该WUS的第一信号部分中获取到所述唤醒信息,若该唤醒信息中包含所述终端设备所在的终端设备组的标识,则所述终端设备唤醒并基于所述唤醒信息包含的具体内容,执行后续处理。比如该唤醒信息用于指示所述终端设备组内的终端设备监听寻呼消息,则所述终端设备可以唤醒第二部件(即主接收机)监听所述寻呼消息。
所述比特图(bitmap)中可以包含Q个比特位,Q为大于等于1的整数。在所述比特图中包含的所述Q个比特位中,每个比特位可以用于对应一个终端设备组,且不同比特位对应不同的终端设备组。
所述Q个比特位中,每一个比特位的取值可以用于指示是否唤醒对应的终端设备组中的终端设备。
其中,每一个比特位的取值可以包括二进制第一值和二进制第二值。二进制第一值用于指示唤醒对应的终端设备组中的终端设备,也就是该二进制第一值用于指示对应的终端设备组中的终端设备唤醒第 二部件;二进制第二值用于指示不唤醒对应的终端设备组中的终端设备,也就是二进制第二值用于指示终端设备组中的所述终端设备不唤醒第二部件。该二进制第一值和二进制第二值不同,比如二进制第一值为1、二进制第二值为0,或者二进制第一值为0、二进制第二值为1。
比如,终端设备在接收到该WUS后,从该WUS的第一信号部分中获取到所述唤醒信息,若该唤醒信息中包含比特图,则从所述比特图中获取所述终端设备所在的终端设备组所对应的比特位的取值;若该比特位的取值为二进制第一值,则所述终端设备可以唤醒第二部件(即主接收机)监听寻呼消息。
在第三种情况中,所述唤醒信息为第一服务小区专用的,所述第一服务小区为所述终端设备所在的服务小区。
也就是网络设备为唤醒第一服务小区内的全部终端设备,向该第一服务小区内的全部终端设备发送的WUS,所述WUS的所述第一信号部分中携带所述第一服务小区内的全部终端设备共享的所述唤醒信息。相应的,上述第一服务小区内的全部终端设备都可以监听到所述WUS。本实施例中所述终端设备为所述第一服务小区内的全部终端设备中的任意之一。
应理解,这种情况下,所述唤醒信息中还可以包括:所述第一服务小区的标识。也就是说,终端设备在接收到该WUS后,从该WUS的第一信号部分中获取到所述唤醒信息,若该唤醒信息中携带所述第一服务小区的标识、且所述第一服务小区为终端设备所在小区,则所述终端设备唤醒第二部件(即主接收机)监听所述寻呼消息。
或者,这种情况下,所述唤醒信息中还可以不携带标识或比特图。也就是说,终端设备在接收到该WUS后,从该WUS的第一信号部分中获取到所述唤醒信息,若该唤醒信息中不携带标识或比特图,则所述终端设备直接唤醒第二部件(即主接收机)监听所述寻呼消息。
示例性的,前述第一信号部分中携带的所述目标信息,如图6所示,可以表示为数据(Data)。
在所述第一信号部分用于携带所述目标信息的基础上,本实施例提供的方案中,所述第一信号部分,还可以用于携带同步序列,所述同步序列用于所述终端设备维持同步。
所述同步序列,位于以下位置之一:
所述第一信号部分之前;
所述第一信号部分之内;
所述第一信号部分之后。
需要指出的是,在所述第一信号部分中可以携带同步序列,还可以不携带同步序列。并且,在所述第一信号部分中携带所述同步序列的情况下,所述同步序列的数量可以为一个或多个。
关于所述第一信号部分中是否携带所述同步序列,或者所述第一信号部分中携带所述同步序列的数量,可以根据实际情况确定。具体来说,所述第一信号部分中是否携带所述同步序列,或者所述第一信号部分中携带所述同步序列的数量,可以与所述目标信息的长度相关。
举例来说,在目标信息的长度小于第一预设数量的情况下,所述第一信号部分中可以不携带同步序列;所述第一预设数量可以根据实际情况设置,比如可以是8byte或2byte,或更短或更长,不做穷举。
在目标信息的长度大于等于所述第一预设数量的情况下,所述第一信号部分中可以携带同步序列。此时,所述同步序列的数量同样可以与所述目标信息的长度相关,比如,可以预设第一对应关系,该预设第一对应关系中可以包括预设长度及其对应的预设数量;相应的,可以基于所述目标信息的长度,从所述预设第一对应关系中确定目标长度,将该目标长度对应的目标数量,作为所述同步序列的数量。
在所述同步序列的数量为一个的情况下,该一个同步序列可以位于所述第一信号部分之前、或位于所述第一信号部分之内、或位于所述第一信号部分之后。
这种情况下,该一个同步序列的长度可以根据实际情况配置,比如,可以固定为8个比特的长度,或者可以更长或更短,这里不做穷举。该一个同步序列的具体内容可以根据实际情况设置,只要通信双方预先协商好即可,这里不对其进行限定。
在所述同步序列的数量为多个的情况下,该多个同步信号中不同的同步信号的位置可以不同;该多个同步信号中,任意一个同步序列可以是在所述第一信号部分之前、或位于所述第一信号部分之内、或位于所述第一信号部分之后。
这种情况下,多个同步信号中不同的同步序列的长度可以为相同的,每个同步信号的长度根据实际情况配置,比如,可以固定为8个比特的长度,或者可以更长或更短,这里不做穷举。多个同步信号中不同的同步序列的具体内容可以是相同的,具体可以根据实际情况设置,只要通信双方预先协商好即可,这里不对其进行限定。
示例性的,所述同步序列的数量可以为2个,这2个同步序列可以如图7所示表示为“SYNC 1”和“SYNC 2”,这两个同步序列“SYNC 1”和“SYNC 2”,均位于所述第一信号部分之内。这里需要指出的是,由于第一信号部分携带所述图7中的数据(data)即目标信息,因此,虽然图7中将两个同 步序列“SYNC 1”和“SYNC 2”添加在数据(data)中,但不代表是在目标信息中添加了“SYNC 1”和“SYNC 2”,可以理解为在第一信号部分之内的两个任意时域位置处添加了“SYNC 1”和“SYNC 2”。
所述第一信号部分,还用于携带逆向比特,所述逆向比特用于确定包络检测门限。其中,逆向比特可以表示为“inverse bit”。
所述逆向比特,位于所述目标信息的部分比特位中。
所述逆向比特,可以是在所述目标信息中每隔指定数量个比特位的位置处添加的。所述指定数量可以根据实际情况设置,比如可以是10、20、或更多或更少,这里不做穷举。
或者,所述逆向比特,可以是在所述目标信息中,存在超过预设比特数量门限值个取值相同的连续比特位的情况下,在该连续比特位中任意位置处添加的。其中,所述预设比特数量门限值可以根据实际情况设置,比如10个、16个、20个,或更多或更少,这里不对其进行穷举。
所述逆向比特的数量可以为一个或多个,这里不对其进行限定。
再进一步地,所述逆向比特的取值与所述目标信息的部分比特位的取值不同。
比如,可以在所述目标信息中每隔指定数量个比特位的位置处,添加与该位置相邻的比特位的取值相反取值的逆向比特。
比如,所述逆向比特在连续的多个取值为1的比特位中的时候,该逆向比特为0;反之,所述逆向比特在连续的多个取值为0的比特位中的时候,该逆向比特为1。假设所述预设比特数量门限值可以为10,也就是说,所述目标信息中有连续传输11个或更多取值为1的部分比特位的时候,可以在这部分比特位中任意的位置处添加逆向比特0。比如,可以在部分比特位中连续添加2个逆向比特0,或者添加1个逆向比特0,这里不对其数量进行限定。
以上为针对所述WUS的第一信号部分的详细说明。在一种可能的实施方式中,所述WUS的所述N个信号部分,除了上述所述第一信号部分之外,还可以包括其他信号部分,下面进一步进行说明:
所述N个信号部分,还包含以下至少之一:
第二信号部分,所述第二信号部分用于携带第一信号序列,所述第一信号序列用于指示WUS的起始位置;
第三信号部分,所述第三信号部分用于携带前导序列,所述前导序列用于进行时钟同步;
第四信号部分,所述第四信号部分用于携带循环冗余校验码(CRC,Cyclic Redundancy Check);
第五信号部分,所述第五信号部分用于携带第二信号序列,所述第二信号序列用于指示WUS的结束位置。
分别来说,所述第二信号部分用于携带第一信号序列;其中,所述第一信号序列可以如图6和图7所示,具体为“SOW”即Start Of WUS(唤醒信号的起始)。
所述第一信号序列的长度可以根据实际情况设置,比如,所述第一信号序列的长度可以为固定值,比如4bit,或更长或更短,这里不对其进行限定。
所述第一信号序列的具体内容,可以根据实际情况设置,只要通信双方预先确认具备相同含义即可。比如,所述第一信号序列具体可以为一种特殊的或指定的信号序列,如1111,或1010等。由于WUS一般使用OOK调制,因此可以使用特殊的信号序列作为所述第一信号序列,用于表示WUS开始传输,也即表示在SOW(即第一信号序列)之后,为WUS的具体内容开始发送位置。相应的,在所述终端设备(具体为终端设备的第一部件)接收并识别到该第一信号序列的情况下,确定收到SOW,进而开始接收WUS的具体内容。这里,所述WUS的具体内容可以指的是前述目标信息,另外还可以包含前导序列、CRC等等。
所述第三信号部分用于携带前导序列。该前导序列如图6或图7所示可以表示为前导序列(preamble)。
所述前导序列的主要功能是用于进行时钟同步。
所述终端设备(具体为终端设备的第一部件)在接收到该前导序列的情况下,可以通过获取前导序列(preamble)中多个调制符号之间的时间间隔,获得时钟信息(如系统的时钟频率,或如两个调制符号之间的间隔),从而基于该时钟信息可以接收后续的data(即第一信号部分中携带的目标信息)。
此外,所述前导序列还可以用于指示所述WUS的信号参数;所述WUS的信号参数包括以下至少之一:信号长度、传输速率。
所述前导序列可以仅指示所述信号长度;或者所述前导序列可以仅指示所述传输速率;或者,所述前导序列可以既指示所述信号长度,又指示所述传输速率。
所述信号长度可以指的是所述WUS携带的全部内容的长度,比如240bit(或更长或更短)。
或者,所述信号长度可以可以指的是所述WUS携带的N个信号部分分别对应的长度。
或者,所述信号长度可以指的是:全部N个信号部分中,某一个或多个信号部分的长度。比如, 该信号长度仅用于指示第一信号部分的长度为A bit;又比如,该信号长度用于指示第一信号部分的长度为A bit,第二信号部分的长度为B bit等等。
所述传输速率具体可以指的是WUS的传输速率。该传输速率的单位可以为每秒比特率kbps。所述传输速率的具体数值,本实施例不做限定。
所述第四信号部分用于携带循环冗余校验码CRC;比如图6或图7中示意出的CRC。该CRC用于对第一信号部分(即Data)携带的信息进行CRC校验,以检验WUR接收的data部分是否正确。
所述第五信号部分用于携带的第二信号序列;该第二信号序列与前述第一信号序列对应。示例性的,所述第二信号序列,可以如图6或图7所示,表示为EOW(End Of WUS,唤醒信号的结束),即EOW用于表征WUS的结束位置。
所述第二信号序列的长度可以根据实际情况设置。比如,所述第二信号序列的长度可以为固定值,比如4bit,或更长或更短,这里不对其进行限定。
所述第二信号序列的具体内容可以根据实际情况设置。所述第二信号序列可以是另一种特殊的或指定的信号序列,如“1110”,或“110”等。
应理解,前述实施例中已经说明,所述第一信号序列也为一种特殊的或指定的信号序列。这里,所述第二信号序列与所述第一信号序列可以为不同的特殊的或指定的信号序列,或者,所述第二信号序列与所述第一信号序列可以为相同的特殊的或指定的信号序列。
以上为针对所述WUS中N个信号部分所分别携带的具体信息的详细说明。这里需要进一步说明的是,实际处理中所述WUS除了包含所述第一信号部分之外,可以不包含其他信号部分;或者所述WUS除了包含所述第一信号部分之外,可以包含其他信号部分中的一部分;或者,所述WUS可以包含上述N个信号部分的全部。均在本实施例的保护范围内。
在一种可能的实施方式中,所述N个信号部分中不同信号部分采用相同的符号长度。或者,所述N个信号部分中至少一个信号部分与其他信号部分采用不同的符号长度。
也就是上述WUS的各个信号部分,使用的符号长度可以是相同的,也可以是不同的。其中,所述符号可以指的是OFDM符号。
关于所述N个信号部分中至少一个信号部分与其他信号部分采用不同的符号长度,可以是上述N个信号部分中M个信号部分采用的符号长度相同均为第一符号长度,剩余N-M个信号部分的符号长度相同均为第二符号长度,其中,第一符号长度与第二符号长度不同。M为小于N的整数。
又或者,所述N个信号部分中至少一个信号部分与其他信号部分采用不同的符号长度,可以是所述N个信号部分中不同信号部分采用不同的符号长度。也就是,任意一个信号部分采用的符号长度与其他信号部分均不相同。
其中,所述不同的符号长度之间的关系可以是指的不同的符号长度之间的比例关系,或倍数关系。比如,第三信号部分中携带的前导序列(preamble)的符号长度是第一信号部分中携带的目标信息的符号长度的1/2。
所述不同的符号长度之间的关系,可以为预设的,或网络设备配置的。所述不同的符号长度之间的关系为网络设备配置的,具体可以是由网络通知终端设备的,比如通过RRC信令、DCI或系统广播消息通知所述终端设备的。以上实施方式中,所述WUS不同的信号部分使用不同的符号长度,能够更加有利于控制不同的信号部分的开销。例如,在preamble的长度(即信息比特数量)一定的情况下,相对使用长的preamble符号长度而言,使用较短的preamble符号长度可以使得preamble所占用的总时间长度较短。
上述实施例中说明了WUS所能够携带的具体信息内容及其格式。进一步地,在终端设备接收到(或监听到)WUS的时候,可以依次解析得到每一个比特位的取值,将全部比特位的取值依次组合,可以得到所述WUS的全部内容。其中,所述依次组合可以指的是根据接收时间的前后顺序进行组合。
在一种实施方式中,该WUS在传输的时候可以占用一部分主系统(主接收机对应的系统)的频谱,或者占用一段专用的频谱资源。上述WUS的传输方式可以有以下三种,分别来说:
第一种方式、
上述WUS为二进制启闭键控(OOK,On-Off Keying)信号。所述OOK信号基于移幅键控法(ASK,Amplitude-Shift Keying)或移频键控法(FSK,Frequency-Shift Keying)调制得到。
这种方式中,所述WUS中的第k个比特位的取值,由所述OOK信号的第k个幅度确定的,k为大于等于1的整数。其中,所述OOK信号的第k个幅度具体可以指的是,所述OOK信号在第k个时刻的幅度。
具体的,所述终端设备(具体为所述终端设备的第一部件)接收到所述OOK信号的第k个时刻的幅度为第一幅度,则可以确定WUS中的第k个比特位的取值可以为第一值;所述终端设备(具体为所 述终端设备的第一部件)接收到所述OOK信号的第k个时刻的幅度为第二幅度,则可以确定WUS中的第k个比特位的取值为第二值。
其中,所述第一幅度与第二幅度不同,比如,所述第一幅度可以大于或等于第一幅度阈值,第二幅度可以小于所述第一幅度阈值,或者反之亦然。所述第一幅度阈值可以根据实际情况设置,可以与网络设备侧实际传输OOK信号的功率大小、路损等等相关,本实施例不对其进行限制。
所述第一值与所述第二值不同,比如,所述第一值为1,所述第二值为0;或者,所述第一值为0,所述第二值为1。
举例来说,所述终端设备(具体为所述终端设备的第一部件)接收到所述OOK信号的第k个时刻的幅度小于第一幅度阈值,则可以确定WUS中的第k个比特位的取值可以为0;所述终端设备(具体为所述终端设备的第一部件)接收到所述OOK信号的第k个时刻的幅度大于或等于第一幅度阈值,则可以确定WUS中的第k个比特位的取值为1;或者反之亦然。这里仅为示例性说明,不作为对本实施例的限定。
所述WUS可能占用一段专用的频域资源(或专用的频域资源);或者所述WUS可能占用一部分主系统(主接收机对应的系统)的频域资源。
第二种方式、
所述WUS为基于OFDM(正交频分复用,Orthogonal Frequency Division Multiplexing)符号上的多个目标子载波生成的OOK信号。
上述WUS为基于OFDM符号上的多个目标子载波生成的OOK信号,具体可以指的是:所述WUS为通过生成OFDM波形的方式模拟生成的OOK信号。
进一步地,所述WUS中的第i个比特位的取值,由第i个时域位置处第一频域范围内接收到的信号状态确定,i为大于等于1的整数;其中,所述第i个时域位置为第i个OFDM符号所在位置;所述第一频域范围与所述多个目标子载波所占用的频域范围相关。其中,所述第i个OFDM符号为前述用于生成OOK信号的OFDM符号中任意之一。
具体来说:所述终端设备在第i个时域位置处第一频域范围内接收到的信号状态为第一信号状态的情况下,确定所述第i个比特位的取值为第一值;所述终端设备在第i个时域位置处第一频域范围内接收到的信号状态为第二信号状态的情况下,确定所述第i个比特位的取值为第二值。
其中,所述信号状态具体可以指的是信号的能量值或信号的幅度值。所述信号状态可以包括第一信号状态或第二信号状态。所述第一信号状态与第二信号状态不同,比如,所述第一信号状态可以指的是信号的能量值大于第一能量阈值的状态,第二信号状态可以指的是信号的能力值小于或等于所述第一能量阈值的状态,或者反之。又比如,所述第一信号状态可以指的是信号的幅度值大于第二幅度阈值的状态,第二信号状态可以指的是信号的幅度值小于或等于所述第二幅度阈值的状态,或者反之。
所述第i个比特位的取值可以为第一值或第二值。所述第一值与所述第二值不同,比如,所述第一值为1,所述第二值为0;或者,所述第一值为0,所述第二值为1。
所述第一频域范围与所述多个目标子载波所占用的频域范围相关,具体可以指的是:所述第一频域范围与多个目标子载波所占用的频域范围相同;或者,所述第一频域范围在多个目标子载波所占用的频域范围之内、且所述第一频域范围小于所述多个目标子载波所占用的频域范围。
再进一步来说,前述第一频域范围的大小可以为预设的,比如在所述终端设备上一次处于RRC连接态的情况下,通过接收DCI、RRC信令、系统消息中任意之一获取到的。
又或者,前述第一频域范围可以是基于多个目标子载波的相关信息确定的;这种情况下,尤其需要预先获取到所述多个目标子载波的相关信息,比如,所述多个目标子载波的相关信息,可以包括以下至少之一:所述多个目标子载波的子载波间隔、所述OFDM符号的相关配置、CP的长度、多个目标子载波的数量。相应的,这种情况下,所述终端设备可以基于所述多个目标子载波的相关信息,确定多个目标子载波所占用的频域范围,基于所述多个目标子载波所占用的频域范围,确定所述第一频域范围。
其中,所述多个目标子载波,可以为OFDM符号中的部分子载波或者全部子载波。
在所述多个目标子载波为OFDM符号中的部分子载波的情况下,所述多个目标子载波中,不包含中心子载波。也就是说,任意一个OFDM符号上除了中心子载波之外的其他子载波中的至少部分作为上述多个目标子载波。比如,可以是除了中心子载波之外的其他全部子载波均作为所述多个目标子载波;或者,可以是可以是除了中心子载波之外,其他全部子载波中选取至少两个作为所述多个目标子载波。
进一步地,在上述多个目标子载波为所述OFDM符号中的部分子载波的情况中,所述多个目标子载波以所述中心子载波为中心对称分布。比如,图8中示意出OFDM符号中OFDM上的多个目标子载波的数量为4,也就是WUS传输使用的4个目标子载波;进一步地,仍参见图8,WUS传输使用的4个目标子载波,以中心子载波(在图8中表示为黑色背景方形格样式)为中心对称分布。
所述多个目标子载波的数量,为网络设备配置的,或预先设置的。具体来说,在基于OFDM符号上的多个目标子载波传输WUS的方式中,所述目标子载波的数量越多,越有利于增强覆盖,也适合于支持大的小区半径。反之,较少的目标子载波的数量适合于支持较少的小区。应理解,在子载波间隔一定的情况下,多个目标子载波正比于WUS所占的带宽。因此,多个目标子载波的灵活配置也等价于WUS所占带宽的灵活配置。为了支持网络部署的灵活性,目标子载波的数量可以灵活配置,比如可以是预先设定,或者网络设备配置。其中,网络设备配置的方法可以是由网络设备通过系统消息、RRC信令或DCI中任意之一通知给终端设备。
所述OFDM符号不包含循环前缀CP。或者,所述OFDM符号包含循环前缀CP。也就是说,所述WUS为基于OFDM符号上的多个目标子载波生成的OOK信号,即使用OFDM方式生成WUS信号时,OFDM符号可以没有CP,或者,每一个OFDM符号上均有CP。
在所述OFDM符号包含循环前缀CP的情况下,所述CP的长度与主系统的载波至少部分不同。所述CP的长度为网络设备配置的,或预先设置的。
所述多个目标子载波的子载波间隔,与主系统相同。或者,所述多个目标子载波的子载波间隔,与主系统不同。所述多个目标子载波的子载波间隔为网络设备配置的,或预先设置的。
采用第二种方式,可以存在以下优点:OFDM可以使用FFT方式实现,因此能够与主系统共享FFT变换器,实现复杂度低;在OFDM的多个子载波上发送OOK信号,可以增大OOK信号的发射功率,保证终端设备的接收性能。
第三种方式,
所述WUS为基于单载波生成的OOK信号。
所述WUS中的第j个比特位的取值,由第j个时域位置处第二频域范围内接收到的信号状态确定,j为大于等于1的整数;其中,所述第二频域范围与所述单载波所占用的频域范围相关。
这种方式中,所述第二频域范围与所述单载波所占的频域范围相关。比如,所述第二频域范围可以为预设的,或者可以为网络设备配置的,或者可以基于所述单载波所占的频域范围确定的。
具体来说:所述终端设备在第j时域位置处第二频域范围内接收到的信号状态为第三信号状态的情况下,确定所述第j个比特位的取值为第一值;所述终端设备在第j个时域位置处第二频域范围内接收到的信号状态为第四信号状态的情况下,确定所述第j个比特位的取值为第二值。
其中,所述信号状态具体可以指的是信号的能量值或信号的幅度值。所述信号状态可以包括第三信号状态或第四信号状态。所述第三信号状态与第四信号状态不同,比如,所述第三信号状态可以指的是信号的能量值大于第二能量阈值的状态,第四信号状态可以指的是信号的能力值小于或等于所述第二能量阈值的状态,或者反之。又比如,所述第三信号状态可以指的是信号的幅度值大于第三幅度阈值的状态,第四信号状态可以指的是信号的幅度值小于或等于所述第三幅度阈值的状态,或者反之。
需要指出的是,这里所述第二能量阈值与前述第二种方式中的第一能量阈值可以相同或不同,所述第三幅度阈值与前述第二种方式中的第二幅度阈值可以相同或不同。
在一种示例中,所述第二能量阈值可以小于所述第一能量阈值,所述第三幅度阈值可以小于第二幅度阈值。这是由于,第二种方式中是通过多个子载波传输WUS,其信号的能量或幅度可能会大于本方式中单载波传输WUS,因此,可以将第二能量阈值或第三幅度阈值设置为小于第二种方式的第一能量阈值以及第二幅度阈值,以保证本方式可以更加准确的获取每一个比特位的取值。
所述比特位的取值可以为第一值或第二值。所述第一值与所述第二值不同,比如,所述第一值为1,所述第二值为0;或者,所述第一值为0,所述第二值为1。
其中,所述第二频域范围为网络设备配置的,可以指的是,在所述终端设备上一次处于RRC连接态的情况下,从网络设备发来的DCI、RRC信令、系统消息中任意之一中获取到的。
所述第二频域范围为基于所述单载波所占的频域范围确定的,可以指的是,所述终端设备预先获取到所述单载波所占的频域范围,确定所述第二频域范围等于所述单载波所占的频域范围;或者,所述终端设备预先获取到所述单载波所占的频域范围,确定所述第二频域范围为所述单载波所占的频域范围内的部分频域范围。
可见,通过采用上述方案,终端设备所监听的WUS中,可以携带N个信号部分,这样可以对WUS所能够携带的内容作出划分,从而在保证终端设备的节能的情况下,还能够在WUS中更加灵活的携带相应的信号部分,从而可以更加灵活的适用于更多的场景。另外,上述方案中还提供了针对WUS的符号长度以及多种传输方式的设计,从而保证了WUS的传输更加合理,适宜在低功耗的多种场景下进行部署。
图9是根据本申请一实施例的信息传输方法的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S910、网络设备发送唤醒信号WUS;其中,所述WUS包含N个信号部分;N为大于等于1的整数。
下面首先针对所述WUS包含的N个信号部分进行说明:
所述N个信号部分中包含第一信号部分,所述第一信号部分用于携带目标信息。所述目标信息包括以下至少之一:唤醒信息,寻呼短消息。
上述目标信息为所述WUS承载的主要信息。
所述目标信息中可以仅包含所述唤醒信息;或者,所述目标信息中可以仅包含所述寻呼短消息;或者,所述目标信息中可以既包含所述唤醒信息又包含所述寻呼短消息。
其中,所述寻呼短消息可以包含以下至少之一:Earthquake and Tsunami Warning System(地震和海啸预警系统,ETWS)通知,Commercial Mobile Alert System(商用移动预警系统,CMAS)通知,系统消息是否更新的指示信息。应理解,以上仅为示例性说明,根据实际的情况或需求,所述寻呼短消息还可以包含其他类型的通知和/或指示信息,只是本实施例不进行穷举。
所述唤醒信息,还可以称为节能指示信息。该唤醒信息可以用于指示所述终端设备监听寻呼消息;具体的,该唤醒信息可以是用于指示终端设备是否需要接收寻呼消息,也就是该唤醒信息用于指示终端设备在其PO(寻呼时机)上是否有寻呼消息发送。也就是在网络设备需要唤醒终端设备以在其PO上监听寻呼消息的时候,该网络设备可以向所述终端设备发送WUS,该WUS的第一信号部分中携带所述唤醒信息。其中,所述终端设备可以处于RRC空闲态或RRC非激活态。
进一步地,所述唤醒信息为终端设备专属的;或者所述唤醒信息为终端设备组共享的;或者所述唤醒信息为第一服务小区专用的。
分别来说:
在第一种情况中,所述唤醒信息可以为终端设备专属的。
也就是网络设备为唤醒某一个终端设备,而向该终端设备发送的WUS,所述WUS的所述第一信号部分中携带所述终端设备专属的所述唤醒信息。
应理解,这种情况下,所述唤醒信息中还可以包括:所述终端设备的标识。其中,所述终端设备的标识可以为以下任意之一:可以采用临时移动用户识别码(TMSI,Temporary Mobile Subscriber Identity)、国际移动用户识别码(IMSI,International Mobile Subscriber Identity)、I-RNTI(Inactive Radio Network Temporary Identifier,非激活无线网络临时标识)。
在第二种情况中,所述唤醒信息为终端设备组共享的。
所述终端设备组的数量可以为一个或多个,本实施例不对其进行限定。即所述唤醒信息可以为一个或多个终端设备组共享的。
也就是网络设备为唤醒一个或多个终端设备组,而向该一个或多个终端设备组的全部终端设备发送的WUS,所述WUS的所述第一信号部分中携带所述一个或多个终端设备组共享的所述唤醒信息。相应的,上述一个或多个终端设备组中的全部终端设备都可以监听到所述WUS。
应理解,这种情况下,所述唤醒信息中还可以包括以下之一:所述终端设备组的标识、比特图(bitmap)。
具体来说,所述终端设备组的标识可以为一个或多个终端设备组的标识。
所述比特图(bitmap)中可以包含Q个比特位,Q为大于等于1的整数。在所述比特图中包含的所述Q个比特位中,每个比特位可以用于对应一个终端设备组,且不同比特位对应不同的终端设备组。
所述Q个比特位中,每一个比特位的取值可以用于指示是否唤醒对应的终端设备组中的终端设备。
其中,每一个比特位的取值可以包括二进制第一值和二进制第二值。二进制第一值用于指示唤醒对应的终端设备组中的终端设备,也就是该二进制第一值用于指示对应的终端设备组中的终端设备唤醒第二部件;二进制第二值用于指示不唤醒对应的终端设备组中的终端设备,也就是二进制第二值用于指示终端设备组中的所述终端设备不唤醒第二部件。该二进制第一值和二进制第二值不同,比如二进制第一值为1、二进制第二值为0,或者二进制第一值为0、二进制第二值为1。
在第三种情况中,所述唤醒信息为第一服务小区专用的。
所述第一服务小区为所述网络设备的多个服务小区中的至少之一,也就是说,所述第一服务小区的数量可以为一个或多个。
也就是网络设备为唤醒第一服务小区内的全部终端设备,向该第一服务小区内的全部终端设备发送的WUS,所述WUS的所述第一信号部分中携带所述第一服务小区内的全部终端设备共享的所述唤醒信息。
应理解,这种情况下,所述唤醒信息中还可以包括:所述第一服务小区的标识。或者,这种情况下,所述唤醒信息中还可以不携带标识或比特图。
示例性的,前述第一信号部分中携带的所述目标信息,如图6所示,可以表示为数据(Data)。
在所述第一信号部分用于携带所述目标信息的基础上,本实施例提供的方案中,所述第一信号部分,还可以用于携带同步序列,所述同步序列用于所述终端设备维持同步。
所述同步序列,位于以下位置之一:
所述第一信号部分之前;
所述第一信号部分之内;
所述第一信号部分之后。
需要指出的是,在所述第一信号部分中可以携带同步序列,还可以不携带同步序列。并且,在所述第一信号部分中携带所述同步序列的情况下,所述同步序列的数量可以为一个或多个。
关于所述第一信号部分中是否携带所述同步序列,或者所述第一信号部分中携带所述同步序列的数量,可以根据实际情况确定。具体来说,所述第一信号部分中是否携带所述同步序列,或者所述第一信号部分中携带所述同步序列的数量,可以与所述目标信息的长度相关。
举例来说,在目标信息的长度小于第一预设数量的情况下,所述第一信号部分中可以不携带同步序列;所述第一预设数量可以根据实际情况设置,比如可以是8byte或2byte,或更短或更长,不做穷举。
在目标信息的长度大于等于所述第一预设数量的情况下,所述第一信号部分中可以携带同步序列。此时,所述同步序列的数量同样可以与所述目标信息的长度相关,比如,可以预设第一对应关系,该预设第一对应关系中可以包括预设长度及其对应的预设数量;相应的,可以基于所述目标信息的长度,从所述预设第一对应关系中确定目标长度,将该目标长度对应的目标数量,作为所述同步序列的数量。
在所述同步序列的数量为一个的情况下,该一个同步序列可以位于所述第一信号部分之前、或位于所述第一信号部分之内、或位于所述第一信号部分之后。
这种情况下,该一个同步序列的长度可以根据实际情况配置,比如,可以固定为8个比特的长度,或者可以更长或更短,这里不做穷举。该一个同步序列的具体内容可以根据实际情况设置,只要通信双方预先协商好即可,这里不对其进行限定。
在所述同步序列的数量为多个的情况下,该多个同步信号中不同的同步信号的位置可以不同;该多个同步信号中,任意一个同步序列可以是在所述第一信号部分之前、或位于所述第一信号部分之内、或位于所述第一信号部分之后。
这种情况下,多个同步信号中不同的同步序列的长度可以为相同的,每个同步信号的长度根据实际情况配置,比如,可以固定为8个比特的长度,或者可以更长或更短,这里不做穷举。多个同步信号中不同的同步序列的具体内容可以是相同的,具体可以根据实际情况设置,只要通信双方预先协商好即可,这里不对其进行限定。
示例性的,所述同步序列的数量可以为2个,这2个同步序列可以如图7所示表示为“SYNC 1”和“SYNC 2”,这两个同步序列“SYNC 1”和“SYNC 2”,均位于所述第一信号部分之内。这里需要指出的是,由于第一信号部分携带所述图7中的数据(data)即目标信息,因此,虽然图7中将两个同步序列“SYNC 1”和“SYNC 2”添加在数据(data)中,但不代表是在目标信息中添加了“SYNC 1”和“SYNC 2”,可以理解为在第一信号部分之内的两个任意时域位置处添加了“SYNC 1”和“SYNC 2”。
所述第一信号部分,还用于携带逆向比特,所述逆向比特用于确定包络检测门限。其中,逆向比特可以表示为“inverse bit”。
所述逆向比特,位于所述目标信息的部分比特位中。
所述逆向比特,可以是在所述目标信息中每隔指定数量个比特位的位置处添加的。所述指定数量可以根据实际情况设置,比如可以是10、20、或更多或更少,这里不做穷举。
或者,所述逆向比特,可以是在所述目标信息中,存在超过预设比特数量门限值个取值相同的连续比特位的情况下,在该连续比特位中任意位置处添加的。其中,所述预设比特数量门限值可以根据实际情况设置,比如10个、16个、20个,或更多或更少,这里不对其进行穷举。
所述逆向比特的数量可以为一个或多个,这里不对其进行限定。
比如,可以在所述目标信息中每隔指定数量个比特位的位置处,添加与该位置相邻的比特位的取值相反取值的逆向比特。
再进一步地,所述逆向比特的取值与所述目标信息的部分比特位的比特值不同。比如,所述逆向比特添加在连续的多个取值为1的比特位中的时候,该逆向比特为0;反之,所述逆向比特添加在连续的多个取值为0的比特位中的时候,该逆向比特为1。假设所述预设比特数量门限值可以为10,也就是说,所述目标信息中有连续传输11个或更多取值为1的部分比特位的时候,可以在这部分比特位中任意的位置处添加逆向比特0。比如,可以在部分比特位中连续添加2个逆向比特0,或者添加1个逆向比特0,这里不对其数量进行限定。
这是由于WUS可以是所述网络设备采用ASK或FSK方式调制得到的信号,在其连续传输较多相同比特值的情况下,可能会导致终端设备(具体为终端设备的第一部件)无法正确检测得到正确信号,也就是可能会出现终端设备(具体为终端设备的第一部件)无法确定当前使用的包络检测门限是否正确的问题。因此,所述网络设备通过在所述目标信息的部分比特中(比如连续传输较多相同比特值的比特位中),增加上述逆向比特,以辅助终端设备(具体为终端设备的第一部件)确定包络检测门限,保证所述终端设备(具体为终端设备的第一部件)可以解析到正确的目标信息,进而保证所述终端设备(具体为终端设备的第一部件)正确解析所述WUS的全部N个信号部分。
以上为针对所述WUS的第一信号部分的详细说明。在一种可能的实施方式中,所述WUS的所述N个信号部分,除了上述所述第一信号部分之外,还可以包括其他信号部分,下面进一步进行说明:
所述N个信号部分,还包含以下至少之一:
第二信号部分,所述第二信号部分用于携带第一信号序列,所述第一信号序列用于指示WUS的起始位置;
第三信号部分,所述第三信号部分用于携带前导序列,所述前导序列用于进行时钟同步;
第四信号部分,所述第四信号部分用于携带循环冗余校验码(CRC,Cyclic Redundancy Check);
第五信号部分,所述第五信号部分用于携带第二信号序列,所述第二信号序列用于指示WUS的结束位置。
分别来说,所述第二信号部分用于携带第一信号序列;其中,所述第一信号序列可以如图6和图7所示,具体为“SOW”即Start Of WUS(唤醒信号的起始)。
所述第一信号序列的长度可以根据实际情况设置,比如,所述第一信号序列的长度可以为固定值,比如4bit,或更长或更短,这里不对其进行限定。
所述第一信号序列的具体内容,可以根据实际情况设置,只要通信双方预先确认具备相同含义即可。比如,所述第一信号序列具体可以为一种特殊的或指定的信号序列,如1111,或1010等。由于WUS一般使用OOK调制,因此可以使用特殊的信号序列作为所述第一信号序列,用于表示或指示WUS开始传输,也即表示在SOW(即第一信号序列)之后,为WUS的具体内容开始发送位置。
所述第三信号部分用于携带前导序列。该前导序列如图6或图7所示可以表示为前导序列
(preamble)。
所述前导序列的主要功能是用于进行时钟同步。也就是向所述终端设备的WUR提供时钟同步。
此外,所述前导序列还可以用于指示所述WUS的信号参数;所述WUS的信号参数包括以下至少之一:信号长度、传输速率。
所述前导序列可以仅指示所述信号长度;或者所述前导序列可以仅指示所述传输速率;或者,所述前导序列可以既指示所述信号长度,又指示所述传输速率。
所述信号长度可以指的是所述WUS携带的全部内容的长度,比如240bit(或更长或更短)。
或者,所述信号长度可以可以指的是所述WUS携带的N个信号部分分别对应的长度。
或者,所述信号长度可以指的是:全部N个信号部分中,某一个或多个信号部分的长度。比如,该信号长度仅用于指示第一信号部分的长度为A bit;又比如,该信号长度用于指示第一信号部分的长度为A bit,第二信号部分的长度为B bit等等。
所述传输速率具体可以指的是WUS的传输速率。该传输速率的单位可以为每秒比特率kbps。所述传输速率的具体数值,本实施例不做限定。
所述第四信号部分用于携带循环冗余校验码CRC;比如图6或图7中示意出的CRC。该CRC用于对第一信号部分(即Data)携带的信息进行CRC校验,以检验WUR接收的data部分是否正确。
所述第五信号部分用于携带的第二信号序列;该第二信号序列与前述第一信号序列对应。示例性的,所述第二信号序列,可以如图6或图7所示,表示为EOW(End Of WUS,唤醒信号的结束),即EOW用于表征WUS的结束位置,或WUS传输结束。
所述第二信号序列的长度可以根据实际情况设置。比如,所述第二信号序列的长度可以为固定值,比如4bit,或更长或更短,这里不对其进行限定。
所述第二信号序列的具体内容可以根据实际情况设置。所述第二信号序列可以是另一种特殊的或指定的信号序列,如“1110”,或“110”等。
应理解,前述实施例中已经说明,所述第一信号序列也为一种特殊的或指定的信号序列。这里,所述第二信号序列与所述第一信号序列可以为不同的特殊的或指定的信号序列,或者,所述第二信号序列与所述第一信号序列可以为相同的特殊的或指定的信号序列。
以上为针对所述WUS中N个信号部分所分别携带的具体信息的详细说明。这里需要进一步说明的是,实际处理中所述WUS除了包含所述第一信号部分之外,可以不包含其他信号部分;或者所述WUS 除了包含所述第一信号部分之外,可以包含其他信号部分中的一部分;或者,所述WUS可以包含上述N个信号部分的全部。均在本实施例的保护范围内。
在一种可能的实施方式中,所述N个信号部分中不同信号部分采用相同的符号长度。或者,所述N个信号部分中至少一个信号部分与其他信号部分采用不同的符号长度。
也就是上述WUS的各个信号部分,使用的符号长度可以是相同的,也可以是不同的。其中,所述符号可以指的是OFDM符号。
关于所述N个信号部分中至少一个信号部分与其他信号部分采用不同的符号长度,可以是上述N个信号部分中M个信号部分采用的符号长度相同均为第一符号长度,剩余N-M个信号部分的符号长度相同均为第二符号长度,其中,第一符号长度与第二符号长度不同。M为小于N的整数。
又或者,所述N个信号部分中至少一个信号部分与其他信号部分采用不同的符号长度,可以是所述N个信号部分中不同信号部分采用不同的符号长度。也就是,任意一个信号部分采用的符号长度与其他信号部分均不相同。
其中,所述不同的符号长度之间的关系可以是指的不同的符号长度之间的比例关系,或倍数关系。比如,第三信号部分中携带的前导序列(preamble)的符号长度是第一信号部分中携带的目标信息的符号长度的1/2。
所述不同的符号长度之间的关系,可以为预设的,或网络设备配置的。所述不同的符号长度之间的关系为网络设备配置的,具体可以是所述网络设备发送第一配置信息,所述第一配置信息用于配置所述不同的符号长度之间的关系。进一步地,所述网络设备可以是在终端设备处于RRC连接态的情况下,向所述终端设备发送所述第一配置信息。其中,所述第一配置信息可以由RRC信令、DCI或系统广播消息中任意之一携带。
以上实施方式中,所述WUS不同的信号部分使用不同的符号长度,能够更加有利于控制不同的信号部分的开销。例如,在preamble的长度(即信息比特数量)一定的情况下,相对使用长的preamble符号长度而言,使用较短的preamble符号长度可以使得preamble所占用的总时间长度较短。
上述实施例中说明了WUS所能够携带的具体信息内容及其格式。进一步地,在网络设备在生成(或监听到)WUS时,可以基于以下三种方式任意之一,传输所述WUS;以使得所述终端设备在接收到WUS的时候可以解析得到每一个比特位的取值,将全部比特位的取值依次组合,可以得到所述WUS的全部内容。以下针对上述三种方式,分别来说:
第一种方式、
上述WUS为二进制启闭键控(OOK,On-Off Keying)信号。所述OOK信号基于移幅键控法(ASK,Amplitude-Shift Keying)或移频键控法(FSK,Frequency-Shift Keying)调制得到。
这种方式中,所述OOK信号的第k个幅度,由第k个比特位的取值确定,k为大于等于1的整数。其中,所述OOK信号的第k个幅度具体可以指的是,所述OOK信号在第k个时刻的幅度。
具体的,所述网络设备在确定第k个比特的取值为第一值的情况下,将所述OOK信号在第k个时刻的幅度设置为第一幅度状态;所述网络设备在确定第k个比特的取值为第二值的情况下,将所述OOK信号在第k个时刻的幅度设置为第二幅度状态。
其中,所述第一幅度状态与第二幅度状态不同,比如,所述第一幅度状态可以为第一幅度值或(比如0),第二幅度可以为第二幅度值(比如非0),或者反之亦然。这里,所述第一幅度值(或称为第一幅度状态)可以是网络设备在该对应时刻不发射信号,第二幅度值(或称为第二幅度状态)可以是网络设备在该对应时刻发射信号产生的幅度值。
所述第一值与所述第二值不同,比如,所述第一值为1,所述第二值为0;或者,所述第一值为0,所述第二值为1。
也就是说,在网络设备要传输WUS时,该网络设备可以调制得到OOK信号作为所述WUS,然后发送所述WUS。其中,网络设备可以使用其自身的OOK发射机,直接调制得到或生成OOK信号。具体可以包括:所述网络设备使用其自身的OOK发射机的ASK或FSK调制方式,调制得到或生成所述OOK信号,将所述OOK信号作为所述WUS;然后通过其自身的OOK发射机发射该WUS。上述方式中,可能需要网络设备使用单独的发射机用于发射WUS,并且该网络设备可以保持使用其自身的主发射机发射主系统的信号(如NR为主系统,其信号OFDM信号)。
所述WUS可能占用一段专用的频域资源(或专用的频域资源);或者所述WUS可能占用一部分主系统(主接收机对应的系统)的频域资源。
第二种方式、
所述WUS为基于OFDM符号上的多个目标子载波生成的OOK信号。
这种方式中,所述网络设备侧可以使用主发射机(或称为OFDM发射机)来生成并传输上述WUS。 所述WUS此时可能占用一部分主系统的频谱(或频域资源),当然,所述WUS还可能占用一段专用的频谱资源。
上述WUS为基于OFDM符号上的多个目标子载波生成的OOK信号,具体可以指的是:所述WUS为通过生成OFDM波形的方式模拟生成的OOK信号。
进一步地,第i个OFDM符号上的多个目标子载波的状态,由第i个比特位的取值确定;i为大于等于1的整数。其中,所述第i个OFDM符号为前述用于生成OOK信号的OFDM符号中任意之一。所述WUS中的第i个比特位可以为WUS全部比特位中的任意之一。
具体来说所述方法还包括:
所述网络设备在确定第i个比特位的取值为第一值的情况下,将所述第i个OFDM符号上的多个目标子载波置为第一状态;
和/或,
所述网络设备在确定第i个比特位的取值为第二值的情况下,将所述第i个OFDM符号上的多个目标子载波置为第二状态。
其中,所述第i个比特位的取值可以为第一值或第二值。所述第一值与所述第二值不同,比如,所述第一值为1,所述第二值为0;或者,所述第一值为0,所述第二值为1。
所述多个目标子载波置的状态,具体可以指的是多个目标子载波置的幅度或电平。其中,所述多个目标子载波置的状态可以包括第一状态或第二状态。
一种示例中,所述将所述第i个OFDM符号上的多个目标子载波置为第一状态,具体可以指的是:将所述第i个OFDM符号上的所述多个目标子载波均设置为高电平。所述将所述第i个OFDM符号上的多个目标子载波置为第二状态,具体可以指的是:将所述多个目标子载波均设置为低电平。
或者,另一种示例中,所述将所述第i个OFDM符号上的多个目标子载波置为第一状态,具体可以指的是:将所述第i个OFDM符号上的所述多个目标子载波均设置为低电平。所述将所述第i个OFDM符号上的多个目标子载波置为第二状态,具体可以指的是:将所述多个目标子载波均设置为高电平。
其中,所述多个目标子载波,可以为OFDM符号中的部分子载波或者全部子载波。
在所述多个目标子载波为OFDM符号中的部分子载波的情况下,所述多个目标子载波中,不包含中心子载波。也就是说,任意一个OFDM符号上除了中心子载波之外的其他子载波中的至少部分作为上述多个目标子载波。比如,可以是除了中心子载波之外的其他全部子载波均作为所述多个目标子载波;或者,可以是可以是除了中心子载波之外,其他全部子载波中选取至少两个作为所述多个目标子载波。
进一步地,在上述多个目标子载波为所述OFDM符号中的部分子载波的情况中,所述多个目标子载波以所述中心子载波为中心对称分布。比如,图8中示意出OFDM符号中OFDM上的多个目标子载波的数量为4,也就是WUS传输使用的4个目标子载波;进一步地,仍参见图8,WUS传输使用的4个目标子载波,以中心子载波(在图8中表示为黑色背景方形格样式)为中心对称分布。
以图8进行示例性说明,将多个目标子载波设置为第一状态表示为灰色,则图8中最左侧第一列中WUS传输使用的多个目标子载波均置为第一状态(如每一个子载波均设置为高电平,或反之),此时可以表示WUS中的对应比特位的取值为第一值,比如1。将目标子载波设置为第二状态表示为白色,则图8中最左侧第二列中WUS传输使用的多个目标子载波均置为第二状态(如每一个子载波均设置为低电平,或反之),此时可以表示WUS中对应比特位的取值为第二值,比如0。另外,图8中除了上述多个目标子载波以及中心子载波之外,还示意出“NR(新无线,New Radio)载波”,该NR载波可以为当前所在的NR主系统的载波,这里不做赘述。
上述中心子载波可以设置为指定状态。也就是,全部OFDM符号中的中心子载波均设置为指定状态。其中,所述指定状态可以根据实际情况设置,比如可以指的是高电平或低电平。示例性的,可以是全部OFDM符号中的中心子载波均设置为高电平(或均设置为低电平)。这样是可以消除直流(DC)子载波的影响。
所述多个目标子载波的子载波间隔,与主系统相同。或者,所述多个目标子载波的子载波间隔,与主系统不同。也就是说,当网络设备在主系统中传输WUS时,WUS的子载波间隔可以与主系统相同或不同。
在所述多个目标子载波的子载波间隔,与主系统不同的情况下,所述多个目标子载波的子载波间隔为网络设备配置的,或预先设置的。相应的,所述方法还包括:所述网络设备发送第二配置信息,所述第二配置信息用于配置所述多个目标子载波的子载波间隔。进一步地,所述网络设备可以是在终端设备处于RRC连接态的情况下,向所述终端设备发送所述第二配置信息。其中,所述第二配置信息可以由RRC信令、DCI或系统广播消息中任意之一携带。
所述OFDM符号不包含循环前缀CP。或者,所述OFDM符号包含循环前缀CP。也就是说,所述 WUS为基于OFDM符号上的多个目标子载波生成的OOK信号,即使用OFDM方式生成WUS信号时,OFDM符号可以没有CP,或者,每一个OFDM符号上均有CP。
一种优选的实施方式中,所述OFDM符号中需要包含CP(尤其是使用ASK调制得到该WUS时),更有必要使用CP对抗多径衰落,以防止WUS符号间干扰。在所述OFDM符号包含循环前缀CP的情况下,所述CP的长度与主系统的载波至少部分不同。
所述方法还包括:所述网络设备发送第三配置信息,所述第三配置信息用于配置所述CP的长度。进一步地,所述网络设备可以是在终端设备处于RRC连接态的情况下,向所述终端设备发送所述第三配置信息。其中,所述第三配置信息可以由RRC信令、DCI或系统广播消息中任意之一携带。
另外,所述方法还包括:所述网络设备发送第四配置信息,所述第四配置信息用于配置所述多个目标子载波的数量。具体的,所述网络设备可以是在终端设备处于RRC连接态的情况下,向所述终端设备发送所述第四配置信息。其中,所述第四配置信息可以由RRC信令、DCI或系统广播消息中任意之一携带。
具体来说,在基于OFDM符号上的多个目标子载波传输WUS的方式中,所述目标子载波的数量越多,越有利于增强覆盖,也适合于支持大的小区半径。反之,较少的目标子载波的数量适合于支持较少的小区。应理解,在子载波间隔一定的情况下,多个目标子载波正比于WUS所占的带宽。因此,多个目标子载波的灵活配置也等价于WUS所占带宽的灵活配置。
以主系统为NR为例进行说明:在主系统工作于FR1(或称作Sub-6GHz(6GHz以下)频段)时,该主系统的子载波间隔为15KHz或30KHz。在WUS为基于OFDM符号上的多个目标子载波生成的OOK信号的方式中,如果OFDM符号使用与主系统相同的子载波间隔,则峰值速率会不大于14kbps(对应15KHz)或不大于28kbps(对应30KHz),也就是说在1ms的时长内可传输的比特数为不大于14或者28。如果进一步考虑CRC比特(通常需要多个CRC比特)的开销,如果WUS所需要承载的信息内容较少,是可行的。但如果WUS所需要承载的信息内容较多,这将不能满足WUS信息传输的需求。因此,OFDM符号中的所述多个目标子载波可以使用不同于主系统的子载波间隔。例如,以主系统为NR为例,可在initial(初始)DL(下行,DownLink)BWP(带宽部分,BandWith Part)中传输WUS。为了保证WUS在单位时间内可以携带足够的信息量,WUS的传输速率需要达到一定的要求,例如不低于100kbps。这就要求WUS的载波带宽(当使用OFDM调制时,对应子载波间隔)需要足够大,例如大于100KHz;但另一方面,使用大的子载波间隔会导致CP开销增大,因此,WUS的子载波间隔需要合理的选择,需要考虑其传输速率与CP开销之间的折中。例如子载波间隔120KHz时,对应的OFDM符号时间长度为8.33us(微秒)。而考虑覆盖600m半径的小区,CP长度不能小于2us,此时对应的CP开销为2/(2+8.33),接近20%。而如果子载波间隔为240KHz时,CP开销将在30%左右(cp2us/(2+4.17)=30%。可见,对于FR1,选择120KHz的子载波间隔对WUS的传输可能是一个合理的选择。因此,在第二种方式中,所述多个目标子载波的子载波间隔和/或CP长度,可以与主系统的载波不同或至少部分不同。
采用第二种方式,可以存在以下优点:OFDM可以使用FFT方式实现,因此能够与主系统共享FFT变换器,实现复杂度低;在OFDM的多个子载波上发送OOK信号,可以增大OOK信号的发射功率,保证终端设备的接收性能。
第三种方式,
所述WUS为基于单载波生成的OOK信号。
第j个时域位置处的单载波的状态,由第j个比特位的取值确定,j为大于等于1的整数;其中,所述第j个时域位置可以指的是发送该WUS的全部时域位置中的任意之一。
所述方法还包括:
所述网络设备在确定第j个比特位的取值为第一值的情况下,将所述第j个时域位置处的单载波置为第三状态;
和/或,
所述网络设备在确定第j个比特位的取值为第二值的情况下,将所述第j个时域位置处的单载波置为第四状态。
其中,所述比特位的取值可以为第一值或第二值。所述第一值与所述第二值不同,比如,所述第一值为1,所述第二值为0;或者,所述第一值为0,所述第二值为1。
所述单载波的状态具体可以指的是单载波的的幅度或电平。其中,所述多个目标子载波置的状态可以包括第三状态或第四状态。
一种示例中,所述将所述第j个时域位置处的单载波置为第三状态,具体可以指的是:将所述多个目标子载波均设置为低电平。所述将所述第j个时域位置处的单载波置为第四状态,具体可以指的是: 将所述第j个时域位置处的单载波置设置为高电平。
或者,另一种示例中,所述将所述第j个时域位置处的单载波置为第三状态,具体可以指的是:将所述多个目标子载波均设置为高电平。所述将所述第j个时域位置处的单载波置为第四状态,具体可以指的是:将所述第j个时域位置处的单载波置设置为低电平。
需要指出的是,这里所述第三状态与前述第二种方式中的第一状态可以相同或不同,所述第四状态与前述第二种方式中的第二状态可以相同或不同。在一种示例中,所述第三状态为高电平,该高电平的幅度或取值可以大于所述第一状态,所述第四状态的低电平与所述第二状态的低电平可以相同。本实施例不对全部可能的情况进行穷举。
可见,通过采用上述方案,网络设备所发送的WUS中,可以携带N个信号部分,这样可以对WUS所能够携带的内容作出划分,从而在保证终端设备的节能的情况下,还能够在WUS中更加灵活的携带相应的信号部分,从而可以更加灵活的适用于更多的场景。另外,上述方案中还提供了针对WUS的符号长度以及多种传输方式的设计,从而保证了WUS的传输更加合理,适宜在低功耗的多种场景下进行部署。
图10是根据本申请一实施例的终端设备的组成结构示意图,包括:
第一通信单元1010,用于监听唤醒信号WUS;
其中,所述WUS包含N个信号部分;N为大于等于1的整数。
所述N个信号部分中包含第一信号部分,所述第一信号部分用于携带目标信息。
所述目标信息包括以下至少之一:唤醒信息,寻呼短消息。
所述唤醒信息为所述终端设备专属的;
或者所述唤醒信息为终端设备组共享的,所述终端设备组中包含所述终端设备;
或者所述唤醒信息为第一服务小区专用的,所述第一服务小区为所述终端设备所在的服务小区。
所述第一信号部分,还用于携带同步序列,所述同步序列用于所述终端设备维持同步。
所述同步序列,位于以下位置之一:
所述第一信号部分之前;
所述第一信号部分之内;
所述第一信号部分之后。
所述第一信号部分,还用于携带逆向比特,所述逆向比特用于确定包络检测门限。
所述逆向比特,位于所述目标信息的部分比特位中。
所述N个信号部分,还包含以下至少之一:
第二信号部分,所述第二信号部分用于携带第一信号序列,所述第一信号序列用于指示WUS的起始位置;
第三信号部分,所述第三信号部分用于携带前导序列,所述前导序列用于进行时钟同步;
第四信号部分,所述第四信号部分用于携带循环冗余校验码CRC;
第五信号部分,所述第五信号部分用于携带第二信号序列,所述第二信号序列用于指示WUS的结束位置。
所述前导序列还用于指示所述WUS的信号参数;
所述WUS的信号参数包括以下至少之一:信号长度、传输速率。
所述N个信号部分中不同信号部分采用相同的符号长度。
所述N个信号部分中至少一个信号部分与其他信号部分采用不同的符号长度。
所述不同的符号长度之间的关系为预设的,或网络设备配置的。
所述WUS为二进制启闭键控OOK信号。
所述OOK信号基于移幅键控法ASK或移频键控法FSK调制得到。
所述WUS为基于正交频分复用OFDM符号上的多个目标子载波生成的OOK信号。
所述WUS中的第i个比特位的取值,由第i个时域位置处第一频域范围内接收到的信号状态确定,i为大于等于1的整数;
其中,所述第i个时域位置为第i个OFDM符号所在位置;所述第一频域范围与所述多个目标子载波所占用的频域范围相关。
所述多个目标子载波中,不包含中心子载波。
所述多个目标子载波以所述中心子载波为中心对称分布。
所述多个目标子载波的子载波间隔,与主系统相同。
所述多个目标子载波的子载波间隔,与主系统不同。
所述多个目标子载波的子载波间隔为网络设备配置的,或预先设置的。
所述OFDM符号不包含循环前缀CP。
所述OFDM符号包含循环前缀CP。
所述CP的长度与主系统的OFDM符号的CP长度至少部分不同。
所述CP的长度为网络设备配置的,或预先设置的。
所述多个目标子载波的数量,为网络设备配置的,或预先设置的。
所述WUS为基于单载波生成的OOK信号。
所述WUS中的第j个比特位的取值,由第j个时域位置处第二频域范围内接收到的信号状态确定,j为大于等于1的整数;
其中,所述第二频域范围与所述单载波所占用的频域范围相关。
所述终端设备至少包含所述第一部件和第二部件;所述第一部件的功耗低于所述第二部件;
所述第一部件中包含所述第一通信单元。
还应理解的是,所述终端设备还可以包括第一处理单元,该第一处理单元可以用于执行方法中的相关处理,比如用于解析WUS等等处理,这里不对其进行穷举。
本申请实施例的终端设备能够实现前述的方法实施例中的终端设备的对应功能。该终端设备中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的终端设备中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
通过采用上述方案,终端设备所监听的WUS中,可以携带N个信号部分,这样可以对WUS所能够携带的内容作出划分,从而在保证终端设备的节能的情况下,还能够在WUS中更加灵活的携带相应的信号部分,从而可以更加灵活的适用于更多的场景。另外,上述方案中还提供了针对WUS的符号长度以及多种传输方式的设计,从而保证了WUS的传输更加合理,适宜在低功耗的多种场景下进行部署。
图11是根据本申请一实施例的网络设备的组成结构示意图,包括:
第二通信单元1101,用于发送唤醒信号WUS;
其中,所述WUS包含N个信号部分;N为大于等于1的整数。
所述N个信号部分中包含第一信号部分,所述第一信号部分用于携带目标信息。
所述目标信息包括以下至少之一:唤醒信息,寻呼短消息。
所述唤醒信息为终端设备专属的;
或者所述唤醒信息为终端设备组共享的;
或者所述唤醒信息为第一服务小区专用的。
所述第一信号部分,还用于携带同步序列,所述同步序列用于所述终端设备维持同步。
所述同步序列,位于以下位置之一:
所述第一信号部分之前;
所述第一信号部分之内;
所述第一信号部分之后。
所述第一信号部分,还用于携带逆向比特,所述逆向比特用于确定包络检测门限。
所述逆向比特,位于所述目标信息的部分比特位中。
所述N个信号部分,还包括以下至少之一:
第二信号部分,所述第二信号部分用于携带第一信号序列,所述第一信号序列用于指示WUS的起始位置;
第三信号部分,所述第三信号部分用于携带前导序列,所述前导序列用于进行时钟同步;
第四信号部分,所述第四信号部分用于携带循环冗余校验码CRC;
第五信号部分,所述第五信号部分用于携带第二信号序列,所述第二信号序列用于指示WUS的结束位置。
所述前导序列还用于指示所述WUS的信号参数;
所述WUS的信号参数包括以下至少之一:信号长度、传输速率。
所述N个信号部分中不同信号部分采用相同的符号长度。
所述N个信号部分中至少一个信号部分与其他信号部分采用不同的符号长度。
所述第二通信单元,用于发送第一配置信息,所述第一配置信息用于配置所述不同的符号长度之间的关系。
所述WUS为二进制启闭键控OOK信号。
所述OOK信号基于移幅键控法ASK或移频键控法FSK调制得到。
所述WUS为基于OFDM符号上的多个目标子载波生成的OOK信号。
第i个OFDM符号上的多个目标子载波的状态,由第i个比特位的取值确定;i为大于等于1的整数。
在图11的基础上,如图12所示,所述网络设备还包括:
第二处理单元1102,用于在确定第i个比特位的取值为第一值的情况下,将所述第i个OFDM符号上的多个目标子载波置为第一状态;
和/或,
在确定第i个比特位的取值为第二值的情况下,将所述第i个OFDM符号上的多个目标子载波置为第二状态。
所述多个目标子载波中,不包含中心子载波。
所述中心子载波设置为指定状态。
所述多个目标子载波以所述中心子载波为中心对称分布。
所述多个目标子载波的子载波间隔,与主系统相同。
所述多个目标子载波的子载波间隔,与主系统不同。
所述第二通信单元1101,用于发送第二配置信息,所述第二配置信息用于配置所述多个目标子载波的子载波间隔。
所述OFDM符号不包含循环前缀CP。
所述OFDM符号包含循环前缀CP。
所述CP的长度与主系统的OFDM符号的CP长度至少部分不同。
所述第二通信单元,用于发送第三配置信息1101,所述第三配置信息用于配置所述CP的长度。
所述第二通信单元1101,用于发送第四配置信息,所述第四配置信息用于配置所述多个目标子载波的数量。
所述WUS为基于单载波生成的OOK信号。
第j个时域位置处的单载波的状态,由第j个比特位的取值确定;j为大于等于1的整数。
所述第二处理单元1102,用于在确定第j个比特位的取值为第一值的情况下,将所述第j个时域位置处的单载波置为第三状态;
和/或,
在确定第j个比特位的取值为第二值的情况下,将所述第j个时域位置处的单载波置为第四状态。
本申请实施例的网络设备能够实现前述的方法实施例中的网络设备的对应功能。该网络设备中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的网络设备中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
通过采用上述方案,网络设备传输的WUS中,可以携带N个信号部分,这样可以对WUS所能够携带的内容作出划分,从而在保证终端设备的节能的情况下,还能够在WUS中更加灵活的携带相应的信号部分,从而可以更加灵活的适用于更多的场景。另外,上述方案中还提供了针对WUS的符号长度以及多种传输方式的设计,从而保证了WUS的传输更加合理,适宜在低功耗的多种场景下进行部署。
图13是根据本申请实施例的通信设备1300示意性结构图。该通信设备1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以使通信设备1300实现本申请实施例中的方法。
在一种可能的实现方式中,通信设备1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以使通信设备1300实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
在一种可能的实现方式中,通信设备1300还可以包括收发器1330,处理器1310可以控制该收发器1330与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1330可以包括发射机和接收机。收发器1330还可以进一步包括天线,天线的数量可以为一个或多个。
在一种可能的实现方式中,该通信设备1300可为本申请实施例的网络设备,并且该通信设备1300可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种可能的实现方式中,该通信设备1300可为本申请实施例的终端设备,并且该通信设备1300可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图14是根据本申请实施例的芯片1400的示意性结构图。该芯片1400包括处理器1410,处理器1410 可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一种可能的实现方式中,芯片1400还可以包括存储器1420。其中,处理器1410可以从存储器1420中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。
其中,存储器1420可以是独立于处理器1410的一个单独的器件,也可以集成在处理器1410中。
在一种可能的实现方式中,该芯片1400还可以包括输入接口1430。其中,处理器1410可以控制该输入接口1430与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一种可能的实现方式中,该芯片1400还可以包括输出接口1440。其中,处理器1410可以控制该输出接口1440与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一种可能的实现方式中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种可能的实现方式中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图15是根据本申请实施例的通信系统1500的示意性框图。该通信系统1500包括终端设备1510和网络设备1520。
其中,该终端设备1510可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1520可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (131)

  1. 一种信息传输方法,包括:
    终端设备监听唤醒信号WUS;
    其中,所述WUS包含N个信号部分;N为大于等于1的整数。
  2. 根据权利要求1所述的方法,其中,所述N个信号部分中包含第一信号部分,所述第一信号部分用于携带目标信息。
  3. 根据权利要求2所述的方法,其中,所述目标信息包括以下至少之一:唤醒信息,寻呼短消息。
  4. 根据权利要求3所述的方法,其中,所述唤醒信息为所述终端设备专属的;
    或者所述唤醒信息为终端设备组共享的,所述终端设备组中包含所述终端设备;
    或者所述唤醒信息为第一服务小区专用的,所述第一服务小区为所述终端设备所在的服务小区。
  5. 根据权利要求2-4任一项所述的方法,其中,所述第一信号部分,还用于携带同步序列,所述同步序列用于所述终端设备维持同步。
  6. 根据权利要求5所述的方法,其中,所述同步序列,位于以下位置之一:
    所述第一信号部分之前;
    所述第一信号部分之内;
    所述第一信号部分之后。
  7. 根据权利要求2-6任一项所述的方法,其中,所述第一信号部分,还用于携带逆向比特,所述逆向比特用于确定包络检测门限。
  8. 根据权利要求7所述的方法,其中,所述逆向比特,位于所述目标信息的部分比特位中。
  9. 根据权利要求2-8任一项所述的方法,其中,所述N个信号部分,还包含以下至少之一:
    第二信号部分,所述第二信号部分用于携带第一信号序列,所述第一信号序列用于指示WUS的起始位置;
    第三信号部分,所述第三信号部分用于携带前导序列,所述前导序列用于进行时钟同步;
    第四信号部分,所述第四信号部分用于携带循环冗余校验码CRC;
    第五信号部分,所述第五信号部分用于携带第二信号序列,所述第二信号序列用于指示WUS的结束位置。
  10. 根据权利要求9所述的方法,其中,所述前导序列还用于指示所述WUS的信号参数;
    所述WUS的信号参数包括以下至少之一:信号长度、传输速率。
  11. 根据权利要求1-10任一项所述的方法,其中,所述N个信号部分中不同信号部分采用相同的符号长度。
  12. 根据权利要求1-10任一项所述的方法,其中,所述N个信号部分中至少一个信号部分与其他信号部分采用不同的符号长度。
  13. 根据权利要求12所述的方法,其中,所述不同的符号长度之间的关系为预设的,或网络设备配置的。
  14. 根据权利要求1-13任一项所述的方法,其中,所述WUS为二进制启闭键控OOK信号。
  15. 根据权利要求14所述的方法,其中,所述OOK信号基于移幅键控法ASK或移频键控法FSK调制得到。
  16. 根据权利要求1-13任一项所述的方法,其中,所述WUS为基于正交频分复用OFDM符号上的多个目标子载波生成的OOK信号。
  17. 根据权利要求16所述的方法,其中,所述WUS中的第i个比特位的取值,由第i个时域位置处第一频域范围内接收到的信号状态确定,i为大于等于1的整数;
    其中,所述第i个时域位置为第i个OFDM符号所在位置;所述第一频域范围与所述多个目标子载波所占用的频域范围相关。
  18. 根据权利要求16-17任一项所述的方法,其中,所述多个目标子载波中,不包含中心子载波。
  19. 根据权利要求18所述的方法,其中,所述多个目标子载波以所述中心子载波为中心对称分布。
  20. 根据权利要求16-19任一项所述的方法,其中,所述多个目标子载波的子载波间隔,与主系统相同。
  21. 根据权利要求16-19任一项所述的方法,其中,所述多个目标子载波的子载波间隔,与主系统不同。
  22. 根据权利要求21所述的方法,其中,所述多个目标子载波的子载波间隔为网络设备配置的,或预先设置的。
  23. 根据权利要求16-22任一项所述的方法,其中,所述OFDM符号不包含循环前缀CP。
  24. 根据权利要求16-22任一项所述的方法,其中,所述OFDM符号包含循环前缀CP。
  25. 根据权利要求24所述的方法,其中,所述CP的长度与主系统的OFDM符号的CP长度至少部分不同。
  26. 根据权利要求24或25所述的方法,其中,所述CP的长度为网络设备配置的,或预先设置的。
  27. 根据权利要求16-26任一项所述的方法,其中,所述多个目标子载波的数量,为网络设备配置的,或预先设置的。
  28. 根据权利要求1-13任一项所述的方法,其中,所述WUS为基于单载波生成的OOK信号。
  29. 根据权利要求28所述的方法,其中,所述WUS中的第j个比特位的取值,由第j个时域位置处第二频域范围内接收到的信号状态确定,j为大于等于1的整数;
    其中,所述第二频域范围与所述单载波所占用的频域范围相关。
  30. 根据权利要求1-29任一项所述的方法,其中,所述终端设备监听WUS,包括:
    所述终端设备的第一部件监听所述WUS;其中,所述终端设备至少包含所述第一部件和第二部件;所述第一部件的功耗低于所述第二部件。
  31. 一种信息传输方法,包括:
    网络设备发送唤醒信号WUS;
    其中,所述WUS包含N个信号部分;N为大于等于1的整数。
  32. 根据权利要求31所述的方法,其中,所述N个信号部分中包含第一信号部分,所述第一信号部分用于携带目标信息。
  33. 根据权利要求32所述的方法,其中,所述目标信息包括以下至少之一:唤醒信息,寻呼短消息。
  34. 根据权利要求33所述的方法,其中,所述唤醒信息为终端设备专属的;
    或者所述唤醒信息为终端设备组共享的;
    或者所述唤醒信息为第一服务小区专用的。
  35. 根据权利要求32-34任一项所述的方法,其中,所述第一信号部分,还用于携带同步序列,所述同步序列用于所述终端设备维持同步。
  36. 根据权利要求35所述的方法,其中,所述同步序列,位于以下位置之一:
    所述第一信号部分之前;
    所述第一信号部分之内;
    所述第一信号部分之后。
  37. 根据权利要求32-36任一项所述的方法,其中,所述第一信号部分,还用于携带逆向比特,所述逆向比特用于确定包络检测门限。
  38. 根据权利要求37所述的方法,其中,所述逆向比特,位于所述目标信息的部分比特位中。
  39. 根据权利要求32-38任一项所述的方法,其中,所述N个信号部分,还包括以下至少之一:
    第二信号部分,所述第二信号部分用于携带第一信号序列,所述第一信号序列用于指示WUS的起始位置;
    第三信号部分,所述第三信号部分用于携带前导序列,所述前导序列用于进行时钟同步;
    第四信号部分,所述第四信号部分用于携带循环冗余校验码CRC;
    第五信号部分,所述第五信号部分用于携带第二信号序列,所述第二信号序列用于指示WUS的结束位置。
  40. 根据权利要求39所述的方法,其中,所述前导序列还用于指示所述WUS的信号参数;
    所述WUS的信号参数包括以下至少之一:信号长度、传输速率。
  41. 根据权利要求31-40任一项所述的方法,其中,所述N个信号部分中不同信号部分采用相同的符号长度。
  42. 根据权利要求31-40任一项所述的方法,其中,所述N个信号部分中至少一个信号部分与其他信号部分采用不同的符号长度。
  43. 根据权利要求42所述的方法,其中,所述方法还包括:
    所述网络设备发送第一配置信息,所述第一配置信息用于配置所述不同的符号长度之间的关系。
  44. 根据权利要求31-43任一项所述的方法,其中,所述WUS为二进制启闭键控OOK信号。
  45. 根据权利要求44所述的方法,其中,所述OOK信号基于移幅键控法ASK或移频键控法FSK调制得到。
  46. 根据权利要求31-43任一项所述的方法,其中,所述WUS为基于OFDM符号上的多个目标子载波生成的OOK信号。
  47. 根据权利要求46所述的方法,其中,第i个OFDM符号上的多个目标子载波的状态,由第i个 比特位的取值确定;i为大于等于1的整数。
  48. 根据权利要求47所述的方法,其中,所述方法还包括:
    所述网络设备在确定第i个比特位的取值为第一值的情况下,将所述第i个OFDM符号上的多个目标子载波置为第一状态;
    和/或,
    所述网络设备在确定第i个比特位的取值为第二值的情况下,将所述第i个OFDM符号上的多个目标子载波置为第二状态。
  49. 根据权利要求46-48任一项所述的方法,其中,所述多个目标子载波中,不包含中心子载波。
  50. 根据权利要求49所述的方法,其中,所述中心子载波设置为指定状态。
  51. 根据权利要求49或50所述的方法,其中,所述多个目标子载波以所述中心子载波为中心对称分布。
  52. 根据权利要求46-51任一项所述的方法,其中,所述多个目标子载波的子载波间隔,与主系统相同。
  53. 根据权利要求46-51任一项所述的方法,其中,所述多个目标子载波的子载波间隔,与主系统不同。
  54. 根据权利要求53所述的方法,其中,所述方法还包括:
    所述网络设备发送第二配置信息,所述第二配置信息用于配置所述多个目标子载波的子载波间隔。
  55. 根据权利要求46-54任一项所述的方法,其中,所述OFDM符号不包含循环前缀CP。
  56. 根据权利要求46-54任一项所述的方法,其中,所述OFDM符号包含循环前缀CP。
  57. 根据权利要求56所述的方法,其中,所述CP的长度与主系统的OFDM符号的CP长度至少部分不同。
  58. 根据权利要求56或57所述的方法,其中,所述方法还包括:
    所述网络设备发送第三配置信息,所述第三配置信息用于配置所述CP的长度。
  59. 根据权利要求56-58任一项所述的方法,其中,所述方法还包括:
    所述网络设备发送第四配置信息,所述第四配置信息用于配置所述多个目标子载波的数量。
  60. 根据权利要求31-43任一项所述的方法,其中,所述WUS为基于单载波生成的OOK信号。
  61. 根据权利要求60所述的方法,其中,第j个时域位置处的单载波的状态,由第j个比特位的取值确定;j为大于等于1的整数。
  62. 根据权利要求61所述的方法,其中,所述方法还包括:
    所述网络设备在确定第j个比特位的取值为第一值的情况下,将所述第j个时域位置处的单载波置为第三状态;
    和/或,
    所述网络设备在确定第j个比特位的取值为第二值的情况下,将所述第j个时域位置处的单载波置为第四状态。
  63. 一种终端设备,包括:
    第一通信单元,用于监听唤醒信号WUS;
    其中,所述WUS包含N个信号部分;N为大于等于1的整数。
  64. 根据权利要求63所述的终端设备,其中,所述N个信号部分中包含第一信号部分,所述第一信号部分用于携带目标信息。
  65. 根据权利要求64所述的终端设备,其中,所述目标信息包括以下至少之一:唤醒信息,寻呼短消息。
  66. 根据权利要求65所述的终端设备,其中,所述唤醒信息为所述终端设备专属的;
    或者所述唤醒信息为终端设备组共享的,所述终端设备组中包含所述终端设备;
    或者所述唤醒信息为第一服务小区专用的,所述第一服务小区为所述终端设备所在的服务小区。
  67. 根据权利要求64-66任一项所述的终端设备,其中,所述第一信号部分,还用于携带同步序列,所述同步序列用于所述终端设备维持同步。
  68. 根据权利要求67所述的终端设备,其中,所述同步序列,位于以下位置之一:
    所述第一信号部分之前;
    所述第一信号部分之内;
    所述第一信号部分之后。
  69. 根据权利要求64-68任一项所述的终端设备,其中,所述第一信号部分,还用于携带逆向比特,所述逆向比特用于确定包络检测门限。
  70. 根据权利要求69所述的终端设备,其中,所述逆向比特,位于所述目标信息的部分比特位中。
  71. 根据权利要求64-70任一项所述的终端设备,其中,所述N个信号部分,还包含以下至少之一:
    第二信号部分,所述第二信号部分用于携带第一信号序列,所述第一信号序列用于指示WUS的起始位置;
    第三信号部分,所述第三信号部分用于携带前导序列,所述前导序列用于进行时钟同步;
    第四信号部分,所述第四信号部分用于携带循环冗余校验码CRC;
    第五信号部分,所述第五信号部分用于携带第二信号序列,所述第二信号序列用于指示WUS的结束位置。
  72. 根据权利要求71所述的终端设备,其中,所述前导序列还用于指示所述WUS的信号参数;
    所述WUS的信号参数包括以下至少之一:信号长度、传输速率。
  73. 根据权利要求63-72任一项所述的终端设备,其中,所述N个信号部分中不同信号部分采用相同的符号长度。
  74. 根据权利要求63-72任一项所述的终端设备,其中,所述N个信号部分中至少一个信号部分与其他信号部分采用不同的符号长度。
  75. 根据权利要求74所述的终端设备,其中,所述不同的符号长度之间的关系为预设的,或网络设备配置的。
  76. 根据权利要求63-75任一项所述的终端设备,其中,所述WUS为二进制启闭键控OOK信号。
  77. 根据权利要求76所述的终端设备,其中,所述OOK信号基于移幅键控法ASK或移频键控法FSK调制得到。
  78. 根据权利要求63-75任一项所述的终端设备,其中,所述WUS为基于正交频分复用OFDM符号上的多个目标子载波生成的OOK信号。
  79. 根据权利要求78所述的终端设备,其中,所述WUS中的第i个比特位的取值,由第i个时域位置处第一频域范围内接收到的信号状态确定,i为大于等于1的整数;
    其中,所述第i个时域位置为第i个OFDM符号所在位置;所述第一频域范围与所述多个目标子载波所占用的频域范围相关。
  80. 根据权利要求78-79任一项所述的终端设备,其中,所述多个目标子载波中,不包含中心子载波。
  81. 根据权利要求80所述的终端设备,其中,所述多个目标子载波以所述中心子载波为中心对称分布。
  82. 根据权利要求78-81任一项所述的终端设备,其中,所述多个目标子载波的子载波间隔,与主系统相同。
  83. 根据权利要求78-81任一项所述的终端设备,其中,所述多个目标子载波的子载波间隔,与主系统不同。
  84. 根据权利要求83所述的终端设备,其中,所述多个目标子载波的子载波间隔为网络设备配置的,或预先设置的。
  85. 根据权利要求78-84任一项所述的终端设备,其中,所述OFDM符号不包含循环前缀CP。
  86. 根据权利要求78-84任一项所述的终端设备,其中,所述OFDM符号包含循环前缀CP。
  87. 根据权利要求86所述的终端设备,其中,所述CP的长度与主系统的OFDM符号的CP长度至少部分不同。
  88. 根据权利要求86或87所述的终端设备,其中,所述CP的长度为网络设备配置的,或预先设置的。
  89. 根据权利要求78-88任一项所述的终端设备,其中,所述多个目标子载波的数量,为网络设备配置的,或预先设置的。
  90. 根据权利要求63-75任一项所述的终端设备,其中,所述WUS为基于单载波生成的OOK信号。
  91. 根据权利要求90所述的终端设备,其中,所述WUS中的第j个比特位的取值,由第j个时域位置处第二频域范围内接收到的信号状态确定,j为大于等于1的整数;
    其中,所述第二频域范围与所述单载波所占用的频域范围相关。
  92. 根据权利要求63-91任一项所述的终端设备,其中,所述终端设备至少包含所述第一部件和第二部件;所述第一部件的功耗低于所述第二部件;
    所述第一部件中包含所述第一通信单元。
  93. 一种网络设备,包括:
    第二通信单元,用于发送唤醒信号WUS;
    其中,所述WUS包含N个信号部分;N为大于等于1的整数。
  94. 根据权利要求93所述的网络设备,其中,所述N个信号部分中包含第一信号部分,所述第一信号部分用于携带目标信息。
  95. 根据权利要求94所述的网络设备,其中,所述目标信息包括以下至少之一:唤醒信息,寻呼短消息。
  96. 根据权利要求95所述的网络设备,其中,所述唤醒信息为终端设备专属的;
    或者所述唤醒信息为终端设备组共享的;
    或者所述唤醒信息为第一服务小区专用的。
  97. 根据权利要求94-96任一项所述的网络设备,其中,所述第一信号部分,还用于携带同步序列,所述同步序列用于所述终端设备维持同步。
  98. 根据权利要求97所述的网络设备,其中,所述同步序列,位于以下位置之一:
    所述第一信号部分之前;
    所述第一信号部分之内;
    所述第一信号部分之后。
  99. 根据权利要求94-98任一项所述的网络设备,其中,所述第一信号部分,还用于携带逆向比特,所述逆向比特用于确定包络检测门限。
  100. 根据权利要求99所述的网络设备,其中,所述逆向比特,位于所述目标信息的部分比特位中。
  101. 根据权利要求94-100任一项所述的网络设备,其中,所述N个信号部分,还包括以下至少之一:
    第二信号部分,所述第二信号部分用于携带第一信号序列,所述第一信号序列用于指示WUS的起始位置;
    第三信号部分,所述第三信号部分用于携带前导序列,所述前导序列用于进行时钟同步;
    第四信号部分,所述第四信号部分用于携带循环冗余校验码CRC;
    第五信号部分,所述第五信号部分用于携带第二信号序列,所述第二信号序列用于指示WUS的结束位置。
  102. 根据权利要求101所述的网络设备,其中,所述前导序列还用于指示所述WUS的信号参数;
    所述WUS的信号参数包括以下至少之一:信号长度、传输速率。
  103. 根据权利要求93-102任一项所述的网络设备,其中,所述N个信号部分中不同信号部分采用相同的符号长度。
  104. 根据权利要求93-102任一项所述的网络设备,其中,所述N个信号部分中至少一个信号部分与其他信号部分采用不同的符号长度。
  105. 根据权利要求104所述的网络设备,其中,所述第二通信单元,用于发送第一配置信息,所述第一配置信息用于配置所述不同的符号长度之间的关系。
  106. 根据权利要求93-105任一项所述的网络设备,其中,所述WUS为二进制启闭键控OOK信号。
  107. 根据权利要求106所述的网络设备,其中,所述OOK信号基于移幅键控法ASK或移频键控法FSK调制得到。
  108. 根据权利要求93-105任一项所述的网络设备,其中,所述WUS为基于OFDM符号上的多个目标子载波生成的OOK信号。
  109. 根据权利要求108所述的网络设备,其中,第i个OFDM符号上的多个目标子载波的状态,由第i个比特位的取值确定;i为大于等于1的整数。
  110. 根据权利要求109所述的网络设备,其中,所述网络设备还包括:
    第二处理单元,用于在确定第i个比特位的取值为第一值的情况下,将所述第i个OFDM符号上的多个目标子载波置为第一状态;
    和/或,
    在确定第i个比特位的取值为第二值的情况下,将所述第i个OFDM符号上的多个目标子载波置为第二状态。
  111. 根据权利要求108-110任一项所述的网络设备,其中,所述多个目标子载波中,不包含中心子载波。
  112. 根据权利要求111所述的网络设备,其中,所述中心子载波设置为指定状态。
  113. 根据权利要求111或112所述的网络设备,其中,所述多个目标子载波以所述中心子载波为中心对称分布。
  114. 根据权利要求108-113任一项所述的网络设备,其中,所述多个目标子载波的子载波间隔,与 主系统相同。
  115. 根据权利要求108-113任一项所述的网络设备,其中,所述多个目标子载波的子载波间隔,与主系统不同。
  116. 根据权利要求115所述的网络设备,其中,所述第二通信单元,用于发送第二配置信息,所述第二配置信息用于配置所述多个目标子载波的子载波间隔。
  117. 根据权利要求108-116任一项所述的网络设备,其中,所述OFDM符号不包含循环前缀CP。
  118. 根据权利要求108-116任一项所述的网络设备,其中,所述OFDM符号包含循环前缀CP。
  119. 根据权利要求118所述的网络设备,其中,所述CP的长度与主系统的OFDM符号的CP长度至少部分不同。
  120. 根据权利要求118或119所述的网络设备,其中,所述第二通信单元,用于发送第三配置信息,所述第三配置信息用于配置所述CP的长度。
  121. 根据权利要求118-120任一项所述的网络设备,其中,所述第二通信单元,用于发送第四配置信息,所述第四配置信息用于配置所述多个目标子载波的数量。
  122. 根据权利要求93-105任一项所述的网络设备,其中,所述WUS为基于单载波生成的OOK信号。
  123. 根据权利要求122所述的网络设备,其中,第j个时域位置处的单载波的状态,由第j个比特位的取值确定;j为大于等于1的整数。
  124. 根据权利要求123所述的网络设备,其中,所述网络设备还包括:
    第二处理单元,用于在确定第j个比特位的取值为第一值的情况下,将所述第j个时域位置处的单载波置为第三状态;
    和/或,
    在确定第j个比特位的取值为第二值的情况下,将所述第j个时域位置处的单载波置为第四状态。
  125. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至30中任一项所述的方法。
  126. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求31至62中任一项所述的方法。
  127. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至30中任一项所述的方法。
  128. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求31至62中任一项所述的方法。
  129. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至62中任一项所述的方法。
  130. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至62中任一项所述的方法。
  131. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至62中任一项所述的方法。
PCT/CN2022/077944 2022-02-25 2022-02-25 信息传输方法、终端设备和网络设备 WO2023159474A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077944 WO2023159474A1 (zh) 2022-02-25 2022-02-25 信息传输方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/077944 WO2023159474A1 (zh) 2022-02-25 2022-02-25 信息传输方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023159474A1 true WO2023159474A1 (zh) 2023-08-31

Family

ID=87764278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077944 WO2023159474A1 (zh) 2022-02-25 2022-02-25 信息传输方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2023159474A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200084718A1 (en) * 2016-07-22 2020-03-12 Telefonaktiebolaget Lm Ericsson (Publ) Efficient Concurrent Transmission of a Wake-Up Signal and User Data
WO2020225031A1 (en) * 2019-05-03 2020-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Discovery of and recovery from missed wake-up signal (wus) reception
WO2021162623A1 (en) * 2020-02-13 2021-08-19 Telefonaktiebolaget Lm Ericsson (Publ) Aspects of wus transmission in idle mode
CN113498598A (zh) * 2019-02-22 2021-10-12 Idac控股公司 用于功率节省的唤醒信号
CN113892287A (zh) * 2019-03-29 2022-01-04 苹果公司 基于物理下行链路控制信道的唤醒信号

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200084718A1 (en) * 2016-07-22 2020-03-12 Telefonaktiebolaget Lm Ericsson (Publ) Efficient Concurrent Transmission of a Wake-Up Signal and User Data
CN113498598A (zh) * 2019-02-22 2021-10-12 Idac控股公司 用于功率节省的唤醒信号
CN113892287A (zh) * 2019-03-29 2022-01-04 苹果公司 基于物理下行链路控制信道的唤醒信号
WO2020225031A1 (en) * 2019-05-03 2020-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Discovery of and recovery from missed wake-up signal (wus) reception
WO2021162623A1 (en) * 2020-02-13 2021-08-19 Telefonaktiebolaget Lm Ericsson (Publ) Aspects of wus transmission in idle mode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Considerations for design of wake-up signal", 3GPP DRAFT; R1-1720134, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 17 November 2017 (2017-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051368907 *

Similar Documents

Publication Publication Date Title
US11184852B2 (en) Wake-up signal with reconfigurable sequence design
CN112189367B (zh) 在新无线电非授权网络中配置备用寻呼机会的方法及用户设备
WO2019214661A1 (zh) 传输寻呼消息的方法和装置
US20230397118A1 (en) Method for wireless communication and first device
US20230247557A1 (en) Sidelink transmission method and terminal
WO2022027488A1 (zh) 无线通信的方法、终端设备和网络设备
EP4164310A1 (en) Method and apparatus for supporting plurality of sims in next-generation mobile communication system
WO2022116090A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022141009A1 (zh) 寻呼消息发送的方法和装置
WO2023098845A1 (zh) 资源确定方法与装置、终端
US20230146553A1 (en) Downlink control information-based paging early indicator
WO2023159474A1 (zh) 信息传输方法、终端设备和网络设备
WO2022094775A1 (zh) 寻呼方法、终端设备和网络设备
WO2022056684A1 (zh) 节能方法、终端设备和网络设备
Muteba et al. Challenges and solutions of spectrum allocation in NB-IoT technology
WO2023159468A1 (zh) 信息传输方法、终端设备和网络设备
WO2023173439A1 (zh) 通信方法、终端设备和网络设备
US20230117840A1 (en) Resource determination method, terminal device, and network device
WO2023115565A1 (zh) 无线通信的方法、终端设备、接入网设备和核心网设备
WO2023284620A1 (zh) 通信的方法和装置
WO2023116441A1 (zh) 通信方法、装置、设备以及存储介质
US20230379828A1 (en) Wireless communication method, terminal device and network device
WO2024094183A1 (zh) 唤醒信号处理方法与装置、网络设备
EP4383835A1 (en) Communication method, apparatus, and system
WO2023092526A1 (zh) 寻呼方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927760

Country of ref document: EP

Kind code of ref document: A1