WO2023173439A1 - 通信方法、终端设备和网络设备 - Google Patents

通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023173439A1
WO2023173439A1 PCT/CN2022/081818 CN2022081818W WO2023173439A1 WO 2023173439 A1 WO2023173439 A1 WO 2023173439A1 CN 2022081818 W CN2022081818 W CN 2022081818W WO 2023173439 A1 WO2023173439 A1 WO 2023173439A1
Authority
WO
WIPO (PCT)
Prior art keywords
prach
domain resource
time domain
synchronization signal
terminal device
Prior art date
Application number
PCT/CN2022/081818
Other languages
English (en)
French (fr)
Inventor
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/081818 priority Critical patent/WO2023173439A1/zh
Publication of WO2023173439A1 publication Critical patent/WO2023173439A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and more specifically, to a communications method, terminal equipment, network equipment, computer-readable storage media, computer program products, and computer programs.
  • the terminal equipment uses a lower power consumption receiver.
  • the main receiver of the terminal equipment can be awakened according to actual needs to perform related processing.
  • how to ensure that the terminal device can perform subsequent operations in a timely manner has become a problem that needs to be solved.
  • Embodiments of the present application provide a communication method, terminal equipment, network equipment, computer-readable storage media, computer program products, and computer programs.
  • the embodiment of the present application provides a communication method, including:
  • the terminal device listens to a wake-up signal WUS; wherein the WUS is used to wake up the terminal device; the WUS carries first information, and the first information is used for the terminal device to perform operations after waking up.
  • the embodiment of the present application provides a communication method, including:
  • the network device sends a wake-up signal WUS; wherein the WUS is used to wake up the terminal device; the WUS carries first information, and the first information is used for operations performed by the terminal device after waking up.
  • An embodiment of the present application provides a terminal device, including:
  • the first communication unit is configured to monitor the wake-up signal WUS; wherein the WUS is used to wake up the terminal device; the WUS carries first information, and the first information is used for the terminal device to execute after waking up. operate.
  • This embodiment of the present application provides a network device, including:
  • the second communication unit is used to send a wake-up signal WUS; wherein the WUS is used to wake up the terminal device; the WUS carries first information, and the first information is used for the terminal device to execute after waking up. operate.
  • An embodiment of the present application provides a terminal device, including a processor and a memory.
  • the memory is used to store computer programs, and the processor is used to call and run the computer program stored in the memory, so that the terminal device performs the above method.
  • An embodiment of the present application provides a network device, including a processor and a memory.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, so that the network device performs the above method.
  • An embodiment of the present application provides a chip for implementing the above method.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the above method.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program, which when the computer program is run by a device, causes the device to perform the above method.
  • An embodiment of the present application provides a computer program product, which includes computer program instructions, and the computer program instructions cause a computer to execute the above method.
  • An embodiment of the present application provides a computer program that, when run on a computer, causes the computer to perform the above method.
  • the terminal device can receive WUS, which can be used to wake up the terminal device; the WUS carried in the WUS can be used for operations performed by the terminal device after waking up.
  • the terminal device can wake up based on receiving the WUS and promptly perform post-wake-up operations based on the first information in the WUS. This can shorten the service transmission delay and thereby improve the processing efficiency of the system.
  • Figure 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of a scenario based on the introduction of energy-saving signal processing in DRX.
  • Figure 3 is a scenario diagram for receiving a paging message based on waking up a terminal device through an energy-saving signal.
  • Figure 4 is a schematic flow chart of a communication method according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of the composition of a terminal device according to an embodiment of the present application.
  • Figure 6 is another schematic flowchart of a communication method according to an embodiment of the present application.
  • Figure 7 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Figure 8 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • Figure 9 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Figure 10 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Figure 11 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Figure 12 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi wireless fidelity
  • 5G fifth-generation communication
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or an independent ( Standalone, SA) network deployment scenario.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA Standalone
  • the communication system in the embodiment of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as shared spectrum; or, the communication system in the embodiment of the present application can also be applied to Licensed spectrum, where licensed spectrum can also be considered as unshared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • the terminal device can be a station (ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital processing unit.
  • SIP Session Initiation Protocol
  • WLL wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • BTS Base Transceiver Station
  • it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network network equipment (gNB) or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolution base station
  • gNB NR network network equipment
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network device can be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) ) satellite, etc.
  • the network device may also be a base station installed on land, water, etc.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • Figure 1 illustrates a communication system 100.
  • the communication system includes a network device 110 and two terminal devices 120.
  • the communication system 100 may include multiple network devices 110 , and the coverage of each network device 110 may include other numbers of terminal devices 120 , which is not limited in this embodiment of the present application.
  • the communication system 100 may also include other network entities such as a Mobility Management Entity (MME), an Access and Mobility Management Function (AMF), etc.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • network equipment may include access network equipment and core network equipment. That is, the wireless communication system also includes multiple core networks used to communicate with access network equipment.
  • the access network equipment can be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system or authorized auxiliary access long-term evolution (LAA- Evolutionary base station (evolutional node B, abbreviated as eNB or e-NodeB) macro base station, micro base station (also known as "small base station"), pico base station, access point (access point, AP), Transmission point (TP) or new generation base station (new generation Node B, gNodeB), etc.
  • LTE long-term evolution
  • NR next-generation
  • LAA- Evolutionary base station evolutional node B, abbreviated as eNB or e-NodeB
  • eNB next-generation
  • NR next-generation
  • LAA- Evolutionary base station evolutional node B, abbreviated as eNB or e-NodeB
  • the communication equipment may include network equipment and terminal equipment with communication functions.
  • the network equipment and terminal equipment may be specific equipment in the embodiments of the present application, which will not be described again here; the communication equipment also It may include other devices in the communication system, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the main application scenarios of 5G are: enhanced mobile ultra-broadband (eMBB, Enhanced Mobile Broadband), low-latency and highly reliable communications (URLLC, Ultra Reliable Low Latency Communications), and massive machine type communications (mMTC, massive Machine Type Communications).
  • eMBB aims at users to obtain multimedia content, services and data, and its demand is growing very rapidly; because eMBB may be deployed in different scenarios, such as indoors, urban areas, rural areas, etc., its capabilities and needs are also quite different. , so detailed analysis must be combined with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety and security, etc.
  • Typical features of mMTC include: high connection density, small data volume, delay-insensitive services, low cost and long service life.
  • RRC Radio Resource Control
  • RRC_INACTIVE RRC inactive
  • RRC_IDLE RRC idle
  • RRC_ACTIVE RRC activated
  • RRC_CONNECTED RRC connected
  • This energy-saving signal can be used in conjunction with the DRX mechanism, which introduces an energy-saving signal processing method, which may include: the terminal device receives an energy-saving signal (or energy-saving wake-up signal) before the DRX ON duration (activation time).
  • the network device can "wake up" the terminal device through an energy-saving signal, so that the terminal device monitors the PDCCH during the DRX On duration after waking up; otherwise, when When a terminal device has no data transmission in a DRX cycle, no energy-saving signal is sent to the terminal device (that is, the terminal device is not "waked up"), so that the terminal device does not need to monitor the PDCCH during the DRX On Duration period.
  • the above-mentioned energy-saving signal processing method can omit PDCCH monitoring during DRX On duration when the terminal equipment has no data transmission, thereby achieving energy saving of the terminal equipment.
  • the energy-saving signal can be carried by DCI (DownLink Control Information) format 2_6.
  • the processing method is explained, which may include: the first energy-saving signal indicates monitoring of PDCCH, then the terminal equipment, after receiving the first energy-saving signal, will activate the first DRX cycle at the activation time of the first DRX cycle (the activation time of the first DRX cycle). Monitor the PDCCH within the black box (shown as a black box in Figure 2); the second energy-saving signal indicates not to monitor the PDCCH.
  • the terminal equipment After receiving the second energy-saving signal, the terminal equipment will not monitor the PDCCH during the activation time of the second DRX cycle (the second energy-saving signal).
  • the activation time of one DRX cycle is shown in Figure 2 as a colorless box) to monitor the PDCCH; the third energy-saving signal indicates not to monitor the PDCCH, then the terminal equipment will not monitor the PDCCH after receiving the third energy-saving signal.
  • Monitor the PDCCH within the activation time of the cycle (the activation time of the third DRX cycle is represented as a colorless box in Figure 2);
  • the fourth energy-saving signal indicates monitoring of the PDCCH, and the terminal equipment will monitor the PDCCH after receiving the fourth energy-saving signal.
  • monitor the PDCCH within the activation time of the fourth DRX cycle (the activation time of the fourth DRX cycle is represented as a black box in Figure 2).
  • the enhanced scheme of search space set group switching of R16 is introduced, as well as the method of skipping PDCCH monitoring in the gap of data transmission.
  • scheme that is, PDCCH skipping scheme
  • control information related to search space set group switching and PDCCH skipping can be carried through the PDCCH.
  • Terminal equipment in RRC idle/inactive state receives paging messages through DRX. Since there is a paging occasion (PO) in a DRX cycle, the terminal device only receives paging messages at PO, and does not accept paging messages at times other than PO, to achieve the purpose of power saving. However, in actual situations, the probability of the terminal device being paged may not be high. Therefore, if the terminal device periodically detects the PDCCH on the corresponding PO, there is a high probability that the paging message sent to itself is not detected. , it will objectively cause a waste of power.
  • PO paging occasion
  • the R17 standard optimizes the energy saving of terminal equipment in the idle state when receiving paging messages, and introduces an energy-saving signal similar to the aforementioned energy-saving signal, called PEI (paging early indication, paging early indication).
  • PEI paging early indication, paging early indication
  • This PEI is used to indicate whether the terminal equipment receives paging PDCCH at this PO before the target PO arrives.
  • the above energy-saving signal (that is, PEI) is carried on the PDCCH channel (hereinafter, for convenience of description, it is called an energy-saving signal based on the PDCCH channel), and is specifically carried through DCI (DownLink Control Information) format 2_7 Energy Saving Signal (i.e. PEI).
  • the energy-saving signal based on the PDCCH channel can carry more energy-saving information. For example, it can carry sub-grouping information to indicate the terminal equipment sub-group (or UE sub-group) corresponding to the energy-saving information. Multiple terminal devices corresponding to the same PO can be further grouped by UE_ID (identification) to obtain multiple terminal device groups. If any terminal device in the terminal device group to which the terminal device belongs needs to be paged, the terminal device needs to receive the paging message on the PO. Otherwise, the terminal device does not need to receive the paging message. By combining the terminal equipment group (or terminal equipment sub-group) information with the energy-saving information, it is possible to more precisely indicate whether the terminal equipment needs to receive paging at the target PO.
  • the first energy-saving signal indicates that the terminal device in one or more terminal device groups is in the corresponding PF (Paging Frame, Paging Frame). Frame) or PO (the PF or PO indicated by the first energy-saving signal is represented as a gray square in Figure 3), then the terminal equipment in the terminal equipment group wakes up and listens for paging on the PF or PO.
  • the second energy-saving signal indicates not to monitor the PDCCH, that is, it indicates that the terminal equipment in one or more terminal equipment groups is in the corresponding PF or PO (in Figure 3, the PF or PO indicated by the second energy-saving signal is (represented as a colorless square) does not receive paging, then the terminal equipment in the terminal equipment group does not need to monitor paging on the PF or PO; the third energy-saving signal indicates that the terminal equipment in one or more terminal equipment groups is in the corresponding When paging is received on the PF or PO (the PF or PO indicated by the third energy-saving signal is represented as a gray square in Figure 3), then the terminal equipment in the terminal equipment group wakes up and listens for paging on the PF or PO. call.
  • WUR wake-up receiver
  • WUR has the characteristics of extremely low cost, extremely low complexity and extremely low power consumption. It mainly receives energy-saving signals based on envelope detection. Therefore, the energy-saving signal received by WUR is different from the modulation method and waveform of the signal carried by PDCCH defined by the existing R16 and R17 standards.
  • the energy-saving signal mainly passes through the envelope signal of ASK modulation of the carrier signal. Demodulation of the envelope signal can also be accomplished based on the energy provided by the wireless RF signal driving a low-power circuit, so it can be passive. WUR can also be powered by terminal equipment.
  • the WUR greatly reduces power consumption compared to the traditional receiver of terminal equipment. For example, WUR can achieve a power consumption of less than 1mw (milliwatt), which is much lower. Compared with the power consumption of tens to hundreds of mW of traditional receivers. WUR can be combined with the terminal device as an additional module of the terminal device receiver, or it can be used alone as a wake-up function module of the terminal device.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • Figure 4 is a schematic flow chart of a communication method according to the embodiment of the first aspect of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least part of the following.
  • the terminal device monitors the wake-up signal (WUS, wake-up Signal); wherein the WUS is used to wake up the terminal device; the WUS carries first information, and the first information is used by the terminal device to wake up the terminal device. What to do after waking up.
  • WUS wake-up Signal
  • the terminal device monitoring the WUS may refer to: monitoring the WUS when the terminal device is in an idle state.
  • the terminal device may specifically be a low-power consumption device; or the low-power consumption device may also be called a zero-power consumption device.
  • the terminal device, that is, the low-power consumption device may include a first component and a second component. The power consumption of the first component is lower than that of the second component.
  • the terminal device in S410 above monitors WUS, It may be: the first component of the terminal device monitors the WUS. More specifically, it may be that when the terminal device is in the RRC idle state, the first component of the terminal device monitors the WUS.
  • the second component of the terminal device may be in a sleep state.
  • the sleep state may refer to that part of the functions or part of the devices of the second component is in the on state, but another part of the function or part of the devices is in the off state or is called a wake-up state, etc.
  • the terminal device may only include the above-mentioned first component and the second component; or, the terminal device may include other components in addition to the above-mentioned first component and the second component, but this embodiment is not exhaustive.
  • the first component may refer to a low-power receiver in the terminal device, or may be called a wake-up receiver (WUR, wake-up receiver), or may be called a zero-power WUR, or may also be called a WUR. It is a low-power consumption WUR, or it can also be called a low-power consumption circuit. More names for the first component are not exhaustive in this embodiment.
  • the second component may refer to the main receiver in the terminal device.
  • the terminal equipment is composed of the main receiver shown in Figure 5 and the WUR.
  • the network device can send WUS to the terminal device.
  • the WUR of the terminal device can monitor the WUS; when the WUR of the terminal device monitors the WUS, it controls to turn on or wake up the main receiver of the terminal device (i.e., the aforementioned second component); in When the WUR of the terminal device does not detect the WUS, the main receiver of the terminal device can remain in a dormant state.
  • the terminal device can only use the WUR (i.e., the first component) to continue WUS monitoring; only when the terminal device has business or has paging messages, the WUR of the terminal device Only then will WUS be monitored, and then the main receiver of the terminal device will be woken up to send and receive data.
  • WUR i.e., the first component
  • the WUS is exclusive to the UE; or the WUS is shared by a UE group, and the UE group may be a UE group including the terminal device; or the WUS is exclusive to a cell, and the cell may be the terminal
  • the service area where the device is located. Therefore, the WUS may also include: UE identification, and the UE identification is a UE ID or a UE group UD or a cell ID.
  • the UE identity may be included in the first information in the WUS, or the UE identity may not be included in the first information in the WUS. This embodiment does not limit the specific information location of the UE identifier in the WUS.
  • the UE ID may refer to the identification of the terminal device, and may be the unique identification of the terminal device.
  • TMSI Temporary Mobile Subscriber Identity
  • IMSI International Mobile User identification code
  • I-RNTI Inactive Radio Network Temporary Identifier, inactive wireless network temporary identification
  • the UE group may be composed of one or more terminal devices; one or more UE groups may be configured in the system, and different IDs are assigned to different UE groups in the one or more UE groups. Uniquely distinguish different UE groups.
  • the cell ID may be an ID corresponding to one or more cells included in the system.
  • the WUS is specifically used to wake up the terminal equipment that matches the UE identity. That is, after receiving the WUS, the first component of the terminal device (i.e., the WUR) determines that it is a terminal device that conforms to the UE identity based on the UE identity carried in the WUS, and can wake up.
  • the second component i.e. the main receiver).
  • the way for the terminal device to determine whether it is a terminal device that conforms to the UE identity may include: when the UE identity contains a UE ID, the terminal device determines whether it is the same as the UE ID based on its own identity. ; Under the same circumstances, determine that it is a terminal device that conforms to the UE identity; or, when the UE identity contains a UE group ID, the terminal device determines that it is the same as the UE group ID based on the identity of the UE group in which it is located.
  • the terminal device determines based on the identity of the cell where it is located Whether it is the same as the cell ID; in the case of the same, determine that it is a terminal device that conforms to the UE identity.
  • the UE identifier can be replaced by a bitmap; the value of a certain bit in the bitmap can be used to indicate whether to wake up the corresponding terminal device or UE group; for example, the first value indicates wakeup For the terminal device, the second value indicates not to wake up the terminal device or UE group; the first value is different from the second value, for example, the first value is 1 and the second value is 0, or the opposite.
  • the WUS carries a bitmap
  • the bitmap may include Q bits, where Q is an integer greater than or equal to 1.
  • each bit can be used to correspond to a UE group, and different bits correspond to different UE groups.
  • the value of each bit may be used to indicate whether to wake up the terminal equipment in the corresponding UE group.
  • the value of each bit may include a first binary value and a second binary value.
  • the first binary value is used to instruct the terminal equipment in the corresponding UE group to wake up, that is, the first binary value is used to instruct the terminal equipment in the corresponding UE group to wake up the second component; the second binary value is used to indicate not to wake up the corresponding The terminal equipment in the UE group, that is, the binary second value is used to indicate that the terminal equipment in the UE group does not wake up the second component.
  • the first binary value and the second binary value are different, for example, the first binary value is 1 and the second binary value is 0, or the first binary value is 0 and the second binary value is 1.
  • the first component of the terminal device i.e., WUR
  • WUR the first component of the terminal device
  • the terminal device can wake up the second component (ie, the main receiver).
  • the modulation methods supported by WUR may include one or more of the following modulation methods: amplitude shift keying (ASK), phase shift keying (PSK), frequency shift Keying (frequency shift keying, FSK), etc.
  • the modulation methods supported by the main receiver may include one or more of the following modulation methods: quadrature phase shift keying (QPSK), quadrature amplitude modulation (quadrature amplitude modulation, QAM), Orthogonal frequency division multiplexing (OFDM), etc.
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • OFDM Orthogonal frequency division multiplexing
  • the main receiver may also support at least one modulation method of ASK, PSK, and FSK. The embodiments of the present application do not specifically limit this. Judging from the modulation waveforms supported by both, the complexity of the modulation waveforms supported by WUR is lower than that supported by the main receiver.
  • the modulation waveforms supported by WUR may include one or more of the following modulation waveforms: the waveform corresponding to the ASK signal, the waveform corresponding to the PSK signal, and the waveform corresponding to the FSK signal.
  • the modulation waveforms supported by the main receiver may include one or more of the following modulation waveforms: waveforms corresponding to QPSK signals, waveforms corresponding to QAM signals, and waveforms corresponding to OFDM signals.
  • the modulation waveforms supported by the main receiver may also include waveforms corresponding to one or more signals among ASK, PSK, and FSK.
  • the transmission rate supported by WUR is lower than the transmission rate supported by the main receiver.
  • the bandwidth range supported by WUR is smaller than the bandwidth range supported by the main receiver, or in other words, the bandwidth supported by WUR is narrower than the bandwidth supported by the main receiver.
  • the bit rate supported by WUR is lower than the bit rate supported by the main receiver.
  • the terminal device only uses the first component (ie, WUR) to monitor the WUS, which can save power consumption of the terminal device.
  • WUR the first component
  • the WUR of the terminal device uses extremely low power consumption (generally less than 1mw) when working; and the WUR of the terminal device uses ASK or FSK to modulate the signal, which also allows the WUR of the terminal device to use an extremely simple
  • the hardware structure and extremely simple receiving method receive and demodulate the signal.
  • the WUR of the terminal device only needs to use envelope detection to receive the signal. Therefore, compared with the traditional terminal device that always uses the main receiver mode, this embodiment uses the WUR of the terminal device to monitor the WUS, which can greatly save the power consumption of the terminal device.
  • the above-mentioned WUS can also be called low-power WUS, or can also be called other names. This embodiment will not be exhaustive.
  • the WUS can also carry the aforementioned first information, and the first information is used for operations performed by the terminal device after waking up.
  • the operations performed by the terminal device after waking up may include one or more of the following: random access, initial access, and time-frequency synchronization.
  • the first information may include one or more of the following information: information used to perform random access, and the information used to perform random access is the first PRACH (Physical Random Access Channel). Channel) resource configuration information; information used to perform initial access, the information used to perform initial access is the configuration information of the target initial BWP (BandWidth Part, bandwidth part) resource; information used to perform time-frequency synchronization , the information used to perform time-frequency synchronization is the configuration information of the synchronization signal.
  • PRACH Physical Random Access Channel
  • Channel Physical Random Access Channel
  • information used to perform initial access is the configuration information of the target initial BWP (BandWidth Part, bandwidth part) resource
  • information used to perform time-frequency synchronization is the configuration information of the synchronization signal.
  • the configuration information of the first PRACH resource may include one or more of the following: time domain resource location information of the first PRACH; frequency domain resource location information of the first PRACH; cycle of the first PRACH; time slot of the first PRACH ;The subcarrier spacing of the first PRACH; the number of the first PRACH opportunities; the mapping relationship between the first PRACH and the synchronization signal block SSB; the time domain resource location information of the first PRACH opportunity; the frequency domain resource location information of the first PRACH opportunity; Preamble index number.
  • the time domain resource information of the first PRACH is divided into two situations as follows:
  • the time domain resource information of the first PRACH may include the absolute time domain position of the time domain resource of the first PRACH.
  • the time domain resource information of the first PRACH includes one or more of the following: the time domain position of the time domain resource of the first PRACH; the duration of the time domain resource of the first PRACH.
  • the time domain position of the time domain resource of the first PRACH includes: the time domain starting position of the time domain resource of the first PRACH, or the time domain end position of the time domain resource of the first PRACH.
  • the duration of the time domain resource of the first PRACH may refer to the length of the time domain occupied by the first PRACH resource.
  • the unit can be any one of slots, symbols, subframes, milliseconds, etc.
  • the duration of the time domain resource of the first PRACH may be: 1 time slot, or 2 time slots, or 1 millisecond, or 3 milliseconds, longer or shorter. This is only an exemplary explanation. , is not used as a limitation on this embodiment.
  • the time domain resource location information of the first PRACH specifically includes: a time domain starting position of the time domain resource of the first PRACH and a duration of the time domain resource of the first PRACH.
  • the time domain starting position of the time domain resource of the first PRACH and the duration of the time domain resource of the first PRACH may be expressed in units of symbols, time slots, subframes, milliseconds, microseconds, etc. .
  • the time domain starting position of the time domain resource of the first PRACH can be expressed as the A1th time slot; the duration of the time domain resource of the first PRACH can be expressed as A2 milliseconds.
  • the time domain resource location information of the first PRACH specifically includes: a time domain starting position of the time domain resource of the first PRACH and a time domain location of the time domain resource of the first PRACH.
  • the end position of the domain The time domain start position of the time domain resource of the first PRACH and the time domain end position of the time domain resource of the first PRACH may be in units of symbols, time slots, subframes, milliseconds, microseconds, etc. To represent.
  • the time domain starting position of the time domain resource of the first PRACH may be represented as the A1th time slot; the time domain end position of the time domain resource of the first PRACH may be represented as the A3th time slot.
  • the time domain resource information of the first PRACH may include the relative time domain position of the time domain resource of the first PRACH.
  • the time domain resource location information of the first PRACH includes one or more of the following: a first time domain offset, the first time domain offset is used to represent the difference between the reception time of the WUS and the third time domain offset. The offset between the time domain positions of a PRACH time domain resource; the duration of the first PRACH time domain resource.
  • the duration of the time domain resource of the first PRACH may refer to the length of the time domain occupied by the first PRACH resource.
  • the unit can be any one of slots, symbols, subframes, milliseconds, etc.
  • the duration of the time domain resource of the first PRACH may be: 1 time slot, or 2 time slots, or 1 millisecond, or 3 milliseconds, longer or shorter. This is only an exemplary explanation. , is not used as a limitation on this embodiment.
  • a time (or a moment) in the period of time domain resources occupied by the WUS can be designated as the reception time of the WUS.
  • the WUS reception time may include: the WUS start reception time, or the WUS reception completion time. It should be understood that the reception time of the WUS can also be other times in the time domain resources occupied by the WUS, such as the midpoint time of the time domain resources occupied by the WUS, etc., as long as the terminal device Both sides of the network device and the network device can use the same WUS reception time.
  • the time domain resource of the first PRACH can also occupy a period of time domain resources, and the time (or moment) in the time domain resource of the first PRACH can be designated as the time domain of the time domain resource of the first PRACH.
  • the time domain position of the time domain resource of the first PRACH includes: the time domain starting position of the time domain resource of the first PRACH, and/or the time domain position of the time domain resource of the first PRACH. end position.
  • the time domain position of the time domain resource of the first PRACH can also be other times in the time domain resource of the first PRACH, for example, it can be the midpoint time of the time domain resource of the first PRACH, etc. etc., as long as both the terminal device and the network device use the same time domain location of the time domain resource of the first PRACH.
  • the first time domain offset may include one value or multiple values.
  • the unit of the first time domain offset may be any one of symbol, time slot, subframe, millisecond, microsecond, etc.
  • the first time domain offset includes a numerical value, which is called the first numerical value.
  • the first numerical value may be used to represent the relative time offset between the time domain starting position of the time domain resource of the first PRACH and the reception time of the WUS (such as the starting reception time of WUS); or , this offset value may be used to represent the relative time offset between the time domain end position of the time domain resource of the first PRACH and the reception time of the WUS (such as the starting reception time of the WUS).
  • the time domain resource location information of the first PRACH may further include: a duration of the time domain resource of the first PRACH.
  • the terminal device may determine the time domain resource of the first PRACH based on the time domain starting position (or time domain end position) of the time domain resource of the first PRACH and the duration of the time domain resource of the first PRACH. specific location.
  • the first time domain offset is a first value
  • the first value is equal to A4
  • the unit of the first time domain offset is a time slot. Then, the terminal device may determine, based on the starting reception time of the WUS, that the time domain starting position of the time domain resource of the first PRACH is a position that is delayed by A4 time slots from the starting receiving time of the WUS.
  • the terminal equipment may obtain the time domain end position of the time domain resource of the first PRACH based on the time domain starting position of the time domain resource of the first PRACH and the duration of the time domain resource of the first PRACH; add the time domain end position of the first PRACH time domain resource; The range between the time domain start position and the time domain end position of the PRACH time domain resource is used as the specific position of the first PRACH time domain resource.
  • the first time domain offset is a first value, the first value is equal to A5, and the unit of the first time domain offset is a time slot. Then, the terminal equipment may determine that the time domain starting position of the time domain resource of the first PRACH is a position after the reception end time of the WUS is delayed by A5 time slots.
  • the terminal equipment may obtain the time domain end position of the time domain resource of the first PRACH based on the time domain starting position of the time domain resource of the first PRACH and the duration of the time domain resource of the first PRACH; add the time domain end position of the first PRACH time domain resource; The range between the time domain start position and the time domain end position of the PRACH time domain resource is used as the specific position of the first PRACH time domain resource.
  • the first time domain offset when the first time domain offset includes two values, for example, the two values are represented as a second value and a third value respectively; wherein the second value can be used to represent the third value.
  • the relative time offset between the end position of the resource in the time domain and the reception time of the WUS (such as the start reception time of the WUS).
  • the second numerical value is smaller than the third numerical value.
  • the unit of the first time domain offset ie, two offset values or multiple offset values
  • the second value is A6 time slots
  • the third value is equal to A7 time slots
  • A7 is greater than A6.
  • the terminal equipment may determine that the time domain starting position of the time domain resource of the first PRACH is a position after the reception end time of the WUS is delayed by A6 time slots; and determine the time domain starting position of the first PRACH time domain resource.
  • the end position of the time domain is the position after the reception end time of the WUS is delayed by A7 time slots.
  • reception end time of WUS in this embodiment can also be replaced by the start reception time of WUS, or other times of WUS, as long as both the network device and the terminal device use the same time. No exhaustion will be made here.
  • the time domain resource location information of the first PRACH may not include the duration of the time domain resource of the first PRACH.
  • the frequency domain resource location information of the first PRACH is an absolute frequency domain location.
  • the frequency domain resource location information of the first PRACH includes one or more of the following: the location of the first type of frequency point of the frequency domain resource of the first PRACH; the size of the frequency domain resource of the first PRACH.
  • the first type of frequency point may be expressed in units of any one of PRB (physical resource block), RB (resource block), Khz, Mhz, etc.
  • the number of designated frequency points may be one or more.
  • the first type of frequency point of the frequency domain resource of the first PRACH includes one or more of the following: the lowest frequency point of the frequency domain resource of the first PRACH; the highest frequency point of the frequency domain resource of the first PRACH point; the center frequency point of the frequency domain resource of the first PRACH. It should be understood that this is only an exemplary explanation. In actual processing, the first type of frequency point can also be other frequency points. As long as the terminal device and the network device have the same definition or interpretation of the specified frequency point, both are used in this embodiment. Within the scope of protection, no exhaustive list will be made here.
  • the frequency domain resource location information of the first PRACH may only include the location of the first type of frequency point of the frequency domain resource of the first PRACH. That is to say, the frequency domain resource location information of the first PRACH may not include the size of the frequency domain resource of the first PRACH.
  • the first type of frequency points of the frequency domain resource of the first PRACH may be multiple frequency points.
  • the frequency domain resource location information of the first PRACH includes the location of the lowest frequency point and the center frequency point of the frequency domain resource of the first PRACH; or, the frequency domain resource location information of the first PRACH includes The positions of the lowest frequency point and the highest frequency point of the frequency domain resource of the first PRACH.
  • the terminal device can directly obtain the frequency domain resource location information contained in the first PRACH.
  • the positions of the lowest frequency point and the highest frequency point in the frequency domain resource of the first PRACH will be located in the frequency domain between the lowest frequency point and the highest frequency point of the frequency domain resource of the first PRACH.
  • the range is used as the frequency domain range of the first PRACH.
  • the frequency domain resource location information of the first PRACH may include the location of the first type of frequency point of the frequency domain resource of the first PRACH, and the frequency domain of the first PRACH.
  • the size of domain resources may include the location of the first type of frequency point of the frequency domain resource of the first PRACH, and the frequency domain of the first PRACH.
  • the first type of frequency point of the frequency domain resource of the first PRACH may be one frequency point.
  • the frequency domain resource location information of the first PRACH includes the location of the lowest frequency point of the frequency domain resource of the first PRACH; or, the location of the highest frequency point of the frequency domain resource of the first PRACH; or, the location of the highest frequency point of the frequency domain resource of the first PRACH.
  • the terminal device can directly obtain the first frequency point contained in the frequency domain resource location information of the first PRACH.
  • the frequency domain range of the frequency domain resource of the first PRACH is determined according to the size of the frequency domain resource of the first PRACH.
  • the terminal device may be based on the first PRACH contained in the frequency domain resource location information of the first PRACH. The location of the center frequency point in the frequency domain resource.
  • the lowest frequency point and the frequency point of the frequency domain resource of the first PRACH may also be determined according to the size of the frequency domain resource of the first PRACH.
  • the highest frequency point is a frequency domain resource located between the lowest frequency point and the highest frequency point of the frequency domain resource of the first PRACH as the frequency domain range of the first PRACH.
  • the frequency domain resource location information of the first PRACH is a relative frequency domain location.
  • the frequency domain resource location information of the first PRACH includes one or more of the following: a first frequency domain offset.
  • the first frequency domain offset is used to represent the frequency domain location of the WUS and the first PRACH.
  • the frequency domain location of the WUS includes one of the following: the lowest frequency point in the frequency domain resources occupied by the WUS; the highest frequency point in the frequency domain resources occupied by the WUS; the frequency domain resources occupied by the WUS the center frequency point in . It should be understood that the frequency domain position of the WUS can also be represented by other frequency points of the WUS. As long as the same frequency point is used between the terminal device and the network device, it is within the protection scope of this embodiment. An exhaustive list will not be made here.
  • the first type of frequency point of the frequency domain resource of the first PRACH includes one or more of the following: the lowest frequency point of the frequency domain resource of the first PRACH; the highest frequency point of the frequency domain resource of the first PRACH point; the center frequency point of the frequency domain resource of the first PRACH.
  • the first type of frequency point can also be other frequency points.
  • the terminal device and the network device have the same definition or interpretation of the first type of frequency point, both are used in this document. Within the scope of the embodiments, no exhaustive list will be made here.
  • the size of the frequency domain resource of the first PRACH may be included in the frequency domain resource location information of the first PRACH; or it may be obtained in advance by the terminal device, for example, it may be obtained by the network device in the terminal.
  • the device was in the RRC connected state last time, it was sent to the terminal device through any one of DCI, RRC signaling, and system messages.
  • the unit of the first frequency domain offset may be any one of PRB, RB, Khz, Mhz, etc.
  • the first frequency domain offset may include one or more numerical values.
  • the first frequency domain offset value when the first frequency domain offset includes a numerical value, the numerical value is called a fourth numerical value.
  • the first frequency domain offset value (ie, the fourth value) may be used to represent the relative frequency domain between a first type frequency point of the frequency domain resource of the first PRACH and a frequency domain position of the WUS. offset.
  • the frequency domain resource location information of the first PRACH may further include: the size of the frequency domain resource of the first PRACH.
  • the terminal When the device monitors WUS, it increases (or decreases) a fourth numerical value based on the position of the center frequency point in the frequency domain resource occupied by the WUS to obtain the position of the lowest frequency point of the frequency domain resource of the first PRACH.
  • the terminal equipment may obtain the position of the highest frequency point of the frequency domain resource of the first PRACH based on the position of the lowest frequency point of the frequency domain resource of the first PRACH and adding the size of the frequency domain resource of the first PRACH;
  • the range between the highest frequency point and the lowest frequency point of the frequency domain resource of the first PRACH is used as the specific range of the frequency domain resource of the first PRACH.
  • the terminal equipment monitors the WUS, it increases (or decreases) a fourth numerical value based on the position of the highest frequency point of the WUS to obtain the position of the center frequency point of the frequency domain resource of the first PRACH.
  • the terminal equipment may add 1/2 of the size of the frequency domain resource of the first PRACH to the position of the center frequency point of the frequency domain resource of the first PRACH to obtain the highest frequency point of the frequency domain resource of the first PRACH.
  • the first frequency domain offset includes two values, which are a fifth value and a sixth value respectively; wherein the fifth value can be used to represent the frequency domain of the first PRACH.
  • the relative frequency domain offset between a first type frequency point of the resource and a frequency domain position of the WUS; and a sixth value used to represent another first type of frequency domain resource of the first PRACH The relative frequency domain offset between the frequency point and a frequency domain position of the WUS.
  • the frequency domain resource location information of the first PRACH may not include the size of the frequency domain resource of the first PRACH.
  • one first-type frequency point of the frequency domain resource of the first PRACH is the lowest frequency point
  • another first-type frequency point is the highest frequency point
  • the frequency domain position of the WUS is occupied by the WUS.
  • the center frequency point in the frequency domain resource as an example; when the terminal device monitors WUS, it reduces the fifth value based on the position of the center frequency point in the frequency domain resource occupied by the WUS to obtain the first PRACH
  • the position of the lowest frequency point of the frequency domain resource based on the position of the center frequency point in the frequency domain resource occupied by the WUS, add a sixth value to obtain the position of the highest frequency point of the frequency domain resource of the first PRACH;
  • the range between the highest frequency point and the lowest frequency point of the frequency domain resource of the first PRACH is regarded as the specific range of the frequency domain resource of the first PRACH.
  • the time domain resource location information of the first PRACH is used to determine the time domain resource range (or time domain location) of the first PRACH resource
  • the frequency domain resource location information of the first PRACH is used to determine the time domain resource range of the first PRACH resource.
  • the above time domain resource range and frequency domain resource range of the first PRACH resource may refer to the location (or total range) of the time and frequency resources used for random access.
  • there will also be a more fine-grained first PRACH opportunity (occasion) (or called a PRACH opportunity in the first PRACH resource) .
  • the finer granularity may refer to that within the time domain resource range and frequency domain resource range of the first PRACH resource, there are one or more time domain resources and frequency domain resources respectively corresponding to the first PRACH opportunity.
  • the duration of any first PRACH opportunity is less than the duration of the time domain resource of the aforementioned first PRACH
  • the size of the frequency domain range of any first PRACH opportunity is less than the aforementioned frequency domain resource of the first PRACH. the size of.
  • the number of the first PRACH opportunities can be configured according to the actual situation, and may specifically include one or more of the following: in the first PRACH resource (ie, the time domain resource range and frequency domain resource range of the first PRACH The total number of first PRACH opportunities included in ); the number of first PRACH opportunities included in the time domain resources of the first PRACH; the number of first PRACH opportunities included in the frequency domain resources of the first PRACH.
  • the total number of first PRACH opportunities included in the first PRACH resource is greater than or equal to the number of first PRACH opportunities included in the time domain resource of the first PRACH; or, the first PRACH resource includes The total number of first PRACH opportunities is greater than or equal to the number of first PRACH opportunities included in the frequency domain resource of the first PRACH.
  • first PRACH opportunities there may be one or more first PRACH opportunities.
  • the description of the time-frequency position of the first PRACH opportunity in the following embodiment can be understood as referring to the time-frequency position of one or more first PRACH opportunities. Any description of any one of them will not be repeated since the time-frequency position description for each first PRACH opportunity is the same.
  • the time domain resource location information of the first PRACH opportunity may include one or more of the following: the time domain starting position of the first PRACH opportunity, the time domain end position of the first PRACH opportunity, and the duration of the first PRACH opportunity. Wherein, the duration of the first PRACH opportunity is shorter than the duration of the time domain resource of the first PRACH.
  • the time domain start position/time domain end position of the first PRACH opportunity can be expressed in units of any one of time slot, symbol, subframe, millisecond, etc.
  • the time domain resource location information of the first PRACH opportunity includes a time domain starting position of the first PRACH opportunity and a time domain end position of the first PRACH opportunity.
  • the time domain resource location information of the first PRACH opportunity includes the time domain starting position of the first PRACH opportunity and the duration of the first PRACH opportunity.
  • the time domain starting position of the PRACH opportunity is the a1th symbol of the A3th time slot, and the duration of the PRACH opportunity is A4 time slots.
  • the time domain starting position of the PRACH opportunity is the A5th subframe, and the duration of the PRACH opportunity is the A6th subframe.
  • the frequency domain resource location information of the first PRACH opportunity may include one or more of the following: the lowest frequency point location of the first PRACH opportunity, the highest frequency point location of the first PRACH opportunity, and the center frequency point location of the first PRACH opportunity. , the size of the frequency domain range of the first PRACH opportunity.
  • the size of the frequency domain range of the first PRACH opportunity is smaller than the size of the frequency domain resource of the first PRACH.
  • the lowest frequency point position, the center frequency point position, and the highest frequency point position of the first PRACH opportunity can be in any one of PRB, RB, Khz, and Mhz units.
  • the frequency domain resource location information of the first PRACH opportunity includes the lowest frequency point location of the first PRACH opportunity and the highest frequency point location of the first PRACH opportunity.
  • the terminal equipment may determine the frequency domain resource range of the first PRACH opportunity based on the lowest frequency point position of the first PRACH opportunity and the highest frequency point position of the first PRACH opportunity.
  • the frequency domain resource location information of the first PRACH opportunity includes the lowest frequency point location of the first PRACH opportunity and the frequency domain range size of the first PRACH opportunity. Based on the lowest frequency point position of the first PRACH opportunity and the size of the frequency domain range of the first PRACH opportunity, a frequency domain resource range of the first PRACH opportunity can be determined.
  • the lowest frequency point position of the first PRACH opportunity is the B3-th PRB, and the frequency domain range of the first PRACH opportunity includes B4 PRBs.
  • other units can also be used to indicate the frequency domain position of the PRACH opportunity, such as RB, KHz, MHZ, etc.
  • the frequency domain starting position of the PRACH opportunity is B5Mhz, and the frequency domain range size of the PRACH opportunity can be B6Mhz. , I won’t do an exhaustive list here.
  • the frequency domain resource location information of the first PRACH opportunity includes the center frequency point location of the first PRACH opportunity and the frequency domain range size of the first PRACH opportunity. Based on the center frequency point position of the first PRACH opportunity and the size of the frequency domain range of the first PRACH opportunity, a frequency domain resource range of the first PRACH opportunity can be determined.
  • the mapping relationship between the first PRACH and the synchronization signal block SSB may specifically refer to the mapping relationship between the PRACH timing and the SSB. More specifically, it may refer to: the mapping relationship between the SSB number and the PRACH opportunity. Through the mapping relationship between the first PRACH and the SSB, the terminal device can determine the time slot of the first PRACH.
  • the preamble index number may specifically refer to the preamble index number used by the terminal device this time.
  • each first PRACH opportunity can correspond to multiple preconfigured preambles (for example, there can be 64 preambles) and their corresponding index numbers; the network device can pass the configuration information of the first PRACH resource in Indicates the preamble index number used this time. For example, it can indicate 6, 9 or other index numbers. This is not an exhaustive list.
  • the terminal device can obtain this time by parsing the configuration information of the first PRACH resource.
  • the preamble to be used must be in quotation marks to determine the preamble used this time. It should be pointed out that multiple preconfigured preambles and their corresponding index numbers can be preconfigured by the network device to the terminal device through a system broadcast message.
  • the period of the first PRACH may refer to the length of each first PRACH period.
  • the unit of period can be slot, symbol, subframe, microsecond, millisecond, etc.
  • the length of the first PRACH cycle is 10 slots.
  • the period of the first PRACH may be determined based on the first PRACH resource of the first period based on the time domain resource location information of the first PRACH and the frequency domain resource location information of the first PRACH.
  • the period of the first PRACH determines one or more periods, and determines the first PRACH resource for each period in the one or more periods.
  • the length of each cycle can be determined based on the cycle of the first PRACH; based on the time domain resource location information of the first PRACH and the frequency domain resource location information of the first PRACH, the time domain of the first PRACH resource of the first cycle is determined.
  • the resource range is the X1 ⁇ X2th time slot
  • the frequency domain range is the Y1 ⁇ Y2th PRB.
  • the time domain resource range of the first PRACH in each cycle can be determined based on the length of each cycle.
  • the cycle length is L time slots
  • the time domain resource range of the first PRACH in the second cycle can be L+X1 ⁇ L+X2. time slot
  • the frequency domain range of the first PRACH in the second cycle can remain unchanged and also be the Y1-Y2th PRB.
  • the time slot of the first PRACH may refer to the transmission time slot of the first PRACH, or may be referred to as the transmission time slot for transmitting a random access preamble through the first PRACH. It should be understood that in the case where the time domain resource location information of the first PRACH and the mapping relationship between the first PRACH and SSB are configured in the configuration information of the first PRACH resource, the configuration information of the first PRACH resource may not be configured. The time slot containing the first PRACH. Alternatively, in the configuration information of the first PRACH resource, when the time domain resource location information of the first PRACH is not configured and the mapping relationship between the first PRACH and SSB is not configured, the configuration information of the first PRACH resource may be The time slot containing the first PRACH.
  • the subcarrier spacing of the first PRACH may refer to the subcarrier spacing adopted on the frequency domain resource of the first PRACH.
  • the subcarrier spacing of the first PRACH may be the same as the subcarrier spacing of the current system.
  • the subcarrier spacing of the first PRACH may be set according to actual conditions, for example, it may be 15kHz, 30Khz, 60Khz, 120Khz, 240Khz, etc., and no exhaustive list will be made here.
  • the first information carried by the WUS received by the terminal device may include one or more specific contents of the configuration information of the first PRACH resource.
  • the method may further include: the terminal device determining the first PRACH resource based on the configuration information of the first PRACH resource; and the terminal device performing random access on the first PRACH resource.
  • the terminal device monitors the WUS. Specifically, the terminal device monitors the WUS when the terminal device is in an idle state. Correspondingly, the terminal device determines the first PRACH resource based on the configuration information of the first PRACH resource included in the first information carried by the WUS; the terminal device performs randomization on the first PRACH resource. Access may specifically refer to: when the terminal device is in an idle state, determining the first PRACH resource based on the configuration information of the first PRACH resource included in the first information carried by the WUS; The terminal equipment performs random access on the first PRACH resource.
  • the method further includes: the terminal device receiving configuration information of the second PRACH resource configured by the network device; wherein the configuration information of the second PRACH resource is the same as the first The configuration information of PRACH resources is different.
  • the configuration information of the second PRACH resource is used to determine the second PRACH resource for performing random access; the time domain resource locations of the second PRACH resource and the first PRACH resource are different. That is to say, the terminal device can also obtain and save the configuration information of the second PRACH resource, and can determine the second PRACH resource for performing random access based on the configuration information of the second PACH resource.
  • the configuration information of the second PRACH resource is used to determine the second PRACH resource; the content that can be carried in the configuration information of the second PRACH resource includes but is not limited to: the time domain resource location of the second PRACH (such as At least one of the starting position, the ending position, and the duration), the frequency domain resource position of the second PRACH (such as at least one of the frequency domain resource size, the lowest frequency point, the highest frequency point, and the center frequency point), the second The location and quantity of PRACH timing, etc.
  • the second PRACH resource determined based on the configuration information of the second PRACH resource is at least different from the time domain resource position of the first PRACH resource.
  • the second PRACH resource may be the original PRACH resource configured in the current system.
  • the period of the second PRACH resource configured by the system for the terminal device is relatively large (such as 20 ms), that is, the period of the second PRACH resource may be greater than the first PRACH resource; and/or the time domain of the second PRACH resource
  • the starting position is later than the time domain starting position of the first PRACH resource.
  • the core network equipment such as MME
  • the device sends the WUS; correspondingly, the network device sends the WUS to the terminal device in the idle state (or inactive state).
  • the terminal device in the idle state can perform random access as soon as possible or in time, so that the terminal device can perform subsequent processing as soon as possible.
  • the period of the second PRACH resource configured by the system for the terminal device is relatively large. If the terminal device is in an idle state and the terminal device is awakened by WUS and performs random access only based on the second PRACH resource, it may not be possible. Ensure the timeliness of random access of terminal equipment.
  • the network device can add the configuration information of the first PRACH resource to the first information carried by the WUS, because the first PRACH resource is earlier than the time domain starting position of the first PRACH resource, and, the first The period of the PRACH resource is smaller than the first PRACH resource; therefore, when the terminal device is in the idle state (or inactive state), the terminal device can proceed earlier or more timely based on the first PRACH resource after being awakened by WUS. Random access.
  • the first PRACH resource may be a temporary PRACH resource configured for a contention-type random access process. It is intended to be able to configure the first PRACH resource earlier than the second PRACH resource currently configured in the system. Therefore, the configuration information of the first PRACH resource (or temporary PRACH resource) may carry at least the time domain resource location information of the first PRACH and the frequency domain resource location information of the first PRACH, so that the terminal device can obtain and The current system configures a first PRACH resource (or a temporary PRACH resource) that is different from the second PRACH resource, so that random access can be initiated to establish an RRC connection as quickly as possible.
  • the configuration information of the first PRACH resource may include: time domain resource location information of the first PRACH, frequency domain resource location information of the first PRACH, first PRACH occasion (opportunity) ), the mapping relationship between the first PRACH and SSB, etc. I won’t be exhaustive here.
  • the time domain resource location information of the first PRACH resource may specifically include a first time domain offset; and/or the frequency domain resource location information of the first PRACH may specifically include a first frequency domain offset.
  • the description of the first time domain offset and the first frequency domain offset is the same as the previous embodiment and will not be described again.
  • the first PRACH resource may be a PRACH dedicated to the terminal device, so that the terminal device can perform contention-free random access to avoid random access when the terminal device uses contention-based random access. During the access process, the problem of interference with random access of other terminal devices is ensured, thereby ensuring that the success rate of terminal random access is improved and the terminal RRC connection establishment process is accelerated.
  • the configuration information of the first PRACH resource in the first indication carried in the WUS may be the configuration information of the dedicated PRACH resource.
  • the configuration information of the first PRACH resource may include: time domain resource location information of the first PRACH opportunity, frequency domain resource location information of the first PRACH opportunity, and preamble index number; time domain of the first PRACH opportunity.
  • the resource location information may include the duration of the time domain resource of the first PRACH, etc.
  • the configuration information of the first PRACH resource is specifically used to configure a terminal device that conforms to the UE identity. That is, when the terminal device determines that it is a terminal device that conforms to the UE identity based on the UE identity contained in the WUS, it can wake up the second component based on the WUS, and can wake up the second component based on the first information of the WUS.
  • the included configuration information of the first PRACH resource determines the first PRACH resource; and performs random access on the first PRACH resource. Wherein, performing random access on the first PRACH resource (or temporary PRACH resource) may specifically refer to the terminal device initiating random access on the first PRACH resource (or temporary PRACH resource). ask.
  • the WUS can also carry a bitmap and its corresponding method of waking up the terminal device have been described in detail in the foregoing embodiments, and therefore will not be described again.
  • the first component of the terminal device i.e., WUR
  • the first component of the terminal device i.e., WUR
  • the second component i.e., the main receiving unit
  • the configuration information of the resource determines the first PRACH resource (or temporary PRACH resource), and performs random access (specifically, initiating a random access request) on the first PRACH resource (or temporary PRACH resource).
  • the first component of the terminal device i.e., WUR
  • the first component of the terminal device i.e., WUR
  • the configuration information determines the first PRACH resource; the first component of the terminal equipment (i.e., WUR) wakes up the second component (i.e., the main receiver); the main receiver of the terminal equipment (i.e., the second component) wakes up the first PRACH resource. (or temporary PRACH resources) (specifically, it may be initiating a random access request).
  • the first component of the terminal device i.e., the WUR
  • the first component of the terminal device obtains a bitmap from the WUS, and obtains from the bitmap the sequence of bits corresponding to the terminal device group in which the terminal device is located. value; if the value of this bit is the first binary value, the terminal equipment can wake up the second component (ie, the main receiver); the main receiver of the terminal equipment (ie, the second component) is in the first PRACH Perform random access (specifically, initiate a random access request) on the resource (or temporary PRACH resource).
  • the first component of the terminal device i.e., WUR
  • the first component of the terminal device Wake up the second component (ie, the main receiver); the second component of the terminal device (ie, the main receiver) determines the first PRACH resource based on the configuration information of the first PRACH resource; the second component of the terminal device (ie, the main receiver) That is, the main receiver) determines the first PRACH resource (or temporary PRACH resource) based on the configuration information of the first PRACH resource (or temporary PRACH resource), on the first PRACH resource (or temporary PRACH resource) Perform random access (specifically, it may be initiating a random access request).
  • the configuration information of the first PRACH resource may further include a new UE identity.
  • the new UE identity may also be one of: a new UE ID, a new UE group ID, and a new cell ID. one.
  • the terminal device determines that it is a terminal device that conforms to the UE identity based on the UE identity contained in the WUS, it can wake up the second component based on the WUS; based on the configuration information of the first PRACH resource
  • the configuration information of the first PRACH resource contained in the first information of the WUS may be used to determine the first PRACH resource. .
  • the configuration information of the target initial BWP includes: the ID of the target initial BWP.
  • the target initial BWP is one or more of multiple initial BWPs, and the multiple initial BWPs include one or more initial uplink BWPs. and/or one or more initial downlink BWPs, where the target initial BWP is an uplink BWP and/or a downlink BWP.
  • the terminal device may also pre-save the configurations and index numbers of multiple initial BWPs. Specifically, the terminal device may pre-save the configurations and index numbers of one or more initial uplink BWPs and/or one or more initial downlink BWPs. configuration and its index number.
  • the configurations and index numbers of the multiple initial BWPs mentioned above may be preset by the terminal device according to the protocol, or may be obtained from the network device.
  • the specific acquisition method may be: the terminal device receives the second information; the second information includes the configuration of multiple initial BWPs and their index numbers. The index number.
  • the second information may be received by the network device when the terminal device is in the RRC connected state.
  • the second information may be carried in a system broadcast message, RRC signaling, or MAC CE. Any one of them is not exhaustive here.
  • the ID of the target initial BWP contained in the above configuration information of the target initial BWP may also be the index number of the target initial BWP.
  • the target initial BWP may include uplink BWP and/or downlink; correspondingly, the ID (or index number) of the BWP target initial BWP may only include the ID (or index number) of the uplink BWP, or only the downlink BWP.
  • ID (or index number) or contains the ID (or index number) of the upstream BWP and the ID (or index number) of the downstream BWP.
  • the method for the terminal device to determine the target initial BWP can be divided into various situations:
  • the initial BWP pre-configured by the terminal device includes one initial downlink BWP and multiple initial uplink BWPs.
  • the ID of the target initial BWP included in the configuration information of the target initial BWP may be the ID of the uplink BWP.
  • the terminal device since the terminal device is pre-configured with an initial downlink BWP, the terminal device can use the initial downlink BWP as the downlink BWP in the target initial BWP by default. There is no need to indicate in the configuration information of the target initial BWP whether the ID of the target initial BWP contained therein is an uplink BWP or a downlink BWP. The terminal device can default that the ID of the target initial BWP is an uplink BWP ID.
  • the terminal device can determine the uplink BWP in the target initial BWP based on the ID of the uplink BWP, and then The initial downlink BWP preconfigured by the terminal device is directly used as the downlink BWP in the target initial BWP.
  • the initial BWP pre-configured by the terminal device includes one initial uplink BWP and multiple initial downlink BWPs.
  • the ID of the target initial BWP included in the configuration information of the target initial BWP may be the ID of the downlink BWP.
  • the terminal device since the terminal device is pre-configured with an initial uplink BWP, the terminal device can use the initial uplink BWP as the uplink BWP in the target initial BWP by default. There is no need to indicate in the configuration information of the target initial BWP whether the ID of the target initial BWP contained therein is an uplink BWP or a downlink BWP. The terminal device can default that the ID of the target initial BWP is the ID of a downlink BWP.
  • the terminal device can determine the downlink BWP in the target initial BWP based on the ID of the downlink BWP, and then An initial uplink BWP preconfigured by the terminal device directly serves as the uplink BWP in the target initial BWP.
  • the initial BWP preconfigured by the terminal device includes multiple initial uplink BWPs and multiple initial downlink BWPs.
  • the IDs of the plurality of initial uplink BWPs and the plurality of initial downlink BWPs have a corresponding relationship.
  • the corresponding relationship may refer to that the initial downlink BWP and the initial uplink BWP use the same ID (or index number); for example, the initial BWP preconfigured by the terminal device includes 2 initial uplink BWPs and 2 initial downlink BWPs.
  • the IDs of the two initial uplink BWPs are initial uplink BWP-0 and initial uplink BWP-1 respectively, and the IDs of the two initial downlink BWPs are initial downlink BWP-0 and initial downlink BWP-1 respectively.
  • the corresponding relationship may also refer to the matching relationship between the IDs of the preset initial downlink BWP and the initial uplink BWP; for example, the initial BWP preconfigured by the terminal device includes 2 initial uplink BWPs and 2 initial downlink BWPs.
  • the IDs of the two initial uplink BWPs are initial uplink BWP-0 and initial uplink BWP-1
  • the IDs of the two initial downlink BWPs are initial downlink BWP-3 and initial downlink BWP-2 respectively; among them, the initial uplink BWP-
  • the initial uplink BWP- There is a preset corresponding relationship between 0 and the initial downlink BWP-2 (that is, the two match), and there is a preset corresponding relationship between the initial uplink BWP-1 and the initial downlink BWP-3 (that is, the two match).
  • the configuration information of the target initial BWP may include an ID of the target initial BWP, and the ID of the target initial BWP may be the ID of the downlink BWP.
  • the terminal device can determine the downlink BWP in the target initial BWP based on the ID of the downlink BWP, and then the terminal device The device determines the corresponding uplink BWP based on the ID of the downlink BWP in the target initial BWP according to the corresponding relationship between the preconfigured multiple initial uplink BWPs and the IDs of the multiple initial downlink BWPs.
  • the initial BWP pre-configured by the terminal device includes multiple initial uplink BWPs and multiple initial downlink BWPs.
  • the difference from the aforementioned third case is that in this case, the corresponding relationship between the IDs of the plurality of initial uplink BWPs and the plurality of initial downlink BWPs may not be pre-configured in the terminal device. Therefore, the configuration information of the target initial BWP may include IDs of multiple target initial BWPs.
  • the configuration information of the target initial BWP may include the IDs of two target initial BWPs.
  • the IDs of the two target initial BWPs may include the IDs of the downlink BWP and the IDs of the uplink BWP.
  • the terminal device can determine the downlink of the target initial BWP based on the ID of the downlink BWP.
  • BWP determine the uplink BWP in the target initial BWP based on the ID of the downlink BWP.
  • the method may also include: the terminal device determines the target initial BWP based on the configuration information of the target initial BWP contained in the first information carried by the WUS, and performs the step on the target initial BWP.
  • Initial access Specifically: when receiving WUS, the first component of the terminal device wakes up the second component of the terminal device; the second component of the terminal device determines the target initial BWP based on the configuration information of the target initial BWP. , perform initial access on the target initial BWP.
  • the first component of the terminal device determines to wake up the second component of the terminal device based on the relevant indication information carried in the WUS;
  • the configuration information of the target initial BWP determines the target initial BWP, initial access is performed on the target initial BWP.
  • the above-mentioned initial access may include processes such as cell search and random access.
  • cell search the terminal equipment and the network equipment can obtain downlink synchronization, and then the terminal equipment can perform random access.
  • initial access on the target initial BWP may be: after the terminal device performs cell search and completes downlink synchronization with the network device, the terminal device may send a random access request on the uplink BWP (That is, msg1), and receives the random access response (that is, msg2) sent by the network device on the downlink BWP; when the target initial BWP also includes an uplink BWP, the terminal device transmits the RRC message on the uplink BWP. (ie, msg3), used to notify the network device of the triggering reason of the random access process; the terminal device receives contention conflict resolution information (ie, msg4) on the downlink BWP.
  • the configuration information of the target initial BWP is specifically used to configure a terminal device that conforms to the UE identity. That is, when the terminal device determines that it is a terminal device that conforms to the UE identity based on the UE identity included in the WUS, the second component of the terminal device determines the target initial BWP based on the configuration information of the target initial BWP. BWP, perform initial access on the target initial BWP. Regarding the UE identity included in the WUS and the specific processing method of how the terminal device determines whether it is a terminal device that conforms to the UE identity, they have been described in the previous embodiments, and therefore will not be repeated.
  • the WUS can also carry a bitmap and its corresponding method of waking up the terminal device have been described in detail in the foregoing embodiments, and therefore will not be described again.
  • the configuration information of the target initial BWP may further include a new UE identity, and the new UE identity may also be one of: a new UE ID, a new UE group ID, or a new cell ID.
  • the terminal device determines that it is a terminal device that conforms to the UE identity based on the UE identity contained in the WUS, it can wake up the second component based on the WUS; when the configuration information based on the target initial BWP includes When the new UE identity determines that it is a terminal device that conforms to the UE identity, the second component of the terminal device determines the target initial BWP based on the configuration information of the target initial BWP, and performs operations on the target initial BWP.
  • Initial access may also include: if based on the new UE identity included in the configuration information of the target initial BWP, it is determined that it is a terminal device that does not meet the UE identity, the second component of the terminal device does not based on the new UE identity.
  • the configuration information of the target initial BWP determines the target initial BWP.
  • the terminal device is a reduced capability (RedCap, Reduced Capability) terminal.
  • RedCap Reduced Capability
  • the system configures an initial BWP for it; while in reduced capability (RedCap, Reduced Capability) terminals, due to their smaller bandwidth (usually 20MHz smaller than the traditional 100MHz) and the larger number of antennas
  • RedCap Reduced Capability
  • the system will pre-configure multiple initial BWPs for them.
  • multiple initial BWPs can be pre-configured to ensure that when the network device instructs different terminal devices to perform initial access, the ID of the target initial BWP can be indicated only through the first information in the WUS, that is, The uplink BWP and/or downlink BWP to be used this time can be determined, and then the initial access processing can be performed on the uplink BWP and/or downlink BWP, so that the effect of load offloading or load balancing can be achieved.
  • This method does not require the terminal device side to save too much information generated during the interaction process, so it can reduce resource fragmentation and is more suitable for narrowband RedCap terminals.
  • the configuration information of the synchronization signal may include one or more of the following: the transmission period of the synchronization signal; the time domain resource location information of the synchronization signal; the frequency domain resource location information of the synchronization signal; the antenna port of the synchronization signal; the transmission of the synchronization signal. beam.
  • the synchronization signal may specifically include one or more of the following: SSB (Synchronization Signal Block), other reference signals.
  • the other reference signals may include: TRS (Time Reference Signal), and/or CSI-RS (Channel-State Information Reference Signal, Channel State Information Reference Signal).
  • the transmission period of the synchronization signal may be smaller than the original transmission period of the synchronization signal in the current system. That is to say, the synchronization signal may be encrypted (increased) and transmitted.
  • the transmission period of the synchronization signal can be configured according to the actual situation, for example, it can be 1 ms, 2 ms, or longer or shorter, and is not exhaustive here.
  • the time domain resource location information of the synchronization signal may include one or more of the following: the time domain location of the time domain resource of the synchronization signal; the duration of the time domain resource of the synchronization signal.
  • the time unit of the time domain position of the time domain resource of the synchronization signal may be at least one of a time slot, a symbol, a frame, a subframe, a millisecond, etc.
  • the time domain position of the time domain resource of the synchronization signal may include: the time domain starting position of the time domain resource of the synchronization signal, and/or the time domain end position of the time domain resource of the synchronization signal.
  • the time domain resource location information of the synchronization signal directly includes the time domain resource location of the synchronization signal.
  • the time domain position of the time domain resource of the synchronization signal includes: the time domain starting position of the time domain resource of the synchronization signal, and the time domain end position of the time domain resource of the synchronization signal.
  • the terminal device may be based on the time domain position of the time domain resource of the synchronization signal, the time domain starting position of the time domain resource of the synchronization signal, and the time domain end position of the time domain resource of the synchronization signal, Directly determine the time domain range (or time domain position) of the synchronization signal.
  • the time domain resource location information of the synchronization signal directly includes the time domain resource location of the synchronization signal and the duration of the time domain resource of the synchronization signal.
  • the time domain position of the time domain resource of the synchronization signal includes: the time domain starting position of the time domain resource of the synchronization signal, or the time domain end position of the time domain resource of the synchronization signal.
  • the terminal device may determine the time domain end position of the time domain resource of the synchronization signal based on the time domain starting position of the synchronization signal and the duration of the time domain resource of the synchronization signal; based on the time domain of the synchronization signal
  • the time domain starting position of the resource and the time domain end position of the time domain resource of the synchronization signal determine the time domain range of the synchronization signal.
  • the time domain resource location information of the synchronization signal includes one or more of the following: a second time domain offset, the second time domain offset is used to represent the reception time of the WUS and the synchronization The offset between the time domain positions of the time domain resources of the signal; the duration of the time domain resources of the synchronization signal.
  • the time domain position of the time domain resource of the synchronization signal may include: the time domain starting position of the time domain resource of the synchronization signal, and/or the time domain end position of the time domain resource of the synchronization signal.
  • a time (or a moment) in the period of time domain resources occupied by the WUS can be designated as the reception time of the WUS.
  • the WUS reception time may include: the WUS start reception time, or the WUS reception completion time. It should be understood that the reception time of the WUS can also be other times in the time domain resources occupied by the WUS, such as the midpoint time of the time domain resources occupied by the WUS, etc., as long as the terminal device Both sides of the network device and the network device can use the same WUS reception time.
  • the second time domain offset may include one numerical value or multiple numerical values.
  • the second time domain offset includes a value, such as a seventh value; the seventh value is used to represent the difference between the reception time of the WUS and the time domain starting position of the time domain resource of the synchronization signal. or, used to represent the offset between the reception time of the WUS and the time domain end position of the time domain resource of the synchronization signal.
  • the unit of the second time domain offset may be at least one of slot, symbol, frame, subframe, millisecond, etc.
  • the time domain resource location information of the synchronization signal may further include: the duration of the time domain resource of the synchronization signal.
  • the terminal device may determine that the time domain starting position of the time domain resource of the synchronization signal is a position after the starting reception time of the WUS is delayed by a second time domain offset; based on the time domain start position of the time domain resource of the aforementioned synchronization signal The starting position of the synchronization signal is added to the duration of the time domain resource of the synchronization signal to obtain the time domain end position of the time domain resource of the synchronization signal; the time domain start position and the end position of the time domain of the time domain resource of the synchronization signal are added. Range, as the specific location of the time domain resource of the synchronization signal.
  • the second time domain offset may include multiple values, such as two values, which are an eighth value and a ninth value respectively; the eighth value is used to represent the difference between the reception time of the WUS and the The offset between the time domain starting positions of the time domain resources of the synchronization signal; the ninth value is used to represent the offset between the reception time of the WUS and the time domain end position of the time domain resources of the synchronization signal.
  • the unit of the second time domain offset may be at least one of slot, symbol, frame, subframe, millisecond, etc. Among them, the eighth numerical value is smaller than the ninth numerical value.
  • the terminal device may determine the time domain starting position of the time domain resource of the synchronization signal to be the position after the start reception time delay of the WUS by an eighth value; determine the time domain end of the time domain resource of the synchronization signal.
  • the position is the position after the ninth numerical value of the initial reception time delay of the WUS; the range between the time domain start position and the time domain end position of the time domain resource of the synchronization signal is used as the time domain resource of the synchronization signal specific location.
  • the frequency domain resource location information of the synchronization signal includes one or more of the following: the location of the second type of frequency point of the frequency domain resource of the synchronization signal; the size of the frequency domain resource of the synchronization signal.
  • the second type of frequency point of the frequency domain resource of the synchronization signal includes one or more of the following: the lowest frequency point of the frequency domain resource of the synchronization signal; the highest frequency point of the frequency domain resource of the synchronization signal; The center frequency point of the frequency domain resource of the synchronization signal.
  • the specific location of the second type of frequency point can also vary according to actual conditions, as long as both the terminal device and the network device determine in advance to use the same reference frequency point.
  • the position of the second type of frequency point of the frequency domain resource of the synchronization signal includes the lowest frequency point of the frequency domain resource of the synchronization signal and the highest frequency point of the frequency domain resource of the synchronization signal; accordingly, The terminal device may directly use the frequency domain range between the lowest frequency point and the highest frequency point of the frequency domain resource of the synchronization signal as the frequency domain range of the synchronization signal.
  • the location of the second type of frequency point of the frequency domain resource of the synchronization signal may only include one frequency point; then the frequency domain resource location information of the synchronization signal will also include the location information of the frequency domain resource of the synchronization signal. size.
  • the location of the second type of frequency point of the frequency domain resource of the synchronization signal is only the center frequency point; the terminal device can be based on the location of the center frequency point of the frequency domain resource of the synchronization signal and the frequency of the synchronization signal.
  • the size of the domain resource determines the frequency domain range of the synchronization signal; the frequency domain range refers to the range between the lowest frequency point of the synchronization signal and the highest frequency point of the synchronization signal.
  • the frequency domain resource location information of the synchronization signal includes one or more of the following: a second frequency domain offset, the second time domain offset is used to represent the frequency domain location of the WUS and the The offset between the second type of frequency points of the frequency domain resources of the synchronization signal; the size of the frequency domain resources of the synchronization signal.
  • the unit of the second frequency domain offset may be any one of PRB, RB, Khz, and Mhz.
  • the second type of frequency point of the frequency domain resource of the synchronization signal includes one or more of the following: the lowest frequency point of the frequency domain resource of the synchronization signal; the highest frequency point of the frequency domain resource of the synchronization signal. point; the center frequency point of the frequency domain resource of the synchronization signal.
  • the frequency domain location of the WUS includes one of the following: the lowest frequency point in the frequency domain resources occupied by the WUS; the highest frequency point in the frequency domain resources occupied by the WUS; the frequency domain resources occupied by the WUS the center frequency point in .
  • the unit of the second frequency domain offset may be any one of PRB, RB, Khz, Mhz, etc.
  • the second frequency domain offset may include one or more numerical values.
  • the second frequency domain offset includes a value, which is called a tenth value.
  • the second frequency domain offset value (ie, the tenth value) may be used to represent the relative frequency domain offset between a second type frequency point of the frequency domain resource of the synchronization signal and a frequency domain position of the WUS. shift.
  • the frequency domain resource location information of the synchronization signal may further include: the size of the frequency domain resource of the synchronization signal.
  • the terminal device When WUS is monitored, the position of the lowest frequency point of the frequency domain resource of the synchronization signal is obtained by increasing (or decreasing) the tenth value based on the position of the center frequency point in the frequency domain resource occupied by the WUS.
  • the terminal device can obtain the position of the highest frequency point of the frequency domain resource of the synchronization signal based on the position of the lowest frequency point of the frequency domain resource of the synchronization signal and the size of the frequency domain resource of the synchronization signal; add the position of the highest frequency point of the frequency domain resource of the synchronization signal; The range between the highest frequency point and the lowest frequency point of the frequency domain resource is used as the specific range of the frequency domain resource of the synchronization signal.
  • the terminal device monitors the WUS, it increases (or decreases) a fourth numerical value based on the position of the highest frequency point of the WUS to obtain the position of the center frequency point of the frequency domain resource of the synchronization signal.
  • the terminal device can obtain the position of the highest frequency point of the frequency domain resource of the synchronization signal based on the position of the center frequency point of the frequency domain resource of the synchronization signal and adding 1/2 of the size of the frequency domain resource of the synchronization signal; Based on the position of the center frequency point of the frequency domain resource of the synchronization signal, subtract 1/2 of the size of the frequency domain resource of the synchronization signal to obtain the position of the lowest frequency point of the frequency domain resource of the synchronization signal; The range between the highest frequency point and the lowest frequency point of the domain resource is used as the specific range of the frequency domain resource of the synchronization signal.
  • the second frequency domain offset includes two values, which are an eleventh value and a twelfth value respectively; wherein the eleventh value can be used to represent the synchronization signal.
  • the frequency domain resource location information of the synchronization signal may not include the size of the frequency domain resource of the first PRACH.
  • one second type frequency point of the frequency domain resource of the synchronization signal is the lowest frequency point
  • another second type frequency point is the highest frequency point
  • the frequency domain position of the WUS is the frequency occupied by the WUS.
  • the position of the lowest frequency point of the frequency domain resource based on the position of the center frequency point in the frequency domain resource occupied by the WUS, add a twelfth value to obtain the position of the highest frequency point of the frequency domain resource of the synchronization signal;
  • the range between the highest frequency point and the lowest frequency point of the frequency domain resource of the synchronization signal is used as the specific range of the frequency domain resource of the synchronization signal.
  • the terminal device may determine the frequency domain resource location of the synchronization signal based on the second frequency domain offset, and determine the frequency domain range of the synchronization signal based on the frequency domain resource location of the synchronization signal. Specifically, it may be: the terminal device determines the position of the reference frequency point of the frequency domain resource of the synchronization signal based on the second frequency domain offset and the frequency domain position of the WUS, and based on the reference frequency point of the synchronization signal position to determine the frequency domain range of the synchronization signal. For example, the terminal device increases or decreases the second frequency domain offset based on the frequency domain position of the WUS (such as the highest frequency point) to obtain the reference frequency point (such as the lowest frequency point) of the frequency domain resource of the synchronization signal.
  • the frequency domain range of the synchronization signal based on the position of the reference frequency point (such as the lowest frequency point) of the synchronization signal and the preset frequency domain resource size of the synchronization signal.
  • the reference frequency point such as the lowest frequency point
  • the preset frequency domain resource size of the synchronization signal there may be other examples of determining the frequency domain range of the synchronization signal, but this is not exhaustive.
  • the antenna port of the synchronization signal and the transmission beam of the synchronization signal can be determined by the network device based on the actual transmission situation, and are not limited here.
  • the configuration information of the aforementioned synchronization signal may include all of the above, or may only include part of it.
  • the configuration information of the synchronization signal may include the third configuration information and the fourth configuration information; or it may include the transmission cycle of the synchronization signal and the fourth configuration information, etc., which will not be done here.
  • the method may further include: the terminal device determining the synchronization signal based on the configuration information of the synchronization signal; and the terminal device performing time-frequency synchronization based on the synchronization signal.
  • the terminal device performs random access after completing time-frequency synchronization.
  • the above time-frequency synchronization may specifically refer to the completion of downlink time-frequency synchronization between the terminal device and the network device.
  • the configuration information of the synchronization signal is specifically used to configure a terminal device that conforms to the UE identity.
  • the WUS may also carry a UE identity, and the UE identity is a UE ID, or a UE group ID, or a cell ID.
  • the WUS may also carry a bitmap. The processing method in which the terminal device determines whether it is a terminal device that conforms to the UE identity based on the UE identity (or bitmap) carried in the WUS has been described in the foregoing embodiments and will not be described again.
  • the configuration information of the synchronization signal is specifically used to configure a terminal device that conforms to the UE identity. That is, when the terminal device determines that it is a terminal device that conforms to the UE identity based on the UE identity included in the WUS, the second component of the terminal device determines the synchronization signal based on the configuration information of the synchronization signal; Time-frequency synchronization is performed based on the synchronization signal.
  • the configuration information of the synchronization signal may further include a new UE identity, and the new UE identity may also be one of: a new UE ID, a new UE group ID, or a new cell ID.
  • the terminal device determines that it is a terminal device that conforms to the UE identity based on the UE identity contained in the WUS, it can wake up the second component based on the WUS; when the configuration information based on the synchronization signal contains
  • the second component of the terminal device determines a synchronization signal based on the configuration information of the synchronization signal; performs time-frequency synchronization based on the synchronization signal.
  • it may also include: if based on the new UE identity included in the configuration information of the target initial BWP, it is determined that it is a terminal device that does not meet the UE identity, the second component of the terminal device does not based on the new UE identity.
  • the configuration information of the synchronization signal determines the synchronization signal.
  • the above configuration information of the synchronization signal is mainly used for data transmission and reception by the second component of the terminal device, or the main receiver, after the terminal device (the second component of the terminal device) wakes up. Because usually before the terminal equipment transmits and receives data with the network equipment, the main receiver of the terminal equipment needs to use a synchronization signal to obtain time-frequency synchronization.
  • additional encrypted synchronization signals can be sent or other additional reference signals (such as TRS, or CSI- RS), so that the terminal can receive more synchronization signals in a short time, which is used to speed up the terminal to complete the time-frequency synchronization process.
  • the processing performed by the terminal device may also be different.
  • the first information respectively includes the configuration of the first PRACH resource.
  • Information, configuration information of the target initial BWP, and configuration information of the synchronization signal the relevant processing performed by the terminal device is explained.
  • the first information may also include two or all of the above information, and the processing performed by the terminal device may also be adjusted accordingly. The following examples are used to illustrate:
  • the first information includes configuration information of the target initial BWP and configuration information of the synchronization signal.
  • the terminal device determines the target initial BWP based on the configuration information of the target initial BWP and completes time-frequency synchronization based on the configuration information of the synchronization signal, the terminal device performs initial access on the target initial BWP.
  • the first information includes configuration information of the first PRACH resource and configuration information of the synchronization signal.
  • the terminal device determines the first PRACH resource based on the configuration information of the first PRACH resource and completes time-frequency synchronization based on the configuration information of the synchronization signal, the terminal device performs randomization on the first PRACH resource. Access (specifically, it may be initiating a random access request on the first PRACH resource).
  • the first information includes configuration information of the first PRACH resource, configuration information of the target initial BWP, and configuration information of the synchronization signal.
  • the terminal device determines the target initial BWP based on the configuration information of the target initial BWP, determines the first PRACH resource on the target initial BWP based on the configuration information of the first PRACH resource, and based on the configuration of the synchronization signal
  • the information determines the synchronization signal; when time-frequency synchronization is completed based on the synchronization signal, a random access request is initiated on the first PRACH resource, and subsequent random access processing in the initial access is performed on the target initial BWP.
  • the terminal device can monitor the WUS, and the WUS can be used to wake up the terminal device; the information carried in the WUS can be used for operations performed by the terminal device after waking up.
  • the terminal device can wake up based on receiving the WUS and promptly perform post-wake-up operations based on the first information in the WUS. This can shorten the service transmission delay and thereby improve the processing efficiency of the system.
  • Figure 6 is a schematic flow chart of a communication method according to the second embodiment of the present application. This method can optionally be applied to the system shown in Figure 1, but is not limited thereto. The method includes at least part of the following.
  • the network device sends a wake-up signal WUS; wherein the WUS is used to wake up the terminal device; the WUS carries first information, and the first information is used for operations performed by the terminal device after waking up.
  • the above-mentioned WUS can also be called low-power WUS, or it can also be called other names.
  • the network device sending the wake-up signal WUS may include: when the network device receives the first notification information sent by the core network device, sending the WUS to the terminal device; the first notification information may be used for Notify the network device to send WUS to the terminal device. Determining whether the terminal device currently needs to perform service transmission can be performed by the core network device. For example, when the core network device determines that the terminal device is called, it can determine that the terminal device currently needs to perform service transmission. (or service data transmission is required); of course, determining whether the terminal device currently requires service transmission may also include other determination methods, which are not exhaustive in this embodiment. Further, when the core network device determines that the terminal device needs to perform service transmission, the first notification information may be sent to the network device.
  • the WUS is exclusive to the UE; or the WUS is shared by a UE group, and the UE group may be a UE group including the terminal device; or the WUS is exclusive to a cell, and the cell may be the terminal
  • the service area where the device is located. Therefore, the WUS may also include: UE identification, and the UE identification is a UE ID or a UE group UD or a cell ID. It should be noted that the UE identity may be included in the first information in the WUS, or the UE identity may not be included in the first information in the WUS. This embodiment does not limit the specific information location of the UE identifier in the WUS.
  • the UE ID may refer to the identification of the terminal device, and may be the unique identification of the terminal device.
  • it may be any one of the following: Temporary Mobile Subscriber Identity (TMSI, Temporary Mobile Subscriber Identity), International Mobile User identification code (IMSI, International Mobile Subscriber Identity), I-RNTI (Inactive Radio Network Temporary Identifier, inactive wireless network temporary identification).
  • TMSI Temporary Mobile Subscriber Identity
  • IMSI International Mobile User identification code
  • I-RNTI Inactive Radio Network Temporary Identifier, inactive wireless network temporary identification.
  • the UE group may be composed of one or more terminal devices; one or more UE groups may be configured in the system, and different IDs are assigned to different UE groups in the one or more UE groups. Uniquely distinguish different UE groups.
  • the cell ID may be an ID corresponding to one or more cells included in the system.
  • the WUS is specifically used to wake up the terminal equipment that matches the UE identity.
  • the UE identifier can be replaced by a bitmap; the value of a certain bit in the bitmap can be used to indicate whether to wake up the corresponding terminal device or UE group; for example, the first value indicates wakeup For the terminal device, the second value indicates not to wake up the terminal device or UE group; the first value is different from the second value, for example, the first value is 1 and the second value is 0, or the opposite.
  • the WUS can also carry the aforementioned first information, and the first information is used for operations performed by the terminal device after waking up.
  • the operations performed by the terminal device after waking up may include one or more of the following: random access, initial access, and time-frequency synchronization.
  • the first information may include one or more of the following information: information used to perform random access, and the information used to perform random access is a first PRACH (Physical Random Access Channel, physical random access channel) resource Configuration information; information used to perform initial access, the information used to perform initial access is the configuration information of the target initial BWP (BandWidth Part, bandwidth part) resource; information used to perform time-frequency synchronization, the The information used to perform time-frequency synchronization is the configuration information of the synchronization signal.
  • PRACH Physical Random Access Channel, physical random access channel
  • resource Configuration information information used to perform initial access, the information used to perform initial access is the configuration information of the target initial BWP (BandWidth Part, bandwidth part) resource
  • BWP BandWidth Part, bandwidth part
  • the configuration information of the first PRACH resource may include one or more of the following: time domain resource location information of the first PRACH; frequency domain resource location information of the first PRACH; cycle of the first PRACH; time slot of the first PRACH ;The subcarrier spacing of the first PRACH; the number of the first PRACH opportunities; the mapping relationship between the first PRACH and the synchronization signal block SSB; the time domain resource location information of the first PRACH opportunity; the frequency domain resource location information of the first PRACH opportunity; Preamble index number.
  • the time domain resource information of the first PRACH is divided into two situations as follows:
  • the time domain resource information of the first PRACH may include the absolute time domain position of the time domain resource of the first PRACH. specific:
  • the time domain resource information of the first PRACH includes one or more of the following: the time domain position of the time domain resource of the first PRACH; the duration of the time domain resource of the first PRACH.
  • the time domain position of the time domain resource of the first PRACH includes: the time domain starting position of the time domain resource of the first PRACH, or the time domain end position of the time domain resource of the first PRACH.
  • the duration of the time domain resource of the first PRACH may refer to the length of the time domain occupied by the first PRACH resource.
  • the time domain resource location information of the first PRACH specifically includes: a time domain starting position of the time domain resource of the first PRACH and a duration of the time domain resource of the first PRACH.
  • the time domain starting position of the time domain resource of the first PRACH and the duration of the time domain resource of the first PRACH may be expressed in units of symbols, time slots, subframes, milliseconds, microseconds, etc. .
  • the time domain resource location information of the first PRACH specifically includes: a time domain starting position of the time domain resource of the first PRACH and a time domain location of the time domain resource of the first PRACH.
  • the end position of the domain The time domain start position of the time domain resource of the first PRACH and the time domain end position of the time domain resource of the first PRACH may be in units of symbols, time slots, subframes, milliseconds, microseconds, etc. To represent.
  • the time domain resource information of the first PRACH may include the relative time domain position of the time domain resource of the first PRACH.
  • the time domain resource location information of the first PRACH includes one or more of the following: a first time domain offset, the first time domain offset is used to represent the difference between the reception time of the WUS and the third time domain offset. The offset between the time domain positions of a PRACH time domain resource; the duration of the first PRACH time domain resource.
  • the duration of the time domain resource of the first PRACH may refer to the length of the time domain occupied by the first PRACH resource.
  • the unit can be any one of slots, symbols, subframes, milliseconds, etc.
  • a time (or a moment) in the period of time domain resources occupied by the WUS can be designated as the reception time of the WUS.
  • the WUS reception time may include: the WUS start reception time, or the WUS reception completion time. It should be understood that the reception time of the WUS can also be other times in the time domain resources occupied by the WUS, such as the midpoint time of the time domain resources occupied by the WUS, etc., as long as the terminal device Both sides of the network device and the network device can use the same WUS reception time.
  • the time domain resource of the first PRACH can also occupy a period of time domain resources, and the time (or moment) in the time domain resource of the first PRACH can be designated as the time domain of the time domain resource of the first PRACH.
  • the time domain position of the time domain resource of the first PRACH includes: the time domain starting position of the time domain resource of the first PRACH, and/or the time domain position of the time domain resource of the first PRACH. end position.
  • the time domain position of the time domain resource of the first PRACH can also be other times in the time domain resource of the first PRACH, for example, it can be the midpoint time of the time domain resource of the first PRACH, etc. etc., as long as both the terminal device and the network device use the same time domain location of the time domain resource of the first PRACH.
  • the first time domain offset may include one value or multiple values.
  • the unit of the first time domain offset may be any one of symbol, time slot, subframe, millisecond, microsecond, etc.
  • the first time domain offset includes a numerical value, which is called the first numerical value.
  • the first numerical value may be used to represent the relative time offset between the time domain starting position of the time domain resource of the first PRACH and the reception time of the WUS (such as the starting reception time of WUS); or , this offset value may be used to represent the relative time offset between the time domain end position of the time domain resource of the first PRACH and the reception time of the WUS (such as the starting reception time of the WUS).
  • the time domain resource location information of the first PRACH may further include: a duration of the time domain resource of the first PRACH.
  • the terminal device may determine the time domain resource of the first PRACH based on the time domain starting position (or time domain end position) of the time domain resource of the first PRACH and the duration of the time domain resource of the first PRACH. specific location.
  • the first time domain offset when the first time domain offset includes two values, for example, the two values are represented as a second value and a third value respectively; wherein the second value can be used to represent the third value.
  • the relative time offset between the end position of the resource in the time domain and the reception time of the WUS (such as the start reception time of the WUS).
  • the second numerical value is smaller than the third numerical value.
  • the unit of the first time domain offset ie, two offset values or multiple offset values
  • the time domain resource location information of the first PRACH may not include the duration of the time domain resource of the first PRACH.
  • the frequency domain resource location information of the first PRACH is an absolute frequency domain location.
  • the frequency domain resource location information of the first PRACH includes one or more of the following: the location of the first type of frequency point of the frequency domain resource of the first PRACH; the size of the frequency domain resource of the first PRACH.
  • the first type of frequency point may be expressed in units of any one of PRB (physical resource block), RB (resource block), Khz, Mhz, etc.
  • the number of designated frequency points may be one or more.
  • the first type of frequency point of the frequency domain resource of the first PRACH includes one or more of the following: the lowest frequency point of the frequency domain resource of the first PRACH; the highest frequency point of the frequency domain resource of the first PRACH point; the center frequency point of the frequency domain resource of the first PRACH. It should be understood that this is only an exemplary explanation. In actual processing, the first type of frequency point can also be other frequency points. As long as the terminal device and the network device have the same definition or interpretation of the specified frequency point, both are used in this embodiment. Within the scope of protection, no exhaustive list will be made here.
  • the frequency domain resource location information of the first PRACH may only include the location of the first type of frequency point of the frequency domain resource of the first PRACH.
  • the first type of frequency points of the frequency domain resource of the first PRACH may be multiple frequency points.
  • the frequency domain resource location information of the first PRACH includes the location of the lowest frequency point and the center frequency point of the frequency domain resource of the first PRACH; or, the frequency domain resource location information of the first PRACH includes The positions of the lowest frequency point and the highest frequency point of the frequency domain resource of the first PRACH.
  • the frequency domain resource location information of the first PRACH may include the location of the first type of frequency point of the frequency domain resource of the first PRACH, and the frequency domain of the first PRACH.
  • the first type of frequency point of the frequency domain resource of the first PRACH may be one frequency point.
  • the frequency domain resource location information of the first PRACH is a relative frequency domain location.
  • the frequency domain resource location information of the first PRACH includes one or more of the following: a first frequency domain offset.
  • the first frequency domain offset is used to represent the frequency domain location of the WUS and the first PRACH.
  • the frequency domain location of the WUS includes one of the following: the lowest frequency point in the frequency domain resources occupied by the WUS; the highest frequency point in the frequency domain resources occupied by the WUS; the frequency domain resources occupied by the WUS the center frequency point in . It should be understood that the frequency domain position of the WUS can also be represented by other frequency points of the WUS. As long as the same frequency point is used between the terminal device and the network device, it is within the protection scope of this embodiment. An exhaustive list will not be made here.
  • the first type of frequency point of the frequency domain resource of the first PRACH includes one or more of the following: the lowest frequency point of the frequency domain resource of the first PRACH; the highest frequency point of the frequency domain resource of the first PRACH point; the center frequency point of the frequency domain resource of the first PRACH. It should be understood that this is only an illustrative explanation. In actual processing, the first type of frequency point can also be other frequency points. As long as the terminal device and the network device have the same definition or interpretation of the first type of frequency point, both are used in this document. Within the scope of the embodiments, no exhaustive list will be made here.
  • the size of the frequency domain resource of the first PRACH may be included in the frequency domain resource location information of the first PRACH; or it may be obtained in advance by the terminal device, for example, it may be obtained by the network device in the terminal.
  • the device was in the RRC connected state last time, it was sent to the terminal device through any one of DCI, RRC signaling, and system messages.
  • the unit of the first frequency domain offset may be any one of PRB, RB, Khz, Mhz, etc.
  • the first frequency domain offset may include one or more numerical values.
  • the first frequency domain offset value when the first frequency domain offset includes a numerical value, the numerical value is called a fourth numerical value.
  • the first frequency domain offset value (ie, the fourth value) may be used to represent the relative frequency domain between a first type frequency point of the frequency domain resource of the first PRACH and a frequency domain position of the WUS. offset.
  • the frequency domain resource location information of the first PRACH may further include: the size of the frequency domain resource of the first PRACH.
  • the first frequency domain offset includes two values, which are a fifth value and a sixth value respectively; wherein the fifth value can be used to represent the frequency domain of the first PRACH.
  • the relative frequency domain offset between a first type frequency point of the resource and a frequency domain position of the WUS; and a sixth value used to represent another first type of frequency domain resource of the first PRACH The relative frequency domain offset between the frequency point and a frequency domain position of the WUS.
  • the frequency domain resource location information of the first PRACH may not include the size of the frequency domain resource of the first PRACH.
  • the time domain resource location information of the first PRACH is used to determine the time domain resource range (or time domain location) of the first PRACH resource
  • the frequency domain resource location information of the first PRACH is used to determine the time domain resource range of the first PRACH resource.
  • the above time domain resource range and frequency domain resource range of the first PRACH resource may refer to the location (or total range) of the time and frequency resources used for random access.
  • there will also be a more fine-grained first PRACH opportunity (occasion) (or called a PRACH opportunity in the first PRACH resource) .
  • the finer granularity may refer to that within the time domain resource range and frequency domain resource range of the first PRACH resource, there are one or more time domain resources and frequency domain resources respectively corresponding to the first PRACH opportunity.
  • the duration of any first PRACH opportunity is less than the duration of the time domain resource of the aforementioned first PRACH
  • the size of the frequency domain range of any first PRACH opportunity is less than the aforementioned frequency domain resource of the first PRACH. the size of.
  • the number of the first PRACH opportunities can be configured according to the actual situation, and may specifically include one or more of the following: in the first PRACH resource (ie, the time domain resource range and frequency domain resource range of the first PRACH The total number of first PRACH opportunities included in ); the number of first PRACH opportunities included in the time domain resources of the first PRACH; the number of first PRACH opportunities included in the frequency domain resources of the first PRACH.
  • the total number of first PRACH opportunities included in the first PRACH resource is greater than or equal to the number of first PRACH opportunities included in the time domain resource of the first PRACH; or, the first PRACH resource includes The total number of first PRACH opportunities is greater than or equal to the number of first PRACH opportunities included in the frequency domain resource of the first PRACH.
  • first PRACH opportunities there may be one or more first PRACH opportunities.
  • the description of the time-frequency position of the first PRACH opportunity in the following embodiment can be understood as referring to the time-frequency position of one or more first PRACH opportunities. Any description of any one of them will not be repeated since the time-frequency position description for each first PRACH opportunity is the same.
  • the time domain resource location information of the first PRACH opportunity may include one or more of the following: the time domain starting position of the first PRACH opportunity, the time domain end position of the first PRACH opportunity, and the duration of the first PRACH opportunity. Wherein, the duration of the first PRACH opportunity is shorter than the duration of the time domain resource of the first PRACH.
  • the time domain start position/time domain end position of the first PRACH opportunity can be expressed in units of any one of time slot, symbol, subframe, millisecond, etc.
  • the time domain resource location information of the first PRACH opportunity includes a time domain starting position of the first PRACH opportunity and a time domain end position of the first PRACH opportunity.
  • the time domain resource location information of the first PRACH opportunity includes the time domain starting position of the first PRACH opportunity and the duration of the first PRACH opportunity.
  • the frequency domain resource location information of the first PRACH opportunity may include one or more of the following: the lowest frequency point location of the first PRACH opportunity, the highest frequency point location of the first PRACH opportunity, and the center frequency point location of the first PRACH opportunity.
  • the size of the frequency domain range of the first PRACH opportunity is smaller than the size of the frequency domain resource of the first PRACH.
  • the lowest frequency point position, the center frequency point position, and the highest frequency point position of the first PRACH opportunity can be in any one of PRB, RB, Khz, and Mhz units.
  • the frequency domain resource location information of the first PRACH opportunity includes the lowest frequency point location of the first PRACH opportunity and the highest frequency point location of the first PRACH opportunity.
  • the terminal equipment may determine the frequency domain resource range of the first PRACH opportunity based on the lowest frequency point position of the first PRACH opportunity and the highest frequency point position of the first PRACH opportunity.
  • the frequency domain resource location information of the first PRACH opportunity includes the lowest frequency point location of the first PRACH opportunity and the frequency domain range size of the first PRACH opportunity. Based on the lowest frequency point position of the first PRACH opportunity and the size of the frequency domain range of the first PRACH opportunity, a frequency domain resource range of the first PRACH opportunity can be determined.
  • the frequency domain resource location information of the first PRACH opportunity includes the center frequency point location of the first PRACH opportunity and the frequency domain range size of the first PRACH opportunity. Based on the center frequency point position of the first PRACH opportunity and the size of the frequency domain range of the first PRACH opportunity, a frequency domain resource range of the first PRACH opportunity can be determined.
  • the mapping relationship between the first PRACH and the synchronization signal block SSB may specifically refer to the mapping relationship between the PRACH timing and the SSB. More specifically, it may refer to: the mapping relationship between the SSB number and the PRACH opportunity. Through the mapping relationship between the first PRACH and the SSB, the terminal device can determine the time slot of the first PRACH.
  • the preamble index number may specifically refer to the preamble index number used by the terminal device this time.
  • each first PRACH opportunity can correspond to multiple preconfigured preambles (for example, there can be 64 preambles) and their corresponding index numbers; the network device can pass the configuration information of the first PRACH resource in Indicates the preamble index number used this time.
  • the period of the first PRACH may refer to the length of each first PRACH period.
  • the unit of period can be slot, symbol, subframe, microsecond, millisecond, etc. It should be noted that the period of the first PRACH may be determined based on the first PRACH resource of the first period based on the time domain resource location information of the first PRACH and the frequency domain resource location information of the first PRACH.
  • the period of the first PRACH determines one or more periods, and determines the first PRACH resource for each period in the one or more periods.
  • the time slot of the first PRACH may refer to the transmission time slot of the first PRACH, or may be referred to as the transmission time slot for transmitting a random access preamble through the first PRACH. It should be understood that in the case where the time domain resource location information of the first PRACH and the mapping relationship between the first PRACH and SSB are configured in the configuration information of the first PRACH resource, the configuration information of the first PRACH resource may not be configured. The time slot containing the first PRACH. Alternatively, in the configuration information of the first PRACH resource, when the time domain resource location information of the first PRACH is not configured and the mapping relationship between the first PRACH and SSB is not configured, the configuration information of the first PRACH resource may be The time slot containing the first PRACH.
  • the subcarrier spacing of the first PRACH may refer to the subcarrier spacing adopted on the frequency domain resource of the first PRACH.
  • the subcarrier spacing of the first PRACH may be the same as the subcarrier spacing of the current system.
  • the subcarrier spacing of the first PRACH may be set according to actual conditions, for example, it may be 15kHz, 30Khz, 60Khz, 120Khz, 240Khz, etc., and no exhaustive list will be made here.
  • the first information carried by the WUS received by the terminal device may include one or more specific contents of the configuration information of the first PRACH resource.
  • the method further includes: the network device configures the configuration information of the second PRACH resource for the terminal device; wherein the configuration information of the second PRACH resource is the same as the configuration information of the first PRACH resource.
  • the configuration information is different.
  • the configuration information of the second PRACH resource is used to determine the second PRACH resource for performing random access; the time domain resource locations of the second PRACH resource and the first PRACH resource are different.
  • the configuration information of the second PRACH resource is used to determine the second PRACH resource;
  • the content that can be carried in the configuration information of the second PRACH resource includes but is not limited to: the time domain resource location of the second PRACH (such as At least one of the starting position, the ending position, and the duration), the frequency domain resource position of the second PRACH (such as at least one of the frequency domain resource size, the lowest frequency point, the highest frequency point, and the center frequency point), the second The location and quantity of PRACH timing, etc.
  • the second PRACH resource determined based on the configuration information of the second PRACH resource is at least different from the time domain resource position of the first PRACH resource.
  • the second PRACH resource may be the original PRACH resource configured in the current system.
  • the period of the second PRACH resource configured by the system for the terminal device is relatively large (such as 20 ms), that is, the period of the second PRACH resource may be greater than the first PRACH resource; and/or the time domain of the second PRACH resource
  • the starting position is later than the time domain starting position of the first PRACH resource.
  • the core network equipment determines that a certain terminal equipment in the idle state (or inactive state) currently needs to perform service transmission; the core network equipment can notify the network equipment to transmit services to the idle state (or inactive state).
  • the terminal device in the idle state (or inactive state) sends the WUS; correspondingly, the network device sends the WUS to the terminal device in the idle state (or inactive state).
  • it is hoped that the terminal device in the idle state can perform random access as soon as possible or in time, so that the terminal device can perform subsequent processing as soon as possible.
  • the period of the second PRACH resource configured by the system for the terminal device is relatively large.
  • the network device can add the configuration information of the first PRACH resource to the first information carried by the WUS, because the first PRACH resource is earlier than the time domain starting position of the first PRACH resource, and, the first The period of the PRACH resource is smaller than the first PRACH resource; therefore, when the terminal device is in the idle state (or inactive state), the terminal device can proceed earlier or more timely based on the first PRACH resource after being awakened by WUS. Random access.
  • the first PRACH resource may be a temporary PRACH resource configured for a contention-type random access process. It is intended to be able to configure the first PRACH resource earlier than the second PRACH resource currently configured in the system. Therefore, the configuration information of the first PRACH resource (or temporary PRACH resource) may carry at least the time domain resource location information of the first PRACH and the frequency domain resource location information of the first PRACH, so that the terminal device can obtain and The current system configures a first PRACH resource (or a temporary PRACH resource) that is different from the second PRACH resource, so that random access can be initiated to establish an RRC connection as quickly as possible.
  • the first PRACH resource may be a PRACH dedicated to the terminal device, so that the terminal device can perform contention-free random access to avoid random access when the terminal device uses contention-based random access.
  • the configuration information of the first PRACH resource in the first indication carried in the WUS may be the configuration information of the dedicated PRACH resource.
  • the configuration information of the first PRACH resource is specifically used to configure a terminal device that conforms to the UE identity.
  • the core network device (such as MME) can determine that a certain terminal device currently needs to perform service transmission; the core network device can notify the network device to send WUS to the terminal device; accordingly, the network device sends WUS to the terminal device.
  • the terminal device sends WUS, and the WUS may carry the UE identity and first information.
  • the first information may include configuration information of the first PRACH resource (or temporary PRACH resource).
  • the configuration information of the first PRACH resource may further include a new UE identity.
  • the new UE identity may also be: a new UE ID, a new UE group ID, One of the new cell IDs.
  • the core network device can determine that one or more terminal devices in a terminal group need to perform service transmission; the core network device can notify the network device to send WUS to the terminal group; accordingly, the network device sends WUS to the terminal group.
  • the terminal equipment of the terminal group sends WUS.
  • the WUS may carry the UE identity and first information.
  • the first information may include configuration information of the first PRACH resource (or temporary PRACH resource).
  • the first PRACH resource The configuration information may also include a new UE identity.
  • the configuration information of the target initial BWP includes: the ID of the target initial BWP.
  • the target initial BWP is one or more of multiple initial BWPs, and the multiple initial BWPs include one or more initial uplink BWPs. and/or one or more initial downlink BWPs, where the target initial BWP is an uplink BWP and/or a downlink BWP.
  • the method may further include: the network device sending second information; the second information includes configurations of multiple initial BWPs and their index numbers.
  • the ID of the target initial BWP contained in the above configuration information of the target initial BWP may also be the index number of the target initial BWP.
  • the target initial BWP may include uplink BWP and/or downlink; correspondingly, the ID (or index number) of the BWP target initial BWP may only include the ID (or index number) of the uplink BWP, or only the downlink BWP.
  • ID (or index number) or contains the ID (or index number) of the upstream BWP and the ID (or index number) of the downstream BWP.
  • the configuration information of the target initial BWP contains different contents and the different situations of the initial BWP pre-configured by the terminal device are explained separately:
  • the initial BWP pre-configured by the terminal device includes one initial downlink BWP and multiple initial uplink BWPs.
  • the ID of the target initial BWP included in the configuration information of the target initial BWP may be the ID of the uplink BWP.
  • the initial BWP pre-configured by the terminal device includes one initial uplink BWP and multiple initial downlink BWPs.
  • the ID of the target initial BWP included in the configuration information of the target initial BWP may be the ID of the downlink BWP.
  • the initial BWP preconfigured by the terminal device includes multiple initial uplink BWPs and multiple initial downlink BWPs.
  • the IDs of the plurality of initial uplink BWPs and the plurality of initial downlink BWPs have a corresponding relationship.
  • the corresponding relationship may refer to that the initial downlink BWP and the initial uplink BWP use the same ID (or index number).
  • the corresponding relationship may also refer to the matching relationship between the IDs of the preset initial downlink BWP and the initial uplink BWP.
  • the configuration information of the target initial BWP may include an ID of the target initial BWP, and the ID of the target initial BWP may be the ID of the downlink BWP.
  • the initial BWP pre-configured by the terminal device includes multiple initial uplink BWPs and multiple initial downlink BWPs.
  • the difference from the aforementioned third case is that in this case, the corresponding relationship between the IDs of the plurality of initial uplink BWPs and the plurality of initial downlink BWPs may not be pre-configured in the terminal device. Therefore, the configuration information of the target initial BWP may include IDs of multiple target initial BWPs.
  • the configuration information of the target initial BWP may include the IDs of two target initial BWPs.
  • the IDs of the two target initial BWPs may include the IDs of the downlink BWP and the IDs of the uplink BWP.
  • the configuration information of the target initial BWP is specifically used to configure a terminal device that conforms to the UE identity.
  • the configuration information of the target initial BWP may further include a new UE identity.
  • the new UE identity may also be one of: a new UE ID, a new UE group ID, and a new cell ID.
  • the terminal device determines that it is a terminal device that conforms to the UE identity based on the UE identity contained in the WUS, it can wake up the second component based on the WUS; when the configuration information based on the target initial BWP includes
  • the second component of the terminal device determines the target initial BWP based on the configuration information of the target initial BWP, and performs operations on the target initial BWP.
  • Initial access may also include: if based on the new UE identity included in the configuration information of the target initial BWP, it is determined that it is a terminal device that does not meet the UE identity, the second component of the terminal device does not based on the new UE identity.
  • the configuration information of the target initial BWP determines the target initial BWP.
  • the terminal device is a reduced capability (RedCap, Reduced Capability) terminal.
  • RedCap Reduced Capability
  • the system configures an initial BWP for it; while in reduced capability (RedCap, Reduced Capability) terminals, due to their smaller bandwidth (usually 20MHz smaller than the traditional 100MHz) and the larger number of antennas
  • RedCap Reduced Capability
  • the system will pre-configure multiple initial BWPs for them.
  • multiple initial BWPs can be pre-configured to ensure that when the network device instructs different terminal devices to perform initial access, the ID of the target initial BWP can be indicated only through the first information in the WUS, that is, The uplink BWP and/or downlink BWP to be used this time can be determined, and then the initial access processing can be performed on the uplink BWP and/or downlink BWP, so that the effect of load offloading or load balancing can be achieved.
  • This method does not require the terminal device side to save too much information generated during the interaction process, so it can reduce resource fragmentation and is more suitable for narrowband RedCap terminals.
  • the configuration information of the synchronization signal may include one or more of the following: the transmission period of the synchronization signal; the time domain resource location information of the synchronization signal; the frequency domain resource location information of the synchronization signal; the antenna port of the synchronization signal; the transmission of the synchronization signal. beam.
  • the synchronization signal may specifically include one or more of the following: SSB (Synchronization Signal Block), other reference signals.
  • the other reference signals may include: TRS (Time Reference Signal), and/or CSI-RS (Channel-State Information Reference Signal, Channel State Information Reference Signal).
  • the transmission period of the synchronization signal may be smaller than the original transmission period of the synchronization signal in the current system. That is to say, the synchronization signal may be encrypted (increased) and transmitted.
  • the transmission period of the synchronization signal can be configured according to the actual situation, for example, it can be 1 ms, 2 ms, or longer or shorter, and is not exhaustive here.
  • the time domain resource location information of the synchronization signal may include one or more of the following: the time domain location of the time domain resource of the synchronization signal; the duration of the time domain resource of the synchronization signal.
  • the time unit of the time domain position of the time domain resource of the synchronization signal may be at least one of a time slot, a symbol, a frame, a subframe, a millisecond, etc.
  • the time domain position of the time domain resource of the synchronization signal may include: the time domain starting position of the time domain resource of the synchronization signal, and/or the time domain end position of the time domain resource of the synchronization signal.
  • the time domain resource location information of the synchronization signal includes one or more of the following: a second time domain offset, the second time domain offset is used to represent the reception time of the WUS and the synchronization The offset between the time domain positions of the time domain resources of the signal; the duration of the time domain resources of the synchronization signal.
  • the time domain position of the time domain resource of the synchronization signal may include: the time domain starting position of the time domain resource of the synchronization signal, and/or the time domain end position of the time domain resource of the synchronization signal. Since the WUS can occupy a period of time domain resources, in this embodiment, a time (or a moment) in the period of time domain resources occupied by the WUS can be designated as the reception time of the WUS.
  • the WUS reception time may include: the WUS start reception time, or the WUS reception completion time.
  • the reception time of the WUS can also be other times in the time domain resources occupied by the WUS, such as the midpoint time of the time domain resources occupied by the WUS, etc., as long as the terminal device Both sides of the network device and the network device can use the same WUS reception time.
  • the second time domain offset may include one numerical value or multiple numerical values.
  • the second time domain offset includes a value, such as a seventh value; the seventh value is used to represent the offset between the reception time of the WUS and the time domain starting position of the time domain resource of the synchronization signal. ; Or, used to represent the offset between the reception time of the WUS and the time domain end position of the time domain resource of the synchronization signal.
  • the unit of the second time domain offset may be at least one of slot, symbol, frame, subframe, millisecond, etc.
  • the time domain resource location information of the synchronization signal may further include: the duration of the time domain resource of the synchronization signal.
  • the second time domain offset may include multiple values, such as two values, which are an eighth value and a ninth value respectively; the eighth value is used to represent the reception time of the WUS and the synchronization The offset between the time domain starting positions of the time domain resources of the signal; the ninth value is used to represent the offset between the reception time of the WUS and the time domain end position of the time domain resources of the synchronization signal.
  • the unit of the second time domain offset may be at least one of slot, symbol, frame, subframe, millisecond, etc. Among them, the eighth numerical value is smaller than the ninth numerical value.
  • the frequency domain resource location information of the synchronization signal includes one or more of the following: the location of the second type of frequency point of the frequency domain resource of the synchronization signal; the size of the frequency domain resource of the synchronization signal.
  • the second type of frequency point of the frequency domain resource of the synchronization signal includes one or more of the following: the lowest frequency point of the frequency domain resource of the synchronization signal; the highest frequency point of the frequency domain resource of the synchronization signal; The center frequency point of the frequency domain resource of the synchronization signal.
  • the specific location of the second type of frequency point can also vary according to actual conditions, as long as both the terminal device and the network device determine in advance to use the same reference frequency point.
  • the frequency domain resource location information of the synchronization signal includes one or more of the following: a second frequency domain offset, the second time domain offset is used to represent the frequency domain location of the WUS and the The offset between the second type of frequency points of the frequency domain resources of the synchronization signal; the size of the frequency domain resources of the synchronization signal.
  • the unit of the second frequency domain offset may be any one of PRB, RB, Khz, and Mhz.
  • the second type of frequency point of the frequency domain resource of the synchronization signal includes one or more of the following: the lowest frequency point of the frequency domain resource of the synchronization signal; the highest frequency point of the frequency domain resource of the synchronization signal. point; the center frequency point of the frequency domain resource of the synchronization signal.
  • the frequency domain location of the WUS includes one of the following: the lowest frequency point in the frequency domain resources occupied by the WUS; the highest frequency point in the frequency domain resources occupied by the WUS; the frequency domain resources occupied by the WUS the center frequency point in .
  • the unit of the second frequency domain offset may be any one of PRB, RB, Khz, Mhz, etc.
  • the second frequency domain offset may include one or more numerical values.
  • the second frequency domain offset includes a value, which is called a tenth value.
  • the second frequency domain offset value (ie, the tenth value) may be used to represent the relative frequency domain offset between a second type frequency point of the frequency domain resource of the synchronization signal and a frequency domain position of the WUS. shift.
  • the frequency domain resource location information of the synchronization signal may further include: the size of the frequency domain resource of the synchronization signal.
  • the second frequency domain offset includes two values, which are an eleventh value and a twelfth value respectively; wherein the eleventh value can be used to represent the synchronization signal.
  • the frequency domain resource location information of the synchronization signal may not include the size of the frequency domain resource of the first PRACH.
  • the antenna port of the synchronization signal and the transmission beam of the synchronization signal can be determined by the network device based on the actual transmission situation, and are not limited here.
  • the configuration information of the aforementioned synchronization signal may include all of the above, or may only include part of it.
  • the configuration information of the synchronization signal may include the third configuration information and the fourth configuration information; or it may include the transmission cycle of the synchronization signal and the fourth configuration information, etc., which will not be done here.
  • the configuration information of the synchronization signal is specifically used to configure a terminal device that conforms to the UE identity.
  • the WUS may also carry a UE identity, and the UE identity is a UE ID, or a UE group ID, or a cell ID.
  • the WUS may also carry a bitmap. The processing method in which the terminal device determines whether it is a terminal device that conforms to the UE identity based on the UE identity (or bitmap) carried in the WUS has been described in the foregoing embodiments and will not be described again.
  • the configuration information of the synchronization signal is specifically used to configure a terminal device that conforms to the UE identity.
  • the configuration information of the synchronization signal may further include a new UE identity, and the new UE identity may also be one of: a new UE ID, a new UE group ID, or a new cell ID.
  • the terminal device determines that it is a terminal device that conforms to the UE identity based on the UE identity contained in the WUS, it can wake up the second component based on the WUS; when the configuration information based on the synchronization signal contains
  • the second component of the terminal device determines a synchronization signal based on the configuration information of the synchronization signal; performs time-frequency synchronization based on the synchronization signal.
  • the network device sends WUS, which can be used to wake up the terminal device; the information carried in the WUS can be used for operations performed by the terminal device after waking up.
  • the terminal device can wake up based on receiving the WUS and promptly perform post-wake-up operations based on the first information in the WUS. This can shorten the service transmission delay and thereby improve the processing efficiency of the system.
  • FIG. 7 is a schematic block diagram of a terminal device 700 according to an embodiment of the present application.
  • the terminal device 700 may include:
  • the first communication unit 701 is used to monitor the wake-up signal WUS; wherein the WUS is used to wake up the terminal device; the WUS carries first information, and the first information is used for the terminal device to execute after waking up. operation.
  • the WUS also includes: UE identification, and the UE identification is a UE ID, or a UE group ID, or a cell ID.
  • the WUS is specifically used to wake up the terminal equipment that matches the UE identity.
  • the first information includes one or more of the following information: information used to perform random access, and the information used to perform random access is configuration information of the first physical random access channel PRACH resource; used to perform Information for initial access, the information for performing initial access is the configuration information of the target initial bandwidth part BWP; information for performing time-frequency synchronization, the information for performing time-frequency synchronization is the configuration of the synchronization signal information.
  • the configuration information of the first PRACH resource is specifically used to configure a terminal device that conforms to the UE identity.
  • the configuration information of the first PRACH resource includes one or more of the following: time domain resource location information of the first PRACH; frequency domain resource location information of the first PRACH; cycle of the first PRACH; time slot of the first PRACH; The subcarrier spacing of the first PRACH; the number of the first PRACH opportunities; the mapping relationship between the first PRACH and the synchronization signal block SSB; the time domain resource location information of the first PRACH opportunity; the frequency domain resource location information of the first PRACH opportunity; the preamble code index number.
  • the time domain resource location information of the first PRACH includes one or more of the following: the time domain location of the time domain resource of the first PRACH; the duration of the time domain resource of the first PRACH.
  • the time domain resource location information of the first PRACH includes one or more of the following: a first time domain offset.
  • the first time domain offset is used to indicate the difference between the reception time of the WUS and the first PRACH.
  • the time domain position of the time domain resource of the first PRACH includes: the time domain starting position of the time domain resource of the first PRACH, and/or the time domain end position of the time domain resource of the first PRACH .
  • the frequency domain resource location information of the first PRACH includes one or more of the following: the location of the first type of frequency point of the frequency domain resource of the first PRACH; the size of the frequency domain resource of the first PRACH.
  • the frequency domain resource location information of the first PRACH includes one or more of the following: a first frequency domain offset.
  • the first frequency domain offset is used to represent the frequency domain location of the WUS and the first PRACH.
  • the first type of frequency point of the frequency domain resource of the first PRACH includes one or more of the following: the lowest frequency point of the frequency domain resource of the first PRACH; the highest frequency point of the frequency domain resource of the first PRACH point; the center frequency point of the frequency domain resource of the first PRACH.
  • the terminal device further includes: a first processing unit 702, configured to determine a first PRACH resource based on the configuration information of the first PRACH resource; in the first Perform random access on PRACH resources.
  • a first processing unit 702 configured to determine a first PRACH resource based on the configuration information of the first PRACH resource; in the first Perform random access on PRACH resources.
  • the first communication unit is configured to monitor the WUS when the terminal device is in an idle state.
  • the first communication unit is configured to receive the configuration information of the second PRACH resource configured by the network device before monitoring the WUS; wherein the configuration information of the second PRACH resource is different from the configuration information of the first PRACH resource. .
  • the configuration information of the second PRACH resource is used to determine the second PRACH resource used to perform random access; the time domain resource locations of the second PRACH resource and the first PRACH resource are different.
  • the configuration information of the target initial BWP includes: the ID of the target initial BWP.
  • the target initial BWP is one or more of multiple initial BWPs, and the multiple initial BWPs include one or more initial uplink BWPs. and/or one or more initial downlink BWPs, where the target initial BWP is an uplink BWP and/or a downlink BWP.
  • the configuration information of the target initial BWP is specifically used to configure a terminal device that conforms to the UE identity.
  • the first processing unit 702 is configured to determine the target initial BWP based on the configuration information of the target initial BWP, and perform initial access on the target initial BWP.
  • the terminal device is a reduced-capability RedCap terminal.
  • the configuration information of the synchronization signal includes one or more of the following: the transmission period of the synchronization signal; the time domain resource location information of the synchronization signal; the frequency domain resource location information of the synchronization signal; the antenna port of the synchronization signal; the transmission beam of the synchronization signal .
  • the configuration information of the synchronization signal is specifically used to configure a terminal device that conforms to the UE identity.
  • the time domain resource location information of the synchronization signal includes one or more of the following: the time domain location of the time domain resource of the synchronization signal; the duration of the time domain resource of the synchronization signal.
  • the time domain resource location information of the synchronization signal includes one or more of the following: a second time domain offset, the second time domain offset is used to represent the reception time of the WUS and the time domain of the synchronization signal.
  • the time domain position of the time domain resource of the synchronization signal includes: the time domain starting position of the time domain resource of the synchronization signal, and/or the time domain end position of the time domain resource of the synchronization signal.
  • the frequency domain resource location information of the synchronization signal includes one or more of the following: the location of the second type of frequency point of the frequency domain resource of the synchronization signal; the size of the frequency domain resource of the synchronization signal.
  • the frequency domain resource location information of the synchronization signal includes one or more of the following: a second frequency domain offset.
  • the second time domain offset is used to represent the frequency domain location of the WUS and the frequency domain of the synchronization signal.
  • the second type of frequency point of the frequency domain resource of the synchronization signal includes one or more of the following: the lowest frequency point of the frequency domain resource of the synchronization signal; the highest frequency point of the frequency domain resource of the synchronization signal; The center frequency point of the frequency domain resource of the synchronization signal.
  • the configuration information of the synchronization signal is specifically used to configure a terminal device that conforms to the UE identity.
  • the first processing unit 702 is configured to determine a synchronization signal based on the configuration information of the synchronization signal, and perform time-frequency synchronization based on the synchronization signal.
  • Figure 9 is a schematic block diagram of a network device 900 according to an embodiment of the present application.
  • the terminal device 900 may include:
  • the second communication unit 901 is configured to send a wake-up signal WUS; wherein the WUS is used to wake up the terminal device; the WUS carries first information, and the first information is used for operations performed by the terminal device after waking up. .
  • the WUS also includes: UE identification, and the UE identification is a UE ID, or a UE group ID, or a cell ID.
  • the WUS is specifically used to wake up the terminal equipment that matches the UE identity.
  • the first information includes one or more of the following information: information used to perform random access, and the information used to perform random access is configuration information of the first physical random access channel PRACH resource; used to perform Information for initial access, the information for performing initial access is the configuration information of the target initial bandwidth part BWP; information for performing time-frequency synchronization, the information for performing time-frequency synchronization is the configuration of the synchronization signal information.
  • the configuration information of the first PRACH resource is specifically used to configure a terminal device that conforms to the UE identity.
  • the configuration information of the first PRACH resource includes one or more of the following: time domain resource location information of the first PRACH; frequency domain resource location information of the first PRACH; cycle of the first PRACH; time slot of the first PRACH; The subcarrier spacing of the first PRACH; the number of the first PRACH opportunities; the mapping relationship between the first PRACH and the synchronization signal block SSB; the time domain resource location information of the first PRACH opportunity; the frequency domain resource location information of the first PRACH opportunity; the preamble code index number.
  • the time domain resource location information of the first PRACH includes one or more of the following: the time domain location of the time domain resource of the first PRACH; the duration of the time domain resource of the first PRACH.
  • the time domain resource location information of the first PRACH includes one or more of the following: a first time domain offset.
  • the first time domain offset is used to indicate the difference between the reception time of the WUS and the first PRACH.
  • the time domain position of the time domain resource of the first PRACH includes: the time domain starting position of the time domain resource of the first PRACH, and/or the time domain end position of the time domain resource of the first PRACH .
  • the frequency domain resource location information of the first PRACH includes one or more of the following: the location of the first type of frequency point of the frequency domain resource of the first PRACH; the size of the frequency domain resource of the first PRACH.
  • the frequency domain resource location information of the first PRACH includes one or more of the following: a first frequency domain offset.
  • the first frequency domain offset is used to represent the frequency domain location of the WUS and the first PRACH.
  • the first type of frequency point of the frequency domain resource of the first PRACH includes one or more of the following: the lowest frequency point of the frequency domain resource of the first PRACH; the highest frequency point of the frequency domain resource of the first PRACH point; the center frequency point of the frequency domain resource of the first PRACH.
  • the second communication unit is configured to configure configuration information of a second PRACH resource for a terminal device; wherein the configuration information of the second PRACH resource is different from the configuration information of the first PRACH resource.
  • the configuration information of the second PRACH resource is used to determine the second PRACH resource used to perform random access; the time domain resource locations of the second PRACH resource and the first PRACH resource are different.
  • the configuration information of the target initial BWP includes: the ID of the target initial BWP.
  • the target initial BWP is one or more of multiple initial BWPs, and the multiple initial BWPs include one or more initial uplink BWPs. and/or one or more initial downlink BWPs, where the target initial BWP is an uplink BWP and/or a downlink BWP.
  • the configuration information of the target initial BWP is specifically used to configure a terminal device that conforms to the UE identity.
  • the configuration information of the synchronization signal includes one or more of the following: the transmission period of the synchronization signal; the time domain resource location information of the synchronization signal; the frequency domain resource location information of the synchronization signal; the antenna port of the synchronization signal; the transmission beam of the synchronization signal .
  • the configuration information of the synchronization signal is specifically used to configure a terminal device that conforms to the UE identity.
  • the time domain resource location information of the synchronization signal includes one or more of the following: the time domain location of the time domain resource of the synchronization signal; the duration of the time domain resource of the synchronization signal.
  • the time domain resource location information of the synchronization signal includes one or more of the following: a second time domain offset, the second time domain offset is used to represent the reception time of the WUS and the time domain of the synchronization signal.
  • the time domain position of the time domain resource of the synchronization signal includes: the time domain starting position of the time domain resource of the synchronization signal, and/or the time domain end position of the time domain resource of the synchronization signal.
  • the frequency domain resource location information of the synchronization signal includes one or more of the following: the location of the second type of frequency point of the frequency domain resource of the synchronization signal; the size of the frequency domain resource of the synchronization signal.
  • the frequency domain resource location information of the synchronization signal includes one or more of the following: a second frequency domain offset.
  • the second time domain offset is used to represent the frequency domain location of the WUS and the frequency domain of the synchronization signal.
  • the second type of frequency point of the frequency domain resource of the synchronization signal includes one or more of the following: the lowest frequency point of the frequency domain resource of the synchronization signal; the highest frequency point of the frequency domain resource of the synchronization signal; The center frequency point of the frequency domain resource of the synchronization signal.
  • the configuration information of the synchronization signal is specifically used to configure a terminal device that conforms to the UE identity.
  • the network device in the embodiment of the present application can implement the corresponding functions of the network device in the aforementioned communication method embodiment of the network device.
  • each module (sub-module, unit or component, etc.) in the network device please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the network device of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module. (Submodule, unit or component, etc.) implementation.
  • the network device may also include a second processing unit, and the second processing unit may execute the communication method embodiment of the second aspect, where the network device generates WUS Wait for processing, but I won’t go into details.
  • Figure 10 is a schematic structural diagram of a communication device 1000 according to an embodiment of the present application.
  • the communication device 1000 includes a processor 1010, and the processor 1010 can call and run a computer program from the memory, so that the communication device 1000 implements the method in the embodiment of the present application.
  • the communication device 1000 may further include a memory 1020.
  • the processor 1010 can call and run the computer program from the memory 1020, so that the communication device 1000 implements the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated into the processor 1010.
  • the communication device 1000 may also include a transceiver 1030.
  • the processor 1010 may control the transceiver 1030 to communicate with other devices.
  • the communication device 1000 may send information or data to or receive data from other devices.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1000 can be a network device according to the embodiment of the present application, and the communication device 1000 can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For simplicity, in This will not be described again.
  • the communication device 1000 can be a terminal device in the embodiment of the present application, and the communication device 1000 can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For simplicity, in This will not be described again.
  • FIG 11 is a schematic structural diagram of a chip 1100 according to an embodiment of the present application.
  • the chip 1100 includes a processor 1110, and the processor 1110 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1100 may also include a memory 1120.
  • the processor 1110 can call and run the computer program from the memory 1120 to implement the method executed by the terminal device or the network device in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated into the processor 1110.
  • the chip 1100 may also include an input interface 1130.
  • the processor 1110 can control the input interface 1130 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 1100 may also include an output interface 1140.
  • the processor 1110 can control the output interface 1140 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, this chip is not mentioned here. Again.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For the sake of brevity, this is not mentioned here. Again.
  • the chips used in network equipment and terminal equipment can be the same chip or different chips.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the above-mentioned general processor may be a microprocessor or any conventional processor.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM).
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • FIG. 12 is a schematic block diagram of a communication system 1200 according to an embodiment of the present application.
  • the communication system 1200 includes a terminal device 1210 and a network device 1220.
  • the terminal device 1210 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1220 can be used to implement the corresponding functions implemented by the network device in the above method.
  • no further details will be given here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted over a wired connection from a website, computer, server, or data center (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法、终端设备、网络设备、计算机可读存储介质、计算机程序产品以及计算机程序。其中方法包括:终端设备监听唤醒信号(WUS);其中,所述WUS用于唤醒所述终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。

Description

通信方法、终端设备和网络设备 技术领域
本申请涉及通信领域,更具体地,涉及一种通信方法、终端设备、网络设备、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
随着技术的发展,对终端设备的节能也更加关注,因此提出终端设备使用更低功耗的接收机的方式,这种方式中,可以根据实际需要唤醒终端设备的主接收机进行相关处理。然而,在这种方式下如何保证终端设备能够及时的进行后续的操作,就成为需要解决的问题。
发明内容
本申请实施例提供一种通信方法、终端设备、网络设备、计算机可读存储介质、计算机程序产品以及计算机程序。
本申请实施例提供一种通信方法,包括:
终端设备监听唤醒信号WUS;其中,所述WUS用于唤醒所述终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备执行在唤醒后的操作。
本申请实施例提供一种通信方法,包括:
网络设备发送唤醒信号WUS;其中,所述WUS用于唤醒所述终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。
本申请实施例提供一种终端设备,包括:
第一通信单元,用于监听唤醒信号WUS;其中,所述WUS用于唤醒所述终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。
本申请实施例提供一种网络设备,包括:
第二通信单元,用于发送唤醒信号WUS;其中,所述WUS用于唤醒所述终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。
本申请实施例提供一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述方法。
本申请实施例提供一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该网络设备执行上述方法。
本申请实施例提供一种芯片,用于实现上述方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述方法。
通过采用上述方案,终端设备可以接收WUS,该WUS可以用于唤醒终端设备;该WUS中携带的可以用于所述终端设备在唤醒后执行的操作。如此,就可以使得终端设备基于接收到WUS唤醒,基于该WUS中的第一信息及时的执行唤醒后的操作,这样就可以缩短业务传输的时延,进而提升系统的处理效率。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是根据在DRX中引入节能信号的处理方式的一种场景示意图。
图3是根据通过节能信号唤醒终端设备接收寻呼消息的一种场景图。
图4是根据本申请一实施例的通信方法的示意性流程图。
图5是根据本申请的一实施例的终端设备的组成的示意图。
图6是根据本申请一实施例的通信方法的另一示意性流程图。
图7是根据本申请的一实施例的终端设备的示意性框图。
图8是根据本申请的另一实施例的终端设备的示意性框图。
图9是根据本申请的一实施例的网络设备的示意性框图。
图10是根据本申请实施例的通信设备示意性框图。
图11是根据本申请实施例的芯片的示意性框图。
图12是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一种可能的实现方式中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一种可能的实现方式中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO) 卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信系统100。该通信系统包括一个网络设备110和两个终端设备120。在一种可能的实现方式中,该通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
在一种可能的实现方式中,该通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
为了便于理解本申请实施例,下面对本申请实施例所涉及到的基本流程以及基本概念进行简单说明。应理解,下文所介绍的基本流程以及基本概念并不对本申请实施例产生限定。
5G的主要应用场景为:增强移动超宽带(eMBB,Enhanced Mobile Broadband)、低时延高可靠通信(URLLC,Ultra Reliable Low Latency Communications)、大规模机器类通信(mMTC,massive Machine Type Communications)。其中,eMBB以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速;由于eMBB可能部署在不同的场景中,便如室内,市区,农村等,其能力和需求的差别也比较大,所以必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度、小数据量、时延不敏感业务、低成本和长使用寿命等。
在5G网络环境中,为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义了新的RRC(无线资源控制,Radio Resource Control)状态,即RRC_INACTIVE(RRC非激活)状态。这种状态有别于RRC_IDLE(RRC空闲)状态、RRC_ACTIVE(RRC激活)或RRC_CONNECTED(RRC连接)状态。
关于终端设备(或称为UE)的节能,分别进行说明:
第一、针对RRC连接态的终端设备的节能:在5G的演进中,对UE(即终端设备)的节电提出了更高的要求。例如对于现有的DRX(Discontinuous Reception,非连续接收)机制,在每个on duration(激活时间),UE(即终端设备)需要不断检测PDCCH(物理下行控制信道,Physical Downlink Control CHannel)来判断基站是否调度发给自己的数据传输。对于大部分UE(即终端设备)来说,可能在很长一段时间没有接收数据传输的需要,仍然需要保持定期的唤醒机制来监听可能的下行传输,对于这类UE(即终端设备),节电有进一步优化的空间。
在R16标准中,引入了节能信号,以实现进一步的节能。该节能信号可以与DRX机制结合使用,该引入节能信号的处理方式,具体可以包括:终端设备在DRX ON duration(激活时间)之前,接收节能信号(或称为节能唤醒信号)。也就是,当针对一个终端设备在一个DRX周期有数据传输时,网络设备可以通过节能信号“唤醒”终端设备,以使得所述终端设备在唤醒后,在DRX On duration期间监听PDCCH;否则,当针对一个终端设备在一个DRX周期没有数据传输时,不向该终端设备发送节能信号(也就是不“唤醒”终端设备),以使得该终端设备在DRX On Duration期间不需要监听PDCCH。相比现有DRX机制,上述引入节能信号的处理方式,能够在终端设备没有数据传输时,省略DRX On duration期间PDCCH监听,从而实现终端设备的节能。其中,所述节能信号,可以由DCI(下行链路控制信息,DownLink Control Information)format(格式)2_6承载。
将终端设备在DRX(Discontinuous Reception,非连续接收)On duration之外的时间被称为非激活 时间,在DRX On Duration的时间被称为激活时间,结合图2,对以上在DRX中引入节能信号的处理方式进行说明,可以包括:第一个节能信号指示监听PDCCH,则终端设备在接收到该第一个节能信号后,在第一个DRX周期的激活时间(第一个DRX周期的激活时间在图2中表示为黑色方框)内监听PDCCH;第二个节能信号指示不监听PDCCH,则终端设备在接收到该第二个节能信号后,不在第二个DRX周期的激活时间(第二个DRX周期的激活时间在图2中表示为无颜色方框)内监听PDCCH;第三个节能信号指示不监听PDCCH,则终端设备在接收到该第三个节能信号后,不在第三个DRX周期的激活时间(第三个DRX周期的激活时间在图2中表示为无颜色方框)内监听PDCCH;第四个节能信号指示监听PDCCH,则终端设备在接收到该第四个节能信号后,在第四个DRX周期的激活时间(第四个DRX周期的激活时间在图2中表示为黑色方框)内监听PDCCH。
在R17标准中,为了进一步增强连接态(即RRC连接态)的UE(即终端设备)的节能,引入了R16的搜索空间集合组切换的增强方案,以及在数据传输的间隙跳过PDCCH监听的方案(即PDCCH skipping(跳过)的方案)来实现节电。其中,搜索空间集合组切换和PDCCH skipping相关的控制信息可以是通过PDCCH承载的。
第二、针对RRC-Idle(RRC空闲态)/RRC-inactive(RRC非激活态)态终端设备的节能:在RRC idle/inactive状态下的终端设备,通过DRX的方式接收寻呼消息。由于在一个DRX周期内存在一个寻呼时机(paging occasion,PO),因此终端设备只在PO接收寻呼消息,而在PO之外的时间不接受寻呼消息,来达到省电的目的。但是实际情况下,终端设备被寻呼到的概率可能并不高,因此,若终端设备周期性的在对应的PO上检测PDCCH,而有很大概率并没有检测到发给自己的寻呼消息,则客观上会造成功率的浪费。
与R16标准针对RRC连接态的终端设备的节能类似,R17标准对空闲态的终端设备接收寻呼消息的节能进行了优化,引入了与前述节能信号类似的一种节能信号,称为PEI(paging early indication,寻呼早期指示)。该PEI用于在目标PO到达之前,指示终端设备是否在该PO接收寻呼PDCCH。上述节能信号(即PEI)承载于PDCCH信道(以下为了方便描述,将其称为基于PDCCH信道的节能信号),具体通过DCI(下行链路控制信息,DownLink Control Information)format(格式)2_7携带该节能信号(即PEI)。该基于PDCCH信道的节能信号可以承载更多的节能信息,例如,可以承载sub-grouping(子分组)信息,用于指示节能信息对应的终端设备子分组(或UE子分组)。可通过UE_ID(标识)将对应同一个PO的多个终端设备的进一步分组,得到多个终端设备组。若终端设备所在的终端设备组有任何一个终端设备需要被寻呼,则终端设备需要在该PO上接收寻呼消息,否则,终端设备不需要接收寻呼消息。以上通过将终端设备组(或称为终端设备子分组)信息与节能信息结合,可以更加精细的指示在目标PO是否需要接收寻呼的终端设备。比如,通过节能信号唤醒终端设备接收寻呼消息的一种场景,如图3所示:第一个节能信号指示一个或多个终端设备组中的终端设备在对应的PF(寻呼帧,Paging Frame)或者PO(在图3中将第一个节能信号所指示的PF或PO表示为灰色方块)上接收寻呼,则该终端设备组内的终端设备唤醒后,在PF或PO上监听寻呼;第二个节能信号则指示不监听PDCCH,也就是指示一个或多个终端设备组中的终端设备在对应的PF或者PO(在图3中将第二个节能信号所指示的PF或PO表示为无颜色方块)上不接收寻呼,则该终端设备组内的终端设备可以不在PF或PO上监听寻呼;第三个节能信号指示一个或多个终端设备组中的终端设备在对应的PF或者PO(在图3中将第三个节能信号所指示的PF或PO表示为灰色方块)上接收寻呼,则该终端设备组内的终端设备唤醒后,在PF或PO上监听寻呼。
为了终端设备的进一步节电,R18标准计划引入唤醒接收机(WUR,wake-up receiver)接收节能信号的方案。WUR具有极低成本、极低复杂度和极低功耗的特点,其主要通过基于包络检测的方式接收节能信号。因此,WUR接收的节能信号与现有R16、R17标准定义的基于PDCCH承载的信号的调制方式、波形等不同。节能信号主要通过对载波信号进行ASK调制的包络信号。包络信号的解调也可基于无线射频信号提供的能量驱动低功耗电路来完成,因此它可以是无源的。WUR也可以通过终端设备进行供电,无论哪种供电方式,该WUR相比终端设备的传统接收机都极大的降低了功耗,例如WUR可以实现小于1mw(毫瓦)的功耗,远低于传统接收机几十至几百mw的功耗。WUR可以和终端设备结合在一起,作为终端设备接收机的一个附加模块,也可以单独作为一个终端设备的唤醒功能模块。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
图4是根据本申请第一方面实施例的通信方法的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S410、终端设备监听唤醒信号(WUS,wake-up Signal);其中,所述WUS用于唤醒所述终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。
所述终端设备监听所述WUS,可以指的是:所述终端设备处于空闲态的情况下,监听所述WUS。所述终端设备具体可以为低功耗设备;或者所述低功耗设备还可以称为零功耗设备。该终端设备,即所述低功耗设备,可以包括第一部件以及第二部件,所述第一部件的功耗低于所述第二部件,相应的,上述S410所述终端设备监听WUS,可以为:所述终端设备的第一部件监听所述WUS。再具体的,可以为:所述终端设备处于RRC空闲态的情况下,所述终端设备的第一部件监听所述WUS。
需要指出的是,在所述终端设备的第一部件监听所述WUS的过程中,所述终端设备的所述第二部件可以处于休眠状态。该休眠状态可以指的是所述第二部件一部分功能或一部分器件处于开启状态,但是另一部分功能或另一部分器件处于关闭状态或称为待唤醒状态等等。所述终端设备可以仅包含上述第一部件和第二部件;或者,所述终端设备除了包含上述第一部件和第二部件之外,还可以包含其他部件,只是本实施例不做穷举。
所述第一部件可以指的是所述终端设备中的低功耗接收机,或者可以称为唤醒接收机(WUR,wake-up receiver),或者可以称为零功耗WUR,或者还可以称为低功耗WUR,或者还可以称为低功耗电路,关于该第一部件更多的名称本实施例不做穷举。所述第二部件可以指的是所述终端设备中的主接收机。
示例性的,结合图5,对前述终端设备进行说明,该终端设备由图5中所示的主接收机以及WUR构成。进一步的,如果网络设备需要终端设备开启或唤醒第二部件即图5中的主接收机,则所述网络设备可以向所述终端设备发送WUS。相应的,所述终端设备的WUR可以监听所述WUS;在终端设备的WUR监听到所述WUS的情况下,控制开启或唤醒所述终端设备的主接收机(即前述第二部件);在终端设备的WUR没有监听到所述WUS的情况下,终端设备的主接收机可以保持处于休眠状态。也就是说,在终端设备没有业务或没有寻呼消息时,终端设备可以仅使用WUR(即第一部件)持续进行WUS监听;仅当终端设备有业务或有寻呼消息时,终端设备的WUR才会监听到WUS,再唤醒终端设备的主接收机以进行数据收发。
所述WUS为UE专属的;或者所述WUS为UE组共享的,所述UE组可以是包含所述终端设备的UE组;或者所述WUS为小区专用的,所述小区可以为所述终端设备所在的服务小区。因此,所述WUS还可以包括:UE标识,所述UE标识为UE ID或UE组UD或小区ID。
需要指出的是,所述UE标识可以包含在所述WUS中的第一信息中,或者所述UE标识可以不包含的WUS的第一信息中。本实施例不对所述UE标识在所述WUS中的具体信息位置进行限定。
其中,所述UE ID可以指的是终端设备的标识,可以为终端设备的唯一标识,比如,可以为以下任意之一:可以采用临时移动用户识别码(TMSI,Temporary Mobile Subscriber Identity)、国际移动用户识别码(IMSI,International Mobile Subscriber Identity)、I-RNTI(Inactive Radio Network Temporary Identifier,非激活无线网络临时标识)。
所述UE组可以是一个或多个终端设备所组成的;系统中可以配置一个或多个UE组,并且系统中为该一个或多个UE组中不同的UE组分配了不同的ID,以唯一区分不同的UE组。
所述小区ID可以是系统中包含的一个或多个小区分别对应的ID。所述WUS具体用于唤醒符合所述UE标识的终端设备。也就是,所述终端设备的第一部件(即WUR)在接收到所述WUS之后,基于所述WUS中携带的UE标识,确定自身为符合所述UE标识的终端设备的情况下,可以唤醒第二部件(即主接收机)。
其中,终端设备确定自身是否为符合所述UE标识的终端设备的方式,可以包括:在所述UE标识包含的为UE ID的情况下,终端设备基于自身的标识判断与所述UE ID是否相同;在相同的情况下,确定自身为符合所述UE标识的终端设备;或者,在所述UE标识包含的为UE组ID的情况下,终端设备基于自身所在的UE组的标识判断与所述UE组ID是否相同;在相同的情况下,确定自身为符合所述UE标识的终端设备;或者,在所述UE标识包含的为小区ID的情况下,终端设备基于自身所在的小区的标识判断与所述小区ID是否相同;在相同的情况下,确定自身为符合所述UE标识的终端设备。
可选的,该UE标识可以替换为比特图;在该比特图中的某一个比特位的取值可以用于表示是否唤醒唤醒对应的终端设备或UE组;举例来说,第一值表示唤醒所述终端设备,第二值表示不唤醒所述终端设备或UE组;第一值与第二值不同,比如,第一值为1、第二值为0,或者与之相反。
举例来说,所述WUS中携带比特图,所述比特图(bitmap)中可以包含Q个比特位,Q为大于等于1的整数。在所述比特图中包含的所述Q个比特位中,每个比特位可以用于对应一个UE组,且不同比特位对应不同的UE组。所述Q个比特位中,每一个比特位的取值可以用于指示是否唤醒对应的UE组中的终端设备。其中,每一个比特位的取值可以包括二进制第一值和二进制第二值。二进制第一值用于指示唤醒对应的UE组中的终端设备,也就是该二进制第一值用于指示对应的UE组中的终端设备唤醒第二部件;二进制第二值用于指示不唤醒对应的UE组中的终端设备,也就是二进制第二值用于指示UE组中的所述终端设备不唤醒第二部件。该二进制第一值和二进制第二值不同,比如二进制第一值为1、二进制第二值为0,或者二进制第一值为0、二进制第二值为1。比如,终端设备的第一部件(即WUR)在接收到该WUS之后,从该WUS中获取比特图,从所述比特图中获取所述终端设备所在的UE组所对应的比特位的取值;若该比特位的取值为二进制第一值,则所述终端设备可以唤醒第二部件(即主接收机)。
为了便于区分,下文从调制方式、调制波形、传输速率、支持的带宽范围、码率等方面,介绍WUR与主接收机之间的差异:从二者支持的调制方式来看,WUR支持的调制方式的复杂程度低于主接收机支持的调制方式的复杂程度。在一些实现方式中,WUR支持的调制方式可以包括以下调制方式中的一种或多种:幅移键控(amplitude shift keying,ASK)、相移键控(phase shift keying,PSK)、频移键控(frequency shift keying,FSK)等。相应地,主接收机支持的调制方式可以包括以下调制方式中的一种或多种:正交相移键控(quadrature phase shift keying,QPSK)、正交振幅调制(quadrature amplitude modulation,QAM)、正交频分复用(orthogonal frequency division multiplexing,OFDM)等。当然,在另一些实现方式中,主接收机也可以支持ASK、PSK、FSK中的至少之一的调制方式。本申请实施例对此不作具体限定。从二者支持的调制波形来看,WUR支持的调制波形的复杂度低于主接收机支持的调制波形的复杂度。例如,WUR支持的调制波形可以包括以下调制波形中的一种或多种:ASK信号对应的波形、PSK信号对应的波形、FSK信号对应的波形。相应地,主接收机支持的调制波形可以包括以下调制波形中的一种或多种:QPSK信号对应的波形、QAM信号对应的波形、OFDM信号对应的波形。当然,在一些实施例中,主接收机支持的调制波形还可以包括ASK、PSK、FSK中的一种或多种信号对应的波形。从二者支持的传输速率来看,WUR支持的传输速率低于主接收机支持的传输速率。从二者支持的带宽范围来看,WUR支持的带宽范围小于主接收机支持的带宽范围,或者说,WUR支持的带宽比主接收机支持的带宽窄。从二者支持的码率来看,WUR支持的码率低于主接收机支持的码率。
本实施例提供的方案中,所述终端设备仅使用第一部件(即WUR)监听所述WUS,可以节省终端设备的功耗。这是由于终端设备的WUR工作时使用极低的功耗(一般小于1mw);并且,终端设备的WUR使用ASK或FSK的方式对信号进行调制,这也使得终端设备的WUR可以采用极其简单的硬件结构和极其简单的接收方式对信号进行接收和解调,例如,针对ASK信号,终端设备的WUR仅需要使用包络检测的方式对信号进行接收。因此,相对传统的终端设备一直使用主接收机的模式,本实施例采用终端设备的WUR监听WUS,能够极大节省终端设备的功耗。
上述WUS,还可以称为低功耗WUS,或者还可以称为其他名称,本实施例不做穷举。
所述WUS除了可以用于唤醒所述终端设备之外,还可以携带前述第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。示例性的,所述所述终端设备在唤醒后执行的操作可以包括以下一个或多个:随机接入、初始接入、时频同步。
具体的,所述第一信息可以包括以下一个或多个信息:用于执行随机接入的信息,所述用于执行随机接入的信息为第一PRACH(Physical Random Access Channel,物理随机接入信道)资源的配置信息;用于执行初始接入的信息,所述用于执行初始接入的信息为目标初始BWP(BandWidth Part,带宽部分)资源的配置信息;用于执行时频同步的信息,所述用于执行时频同步的信息为同步信号的配置信息。
下面针对上述第一信息中所包含的具体内容,分别进行详细说明:
所述第一PRACH资源的配置信息,可以包括以下一个或多个:第一PRACH的时域资源位置信息;第一PRACH的频域资源位置信息;第一PRACH的周期;第一PRACH的时隙;第一PRACH的子载波间隔;第一PRACH时机的数量;第一PRACH与同步信号块SSB的映射关系;第一PRACH时机的时域资源位置信息;第一PRACH时机的频域资源位置信息;前导码索引号。
其中,所述第一PRACH的时域资源信息,下面分两种情况来说:
在一种情况中,所述第一PRACH的时域资源信息中可以包括所述第一PRACH的时域资源的绝对 时域位置。具体的:所述第一PRACH的时域资源信息,包含以下一个或多个:所述第一PRACH的时域资源的时域位置;所述第一PRACH的时域资源的持续时长。
其中,所述第一PRACH的时域资源的时域位置,包括:所述第一PRACH的时域资源的时域起始位置,或者,所述第一PRACH的时域资源的时域结束位置。
所述第一PRACH的时域资源的持续时长,可以指的是第一PRACH资源所占用的时域长度。可以采用时隙、符号、子帧、毫秒等等中任意之一为单位。示例性的,所述第一PRACH的时域资源的持续时长可以为:1个时隙、或2个时隙,或1毫秒、或3毫秒、更长或更短,这里仅作为示例性说明,不作为对本实施例的限定。
一种实施方式中,所述第一PRACH的时域资源位置信息具体包括:所述第一PRACH的时域资源的的时域起始位置、所述第一PRACH的时域资源的持续时长。该第一PRACH的时域资源的时域起始位置、所述第一PRACH的时域资源的持续时长可以是以符号、时隙、子帧、毫秒、微秒等任意之一为单位来表示。比如,所述第一PRACH的时域资源的时域起始位置可以表示为第A1个时隙;所述第一PRACH的时域资源的持续时长可以表示为A2个毫秒。
又一种实施方式中,所述第一PRACH的时域资源位置信息具体包括:所述第一PRACH的时域资源的的时域起始位置以及所述第一PRACH的时域资源的的时域结束位置。该第一PRACH的时域资源的时域起始位置、所述第一PRACH的时域资源的时域结束位置可以是以符号、时隙、子帧、毫秒、微秒等任意之一为单位来表示。比如,所述第一PRACH的时域资源的时域起始位置可以表示为第A1个时隙;所述第一PRACH的时域资源的时域结束位置可以表示为第A3个时隙。
又一种实施方式中,所述第一PRACH的时域资源信息中可以包括所述第一PRACH的时域资源的相对时域位置。具体的:所述第一PRACH的时域资源位置信息,包含以下一个或多个:第一时域偏移,所述第一时域偏移用于表示所述WUS的接收时间与所述第一PRACH的时域资源的时域位置之间的偏移;所述第一PRACH的时域资源的持续时长。
所述第一PRACH的时域资源的持续时长,可以指的是第一PRACH资源所占用的时域长度。可以采用时隙、符号、子帧、毫秒等等中任意之一为单位。示例性的,所述第一PRACH的时域资源的持续时长可以为:1个时隙、或2个时隙,或1毫秒、或3毫秒、更长或更短,这里仅作为示例性说明,不作为对本实施例的限定。
由于所述WUS可以占用一段时域资源,本实施例中,可以指定所述WUS所占用的一段时域资源中的一个时间(或一个时刻)作为该WUS的接收时间。比如,所述WUS的接收时间,可以包括:所述WUS的起始接收时间、或者、所述WUS的接收完成时间。应理解,所述WUS的接收时间还可以为所述WUS所占用的时域资源中的其他时间,比如可以为所述WUS所占用的时域资源的中点时间等等,只要所述终端设备与所述网络设备双方采用相同的WUS的接收时间即可。
同样的,所述第一PRACH的时域资源也可以占用一段时域资源,可以指定所述第一PRACH的时域资源中的时间(或时刻)作为该第一PRACH的时域资源的时域位置。比如,所述第一PRACH的时域资源的时域位置,包括:所述第一PRACH的时域资源的时域起始位置,和/或,所述第一PRACH的时域资源的时域结束位置。应理解,所述第一PRACH的时域资源的时域位置还可以为所述第一PRACH的时域资源中的其他时间,比如可以为所述第一PRACH的时域资源的中点时间等等,只要所述终端设备与所述网络设备双方采用相同的第一PRACH的时域资源的时域位置即可。
所述第一时域偏移,可以包括一个数值或多个数值。所述第一时域偏移的单位可以为符号、时隙、子帧、毫秒、微秒等任意之一。
在一种可能的实施方式中,所述第一时域偏移包括一个数值,将该数值称为第一数值。所述第一数值可以用于表示所述第一PRACH的时域资源的时域起始位置,与所述WUS的接收时间(比如WUS的起始接收时间)之间的相对时间偏移;或者,该偏移值可以用于表示所述第一PRACH的时域资源的时域结束位置,与所述WUS的接收时间(比如WUS的起始接收时间)之间的相对时间偏移。
这种实施方式中,所述第一PRACH的时域资源位置信息中还可以包括:第一PRACH的时域资源的持续时长。所述终端设备可以基于前述第一PRACH的时域资源的时域起始位置(或时域结束位置)以及第一PRACH的时域资源的持续时长,确定所述第一PRACH的时域资源的具体位置。
举例来说,所述第一时域偏移为第一数值,该第一数值等于A4,该第一时域偏移的单位为时隙。则所述终端设备可以基于该WUS的起始接收时间,确定所述第一PRACH的时域资源的时域起始位置为所述WUS的起始接收时间延迟A4个时隙之后的位置。所述终端设备可以基于前述第一PRACH的时域资源的时域起始位置,加第一PRACH的时域资源的持续时长,得到第一PRACH的时域资源的时域结束位置;将第一PRACH的时域资源的时域起始位置以及时域结束位置之间的范围,作为所述第一PRACH的时域资源的具体位置。再举例来说,所述第一时域偏移为第一数值,该第一数值等于A5, 该第一时域偏移的单位为时隙。则所述终端设备可以确定所述第一PRACH的时域资源的时域起始位置为所述WUS的接收结束时间延迟A5个时隙之后的位置。所述终端设备可以基于前述第一PRACH的时域资源的时域起始位置,加第一PRACH的时域资源的持续时长,得到第一PRACH的时域资源的时域结束位置;将第一PRACH的时域资源的时域起始位置以及时域结束位置之间的范围,作为所述第一PRACH的时域资源的具体位置。
在一种可能的实施方式中,在所述第一时域偏移包括两个数值时,比如两个数值分别表示为第二数值和第三数值;其中第二数值可以用于表示所述第一PRACH的时域资源的时域起始位置,与所述WUS的接收时间(比如WUS的起始接收时间)之间的相对时间偏移;第三数值可以表示所述第一PRACH的时域资源的时域结束位置,与所述WUS的接收时间(比如WUS的起始接收时间)之间的相对时间偏移。其中,第二数值小于第三数值。该第一时域偏移(即两个偏移值或多个偏移值)的单位可以为符号、时隙、子帧、毫秒、微秒等任意之一。
举例来说,所述第二数值为A6个时隙,第三数值等于A7个时隙,且A7大于A6。所述终端设备可以确定所述第一PRACH的时域资源的时域起始位置为所述WUS的接收结束时间延迟A6个时隙之后的位置;并确定所述第一PRACH的时域资源的时域结束位置为所述WUS的接收结束时间延迟A7个时隙之后的位置。
应理解,本实施方式中WUS的接收结束时间还可以替换为WUS的起始接收时间,或WUS的其他时间,只要网络设备和终端设备双方采用相同的时间即可。这里不再进行穷举。
在所述第一时域偏移包括两个或更多数值时,所述第一PRACH的时域资源位置信息中,可以不包含第一PRACH的时域资源的持续时长。
所述第一PRACH的频域资源位置信息,也可以分成两种情况具体说明:
一种情况中,所述第一PRACH的频域资源位置信息为绝对频域位置。所述第一PRACH的频域资源位置信息,包含以下一个或多个:所述第一PRACH的频域资源的第一类频点的位置;所述第一PRACH的频域资源的大小。
所述第一类频点可以是以PRB(物理资源块,physical resource block)、RB(资源块,resource block)、Khz、Mhz等等中任意之一为单位来表示。所述指定频点的数量可以有一个或多个。
所述第一PRACH的频域资源的第一类频点,包括以下一个或多个:所述第一PRACH的频域资源的最低频点;所述第一PRACH的频域资源的最高频点;所述第一PRACH的频域资源的中心频点。应理解,这里仅为示例性说明,实际处理时所述第一类频点还可以为其他频点,只要终端设备和网络设备对该指定频点的定义或解释相同,即均在本实施例的保护范围内,这里不做穷举。
在一种可能的实施方式中,所述第一PRACH的频域资源位置信息中,可以仅包含所述第一PRACH的频域资源的第一类频点的位置。也就是说,该第一PRACH的频域资源位置信息中,可以不包含所述第一PRACH的频域资源的大小。此时,所述第一PRACH的频域资源的第一类频点,可以为多个频点。比如,所述第一PRACH的频域资源位置信息中,包含第一PRACH的频域资源的最低频点和中心频点的位置;或者,所述第一PRACH的频域资源位置信息中,包含第一PRACH的频域资源的最低频点和最高频点的位置。
以所述第一PRACH的频域资源的第一类频点为最低频点和最高频点为例来说,所述终端设备可以直接获取所述第一PRACH的频域资源位置信息中包含的所述第一PRACH的频域资源中的最低频点和最高频点的位置,将位于所述第一PRACH的频域资源的最低频点与所述最高频点之间的频域范围作为所述第一PRACH的频域范围。
在一种可能的实施方式中,所述第一PRACH的频域资源位置信息中,可以包含所述第一PRACH的频域资源的第一类频点的位置,和所述第一PRACH的频域资源的大小。
此时,所述第一PRACH的频域资源的第一类频点,可以为一个频点。比如,所述第一PRACH的频域资源位置信息中,包含第一PRACH的频域资源的最低频点的位置;或者,第一PRACH的频域资源的最高频点的位置;或者,第一PRACH的频域资源的中心频点的位置。
以所述第一PRACH的频域资源的第一类频点为最低频点为例来说,所述终端设备可以直接获取所述第一PRACH的频域资源位置信息中包含的所述第一PRACH的频域资源中的最低频点的位置。在得到所述第一PRACH的频域资源中的最低频点的位置之后,根据所述第一PRACH的频域资源的大小确定所述第一PRACH的频域资源的频域范围。以所述第一PRACH的频域资源的第一类频点为中心频点为例来说,所述终端设备可以基于所述第一PRACH的频域资源位置信息中包含的所述第一PRACH的频域资源中的中心频点的位置。在得到所述第一PRACH的频域资源中的中心频点的位置之后,还可以根据所述第一PRACH的频域资源的大小确定所述第一PRACH的频域资源的最低频点和所述最高频点,将位于所述第一PRACH的频域资源的最低频点与所述最高频点之间的频域资源,作为所述第一 PRACH的频域范围。
在另一种情况中,所述第一PRACH的频域资源位置信息为相对频域位置。
所述第一PRACH的频域资源位置信息,包含以下一个或多个:第一频域偏移,所述第一频域偏移用于表示所述WUS的频域位置与所述第一PRACH的频域资源的第一类频点之间的偏移;所述第一PRACH的频域资源的大小。
所述WUS的频域位置,包括以下之一:所述WUS占用的频域资源中的最低频点;所述WUS占用的频域资源中的最高频点;所述WUS占用的频域资源中的中心频点。应理解,所述WUS的频域位置还可以采用WUS的其他频点来表示,只要终端设备与网络设备之间采用相同的频点即在本实施例保护范围内,这里不做穷举。
所述第一PRACH的频域资源的第一类频点,包括以下一个或多个:所述第一PRACH的频域资源的最低频点;所述第一PRACH的频域资源的最高频点;所述第一PRACH的频域资源的中心频点。
应理解,这里仅为示例性说明,实际处理时所述第一类频点还可以为其他频点,只要终端设备和网络设备对该第一类频点的定义或解释相同,即均在本实施例的保护范围内,这里不做穷举。
其中,所述第一PRACH的频域资源的大小可以在所述第一PRACH的频域资源位置信息中包含;或者,可以为所述终端设备预先获取的,比如可以为网络设备在所述终端设备在上一次处于RRC连接态的情况下,通过DCI、RRC信令、系统消息中任意之一发送至所述终端设备的。
该第一频域偏移的单位,可以为PRB、RB、Khz、Mhz等等中任意之一。所述第一频域偏移可以包括一个或多个数值。
在一种可能的实施方式中,在所述第一频域偏移包括一个数值的时候,将该数值称为第四数值。该第一频域偏移值(即第四数值)可以用于表示所述第一PRACH的频域资源的一个第一类频点,与所述WUS的一个频域位置之间的相对频域偏移。
这种实施方式中,所述第一PRACH的频域资源位置信息中还可以包括:第一PRACH的频域资源的大小。
举例来说,以所述第一PRACH的频域资源的第一类频点为最低频点、所述WUS的频域位置为WUS占用的频域资源中的中心频点为例;所述终端设备在监听到WUS的情况下,基于所述WUS占用的频域资源中的中心频点的位置增加(或减少)第四数值,得到所述第一PRACH的频域资源的最低频点的位置。所述终端设备可以基于所述第一PRACH的频域资源的最低频点的位置,加第一PRACH的频域资源的大小,得到第一PRACH的频域资源的最高频点的位置;将第一PRACH的频域资源的最高频点以及最低频点之间的范围,作为所述第一PRACH的频域资源的具体范围。再举例来说,以所述第一PRACH的频域资源的第一类频点为中心频点、所述WUS的频域位置为WUS占用的频域资源中的最高频点为例;所述终端设备在监听到WUS的情况下,基于所述WUS的最高频点的位置增加(或减少)第四数值,得到所述第一PRACH的频域资源的中心频点的位置。所述终端设备可以基于所述第一PRACH的频域资源的中心频点的位置,加第一PRACH的频域资源的大小的1/2,得到第一PRACH的频域资源的最高频点的位置;基于所述第一PRACH的频域资源的中心频点的位置,减去第一PRACH的频域资源的大小的1/2,得到第一PRACH的频域资源的最低频点的位置;将第一PRACH的频域资源的最高频点以及最低频点之间的范围,作为所述第一PRACH的频域资源的具体范围。
在一种可能的实施方式中,在所述第一频域偏移包括两个数值,分别为第五数值和第六数值;其中,第五数值可以用于表示所述第一PRACH的频域资源的一个第一类频点,与所述WUS的一个频域位置之间的相对频域偏移;以及第六数值,用于表示所述第一PRACH的频域资源的另一个第一类频点,与所述WUS的一个频域位置之间的相对频域偏移。这种实施方式中,所述第一PRACH的频域资源位置信息中可以不包括第一PRACH的频域资源的大小。举例来说,以所述第一PRACH的频域资源的一个第一类频点为最低频点、另一个第一类频点为最高频点、所述WUS的频域位置为WUS占用的频域资源中的中心频点为例;所述终端设备在监听到WUS的情况下,基于所述WUS占用的频域资源中的中心频点的位置减少第五数值,得到所述第一PRACH的频域资源的最低频点的位置;基于所述WUS占用的频域资源中的中心频点的位置增加第六数值,得到所述第一PRACH的频域资源的最高频点的位置;将第一PRACH的频域资源的最高频点以及最低频点之间的范围,作为所述第一PRACH的频域资源的具体范围。
总的来说,前述第一PRACH的时域资源位置信息用于确定所述第一PRACH资源的时域资源范围(或称为时域位置),前述第一PRACH的频域资源位置信息用于确定所述第一PRACH资源的频域资源范围(或称为频域范围)。上述第一PRACH资源的时域资源范围和频域资源范围,可以指的是用于随机接入的时频资源的位置(或总范围)。在实际处理中,在第一PRACH资源的时域资源范围和频域资源范围之内,还会存在更细粒度的第一PRACH时机(occasion)(或称为第一PRACH资源中的PRACH 时机)。
所述更细粒度可以指的是,在第一PRACH资源的时域资源范围和频域资源范围之内,存在一个或多个第一PRACH时机所分别对应的时域资源和频域资源。换句话说,任意一个第一PRACH时机的持续时长小于前述第一PRACH的时域资源的持续时长,和/或,任意一个第一PRACH时机的频域范围大小小于前述第一PRACH的频域资源的大小。
所述第一PRACH时机(occasion)的数量可以根据实际情况配置,具体可以包括以下一个或多个:在所述第一PRACH资源(即所述第一PRACH的时域资源范围和频域资源范围之内)中包含的第一PRACH时机的总数量;在第一PRACH的时域资源包含的第一PRACH时机的数量;在第一PRACH的频域资源包含的第一PRACH时机的数量。应理解,所述第一PRACH资源中包含的第一PRACH时机的总数量,大于或等于在第一PRACH的时域资源包含的第一PRACH时机的数量;或者,所述第一PRACH资源中包含的第一PRACH时机的总数量,大于或等于在第一PRACH的频域资源包含的第一PRACH时机的数量。
前述已经说明,所述第一PRACH时机的数量可以有一个或多个,下面实施例针对所述第一PRACH时机的时频位置说明中,可以理解为针对一个或多个第一PRACH时机中的任意之一的说明,由于针对每个第一PRACH时机的时频位置说明为相同的,因此不做一一赘述。
所述第一PRACH时机的时域资源位置信息,可以包含以下一个或多个:第一PRACH时机的时域起始位置、第一PRACH时机的时域结束位置、第一PRACH时机的持续时长。其中,所述第一PRACH时机的持续时长,小于前述第一PRACH的时域资源的持续时长。
第一PRACH时机的时域起始位置/时域结束位置,可以是以时隙、符号、子帧、毫秒等任意之一为单位来表示。
在一种可能的实施方式中,所述第一PRACH时机的时域资源位置信息,包含第一PRACH时机的时域起始位置、第一PRACH时机的时域结束位置。
在另一种可能的实施方式中,所述第一PRACH时机的时域资源位置信息,包含第一PRACH时机的时域起始位置和第一PRACH时机的持续时长。比如,PRACH时机的时域起始位置为第A3个时隙的第a1个符号,和PRACH时机的持续时长为A4个时隙。又比如,PRACH时机的时域起始位置为第A5个子帧,和PRACH时机的持续时长为A6个子帧。
所述第一PRACH时机的频域资源位置信息可以包含以下一个或多个:第一PRACH时机的最低频点位置、第一PRACH时机的最高频点位置、第一PRACH时机的中心频点位置、第一PRACH时机的频域范围大小。
其中,第一PRACH时机的频域范围大小,小于所述第一PRACH的频域资源的大小。第一PRACH时机的最低频点位置、中心频点位置、最高频点位置可以是以PRB、RB、Khz、Mhz中任意之一为单位。
在一种可能的实施方式中,所述第一PRACH时机的频域资源位置信息,包含第一PRACH时机的最低频点位置、第一PRACH时机的最高频点位置。所述终端设备基于第一PRACH时机的最低频点位置以及第一PRACH时机的最高频点位置,可以确定第一PRACH时机的频域资源范围。
在另一种可能的实施方式中,所述第一PRACH时机的频域资源位置信息,包含第一PRACH时机的最低频点位置和第一PRACH时机的频域范围大小。基于第一PRACH时机的最低频点位置和第一PRACH时机的频域范围大小,可以确定一个第一PRACH时机的频域资源范围。
比如,第一PRACH时机的最低频点位置为第B3个PRB,第一PRACH时机的频域范围大小包括B4个PRB。当然,上述PRACH时机的频域位置的指示中还可以采用其他单位,比如RB、KHz、MHZ等等,比如,PRACH时机的频域起始位置为B5Mhz,PRACH时机的频域范围大小可以为B6Mhz,这里不做穷举。
在又一种可能的实施方式中,所述第一PRACH时机的频域资源位置信息,包含第一PRACH时机的中心频点位置和第一PRACH时机的频域范围大小。基于第一PRACH时机的中心频点位置、第一PRACH时机的频域范围大小,可以确定一个第一PRACH时机的频域资源范围。
第一PRACH与同步信号块SSB的映射关系,具体可以指的是PRACH时机与SSB的映射关系。再具体的,可以指的是:SSB的编号与PRACH时机之间的映射关系。通过该第一PRACH与SSB的映射关系,所述终端设备可以确定所述第一PRACH的时隙。
所述前导码索引号,具体可以指的是本次所述终端设备所使用的前导码索引号。在整个系统中每个第一PRACH时机可以对应有多个预先配置的前导码(比如可以有64个前导码)及其分别对应的索引号;网络设备可以通过在第一PRACH资源的配置信息中指示本次使用的前导码索引号,比如可以指示6、9或其他索引号,这里不做穷举;相应的,所述终端设备可以通过解析所述第一PRACH资源的配 置信息,获取本次所要使用的前导码岁引号,进而确定本次使用的前导码。需要指出的是,多个预先配置的前导码及其分别对应的索引号,可以为网络设备通过系统广播消息预先配置给终端设备的。
所述第一PRACH的周期,可以指的是每一个第一PRACH的周期的长度。周期的单位可以是时隙、符号、子帧、微秒、毫秒等等。比如,第一PRACH的周期的长度为10个时隙。需要指出的是,所述第一PRACH的周期可以是在基于前述第一PRACH的时域资源位置信息以及第一PRACH的频域资源位置信息,确定第一个周期的第一PRACH资源之后,基于该第一PRACH的周期确定一个或多个周期,并确定该一个或多个周期中各个周期的第一PRACH资源。比如,根据第一PRACH的周期可以确定各个周期的长度;基于前述第一PRACH的时域资源位置信息以及第一PRACH的频域资源位置信息,确定第一个周期的第一PRACH资源的时域资源范围为第X1~X2个时隙,频域范围为第Y1~Y2个PRB。基于各个周期的长度可以确定各个周期中第一PRACH的时域资源范围,比如周期长度为L个时隙,第二个周期中第一PRACH的时域资源范围可以为L+X1~L+X2个时隙,第二个周期中第一PRACH的频域范围可以不变同样为第Y1~Y2个PRB。
所述第一PRACH的时隙,可以指的是所述第一PRACH的发送时隙,或称为通过该第一PRACH发送随机接入前导码的发送时隙。应理解,在第一PRACH资源的配置信息中,配置了所述第一PRACH的时域资源位置信息、第一PRACH与SSB的映射关系的情况下,所述第一PRACH资源的配置信息可以不包含所述第一PRACH的时隙。或者,在第一PRACH资源的配置信息中,未配置所述第一PRACH的时域资源位置信息、未配置第一PRACH与SSB的映射关系的情况下,所述第一PRACH资源的配置信息可以包含所述第一PRACH的时隙。
所述第一PRACH的子载波间隔,可以指的是所述第一PRACH的频域资源上采用的子载波间隔。该第一PRACH的子载波间隔可以与当前系统的子载波间隔相同。或者,所述第一PRACH的子载波间隔可以为根据实际情况设置的,比如,可以为15kHZ、30Khz、60Khz、120Khz、240Khz等等,这里不做穷举。
应理解,在终端设备所接收到的WUS所携带的第一信息中,可以包含上述第一PRACH资源的配置信息的一个或多个具体内容。
进一步地,还可以包括:所述终端设备基于所述第一PRACH资源的配置信息,确定第一PRACH资源;所述终端设备在所述第一PRACH资源上进行随机接入。
前述已经说明,所述终端设备监听WUS,具体可以是:所述终端设备处于空闲态的情况下,监听所述WUS。相应的,所述终端设备基于所述WUS携带的所述第一信息中包含的所述第一PRACH资源的配置信息确定第一PRACH资源;所述终端设备在所述第一PRACH资源上进行随机接入,具体可以指的是:所述终端设备处于空闲态的情况下,基于所述WUS携带的所述第一信息中包含的所述第一PRACH资源的配置信息,确定第一PRACH资源;所述终端设备在所述第一PRACH资源上进行随机接入。
所述终端设备监听唤醒信号WUS之前,所述方法还包括:所述终端设备接收网络设备配置的第二PRACH资源的配置信息;其中,所述第二PRACH资源的配置信息,与所述第一PRACH资源的配置信息不同。
所述第二PRACH资源的配置信息,用于确定执行随机接入的第二PRACH资源;所述第二PRACH资源与所述第一PRACH资源的时域资源位置不同。也就是说,在所述终端设备中还可以获取并保存第二PRACH资源的配置信息,并且可以基于该第二PACH资源的配置信息确定用于执行随机接入的第二PRACH资源。
具体来说,所述第二PRACH资源的配置信息,用于确定第二PRACH资源;该第二PRACH资源的配置信息中可以携带的内容包括但不限于:第二PRACH的时域资源位置(比如起始位置、结束位置、持续时长中至少之一)、第二PRACH的频域资源位置(比如频域资源大小、最低频点、最高频点、中心频点中至少之一)、第二PRACH时机的位置以及数量等等。基于该第二PRACH资源的配置信息所确定的所述第二PRACH资源,至少与第一PRACH资源的时域资源位置是不同的。具体来说,该第二PRACH资源可以是当前系统配置的原PRACH资源。比如,系统为终端设备配置的第二PRACH资源的周期比较大(比如20ms),也就是可以是第二PRACH资源的周期大于所述第一PRACH资源;和/或,第二PRACH资源的时域起始位置晚于所述第一PRACH资源的时域起始位置。这是因为,核心网的设备(比如MME)确定某一个处于空闲态的终端设备当前需要进行业务传输;该核心网的设备可以通知网络设备向处于空闲态(或非激活态)的所述终端设备发送WUS;相应的,网络设备向处于空闲态(或非激活态)的所述终端设备发送所述WUS。而这种情况下,希望该处于空闲态的终端设备能够尽快或及时的进行随机接入,从而终端设备可以尽快的进行后续的处理。但是,系统为终端设备配置的第二PRACH资源的周期比较大,若要所述终端设备处于空闲态的情况下,终端设备被WUS唤醒后若 仅基于第二PRACH资源进行随机接入,可能无法保证终端设备随机接入的及时性。因此,网络设备可以在所述WUS携带的第一信息中添加第一PRACH资源的配置信息,由于所述第一PRACH资源早于所述第一PRACH资源的时域起始位置,并且,第一PRACH资源的周期小于所述第一PRACH资源;因此,所述终端设备处于空闲态(或非激活态)的情况下,终端设备被WUS唤醒后基于第一PRACH资源可以更早或更及时的进行随机接入。
在一种可能的实施方式中,所述第一PRACH资源可以是针对竞争型的随机接入过程配置的临时性PRACH资源。旨在能够配置比当前系统配置的第二PRACH资源更早的第一PRACH资源。因此,可以在第一PRACH资源(或临时性PRACH资源)的配置信息中至少携带第一PRACH的时域资源位置信息、第一PRACH的频域资源位置信息,以使得所述终端设备可以获取与当前系统配置的第二PRACH资源不同的第一PRACH资源(或临时性PRACH资源),进而能够尽快的发起随机接入建立RRC连接。
举例来说,所述第一PRACH资源(或临时性PRACH资源)的配置信息,可以包括:第一PRACH的时域资源位置信息,第一PRACH的频域资源位置信息,第一PRACH occasion(时机)的数量,第一PRACH与SSB的映射关系等。这里不做穷举。上述第一PRACH资源的时域资源位置信息,可以具体包含第一时域偏移;和/或,所述第一PRACH的频域资源位置信息,可以具体包含第一频域偏移。关于所述第一时域偏移以及第一频域偏移的说明与前述实施例相同,不做赘述。
在一种可能的实施方式中,所述第一PRACH资源可以为终端设备专用PRACH,使得终端设备可以执行免竞争的随机接入,以避免当终端设备使用基于竞争的随机接入时,在随机接入过程中与其他终端设备随机接入之间的干扰的问题,从而保证提升终端随机接入的成功率,加快终端RRC连接建立过程。这种实施方式中,所述WUS中携带的第一指示中的第一PRACH资源的配置信息,可以为专用PRACH资源的配置信息。举例来说,上述第一PRACH资源的配置信息可以包括:第一PRACH时机的时域资源位置信息、第一PRACH时机的频域资源位置信息、前导码索引号;该第一PRACH时机的时域资源位置信息中可以包括第一PRACH的时域资源的持续时长等。
可选地,所述第一PRACH资源的配置信息具体用于配置符合所述UE标识的终端设备。也就是,终端设备基于所述WUS中包含的UE标识,确定自身为符合所述UE标识的终端设备的情况下,可以基于该WUS唤醒第二部件,并且可以基于所述WUS的第一信息中包含的该第一PRACH资源的配置信息,确定所述第一PRACH资源;在所述第一PRACH资源上进行随机接入。其中,在所述第一PRACH资源(或临时性PRACH资源)上进行随机接入具体可以指的是,所述终端设备在所述第一PRACH资源(或临时性PRACH资源)上发起随机接入请求。关于所述WUS中包含的UE标识、所述终端设备如何确定自身是否为符合所述UE标识的终端设备的具体处理方式,在前述实施例中已经说明,因此不做重复说明。关于WUS中还可以携带比特图及其对应的唤醒终端设备的方式在前述实施例也做了详细说明,因此不再赘述。
下面分多种情况分别来说明:
终端设备的第一部件(即WUR)在接收到该WUS之后,若确定自身符合所述UE标识的终端设备,则所述终端设备的第一部件(即WUR)唤醒第二部件(即主接收机);所述终端设备的第二部件(即主接收机)基于所述第一PRACH资源的配置信息确定PRACH资源;所述终端设备的第二部件(即主接收机)在基于第一PRACH资源(或临时性PRACH资源)的配置信息确定第一PRACH资源(或临时性PRACH资源),在第一PRACH资源(或临时性PRACH资源)上进行随机接入(具体可以为发起随机接入请求)。
或者,终端设备的第一部件(即WUR)在接收到该WUS之后,若确定自身符合所述UE标识的终端设备,则终端设备的第一部件(即WUR)基于所述第一PRACH资源的配置信息确定第一PRACH资源;所述终端设备的第一部件(即WUR)唤醒第二部件(即主接收机);所述终端设备的主接收机(即第二部件)在第一PRACH资源(或临时性PRACH资源)上进行随机接入(具体可以为发起随机接入请求)。
或者,终端设备的第一部件(即WUR)在接收到该WUS之后,从该WUS中获取比特图,从所述比特图中获取所述终端设备所在的终端设备组所对应的比特位的取值;若该比特位的取值为二进制第一值,则所述终端设备可以唤醒第二部件(即主接收机);所述终端设备的主接收机(即第二部件)在第一PRACH资源(或临时性PRACH资源)上进行随机接入(具体可以为发起随机接入请求)。
或者,终端设备的第一部件(即WUR)在接收到该WUS之后,若确定该WUS中未携带任何终端设备的标识以及终端组的标识,则所述终端设备的第一部件(即WUR)唤醒第二部件(即主接收机);所述终端设备的第二部件(即主接收机)基于所述第一PRACH资源的配置信息确定第一PRACH资源;所述终端设备的第二部件(即主接收机)在基于第一PRACH资源(或临时性PRACH资源)的配置信息确定第一PRACH资源(或临时性PRACH资源)的情况下,在第一PRACH资源(或临时性PRACH 资源)上进行随机接入(具体可以为发起随机接入请求)。
可选地,在所述第一PRACH资源的配置信息中还可以进一步包含新的UE标识,该新的UE标识也可以为:新的UE ID、新的UE组ID、新的小区ID中之一。相应的,终端设备基于所述WUS中包含的UE标识,确定自身为符合所述UE标识的终端设备的情况下,可以基于该WUS唤醒第二部件;在基于所述第一PRACH资源的配置信息中包含的新的UE标识,确定自身为符合该UE标识的终端设备的情况下,可以使用所述WUS的第一信息中包含的该第一PRACH资源的配置信息以确定所述第一PRACH资源。还可以包括:在基于所述第一PRACH资源的配置信息中包含的新的UE标识,确定自身不为符合该UE标识的终端设备的情况下,可以不使用所述WUS的第一信息中包含的该第一PRACH资源的配置信息。
接下来针对所述第一信息中包含的目标初始BWP的配置信息,以及终端设备基于该目标初始BWP的配置信息所执行的处理进行说明:
所述目标初始BWP的配置信息,包括:所述目标初始BWP的ID,所述目标初始BWP为多个初始BWP中的一个或多个,所述多个初始BWP包括一个或多个初始上行BWP和/或一个或多个初始下行BWP,所述目标初始BWP为上行BWP和/或下行BWP。
终端设备还可以预先保存多个初始BWP的配置及其索引号,具体的,所述终端设备可以预先保存一个或多个初始上行BWP的配置及其索引号和/或一个或多个初始下行BWP的配置及其索引号。
上述多个初始BWP的配置及其索引号可以为终端设备根据协议预先设置的,或者可以是从网络设备获取的。关于多个初始BWP的配置及其索引号为从网络设备获取的方式中,具体获取方式可以为:所述终端设备接收第二信息;所述第二信息中包括多个初始BWP的配置及其索引号。所述第二信息可以为在所述终端设备处于RRC连接态的情况下,接收所述网络设备发送的第二信息,该第二信息可以携带在系统广播消息、RRC信令、MAC CE中的任意之一中,这里不对其进行穷举。
上述目标初始BWP的配置信息中包含的目标初始BWP的ID,还可以为目标初始BWP的索引号。其中,所述目标初始BWP可以包括上行BWP和/或下行;相应的,BWP目标初始BWP的ID(或索引号),可以仅包含上行BWP的ID(或索引号),或者仅包含下行BWP的ID(或索引号),或者包含上行BWP的ID(或索引号)以及下行BWP的ID(或索引号)。
在目标初始BWP的配置信息包含不同内容以及终端设备预先配置的初始BWP不同的情况下,终端设备确定目标初始BWP的方式可以分多种情况来说:
情况一、所述终端设备预先配置的初始BWP,包括一个初始下行BWP,以及多个初始上行BWP。所述目标初始BWP的配置信息中包含的目标初始BWP的ID可以为上行BWP的ID。
也就是说,这种情况下,由于终端设备预先配置了一个初始下行BWP,因此,所述终端设备可以默认使用该初始下行BWP作为所述目标初始BWP中的下行BWP。在所述目标初始BWP的配置信息中不需要指示其中包含的目标初始BWP的一个ID为上行BWP还是下行BWP,终端设备可以默认该目标初始BWP的一个ID为一个上行BWP的ID。
举例来说,若WUS中携带的第一信息中的目标初始BWP的配置信息中仅包含上行BWP的ID,则终端设备可以基于上行BWP的ID确定所述目标初始BWP中的上行BWP,然后将终端设备预先配置的初始下行BWP直接作为所述目标初始BWP中的下行BWP。
情况二、所述终端设备预先配置的初始BWP,包括一个初始上行BWP,以及多个初始下行BWP。所述目标初始BWP的配置信息中包含的目标初始BWP的ID可以为下行BWP的ID。
也就是说,这种情况下,由于终端设备预先配置了一个初始上行BWP,因此,所述终端设备可以默认使用该初始上行BWP作为所述目标初始BWP中的上行BWP。在所述目标初始BWP的配置信息中不需要指示其中包含的目标初始BWP的一个ID为上行BWP还是下行BWP,终端设备可以默认该目标初始BWP的一个ID为一个下行BWP的ID。
举例来说,若WUS中携带的第一信息中的目标初始BWP的配置信息中仅包含下行BWP的ID,则终端设备可以基于下行BWP的ID确定所述目标初始BWP中的下行BWP,然后将终端设备预先配置的一个初始上行BWP直接作为所述目标初始BWP中的上行BWP。
情况三、所述终端设备预先配置的初始BWP,包括多个初始上行BWP,以及多个初始下行BWP。通常所述多个初始上行BWP与所述多个初始下行BWP的ID具备对应关系。其中,对应关系可以指的是初始下行BWP和初始上行BWP使用相同的ID(或索引号);比如,所述终端设备预先配置的初始BWP,包括2个初始上行BWP,以及2个初始下行BWP;2个初始上行BWP的ID分别为初始上行BWP-0、初始上行BWP-1,2个初始下行BWP的ID分别为初始下行BWP-0、初始下行BWP-1。或者,该对应关系还可以指的是预先设置的初始下行BWP和初始上行BWP的ID的匹配关系;比如,所述终端设备预先配置的初始BWP,包括2个初始上行BWP,以及2个初始下行BWP;2个初始上行BWP 的ID分别为初始上行BWP-0、初始上行BWP-1,2个初始下行BWP的ID分别为初始下行BWP-3、初始下行BWP-2;其中,初始上行BWP-0与初始下行BWP-2之间预先设置了对应关系(即两者匹配),初始上行BWP-1与初始下行BWP-3之间预先设置了对应关系(即两者匹配)。
由于终端设备预先配置了一个初始上行BWP以及多个初始上行BWP与所述多个初始下行BWP的ID具备对应关系。因此,所述目标初始BWP的配置信息中可以包含一个目标初始BWP的ID,该目标初始BWP的ID可以为下行BWP的ID。举例来说,若WUS中携带的第一信息中的目标初始BWP的配置信息中仅包含下行BWP的ID,则终端设备可以基于下行BWP的ID确定所述目标初始BWP中的下行BWP,然后终端设备根据预先配置的多个初始上行BWP与所述多个初始下行BWP的ID的对应关系,基于该目标初始BWP中的下行BWP的ID确定对应的上行BWP。
情况四、所述终端设备预先配置的初始BWP,包括多个初始上行BWP,以及多个初始下行BWP。与前述情况三不同在于,本情况中,终端设备中可以不预先配置所述多个初始上行BWP与所述多个初始下行BWP的ID的对应关系。因此,所述目标初始BWP的配置信息中可以包含多个目标初始BWP的ID。
可选的,所述目标初始BWP的配置信息中可以包含两个目标初始BWP的ID。该两目标初始BWP的ID可以包括下行BWP的ID以及上行BWP的ID。
举例来说,若WUS中携带的第一信息中的目标初始BWP的配置信息包括了下行BWP的ID以及上行BWP的ID,则终端设备可以基于下行BWP的ID确定所述目标初始BWP中的下行BWP,基于下行BWP的ID确定所述目标初始BWP中的上行BWP。
可选的,所述方法还可以包括:所述终端设备基于所述WUS携带的所述第一信息中包含的所述目标初始BWP的配置信息确定目标初始BWP,在所述目标初始BWP上进行初始接入。具体的:所述终端设备的第一部件在接收到WUS的情况下,唤醒所述终端设备的第二部件;所述终端设备的第二部件基于所述目标初始BWP的配置信息确定目标初始BWP,在所述目标初始BWP上进行初始接入。或者,所述终端设备的第一部件在接收到WUS的情况下,基于所述WUS中携带的相关指示信息,确定唤醒所述终端设备的第二部件;所述终端设备的第二部件在基于所述目标初始BWP的配置信息确定目标初始BWP的情况下,在所述目标初始BWP上进行初始接入。
上述初始接入可以包括小区搜索和随机接入等过程。通过小区搜索可以使得终端设备与网络设备获得下行同步,然后终端设备可以进行随机接入。比如,在所述目标初始BWP上进行初始接入,可以为:所述终端设备进行小区搜索、完成与网络设备的下行同步后,所述终端设备可以在所述上行BWP发送随机接入请求(即msg1),在该下行BWP上接收网络设备发送的随机接入响应(即msg2);在所述目标初始BWP还包含上行BWP的情况下,所述终端设备在所述上行BWP上传输RRC消息(即msg3),用于通知网络设备随机接入过程的触发原因;所述终端设备在所述下行BWP上接收竞争冲突解决信息(即msg4)。
可选地,所述目标初始BWP的配置信息具体用于配置符合所述UE标识的终端设备。也就是,终端设备基于所述WUS中包含的UE标识,确定自身为符合所述UE标识的终端设备的情况下,所述终端设备的第二部件基于所述目标初始BWP的配置信息确定目标初始BWP,在所述目标初始BWP上进行初始接入。关于所述WUS中包含的UE标识、所述终端设备如何确定自身是否为符合所述UE标识的终端设备的具体处理方式,在前述实施例中已经说明,因此不做重复说明。关于WUS中还可以携带比特图及其对应的唤醒终端设备的方式在前述实施例也做了详细说明,因此不再赘述。
或者,在所述目标初始BWP的配置信息中还可以进一步包含新的UE标识,该新的UE标识也可以为:新的UE ID、新的UE组ID、新的小区ID中之一。相应的,终端设备基于所述WUS中包含的UE标识,确定自身为符合所述UE标识的终端设备的情况下,可以基于该WUS唤醒第二部件;在基于所述目标初始BWP的配置信息包含的新的UE标识,确定自身为符合该UE标识的终端设备的情况下,所述终端设备的第二部件基于所述目标初始BWP的配置信息确定目标初始BWP,在所述目标初始BWP上进行初始接入。另外,还可以包括:若基于所述目标初始BWP的配置信息包含的新的UE标识,确定自身为不符合该UE标识的终端设备的情况下,所述终端设备的第二部件不基于所述目标初始BWP的配置信息确定目标初始BWP。
可选地,本实施例提供的方式中,所述终端设备为降低能力(RedCap,Reduced Capability)终端。这是由于,通常其他类型的终端设备,系统为其配置一个初始BWP;而在降低能力(RedCap,Reduced Capability)终端中,由于其带宽更小(通常为20MHz小于传统的100MHz)、天线数量更少、采用简单的调制方式(比如64QAM)、采用半双工FDD等,因此系统会为其预先配置多个初始BWP。通过采用本实施例提供的方案,可以通过预先配置多个初始BWP,以保证网络设备指示不同终端设备进行初始接入的时候,可以仅通过WUS中的第一信息指示目标初始BWP的ID,即可确定本次所要使用的上行 BWP和/或下行BWP,进而在该上行BWP和/或下行BWP上进行初始接入的处理,从而可以实现负载分流或负载均衡的效果,另外,由于采用这样的方式不需要终端设备侧保存过多的交互过程中产生的信息,因此可以减少资源碎片,更加适用于窄带RedCap终端。
接下来针对所述第一信息中包含的同步信号的配置信息,以及终端设备的相关处理进行详细说明:
所述同步信号的配置信息,可以包括以下一个或多个:同步信号的发送周期;同步信号的时域资源位置信息;同步信号的频域资源位置信息;同步信号的天线端口;同步信号的发送波束。
其中,所述同步信号具体可以包括以下一个或多个:SSB(同步信号块,Synchronization Signal Block)、其他参考信号。所述其他参考信号可以包括:TRS(时间参考信号,Time Reference Signal),和/或CSI-RS(Channel-State Information Reference Signal,信道状态信息参考信号)。
所述同步信号的发送周期,可以比当前系统中的同步信号原发送周期小,也就是说,可以加密(加多)发送所述同步信号。所述同步信号的发送周期具体可以根据实际情况进行配置,比如可以是1ms、2ms或更长或更短,这里不做穷举。
可选的,所述同步信号的时域资源位置信息,可以包含以下一个或多个:所述同步信号的时域资源的时域位置;所述同步信号的时域资源的持续时长。所述同步信号的时域资源的时域位置的时间单位可以是时隙、符号、帧、子帧、毫秒等任意至少之一。
所述同步信号的时域资源的时域位置,可以包括:所述同步信号的时域资源的时域起始位置,和/或,所述同步信号的时域资源的时域结束位置。
举例来说,同步信号的时域资源位置信息中直接包含所述同步信号的时域资源位置。其中,所述同步信号的时域资源的时域位置,包括:所述同步信号的时域资源的时域起始位置,和所述同步信号的时域资源的时域结束位置。
所述终端设备可以基于所述同步信号的时域资源的时域位置中,所述同步信号的时域资源的时域起始位置,和所述同步信号的时域资源的时域结束位置,直接确定所述同步信号的时域范围(或时域位置)。
举例来说,同步信号的时域资源位置信息中直接包含所述同步信号的时域资源位置以及所述同步信号的时域资源的持续时长。其中,所述同步信号的时域资源的时域位置,包括:所述同步信号的时域资源的时域起始位置,或所述同步信号的时域资源的时域结束位置。
所述终端设备可以基于所述同步信号的时域起始位置以及所述同步信号的时域资源的持续时长,确定同步信号的时域资源的时域终止位置;基于所述同步信号的时域资源的时域起始位置,和所述同步信号的时域资源的时域结束位置,确定所述同步信号的时域范围。
可选的,所述同步信号的时域资源位置信息,包括以下一个或多个:第二时域偏移,所述第二时域偏移用于表示所述WUS的接收时间与所述同步信号的时域资源的时域位置之间的偏移;所述同步信号的时域资源的持续时长。
所述同步信号的时域资源的时域位置,可以包括:所述同步信号的时域资源的时域起始位置,和/或,所述同步信号的时域资源的时域结束位置。
由于所述WUS可以占用一段时域资源,本实施例中,可以指定所述WUS所占用的一段时域资源中的一个时间(或一个时刻)作为该WUS的接收时间。所述WUS的接收时间,可以包括:所述WUS的起始接收时间、或者、所述WUS的接收完成时间。应理解,所述WUS的接收时间还可以为所述WUS所占用的时域资源中的其他时间,比如可以为所述WUS所占用的时域资源的中点时间等等,只要所述终端设备与所述网络设备双方采用相同的WUS的接收时间即可。
所述第二时域偏移,可以包括一个数值或多个数值。
举例来说,在第二时域偏移中包含一个数值,比如第七数值;该第七数值用于表示所述WUS的接收时间与所述同步信号的时域资源的时域起始位置之间的偏移;或者,用于表示所述WUS的接收时间与所述同步信号的时域资源的时域结束位置之间的偏移。该第二时域偏移的单位可以是时隙、符号、帧、子帧、毫秒等任意至少之一。这种实施方式中,所述同步信号的时域资源位置信息还可以包括:所述同步信号的时域资源的持续时长。
所述终端设备可以确定所述同步信号的时域资源的时域起始位置为所述WUS的起始接收时间延迟第二时域偏移之后的位置;基于前述同步信号的时域资源的时域起始位置,加同步信号的时域资源的持续时长,得到同步信号的时域资源的时域结束位置;将同步信号的时域资源的时域起始位置以及时域结束位置之间的范围,作为所述同步信号的时域资源的具体位置。
举例来说,所述第二时域偏移,可以包括多个数值,比如包含两个数值,分别为第八数值和第九数值;该第八数值用于表示所述WUS的接收时间与所述同步信号的时域资源的时域起始位置之间的偏移;第九数值用于表示所述WUS的接收时间与所述同步信号的时域资源的时域结束位置之间的偏移。该第二时域偏移的单位可以是时隙、符号、帧、子帧、毫秒等任意至少之一。其中,第八数值小于第九数值。
所述终端设备可以确定所述同步信号的时域资源的时域起始位置为所述WUS的起始接收时间延迟第八数值之后的位置;确定所述同步信号的时域资源的时域结束位置为所述WUS的起始接收时间延迟第九数值之后的位置;将同步信号的时域资源的时域起始位置以及时域结束位置之间的范围,作为所述同步信号的时域资源的具体位置。
可选的,所述同步信号的频域资源位置信息,包含以下一个或多个:所述同步信号的频域资源的第二类频点的位置;所述同步信号的频域资源的大小。
所述同步信号的频域资源的第二类频点,包括以下一个或多个:所述同步信号的频域资源的最低频点;所述同步信号的频域资源的最高频点;所述同步信号的频域资源的中心频点。该第二类频点的具体位置还可以根据实际情况的不同而不同,只要终端设备与网络设备双方预先确定采用相同的参考频点即可。
举例来说,所述同步信号的频域资源的第二类频点的位置包含有所述同步信号的频域资源最低频点、所述同步信号的频域资源最高频点;相应的,所述终端设备可以将所述同步信号的频域资源的最低频点以及最高频点之间的频域范围,直接作为所述同步信号的频域范围。举例来说,所述同步信号的频域资源的第二类频点的位置可以仅包含一个频点;则所述同步信号的频域资源位置信息还会包含所述同步信号的频域资源的大小。比如,所述同步信号的频域资源的第二类频点的位置仅为中心频点;所述终端设备可以基于所述同步信号的频域资源的中心频点的位置,以及同步信号的频域资源的大小,确定所述同步信号的频域范围;该频域范围指的是所述同步信号的最低频点至所述同步信号的最高频点之间的范围。
可选的,所述同步信号的频域资源位置信息,包含以下一个或多个:第二频域偏移,所述第二时域偏移用于表示所述WUS的频域位置与所述同步信号的频域资源的第二类频点之间的偏移;所述同步信号的频域资源的大小。
所述第二频域偏移的单位可以为PRB、RB、Khz、Mhz中任意之一。
同样的,所述同步信号的频域资源的第二类频点,包括以下一个或多个:所述同步信号的频域资源的最低频点;所述同步信号的频域资源的最高频点;所述同步信号的频域资源的中心频点。
所述WUS的频域位置,包括以下之一:所述WUS占用的频域资源中的最低频点;所述WUS占用的频域资源中的最高频点;所述WUS占用的频域资源中的中心频点。
该第二频域偏移的单位,可以为PRB、RB、Khz、Mhz等等中任意之一。所述第二频域偏移可以包括一个或多个数值。
在一种可能的实施方式中,在所述第二频域偏移包括一个数值,将该数值称为第十数值。该第二频域偏移值(即第十数值)可以用于表示所述同步信号的频域资源的一个第二类频点,与所述WUS的一个频域位置之间的相对频域偏移。这种实施方式中,所述同步信号的频域资源位置信息中还可以包括:同步信号的频域资源的大小。
举例来说,以所述同步信号的频域资源的第二类频点为最低频点、所述WUS的频域位置为WUS占用的频域资源中的中心频点为例;所述终端设备在监听到WUS的情况下,基于所述WUS占用的频域资源中的中心频点的位置增加(或减少)第十数值,得到所述同步信号的频域资源的最低频点的位置。所述终端设备可以基于所述同步信号的频域资源的最低频点的位置,加同步信号的频域资源的大小,得到同步信号的频域资源的最高频点的位置;将同步信号的频域资源的最高频点以及最低频点之间的范围,作为所述同步信号的频域资源的具体范围。再举例来说,以所述同步信号的频域资源的第二类频点为中心频点、所述WUS的频域位置为WUS占用的频域资源中的最高频点为例;所述终端设备在监听到WUS的情况下,基于所述WUS的最高频点的位置增加(或减少)第四数值,得到所述同步信号的频域资源的中心频点的位置。所述终端设备可以基于所述同步信号的频域资源的中心频点的位置,加同步信号的频域资源的大小的1/2,得到同步信号的频域资源的最高频点的位置;基于所述同步信号的频域资源的中心频点的位置,减去同步信号的频域资源的大小的1/2,得到同步信号的频域资源的最低频点的位置;将同步信号的频域资源的最高频点以及最低频点之间的范围,作为所述同步信号的频域资源的具体范围。
在一种可能的实施方式中,在所述第二频域偏移包括两个数值,分别为第十一数值和第十二数值;其中,第十一数值可以用于表示所述同步信号的频域资源的一个第二类频点,与所述WUS的一个频域位置之间的相对频域偏移;以及第十二数值,用于表示所述同步信号的频域资源的另一个第二类频点,与所述WUS的一个频域位置之间的相对频域偏移。这种实施方式中,所述同步信号的频域资源位置信息中可以不包括第一PRACH的频域资源的大小。
举例来说,以所述同步信号的频域资源的一个第二类频点为最低频点、另一个第二类频点为最高频点、所述WUS的频域位置为WUS占用的频域资源中的中心频点为例;所述终端设备在监听到WUS的情况下,基于所述WUS占用的频域资源中的中心频点的位置减少第十一数值,得到所述同步信号的 频域资源的最低频点的位置;基于所述WUS占用的频域资源中的中心频点的位置增加第十二数值,得到所述同步信号的频域资源的最高频点的位置;将同步信号的频域资源的最高频点以及最低频点之间的范围,作为所述同步信号的频域资源的具体范围。
这种方式中,所述终端设备可以基于所述第二频域偏移,确定所述同步信号的频域资源位置,基于所述同步信号的频域资源位置,确定同步信号的频域范围。具体可以为:所述终端设备基于所述第二频域偏移、以及WUS的频域位置,确定所述同步信号的频域资源的参考频点的位置,基于所述同步信号的参考频点的位置,确定同步信号的频域范围。比如,所述终端设备基于WUS的频域位置(比如最高频点)增加或减少所述第二频域偏移,得到所述同步信号的频域资源的参考频点(比如最低频点)的位置,然后基于所述同步信号的参考频点(比如最低频点)的位置以及同步信号预设频域资源大小,确定同步信号的频域范围。当然,还可以存在其他的确定同步信号的频域范围示例,只是不做穷举。
所述同步信号的天线端口、同步信号的发送波束可以由网络设备基于实际发送的情况来确定,这里不对其进行限定。
还需要指出,前述同步信号的配置信息,可以包括以上全部内容,或者可以仅包含其中部分。在所述同步信号的配置信息仅包含其中部分的情况下,可以包含第三配置信息以及第四配置信息;或者,可以包括同步信号的发送周期以及所述第四配置信息等等,这里不做穷举。
进一步地,还可以包括:所述终端设备基于所述同步信号的配置信息确定同步信号;所述终端设备基于所述同步信号进行时频同步。另外,还可以包括:所述终端设备在完成时频同步的情况下,进行随机接入。上述时频同步具体可以指的是所述终端设备与网络设备完成下行时频同步。
可选的,上述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。因此,所述WUS中还会可以携带UE标识,所述UE标识为UE ID、或UE组ID、或小区ID。或者,所述WUS中还可以携带比特图。关于终端设备基于WUS中携带的UE标识(或比特图)判断自身是否为符合UE标识的终端设备的处理方式,在前述实施例中已经描述,不做赘述。
可选地,所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。也就是,终端设备基于所述WUS中包含的UE标识,确定自身为符合所述UE标识的终端设备的情况下,所述终端设备的第二部件基于所述同步信号的配置信息确定同步信号;基于所述同步信号进行时频同步。
或者,在所述同步信号的配置信息中还可以进一步包含新的UE标识,该新的UE标识也可以为:新的UE ID、新的UE组ID、新的小区ID中之一。相应的,终端设备基于所述WUS中包含的UE标识,确定自身为符合所述UE标识的终端设备的情况下,可以基于该WUS唤醒第二部件;在基于所述同步信号的配置信息包含的新的UE标识,确定自身为符合该新的UE标识的终端设备的情况下,所述终端设备的第二部件基于所述同步信号的配置信息确定同步信号;基于所述同步信号进行时频同步。另外,还可以包括:若基于所述目标初始BWP的配置信息包含的新的UE标识,确定自身为不符合该UE标识的终端设备的情况下,所述终端设备的第二部件不基于所述同步信号的配置信息确定同步信号。
上述同步信号的配置信息,主要是用于终端设备(终端设备的第二部件)唤醒后,由该终端设备的第二部件或称为主接收机进行数据收发。由于通常终端设备在与网络设备进行数据收发之前,终端设备的主接收机需使用同步信号获得时频同步。因为,为了优化终端的时频同步过程,除了网络正常发送的同步信号(比如SSB信号)之外,可以额外加密发送同步信号(比如SSB信号)或额外发送其他参考信号(如TRS,或CSI-RS),使得终端可以在短时间内接收到更多的同步信号,用于加快终端完成时频同步过程。
最后需要说明的是,在所述第一信息中包含的内容不同的情况下,所述终端设备执行的处理也可以不同,在以上实施例中,针对第一信息分别包含第一PRACH资源的配置信息、目标初始BWP的配置信息、同步信号的配置信息的情况下,所述终端设备进行的相关处理进行了相关说明。在实际处理中,第一信息还可以包含上述两个或全部信息,所述终端设备所执行的处理也可以随之进行调整,下面举例来进行说明:
第一示例、所述第一信息中包含目标初始BWP的配置信息和同步信号的配置信息。
所述终端设备在基于所述目标初始BWP的配置信息确定目标初始BWP,并且基于所述同步信号的配置信息完成时频同步的情况下,在所述目标初始BWP上进行初始接入。
第二示例、所述第一信息中包含第一PRACH资源的配置信息和同步信号的配置信息。
所述终端设备在基于所述第一PRACH资源的配置信息确定所述第一PRACH资源,并且基于所述同步信号的配置信息完成时频同步的情况下,在所述第一PRACH资源上进行随机接入(具体可以为在所述第一PRACH资源上发起随机接入请求)。
第三示例、所述第一信息中包含第一PRACH资源的配置信息、目标初始BWP的配置信息、同步信号的配置信息。
所述终端设备在基于所述目标初始BWP的配置信息确定目标初始BWP,基于所述第一PRACH资源的配置信息确定所述目标初始BWP上的第一PRACH资源,并且基于所述同步信号的配置信息确定同步信号;在基于同步信号完成时频同步的情况下,在第一PRACH资源上发起随机接入请求,并在所述目标初始BWP上进行初始接入中的后续随机接入处理。
可见,通过采用上述方案,终端设备可以监听WUS,该WUS可以用于唤醒终端设备;该WUS中携带的可以用于所述终端设备在唤醒后执行的操作。如此,就可以使得终端设备基于接收到WUS唤醒,基于该WUS中的第一信息及时的执行唤醒后的操作,这样就可以缩短业务传输的时延,进而提升系统的处理效率。
图6是根据本申请第二方面实施例的通信方法的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S610、网络设备发送唤醒信号WUS;其中,所述WUS用于唤醒所述终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。
上述WUS,还可以称为低功耗WUS,或者还可以称为其他名称。
所述网络设备发送唤醒信号WUS,可以包括:所述网络设备在接收到核心网的设备发来的第一通知信息的情况下,向所述终端设备发送WUS;该第一通知信息可以用于通知所述网络设备向该终端设备发送WUS。判断所述终端设备当前是否需要进行业务传输,可以由核心网的设备执行的,比如,所述核心网的设备在确定该终端设备被呼叫的情况下,可以确定该终端设备当前需要进行业务传输(或需要进行业务数据传输);当然,确定终端设备当前是否需要进行业务传输还可以包括其他的确定方式,本实施例不对其进行穷举。进一步地,在该核心网的设备确定所述终端设备需要进行业务传输的情况下,可以向所述网络设备发送所述第一通知信息。
所述WUS为UE专属的;或者所述WUS为UE组共享的,所述UE组可以是包含所述终端设备的UE组;或者所述WUS为小区专用的,所述小区可以为所述终端设备所在的服务小区。因此,所述WUS还可以包括:UE标识,所述UE标识为UE ID或UE组UD或小区ID。需要指出的是,所述UE标识可以包含在所述WUS中的第一信息中,或者所述UE标识可以不包含的WUS的第一信息中。本实施例不对所述UE标识在所述WUS中的具体信息位置进行限定。
其中,所述UE ID可以指的是终端设备的标识,可以为终端设备的唯一标识,比如,可以为以下任意之一:可以采用临时移动用户识别码(TMSI,Temporary Mobile Subscriber Identity)、国际移动用户识别码(IMSI,International Mobile Subscriber Identity)、I-RNTI(Inactive Radio Network Temporary Identifier,非激活无线网络临时标识)。所述UE组可以是一个或多个终端设备所组成的;系统中可以配置一个或多个UE组,并且系统中为该一个或多个UE组中不同的UE组分配了不同的ID,以唯一区分不同的UE组。所述小区ID可以是系统中包含的一个或多个小区分别对应的ID。所述WUS具体用于唤醒符合所述UE标识的终端设备。
可选的,该UE标识可以替换为比特图;在该比特图中的某一个比特位的取值可以用于表示是否唤醒唤醒对应的终端设备或UE组;举例来说,第一值表示唤醒所述终端设备,第二值表示不唤醒所述终端设备或UE组;第一值与第二值不同,比如,第一值为1、第二值为0,或者与之相反。
所述WUS除了可以用于唤醒所述终端设备之外,还可以携带前述第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。示例性的,所述所述终端设备在唤醒后执行的操作可以包括以下一个或多个:随机接入、初始接入、时频同步。
所述第一信息可以包括以下一个或多个信息:用于执行随机接入的信息,所述用于执行随机接入的信息为第一PRACH(Physical Random Access Channel,物理随机接入信道)资源的配置信息;用于执行初始接入的信息,所述用于执行初始接入的信息为目标初始BWP(BandWidth Part,带宽部分)资源的配置信息;用于执行时频同步的信息,所述用于执行时频同步的信息为同步信号的配置信息。
所述第一PRACH资源的配置信息,可以包括以下一个或多个:第一PRACH的时域资源位置信息;第一PRACH的频域资源位置信息;第一PRACH的周期;第一PRACH的时隙;第一PRACH的子载波间隔;第一PRACH时机的数量;第一PRACH与同步信号块SSB的映射关系;第一PRACH时机的时域资源位置信息;第一PRACH时机的频域资源位置信息;前导码索引号。
其中,所述第一PRACH的时域资源信息,下面分两种情况来说:
在一种情况中,所述第一PRACH的时域资源信息中可以包括所述第一PRACH的时域资源的绝对时域位置。具体的:
所述第一PRACH的时域资源信息,包含以下一个或多个:所述第一PRACH的时域资源的时域位置;所述第一PRACH的时域资源的持续时长。
其中,所述第一PRACH的时域资源的时域位置,包括:所述第一PRACH的时域资源的时域起始 位置,或者,所述第一PRACH的时域资源的时域结束位置。
所述第一PRACH的时域资源的持续时长,可以指的是第一PRACH资源所占用的时域长度。
一种实施方式中,所述第一PRACH的时域资源位置信息具体包括:所述第一PRACH的时域资源的的时域起始位置、所述第一PRACH的时域资源的持续时长。该第一PRACH的时域资源的时域起始位置、所述第一PRACH的时域资源的持续时长可以是以符号、时隙、子帧、毫秒、微秒等任意之一为单位来表示。
又一种实施方式中,所述第一PRACH的时域资源位置信息具体包括:所述第一PRACH的时域资源的的时域起始位置以及所述第一PRACH的时域资源的的时域结束位置。该第一PRACH的时域资源的时域起始位置、所述第一PRACH的时域资源的时域结束位置可以是以符号、时隙、子帧、毫秒、微秒等任意之一为单位来表示。
在另一种情况中,所述第一PRACH的时域资源信息中可以包括所述第一PRACH的时域资源的相对时域位置。具体的:所述第一PRACH的时域资源位置信息,包含以下一个或多个:第一时域偏移,所述第一时域偏移用于表示所述WUS的接收时间与所述第一PRACH的时域资源的时域位置之间的偏移;所述第一PRACH的时域资源的持续时长。
所述第一PRACH的时域资源的持续时长,可以指的是第一PRACH资源所占用的时域长度。可以采用时隙、符号、子帧、毫秒等等中任意之一为单位。
由于所述WUS可以占用一段时域资源,本实施例中,可以指定所述WUS所占用的一段时域资源中的一个时间(或一个时刻)作为该WUS的接收时间。比如,所述WUS的接收时间,可以包括:所述WUS的起始接收时间、或者、所述WUS的接收完成时间。应理解,所述WUS的接收时间还可以为所述WUS所占用的时域资源中的其他时间,比如可以为所述WUS所占用的时域资源的中点时间等等,只要所述终端设备与所述网络设备双方采用相同的WUS的接收时间即可。
同样的,所述第一PRACH的时域资源也可以占用一段时域资源,可以指定所述第一PRACH的时域资源中的时间(或时刻)作为该第一PRACH的时域资源的时域位置。比如,所述第一PRACH的时域资源的时域位置,包括:所述第一PRACH的时域资源的时域起始位置,和/或,所述第一PRACH的时域资源的时域结束位置。应理解,所述第一PRACH的时域资源的时域位置还可以为所述第一PRACH的时域资源中的其他时间,比如可以为所述第一PRACH的时域资源的中点时间等等,只要所述终端设备与所述网络设备双方采用相同的第一PRACH的时域资源的时域位置即可。
所述第一时域偏移,可以包括一个数值或多个数值。所述第一时域偏移的单位可以为符号、时隙、子帧、毫秒、微秒等任意之一。
在一种可能的实施方式中,所述第一时域偏移包括一个数值,将该数值称为第一数值。所述第一数值可以用于表示所述第一PRACH的时域资源的时域起始位置,与所述WUS的接收时间(比如WUS的起始接收时间)之间的相对时间偏移;或者,该偏移值可以用于表示所述第一PRACH的时域资源的时域结束位置,与所述WUS的接收时间(比如WUS的起始接收时间)之间的相对时间偏移。这种实施方式中,所述第一PRACH的时域资源位置信息中还可以包括:第一PRACH的时域资源的持续时长。所述终端设备可以基于前述第一PRACH的时域资源的时域起始位置(或时域结束位置)以及第一PRACH的时域资源的持续时长,确定所述第一PRACH的时域资源的具体位置。
在一种可能的实施方式中,在所述第一时域偏移包括两个数值时,比如两个数值分别表示为第二数值和第三数值;其中第二数值可以用于表示所述第一PRACH的时域资源的时域起始位置,与所述WUS的接收时间(比如WUS的起始接收时间)之间的相对时间偏移;第三数值可以表示所述第一PRACH的时域资源的时域结束位置,与所述WUS的接收时间(比如WUS的起始接收时间)之间的相对时间偏移。其中,第二数值小于第三数值。该第一时域偏移(即两个偏移值或多个偏移值)的单位可以为符号、时隙、子帧、毫秒、微秒等任意之一。应理解,本实施方式中WUS的接收结束时间还可以替换为WUS的起始接收时间,或WUS的其他时间,只要网络设备和终端设备双方采用相同的时间即可。这里不再进行穷举。
在所述第一时域偏移包括两个或更多数值时,所述第一PRACH的时域资源位置信息中,可以不包含第一PRACH的时域资源的持续时长。
所述第一PRACH的频域资源位置信息,也可以分成两种情况具体说明:
一种情况中,所述第一PRACH的频域资源位置信息为绝对频域位置。
所述第一PRACH的频域资源位置信息,包含以下一个或多个:所述第一PRACH的频域资源的第一类频点的位置;所述第一PRACH的频域资源的大小。
所述第一类频点可以是以PRB(物理资源块,physical resource block)、RB(资源块,resource block)、Khz、Mhz等等中任意之一为单位来表示。所述指定频点的数量可以有一个或多个。
所述第一PRACH的频域资源的第一类频点,包括以下一个或多个:所述第一PRACH的频域资源的最低频点;所述第一PRACH的频域资源的最高频点;所述第一PRACH的频域资源的中心频点。应理解,这里仅为示例性说明,实际处理时所述第一类频点还可以为其他频点,只要终端设备和网络设备对该指定频点的定义或解释相同,即均在本实施例的保护范围内,这里不做穷举。
在一种可能的实施方式中,所述第一PRACH的频域资源位置信息中,可以仅包含所述第一PRACH的频域资源的第一类频点的位置。此时,所述第一PRACH的频域资源的第一类频点,可以为多个频点。比如,所述第一PRACH的频域资源位置信息中,包含第一PRACH的频域资源的最低频点和中心频点的位置;或者,所述第一PRACH的频域资源位置信息中,包含第一PRACH的频域资源的最低频点和最高频点的位置。
在一种可能的实施方式中,所述第一PRACH的频域资源位置信息中,可以包含所述第一PRACH的频域资源的第一类频点的位置,和所述第一PRACH的频域资源的大小。此时,所述第一PRACH的频域资源的第一类频点,可以为一个频点。
在另一种情况中,所述第一PRACH的频域资源位置信息为相对频域位置。
所述第一PRACH的频域资源位置信息,包含以下一个或多个:第一频域偏移,所述第一频域偏移用于表示所述WUS的频域位置与所述第一PRACH的频域资源的第一类频点之间的偏移;所述第一PRACH的频域资源的大小。
所述WUS的频域位置,包括以下之一:所述WUS占用的频域资源中的最低频点;所述WUS占用的频域资源中的最高频点;所述WUS占用的频域资源中的中心频点。应理解,所述WUS的频域位置还可以采用WUS的其他频点来表示,只要终端设备与网络设备之间采用相同的频点即在本实施例保护范围内,这里不做穷举。
所述第一PRACH的频域资源的第一类频点,包括以下一个或多个:所述第一PRACH的频域资源的最低频点;所述第一PRACH的频域资源的最高频点;所述第一PRACH的频域资源的中心频点。应理解,这里仅为示例性说明,实际处理时所述第一类频点还可以为其他频点,只要终端设备和网络设备对该第一类频点的定义或解释相同,即均在本实施例的保护范围内,这里不做穷举。
其中,所述第一PRACH的频域资源的大小可以在所述第一PRACH的频域资源位置信息中包含;或者,可以为所述终端设备预先获取的,比如可以为网络设备在所述终端设备在上一次处于RRC连接态的情况下,通过DCI、RRC信令、系统消息中任意之一发送至所述终端设备的。
该第一频域偏移的单位,可以为PRB、RB、Khz、Mhz等等中任意之一。所述第一频域偏移可以包括一个或多个数值。
在一种可能的实施方式中,在所述第一频域偏移包括一个数值的时候,将该数值称为第四数值。该第一频域偏移值(即第四数值)可以用于表示所述第一PRACH的频域资源的一个第一类频点,与所述WUS的一个频域位置之间的相对频域偏移。这种实施方式中,所述第一PRACH的频域资源位置信息中还可以包括:第一PRACH的频域资源的大小。
在一种可能的实施方式中,在所述第一频域偏移包括两个数值,分别为第五数值和第六数值;其中,第五数值可以用于表示所述第一PRACH的频域资源的一个第一类频点,与所述WUS的一个频域位置之间的相对频域偏移;以及第六数值,用于表示所述第一PRACH的频域资源的另一个第一类频点,与所述WUS的一个频域位置之间的相对频域偏移。这种实施方式中,所述第一PRACH的频域资源位置信息中可以不包括第一PRACH的频域资源的大小。
总的来说,前述第一PRACH的时域资源位置信息用于确定所述第一PRACH资源的时域资源范围(或称为时域位置),前述第一PRACH的频域资源位置信息用于确定所述第一PRACH资源的频域资源范围(或称为频域范围)。上述第一PRACH资源的时域资源范围和频域资源范围,可以指的是用于随机接入的时频资源的位置(或总范围)。在实际处理中,在第一PRACH资源的时域资源范围和频域资源范围之内,还会存在更细粒度的第一PRACH时机(occasion)(或称为第一PRACH资源中的PRACH时机)。
所述更细粒度可以指的是,在第一PRACH资源的时域资源范围和频域资源范围之内,存在一个或多个第一PRACH时机所分别对应的时域资源和频域资源。换句话说,任意一个第一PRACH时机的持续时长小于前述第一PRACH的时域资源的持续时长,和/或,任意一个第一PRACH时机的频域范围大小小于前述第一PRACH的频域资源的大小。
所述第一PRACH时机(occasion)的数量可以根据实际情况配置,具体可以包括以下一个或多个:在所述第一PRACH资源(即所述第一PRACH的时域资源范围和频域资源范围之内)中包含的第一PRACH时机的总数量;在第一PRACH的时域资源包含的第一PRACH时机的数量;在第一PRACH的频域资源包含的第一PRACH时机的数量。
应理解,所述第一PRACH资源中包含的第一PRACH时机的总数量,大于或等于在第一PRACH的时域资源包含的第一PRACH时机的数量;或者,所述第一PRACH资源中包含的第一PRACH时机的总数量,大于或等于在第一PRACH的频域资源包含的第一PRACH时机的数量。
前述已经说明,所述第一PRACH时机的数量可以有一个或多个,下面实施例针对所述第一PRACH时机的时频位置说明中,可以理解为针对一个或多个第一PRACH时机中的任意之一的说明,由于针对每个第一PRACH时机的时频位置说明为相同的,因此不做一一赘述。
所述第一PRACH时机的时域资源位置信息,可以包含以下一个或多个:第一PRACH时机的时域起始位置、第一PRACH时机的时域结束位置、第一PRACH时机的持续时长。其中,所述第一PRACH时机的持续时长,小于前述第一PRACH的时域资源的持续时长。
第一PRACH时机的时域起始位置/时域结束位置,可以是以时隙、符号、子帧、毫秒等任意之一为单位来表示。
在一种可能的实施方式中,所述第一PRACH时机的时域资源位置信息,包含第一PRACH时机的时域起始位置、第一PRACH时机的时域结束位置。
在另一种可能的实施方式中,所述第一PRACH时机的时域资源位置信息,包含第一PRACH时机的时域起始位置和第一PRACH时机的持续时长。所述第一PRACH时机的频域资源位置信息可以包含以下一个或多个:第一PRACH时机的最低频点位置、第一PRACH时机的最高频点位置、第一PRACH时机的中心频点位置、第一PRACH时机的频域范围大小。其中,第一PRACH时机的频域范围大小,小于所述第一PRACH的频域资源的大小。第一PRACH时机的最低频点位置、中心频点位置、最高频点位置可以是以PRB、RB、Khz、Mhz中任意之一为单位。
在一种可能的实施方式中,所述第一PRACH时机的频域资源位置信息,包含第一PRACH时机的最低频点位置、第一PRACH时机的最高频点位置。所述终端设备基于第一PRACH时机的最低频点位置以及第一PRACH时机的最高频点位置,可以确定第一PRACH时机的频域资源范围。
在另一种可能的实施方式中,所述第一PRACH时机的频域资源位置信息,包含第一PRACH时机的最低频点位置和第一PRACH时机的频域范围大小。基于第一PRACH时机的最低频点位置和第一PRACH时机的频域范围大小,可以确定一个第一PRACH时机的频域资源范围。
在又一种可能的实施方式中,所述第一PRACH时机的频域资源位置信息,包含第一PRACH时机的中心频点位置和第一PRACH时机的频域范围大小。基于第一PRACH时机的中心频点位置、第一PRACH时机的频域范围大小,可以确定一个第一PRACH时机的频域资源范围。
第一PRACH与同步信号块SSB的映射关系,具体可以指的是PRACH时机与SSB的映射关系。再具体的,可以指的是:SSB的编号与PRACH时机之间的映射关系。通过该第一PRACH与SSB的映射关系,所述终端设备可以确定所述第一PRACH的时隙。
所述前导码索引号,具体可以指的是本次所述终端设备所使用的前导码索引号。在整个系统中每个第一PRACH时机可以对应有多个预先配置的前导码(比如可以有64个前导码)及其分别对应的索引号;网络设备可以通过在第一PRACH资源的配置信息中指示本次使用的前导码索引号。
所述第一PRACH的周期,可以指的是每一个第一PRACH的周期的长度。周期的单位可以是时隙、符号、子帧、微秒、毫秒等等。需要指出的是,所述第一PRACH的周期可以是在基于前述第一PRACH的时域资源位置信息以及第一PRACH的频域资源位置信息,确定第一个周期的第一PRACH资源之后,基于该第一PRACH的周期确定一个或多个周期,并确定该一个或多个周期中各个周期的第一PRACH资源。
所述第一PRACH的时隙,可以指的是所述第一PRACH的发送时隙,或称为通过该第一PRACH发送随机接入前导码的发送时隙。应理解,在第一PRACH资源的配置信息中,配置了所述第一PRACH的时域资源位置信息、第一PRACH与SSB的映射关系的情况下,所述第一PRACH资源的配置信息可以不包含所述第一PRACH的时隙。或者,在第一PRACH资源的配置信息中,未配置所述第一PRACH的时域资源位置信息、未配置第一PRACH与SSB的映射关系的情况下,所述第一PRACH资源的配置信息可以包含所述第一PRACH的时隙。
所述第一PRACH的子载波间隔,可以指的是所述第一PRACH的频域资源上采用的子载波间隔。该第一PRACH的子载波间隔可以与当前系统的子载波间隔相同。或者,所述第一PRACH的子载波间隔可以为根据实际情况设置的,比如,可以为15kHZ、30Khz、60Khz、120Khz、240Khz等等,这里不做穷举。
应理解,在终端设备所接收到的WUS所携带的第一信息中,可以包含上述第一PRACH资源的配置信息的一个或多个具体内容。
所述网络设备发送WUS之前,所述方法还包括:所述网络设备为终端设备配置第二PRACH资源 的配置信息;其中,所述第二PRACH资源的配置信息,与所述第一PRACH资源的配置信息不同。
所述第二PRACH资源的配置信息,用于确定执行随机接入的第二PRACH资源;所述第二PRACH资源与所述第一PRACH资源的时域资源位置不同。
具体来说,所述第二PRACH资源的配置信息,用于确定第二PRACH资源;该第二PRACH资源的配置信息中可以携带的内容包括但不限于:第二PRACH的时域资源位置(比如起始位置、结束位置、持续时长中至少之一)、第二PRACH的频域资源位置(比如频域资源大小、最低频点、最高频点、中心频点中至少之一)、第二PRACH时机的位置以及数量等等。
基于该第二PRACH资源的配置信息所确定的所述第二PRACH资源,至少与第一PRACH资源的时域资源位置是不同的。具体来说,该第二PRACH资源可以是当前系统配置的原PRACH资源。比如,系统为终端设备配置的第二PRACH资源的周期比较大(比如20ms),也就是可以是第二PRACH资源的周期大于所述第一PRACH资源;和/或,第二PRACH资源的时域起始位置晚于所述第一PRACH资源的时域起始位置。这是因为,核心网的设备(比如MME)确定某一个处于空闲态(或非激活态)的终端设备当前需要进行业务传输;该核心网的设备可以通知网络设备向处于空闲态(或非激活态)的所述终端设备发送WUS;相应的,网络设备向处于空闲态(或非激活态)的所述终端设备发送所述WUS。而这种情况下,希望该处于空闲态的终端设备能够尽快或及时的进行随机接入,从而终端设备可以尽快的进行后续的处理。但是,系统为终端设备配置的第二PRACH资源的周期比较大,若要所述终端设备处于空闲态的情况下,终端设备被WUS唤醒后若仅基于第二PRACH资源进行随机接入,可能无法保证终端设备随机接入的及时性。因此,网络设备可以在所述WUS携带的第一信息中添加第一PRACH资源的配置信息,由于所述第一PRACH资源早于所述第一PRACH资源的时域起始位置,并且,第一PRACH资源的周期小于所述第一PRACH资源;因此,所述终端设备处于空闲态(或非激活态)的情况下,终端设备被WUS唤醒后基于第一PRACH资源可以更早或更及时的进行随机接入。
在一种可能的实施方式中,所述第一PRACH资源可以是针对竞争型的随机接入过程配置的临时性PRACH资源。旨在能够配置比当前系统配置的第二PRACH资源更早的第一PRACH资源。因此,可以在第一PRACH资源(或临时性PRACH资源)的配置信息中至少携带第一PRACH的时域资源位置信息、第一PRACH的频域资源位置信息,以使得所述终端设备可以获取与当前系统配置的第二PRACH资源不同的第一PRACH资源(或临时性PRACH资源),进而能够尽快的发起随机接入建立RRC连接。
在一种可能的实施方式中,所述第一PRACH资源可以为终端设备专用PRACH,使得终端设备可以执行免竞争的随机接入,以避免当终端设备使用基于竞争的随机接入时,在随机接入过程中与其他终端设备随机接入之间的干扰的问题,从而保证提升终端随机接入的成功率,加快终端RRC连接建立过程。这种实施方式中,所述WUS中携带的第一指示中的第一PRACH资源的配置信息,可以为专用PRACH资源的配置信息。
可选地,所述第一PRACH资源的配置信息具体用于配置符合所述UE标识的终端设备。
一种情况中,核心网的设备(比如MME)可以确定某一个终端设备当前需要进行业务传输;该核心网的设备可以通知网络设备向所述终端设备发送WUS;相应的,所述网络设备向该终端设备发送WUS,所述WUS中可以携带所述UE标识以及第一信息,该第一信息中可以包括第一PRACH资源(或临时性PRACH资源)的配置信息。
又一种情况中,可选地,在所述第一PRACH资源的配置信息中还可以进一步包含新的UE标识,该新的UE标识也可以为:新的UE ID、新的UE组ID、新的小区ID中之一。比如,核心网的设备可以确定一个终端组中的一个或多个终端设备需要进行业务传输;该核心网的设备可以通知网络设备向所述终端组发送WUS;相应的,所述网络设备向该终端组的终端设备发送WUS,所述WUS中可以携带所述UE标识以及第一信息,该第一信息中可以包括第一PRACH资源(或临时性PRACH资源)的配置信息,该第一PRACH资源的配置信息中还可以包含新的UE标识。
接下来针对所述第一信息中包含的目标初始BWP的配置信息进行说明:
所述目标初始BWP的配置信息,包括:所述目标初始BWP的ID,所述目标初始BWP为多个初始BWP中的一个或多个,所述多个初始BWP包括一个或多个初始上行BWP和/或一个或多个初始下行BWP,所述目标初始BWP为上行BWP和/或下行BWP。
这种方式中,还可以包括:所述网络设备发送第二信息;所述第二信息中包括多个初始BWP的配置及其索引号。
上述目标初始BWP的配置信息中包含的目标初始BWP的ID,还可以为目标初始BWP的索引号。其中,所述目标初始BWP可以包括上行BWP和/或下行;相应的,BWP目标初始BWP的ID(或索引号),可以仅包含上行BWP的ID(或索引号),或者仅包含下行BWP的ID(或索引号),或者包含上行BWP的ID(或索引号)以及下行BWP的ID(或索引号)。
在目标初始BWP的配置信息包含不同内容以及终端设备预先配置的初始BWP的不同情况分别进行说明:
情况一、所述终端设备预先配置的初始BWP,包括一个初始下行BWP,以及多个初始上行BWP。所述目标初始BWP的配置信息中包含的目标初始BWP的ID可以为上行BWP的ID。
情况二、所述终端设备预先配置的初始BWP,包括一个初始上行BWP,以及多个初始下行BWP。所述目标初始BWP的配置信息中包含的目标初始BWP的ID可以为下行BWP的ID。
情况三、所述终端设备预先配置的初始BWP,包括多个初始上行BWP,以及多个初始下行BWP。通常所述多个初始上行BWP与所述多个初始下行BWP的ID具备对应关系。其中,对应关系可以指的是初始下行BWP和初始上行BWP使用相同的ID(或索引号)。或者,该对应关系还可以指的是预先设置的初始下行BWP和初始上行BWP的ID的匹配关系。由于终端设备预先配置了一个初始上行BWP以及多个初始上行BWP与所述多个初始下行BWP的ID具备对应关系。因此,所述目标初始BWP的配置信息中可以包含一个目标初始BWP的ID,该目标初始BWP的ID可以为下行BWP的ID。
情况四、所述终端设备预先配置的初始BWP,包括多个初始上行BWP,以及多个初始下行BWP。与前述情况三不同在于,本情况中,终端设备中可以不预先配置所述多个初始上行BWP与所述多个初始下行BWP的ID的对应关系。因此,所述目标初始BWP的配置信息中可以包含多个目标初始BWP的ID。
可选的,所述目标初始BWP的配置信息中可以包含两个目标初始BWP的ID。该两目标初始BWP的ID可以包括下行BWP的ID以及上行BWP的ID。
可选地,所述目标初始BWP的配置信息具体用于配置符合所述UE标识的终端设备。
可选地,在所述目标初始BWP的配置信息中还可以进一步包含新的UE标识,该新的UE标识也可以为:新的UE ID、新的UE组ID、新的小区ID中之一。相应的,终端设备基于所述WUS中包含的UE标识,确定自身为符合所述UE标识的终端设备的情况下,可以基于该WUS唤醒第二部件;在基于所述目标初始BWP的配置信息包含的新的UE标识,确定自身为符合该UE标识的终端设备的情况下,所述终端设备的第二部件基于所述目标初始BWP的配置信息确定目标初始BWP,在所述目标初始BWP上进行初始接入。另外,还可以包括:若基于所述目标初始BWP的配置信息包含的新的UE标识,确定自身为不符合该UE标识的终端设备的情况下,所述终端设备的第二部件不基于所述目标初始BWP的配置信息确定目标初始BWP。
可选地,本实施例提供的方式中,所述终端设备为降低能力(RedCap,Reduced Capability)终端。这是由于,通常其他类型的终端设备,系统为其配置一个初始BWP;而在降低能力(RedCap,Reduced Capability)终端中,由于其带宽更小(通常为20MHz小于传统的100MHz)、天线数量更少、采用简单的调制方式(比如64QAM)、采用半双工FDD等,因此系统会为其预先配置多个初始BWP。通过采用本实施例提供的方案,可以通过预先配置多个初始BWP,以保证网络设备指示不同终端设备进行初始接入的时候,可以仅通过WUS中的第一信息指示目标初始BWP的ID,即可确定本次所要使用的上行BWP和/或下行BWP,进而在该上行BWP和/或下行BWP上进行初始接入的处理,从而可以实现负载分流或负载均衡的效果,另外,由于采用这样的方式不需要终端设备侧保存过多的交互过程中产生的信息,因此可以减少资源碎片,更加适用于窄带RedCap终端。
接下来针对所述第一信息中包含的同步信号的配置信息进行说明:
所述同步信号的配置信息,可以包括以下一个或多个:同步信号的发送周期;同步信号的时域资源位置信息;同步信号的频域资源位置信息;同步信号的天线端口;同步信号的发送波束。
其中,所述同步信号具体可以包括以下一个或多个:SSB(同步信号块,Synchronization Signal Block)、其他参考信号。所述其他参考信号可以包括:TRS(时间参考信号,Time Reference Signal),和/或CSI-RS(Channel-State Information Reference Signal,信道状态信息参考信号)。
所述同步信号的发送周期,可以比当前系统中的同步信号原发送周期小,也就是说,可以加密(加多)发送所述同步信号。所述同步信号的发送周期具体可以根据实际情况进行配置,比如可以是1ms、2ms或更长或更短,这里不做穷举。
可选的,所述同步信号的时域资源位置信息,可以包含以下一个或多个:所述同步信号的时域资源的时域位置;所述同步信号的时域资源的持续时长。所述同步信号的时域资源的时域位置的时间单位可以是时隙、符号、帧、子帧、毫秒等任意至少之一。
所述同步信号的时域资源的时域位置,可以包括:所述同步信号的时域资源的时域起始位置,和/或,所述同步信号的时域资源的时域结束位置。
可选的,所述同步信号的时域资源位置信息,包括以下一个或多个:第二时域偏移,所述第二时域偏移用于表示所述WUS的接收时间与所述同步信号的时域资源的时域位置之间的偏移;所述同步信号 的时域资源的持续时长。
所述同步信号的时域资源的时域位置,可以包括:所述同步信号的时域资源的时域起始位置,和/或,所述同步信号的时域资源的时域结束位置。由于所述WUS可以占用一段时域资源,本实施例中,可以指定所述WUS所占用的一段时域资源中的一个时间(或一个时刻)作为该WUS的接收时间。所述WUS的接收时间,可以包括:所述WUS的起始接收时间、或者、所述WUS的接收完成时间。应理解,所述WUS的接收时间还可以为所述WUS所占用的时域资源中的其他时间,比如可以为所述WUS所占用的时域资源的中点时间等等,只要所述终端设备与所述网络设备双方采用相同的WUS的接收时间即可。
所述第二时域偏移,可以包括一个数值或多个数值。
在第二时域偏移中包含一个数值,比如第七数值;该第七数值用于表示所述WUS的接收时间与所述同步信号的时域资源的时域起始位置之间的偏移;或者,用于表示所述WUS的接收时间与所述同步信号的时域资源的时域结束位置之间的偏移。该第二时域偏移的单位可以是时隙、符号、帧、子帧、毫秒等任意至少之一。这种实施方式中,所述同步信号的时域资源位置信息还可以包括:所述同步信号的时域资源的持续时长。或者,所述第二时域偏移,可以包括多个数值,比如包含两个数值,分别为第八数值和第九数值;该第八数值用于表示所述WUS的接收时间与所述同步信号的时域资源的时域起始位置之间的偏移;第九数值用于表示所述WUS的接收时间与所述同步信号的时域资源的时域结束位置之间的偏移。该第二时域偏移的单位可以是时隙、符号、帧、子帧、毫秒等任意至少之一。其中,第八数值小于第九数值。
可选的,所述同步信号的频域资源位置信息,包含以下一个或多个:所述同步信号的频域资源的第二类频点的位置;所述同步信号的频域资源的大小。
所述同步信号的频域资源的第二类频点,包括以下一个或多个:所述同步信号的频域资源的最低频点;所述同步信号的频域资源的最高频点;所述同步信号的频域资源的中心频点。该第二类频点的具体位置还可以根据实际情况的不同而不同,只要终端设备与网络设备双方预先确定采用相同的参考频点即可。
可选的,所述同步信号的频域资源位置信息,包含以下一个或多个:第二频域偏移,所述第二时域偏移用于表示所述WUS的频域位置与所述同步信号的频域资源的第二类频点之间的偏移;所述同步信号的频域资源的大小。
所述第二频域偏移的单位可以为PRB、RB、Khz、Mhz中任意之一。
同样的,所述同步信号的频域资源的第二类频点,包括以下一个或多个:所述同步信号的频域资源的最低频点;所述同步信号的频域资源的最高频点;所述同步信号的频域资源的中心频点。
所述WUS的频域位置,包括以下之一:所述WUS占用的频域资源中的最低频点;所述WUS占用的频域资源中的最高频点;所述WUS占用的频域资源中的中心频点。
该第二频域偏移的单位,可以为PRB、RB、Khz、Mhz等等中任意之一。所述第二频域偏移可以包括一个或多个数值。
在一种可能的实施方式中,在所述第二频域偏移包括一个数值,将该数值称为第十数值。该第二频域偏移值(即第十数值)可以用于表示所述同步信号的频域资源的一个第二类频点,与所述WUS的一个频域位置之间的相对频域偏移。这种实施方式中,所述同步信号的频域资源位置信息中还可以包括:同步信号的频域资源的大小。
在一种可能的实施方式中,在所述第二频域偏移包括两个数值,分别为第十一数值和第十二数值;其中,第十一数值可以用于表示所述同步信号的频域资源的一个第二类频点,与所述WUS的一个频域位置之间的相对频域偏移;以及第十二数值,用于表示所述同步信号的频域资源的另一个第二类频点,与所述WUS的一个频域位置之间的相对频域偏移。这种实施方式中,所述同步信号的频域资源位置信息中可以不包括第一PRACH的频域资源的大小。
所述同步信号的天线端口、同步信号的发送波束可以由网络设备基于实际发送的情况来确定,这里不对其进行限定。
还需要指出,前述同步信号的配置信息,可以包括以上全部内容,或者可以仅包含其中部分。在所述同步信号的配置信息仅包含其中部分的情况下,可以包含第三配置信息以及第四配置信息;或者,可以包括同步信号的发送周期以及所述第四配置信息等等,这里不做穷举。
可选的,上述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。因此,所述WUS中还会可以携带UE标识,所述UE标识为UE ID、或UE组ID、或小区ID。或者,所述WUS中还可以携带比特图。关于终端设备基于WUS中携带的UE标识(或比特图)判断自身是否为符合UE标识的终端设备的处理方式,在前述实施例中已经描述,不做赘述。
可选地,所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。或者,在所述同步信号的配置信息中还可以进一步包含新的UE标识,该新的UE标识也可以为:新的UE ID、新的UE组ID、新的小区ID中之一。相应的,终端设备基于所述WUS中包含的UE标识,确定自身为符合所述UE标识的终端设备的情况下,可以基于该WUS唤醒第二部件;在基于所述同步信号的配置信息包含的新的UE标识,确定自身为符合该新的UE标识的终端设备的情况下,所述终端设备的第二部件基于所述同步信号的配置信息确定同步信号;基于所述同步信号进行时频同步。
可见,通过采用上述方案,网络设备发送WUS,该WUS可以用于唤醒终端设备;该WUS中携带的可以用于所述终端设备在唤醒后执行的操作。如此,就可以使得终端设备基于接收到WUS唤醒,基于该WUS中的第一信息及时的执行唤醒后的操作,这样就可以缩短业务传输的时延,进而提升系统的处理效率。
图7是根据本申请一实施例的终端设备700的示意性框图。该终端设备700可以包括:
第一通信单元701,用于监听唤醒信号WUS;其中,所述WUS用于唤醒所述终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。
所述WUS还包括:UE标识,所述UE标识为UE ID、或UE组ID、或小区ID。
所述WUS具体用于唤醒符合所述UE标识的终端设备。
所述第一信息,包括以下一个或多个信息:用于执行随机接入的信息,所述用于执行随机接入的信息为第一物理随机接入信道PRACH资源的配置信息;用于执行初始接入的信息,所述用于执行初始接入的信息为目标初始带宽部分BWP的配置信息;用于执行时频同步的信息,所述用于执行时频同步的信息为同步信号的配置信息。所述第一PRACH资源的配置信息具体用于配置符合所述UE标识的终端设备。
所述第一PRACH资源的配置信息,包括以下一个或多个:第一PRACH的时域资源位置信息;第一PRACH的频域资源位置信息;第一PRACH的周期;第一PRACH的时隙;第一PRACH的子载波间隔;第一PRACH时机的数量;第一PRACH与同步信号块SSB的映射关系;第一PRACH时机的时域资源位置信息;第一PRACH时机的频域资源位置信息;前导码索引号。
所述第一PRACH的时域资源位置信息,包含以下一个或多个:所述第一PRACH的时域资源的时域位置;所述第一PRACH的时域资源的持续时长。
所述第一PRACH的时域资源位置信息,包含以下一个或多个:第一时域偏移,所述第一时域偏移用于表示所述WUS的接收时间与所述第一PRACH的时域资源的时域位置之间的偏移;所述第一PRACH的时域资源的持续时长。
所述第一PRACH的时域资源的时域位置,包括:所述第一PRACH的时域资源的时域起始位置,和/或,所述第一PRACH的时域资源的时域结束位置。
所述第一PRACH的频域资源位置信息,包含以下一个或多个:所述第一PRACH的频域资源的第一类频点的位置;所述第一PRACH的频域资源的大小。
所述第一PRACH的频域资源位置信息,包含以下一个或多个:第一频域偏移,所述第一频域偏移用于表示所述WUS的频域位置与所述第一PRACH的频域资源的第一类频点之间的偏移;所述第一PRACH的频域资源的大小。
所述第一PRACH的频域资源的第一类频点,包括以下一个或多个:所述第一PRACH的频域资源的最低频点;所述第一PRACH的频域资源的最高频点;所述第一PRACH的频域资源的中心频点。
在图7的基础上,如图8所示,所述终端设备还包括:第一处理单元702,用于基于所述第一PRACH资源的配置信息,确定第一PRACH资源;在所述第一PRACH资源上进行随机接入。
所述第一通信单元,用于在所述终端设备处于空闲态的情况下,监听所述WUS。
所述第一通信单元,用于在监听WUS之前,接收网络设备配置的第二PRACH资源的配置信息;其中,所述第二PRACH资源的配置信息,与所述第一PRACH资源的配置信息不同。
所述第二PRACH资源的配置信息,用于确定用于执行随机接入的第二PRACH资源;所述第二PRACH资源与所述第一PRACH资源的时域资源位置不同。
所述目标初始BWP的配置信息,包括:所述目标初始BWP的ID,所述目标初始BWP为多个初始BWP中的一个或多个,所述多个初始BWP包括一个或多个初始上行BWP和/或一个或多个初始下行BWP,所述目标初始BWP为上行BWP和/或下行BWP。
所述目标初始BWP的配置信息具体用于配置符合所述UE标识的终端设备。
第一处理单元702,用于基于所述目标初始BWP的配置信息确定目标初始BWP,在所述目标初始BWP上进行初始接入。
所述终端设备为降低能力RedCap终端。
所述同步信号的配置信息,包括以下一个或多个:同步信号的发送周期;同步信号的时域资源位置信息;同步信号的频域资源位置信息;同步信号的天线端口;同步信号的发送波束。
所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。
所述同步信号的时域资源位置信息,包含以下一个或多个:所述同步信号的时域资源的时域位置;所述同步信号的时域资源的持续时长。
所述同步信号的时域资源位置信息,包括以下一个或多个:第二时域偏移,所述第二时域偏移用于表示所述WUS的接收时间与所述同步信号的时域资源的时域位置之间的偏移;所述同步信号的时域资源的持续时长。
所述同步信号的时域资源的时域位置,包括:所述同步信号的时域资源的时域起始位置,和/或,所述同步信号的时域资源的时域结束位置。
所述同步信号的频域资源位置信息,包含以下一个或多个:所述同步信号的频域资源的第二类频点的位置;所述同步信号的频域资源的大小。
所述同步信号的频域资源位置信息,包含以下一个或多个:第二频域偏移,所述第二时域偏移用于表示所述WUS的频域位置与所述同步信号的频域资源的第二类频点之间的偏移;所述同步信号的频域资源的大小。
所述同步信号的频域资源的第二类频点,包括以下一个或多个:所述同步信号的频域资源的最低频点;所述同步信号的频域资源的最高频点;所述同步信号的频域资源的中心频点。
所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。
第一处理单元702,用于基于所述同步信号的配置信息确定同步信号,基于所述同步信号进行时频同步。
图9是根据本申请一实施例的网络设备900的示意性框图。该终端设备900可以包括:
第二通信单元901,用于发送唤醒信号WUS;其中,所述WUS用于唤醒终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。
所述WUS还包括:UE标识,所述UE标识为UE ID、或UE组ID、或小区ID。
所述WUS具体用于唤醒符合所述UE标识的终端设备。
所述第一信息,包括以下一个或多个信息:用于执行随机接入的信息,所述用于执行随机接入的信息为第一物理随机接入信道PRACH资源的配置信息;用于执行初始接入的信息,所述用于执行初始接入的信息为目标初始带宽部分BWP的配置信息;用于执行时频同步的信息,所述用于执行时频同步的信息为同步信号的配置信息。
所述第一PRACH资源的配置信息具体用于配置符合所述UE标识的终端设备。
所述第一PRACH资源的配置信息,包括以下一个或多个:第一PRACH的时域资源位置信息;第一PRACH的频域资源位置信息;第一PRACH的周期;第一PRACH的时隙;第一PRACH的子载波间隔;第一PRACH时机的数量;第一PRACH与同步信号块SSB的映射关系;第一PRACH时机的时域资源位置信息;第一PRACH时机的频域资源位置信息;前导码索引号。
所述第一PRACH的时域资源位置信息,包含以下一个或多个:所述第一PRACH的时域资源的时域位置;所述第一PRACH的时域资源的持续时长。
所述第一PRACH的时域资源位置信息,包含以下一个或多个:第一时域偏移,所述第一时域偏移用于表示所述WUS的接收时间与所述第一PRACH的时域资源的时域位置之间的偏移;所述第一PRACH的时域资源的持续时长。
所述第一PRACH的时域资源的时域位置,包括:所述第一PRACH的时域资源的时域起始位置,和/或,所述第一PRACH的时域资源的时域结束位置。
所述第一PRACH的频域资源位置信息,包含以下一个或多个:所述第一PRACH的频域资源的第一类频点的位置;所述第一PRACH的频域资源的大小。
所述第一PRACH的频域资源位置信息,包含以下一个或多个:第一频域偏移,所述第一频域偏移用于表示所述WUS的频域位置与所述第一PRACH的频域资源的第一类频点之间的偏移;所述第一PRACH的频域资源的大小。
所述第一PRACH的频域资源的第一类频点,包括以下一个或多个:所述第一PRACH的频域资源的最低频点;所述第一PRACH的频域资源的最高频点;所述第一PRACH的频域资源的中心频点。
所述第二通信单元,用于为终端设备配置第二PRACH资源的配置信息;其中,所述第二PRACH资源的配置信息,与所述第一PRACH资源的配置信息不同。
所述第二PRACH资源的配置信息,用于确定用于执行随机接入的第二PRACH资源;所述第二PRACH资源与所述第一PRACH资源的时域资源位置不同。
所述目标初始BWP的配置信息,包括:所述目标初始BWP的ID,所述目标初始BWP为多个初始BWP中的一个或多个,所述多个初始BWP包括一个或多个初始上行BWP和/或一个或多个初始下行BWP,所述目标初始BWP为上行BWP和/或下行BWP。
所述目标初始BWP的配置信息具体用于配置符合所述UE标识的终端设备。
所述同步信号的配置信息,包括以下一个或多个:同步信号的发送周期;同步信号的时域资源位置信息;同步信号的频域资源位置信息;同步信号的天线端口;同步信号的发送波束。
所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。
所述同步信号的时域资源位置信息,包含以下一个或多个:所述同步信号的时域资源的时域位置;所述同步信号的时域资源的持续时长。
所述同步信号的时域资源位置信息,包括以下一个或多个:第二时域偏移,所述第二时域偏移用于表示所述WUS的接收时间与所述同步信号的时域资源的时域位置之间的偏移;所述同步信号的时域资源的持续时长。
所述同步信号的时域资源的时域位置,包括:所述同步信号的时域资源的时域起始位置,和/或,所述同步信号的时域资源的时域结束位置。
所述同步信号的频域资源位置信息,包含以下一个或多个:所述同步信号的频域资源的第二类频点的位置;所述同步信号的频域资源的大小。
所述同步信号的频域资源位置信息,包含以下一个或多个:第二频域偏移,所述第二时域偏移用于表示所述WUS的频域位置与所述同步信号的频域资源的第二类频点之间的偏移;所述同步信号的频域资源的大小。
所述同步信号的频域资源的第二类频点,包括以下一个或多个:所述同步信号的频域资源的最低频点;所述同步信号的频域资源的最高频点;所述同步信号的频域资源的中心频点。
所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。
本申请实施例的网络设备能够实现前述的网络设备的通信方法实施例中的网络设备的对应功能。该网络设备中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的网络设备中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
另外,虽然前述实施例图9中未示意出,但是,所述网络设备还可以包含第二处理单元,该第二处理单元可以执行前述第二方面通信方法实施例中,所述网络设备生成WUS等处理,只是不做赘述。
图10是根据本申请实施例的通信设备1000示意性结构图。该通信设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以使通信设备1000实现本申请实施例中的方法。
在一种可能的实现方式中,通信设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以使通信设备1000实现本申请实施例中的方法。其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
在一种可能的实现方式中,通信设备1000还可以包括收发器1030,处理器1010可以控制该收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
在一种可能的实现方式中,该通信设备1000可为本申请实施例的网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种可能的实现方式中,该通信设备1000可为本申请实施例的终端设备,并且该通信设备1000可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图11是根据本申请实施例的芯片1100的示意性结构图。该芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一种可能的实现方式中,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
在一种可能的实现方式中,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一种可能的实现方式中,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一种可能的实现方式中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申 请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种可能的实现方式中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图12是根据本申请实施例的通信系统1200的示意性框图。该通信系统1200包括终端设备1210和网络设备1220。
其中,该终端设备1210可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1220可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (118)

  1. 一种通信方法,包括:
    终端设备监听唤醒信号WUS;
    其中,所述WUS用于唤醒所述终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。
  2. 根据权利要求1所述的方法,其中,所述WUS还包括:UE标识,所述UE标识为UE ID、或UE组ID、或小区ID。
  3. 根据权利要求2所述的方法,其中,所述WUS具体用于唤醒符合所述UE标识的终端设备。
  4. 根据权利要求2或3所述的方法,其中,所述第一信息,包括以下一个或多个信息:
    用于执行随机接入的信息,所述用于执行随机接入的信息为第一物理随机接入信道PRACH资源的配置信息;
    用于执行初始接入的信息,所述用于执行初始接入的信息为目标初始带宽部分BWP的配置信息;
    用于执行时频同步的信息,所述用于执行时频同步的信息为同步信号的配置信息。
  5. 根据权利要求4所述的方法,其中,所述第一PRACH资源的配置信息具体用于配置符合所述UE标识的终端设备。
  6. 根据权利要求4或5所述的方法,其中,所述第一PRACH资源的配置信息,包括以下一个或多个:
    第一PRACH的时域资源位置信息;
    第一PRACH的频域资源位置信息;
    第一PRACH的周期;
    第一PRACH的时隙;
    第一PRACH的子载波间隔;
    第一PRACH时机的数量;
    第一PRACH与同步信号块SSB的映射关系;
    第一PRACH时机的时域资源位置信息;
    第一PRACH时机的频域资源位置信息;
    前导码索引号。
  7. 根据权利要求6所述的方法,其中,所述第一PRACH的时域资源位置信息,包含以下一个或多个:
    所述第一PRACH的时域资源的时域位置;
    所述第一PRACH的时域资源的持续时长。
  8. 根据权利要求6所述的方法,其中,所述第一PRACH的时域资源位置信息,包含以下一个或多个:
    第一时域偏移,所述第一时域偏移用于表示所述WUS的接收时间与所述第一PRACH的时域资源的时域位置之间的偏移;
    所述第一PRACH的时域资源的持续时长。
  9. 根据权利要求7或8所述的方法,其中,所述第一PRACH的时域资源的时域位置,包括:
    所述第一PRACH的时域资源的时域起始位置,和/或,所述第一PRACH的时域资源的时域结束位置。
  10. 根据权利要求6-9任一项所述的方法,其中,所述第一PRACH的频域资源位置信息,包含以下一个或多个:
    所述第一PRACH的频域资源的第一类频点的位置;
    所述第一PRACH的频域资源的大小。
  11. 根据权利要求6-9任一项所述的方法,其中,所述第一PRACH的频域资源位置信息,包含以下一个或多个:
    第一频域偏移,所述第一频域偏移用于表示所述WUS的频域位置与所述第一PRACH的频域资源的第一类频点之间的偏移;
    所述第一PRACH的频域资源的大小。
  12. 根据权利要求10或11所述的方法,其中,所述第一PRACH的频域资源的第一类频点,包括以下一个或多个:
    所述第一PRACH的频域资源的最低频点;
    所述第一PRACH的频域资源的最高频点;
    所述第一PRACH的频域资源的中心频点。
  13. 根据权利要求4-12任一项所述的方法,其中,所述方法还包括:
    所述终端设备基于所述第一PRACH资源的配置信息,确定第一PRACH资源;
    所述终端设备在所述第一PRACH资源上进行随机接入。
  14. 根据权利要求13所述的方法,其中,所述终端设备监听WUS,还包括:
    所述终端设备处于空闲态的情况下,监听所述WUS。
  15. 根据权利要求13或14所述的方法,其中,所述终端设备监听WUS之前,所述方法还包括:
    所述终端设备接收网络设备配置的第二PRACH资源的配置信息;
    其中,所述第二PRACH资源的配置信息,与所述第一PRACH资源的配置信息不同。
  16. 根据权利要求15所述的方法,其中,所述第二PRACH资源的配置信息,用于确定用于执行随机接入的第二PRACH资源;所述第二PRACH资源与所述第一PRACH资源的时域资源位置不同。
  17. 根据权利要求4-16任一项所述的方法,其中,所述目标初始BWP的配置信息,包括:
    所述目标初始BWP的ID,所述目标初始BWP为多个初始BWP中的一个或多个,所述多个初始BWP包括一个或多个初始上行BWP和/或一个或多个初始下行BWP,所述目标初始BWP为上行BWP和/或下行BWP。
  18. 根据权利要求17所述的方法,其中,所述目标初始BWP的配置信息具体用于配置符合所述UE标识的终端设备。
  19. 根据权利要求17或18所述的方法,其中,所述方法还包括:
    所述终端设备基于所述目标初始BWP的配置信息确定目标初始BWP,在所述目标初始BWP上进行初始接入。
  20. 根据权利要求17-19任一项所述的方法,其中,所述终端设备为降低能力RedCap终端。
  21. 根据权利要求6-20任一项所述的方法,其中,所述同步信号的配置信息,包括以下一个或多个:
    同步信号的发送周期;
    同步信号的时域资源位置信息;
    同步信号的频域资源位置信息;
    同步信号的天线端口;
    同步信号的发送波束。
  22. 根据权利要求21所述的方法,其中,所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。
  23. 根据权利要求21或22所述的方法,其中,所述同步信号的时域资源位置信息,包含以下一个或多个:
    所述同步信号的时域资源的时域位置;
    所述同步信号的时域资源的持续时长。
  24. 根据权利要求21或22所述的方法,其中,所述同步信号的时域资源位置信息,包括以下一个或多个:
    第二时域偏移,所述第二时域偏移用于表示所述WUS的接收时间与所述同步信号的时域资源的时域位置之间的偏移;
    所述同步信号的时域资源的持续时长。
  25. 根据权利要求23或24所述的方法,其中,所述同步信号的时域资源的时域位置,包括:所述同步信号的时域资源的时域起始位置,和/或,所述同步信号的时域资源的时域结束位置。
  26. 根据权利要求21-25任一项所述的方法,其中,所述同步信号的频域资源位置信息,包含以下一个或多个:
    所述同步信号的频域资源的第二类频点的位置;
    所述同步信号的频域资源的大小。
  27. 根据权利要求21-25任一项所述的方法,其中,所述同步信号的频域资源位置信息,包含以下一个或多个:
    第二频域偏移,所述第二时域偏移用于表示所述WUS的频域位置与所述同步信号的频域资源的第二类频点之间的偏移;
    所述同步信号的频域资源的大小。
  28. 根据权利要求26或27所述的方法,其中,所述同步信号的频域资源的第二类频点,包括以下一个或多个:所述同步信号的频域资源的最低频点;所述同步信号的频域资源的最高频点;所述同步信号的频域资源的中心频点。
  29. 根据权利要求21-28任一项所述的方法,其中,所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。
  30. 根据权利要求21-29任一项所述的方法,其中,所述方法还包括:
    所述终端设备基于所述同步信号的配置信息确定同步信号,基于所述同步信号进行时频同步。
  31. 根据权利要求1-30任一项所述的方法,其中,所述终端设备为低功耗终端。
  32. 一种通信方法,包括:
    网络设备发送唤醒信号WUS;
    其中,所述WUS用于唤醒终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。
  33. 根据权利要求32所述的方法,其中,所述WUS还包括:UE标识,所述UE标识为UE ID、或UE组ID、或小区ID。
  34. 根据权利要求33所述的方法,其中,所述WUS具体用于唤醒符合所述UE标识的终端设备。
  35. 根据权利要求33或34所述的方法,其中,所述第一信息,包括以下一个或多个信息:
    用于执行随机接入的信息,所述用于执行随机接入的信息为第一物理随机接入信道PRACH资源的配置信息;
    用于执行初始接入的信息,所述用于执行初始接入的信息为目标初始带宽部分BWP的配置信息;
    用于执行时频同步的信息,所述用于执行时频同步的信息为同步信号的配置信息。
  36. 根据权利要求35所述的方法,其中,所述第一PRACH资源的配置信息具体用于配置符合所述UE标识的终端设备。
  37. 根据权利要求35或36所述的方法,其中,所述第一PRACH资源的配置信息,包括以下一个或多个:
    第一PRACH的时域资源位置信息;
    第一PRACH的频域资源位置信息;
    第一PRACH的周期;
    第一PRACH的时隙;
    第一PRACH的子载波间隔;
    第一PRACH时机的数量;
    第一PRACH与同步信号块SSB的映射关系;
    第一PRACH时机的时域资源位置信息;
    第一PRACH时机的频域资源位置信息;
    前导码索引号。
  38. 根据权利要求37所述的方法,其中,所述第一PRACH的时域资源位置信息,包含以下一个或多个:
    所述第一PRACH的时域资源的时域位置;
    所述第一PRACH的时域资源的持续时长。
  39. 根据权利要求37所述的方法,其中,所述第一PRACH的时域资源位置信息,包含以下一个或多个:
    第一时域偏移,所述第一时域偏移用于表示所述WUS的接收时间与所述第一PRACH的时域资源的时域位置之间的偏移;
    所述第一PRACH的时域资源的持续时长。
  40. 根据权利要求38或39所述的方法,其中,所述第一PRACH的时域资源的时域位置,包括:
    所述第一PRACH的时域资源的时域起始位置,和/或,所述第一PRACH的时域资源的时域结束位置。
  41. 根据权利要求37-40任一项所述的方法,其中,所述第一PRACH的频域资源位置信息,包含以下一个或多个:
    所述第一PRACH的频域资源的第一类频点的位置;
    所述第一PRACH的频域资源的大小。
  42. 根据权利要求37-40任一项所述的方法,其中,所述第一PRACH的频域资源位置信息,包含以下一个或多个:
    第一频域偏移,所述第一频域偏移用于表示所述WUS的频域位置与所述第一PRACH的频域资源的第一类频点之间的偏移;
    所述第一PRACH的频域资源的大小。
  43. 根据权利要求41或42所述的方法,其中,所述第一PRACH的频域资源的第一类频点,包括以下一个或多个:
    所述第一PRACH的频域资源的最低频点;
    所述第一PRACH的频域资源的最高频点;
    所述第一PRACH的频域资源的中心频点。
  44. 根据权利要求35-43任一项所述的方法,其中,所述网络设备发送唤醒信号WUS之前,所述方法还包括:
    所述网络设备为终端设备配置第二PRACH资源的配置信息;
    其中,所述第二PRACH资源的配置信息,与所述第一PRACH资源的配置信息不同。
  45. 根据权利要求44所述的方法,其中,所述第二PRACH资源的配置信息,用于确定用于执行随机接入的第二PRACH资源;所述第二PRACH资源与所述第一PRACH资源的时域资源位置不同。
  46. 根据权利要求35-45任一项所述的方法,其中,所述目标初始BWP的配置信息,包括:
    所述目标初始BWP的ID,所述目标初始BWP为多个初始BWP中的一个或多个,所述多个初始BWP包括一个或多个初始上行BWP和/或一个或多个初始下行BWP,所述目标初始BWP为上行BWP和/或下行BWP。
  47. 根据权利要求46所述的方法,其中,所述目标初始BWP的配置信息具体用于配置符合所述UE标识的终端设备。
  48. 根据权利要求46或47所述的方法,其中,所述终端设备为降低能力RedCap终端。
  49. 根据权利要求35-48任一项所述的方法,其中,所述同步信号的配置信息,包括以下一个或多个:
    同步信号的发送周期;
    同步信号的时域资源位置信息;
    同步信号的频域资源位置信息;
    同步信号的天线端口;
    同步信号的发送波束。
  50. 根据权利要求49所述的方法,其中,所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。
  51. 根据权利要求49或50所述的方法,其中,所述同步信号的时域资源位置信息,包含以下一个或多个:
    所述同步信号的时域资源的时域位置;
    所述同步信号的时域资源的持续时长。
  52. 根据权利要求49或50所述的方法,其中,所述同步信号的时域资源位置信息,包括以下一个或多个:
    第二时域偏移,所述第二时域偏移用于表示所述WUS的接收时间与所述同步信号的时域资源的时域位置之间的偏移;
    所述同步信号的时域资源的持续时长。
  53. 根据权利要求51或52所述的方法,其中,所述同步信号的时域资源的时域位置,包括:所述同步信号的时域资源的时域起始位置,和/或,所述同步信号的时域资源的时域结束位置。
  54. 根据权利要求49-53任一项所述的方法,其中,所述同步信号的频域资源位置信息,包含以下一个或多个:
    所述同步信号的频域资源的第二类频点的位置;
    所述同步信号的频域资源的大小。
  55. 根据权利要求49-53任一项所述的方法,其中,所述同步信号的频域资源位置信息,包含以下一个或多个:
    第二频域偏移,所述第二时域偏移用于表示所述WUS的频域位置与所述同步信号的频域资源的第二类频点之间的偏移;
    所述同步信号的频域资源的大小。
  56. 根据权利要求54或55所述的方法,其中,所述同步信号的频域资源的第二类频点,包括以下一个或多个:所述同步信号的频域资源的最低频点;所述同步信号的频域资源的最高频点;所述同步信号的频域资源的中心频点。
  57. 根据权利要求49-56任一项所述的方法,其中,所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。
  58. 一种终端设备,包括:
    第一通信单元,用于监听唤醒信号WUS;
    其中,所述WUS用于唤醒所述终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。
  59. 根据权利要求58所述的终端设备,其中,所述WUS还包括:UE标识,所述UE标识为UE ID、或UE组ID、或小区ID。
  60. 根据权利要求59所述的终端设备,其中,所述WUS具体用于唤醒符合所述UE标识的终端设备。
  61. 根据权利要求59或60所述的终端设备,其中,所述第一信息,包括以下一个或多个信息:
    用于执行随机接入的信息,所述用于执行随机接入的信息为第一物理随机接入信道PRACH资源的配置信息;
    用于执行初始接入的信息,所述用于执行初始接入的信息为目标初始带宽部分BWP的配置信息;
    用于执行时频同步的信息,所述用于执行时频同步的信息为同步信号的配置信息。
  62. 根据权利要求61所述的终端设备,其中,所述第一PRACH资源的配置信息具体用于配置符合所述UE标识的终端设备。
  63. 根据权利要求61或62所述的终端设备,其中,所述第一PRACH资源的配置信息,包括以下一个或多个:
    第一PRACH的时域资源位置信息;
    第一PRACH的频域资源位置信息;
    第一PRACH的周期;
    第一PRACH的时隙;
    第一PRACH的子载波间隔;
    第一PRACH时机的数量;
    第一PRACH与同步信号块SSB的映射关系;
    第一PRACH时机的时域资源位置信息;
    第一PRACH时机的频域资源位置信息;
    前导码索引号。
  64. 根据权利要求63所述的终端设备,其中,所述第一PRACH的时域资源位置信息,包含以下一个或多个:
    所述第一PRACH的时域资源的时域位置;
    所述第一PRACH的时域资源的持续时长。
  65. 根据权利要求63所述的终端设备,其中,所述第一PRACH的时域资源位置信息,包含以下一个或多个:
    第一时域偏移,所述第一时域偏移用于表示所述WUS的接收时间与所述第一PRACH的时域资源的时域位置之间的偏移;
    所述第一PRACH的时域资源的持续时长。
  66. 根据权利要求64或65所述的终端设备,其中,所述第一PRACH的时域资源的时域位置,包括:
    所述第一PRACH的时域资源的时域起始位置,和/或,所述第一PRACH的时域资源的时域结束位置。
  67. 根据权利要求63-66任一项所述的终端设备,其中,所述第一PRACH的频域资源位置信息,包含以下一个或多个:
    所述第一PRACH的频域资源的第一类频点的位置;
    所述第一PRACH的频域资源的大小。
  68. 根据权利要求63-66任一项所述的终端设备,其中,所述第一PRACH的频域资源位置信息,包含以下一个或多个:
    第一频域偏移,所述第一频域偏移用于表示所述WUS的频域位置与所述第一PRACH的频域资源的第一类频点之间的偏移;
    所述第一PRACH的频域资源的大小。
  69. 根据权利要求67或68所述的终端设备,其中,所述第一PRACH的频域资源的第一类频点,包括以下一个或多个:
    所述第一PRACH的频域资源的最低频点;
    所述第一PRACH的频域资源的最高频点;
    所述第一PRACH的频域资源的中心频点。
  70. 根据权利要求63-69任一项所述的终端设备,其中,所述终端设备还包括:
    第一处理单元,用于基于所述第一PRACH资源的配置信息,确定第一PRACH资源;在所述第一PRACH资源上进行随机接入。
  71. 根据权利要求70所述的终端设备,其中,所述第一通信单元,用于在所述终端设备处于空闲态的情况下,监听所述WUS。
  72. 根据权利要求70或71所述的终端设备,其中,所述第一通信单元,用于在监听WUS之前,接收网络设备配置的第二PRACH资源的配置信息;
    其中,所述第二PRACH资源的配置信息,与所述第一PRACH资源的配置信息不同。
  73. 根据权利要求72所述的终端设备,其中,所述第二PRACH资源的配置信息,用于确定用于执行随机接入的第二PRACH资源;所述第二PRACH资源与所述第一PRACH资源的时域资源位置不同。
  74. 根据权利要求61-73任一项所述的终端设备,其中,所述目标初始BWP的配置信息,包括:
    所述目标初始BWP的ID,所述目标初始BWP为多个初始BWP中的一个或多个,所述多个初始BWP包括一个或多个初始上行BWP和/或一个或多个初始下行BWP,所述目标初始BWP为上行BWP和/或下行BWP。
  75. 根据权利要求74所述的终端设备,其中,所述目标初始BWP的配置信息具体用于配置符合所述UE标识的终端设备。
  76. 根据权利要求74或75所述的终端设备,其中,所述终端设备还包括:
    第一处理单元,用于基于所述目标初始BWP的配置信息确定目标初始BWP,在所述目标初始BWP上进行初始接入。
  77. 根据权利要求74-76任一项所述的终端设备,其中,所述终端设备为降低能力RedCap终端。
  78. 根据权利要求61-77任一项所述的终端设备,其中,所述同步信号的配置信息,包括以下一个或多个:
    同步信号的发送周期;
    同步信号的时域资源位置信息;
    同步信号的频域资源位置信息;
    同步信号的天线端口;
    同步信号的发送波束。
  79. 根据权利要求78所述的终端设备,其中,所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。
  80. 根据权利要求78或79所述的终端设备,其中,所述同步信号的时域资源位置信息,包含以下一个或多个:
    所述同步信号的时域资源的时域位置;
    所述同步信号的时域资源的持续时长。
  81. 根据权利要求78或79所述的终端设备,其中,所述同步信号的时域资源位置信息,包括以下一个或多个:
    第二时域偏移,所述第二时域偏移用于表示所述WUS的接收时间与所述同步信号的时域资源的时域位置之间的偏移;
    所述同步信号的时域资源的持续时长。
  82. 根据权利要求80或81所述的终端设备,其中,所述同步信号的时域资源的时域位置,包括:所述同步信号的时域资源的时域起始位置,和/或,所述同步信号的时域资源的时域结束位置。
  83. 根据权利要求78-82任一项所述的终端设备,其中,所述同步信号的频域资源位置信息,包含以下一个或多个:
    所述同步信号的频域资源的第二类频点的位置;
    所述同步信号的频域资源的大小。
  84. 根据权利要求78-82任一项所述的终端设备,其中,所述同步信号的频域资源位置信息,包含以下一个或多个:
    第二频域偏移,所述第二时域偏移用于表示所述WUS的频域位置与所述同步信号的频域资源的第二类频点之间的偏移;
    所述同步信号的频域资源的大小。
  85. 根据权利要求83或84所述的终端设备,其中,所述同步信号的频域资源的第二类频点,包括 以下一个或多个:所述同步信号的频域资源的最低频点;所述同步信号的频域资源的最高频点;所述同步信号的频域资源的中心频点。
  86. 根据权利要求78-85任一项所述的终端设备,其中,所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。
  87. 根据权利要求78-86任一项所述的终端设备,其中,所述终端设备还包括:
    第一处理单元,用于基于所述同步信号的配置信息确定同步信号,基于所述同步信号进行时频同步。
  88. 一种网络设备,包括:
    第二通信单元,用于发送唤醒信号WUS;
    其中,所述WUS用于唤醒终端设备;所述WUS中携带第一信息,所述第一信息用于所述终端设备在唤醒后执行的操作。
  89. 根据权利要求88所述的网络设备,其中,所述WUS还包括:UE标识,所述UE标识为UE ID、或UE组ID、或小区ID。
  90. 根据权利要求89所述的网络设备,其中,所述WUS具体用于唤醒符合所述UE标识的终端设备。
  91. 根据权利要求89或90所述的网络设备,其中,所述第一信息,包括以下一个或多个信息:
    用于执行随机接入的信息,所述用于执行随机接入的信息为第一物理随机接入信道PRACH资源的配置信息;
    用于执行初始接入的信息,所述用于执行初始接入的信息为目标初始带宽部分BWP的配置信息;
    用于执行时频同步的信息,所述用于执行时频同步的信息为同步信号的配置信息。
  92. 根据权利要求91所述的网络设备,其中,所述第一PRACH资源的配置信息具体用于配置符合所述UE标识的终端设备。
  93. 根据权利要求91或92所述的网络设备,其中,所述第一PRACH资源的配置信息,包括以下一个或多个:
    第一PRACH的时域资源位置信息;
    第一PRACH的频域资源位置信息;
    第一PRACH的周期;
    第一PRACH的时隙;
    第一PRACH的子载波间隔;
    第一PRACH时机的数量;
    第一PRACH与同步信号块SSB的映射关系;
    第一PRACH时机的时域资源位置信息;
    第一PRACH时机的频域资源位置信息;
    前导码索引号。
  94. 根据权利要求93所述的网络设备,其中,所述第一PRACH的时域资源位置信息,包含以下一个或多个:
    所述第一PRACH的时域资源的时域位置;
    所述第一PRACH的时域资源的持续时长。
  95. 根据权利要求93所述的网络设备,其中,所述第一PRACH的时域资源位置信息,包含以下一个或多个:
    第一时域偏移,所述第一时域偏移用于表示所述WUS的接收时间与所述第一PRACH的时域资源的时域位置之间的偏移;
    所述第一PRACH的时域资源的持续时长。
  96. 根据权利要求94或95所述的网络设备,其中,所述第一PRACH的时域资源的时域位置,包括:
    所述第一PRACH的时域资源的时域起始位置,和/或,所述第一PRACH的时域资源的时域结束位置。
  97. 根据权利要求93-96任一项所述的网络设备,其中,所述第一PRACH的频域资源位置信息,包含以下一个或多个:
    所述第一PRACH的频域资源的第一类频点的位置;
    所述第一PRACH的频域资源的大小。
  98. 根据权利要求93-96任一项所述的网络设备,其中,所述第一PRACH的频域资源位置信息,包含以下一个或多个:
    第一频域偏移,所述第一频域偏移用于表示所述WUS的频域位置与所述第一PRACH的频域资源的第一类频点之间的偏移;
    所述第一PRACH的频域资源的大小。
  99. 根据权利要求97或98所述的网络设备,其中,所述第一PRACH的频域资源的第一类频点,包括以下一个或多个:
    所述第一PRACH的频域资源的最低频点;
    所述第一PRACH的频域资源的最高频点;
    所述第一PRACH的频域资源的中心频点。
  100. 根据权利要求91-99任一项所述的网络设备,其中,所述第二通信单元,用于为终端设备配置第二PRACH资源的配置信息;
    其中,所述第二PRACH资源的配置信息,与所述第一PRACH资源的配置信息不同。
  101. 根据权利要求100所述的网络设备,其中,所述第二PRACH资源的配置信息,用于确定用于执行随机接入的第二PRACH资源;所述第二PRACH资源与所述第一PRACH资源的时域资源位置不同。
  102. 根据权利要求91-101任一项所述的网络设备,其中,所述目标初始BWP的配置信息,包括:
    所述目标初始BWP的ID,所述目标初始BWP为多个初始BWP中的一个或多个,所述多个初始BWP包括一个或多个初始上行BWP和/或一个或多个初始下行BWP,所述目标初始BWP为上行BWP和/或下行BWP。
  103. 根据权利要求102所述的网络设备,其中,所述目标初始BWP的配置信息具体用于配置符合所述UE标识的终端设备。
  104. 根据权利要求91-103任一项所述的网络设备,其中,所述同步信号的配置信息,包括以下一个或多个:
    同步信号的发送周期;
    同步信号的时域资源位置信息;
    同步信号的频域资源位置信息;
    同步信号的天线端口;
    同步信号的发送波束。
  105. 根据权利要求104所述的网络设备,其中,所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。
  106. 根据权利要求104或105所述的网络设备,其中,所述同步信号的时域资源位置信息,包含以下一个或多个:
    所述同步信号的时域资源的时域位置;
    所述同步信号的时域资源的持续时长。
  107. 根据权利要求104或105所述的网络设备,其中,所述同步信号的时域资源位置信息,包括以下一个或多个:
    第二时域偏移,所述第二时域偏移用于表示所述WUS的接收时间与所述同步信号的时域资源的时域位置之间的偏移;
    所述同步信号的时域资源的持续时长。
  108. 根据权利要求106或107所述的网络设备,其中,所述同步信号的时域资源的时域位置,包括:所述同步信号的时域资源的时域起始位置,和/或,所述同步信号的时域资源的时域结束位置。
  109. 根据权利要求104-108任一项所述的网络设备,其中,所述同步信号的频域资源位置信息,包含以下一个或多个:
    所述同步信号的频域资源的第二类频点的位置;
    所述同步信号的频域资源的大小。
  110. 根据权利要求104-108任一项所述的网络设备,其中,所述同步信号的频域资源位置信息,包含以下一个或多个:
    第二频域偏移,所述第二时域偏移用于表示所述WUS的频域位置与所述同步信号的频域资源的第二类频点之间的偏移;
    所述同步信号的频域资源的大小。
  111. 根据权利要求109或110所述的网络设备,其中,所述同步信号的频域资源的第二类频点,包括以下一个或多个:所述同步信号的频域资源的最低频点;所述同步信号的频域资源的最高频点;所述同步信号的频域资源的中心频点。
  112. 根据权利要求104-111任一项所述的网络设备,其中,所述同步信号的配置信息具体用于配置符合所述UE标识的终端设备。
  113. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至31中任一项所述的方法。
  114. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求32至57中任一项所述的方法。
  115. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至31中任一项或32至57中任一项所述的方法。
  116. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至31中任一项或32至57中任一项所述的方法。
  117. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至31中任一项或32至57中任一项所述的方法。
  118. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至31中任一项或32至57中任一项所述的方法。
PCT/CN2022/081818 2022-03-18 2022-03-18 通信方法、终端设备和网络设备 WO2023173439A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081818 WO2023173439A1 (zh) 2022-03-18 2022-03-18 通信方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081818 WO2023173439A1 (zh) 2022-03-18 2022-03-18 通信方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023173439A1 true WO2023173439A1 (zh) 2023-09-21

Family

ID=88021983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081818 WO2023173439A1 (zh) 2022-03-18 2022-03-18 通信方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2023173439A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351854A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 配置信息指示方法及通信装置
CN110691344A (zh) * 2018-07-04 2020-01-14 中国移动通信有限公司研究院 终端的唤醒方法、随机接入方法、装置、终端及网络设备
CN114175801A (zh) * 2020-01-10 2022-03-11 华为技术有限公司 一种随机接入方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351854A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 配置信息指示方法及通信装置
CN110691344A (zh) * 2018-07-04 2020-01-14 中国移动通信有限公司研究院 终端的唤醒方法、随机接入方法、装置、终端及网络设备
CN114175801A (zh) * 2020-01-10 2022-03-11 华为技术有限公司 一种随机接入方法及装置

Similar Documents

Publication Publication Date Title
WO2018040817A1 (zh) 一种无线局域网中唤醒帧的传输方法及装置
US20230397118A1 (en) Method for wireless communication and first device
US20230328690A1 (en) Wireless communication method, terminal device and network device
WO2022027488A1 (zh) 无线通信的方法、终端设备和网络设备
CN110121203B (zh) 通信方法和通信装置
EP4192150A1 (en) Channel transmission method, terminal device, and network device
WO2022068611A1 (zh) 侧行链路的传输方法和终端
US20230217415A1 (en) Energy saving method, terminal device, and network device
WO2023098845A1 (zh) 资源确定方法与装置、终端
WO2023173439A1 (zh) 通信方法、终端设备和网络设备
WO2022094775A1 (zh) 寻呼方法、终端设备和网络设备
WO2023159468A1 (zh) 信息传输方法、终端设备和网络设备
WO2022061493A1 (zh) 资源确定方法、终端设备和网络设备
WO2022188078A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023201489A1 (zh) 通信方法、终端设备和网络设备
WO2023159474A1 (zh) 信息传输方法、终端设备和网络设备
WO2022193198A1 (zh) 侧行链路资源请求方法、终端设备和网络设备
WO2023115565A1 (zh) 无线通信的方法、终端设备、接入网设备和核心网设备
WO2023092526A1 (zh) 寻呼方法、终端设备和网络设备
WO2022016418A1 (zh) 寻呼方法、终端设备和网络设备
WO2023208098A1 (zh) 一种通信方法、装置、芯片及模组设备
WO2023116441A1 (zh) 通信方法、装置、设备以及存储介质
WO2022067729A1 (zh) 非连续接收的方法、终端设备和网络设备
US20230309060A1 (en) Paging indicating method, terminal device and network device
WO2024098196A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931470

Country of ref document: EP

Kind code of ref document: A1