WO2022061493A1 - 资源确定方法、终端设备和网络设备 - Google Patents

资源确定方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022061493A1
WO2022061493A1 PCT/CN2020/116751 CN2020116751W WO2022061493A1 WO 2022061493 A1 WO2022061493 A1 WO 2022061493A1 CN 2020116751 W CN2020116751 W CN 2020116751W WO 2022061493 A1 WO2022061493 A1 WO 2022061493A1
Authority
WO
WIPO (PCT)
Prior art keywords
time interval
terminal device
saving signal
paging
time domain
Prior art date
Application number
PCT/CN2020/116751
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080101365.7A priority Critical patent/CN115699924A/zh
Priority to EP20954347.9A priority patent/EP4156807A4/en
Priority to PCT/CN2020/116751 priority patent/WO2022061493A1/zh
Priority to CN202310407675.7A priority patent/CN116390252A/zh
Publication of WO2022061493A1 publication Critical patent/WO2022061493A1/zh
Priority to US18/068,596 priority patent/US20230117840A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and more particularly, to a resource determination method, terminal device and network device.
  • the Long Term Evolution (LTE) and New Radio (New Radio, NR) systems include a DRX (Discontinuous Reception) mechanism.
  • the DRX mechanism enables the terminal to enter a discontinuous reception state without having to turn on the receiver all the time when there is no data reception, thereby achieving the purpose of power saving.
  • the power saving signal may be used to indicate whether the UE receives a paging on an attained paging occasion (Paging Occasion, PO). It is necessary to consider how to properly receive the power saving signal.
  • the embodiments of the present application provide a resource determination method, a terminal device, and a network device, which can correctly receive an energy-saving signal.
  • the embodiment of the present application provides a resource determination method, including:
  • the terminal device determines the time interval between the time domain resources of the energy saving signal and the paging resources
  • the terminal device determines a time domain resource for detecting the energy saving signal.
  • the embodiment of the present application provides a resource determination method, including:
  • the time interval is used to instruct the terminal device to determine the time domain resource for detecting the energy saving signal.
  • An embodiment of the present application provides a terminal device, including:
  • a first determining unit configured to determine the time interval between the time domain resources of the energy-saving signal and the paging resources
  • the second determining unit is configured to determine, based on the time interval, a time domain resource for detecting the energy-saving signal.
  • An embodiment of the present application provides a network device, including:
  • a sending unit used for sending the time interval between the time domain resources of the energy-saving signal and the paging resources
  • the time interval is used to instruct the terminal device to determine the time domain resource for detecting the energy saving signal.
  • An embodiment of the present application provides a terminal device, including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so that the terminal device executes the above-mentioned resource determination method.
  • An embodiment of the present application provides a network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so that the network device executes the above-mentioned resource determination method.
  • An embodiment of the present application provides a chip for implementing the above resource determination method.
  • the chip includes: a processor for calling and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned resource determination method.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program, which, when the computer program is executed by a device, causes the device to execute the foregoing resource determination method.
  • An embodiment of the present application provides a computer program product, including computer program instructions, and the computer program instructions cause a computer to execute the foregoing resource determination method.
  • the embodiments of the present application provide a computer program, which, when running on a computer, causes the computer to execute the above-mentioned resource determination method.
  • determining the time interval between the time domain resources of the energy-saving signal and the paging resource can enable the terminal device to correctly receive the energy-saving signal.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of indicating whether to monitor the PDCCH through an energy saving signal.
  • FIG. 3 is a schematic diagram of an energy saving signal carrying multi-user energy saving indication information.
  • FIG. 4 is a schematic diagram of a listening timing of an energy saving signal.
  • Figure 5 is a schematic diagram of PF and PO.
  • FIG. 6 is a schematic flowchart of a resource determination method according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a resource determination method according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of the UE detecting SSB for time-frequency synchronization before PO.
  • FIG. 9 is a schematic diagram of determining a time interval based on an offset.
  • FIG. 10 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STAION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • STAION, ST in the WLAN
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 1 exemplarily shows a communication system 100 .
  • the communication system includes one network device 110 and two terminal devices 120 .
  • the communication system 100 may include multiple network devices 110, and the coverage of each network device 110 may include other numbers of terminal devices 120, which are not limited in this embodiment of the present application.
  • the communication system 100 may further include a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF) and other network entities, to which the embodiments of the present application Not limited.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • the network equipment may further include access network equipment and core network equipment. That is, the wireless communication system further includes a plurality of core networks for communicating with the access network equipment.
  • the access network equipment may be a long-term evolution (long-term evolution, LTE) system, a next-generation (mobile communication system) (next radio, NR) system, or an authorized auxiliary access long-term evolution (authorized auxiliary access long-term evolution, LAA-
  • the evolved base station (evolutional node B, may be referred to as eNB or e-NodeB for short) in the LTE) system is a macro base station, a micro base station (also called a "small base station"), a pico base station, an access point (AP), Transmission site (transmission point, TP) or new generation base station (new generation Node B, gNodeB), etc.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device and a terminal device with a communication function, and the network device and the terminal device may be specific devices in this embodiment of the application, which will not be repeated here; It may include other devices in the communication system, for example, other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • the DRX mechanism includes configuring a DRX cycle (cycle) for a UE in a radio resource control (Radio Resource Control, RRC) connected (CONNECTED) state.
  • a DRX cycle includes "On Duration” and "Opportunity for DRX".
  • the UE monitors and receives downlink channels and signals including the Physical Downlink Control Channel (PDCCH).
  • the UE does not receive downlink channels and signals such as PDCCH to reduce power consumption.
  • a UE in RRC idle (IDLE) state needs to receive paging messages in a similar manner to DRX.
  • PO paging occasion
  • the UE determines whether there is a paging message by detecting the PDCCH signal scrambled by P-RNTI (Paging-Radio Network Temporary Identity, paging-wireless network temporary identity).
  • P-RNTI Paging-Radio Network Temporary Identity, paging-wireless network temporary identity
  • the energy saving signal is introduced.
  • the energy-saving signal is used in combination with the DRX mechanism, and the terminal receives the indication of the energy-saving signal before DRX On Duration.
  • the power-saving signal may also be referred to as a power-saving wake-up signal.
  • the power-saving signal When the terminal has data transmission in one DRX cycle, the power-saving signal "wakes up" the terminal to monitor the PDCCH during the DRX On duration. Otherwise, when the terminal has no data transmission in a DRX cycle, the energy-saving signal does not "wake up” the terminal, and the terminal does not need to monitor the PDCCH during the DRX On Duration.
  • the terminal when the terminal has no data transmission, the terminal can omit PDCCH monitoring during the DRX On duration, thereby achieving energy saving.
  • the time when the terminal is outside the DRX On duration is called the inactive time, and the time in the DRX On Duration is called the active time.
  • the power saving signal may be carried by DCI format 2-6.
  • the network configures the terminal to detect the search space set (search space set) of the PDCCH carrying the DCI format 2_6.
  • search space set search space set
  • the number of bits required by a single user is at most 6. It includes 1 wake-up indication bit and a maximum of 5 secondary cell sleep indication bits.
  • the energy-saving signal carries indication bits of multiple users to improve resource usage efficiency.
  • the power saving signal may carry multi-user power saving indication information.
  • the network informs each user of the starting position of the energy-saving indication bits in the DCI, and the number of bits for a single user can be implicitly obtained by the configured number of secondary cell (carrier) groups (the wake-up indication bit must appear, and the secondary cell (carrier) is dormant.
  • the number of indication bits may be 0). Further, the network will also notify the terminal of the total number of bits of DCI and the PS (Power Saving, energy saving signal)-RNTI of the scrambled PDCCH.
  • the network configures a time offset (eg PS-offset) for determining the starting point of the PDCCH listening occasion. After the starting point of the PDCCH monitoring occasion is determined, the end point of the PDCCH monitoring needs to be further determined.
  • the end point of PDCCH monitoring may be determined by the device capability of the terminal.
  • the terminal needs to perform operations such as device wake-up and initialization after wake-up within the minimum time interval before DRX ON. Therefore, the terminal does not need to monitor the energy-saving signal within the minimum time interval before DRX ON.
  • a terminal with a faster processing speed can use a shorter minimum time interval, see value 1 in Table 1, while a terminal with a slower processing speed needs to use a longer minimum time interval, see value 2 in Table 1.
  • the energy-saving signal starts from the time position indicated by the PS-offset configured by the network, and monitors the energy-saving signal within a complete PDCCH search space period (for example, defined by the parameter "duration" of the PDCCH search space) after the starting point, and the monitored The position of the power saving signal is before the time period corresponding to the minimum time interval. As shown in FIG. 4 , the terminal monitors the monitoring timing of the energy-saving signal indicated by the dotted box.
  • the network can send pages to UEs in idle (IDLE) state and connected (RRC-CONNECTION) state.
  • the paging process can be triggered by the core network or the base station, and is used to send a paging request to the UE in an idle state, or to notify the system to update the information, or to notify the UE to receive the Earthquake and Tsunami Warning System (ETWS) And commercial mobile alert service (Commercial Mobile Alert System, CMAS) and other information.
  • EWS Earthquake and Tsunami Warning System
  • CMAS commercial mobile alert service
  • the base station interprets the content, obtains the tracking area identification (Tracking Area Identity, TAI) list (list) of the UE, and performs air interface calls in the cells belonging to the tracking area in the list. paging.
  • TAI Track Area Identity
  • the core network domain of the paging message will not be decoded by the base station, but will be transparently transmitted to the UE.
  • the base station After receiving the paging message of the core network, the base station aggregates the paging messages of the UEs with the same PO (paging occasion, paging occasion) into a paging message, and transmits it to the relevant UE through the paging channel.
  • the UE receives the paging parameters through the system message, calculates the PO in combination with its own UE_ID, and receives the paging message at the corresponding time.
  • the paging message is carried through the Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the UE obtains the paging indication information by detecting the PDCCH scrambled with the P-RNTI, thereby receiving the paging message.
  • the UE in the idle state will save power by means of DRX, and the UE obtains DRX-related information from SIB2 (System Information Blocks 2, system message 2).
  • SIB2 System Information Blocks 2, system message 2.
  • the UE receives the paging message by monitoring the PDCCH scrambled by the P-RNTI at the PO on the PF (Paging Frame, paging frame) in one DRX cycle.
  • PF indicates which system frame number the paging message should appear on, and PO indicates the time when it may appear.
  • a PF frame may include one or more POs.
  • SFN system frame number
  • the index (index) of the PO corresponding to the UE_ID, that is, i_s can be calculated according to the following formula.
  • i_s floor(UE_ID/N)mod Ns
  • UE_ID (5G-S-TMSI mod 1024).
  • N is the number of PFs in T. Ns is the number of POs in a PF.
  • PF_offset is the frame offset used to determine the PF. For example, as shown in FIG. 5 , it is the position of the PF in one DRX cycle (cycle), and the position of the PO in the PF.
  • SSB SS/PBCH block
  • Common channels and signals in the NR system need to cover the entire cell by means of multi-beam scanning, which is convenient for UEs in the cell to receive.
  • the multi-beam transmission of synchronization signal is realized by defining the SS/PBCH burst set (burst set).
  • An SS/PBCH burst set contains one or more SS/PBCH blocks.
  • One SS/PBCH block is used to carry the synchronization signal and broadcast channel of one beam. Therefore, an SS/PBCH burst set can contain synchronization signals for up to L beams in a cell.
  • L is related to the frequency band of the system, for example:
  • L When the frequency range is up to 3GHz (gigahertz), L is 4 (For frequency range up to 3GHz, Li is 4);
  • An SS/PBCH block contains a primary synchronization signal (PSS) of one symbol, an SSS of one symbol and a PBCH (Physical broadcast channel) of two symbols.
  • the time-frequency resources occupied by the PBCH include a demodulation reference signal (Demodulation Reference Signal, DMRS), which is used for demodulation of the PBCH.
  • DMRS Demodulation Reference Signal
  • all SS/PBCH blocks in the SS/PBCH burst set are sent within a time window of 5ms (milliseconds) and are sent repeatedly with a certain period.
  • the period can be configured through high-level parameters such as: ssb-PeriodicityServingCell (SSB period serving unit), and the period can include 5ms, 10ms, 20ms, 40ms, 80ms, 160ms and so on.
  • the current energy-saving signal needs to meet the time position indicated by the network-configured energy-saving signal offset (PS-offset) as the starting point, within a complete PDCCH search space period after the starting point (defined by the parameter "duration" of the PDCCH search space ) monitor the energy-saving signal, and the interval between the position of the monitored energy-saving signal and the starting position of the DRX On duration needs to meet the minimum time interval.
  • the minimum time interval only needs to consider the processing capability of the UE, and does not need to consider that the UE performs time-frequency synchronization before the arrival of the DRX On duration, so that the PDCCH can be correctly received during the DRX On duration.
  • time-frequency synchronization can be performed through reference signals such as the configured CSI-RS (Channel-State Information Reference Signal), TRS (Time Reference Signal, time reference signal).
  • CSI-RS Channel-State Information Reference Signal
  • TRS Time Reference Signal, time reference signal
  • the power saving signal may be used to indicate whether the UE receives paging on the reached PO. Since the UE in the idle state is not configured with reference signals such as CSI-RS and TRS, it can only use the periodically sent (Synchronization Signal)/PBCH (Physical Broadcast Channel) block (SSB (Synchronization Signal) for short) signal block)) for time-frequency synchronization. The current minimum time interval cannot meet the purpose of time-frequency synchronization through the SSB before the PO arrives, resulting in failure to receive paging correctly.
  • PBCH Physical Broadcast Channel
  • SSB Synchrom Broadcast Channel
  • FIG. 6 is a schematic flowchart of a resource determination method 200 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following.
  • the terminal device determines the time interval between the time domain resources of the energy saving signal and the paging resources.
  • the terminal device determines a time domain resource for detecting the energy saving signal.
  • the terminal device can perform time-frequency synchronization with the network through the SSB before the paging resource such as the PO arrives.
  • the paging resource includes a paging occasion (PO) and/or a paging frame (PF).
  • PF indicates which system frame number the paging message should appear on
  • PO indicates the time when it may appear.
  • An example of PO and PF can be seen in Figure 5.
  • the terminal device determines the time interval between the time domain resources of the energy saving signal and the paging resources, including:
  • the terminal device receives configuration information, where the configuration information includes the first time interval.
  • the terminal device may receive configuration information from the network device.
  • the configuration information may be configured by RRC signaling, indicated by a system message, or indicated by a DCI carried by a PDCCH.
  • the terminal device determines the time interval between the time domain resources of the energy-saving signal and the paging resources, and further includes:
  • the terminal device determines a minimum time interval between the time domain resource of the energy saving signal and the paging resource.
  • the terminal device may directly use the first time interval in the configuration information as the minimum time interval between the time domain resource of the energy saving signal and the paging resource.
  • the terminal device determines the time interval between the time domain resources of the energy saving signal and the paging resources, including:
  • the terminal device determines the second time interval based on the terminal capability
  • the terminal device determines a minimum time interval between the time domain resource of the energy saving signal and the paging resource based on the maximum value of the first time interval and the second time interval.
  • the terminal device may obtain the first time interval T1 from the configuration information, and then determine the second time interval T2 based on its own terminal capability, and then use the maximum value of T1 and T2 as the maximum value of T1 and T2.
  • the minimum time interval between the time domain resources of the energy saving signal and the paging resources may be obtained.
  • the minimum time interval between the time domain resource of the energy saving signal and the paging resource is a predefined value.
  • the minimum time interval between the time domain resource of the energy saving signal and the PO of the UE is a predefined value.
  • the minimum time interval between the time domain resource of the energy saving signal and the PF of the UE is a predefined value.
  • the minimum time interval is a predefined value determined based on a requirement for time-frequency synchronization recovery.
  • the minimum time interval is a predefined value determined based on the subcarrier interval.
  • the minimum time interval between the time domain resource of the energy saving signal and the paging resource is determined based on a predefined rule.
  • the predefined rule includes calculating the minimum time interval by using at least one of the following parameters:
  • the transmission period of the reference signal is the transmission period of the reference signal.
  • the minimum time interval can be predefined to be N times the transmission period of the SSB, N can be equal to 1, 2, 3, etc., and N can be determined by the UE to complete the time-frequency synchronization recovery within the minimum time interval.
  • the number of SSBs If the UE obtains the transmission period T of the SSB from the system message or RRC signaling, the minimum time interval may be T*N.
  • the minimum time interval can also be determined according to different rules. See Table 2.
  • Subcarrier spacing kHz
  • Minimum time interval slots 15 T*N 30 2*T*N 60 4*T*N 120 8*T*N
  • the terminal capabilities may include terminal processing capabilities such as terminal processing time and the like.
  • the time for the terminal to perform time-frequency recovery may also be a terminal capability.
  • the reference signal may include, for example, CSI-RS, TRS, PTRS (Phase Tracking Reference Signal, Phase Tracking Reference Signal), etc. If time-frequency recovery is performed through the reference signal, the above-mentioned minimum value can also be calculated according to the period of the reference signal. time interval.
  • the terminal device determines, based on the time interval, a time domain resource for detecting the energy-saving signal, including:
  • the terminal device determines, based on the minimum time interval between the time domain resource and the paging resource, the end point of the time interval in which the time domain resource of the energy saving signal is detected.
  • the method further includes:
  • the terminal device determines, based on the offset, the starting point of the time interval in which the time domain resource of the energy-saving signal is detected. For example, the terminal device determines the starting point for detecting the time domain resource of the power saving signal based on the PS-offset (power saving signal offset), see FIG. 4 .
  • the time domain resource of the energy saving signal is within the range of this time interval from the start point to the end point.
  • the method further includes:
  • the terminal device is not required to listen to the power saving signal within the minimum time interval between the time domain resource and the paging resource.
  • the energy saving signal is used to indicate whether the terminal device monitors the paging message in the PO and/or the PF.
  • the terminal device when the energy saving signal is used to instruct the terminal device to monitor the paging message at the PO and/or the PF, the terminal device performs time-frequency synchronization recovery through the SSB within the minimum time interval.
  • the terminal device does not perform time-frequency synchronization recovery within the minimum time interval.
  • the unit of the time interval is at least one of the following: a time slot, a subframe, a symbol, a millisecond, and a period of an SSB.
  • determining the time interval between the time domain resources of the energy-saving signal and the paging resources enables the terminal device to have enough time to perform time-frequency synchronization after correctly receiving the energy-saving signal, thereby correctly receiving paging.
  • FIG. 7 is a schematic flowchart of a resource determination method 300 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Figure 1, but is not limited thereto.
  • the method includes at least some of the following.
  • the time interval is used to instruct the terminal device to determine the time domain resource for detecting the energy saving signal.
  • the time interval between the time domain resources of the network device sending the energy saving signal and the paging resources includes:
  • the network device sends configuration information, where the configuration information includes the minimum time interval between the time domain resources of the energy-saving signal and the paging resources, and the minimum time interval is used to instruct the terminal device to determine where the time-domain resources for detecting the energy-saving signal are located. The end of the time interval.
  • the method further includes:
  • the network device sends an offset, where the offset is used to instruct the terminal device to determine the starting point of the time interval in which the time domain resource for detecting the energy saving signal is located.
  • the paging resource includes a paging occasion PO and/or a paging frame PF.
  • the energy saving signal is used to indicate whether the terminal device monitors the paging message in the PO and/or the PF.
  • the unit of the time interval is at least one of the following: a time slot, a subframe, a symbol, a millisecond, and a period of an SSB.
  • an indication method for controlling the energy saving information received by paging is provided, an example of which is as follows:
  • Example 1 The minimum time interval between the time domain resource of the energy saving signal and the PO or PF is configured through the network
  • the UE When the UE is in the RRC idle or RRC inactive state, it can determine the monitoring timing to detect the PDCCH according to its own PF and PO, and can perform DRX at other times to save power. In order to further achieve the purpose of power saving, it is ideal that the UE can know in advance whether there will be a paging message sent to itself when each of its own POs arrives. If not, the UE may not perform PDCCH detection at the PO to achieve further power saving.
  • a method for determining a time-domain resource location where an energy-saving signal is located is provided by taking an example of carrying an energy-saving signal through a sequence such as a reference signal sequence or a synchronization signal sequence.
  • the power saving information can be implicitly indicated by the difference of the sequence.
  • the power saving signal can indicate whether the UE monitors the paging message in the PF or PO.
  • the UE When the UE is in the RRC idle or RRC inactive state, it needs to perform time-frequency synchronization before receiving the paging message. Since the UE in the RRC idle or RRC inactive state is not configured with UE-specific reference signals such as CSI-RS, the UE can only perform time-frequency synchronization based on the SSB.
  • the UE generally needs to "wake up" in advance to start the time-frequency synchronization operation before its own PO.
  • the UE performs time-frequency synchronization by detecting the SSB.
  • the UE performs time-frequency synchronization by detecting the SSB.
  • it depends on the implementation of the UE, for example, by receiving 1-3 SSB burst sets (burst sets) to restore time-frequency synchronization.
  • Fig. 8 takes the UE's detection of the latest SSB burst set before PO as an example to illustrate the process of the UE detecting SSB before PO to perform time-frequency synchronization.
  • the minimum time interval between the time domain resource where the energy-saving signal is located and before the DRX ON is determined by the device capability of the terminal.
  • a terminal with a faster processing speed can use a shorter minimum time interval, see the value 1 in Table 1 of the above embodiment, while a terminal with a slower processing speed needs to use a longer minimum time interval, see Table 1. value 2.
  • the minimum time interval is configured to the UE through the network.
  • the network can determine the time gap time gap 1 according to the sending situation of the SSB, such as the period configuration, the timing relationship with the PO, etc., and indicate it to the UE.
  • the UE After receiving the time interval indication information, the UE determines not to detect the energy saving signal in the time interval before the PO starts. For example, as shown in FIG. 9, the network configures the offsets PS-offset and PS-offset2.
  • PS-offset is used to indicate the starting point of the time domain resource of the UE to detect the energy saving signal (that is, the starting point of the time interval)
  • PS-offset2 is used to indicate the end point of the time domain resource of the UE detecting the energy saving signal (that is, the starting point of the time interval).
  • the energy-saving signal is not detected within the time interval indicated by PS-offset2 (ie, time gap 1).
  • the UE can recover time-frequency synchronization through the SSB to detect paging when the PO arrives.
  • the energy saving signal indicates that paging is not to be detected at the PO, the UE may also not perform time-frequency synchronization recovery within the time interval.
  • the unit of the time interval may be a time slot, a subframe, a symbol, a millisecond, a period of an SSB, or the like.
  • the network instructs the time interval for not detecting the energy-saving signal before the PO or PF starts, so that the UE has enough time to perform time-frequency synchronization after receiving the energy-saving signal, and the network can flexibly according to the SSB transmission situation Configure this time interval.
  • Example 2 The minimum time interval between the time domain resource of the energy saving signal and the PO or PF is a predefined time interval.
  • the minimum time interval before the DRX ON of the time domain resource where the energy-saving signal is located is determined by the device capability of the terminal. Referring to Table 1 of the above embodiment, this minimum time interval is relatively short. It is difficult for the UE to complete the time-frequency synchronization within this time interval.
  • the minimum time interval between the time domain resource of the energy saving signal and the PO or PF may be predefined.
  • the predefined value may not be determined according to the UE capability, but may be determined according to the requirement of completing the time-frequency synchronization recovery within the time interval. For example, assuming that the period of the SSB is predefined as 5ms, and the UE needs to receive 2 SSB burst sets to restore time-frequency synchronization, the minimum time interval can be predefined as 10ms. For the 15KHz subcarrier spacing, it is 10 time slots, as shown in Table 3.
  • Subcarrier spacing kHz
  • Minimum time interval slots 15 10 30 20 60 40 120 80
  • the minimum time interval may have nothing to do with the processing capability of the UE, and the value can satisfy the processing capability of the UE, and only one set of values may be reserved in Table 3.
  • This example uses a predefined method to determine the minimum time interval between the time domain resource of the energy-saving signal and the PO or PF, which can save signaling overhead and is simple to implement.
  • Example 3 The minimum time interval between the time domain resource of the energy saving signal and the PO or PF is determined according to a predefined rule.
  • all SS/PBCH blocks in the SS/PBCH burst set are sent within a time window of 5ms, and are repeatedly sent with a certain period.
  • the period can be configured through high-level parameters such as ssb-PeriodicityServingCell, including 5ms, 10ms, 20ms, 40ms, 80ms, 160ms and so on. This period can be obtained via system message SIB1.
  • the UE may determine the minimum time interval between the time domain resources of the energy-saving signal and the PO or PF according to the period.
  • the relationship between the minimum time interval and the transmission period of the SSB may be predefined.
  • the predefined minimum time interval is N times the transmission period of the SSB, and N may be equal to 1, 2, 3, etc., depending on the number of SSBs that the UE needs to receive to complete the time-frequency synchronization recovery within the minimum time interval. In this way, the UE can determine the minimum time interval.
  • T represents the transmission period of the SSB obtained by the UE from the system message or RRC signaling, in ms; and N is a predefined coefficient. According to Table 2, the minimum time interval under different subcarrier intervals is obtained, and the unit is time slot.
  • the minimum time interval is determined according to the transmission period of the SSB, which can ensure a desired number of SSBs within the time interval for the UE to perform time-frequency synchronization recovery. Compared with the predefined minimum time interval, it has certain flexibility.
  • the UE can have enough time to perform time-frequency synchronization after receiving the energy-saving signal, so as to correctly receive the paging during the PO period. .
  • FIG. 10 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 may include:
  • a first determining unit 410 configured to determine the time interval between the time domain resources of the energy saving signal and the paging resources
  • the second determining unit 420 is configured to determine, based on the time interval, a time domain resource for detecting the energy saving signal.
  • the first determining unit 410 is further configured to receive configuration information, where the configuration information includes the first time interval.
  • the first determining unit 410 is further configured to determine, based on the first time interval, the minimum time interval between the time domain resources of the energy saving signal and the paging resources.
  • the first determining unit 410 is further configured to determine a second time interval based on the terminal capability; and determine the energy saving signal based on the maximum value of the first time interval and the second time interval The minimum time interval between time domain resources and paging resources.
  • the minimum time interval between the time domain resource of the energy saving signal and the paging resource is a predefined value.
  • the minimum time interval is a predefined value determined based on a requirement for time-frequency synchronization recovery.
  • the minimum time interval is a predefined value determined based on the subcarrier interval.
  • the minimum time interval between the time domain resource of the energy saving signal and the paging resource is determined based on a predefined rule.
  • the predefined rule includes calculating the minimum time interval by using at least one of the following parameters:
  • the transmission period of the reference signal is the transmission period of the reference signal.
  • the second determining unit 420 is further configured to determine, based on the minimum time interval between the time domain resource and the paging resource, the time interval in which the time domain resource for detecting the energy saving signal is located. end.
  • the terminal device further includes:
  • the processing unit 430 is configured to not require monitoring the energy saving signal within the minimum time interval between the time domain resource and the paging resource.
  • the second determining unit 420 is further configured to determine, based on the offset, the starting point of the time interval where the time domain resource of the energy-saving signal is detected.
  • the paging resource includes a paging occasion PO and/or a paging frame PF.
  • the energy saving signal is used to indicate whether the terminal device monitors the paging message in the PO and/or the PF.
  • the unit of the time interval is at least one of the following: a time slot, a subframe, a symbol, a millisecond, and a period of an SSB.
  • the terminal device 400 in this embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method embodiments.
  • each module (submodule, unit or component, etc.) in the terminal device 400 reference may be made to the corresponding descriptions in the above method embodiments, which will not be repeated here.
  • the functions described by each module (submodule, unit, or component, etc.) in the terminal device 400 of the application embodiment may be implemented by different modules (submodule, unit, or component, etc.), or may be implemented by the same module Module (submodule, unit or component, etc.) implementation.
  • FIG. 12 is a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 may include:
  • a sending unit 510 configured to send the time interval between the time domain resources of the energy-saving signal and the paging resources
  • the time interval is used to instruct the terminal device to determine the time domain resource for detecting the energy saving signal.
  • the sending unit 510 is further configured to send configuration information, where the configuration information includes the minimum time interval between the time domain resources of the energy saving signal and the paging resources, and the minimum time interval is used for The terminal device is instructed to determine the end point of the time interval in which the time domain resource of the energy saving signal is detected.
  • the sending unit 510 is further configured to send an offset, where the offset is used to instruct the terminal device to determine the starting point of the time interval where the time domain resource for detecting the energy saving signal is located.
  • the paging resource includes a paging occasion PO and/or a paging frame PF.
  • the energy saving signal is used to indicate whether the terminal device monitors the paging message in the PO and/or the PF.
  • the unit of the time interval is at least one of the following: a time slot, a subframe, a symbol, a millisecond, and a period of an SSB.
  • the network device 500 in this embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiments.
  • each module (submodule, unit, or component, etc.) in the network device 500 reference may be made to the corresponding descriptions in the foregoing method embodiments, which will not be repeated here.
  • the functions described by each module (submodule, unit, or component, etc.) in the network device 500 of the application embodiment may be implemented by different modules (submodule, unit, or component, etc.), or may be implemented by the same module Module (submodule, unit or component, etc.) implementation.
  • FIG. 13 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so that the communication device 600 implements the methods in the embodiments of the present application.
  • the communication device 600 may also include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620, so that the communication device 600 implements the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices .
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may be a network device in this embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method in this embodiment of the present application, which is not repeated here for brevity.
  • the communication device 600 may be a terminal device in this embodiment of the present application, and the communication device 600 may implement corresponding processes implemented by the terminal device in each method in the embodiment of the present application, which is not repeated here for brevity.
  • FIG. 14 is a schematic structural diagram of a chip 700 according to an embodiment of the present application.
  • the chip 700 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the methods in the embodiments of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the method executed by the terminal device or the network device in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • Chips applied to network equipment and terminal equipment can be the same chip or different chips.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the memory mentioned above may be either volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 15 is a schematic block diagram of a communication system 800 according to an embodiment of the present application.
  • the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 is configured to determine a time interval between the time domain resource of the energy saving signal and the paging resource; and based on the time interval, determine the time domain resource for detecting the energy saving signal.
  • the network device 820 is used to transmit the time interval between the time domain resources of the energy saving signal and the paging resources.
  • the terminal device 810 can be used to implement the corresponding functions implemented by the terminal device in the above method, and the network device 820 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the procedures or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a Solid State Disk (SSD)), and the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium eg, a Solid State Disk (SSD)
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种资源确定方法、终端设备和网络设备。其中,资源确定方法包括:终端设备确定节能信号的时域资源与寻呼资源之间的时间间隔;该终端设备基于该时间间隔,确定检测该节能信号的时域资源。本申请实施例,确定节能信号的时域资源与寻呼资源之间的时间间隔,可以使终端设备正确地接收节能信号。

Description

资源确定方法、终端设备和网络设备 技术领域
本申请涉及通信领域,更具体地,涉及一种资源确定方法、终端设备和网络设备。
背景技术
为了减少终端的耗电,长期演进(Long Term Evolution,LTE)和新无线(New Radio,NR)系统中包括DRX(Discontinuous Reception)机制。DRX机制使得终端在没有数据接收的情况下,可以不必一直开启接收机,而是进入了一种非连续接收的状态,从而达到省电的目的。
为了实现进一步的节能,引入了节能信号。对于空闲态的用户设备(User Equipment,UE),节能信号可以用于指示UE是否在达到的寻呼时机(Paging Occasion,PO)上接收寻呼。需要考虑如何正确地接收节能信号。
发明内容
本申请实施例提供一种资源确定方法、终端设备和网络设备,可以正确地接收节能信号。
本申请实施例提供一种资源确定方法,包括:
终端设备确定节能信号的时域资源与寻呼资源之间的时间间隔;
该终端设备基于该时间间隔,确定检测该节能信号的时域资源。
本申请实施例提供一种资源确定方法,包括:
网络设备发送节能信号的时域资源与寻呼资源之间的时间间隔;
其中,该时间间隔用于指示终端设备确定检测该节能信号的时域资源。
本申请实施例提供一种终端设备,包括:
第一确定单元,用于确定节能信号的时域资源与寻呼资源之间的时间间隔;
第二确定单元,用于基于该时间间隔,确定检测该节能信号的时域资源。
本申请实施例提供一种网络设备,包括:
发送单元,用于发送节能信号的时域资源与寻呼资源之间的时间间隔;
其中,该时间间隔用于指示终端设备确定检测该节能信号的时域资源。
本申请实施例提供一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述的资源确定方法。
本申请实施例提供一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该网络设备执行上述的资源确定方法。
本申请实施例提供一种芯片,用于实现上述的资源确定方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有 该芯片的设备执行上述的资源确定方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的资源确定方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的资源确定方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的资源确定方法。
本申请实施例,确定节能信号的时域资源与寻呼资源之间的时间间隔,可以使终端设备正确地接收节能信号。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是通过节能信号指示是否监听PDCCH的示意图。
图3是节能信号承载多用户节能指示信息的示意图。
图4是节能信号的监听时机的示意图。
图5是PF和PO的示意图。
图6是根据本申请一实施例的资源确定方法的示意性流程图。
图7是根据本申请另一实施例的资源确定方法的示意性流程图。
图8是UE在PO之前检测SSB进行时频同步的示意图。
图9是基于偏移量确定时间间隔的示意图。
图10是根据本申请一实施例的终端设备的示意性框图。
图11是根据本申请另一实施例的终端设备的示意性框图。
图12是根据本申请一实施例的网络设备的示意性框图。
图13是根据本申请实施例的通信设备示意性框图。
图14是根据本申请实施例的芯片的示意性框图。
图15是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area  Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体 征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示例性地示出了一种通信系统100。该通信系统包括一个网络设备110和两个终端设备120。可选地,该通信系统100可以包括多个网络设备110,并且每个网络设备110的覆盖范围内可以包括其它数量的终端设备120,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
其中,网络设备又可以包括接入网设备和核心网设备。即无线通信系统还包括用于与接入网设备进行通信的多个核心网。接入网设备可以是长期演进(long-term evolution,LTE)系统、下一代(移动通信系统)(next radio,NR)系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统为例,通信设备可包括具有通信功能的网络设备和终端设备,网络设备和终端设备可以为本申请实施例中的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和 /或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
DRX的机制包括为处于无线资源控制(Radio Resource Control,RRC)连接(CONNECTED)状态的UE配置DRX周期(cycle)。一个DRX cycle包括“On Duration(开启持续)”和“Opportunity for DRX(DRX机会)”。在“On Duration”时间内,UE监听并接收包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)在内的下行信道和信号。在“Opportunity for DRX”时间内,UE不接收PDCCH等下行信道和信号,以减少功耗。在RRC空闲(IDLE)状态下的UE需要采用与DRX类似的方式接收寻呼消息。在一个DRX周期内存在一个寻呼时机(PO),UE只在PO接收寻呼消息,而在PO之外的时间不接受寻呼消息,来达到省电的目的。在PO期间,UE通过检测通过P-RNTI(Paging-Radio Network Temporary Identity,寻呼-无线网络临时标识)加扰的PDCCH信号来判断是否有寻呼消息。
在5G的演进中,对UE节电提出了更高的要求。例如对于DRX机制,在每个On Duration期间,UE需要不断检测PDCCH来判断基站是否调度发给自己的数据传输。但是对于大部分UE来说,可能在很长一段时间没有接收数据传输的需要,但是仍然需要保持定期的唤醒机制来监听可能的下行传输,对于这类UE,节电有进一步优化的空间。对于RRC IDLE状态下的UE接收寻呼消息的情况也是类似。
为了进一步实现节能,引入了节能信号。节能信号与DRX机制结合使用,终端在DRX On Duration之前接收节能信号的指示。示例性地,节能信号也可以称为节能唤醒信号。当终端在一个DRX周期有数据传输时,节能信号“唤醒”终端,以在DRX On duration期间监听PDCCH。否则,当终端在一个DRX周期没有数据传输时,节能信号不“唤醒”终端,终端在DRX On Duration期间不需要监听PDCCH。相比单一的DRX机制,在终端没有数据传输时,终端可省略DRX On duration期间PDCCH监听,从而实现节能。终端在DRX On duration之外的时间被称为非激活时间,在DRX On Duration的时间被称为激活时间。通过节能信号指示终端在DRX On Duration是否监听PDCCH的过程,如图2所示。
示例性地,节能信号可以通过DCI format 2_6承载。网络配置终端检测承载DCI format 2_6的PDCCH的搜索空间集合(search space set)。例如,在节能信号中,单个用户所需的 比特数目为最多6个。其中包括1个唤醒指示比特和最多5个辅小区休眠指示比特。节能信号携带多个用户的指示比特以提升资源使用效率。如图3所示,节能信号可以承载多用户节能指示信息。网络通知每一个用户的节能指示比特在DCI中的起始位置,而单用户的比特数目可通过配置的辅小区(载波)分组数目隐式得到(唤醒指示比特一定出现,辅小区(载波)休眠指示比特数目可以为0)。进一步地,网络还会通知终端DCI的总比特数目以及加扰PDCCH的PS(Power Saving,节能信号)-RNTI。
该PDCCH的监听时机与DRX On Duration(可以简称DRX ON)的时间窗口之间有一定的定时关系。网络配置一个时间偏移(例如PS-offset),用于确定PDCCH监听时机的起始点。在确定PDCCH监听时机的起点之后,还需要进一步确定PDCCH监听的终点。PDCCH监听的终点可以是由终端的设备能力所确定的。终端在DRX ON之前的最小时间间隔内需要执行设备唤醒以及唤醒后的初始化等操作,因此,在DRX ON之前的最小时间间隔内终端不需要监听节能信号。处理速度较快的终端,可以使用较短的最小时间间隔,见下表1中的值1,而处理速度较慢的终端,需要使用较长的最小时间间隔,见表1中的值2。
表1最小时间间隔
Figure PCTCN2020116751-appb-000001
节能信号以网络配置的PS-offset指示的时间位置为起点,在该起点后一个完整的PDCCH搜索空间周期内(例如,由PDCCH搜索空间的参数“duration”定义)监听节能信号,且所监听的节能信号的位置在最小时间间隔所对应的时间段之前。如图4所示,终端监听虚线框所标示的节能信号的监听时机。
在NR系统中,网络可以向空闲(IDLE)状态和连接(RRC-CONNECTION)状态的UE发送寻呼。寻呼过程可以由核心网触发或者基站触发,用于向处于空闲态的UE发送寻呼请求,或者用于通知系统信息更新,或者通知UE接收地震海啸预警信息(Earthquake and Tsunami Warning System,ETWS)以及商用移动预警服务(Commercial Mobile Alert System,CMAS)等信息。基站接收到核心网的寻呼消息后,解读其中的内容,得到该UE的跟踪区域标识(Tracking Area Identity,TAI)列表(list),并在其下属于列表中的跟踪区域的小区进行空口的寻呼。寻呼消息的核心网域不会在基站解码,而是透传给UE。基站收到核心网的寻呼消息之后,将PO(paging occasion,寻呼时机)相同的UE的寻呼消息汇总成一条寻呼消息,通过寻呼信道传输给相关UE。UE通过系统消息接收寻呼参数,结合自身UE_ID计算PO,在相应的时间接收寻呼消息。寻呼消息通过物理下行共享信道(Physical Downlink Shared Channel,PDSCH)承载。UE通过检测用P-RNTI加扰的PDCCH获得寻呼指示信息,从而接收寻呼消息。空闲态的UE会通过DRX的方式省电,UE从SIB2(System  Information Blocks 2,系统消息2)获取DRX相关信息。UE在一个DRX周期中的PF(Paging Frame,寻呼帧)上的PO监听通过P-RNTI加扰的PDCCH来接收寻呼消息。
PF表示寻呼消息应该出现在哪个系统帧号上,PO则表示可能出现的时刻。一个PF帧可能包括1个或多个PO。每个DRX周期或者寻呼周期(Paging Cycle),UE只需要监听其中属于自己的PO。满足下面公式的系统帧号(System Frame Number,SFN)即可作为一个PF:
(SFN+PF_offset)mod T=(T div N)*(UE_ID mod N)
在PF内,可以根据下面公式计算UE_ID对应的PO的索引(index),即i_s。
i_s=floor(UE_ID/N)mod Ns
在上述公式中,SFN为系统帧号,UE_ID为UE标识。mod表示取模运算,div表示整除运算。floor()表示向下取整。T表示UE的DRX周期。如果将系统消息中指示的默认DRX周期记为T_sib的话,并且如果已经配置了UE的DRX值T_ue,则T=min(T_ue,T_sib);如果没有配置T_ue,则使用系统消息中指示的默认值T=T_sib。UE_ID=(5G-S-TMSI mod 1024)。N为T内的PF的个数。Ns为一个PF内的PO的个数。PF_offset为用于确定PF的帧偏移。例如,如图5所示,为在一个DRX周期(cycle)内的PF的位置,以及PF内PO的位置。
下面介绍NR的SS/PBCH block(SSB)传输:
在NR系统中的公共信道和信号,如同步信号和广播信道,需要通过多波束扫描的方式覆盖整个小区,便于小区内的UE接收。同步信号(SS,synchronization signal)的多波束发送是通过定义SS/PBCH突发集合(burst set)实现的。一个SS/PBCH burst set包含一个或多个SS/PBCH block。一个SS/PBCH block用于承载一个波束的同步信号和广播信道。因此,一个SS/PBCH burst set可以包含小区内最多L个波束的同步信号。L与系统的频段有关,例如:
频率范围高达3GHz(千兆赫)时,L为4(For frequency range up to 3GHz,L is 4);
频率范围从3GHz到6GHz,L为8(For frequency range from 3GHz to 6GHz,L is 8);
频率范围从6GHz到52.6GHz,L为64(For frequency range from 6GHz to 52.6GHz,L is 64)
一个SS/PBCH block(SSB)中包含一个符号的主同步信号(Primary Synchronization Signal,PSS),一个符号的SSS和两个符号的PBCH(Physical broadcast channel,物理广播信道)。其中,PBCH所占的时频资源中,包含解调参考信号(Demodulation Reference Signal,DMRS),用于PBCH的解调。
例如,SS/PBCH burst set内所有的SS/PBCH block在5ms(毫秒)的时间窗内发送,并以一定的周期重复发送。周期可以通过高层的参数例如:ssb-PeriodicityServingCell(SSB周期服务单元)进行配置,周期可以包括5ms,10ms、20ms、40ms、80ms、160ms等。
目前的节能信号,需要满足以网络配置的节能信号偏移(PS-offset)指示的时间位置为起点,在该起点后一个完整的PDCCH搜索空间周期内(由PDCCH搜索空间的参数“duration”定义)监听节能信号,且所监听的节能信号的位置与DRX On duration起始位置 的间隔需要满足最小时间间隔。该最小时间间隔只需要考虑UE的处理能力即可,不需要考虑UE由于在DRX On duration到达之前进行时频同步,以便于DRX On duration期间能够正确地接收PDCCH。这是因为,对于连接态的UE,可以通过配置的CSI-RS(Channel-State Information Reference Signal,信道状态信息参考信号)、TRS(Time Reference Signal,时间参考信号)等参考信号进行时频同步。对于空闲态的UE,节能信号可以用于指示UE是否在达到的PO上接收寻呼。由于空闲态的UE没有被配置CSI-RS、TRS等参考信号,只能利用周期发送的(Synchronization Signal,同步信号)/PBCH(Physical Broadcast Channel,物理广播信道)块(block)(简称SSB(同步信号块))进行时频同步。目前的最小时间间隔并不能满足在PO到达之前通过SSB进行时频同步的目的,导致不能正确地接收寻呼。
图6是根据本申请一实施例的资源确定方法200的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S210、终端设备确定节能信号的时域资源与寻呼资源之间的时间间隔。
S220、该终端设备基于该时间间隔,确定检测该节能信号的时域资源。
示例性地,终端设备在时域资源与寻呼资源之间的时间间隔内,能够在寻呼资源例如PO到达之前通过SSB与网络进行时频同步。
可选地,在本申请实施例中,该寻呼资源包括寻呼时机(PO)和/或寻呼帧(PF)。PF表示寻呼消息应该出现在哪个系统帧号上,PO则表示可能出现的时刻。PO和PF的示例可以参见图5。终端设备处于RRC空闲状态或非激活状态时,可以根据自己的PF和PO,确定检测PDCCH的监听时机,在其他时间可以进行DRX,以达到节电节能的目的。
可选地,在本申请实施例中,终端设备确定节能信号的时域资源与寻呼资源之间的时间间隔,包括:
该终端设备接收配置信息,该配置信息中包括第一时间间隔。
具体地,终端设备可以从网络设备接收配置信息。示例性地,该配置信息可以通过RRC信令配置,通过系统消息指示,或者通过PDCCH承载的DCI指示。
可选地,在本申请实施例中,终端设备确定节能信号的时域资源与寻呼资源之间的时间间隔,还包括:
该终端设备基于该第一时间间隔,确定该节能信号的时域资源与寻呼资源之间的最小时间间隔。
在一种示例中,终端设备可以直接将配置信息中的第一时间间隔作为节能信号的时域资源与寻呼资源之间的最小时间间隔。
可选地,在本申请实施例中,终端设备确定节能信号的时域资源与寻呼资源之间的时间间隔,包括:
该终端设备基于终端能力确定第二时间间隔;
该终端设备基于该第一时间间隔和该第二时间间隔中的最大值,确定该节能信号的时域资源与寻呼资源之间的最小时间间隔。
在一种示例中,终端设备收到配置信息后,可以从配置信息中获取第一时间间隔T1,然后基于自己的终端能力确定第二时间间隔T2,再将T1和T2中的最大值,作为节能信 号的时域资源与寻呼资源之间的最小时间间隔。
可选地,在本申请实施例中,该节能信号的时域资源与寻呼资源之间的最小时间间隔是预定义的值。例如,节能信号的时域资源与UE的PO之间的最小时间间隔是预定义的值。再如,节能信号的时域资源与UE的PF之间的最小时间间隔是预定义的值。
可选地,在本申请实施例中,该最小时间间隔是基于时频同步恢复的要求确定的预定义的值。
可选地,在本申请实施例中,该最小时间间隔是基于子载波间隔确定的预定义的值。
可选地,在本申请实施例中,该节能信号的时域资源与寻呼资源之间的最小时间间隔是基于预定义规则确定的。
可选地,在本申请实施例中,该预定义规则包括利用以下参数的至少之一计算得到该最小时间间隔:
SSB的传输周期;
子载波间隔;
终端能力;
参考信号的传输周期。
示例性地,可以预定义最小时间间隔为SSB的传输周期的N倍,N可以等于1,2,3…等,N可以取决于UE在该最小时间间隔内完成时频同步恢复所需要接收的SSB的个数。如果UE从系统消息或者RRC信令中获得的SSB的传输周期T,最小时间间隔可以为T*N。此外,结合不同子载波间隔,最小时间间隔也可以按照不同的规则来确定。参见表2。
表2最小时间间隔
子载波间隔(kHz) 最小时间间隔(slots)
15 T*N
30 2*T*N
60 4*T*N
120 8*T*N
示例性地,终端能力可以包括终端处理能力例如终端处理时间等。此外,终端进行时频恢复的时间也可以为一种终端能力。
示例性地,参考信号可以包括如CSI-RS、TRS、PTRS(相位跟踪参考信号,Phase Tracking Reference Signal)等,如果通过参考信号进行时频恢复,也可以根据参考信号的周期计算得到上述的最小时间间隔。
可选地,在本申请实施例中,该终端设备基于该时间间隔,确定检测该节能信号的时域资源,包括:
该终端设备基于该时域资源与寻呼资源之间的最小时间间隔,确定检测该节能信号的时域资源所在的时间间隔的终点。
可选地,在本申请实施例中,该方法还包括:
该终端设备基于偏移量,确定检测该节能信号的时域资源所在的时间间隔的起点。例如终端设备基于PS-offset(节能信号偏移量)确定检测节能信号的时域资源的起点,参见图4。节能信号的时域资源在这个从起点到终点的时间间隔的范围内。
可选地,在本申请实施例中,该方法还包括:
该终端设备不要求在该时域资源与寻呼资源之间的最小时间间隔内监听该节能信号。
可选地,在本申请实施例中,该节能信号用于指示该终端设备是否在该PO和/或该PF监听寻呼消息。
示例性地,在节能信号用于指示终端设备在该PO和/或该PF监听寻呼消息的情况下,终端设备在该最小时间间隔内通过SSB进行时频同步的恢复。在节能信号用于指示终端设备在该PO和/或该PF不监听寻呼消息的情况下,终端设备在该最小时间间隔内不进行时频同步的恢复。
可选地,在本申请实施例中,该时间间隔的单位为以下至少之一:时隙、子帧、符号、毫秒和SSB的周期。
本申请实施例,确定节能信号的时域资源与寻呼资源之间的时间间隔,可以使终端设备在正确地接收完节能信号之后有足够的时间进行时频同步,从而正确地接收寻呼。
图7是根据本申请一实施例的资源确定方法300的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S310、网络设备发送节能信号的时域资源与寻呼资源之间的时间间隔。
其中,该时间间隔用于指示终端设备确定检测该节能信号的时域资源。
可选地,在本申请实施例中,网络设备发送节能信号的时域资源与寻呼资源之间的时间间隔,包括:
该网络设备发送配置信息,该配置信息中包括节能信号的时域资源与寻呼资源之间的最小时间间隔,该最小时间间隔用于指示该终端设备确定检测该节能信号的时域资源所在的时间间隔的终点。
可选地,在本申请实施例中,该方法还包括:
该网络设备发送偏移量,该偏移量用于指示该终端设备确定检测该节能信号的时域资源所在的时间间隔的起点。
可选地,在本申请实施例中,该寻呼资源包括寻呼时机PO和/或寻呼帧PF。
可选地,在本申请实施例中,该节能信号用于指示该终端设备是否在该PO和/或该PF监听寻呼消息。
可选地,在本申请实施例中,该时间间隔的单位为以下至少之一:时隙、子帧、符号、毫秒和SSB的周期。
本实施例的网络设备执行方法300的具体示例可以参见上述方法200的中关于网络设备例如基站的相关描述,为了简洁,在此不再赘述。
在本申请实施例中,提供了用于控制寻呼接收的节能信息的指示方法,示例如下:
示例1:节能信号的时域资源与PO或PF之间的最小时间间隔通过网络配置
当UE处于RRC idle或RRC inactive状态时,可以根据自己的PF和PO,确定检测 PDCCH的监听时机,在其他时间可以进行DRX,以达到节电的目的。为了进一步达到节电的目的,比较理想的是UE可以在每个自己的PO到达的时候提前知道是否会有发给自己的寻呼消息。如果没有,UE就可以在该PO不进行PDCCH的检测,以达到进一步的省电。
本示例中,以通过序列例如参考信号序列或者同步信号序列等承载节能信号为例,提供一种确定节能信号所在的时域资源位置的方法。通过序列的不同可以隐含地指示节能信息。通过节能信号可以指示UE是否在PF或者PO监听寻呼消息。当UE处于RRC idle或RRC inactive状态时,在接收寻呼消息之前需要进行时频同步。由于RRC idle或RRC inactive状态下的UE没有被配置UE特定的参考信号如CSI-RS,UE只能基于SSB进行时频同步。因此,UE在自己的PO之前,一般需要提前“醒来”开始进行时频同步操作。UE在PO到达之前,通过检测SSB进行时频同步。至于UE需要提前多长时间、检测几个周期的SSB来达到时频同步,取决于UE的实现,例如通过接收1-3个SSB突发集合(burst set)来恢复时频同步。图8以UE对在PO之前最近的SSB突发集合进行检测为例,说明UE在PO之前检测SSB进行时频同步的过程。
相关技术中,节能信号所在的时域资源距离DRX ON之前的最小时间间隔是由终端的设备能力所确定的。处理速度较快的终端,可以使用较短的最小时间间隔,参见上述实施例的表1中的值1,而处理速度较慢的终端,需要使用较长的最小时间间隔,见表1中的值2。
本示例中,该最小时间间隔通过网络配置给UE。网络可以根据SSB的发送情况,例如周期配置、与PO的定时关系等,确定该时间间隔time gap 1,并指示给UE。UE在收到该时间间隔指示信息,确定在PO开始前的该时间间隔内不检测节能信号。例如,如图9所示,网络配置偏移量PS-offset和PS-offset2。其中,PS-offset用于指示UE检测节能信号的时域资源的起点(也即时间间隔的起点),PS-offset2用于指示UE检测节能信号的时域资源的终点(也即时间间隔的起点),即在PS-offset2指示的时间间隔内(即time gap 1)不检测节能信号。在该时间间隔内,UE可以通过SSB进行时频同步的恢复,从而在PO到达时检测寻呼。当然,如果节能信号指示在PO不检测寻呼,则UE也可以在时间间隔内不进行时频同步的恢复。具体的,该时间间隔的单位可以是时隙、子帧、符号、毫秒或者SSB的周期等。
进一步的,结合由UE能力确定的最小时间间隔time gap 2,UE可以进一步确定出时间间隔time gap=Max{time gap 1,time gap 2},即在time gap 1和time gap 2之间取较大的时间间隔。这样既满足了UE的能力,又可以根据网络配置一个较长的时间间隔,用于UE在接收完节能信号之后有足够的时间进行时频同步。
在本示例中,通过网络指示PO或PF开始前不检测节能信号的时间间隔,可以使UE在接收完节能信号之后有足够的时间进行时频同步,并且,网络可以根据SSB的发送情况灵活地配置该时间间隔。
示例2:节能信号的时域资源与PO或PF之间的最小时间间隔为预定义的时间间隔。
相关技术中,节能信号所在的时域资源距离DRX ON之前的最小时间间隔是由终端的 设备能力所确定的。参见上述实施例的表1,这个最小时间间隔是比较短的。UE在这个时间间隔内完成时频同步很困难。
本示例中,节能信号的时域资源与PO或PF之间的最小时间间隔可以是预定义的。该预定义的值可以不是根据UE能力确定的,而是根据该时间间隔内完成时频同步恢复的要求来确定。例如,假设SSB的周期预定义为5ms,UE需要接收2个SSB burst set来恢复时频同步,那么该最小时间间隔可以预定义为10ms。对于15KHz子载波间隔来说就是10个时隙,如表3所示。
表3最小时间间隔
子载波间隔(kHz) 最小时间间隔(slots)
15 10
30 20
60 40
120 80
在本示例中,该最小时间间隔可以与UE的处理能力无关,且取值都是可以满足UE处理能力的,表3中可以只保留一组值。
本示例采用预定义的方式确定节能信号的时域资源与PO或PF之间的最小时间间隔,可以节省信令开销,实现简单。
示例3:节能信号的时域资源与PO或PF之间的最小时间间隔根据预定义的规则确定。
根据相关技术,SS/PBCH burst set内所有的SS/PBCH block在5ms的时间窗内发送,并以一定的周期重复发送。该周期可以通过高层的参数例如ssb-PeriodicityServingCell进行配置,包括5ms,10ms,20ms,40ms,80ms,160ms等。该周期可以通过系统消息SIB1获得。
例如,UE获得SSB的传输周期后,可以根据该周期确定节能信号的时域资源与PO或PF之间的最小时间间隔。具体的,可以预定义该最小时间间隔与SSB的传输周期的关系。例如预定义最小时间间隔为SSB的传输周期的N倍,N可以等于1,2,3…,取决于UE在该最小时间间隔内完成时频同步恢复所需要接收的SSB的个数。通过这种方式,UE可以确定该最小时间间隔。参见上述实施例中的表2,T表示UE从系统消息或者RRC信令中获得的SSB的传输周期,以ms为单位;N为预定义的系数。根据表2得到不同子载波间隔下的最小时间间隔,以时隙为单位。
在本示例中,根据SSB的传输周期确定最小时间间隔,可以保证时间间隔内有期望数量的SSB用于UE进行时频同步的恢复,相比预定义的最小时间间隔,具有一定的灵活性。
根据本申请实施例的确定PO和节能信号时域资源之间的最小时间间隔的方法,可以使UE在接收完节能信号之后有足够的时间进行时频同步,从而在PO期间正确地接收寻呼。
图10是根据本申请一实施例的终端设备400的示意性框图。该终端设备400可以包 括:
第一确定单元410,用于确定节能信号的时域资源与寻呼资源之间的时间间隔;
第二确定单元420,用于基于该时间间隔,确定检测该节能信号的时域资源。
可选地,在本申请实施例中,该第一确定单元410还用于接收配置信息,该配置信息中包括第一时间间隔。
可选地,在本申请实施例中,该第一确定单元410还用于基于该第一时间间隔,确定该节能信号的时域资源与寻呼资源之间的最小时间间隔。
可选地,在本申请实施例中,该第一确定单元410还用于基于终端能力确定第二时间间隔;基于该第一时间间隔和该第二时间间隔中的最大值,确定该节能信号的时域资源与寻呼资源之间的最小时间间隔。
可选地,在本申请实施例中,该节能信号的时域资源与寻呼资源之间的最小时间间隔是预定义的值。
可选地,在本申请实施例中,该最小时间间隔是基于时频同步恢复的要求确定的预定义的值。
可选地,在本申请实施例中,该最小时间间隔是基于子载波间隔确定的预定义的值。
可选地,在本申请实施例中,该节能信号的时域资源与寻呼资源之间的最小时间间隔是基于预定义规则确定的。
可选地,在本申请实施例中,该预定义规则包括利用以下参数的至少之一计算得到该最小时间间隔:
SSB的传输周期;
子载波间隔;
终端能力;
参考信号的传输周期。
可选地,在本申请实施例中,该第二确定单元420还用于基于该时域资源与寻呼资源之间的最小时间间隔,确定检测该节能信号的时域资源所在的时间间隔的终点。
可选地,在本申请实施例中,如图11所示,该终端设备还包括:
处理单元430,用于不要求在该时域资源与寻呼资源之间的最小时间间隔内监听该节能信号。
可选地,在本申请实施例中,该第二确定单元420还用于基于偏移量,确定检测该节能信号的时域资源所在的时间间隔的起点。
可选地,在本申请实施例中,该寻呼资源包括寻呼时机PO和/或寻呼帧PF。
可选地,在本申请实施例中,该节能信号用于指示该终端设备是否在该PO和/或该PF监听寻呼消息。
可选地,在本申请实施例中,该时间间隔的单位为以下至少之一:时隙、子帧、符号、毫秒和SSB的周期。
本申请实施例的终端设备400能够实现前述的方法实施例中的终端设备的对应功能。该终端设备400中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以 及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的终端设备400中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图12是根据本申请一实施例的网络设备500的示意性框图。该网络设备500可以包括:
发送单元510,用于发送节能信号的时域资源与寻呼资源之间的时间间隔;
其中,该时间间隔用于指示终端设备确定检测该节能信号的时域资源。
可选地,在本申请实施例中,该发送单元510还用于发送配置信息,该配置信息中包括节能信号的时域资源与寻呼资源之间的最小时间间隔,该最小时间间隔用于指示该终端设备确定检测该节能信号的时域资源所在的时间间隔的终点。
可选地,在本申请实施例中,该发送单元510还用于发送偏移量,该偏移量用于指示该终端设备确定检测该节能信号的时域资源所在的时间间隔的起点。
可选地,在本申请实施例中,该寻呼资源包括寻呼时机PO和/或寻呼帧PF。
可选地,在本申请实施例中,该节能信号用于指示该终端设备是否在该PO和/或该PF监听寻呼消息。
可选地,在本申请实施例中,该时间间隔的单位为以下至少之一:时隙、子帧、符号、毫秒和SSB的周期。
本申请实施例的网络设备500能够实现前述的方法实施例中的网络设备的对应功能。该网络设备500中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的网络设备500中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图13是根据本申请实施例的通信设备600示意性结构图。该通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以使通信设备600实现本申请实施例中的方法。
可选地,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以使通信设备600实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实 现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图14是根据本申请实施例的芯片700的示意性结构图。该芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图15是根据本申请实施例的通信系统800的示意性框图。该通信系统800包括终端设备810和网络设备820。终端设备810,用于确定节能信号的时域资源与寻呼资源之间的时间间隔;基于该时间间隔,确定检测该节能信号的时域资源。网络设备820,用于发送节能信号的时域资源与寻呼资源之间的时间间隔。其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (52)

  1. 一种资源确定方法,包括:
    终端设备确定节能信号的时域资源与寻呼资源之间的时间间隔;
    所述终端设备基于所述时间间隔,确定检测所述节能信号的时域资源。
  2. 根据权利要求1所述的方法,其中,终端设备确定节能信号的时域资源与寻呼资源之间的时间间隔,包括:
    所述终端设备接收配置信息,所述配置信息中包括第一时间间隔。
  3. 根据权利要求2所述的方法,其中,终端设备确定节能信号的时域资源与寻呼资源之间的时间间隔,还包括:
    所述终端设备基于所述第一时间间隔,确定所述节能信号的时域资源与寻呼资源之间的最小时间间隔。
  4. 根据权利要求2所述的方法,其中,终端设备确定节能信号的时域资源与寻呼资源之间的时间间隔,包括:
    所述终端设备基于终端能力确定第二时间间隔;
    所述终端设备基于所述第一时间间隔和所述第二时间间隔中的最大值,确定所述节能信号的时域资源与寻呼资源之间的最小时间间隔。
  5. 根据权利要求1所述的方法,其中,所述节能信号的时域资源与寻呼资源之间的最小时间间隔是预定义的值。
  6. 根据权利要求5所述的方法,其中,所述最小时间间隔是基于时频同步恢复的要求确定的预定义的值。
  7. 根据权利要求6所述的方法,其中,所述最小时间间隔是基于子载波间隔确定的预定义的值。
  8. 根据权利要求1所述的方法,其中,所述节能信号的时域资源与寻呼资源之间的最小时间间隔是基于预定义规则确定的。
  9. 根据权利要求8所述的方法,其中,所述预定义规则包括利用以下参数的至少之一计算得到所述最小时间间隔:
    SSB的传输周期;
    子载波间隔;
    终端能力;
    参考信号的传输周期。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述终端设备基于所述时间间隔,确定检测所述节能信号的时域资源,包括:
    所述终端设备基于所述时域资源与寻呼资源之间的最小时间间隔,确定检测所述节能信号的时域资源所在的时间间隔的终点。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述方法还包括:
    所述终端设备不要求在所述时域资源与寻呼资源之间的最小时间间隔内监听所述节能信号。
  12. 根据权利要求1至11中任一项所述的方法,其中,所述方法还包括:
    所述终端设备基于偏移量,确定检测所述节能信号的时域资源所在的时间间隔的起点。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述寻呼资源包括寻呼时机PO和/或寻呼帧PF。
  14. 根据权利要求13所述的方法,其中,所述节能信号用于指示所述终端设备是否在所述PO和/或所述PF监听寻呼消息。
  15. 根据权利要求1至14中任一项所述的方法,其中,所述时间间隔的单位为以下至少之一:时隙、子帧、符号、毫秒和SSB的周期。
  16. 一种资源确定方法,包括:
    网络设备发送节能信号的时域资源与寻呼资源之间的时间间隔;
    其中,所述时间间隔用于指示终端设备确定检测所述节能信号的时域资源。
  17. 根据权利要求16所述的方法,其中,网络设备发送节能信号的时域资源与寻呼资源之间的时间间隔,包括:
    所述网络设备发送配置信息,所述配置信息中包括节能信号的时域资源与寻呼资源之间的最小时间间隔,所述最小时间间隔用于指示所述终端设备确定检测所述节能信号的时域资源所在的时间间隔的终点。
  18. 根据权利要求16或17所述的方法,其中,所述方法还包括:
    所述网络设备发送偏移量,所述偏移量用于指示所述终端设备确定检测所述节能信号的时域资源所在的时间间隔的起点。
  19. 根据权利要求16至18中任一项所述的方法,其中,所述寻呼资源包括寻呼时机PO和/或寻呼帧PF。
  20. 根据权利要求19所述的方法,其中,所述节能信号用于指示所述终端设备是否在所述PO和/或所述PF监听寻呼消息。
  21. 根据权利要求16至20中任一项所述的方法,其中,所述时间间隔的单位为以下至少之一:时隙、子帧、符号、毫秒和SSB的周期。
  22. 一种终端设备,包括:
    第一确定单元,用于确定节能信号的时域资源与寻呼资源之间的时间间隔;
    第二确定单元,用于基于所述时间间隔,确定检测所述节能信号的时域资源。
  23. 根据权利要求22所述的终端设备,其中,所述第一确定单元还用于接收配置信息,所述配置信息中包括第一时间间隔。
  24. 根据权利要求23所述的终端设备,其中,所述第一确定单元还用于基于所述第一时间间隔,确定所述节能信号的时域资源与寻呼资源之间的最小时间间隔。
  25. 根据权利要求23所述的终端设备,其中,所述第一确定单元还用于基于终端能力确定第二时间间隔;基于所述第一时间间隔和所述第二时间间隔中的最大值,确定所述节能信号的时域资源与寻呼资源之间的最小时间间隔。
  26. 根据权利要求22所述的终端设备,其中,所述节能信号的时域资源与寻呼资源之 间的最小时间间隔是预定义的值。
  27. 根据权利要求26所述的终端设备,其中,所述最小时间间隔是基于时频同步恢复的要求确定的预定义的值。
  28. 根据权利要求27所述的终端设备,其中,所述最小时间间隔是基于子载波间隔确定的预定义的值。
  29. 根据权利要求22所述的终端设备,其中,所述节能信号的时域资源与寻呼资源之间的最小时间间隔是基于预定义规则确定的。
  30. 根据权利要求29所述的终端设备,其中,所述预定义规则包括利用以下参数的至少之一计算得到所述最小时间间隔:
    SSB的传输周期;
    子载波间隔;
    终端能力;
    参考信号的传输周期。
  31. 根据权利要求22至30中任一项所述的终端设备,其中,所述第二确定单元还用于基于所述时域资源与寻呼资源之间的最小时间间隔,确定检测所述节能信号的时域资源所在的时间间隔的终点。
  32. 根据权利要求22至31中任一项所述的终端设备,其中,所述终端设备还包括:
    处理单元,用于不要求在所述时域资源与寻呼资源之间的最小时间间隔内监听所述节能信号。
  33. 根据权利要求22至32中任一项所述的终端设备,其中,所述第二确定单元还用于基于偏移量,确定检测所述节能信号的时域资源所在的时间间隔的起点。
  34. 根据权利要求22至33中任一项所述的终端设备,其中,所述寻呼资源包括寻呼时机PO和/或寻呼帧PF。
  35. 根据权利要求34所述的终端设备,其中,所述节能信号用于指示所述终端设备是否在所述PO和/或所述PF监听寻呼消息。
  36. 根据权利要求22至35中任一项所述的终端设备,其中,所述时间间隔的单位为以下至少之一:时隙、子帧、符号、毫秒和SSB的周期。
  37. 一种网络设备,包括:
    发送单元,用于发送节能信号的时域资源与寻呼资源之间的时间间隔;
    其中,所述时间间隔用于指示终端设备确定检测所述节能信号的时域资源。
  38. 根据权利要求37所述的网络设备,其中,所述发送单元还用于发送配置信息,所述配置信息中包括节能信号的时域资源与寻呼资源之间的最小时间间隔,所述最小时间间隔用于指示所述终端设备确定检测所述节能信号的时域资源所在的时间间隔的终点。
  39. 根据权利要求37或38所述的网络设备,其中,所述发送单元还用于发送偏移量,所述偏移量用于指示所述终端设备确定检测所述节能信号的时域资源所在的时间间隔的起点。
  40. 根据权利要求37至39中任一项所述的网络设备,其中,所述寻呼资源包括寻呼时 机PO和/或寻呼帧PF。
  41. 根据权利要求40所述的网络设备,其中,所述节能信号用于指示所述终端设备是否在所述PO和/或所述PF监听寻呼消息。
  42. 根据权利要求37至41中任一项所述的网络设备,其中,所述时间间隔的单位为以下至少之一:时隙、子帧、符号、毫秒和SSB的周期。
  43. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至15中任一项所述的方法。
  44. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述网络设备执行如权利要求16至21中任一项所述的方法。
  45. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的方法。
  46. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求16至21中任一项所述的方法。
  47. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至15中任一项所述的方法。
  48. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求16至21中任一项所述的方法。
  49. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至15中任一项所述的方法。
  50. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求16至21中任一项所述的方法。
  51. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至15中任一项所述的方法。
  52. 一种计算机程序,所述计算机程序使得计算机执行如权利要求16至21中任一项所述的方法。
PCT/CN2020/116751 2020-09-22 2020-09-22 资源确定方法、终端设备和网络设备 WO2022061493A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080101365.7A CN115699924A (zh) 2020-09-22 2020-09-22 资源确定方法、终端设备和网络设备
EP20954347.9A EP4156807A4 (en) 2020-09-22 2020-09-22 RESOURCE DETERMINATION METHOD, TERMINAL DEVICE, AND NETWORK DEVICE
PCT/CN2020/116751 WO2022061493A1 (zh) 2020-09-22 2020-09-22 资源确定方法、终端设备和网络设备
CN202310407675.7A CN116390252A (zh) 2020-09-22 2020-09-22 资源确定方法、终端设备和网络设备
US18/068,596 US20230117840A1 (en) 2020-09-22 2022-12-20 Resource determination method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116751 WO2022061493A1 (zh) 2020-09-22 2020-09-22 资源确定方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/068,596 Continuation US20230117840A1 (en) 2020-09-22 2022-12-20 Resource determination method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2022061493A1 true WO2022061493A1 (zh) 2022-03-31

Family

ID=80844746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116751 WO2022061493A1 (zh) 2020-09-22 2020-09-22 资源确定方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20230117840A1 (zh)
EP (1) EP4156807A4 (zh)
CN (2) CN115699924A (zh)
WO (1) WO2022061493A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536384A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 唤醒终端的方法、装置和存储介质
CN110839214A (zh) * 2018-08-17 2020-02-25 北京展讯高科通信技术有限公司 唤醒信号的发送资源位置的配置方法、唤醒方法及其装置
CN111343717A (zh) * 2018-12-18 2020-06-26 电信科学技术研究院有限公司 一种寻呼消息的接收方法、发送方法、终端设备及网络设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032740A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2020067718A1 (en) * 2018-09-27 2020-04-02 Samsung Electronics Co., Ltd. Method, user equipment, base station, and readable storage medium for transmitting wake-up signal
CN111510998A (zh) * 2019-01-31 2020-08-07 夏普株式会社 由用户设备执行的方法以及用户设备
US11510146B2 (en) * 2019-02-25 2022-11-22 Qualcomm Incorporated Methods and apparatus for a group wake up signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110839214A (zh) * 2018-08-17 2020-02-25 北京展讯高科通信技术有限公司 唤醒信号的发送资源位置的配置方法、唤醒方法及其装置
CN111343717A (zh) * 2018-12-18 2020-06-26 电信科学技术研究院有限公司 一种寻呼消息的接收方法、发送方法、终端设备及网络设备
CN110536384A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 唤醒终端的方法、装置和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on UE-grouping wake up signal in MTC", 3GPP DRAFT; R1-1906681, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051728132 *
LG ELECTRONICS: "Discussion on UE-grouping wake up signal in NB-IoT", 3GPP DRAFT; R1-1906690, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051728141 *

Also Published As

Publication number Publication date
EP4156807A1 (en) 2023-03-29
CN116390252A (zh) 2023-07-04
US20230117840A1 (en) 2023-04-20
EP4156807A4 (en) 2023-07-19
CN115699924A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2022068611A1 (zh) 侧行链路的传输方法和终端
WO2022116090A1 (zh) 无线通信的方法、终端设备和网络设备
US20230397118A1 (en) Method for wireless communication and first device
WO2022027488A1 (zh) 无线通信的方法、终端设备和网络设备
US20230309060A1 (en) Paging indicating method, terminal device and network device
US20230217415A1 (en) Energy saving method, terminal device, and network device
WO2022094775A1 (zh) 寻呼方法、终端设备和网络设备
WO2022061493A1 (zh) 资源确定方法、终端设备和网络设备
WO2022188078A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023092526A1 (zh) 寻呼方法、终端设备和网络设备
WO2023024005A1 (zh) 一种时间窗口的确定方法及装置、终端设备
WO2023115565A1 (zh) 无线通信的方法、终端设备、接入网设备和核心网设备
US12035278B2 (en) Wireless communication method and apparatus
WO2022077140A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022141053A1 (zh) 无线通信的方法、终端设备和网络设备
EP4380265A1 (en) Method and apparatus for paging
US20230371002A1 (en) Wireless communication method and apparatus
WO2022016544A1 (zh) 无线通信方法、终端设备和网络设备
WO2022016418A1 (zh) 寻呼方法、终端设备和网络设备
WO2023024006A1 (zh) 一种确定节能信号监听时机的方法及装置、终端设备
WO2023024009A1 (zh) 一种节能信号的传输资源的确定方法及装置、终端设备
WO2022236721A1 (zh) 信息指示方法、终端设备、网络设备及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020954347

Country of ref document: EP

Effective date: 20221220

NENP Non-entry into the national phase

Ref country code: DE