WO2023071863A1 - 通信方法、装置、设备以及存储介质 - Google Patents

通信方法、装置、设备以及存储介质 Download PDF

Info

Publication number
WO2023071863A1
WO2023071863A1 PCT/CN2022/125890 CN2022125890W WO2023071863A1 WO 2023071863 A1 WO2023071863 A1 WO 2023071863A1 CN 2022125890 W CN2022125890 W CN 2022125890W WO 2023071863 A1 WO2023071863 A1 WO 2023071863A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain resource
time
time domain
frequency domain
interval
Prior art date
Application number
PCT/CN2022/125890
Other languages
English (en)
French (fr)
Inventor
罗之虎
吴毅凌
金哲
鲁振伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071863A1 publication Critical patent/WO2023071863A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communication, and in particular, to a communication method, device, device and storage medium.
  • RFID radio frequency identification
  • WUR fifth generation wireless system
  • a communication method, device, device, and storage medium provided in the embodiments of the present application realize the integration of RFID, WUR or similar technologies with various communication systems.
  • the embodiment of the present application provides a communication method, the method includes: the first device determines the time domain resource starting from the starting position of the communication, and the time domain resource includes the first time domain resource and the second time domain resource , there is a first interval between the first time-domain resource and the second time-domain resource, the time-domain length of the first time-domain resource is related to the first transmission duration, and the time-domain length of the second time-domain resource is The second transmission duration: the first device communicates with the second device in the time domain resource.
  • the first device determines the time-domain resource starting from the starting position of the communication, and communicates with the second device on the time-domain resource, so that the first device and the second device can communicate at each Communication in a communication system (such as an NR communication system) also realizes the integration of IoT and other communication systems.
  • a communication system such as an NR communication system
  • the time domain resource determined by the first device includes the first time domain resource and the second time domain resource, and the first time domain resource and the second time domain resource are separated by a first interval, so that the first device does not need Maintaining timing information (such as frame number, time slot number, etc.) can determine the time period in which communication is possible and the time period in which communication is not possible, which reduces the complexity of the first device and further reduces the cost of the first device.
  • Maintaining timing information such as frame number, time slot number, etc.
  • the first transmission duration is the same as the second transmission duration.
  • the first device and the second device communicate on multiple time domain resources with the same time domain length and time domain intervals, which can be applied to a communication system in which the time slot is configured as a single cycle.
  • the first transmission duration is different from the second transmission duration.
  • the time domain resource further includes a third time domain resource, the second time domain resource is separated from the third time domain resource by a second interval, and the time of the third time domain resource is The domain length is related to the first transmission duration, and the second interval duration is different from the first interval duration.
  • the first device and the second device communicate on the first time domain resource whose time domain length is the first transmission duration and on the second time domain resource whose time domain length is the second transmission duration , which can be applied to a communication system in which the time slot is configured as a double period.
  • the start time domain position of the first time domain resource is an offset position or a start position of the communication
  • the offset position is determined by the offset and the start position of the communication.
  • the transmission between the first device and the second device is not limited to starting from the boundary of the communication cycle (such as TDD single cycle or TDD double cycle), which improves resource scheduling. flexibility.
  • the offset location is equal to the sum of the offset and the starting location of the communication.
  • the method further includes: the first device receiving configuration information sent by the second device, where the configuration information includes the first transmission duration and/or the first interval duration.
  • the first device can combine the configuration information to determine the time domain resources that can be used for transmission and the time domain resources that are not used for transmission, and there is no need to maintain timing information (such as frame number, time slot number, etc.) ), reducing the complexity of the first device.
  • the configuration information further includes: the second transmission duration.
  • the transmission between the first device and the second device is better applicable to a communication system in which the time slot configuration is double-period.
  • the configuration information further includes a second interval duration, and the second interval duration is different from the first interval duration.
  • the first interval duration and the second interval duration are different, so that the first transmission duration and the first interval duration are the same as the second transmission duration of the double cycle
  • the first period is the same, and the second transmission duration and the second interval duration are the same as the second period of the double period, which is applicable to a communication system in which the time slot is configured as a double period.
  • the configuration information further includes an offset, and the offset is used to determine a starting time domain position of the first time domain resource.
  • the first device can quickly locate the starting position of the first time-domain resource based on the offset in the configuration information, and improve the efficiency of determining the time-domain resource on the basis of ensuring the flexibility of resource scheduling. Processing efficiency.
  • both the first time domain resources and the second time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols
  • the first time domain resources The resources separated from the second time domain resources include at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols; or, both the first time domain resources and the second time domain resources include downlink time domain resources.
  • At least one of time slots, downlink symbols, flexible time slots, and flexible symbols, and the resources spaced between the first time domain resource and the second time domain resource include uplink time slots, uplink symbols, flexible time slots, flexible at least one of the symbols.
  • the time domain resource used for communication between the first device and the second device corresponds to the time slot configuration in the communication system, reducing the interference of uplink and downlink transmission.
  • the communication between the first device and the second device on the time domain resource includes: the first device receives the downlink information sent by the second device on the time domain resource and the first frequency domain resource Data; the first device sends uplink data to the second device in the form of reflection communication in the time domain resource and the second frequency domain resource; wherein, there is a frequency domain interval between the first frequency domain resource and the second frequency domain resource .
  • the time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols on the first frequency domain resources, and the time domain resources on the second frequency domain resources
  • the domain resources include at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols; or, the time domain resources include downlink time slots, downlink symbols, flexible time slots, and flexible time domain resources on the first frequency domain resources.
  • the interference caused by the transmission between the first device and the second device being different from the data transmission of the communication system can be avoided, and the reliability of the transmission is improved.
  • the method further includes: the first device receiving frequency domain interval information sent by the second device, where the frequency domain interval information is used to indicate that the first frequency domain resource and the second frequency domain resource Frequency-domain spacing between resources.
  • the frequency domain interval synchronization between the first device and the second device is realized, so that the first device and the second device can determine the first frequency interval for communication based on the same frequency domain interval. frequency domain resources or second frequency domain resources.
  • the method further includes: when the preset timer expires, the first device determines that the configuration information is invalid; or, when the preset timer does not expire, the first device determines that the configuration information The information is valid.
  • the method further includes: the first device sending capability information to the second device, where the capability information is used to indicate the first frequency domain resource and the second frequency domain resource supported by the first device The maximum frequency-domain separation between .
  • the second device determines the frequency domain interval between the first frequency domain resource and the second frequency domain resource based on the maximum frequency domain interval, so as to avoid configuring the frequency domain interval for the first device beyond the first frequency domain interval.
  • the range of capabilities of the device are not limited to the communication method provided in this embodiment.
  • the embodiment of the present application provides a communication method, the method includes: the second device determines the time domain resource starting from the starting position of the communication, and the time domain resource includes the first time domain resource and the second time domain resource , there is a first interval between the first time-domain resource and the second time-domain resource, the time-domain length of the first time-domain resource is related to the first transmission duration, and the time-domain length of the second time-domain resource is The second transmission duration: the second device communicates with the first device in the time domain resource.
  • the first transmission duration is the same as the second transmission duration.
  • the first transmission duration is different from the second transmission duration.
  • the time domain resource further includes a third time domain resource, the second time domain resource is separated from the third time domain resource by a second interval, and the time of the third time domain resource is The domain length is related to the first transmission duration, and the second interval duration is different from the first interval duration.
  • the start time domain position of the first time domain resource is an offset position or a start position of the communication
  • the offset position is determined by the offset and the start position of the communication.
  • the offset location is equal to the sum of the offset and the starting location of the communication.
  • the method further includes: the second device sending configuration information to the first device, where the configuration information includes the first transmission duration and/or the first interval duration.
  • the configuration information further includes: the second transmission duration.
  • the configuration information further includes a second interval duration, and the second interval duration is different from the first interval duration.
  • the configuration information further includes an offset, and the offset is used to determine a starting time domain position of the first time domain resource.
  • both the first time domain resources and the second time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols
  • the first time domain resources The resources separated from the second time domain resources include at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols; or, both the first time domain resources and the second time domain resources include downlink time domain resources.
  • At least one of time slots, downlink symbols, flexible time slots, and flexible symbols, and the resources spaced between the first time domain resource and the second time domain resource include uplink time slots, uplink symbols, flexible time slots, flexible at least one of the symbols.
  • the communication between the second device and the first device on the time domain resource includes: the downlink information sent by the second device to the first device on the time domain resource and the first frequency domain resource Data; the second device receives the uplink data sent by the first device in the way of reflective communication in the time domain resource and the second frequency domain resource; wherein, the first frequency domain resource and the second frequency domain resource exist in the frequency domain interval.
  • the time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols on the first frequency domain resources, and the time domain resources on the second frequency domain resources
  • the domain resources include at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols; or, the time domain resources include downlink time slots, downlink symbols, flexible time slots, and flexible time domain resources on the first frequency domain resources.
  • the method further includes: when the preset timer expires, the second device determines that the configuration information is invalid; or, when the preset timer does not expire, the second device determines that the configuration information The information is valid.
  • the method further includes: the second device sending frequency domain interval information to the first device, where the frequency domain interval information is used to indicate the first frequency domain resource and the second frequency domain resource interval in the frequency domain.
  • the method further includes: the second device receiving capability information sent by the first device, where the capability information is used to indicate the resources in the first frequency domain and the resources in the second frequency domain supported by the first device.
  • the maximum frequency-domain separation between resources is used to indicate the resources in the first frequency domain and the resources in the second frequency domain supported by the first device.
  • the embodiment of the present application provides a communication method, including: the first device receives the first time-frequency resource configuration information and the second time-frequency resource configuration information sent by the second device; wherein the first time-frequency resource configuration The information is used to configure the first frequency domain resource and the time domain resource corresponding to the first frequency domain resource; the second time frequency resource configuration information is used to configure the second frequency domain resource and/or the time domain resource corresponding to the second frequency domain resource domain resource; the first device and the second device, the first frequency domain resource and the time domain resource corresponding to the first frequency domain resource, and/or, the second frequency domain resource and the second frequency domain resource On the corresponding time domain resources, communication is performed in the form of reflective communication; the time domain resources corresponding to the first frequency domain resources and the time domain resources corresponding to the second frequency domain resources both include at least one first time unit, and the first The time unit is a first resource type on the time domain resource corresponding to the first frequency domain resource, and the first time unit is a second resource type on the time domain resource corresponding to
  • the first ratio corresponding to the first frequency domain resource and the second frequency domain resource are the same, and the first ratio is the number of time units corresponding to the first resource type within the same duration
  • the ratio of the number of time units corresponding to the second resource type; or, the first ratio corresponding to the first frequency domain resource and the second frequency domain resource is the reciprocal of each other; or, the first frequency domain resource corresponds to All time units corresponding to the first resource type are all time units corresponding to the second frequency domain resource are the second resource type; or all time units corresponding to the first frequency domain resource are the same resource type, the All time units corresponding to the second frequency domain resource are not of the same resource type; or, all time units corresponding to the first frequency domain resource are not of the same resource type, and all time units corresponding to the second frequency domain resource are of the same resource type.
  • the method further includes: the first device determines according to the time-domain resource corresponding to the first frequency-domain resource A time domain resource corresponding to the second frequency domain resource.
  • the second time-frequency resource configuration information includes frequency domain interval information or configuration information of the second frequency domain resource, and the frequency domain interval information is used to indicate that the second frequency domain resource is different from the first frequency domain resource. Frequency domain spacing between frequency domain resources.
  • the method further includes: the first device sending capability information to the second device, where the capability information is used to indicate the first frequency domain resource and the second frequency domain resource supported by the first device The maximum frequency-domain separation between .
  • any time-frequency resource configuration information includes the first transmission duration and/or the first interval duration
  • the time-domain resources configured by the time-frequency resource configuration information include the first time-domain resource and the second time-domain resource.
  • resource, the first interval between the first time domain resource and the second time domain resource, the time domain length of the first time domain resource and the time domain length of the second time domain resource are both the first Transfer time.
  • the time-frequency resource configuration information further includes a second transmission duration, and a time domain length of the second time domain resource is the second transmission duration.
  • the time-frequency resource configuration information further includes a second interval length
  • the time-domain resources configured by the time-frequency resource configuration information further include a third time-domain resource
  • the second time-domain resource and the second time-domain resource The second interval duration is spaced between the three time domain resources.
  • the time-frequency resource configuration information further includes an offset, and the offset is used to determine a starting time-domain position of the first time-domain resource.
  • the embodiment of the present application provides a communication method, including: the second device sends the first time-frequency resource configuration information and the second time-frequency resource configuration information to the first device; wherein the first time-frequency resource configuration information It is used to configure the first frequency domain resources and the time domain resources corresponding to the first frequency domain resources; the second time frequency resource configuration information is used to configure the second frequency domain resources and/or the time domain resources corresponding to the second frequency domain resources resources; the second device and the first device, the first frequency domain resource and the time domain resource corresponding to the first frequency domain resource, and/or, the second frequency domain resource and the second frequency domain resource correspond
  • the time domain resource corresponding to the first frequency domain resource and the time domain resource corresponding to the second frequency domain resource both include at least one first time unit, and the first time The unit is of the first resource type on the time domain resource corresponding to the first frequency domain resource, and the first time unit is of the second resource type on the time domain resource corresponding to the second frequency domain resource; under the first resource type
  • the first time unit includes uplink time
  • the first ratio corresponding to the first frequency domain resource and the second frequency domain resource are the same, and the first ratio is the number of time units corresponding to the first resource type within the same duration
  • the ratio of the number of time units corresponding to the second resource type; or, the first ratio corresponding to the first frequency domain resource and the second frequency domain resource is the reciprocal of each other; or, the first frequency domain resource corresponds to All time units corresponding to the first resource type are all time units corresponding to the second frequency domain resource are the second resource type; or all time units corresponding to the first frequency domain resource are the same resource type, the All time units corresponding to the second frequency domain resource are not of the same resource type; or, all time units corresponding to the first frequency domain resource are not of the same resource type, and all time units corresponding to the second frequency domain resource are of the same resource type.
  • the method further includes: the second device determines according to the time-domain resource corresponding to the first frequency-domain resource A time domain resource corresponding to the second frequency domain resource.
  • the second time-frequency resource configuration information includes frequency domain interval information or configuration information of the second frequency domain resource, and the frequency domain interval information is used to indicate that the second frequency domain resource is different from the first frequency domain resource. Frequency domain spacing between frequency domain resources.
  • the method further includes: the second device receiving capability information sent by the first device, where the capability information is used to indicate the first frequency domain resource and the second frequency domain resource supported by the first device The maximum frequency-domain separation between .
  • any time-frequency resource configuration information includes the first transmission duration and/or the first interval duration
  • the time-domain resources configured by the time-frequency resource configuration information include the first time-domain resource and the second time-domain resource.
  • resource, the first interval between the first time domain resource and the second time domain resource, the time domain length of the first time domain resource and the time domain length of the second time domain resource are both the first Transfer time.
  • the time-frequency resource configuration information further includes a second transmission duration, and a time domain length of the second time domain resource is the second transmission duration.
  • the time-frequency resource configuration information further includes a second interval length
  • the time-domain resources configured by the time-frequency resource configuration information further include a third time-domain resource
  • the second time-domain resource and the second time-domain resource The second interval duration is spaced between the three time domain resources.
  • the time-frequency resource configuration information further includes an offset, and the offset is used to determine a starting time-domain position of the first time-domain resource.
  • the embodiment of the present application provides a communication method, including: the first device sends capability information to the second device, and the capability information is used to indicate the first frequency domain resource and the second frequency domain resource supported by the first device The maximum frequency domain interval; the first device receives the downlink data sent by the second device in the first frequency domain resource; the first device sends the uplink data to the second device in the way of reflective communication in the second frequency domain resource Data; wherein, the frequency domain interval between the first frequency domain resource and the second frequency domain resource is less than or equal to the maximum frequency domain interval.
  • the method further includes: the first device receiving configuration information sent by the second device, where the configuration information includes frequency domain interval information, and the frequency domain interval information is used to indicate that the first frequency domain The frequency domain interval between the resource and the second frequency domain resource time.
  • the embodiment of the present application provides a communication method, including: the second device receives capability information sent by the first device, and the capability information is used to indicate the first frequency domain resource and the second frequency domain resource supported by the first device.
  • the maximum frequency domain interval of resources the second device sends downlink data to the first device in the first frequency domain resource; Uplink data; wherein, the frequency domain interval between the first frequency domain resource and the second frequency domain resource is less than or equal to the maximum frequency domain interval.
  • the method further includes: the second device sending configuration information to the first device, where the configuration information includes frequency domain interval information, and the frequency domain interval information is used to indicate that the first frequency domain resource and the frequency domain interval of the second frequency domain resource time.
  • the embodiment of the present application provides a communication device, including: a processing unit configured to determine a time domain resource starting from a starting position of communication, where the time domain resource includes a first time domain resource and a second time domain resource , there is a first interval between the first time-domain resource and the second time-domain resource, the time-domain length of the first time-domain resource is related to the first transmission duration, and the time-domain length of the second time-domain resource is The second transmission duration; a transceiver unit, configured to communicate with the second device in the time domain resource.
  • the first transmission duration is the same as the second transmission duration.
  • the first transmission duration is different from the second transmission duration.
  • the time domain resource further includes a third time domain resource, the second time domain resource is separated from the third time domain resource by a second interval, and the time of the third time domain resource is The domain length is related to the first transmission duration, and the second interval duration is different from the first interval duration.
  • the start time domain position of the first time domain resource is an offset position or a start position of the communication
  • the offset position is determined by the offset and the start position of the communication.
  • the offset location is equal to the sum of the offset and the starting location of the communication.
  • the transceiving unit is further configured to: receive configuration information sent by the second device, where the configuration information includes the first transmission duration and/or the first interval duration.
  • the configuration information further includes: the second transmission duration.
  • the configuration information further includes a second interval duration, and the second interval duration is different from the first interval duration.
  • the configuration information further includes an offset, and the offset is used to determine a starting time domain position of the first time domain resource.
  • both the first time domain resources and the second time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols
  • the first time domain resources The resources separated from the second time domain resources include at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols; or, both the first time domain resources and the second time domain resources include downlink time domain resources.
  • At least one of time slots, downlink symbols, flexible time slots, and flexible symbols, and the resources spaced between the first time domain resource and the second time domain resource include uplink time slots, uplink symbols, flexible time slots, flexible at least one of the symbols.
  • the transceiver unit is specifically configured to: receive the downlink data sent by the second device at the time domain resource and the first frequency domain resource; The second device sends uplink data in a reflective communication manner; wherein there is a frequency domain interval between the first frequency domain resource and the second frequency domain resource.
  • the time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols on the first frequency domain resources, and the time domain resources on the second frequency domain resources
  • the domain resources include at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols; or, the time domain resources include downlink time slots, downlink symbols, flexible time slots, and flexible time domain resources on the first frequency domain resources.
  • the transceiving unit is further configured to: receive frequency domain interval information sent by the second device, where the frequency domain interval information is used to indicate the difference between the first frequency domain resource and the second frequency domain resource interval in the frequency domain.
  • the processing unit is further configured to: when the preset timer expires, determine that the configuration information is invalid; or, when the preset timer does not expire, determine that the configuration information is valid.
  • the transceiving unit is further configured to: send capability information to the second device, where the capability information is used to indicate the difference between the first frequency domain resource and the second frequency domain resource supported by the first device.
  • the embodiment of the present application provides a communication device, including: a processing unit configured to determine a time-domain resource starting from a starting position of communication, where the time-domain resource includes a first time-domain resource and a second time-domain resource , there is a first interval between the first time-domain resource and the second time-domain resource, the time-domain length of the first time-domain resource is related to the first transmission duration, and the time-domain length of the second time-domain resource is The second transmission duration; a transceiver unit, configured to communicate with the first device in the time domain resource.
  • the first transmission duration is the same as the second transmission duration.
  • the first transmission duration is different from the second transmission duration.
  • the time domain resource further includes a third time domain resource, the second time domain resource is separated from the third time domain resource by a second interval, and the time of the third time domain resource is The domain length is related to the first transmission duration, and the second interval duration is different from the first interval duration.
  • the start time domain position of the first time domain resource is an offset position or a start position of the communication
  • the offset position is determined by the offset and the start position of the communication.
  • the offset location is equal to the sum of the offset and the starting location of the communication.
  • the transceiving unit is further configured to: send configuration information to the first device, where the configuration information includes the first transmission duration and/or the first interval duration.
  • the configuration information further includes: the second transmission duration.
  • the configuration information further includes a second interval duration, and the second interval duration is different from the first interval duration.
  • the configuration information further includes an offset, and the offset is used to determine a starting time domain position of the first time domain resource.
  • both the first time domain resources and the second time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols
  • the first time domain resources The resources separated from the second time domain resources include at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols; or, both the first time domain resources and the second time domain resources include downlink time domain resources.
  • At least one of time slots, downlink symbols, flexible time slots, and flexible symbols, and the resources spaced between the first time domain resource and the second time domain resource include uplink time slots, uplink symbols, flexible time slots, flexible at least one of the symbols.
  • the transceiver unit is specifically configured to: send downlink data to the first device in the time domain resource and the first frequency domain resource; receive the downlink data in the time domain resource and the second frequency domain resource The uplink data sent by the first device in a reflection communication manner; wherein there is a frequency domain interval between the first frequency domain resource and the second frequency domain resource.
  • the time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols on the first frequency domain resources, and the time domain resources on the second frequency domain resources
  • the domain resources include at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols; or, the time domain resources include downlink time slots, downlink symbols, flexible time slots, and flexible time domain resources on the first frequency domain resources.
  • the transceiving unit is further configured to: send frequency domain interval information to the first device, where the frequency domain interval information is used to indicate the interval between the first frequency domain resource and the second frequency domain resource frequency domain interval.
  • the transceiving unit is further configured to: receive capability information sent by the first device, where the capability information is used to indicate the difference between the first frequency domain resource and the second frequency domain resource supported by the first device.
  • the embodiment of the present application provides a communication device, including: a transceiver unit, configured to receive the first time-frequency resource configuration information and the second time-frequency resource configuration information sent by the second device; wherein, the first time-frequency resource configuration information
  • the resource configuration information is used to configure the first frequency domain resource and the time domain resource corresponding to the first frequency domain resource
  • the second time frequency resource configuration information is used to configure the second frequency domain resource and/or the second frequency domain resource corresponds to the time domain resource
  • the transceiver unit and the second device the first frequency domain resource and the time domain resource corresponding to the first frequency domain resource, and/or, the second frequency domain resource and the second frequency domain
  • communication is performed in the form of reflective communication
  • the time domain resource corresponding to the first frequency domain resource and the time domain resource corresponding to the second frequency domain resource both include at least one first time unit
  • the second frequency domain resource corresponds to at least one first time unit.
  • a time unit is a first resource type on a time domain resource corresponding to the first frequency domain resource, and the first time unit is a second resource type on a time domain resource corresponding to the second frequency domain resource; the first resource
  • the first time unit under the type includes uplink time slot, flexible time slot, uplink symbol or flexible symbol
  • the first time unit under the second resource type includes downlink time slot, flexible time slot, downlink symbol or flexible symbol.
  • the first ratio corresponding to the first frequency domain resource and the second frequency domain resource are the same, and the first ratio is the number of time units corresponding to the first resource type within the same duration
  • the ratio of the number of time units corresponding to the second resource type; or, the first ratio corresponding to the first frequency domain resource and the second frequency domain resource is the reciprocal of each other; or, the first frequency domain resource corresponds to All time units corresponding to the first resource type are all time units corresponding to the second frequency domain resource are the second resource type; or all time units corresponding to the first frequency domain resource are the same resource type, the All time units corresponding to the second frequency domain resource are not of the same resource type; or, all time units corresponding to the first frequency domain resource are not of the same resource type, and all time units corresponding to the second frequency domain resource are of the same resource type.
  • the processing unit is specifically configured to: determine the time domain resource corresponding to the second frequency domain resource according to the time domain resource corresponding to the first frequency domain resource.
  • the second time-frequency resource configuration information includes frequency domain interval information or configuration information of the second frequency domain resource, and the frequency domain interval information is used to indicate that the second frequency domain resource is different from the first frequency domain resource. Frequency domain spacing between frequency domain resources.
  • the transceiving unit is further configured to: send capability information to the second device, where the capability information is used to indicate the difference between the first frequency domain resource and the second frequency domain resource supported by the first device.
  • any time-frequency resource configuration information includes the first transmission duration and/or the first interval duration
  • the time-domain resources configured by the time-frequency resource configuration information include the first time-domain resource and the second time-domain resource.
  • resource, the first interval between the first time domain resource and the second time domain resource, the time domain length of the first time domain resource and the time domain length of the second time domain resource are both the first Transfer time.
  • the time-frequency resource configuration information further includes a second transmission duration, and a time domain length of the second time domain resource is the second transmission duration.
  • the time-frequency resource configuration information further includes a second interval length
  • the time-domain resources configured by the time-frequency resource configuration information further include a third time-domain resource
  • the second time-domain resource and the second time-domain resource The second interval duration is spaced between the three time domain resources.
  • the time-frequency resource configuration information further includes an offset, and the offset is used to determine a starting time-domain position of the first time-domain resource.
  • the embodiment of the present application provides a communication device, including: a transceiver unit, configured to send the first time-frequency resource configuration information and the second time-frequency resource configuration information to the first device; wherein, the first time-frequency resource The configuration information is used to configure the first frequency domain resource and the time domain resource corresponding to the first frequency domain resource; the second time frequency resource configuration information is used to configure the second frequency domain resource and/or the time domain resource corresponding to the second frequency domain resource Time-domain resource; the transceiver unit is also used for the first device, the time-domain resource corresponding to the first frequency-domain resource and the first frequency-domain resource, and/or, the second frequency-domain resource and the second On the time domain resource corresponding to the frequency domain resource, communication is performed in a reflection communication manner; the time domain resource corresponding to the first frequency domain resource and the time domain resource corresponding to the second frequency domain resource both include at least one first time unit, The first time unit is of the first resource type on the time domain resource corresponding to the first frequency domain resource
  • the first ratio corresponding to the first frequency domain resource and the second frequency domain resource are the same, and the first ratio is the number of time units corresponding to the first resource type within the same duration
  • the ratio of the number of time units corresponding to the second resource type; or, the first ratio corresponding to the first frequency domain resource and the second frequency domain resource is the reciprocal of each other; or, the first frequency domain resource corresponds to All time units corresponding to the first resource type are all time units corresponding to the second frequency domain resource are the second resource type; or all time units corresponding to the first frequency domain resource are the same resource type, the All time units corresponding to the second frequency domain resource are not of the same resource type; or, all time units corresponding to the first frequency domain resource are not of the same resource type, and all time units corresponding to the second frequency domain resource are of the same resource type.
  • the processing unit is specifically configured to: determine the time domain resource corresponding to the second frequency domain resource according to the time domain resource corresponding to the first frequency domain resource.
  • the second time-frequency resource configuration information includes frequency domain interval information or configuration information of the second frequency domain resource, and the frequency domain interval information is used to indicate that the second frequency domain resource is different from the first frequency domain resource. Frequency domain spacing between frequency domain resources.
  • the transceiving unit is further configured to: receive capability information sent by the first device, where the capability information is used to indicate the difference between the first frequency domain resource and the second frequency domain resource supported by the first device.
  • any time-frequency resource configuration information includes the first transmission duration and/or the first interval duration
  • the time-domain resources configured by the time-frequency resource configuration information include the first time-domain resource and the second time-domain resource.
  • resource, the first interval between the first time domain resource and the second time domain resource, the time domain length of the first time domain resource and the time domain length of the second time domain resource are both the first Transfer time.
  • the time-frequency resource configuration information further includes a second transmission duration, and a time domain length of the second time domain resource is the second transmission duration.
  • the time-frequency resource configuration information further includes a second interval length
  • the time-domain resources configured by the time-frequency resource configuration information further include a third time-domain resource
  • the second time-domain resource and the second time-domain resource The second interval duration is spaced between the three time domain resources.
  • the time-frequency resource configuration information further includes an offset, and the offset is used to determine a starting time-domain position of the first time-domain resource.
  • the embodiment of the present application provides a communication apparatus, including: a transceiver unit, configured to send capability information to the second device, where the capability information is used to indicate the first frequency domain resource and the second frequency domain resource supported by the first device.
  • the maximum frequency domain interval of frequency domain resources the transceiver unit receives the downlink data sent by the second device in the first frequency domain resource; Uplink data; wherein, the frequency domain interval between the first frequency domain resource and the second frequency domain resource is less than or equal to the maximum frequency domain interval.
  • the transceiving unit is further configured to: receive configuration information sent by the second device, where the configuration information includes frequency domain interval information, and the frequency domain interval information is used to indicate the first frequency domain resource and The frequency domain interval of the second frequency domain resource time.
  • the embodiment of the present application provides a communication apparatus, including: a transceiver unit, configured to receive capability information sent by a first device, where the capability information is used to indicate the first frequency domain resource and the second frequency domain resource supported by the first device.
  • the maximum frequency domain interval of two frequency domain resources the downlink data sent by the transceiver unit to the first device in the first frequency domain resource; the transceiver unit receives the first device in the second frequency domain resource in a reflective communication manner
  • the transceiving unit is further configured to: send configuration information to the first device, where the configuration information includes frequency domain interval information, and the frequency domain interval information is used to indicate the first frequency domain resource and the The frequency domain interval of the second frequency domain resource time.
  • the embodiment of the present application provides a communication device, including: a processor and a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, and perform as described in the first aspect , the second aspect, the third aspect, the fourth aspect, the fifth aspect, the sixth aspect or the method in each possible implementation manner.
  • the embodiment of the present application provides a chip, including: a processor, configured to call and execute computer instructions from the memory, so that the device installed with the chip executes the first aspect, the second aspect, and the third aspect , the fourth aspect, the fifth aspect, the sixth aspect or the method in each possible implementation manner.
  • the embodiment of the present application provides a computer-readable storage medium for storing computer program instructions, and the computer program enables the computer to execute the first aspect, the second aspect, the third aspect, the fourth aspect, and the fifth aspect. aspect, the sixth aspect, or the method in each possible implementation manner.
  • the embodiment of the present application provides a computer program product, including computer program instructions, the computer program instructions enable the computer to perform the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect, and the first aspect.
  • the embodiment of the present application provides a device, including a logic circuit and an input-output interface, wherein the input-output interface is used to receive signals from other communication devices other than the device and transmit them to the logic circuit or Signals from the logic circuit are sent to other communication devices other than the device, and the logic circuit is used to execute code instructions to achieve the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect, and the sixth aspect.
  • the embodiment of the present application provides a terminal, including the device in the seventh aspect, the eighth aspect, the ninth aspect, the tenth aspect, the eleventh aspect, the twelfth aspect or each possible implementation manner .
  • Fig. 1 shows a kind of communication system applicable to the embodiment of the present application
  • FIG. 2a is a schematic diagram of an RFID communication system provided by the present application.
  • Figure 2b is a schematic diagram of a separate architecture RFID communication system provided by the present application.
  • FIG. 2c is a schematic diagram of a centralized RFID communication system provided by the present application.
  • Figure 3a is a schematic diagram of a WUR communication provided by the present application.
  • FIG. 3b is a schematic diagram of another WUR communication provided by the present application.
  • Fig. 4 is a schematic diagram of envelope detection provided by the present application.
  • FIG. 5 is a schematic diagram of a reflective communication provided by the present application.
  • FIG. 6 is a schematic diagram of an interaction process of a communication method 400 provided in an embodiment of the present application.
  • FIG. 7a is a schematic diagram of a time-domain resource provided by an embodiment of the present application.
  • FIG. 7b is a schematic diagram of another time domain resource provided by the embodiment of the present application.
  • FIG. 8a is a schematic diagram of another time-domain resource provided by the embodiment of the present application.
  • FIG. 8b is a schematic diagram of another time domain resource provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of an interaction process of a communication method 500 provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an interaction process of a communication method 600 provided in an embodiment of the present application.
  • FIG. 11a is a schematic diagram of a time-frequency resource provided by an embodiment of the present application.
  • FIG. 11b is a schematic diagram of another time-frequency resource provided by the embodiment of the present application.
  • FIG. 11c is a schematic diagram of another time-frequency resource provided by the embodiment of the present application.
  • Fig. 11d is a schematic diagram of another time-frequency resource provided by the embodiment of the present application.
  • FIG. 12 is a schematic diagram of an inventory process provided by the embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication method provided by this application can be applied to various communication systems, such as: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, wideband code division multiple access ( Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum spectrum, NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity ( Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to an independent (Standalone, SA ) meshing scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent meshing scene
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite, balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, in water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • Fig. 1 shows a schematic diagram of a communication system applicable to the communication method of the embodiment of the present application.
  • the communication system 100 may include network devices and terminal devices, and the number of network devices and terminal devices may be one or more, such as network devices 111 and 112 and terminal devices 121 to 128 shown in FIG. 1 , in the communication system 100, the network device 111 can communicate with one or more of the terminal devices 121 to 126 through a wireless air interface, and the network device 111 can communicate with one or more of the terminal devices 127 and 128 through the network device 112 communicate with a terminal device.
  • the terminal devices 124 to 126 can form the communication system 101.
  • the terminal device 124 can communicate with one or more of the terminal devices 125 and 126 through wireless air interfaces
  • the network device 112 and the terminal device 127 and 128 may form a communication system 102, in which the network device 112 may communicate with one or more terminal devices among the terminal devices 127 and 128 through a wireless air interface.
  • FIG. 1 is only an example, showing two network devices and eight terminal devices in the communication system 100, three terminal devices in the communication system 101, and one network device and two terminal devices in the communication system 102. . But this should not constitute any limitation to the present application. Any of the above communication systems may include more or less network devices, or more or less terminal devices. This embodiment of the present application does not limit it.
  • IoT Internet of Things
  • IoT is still mainly driven by operators, and IoT modules need to communicate with base stations using standard cellular protocols. Since the base station needs to cover as large an area as possible, the IoT module needs to be able to communicate even when it is far away from the base station, which makes the IoT device still need to consume up to 30mA of current during wireless communication, so the current IoT module It is still necessary to use a higher-capacity battery to work, which also makes it difficult to reduce the size of the IoT module and increases the cost of the IoT device.
  • some low-power terminals play an important role in IoT applications such as medical care, smart home, industrial sensors, and wearable devices.
  • IoT applications such as medical care, smart home, industrial sensors, and wearable devices.
  • due to the limited size of such terminals it is difficult to simply increase the battery capacity if the running time of these devices is to be extended. Therefore, in order to prolong the battery life of the terminal, it is necessary to reduce the power consumption of wireless communication, among which the radio transceiver is one of the most power-consuming components.
  • RFID technology It is a non-contact automatic identification technology, which can automatically identify target objects and obtain relevant data through radio frequency signals.
  • an RFID system consists of a reader and a tag.
  • the reader charges the tag by sending an excitation signal to the tag, and the tag receives the signaling sent by the reader and sends a reflected signal to the reader in a reflective communication manner.
  • the reader can identify the tag's identity document (ID), and perform operations such as reading and writing the tag.
  • ID identity document
  • the excitation signal sent by the reader to the tag may be the downlink data or one of the downlink data hereinafter, and the reflected signal may be the uplink data or one of the uplink data hereinafter.
  • the downlink data is a continuous carrier wave, and the tag sends a reflected signal to the reader in a reflective communication manner. Specifically, the tag uses the carrier wave provided by the downlink data to transmit uplink data.
  • the separated reader includes a helper and a receiver.
  • the helper sends an excitation signal to the tag through the forward link, and the receiver receives the reflected signal from the tag through the reverse link.
  • the receiver generates RFID-related downlink signaling, and sends the downlink signaling to the helper through the forward link, and then the helper in Forwarding on the forward link.
  • Method 2c in addition to the excitation and reflection of signals between the reader and the tag through the forward link and the reverse link, the reader also communicates with the centralized control unit (such as Base station) for communication, the centralized control unit can schedule and control the resources and transmission behavior of the forward link used by the reader.
  • the centralized control unit such as Base station
  • the communication between the helper and the receiver in the above-mentioned method 1, and between the reader and the centralized control unit in the above-mentioned method 2 can be performed through NR technology.
  • WUR technology The primary connection radio (PCR) with high power consumption can also be called the main receiver. After entering the dormant state, it uses the Companion Radio (Companion Radio) with low power consumption, also known as wake-up The receiver (WUR) monitors the wake-up frame sent by the AP, and wakes up the PCR after monitoring the wake-up frame.
  • Companion Radio Companion Radio
  • WUR monitors the wake-up frame sent by the AP, and wakes up the PCR after monitoring the wake-up frame.
  • a main receiver 311 and a wake-up receiver 312 are deployed in a receiver device 310 .
  • the transmitter device 320 such as an AP or terminal device
  • the main receiver is turned off, also known as being in a dormant state, and the wake-up receiver is turned on; as shown in FIG. 3b, when the transmitter device 320 sends data, first Send wake-up data (such as the above-mentioned wake-up frame), and the receiving end device 310 activates the main receiver 312 after receiving the wake-up data through the wake-up receiver 311, so that the main receiver is turned on, also known as being in an active state. At this time, the receiving end device 310 passes The main receiver 311 receives the data sent by the transmitter device 320 after waking up the data.
  • the information bits of the wake-up machine are modulated into on-off keying (OOK) symbols, and the transmitter device uses these OOK symbols to shield the generated narrowband orthogonal frequency division multiplexing (OFDM) ) waveform (that is, OOK waveform), so as to further optimize the OOK waveform.
  • OOK symbol is carried on 13 subcarriers. It is called in the wireless local area network standard IEEE 802.11ba defined by the Institute of Electrical and Electronics Engineers (IEEE). Multicarrier (multicarrier, MC) OOK.
  • OOK demodulation does not require any channel equalization in the frequency domain and time domain, so the receiving end device listens by waking up the receiver for non-coherent detection (such as envelope detection). With non-coherent detection, the receiver device does not need to maintain/track the oscillation rate with high precision. Therefore, a phase-locked loop can be avoided, further reducing power consumption at the receiving side.
  • OOK symbol is only an example of the WUR wake-up frame, and does not constitute any limitation to the present application.
  • the RFID technology applied in the NR system can be called passive (Passive) IoT.
  • the Passive IoT provided by this application is similar to the RFID transmission mechanism.
  • Passive IoT Passive IoT devices (such as tags) can be passive (Batter Free), that is, Passive IoT devices are not equipped with themselves or do not mainly rely on batteries or wired power sources for power supply.
  • the fact that Passive IoT devices do not have a power module does not mean that no electricity is required.
  • Passive IoT devices can obtain energy from ambient light, heat, and radio frequency, thereby supporting IoT data perception, wireless transmission, and distributed computing. wait.
  • Passive IoT devices can also be passive or semi-passive.
  • Energy storage passive devices have energy storage devices.
  • the semi-passive device has a battery, but the battery power supply is only for the auxiliary support of the circuit in the tag that requires power to maintain data or the voltage required for the tag chip to work.
  • the tag circuit itself consumes little power to supply power, and the battery size is relatively small.
  • FIG. 4 and FIG. 5 exemplarily show schematic diagrams of uplink and downlink communication methods in Passive IoT communication.
  • FIG. 4 exemplarily shows a schematic diagram of a Passive IoT downlink communication method.
  • the tag sends an AM signal to the reader through the downlink, and the tag receives the AM signal, and an envelope detector can be used to perform envelope detection on the AM signal to obtain the low-frequency signal.
  • the main components of the envelope detector include the diode shown in Figure 4 and the resistor-capacitance circuit (resistor-capacitance circuit, RC), also known as the oscillator circuit.
  • the above-mentioned envelope detection refers to the process of demodulating the low-frequency signal from the AM signal.
  • the generalized detection is usually called demodulation, which is the inverse process of modulation, that is, the process of extracting the modulated signal from the modulated signal.
  • envelope detection is the process of extracting the modulating signal from its amplitude variation.
  • the envelope reflects the amplitude change curve of a high-frequency signal.
  • the envelope detection circuit shown in FIG. 4 is a schematic diagram of the most traditional basic circuit structure, and the evolution structure of the envelope detection circuit will not be repeated here.
  • the embodiment of the present application does not limit the structure of the envelope detection circuit adopted by the tag.
  • FIG. 5 exemplarily shows a schematic diagram of a Passive IoT uplink communication method.
  • the tag itself cannot provide power, and it is unconditionally connected to a wired power source for the tag to transmit data. Therefore, the tag needs to obtain energy from the external environment, and then provide the tag for data transmission, data processing and other operations.
  • the tag when it receives the carrier signal sent by the reader, it can use the energy obtained from the electromagnetic field generated in the space to drive the chip to transmit the information stored by itself.
  • the relationship between the reader and the tag is the “electromagnetic backscatter coupling” relationship.
  • Electromagnetic backscatter coupling refers to the use of the spatial propagation law of electromagnetic waves. The information of the measured object is reflected back. This coupling is suitable for long-distance radio frequency identification systems that work at high frequencies and microwaves.
  • the tag can also drive the chip to store the information stored by itself by acquiring energy such as ambient light and heat. teleport out.
  • tags can also be passive or semi-passive devices for energy storage.
  • the problems of the above-mentioned Passive IoT devices communicating in the NR system include at least the following two aspects:
  • network devices such as base stations periodically broadcast timing information
  • terminal devices can obtain timing information (such as frame numbers, time slot numbers, etc.) Timing
  • the terminal equipment in the NR system can be based on the current time slot number and the time slot configuration received from the network device (such as time division duplex (time division duplexing, TDD) time slot configuration, frequency division duplex (frequency division duplex, FDD) ) time slot configuration, etc.) to determine whether the current time slot is a downlink time slot or an uplink time slot.
  • TDD time division duplexing
  • FDD frequency division duplex
  • the reader sends downlink signaling to the tag on demand, and there are fewer opportunities for the tag to obtain timing.
  • the synchronization ability of the tag is weak, and the ability to maintain timing is poor. Therefore, for Passive IoT, the reader is used to directly The way of notifying the time slot configuration cannot make the tag determine the sending and receiving resources based on the timing synchronized with the reader, and thus cannot communicate with the reader in the NR system.
  • the terminal device uses the carrier generated by itself for uplink transmission
  • the uplink transmission of the tag is reflective communication, that is, the tag itself does not generate a carrier, but uses the carrier provided by the downlink data of the reader.
  • Tags modulate and reflect the received carrier to transmit data.
  • Passive IoT is only an exemplary name, and when it is replaced by other expressions, it also belongs to the protection scope of this application.
  • network devices (such as base stations) periodically broadcast timing information
  • terminal devices including the main receiver in the terminal device
  • can obtain timing information such as frame number, time slot number, etc.
  • the terminal device has a comparison Good synchronization ability can maintain timing better, so the terminal device can determine the current time slot as Downlink time slot or uplink time slot.
  • the network device sends downlink signaling to the WUR-enabled terminal device on demand, and the WUR-enabled terminal device has fewer timing opportunities, and the synchronization ability of the wake-up machine is weak, and the timing ability is maintained. Poor. Therefore, for WUR, the network device directly notifies the time slot configuration, which cannot make the wake-up machine determine the sending and receiving resources based on the timing synchronized with the network device, and thus cannot communicate with the network device in the NR system.
  • the embodiment of the present application provides a transmission resource determination solution, so that data transmission can be performed between the first device and the second device in the NR system.
  • the first, second and various numbers are only for convenience of description, and are not used to limit the scope of the embodiments of the present application.
  • different devices time domain resources, frequency domain resources, interval duration, transmission duration, etc. are distinguished.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the device (for example, including the first device and the second device).
  • the method is not limited.
  • Pre-configuration can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including the first device and the second device), or it can be pre-configured through signaling, such as network
  • the device is implemented through methods such as signaling pre-configuration, and this application does not limit the specific implementation method.
  • the "protocol” involved in this embodiment of the application may refer to a standard protocol in the communication field, for example, it may include LTE protocol, NR protocol and related protocols applied in future communication systems, which is not limited in this application.
  • At least one means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the first device determines the time domain resource, that is, selects the time domain resource.
  • determining and “selecting” are used interchangeably, and their meanings are the same.
  • the first device may be, for example, the above-mentioned tag, or a terminal device deployed with a tag; the second device may be the above-mentioned reader, or a terminal device deployed with a reader, or a network device deployed with a reader.
  • the first device When the first device is a terminal device equipped with a tag and the second device is a terminal device equipped with a reader, the first device may be the terminal device 125 or 126 in Figure 1, and the second device may be the terminal device in Figure 1 Terminal device 124;
  • the first device when the first device is a terminal device equipped with a tag and the second device is a network device equipped with a reader, the first device may be any one of the terminal devices 121 to 123 in FIG. 1 , the first The second device may be the network device 111 in FIG. 1 , or the first device may be the terminal device 127 or 128 in FIG. 1 , and the second device may be the network device 112 in FIG. 1 .
  • the first device may be the above-mentioned wake-up machine, or a terminal device deployed with the wake-up machine
  • the second device may be, for example, a network device (such as a base station, an AP, etc.) or a terminal device.
  • the first device is a terminal device equipped with a wake-up machine and the second device is a terminal device
  • the first device may be the terminal device 125 or 126 in FIG. 1
  • the second device may be the terminal device 124 in FIG.
  • the first device When the first device is a terminal device equipped with a wake-up machine and the second device is a network device, the first device can be any one of the terminal devices 121 to 123 in Figure 1, and the second device can be the The network device 111 , or the first device may be the terminal device 127 or 128 in FIG. 1 , and the second device may be the network device 112 in FIG. 1 .
  • the first device shown in the following embodiments may also be replaced with components in the first device, such as a chip, a chip system, or other functional modules capable of invoking programs and executing programs.
  • the second device may also be replaced with components in the second device, such as a chip, a chip system, or other functional modules capable of invoking programs and executing programs.
  • FIG. 6 is a schematic diagram of an interaction process of a communication method 400 provided in an embodiment of the present application. As shown in FIG. 6, the method 400 may include S410 and S420. Each step in the method 200 will be described in detail below.
  • the first device determines a time domain resource starting from the starting position of the communication, where the time domain resource includes a first time domain resource and a second time domain resource, and the interval between the first time domain resource and the second time domain resource is 10th An interval duration, the time domain length of the first time domain resource is related to the first transmission duration, and the time domain length of the second time domain resource is the second transmission duration;
  • the second device sends downlink data on the time domain resource, and correspondingly, the first device receives the downlink data sent by the second device on the time domain resource;
  • the first device sends uplink data on the time domain resource, and correspondingly, the second device receives the uplink data sent by the first device on the time domain resource.
  • the above S420-1 and the above S420-2 may be performed alternatively, or may be performed sequentially, for example, after the first device receives the downlink data sent by the second device, it sends the uplink data to the second device. In order to implement communication between the first device and the second device through the time domain resource.
  • the second device determines the time domain resource starting from the starting position of the communication, and sends downlink data to the first device through the time domain resource
  • the first device determines the time domain resource starting from the starting position of the communication, and receive the downlink data sent by the second device at the time domain resource
  • the first device determines the time domain resource starting from the starting position of the communication, and sends the uplink data to the second device at the time domain resource
  • the second device determines a time domain resource starting from the communication start position, and receives uplink data sent by the first device at the time domain resource.
  • the implementation manner of the second device is the same as or similar to that of the first device, and the following only uses the first device to determine the time domain resource starting from the starting position of the communication as an example for illustration.
  • the downlink data consists of a frame header and a data part, and the start position of the communication may be indicated by, for example, the indication information carried by the frame header of the downlink data;
  • the downlink data is composed of a preamble sequence and a data part, and the second device may obtain time and/or frequency synchronization according to the preamble sequence, and may also determine the boundary of a time unit, where the time unit may be a symbol or a time slot or a subframe or a frame, wherein, the preamble sequence is located before the data part, and the preamble sequence and the data part may be continuous or discontinuous in the time domain.
  • the start position of the communication can be determined according to the start position of the preamble sequence, or the start position of the communication can be determined according to the end position of the preamble sequence, or the start position of the communication can be determined according to the start position of the data part, for example, the communication
  • the start position of is the start position of the preamble sequence or the end position of the preamble sequence or the start position according to the data part.
  • the uplink data consists of a frame header and a data part, and the starting position of the communication may be indicated by, for example, the indication information carried by the frame header of the uplink data; or , the uplink data consists of a preamble sequence and a data part.
  • the second device can obtain time and/or frequency synchronization according to the preamble sequence, and can also determine the boundary of a time unit.
  • the time unit can be a symbol or a time slot or a subframe or a frame, where , the preamble sequence is located before the data part, and the preamble sequence and the data part may be continuous or discontinuous in the time domain.
  • the start position of the communication can be determined according to the start position of the preamble sequence, or the start position of the communication can be determined according to the end position of the preamble sequence, or the start position of the communication can be determined according to the start position of the data part, for example, the communication
  • the start position of is the start position of the preamble sequence or the end position of the preamble sequence or the start position according to the data part.
  • the starting location of the communication may be determined by the first device, or notified to the first device by the second device.
  • the first transmission duration may be predefined in the first device and/or the second device; or the first transmission duration may be preconfigured, for example, when the first transmission duration is only predefined in the first device, the second A device may send a signaling to the second device to configure the first transmission duration, and when the first transmission duration is only predefined in the second device, the second device may send a signaling to the first device to configure the first transmission duration; Or the first transmission duration may be defined in the protocol.
  • the second transmission duration and the first interval duration may also be predefined, preconfigured, or defined in a protocol, which will not be repeated here.
  • first transmission duration and the second transmission duration may be the same or different.
  • the embodiment of the present application may be applicable to any duplex mode, especially applicable to the TDD mode.
  • the following uses the TDD mode as an example for description. It should be understood that in the TDD mode, the time slot configuration may include single-period time slot configuration and double-period time slot configuration.
  • the time domain resource further includes a third time domain resource.
  • the field length is the first transmission duration.
  • the time-domain resources can be repeated in a pattern within P periods.
  • the single-cycle time slot configuration in the TDD mode shown in FIG. 7a is an example, but does not constitute any limitation to the single-cycle time slot configuration.
  • at least one time slot may be not only one type of time slot,
  • the 4th, 9th, and 14th time slots may be composed of at least two types of uplink symbols, flexible symbols, and downlink symbols.
  • the unit of the first transmission duration and the second transmission duration can be a time slot or a symbol, that is, the first time domain resource, the second time domain resource, and the third time domain resource can all include n1 time slots plus m1 symbols, n2 time slots or m2 symbols, where n1, m1, n2, and m2 are all positive integers.
  • the first transmission duration and the second transmission duration are generally different.
  • the period of TDD includes the first period P1 and the second period P2
  • the first period P1 includes 3 downlink time slots, 1 flexible time slot, and 1 uplink time slot
  • the first transmission duration is 3 time slots
  • the second transmission duration is 2 time slots, that is, the time domain lengths of the first time domain resources and the second time domain resources are different.
  • the time domain resource further includes a third time domain resource.
  • the field length is the first transmission duration.
  • the fourth time domain resource may also include a fourth time domain resource after the third time domain resource, the fourth time domain resource is separated from the third time domain resource by a first interval, and the time domain length of the fourth time domain resource is the second transmission duration.
  • time-domain resources may repeat in a pattern within periods of P1 and P2.
  • the dual-period time slot configuration in the TDD mode shown in FIG. 7b is an example, but does not constitute any limitation to the dual-period time slot configuration.
  • at least one of the time slots may be not only one type of time slot,
  • the 4th, 8th, and 14th time slots may be composed of at least two kinds of uplink symbols, flexible symbols, and downlink symbols.
  • the unit of the first transmission duration and the second transmission duration may be a time slot or a symbol, that is, the first time domain resource, the second time domain resource, and the third time domain resource may include n3 time slots plus m3 symbols, n4 time slots or m4 symbols, where n3, m3, n4, and m4 are all positive integers.
  • the time domain resource only includes the first time domain resource, and when the first device does not receive all the downlink data in the first time domain resource data, the first device continues to receive downlink data on the second time domain resource, the time domain resource includes the first time domain resource and the second time domain resource, and so on until the first device receives all the downlink data .
  • the process of the first device sending uplink data to the second device is similar to this, sequentially sending uplink data on the first time domain resource, second time domain resource, third time domain resource... until the sending of uplink data is completed, when
  • the domain resources include time domain resources actually occupied by the first device for sending uplink data.
  • the first time domain resources, the second time domain resources, and the third time domain resources...in the time domain resources all include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols types, and among the time-domain resources, the first time-domain resource, the second time-domain resource, the third time-domain resource...
  • the resources spaced between adjacent two include downlink time slots, downlink symbols, flexible time slots, flexible At least one of the symbols; or, the first time domain resource, the second time domain resource, and the third time domain resource in the time domain resources... all include downlink time slots, downlink symbols, flexible time slots, and flexible symbols.
  • At least one of the time-domain resources, and the first time-domain resource, the second time-domain resource, the third time-domain resource At least one of the time-domain resources, and the first time-domain resource, the second time-domain resource, the third time-domain resource... among the time-domain resources, the resources spaced between adjacent two include uplink time slots, uplink symbols, flexible time slots at least one of slots and flexible symbols.
  • the first time domain resource, the second time domain resource, and the third time domain resource in the time domain resources are all downlink time slots, downlink symbols, flexible At least one of time slots and flexible symbols; when the first device sends uplink data to the second device, the first time domain resource, the second time domain resource, and the third time domain resource in the time domain resources are all At least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols.
  • the time domain resources used for communication between the first device and the second device correspond to the time slot configuration of TDD in the NR system, reducing Interference in uplink and downlink transmission.
  • time-domain resources are aligned with the boundaries of existing time units (time slots/symbols), avoid fragments of time-domain resources (such as half symbols) that cannot be scheduled by existing networks, and reduce time-domain constraints on existing networks. Impact on resource scheduling.
  • the time-domain resources corresponding to any interval duration can also be are the same type of time-domain resources, for example, the time-domain resources corresponding to the first transmission duration and the second transmission duration and the time-domain resources corresponding to any interval duration all include uplink transmission resources (for example, at least one uplink time slot and/or at least one Uplink symbols), or the time domain resources corresponding to the first transmission duration and the second transmission duration and the time domain resources corresponding to any interval duration all include downlink transmission resources (for example, at least one downlink time slot and/or at least one uplink symbol).
  • uplink transmission resources for example, at least one uplink time slot and/or at least one Uplink symbols
  • downlink transmission resources for example, at least one downlink time slot and/or at least one uplink symbol
  • any of the first time domain resource, the second time domain resource, the third time domain resource... among the time domain resources corresponding to the first transmission duration and the second transmission duration may include uplink transmission resources and Including downlink transmission resources (for example, including one uplink time slot and one downlink time slot), similarly, the time domain resources corresponding to any interval length may also include both uplink transmission resources and downlink transmission resources.
  • the starting position of the time domain resource may be the starting position of the above-mentioned communication, for example, the starting position of period P in Figure 7a or the first position in Figure 7b The starting position of period P1.
  • the starting position of the first time-domain resource may not be the starting position of the communication, and there is an offset between it and the starting position of the communication.
  • the time domain of the first time-domain resource The length may be less than or greater than the first transmission duration, and the offset may be the number of time slots, the number of symbols, and so on. Exemplarily, as shown in FIG. 8a and FIG.
  • the first device may determine the sum of the starting position of the communication and the offset as the starting position of the first time domain resource, assuming that the offset is 1 time slot Adding 2 symbols, the starting position of the first time-domain resource in Figure 8a and Figure 8b moves backward to the position shown in the figure, assuming that the offset is a negative value, the starting position of the first time-domain resource moves forward to corresponding time slot position.
  • the first device may determine a product or a quotient of the start position of the communication and the offset as the start position of the first time domain resource.
  • the first device may respectively receive downlink data sent by the second device and send uplink data to the second device on different frequency domain resources.
  • the first device may receive downlink data sent by the second device on the time domain resource and the first frequency domain resource, and the first device may send uplink data to the second device on the above time domain resource and the second frequency domain resource .
  • there is a frequency domain interval between the first frequency domain resource and the second frequency domain resource it is possible to prevent the first device from sending uplink data and receiving downlink data on the same frequency, thereby improving transmission reliability.
  • the first frequency domain resource may be predefined in the first device and/or the second device; or may be preconfigured, for example, when the first frequency domain resource is only predefined in the first device, the first device may Sending signaling to the second device to configure the first frequency domain resources, when the first frequency domain resources are only predefined in the second device, the second device may send signaling to the first device to configure the first frequency domain resources; Or the first frequency domain resource may be defined in the protocol.
  • the second frequency domain resource may also be predefined, preconfigured, or defined in a protocol, which will not be repeated here.
  • the frequency domain interval may also be preset in the manner of the foregoing pre-definition, pre-configuration, or protocol definition.
  • the first device and the second device may determine the second frequency domain resource according to the first frequency domain resource and the frequency domain interval, or determine the first frequency domain resource according to the second frequency domain resource and the frequency domain interval.
  • the downlink data sent by the second device to the first device in the time domain resource and the first frequency domain resource can be a continuous carrier
  • the continuous carrier can be a given frequency or a waveform corresponding to a continuous carrier wave without amplitude and/or phase modulation, or a wave form corresponding to a continuous carrier wave with amplitude and/or phase modulation but whose overall amplitude is insufficient to be interpreted by the first device as transfer data.
  • the first device sends uplink data to the second device on the time domain resource and the second frequency domain resource.
  • the first device may send the uplink data to the second device on the time domain resource and the second frequency domain resource in a reflective communication manner.
  • the first device modulates the received continuous carrier as a carrier of the uplink data, and reflects the uplink data to the second device.
  • the time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols on the first frequency domain resources, and the time domain resources include downlink time slots, At least one of downlink symbols, flexible time slots, and flexible symbols; or, the time domain resources include at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols on the first frequency domain resources, and the time domain resources include at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols.
  • the domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols on the second frequency domain resources.
  • the time domain resources include downlink transmission resources on the first frequency domain resources, and include uplink transmission resources on the second frequency domain resources, it can avoid that the transmission between the first device and the second device is not in the same direction as the data transmission of the NR system. Incoming interference improves transmission reliability.
  • time-domain resources may include the first time-domain resource, the second time-domain resource, the third time-domain resource..., or the time-domain resources may be any period of time-domain resources configured by the configuration information.
  • FIG. 9 is a schematic diagram of an interaction process of a communication method 500 provided in an embodiment of the present application. As shown in FIG. 9, the method 500 may further include at least one of S430 and S440.
  • the second device sends configuration information to the first device, and correspondingly, the first device receives the configuration information sent by the second device.
  • the configuration information may include the aforementioned first transmission duration and/or first interval duration.
  • the first transmission duration is different from the second transmission duration, and the configuration information may further include the second transmission duration.
  • the configuration information may further include a second interval duration.
  • the configuration information may also include the aforementioned offset.
  • the configuration information may further include frequency domain interval information, where the frequency domain interval information is used to indicate the frequency domain interval between the first frequency domain resource and the second frequency domain resource.
  • the second device may send the frequency domain interval information as independent information to the first device for configuration.
  • the first device may receive configuration information sent by the second device (such as a network device) through the main receiver, and the configuration information may be transmitted through radio resource control (radio resource control, RRC ) carried by the Release message.
  • RRC radio resource control
  • the first device may store the received configuration information.
  • the first device may set a corresponding preset timer for the received configuration information.
  • the preset timer expires, the first device determines that the configuration information is invalid; The configuration information is valid.
  • the following S430 may be performed:
  • the first device sends capability information to the second device.
  • the second device receives the capability information sent by the first device.
  • the capability information is used to indicate the first frequency domain resource and the second frequency domain resource supported by the first device. The maximum frequency-domain separation between resources.
  • the second device determines the frequency domain interval between the first frequency domain resource and the second frequency domain resource based on the maximum frequency domain interval, so as to prevent the frequency domain interval configured for the first device from exceeding the capabilities of the first device.
  • the capability information sent by the first device to the second device may further include information indicating whether to support wake-up receiver.
  • the first device may also send auxiliary information to the second device, which may include the energy-saving level of the terminal device, the preferred paging receiving method of the terminal device, or a request to enable wake-up At least one of the receiver and other information.
  • the paging receiving mode preferred by the terminal device may include receiving paging through the main receiver, receiving paging through waking up the receiver, or receiving paging through waking up the receiver and the main receiver.
  • the above capability information and auxiliary information can be carried through message 1 or message 3 in the four-step random access process, or through message A in the two-step random access process, or through terminal capability information (UECapabilityInformation) Or carry terminal assistance information (UEAssistanceInformation).
  • UECapabilityInformation terminal capability information
  • USAssistanceInformation carry terminal assistance information
  • the first device determines the time domain resource starting from the starting position of the communication, and communicates with the second device on the time domain resource, so that the first device and the second device can communicate in each communication system Communication in (such as NR communication system) realizes the integration of IoT and other communication systems.
  • Communication such as NR communication system
  • the time domain resource determined by the first device includes the first time domain resource and the second time domain resource, and the first time domain resource and the second time domain resource are separated by a first interval, so that the first device does not need Maintaining timing information (such as frame number, time slot number, etc.) can determine the time period in which communication is possible and the time period in which communication is not possible, which reduces the complexity of the first device and further reduces the cost of the first device.
  • Maintaining timing information such as frame number, time slot number, etc.
  • FIG. 10 is a schematic diagram of an interaction process of a communication method 600 provided in an embodiment of the present application. As shown in FIG. 10 , the method 600 may include part or all of the processes in S610 to S640. S610 to S640 are explained below.
  • the first device sends capability information to the second device.
  • the second device receives the capability information sent by the first device.
  • the capability information is used to indicate the first frequency domain resource and the second frequency domain resource supported by the first device. Maximum frequency-domain separation between resources;
  • the second device sends configuration information to the first device, and correspondingly, the first device receives the configuration information sent by the second device;
  • the second device sends downlink data in the second frequency domain resource and the time domain resource corresponding to the second frequency domain resource.
  • the first device receives the downlink data in the second frequency domain resource and the time domain resource corresponding to the second frequency domain resource.
  • the first device sends uplink data in the first frequency domain resource and the time domain resource corresponding to the first frequency domain resource.
  • the second device receives the uplink data in the first frequency domain resource and the time domain resource corresponding to the first frequency domain resource. upstream data.
  • the above S630 and the above S640 may be performed alternatively, or may be performed sequentially, for example, after the first device receives the downlink data sent by the second device, it sends the uplink data to the second device. In order to implement communication between the first device and the second device through the time domain resource.
  • both the time domain resource corresponding to the first frequency domain resource and the time domain resource corresponding to the second frequency domain resource include at least one first time unit, and the first time unit is in the time domain corresponding to the first frequency domain resource.
  • the resources are of the first resource type, and the first time unit is of the second resource type on the time domain resources corresponding to the second frequency domain resources.
  • the first time unit under the first resource type includes uplink time slot, flexible time slot, uplink symbol or flexible symbol
  • the first time unit under the second resource type includes downlink time slot, flexible time slot, downlink symbol or flexible symbol.
  • first frequency domain resources, the second frequency domain resources, the time domain resources corresponding to the first frequency domain resources, and the time resources corresponding to the second frequency domain resources can all be predefined, preconfigured, or protocol-defined of.
  • At least one of the first frequency domain resource, the second frequency domain resource, the time domain resource corresponding to the first frequency domain resource, and the time resource corresponding to the second frequency domain resource may be determined by the , the second device configures the configuration information sent by the first device.
  • both the time domain resource corresponding to the first frequency domain resource and the time domain resource corresponding to the second frequency domain resource may include the above-mentioned first time domain resource, second time domain resource, third time domain resource..., or All time domain resources may be any period of time domain resources configured by the configuration information.
  • Figures 11a to 11d show several possible time-frequency resources.
  • the resource marked with a dotted line in any of Figures 11a to 11d includes at least one first time unit, and the first device and the second device can select one of them One or more time-frequency resources within the dotted box for communication.
  • the ratio of the number of time units corresponding to the first resource type to the number of time units corresponding to the second resource type within the same duration is taken as the first ratio, for example, the first resource type
  • the time unit under the second resource type may include at least one of uplink time slot, flexible time slot, uplink symbol or flexible symbol, and the time unit under the second resource type may include downlink time slot, flexible time slot, downlink symbol or flexible symbol at least one.
  • the first ratios corresponding to the first frequency domain resources and the second frequency domain resources are the same, for example, the first ratios are both 2 to 8.
  • the same duration can be a cycle or an agreed value;
  • the first proportion corresponding to the first frequency domain resource and the second frequency domain resource are reciprocals of each other, for example, the first proportion corresponding to the first frequency domain resource is 2 to 8, and the first ratio corresponding to the second frequency domain resources is 8 to 2.
  • all time units corresponding to the first frequency domain resources are of the first resource type, for example, all are uplink time slots, and all time units corresponding to the second frequency domain resources are of the second resource type, for example, all are Downlink time slot.
  • the time unit is a time-domain unit, but not necessarily the smallest time-domain unit, such as a time slot or a symbol.
  • all time units corresponding to the first frequency domain resource are of the same resource type, for example, all are uplink time slots, and all time units corresponding to the second frequency domain resource are not of the same resource type; or, (not shown in the figure (1) All time units corresponding to the first frequency domain resource are not of the same resource type, and all time units corresponding to the second frequency domain resource are of the same resource type.
  • the second device may send the first time-frequency resource configuration information and the second time-frequency resource configuration information to the first device.
  • the first time-frequency resource configuration information is used to configure the first frequency domain resources and the time domain resources corresponding to the first frequency domain resources;
  • the second time-frequency resource configuration information is used to configure the second frequency domain resources and/or the second frequency domain resources.
  • the first device and/or the second device may determine the second frequency-domain resource according to the time-domain resource corresponding to the first frequency-domain resource For the corresponding time domain resource, for example, the first device and/or the second device determines that the time domain resource corresponding to the first frequency domain resource and the time domain resource corresponding to the second frequency domain resource are the same time domain resource.
  • the second time-frequency resource configuration information may include frequency-domain interval information or configuration information of the second frequency-domain resource.
  • the configuration information of the second frequency domain resource may directly indicate the second frequency domain resource, and the frequency domain interval information is used to indicate the frequency domain interval between the second frequency domain resource and the first frequency domain resource.
  • the first device and/or the second device may determine the second frequency-domain resource according to the first frequency-domain resource and the frequency-domain interval information.
  • At least one of the first time-frequency configuration information and the second time-frequency configuration information may include the configuration information of any example in the embodiment shown in FIG. 9 .
  • the capability information is used to indicate the maximum frequency domain interval between the first frequency domain resource and the second frequency domain resource.
  • the frequency domain interval between the first frequency domain resource and the second frequency domain resource can be constrained by the maximum frequency domain interval, for example, the frequency domain interval between the first frequency domain resource and the second frequency domain resource is constrained to be less than or equal to the maximum frequency domain spacing.
  • the constraint force of the capability information on the frequency domain interval between the first frequency domain resource and the second frequency domain resource may be implemented by the second device, for example, the second device determines the first frequency domain resource based on the capability information reported by the first device.
  • the frequency domain interval between the first frequency domain resource and the second frequency domain resource is such that the frequency domain interval is less than or equal to the maximum frequency domain interval indicated by the capability information, and the frequency domain interval is sent to the first device through configuration information, so that The first device determines first frequency domain resources and second frequency domain resources used for communication.
  • the capability information in S610 may also include one or more kinds of capability information exemplified in S430 in FIG. 9 .
  • Fig. 12 is a schematic diagram of an inventory process provided by the embodiment of the present application.
  • the communication method provided by the embodiment of the present application will be described below by taking the first device as a tag and the second device as a reader as an example.
  • the following inventory process is suitable for counting the quantity of any deployed or tagged items. For example, by deploying tags on cars, readers can count the number of vehicles on a certain road section; carrying tags on clothes, shoes, and accessories in inventory can count the number of various items in inventory; on cattle and sheep Carrying tags, the number of cattle or sheep in the pasture area can be counted.
  • the reader can read the electronic product code (EPC) of the tag during the inventory operation
  • the reader sends a select command to the tag
  • the reader sends a query (query) command to the tag
  • the tag generates a random number
  • the reader sends a repeat query (queryrep) command to the tag;
  • the tag sends a feedback identifier (such as a 16-bit random number RN16) to the reader;
  • a feedback identifier such as a 16-bit random number RN16
  • the reader sends a response command to the tag (such as an acknowledgment character (acknowledge character, ACK) command or a negative acknowledgment (negative acknowledgment, NAK) command);
  • a response command such as an acknowledgment character (acknowledge character, ACK) command or a negative acknowledgment (negative acknowledgment, NAK) command
  • the tag sends the EPC to the reader.
  • the reader can use one or more Select commands to select a specific tag group.
  • the select command can be used multiple times in a row, and only the tags that meet the multiple Select commands respond. It can implement operations similar to hash or bloom filtering, reduce the collision probability, and improve the efficiency of inventorying tags.
  • the query command starts a round of inventory cycle, and initializes the downlink data rate, uplink data rate and encoding method, session (session), Parameters such as target and Q value.
  • the tags that meet Sel and target generate random numbers, where Sel is the name of the field in the query command, and the random numbers are placed in the slot counter, and the status of the tags is changed from ready (ready) to arbitration (arbitrate) state.
  • the tag When the value of the slot counter is 0, the tag returns a 16-bit random number RN16, and the tag status changes from arbitrate to reply; otherwise, it remains silent and maintains the arbitrate status.
  • the tag can avoid the problem of data collision (or data collision) caused by multiple tags sending feedback identifiers to the reader at the same time.
  • the reader executes S740 until the RN16 sent by the tag is received.
  • the RN16 is only an example, and the tag can also send any feedback identifier to the reader, so that the reader can recognize the identifier.
  • the queryrep command is used to decrement the time slot counter of a label, and the time slot counter of each selected label is -1. If the value of the slot counter is 0, the Tag returns RN16; otherwise it remains silent.
  • S760 What needs to be explained for S760 is that if the reader successfully receives RN16, it will return an ACK command containing the RN16; if the reader fails to receive RN16, it can return a NAK command. At this time, the tag enters the Arbitrate state, and the inventory flag does not change .
  • the tag After the tag receives the ACK command, it returns the EPC information; after the reader receives the EPC, it completes the inventory of the tag. After returning to the EPC, the tag is in the acknowledged state, and will return to the ready state after receiving the query, query adjust, and queryrep commands, and the inventory flag will be flipped to avoid repeated responses during this inventory cycle.
  • EPC is the electronic product code, which is used to identify the attached item.
  • At least one of the select command, query command, queryrep command, queryadjust command, and response command may carry configuration information
  • the configuration information may include any one or more of the aforementioned Configuration information
  • configuration information may include the first transmission duration, the second transmission duration, the first interval duration, the second interval duration, frequency domain interval information, first time-frequency resource configuration information, and second time-frequency resource configuration information. At least one of the configuration information is explained as described above.
  • the above configuration information may also include enabling information of precoding transformation.
  • the reader may indicate to the tag whether to enable (enable) precoding transformation (transform precoder).
  • Coding transformation the waveform of data transmission is Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) based on Fourier transform extension. If precoding transformation is disabled, the waveform of data transmission is cyclic prefix OFDM (CP-OFDM).
  • DFT-S-OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM cyclic prefix OFDM
  • the select command in S710 above is the signaling for the first transmission between the reader and the tag, and the time domain resources used by the select command during transmission may not have resources corresponding to the first interval duration and/or the second interval duration , that is, the reader tries to send the select command within the continuous downlink time unit as much as possible, or the reader sends the select command according to a preset pattern, for example, after the select command transmits the first transmission time, there is an interval of a first interval,
  • the first transmission duration and the first interval duration may be agreed values, and both the reader and the tag may know the agreed values.
  • Fig. 13 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 800 may include: a processing unit 810 and a transceiver unit 820 .
  • the communication apparatus 800 may correspond to the first device in the above method embodiment, for example, may be the first device, or a component configured in the first device (eg, a chip or a chip system, etc.).
  • the communication apparatus 800 may correspond to the first device in the method 400, method 500, or method 600 according to the embodiment of the present application, and the communication apparatus 800 may include a device for executing the method 400 in FIG. 6 and the method in FIG. 9 .
  • each unit in the communication device 800 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding flow of the method 400 in FIG. 6 , the method 500 in FIG. 9 , or the method 600 in FIG. 10 .
  • the processing unit 810 can be used to determine the time domain resource starting from the starting position of the communication, and the time domain resource includes the first time domain resource and the second time domain resource.
  • domain resource, the first time domain resource and the second time domain resource are separated by a first interval length, the time domain length of the first time domain resource is related to the first transmission duration, and the time domain length of the second time domain resource The length is the second transmission duration; the transceiver unit 820 can be used to communicate with the second device in the time domain resource.
  • the first transmission duration is the same as the second transmission duration.
  • the first transmission duration and the second transmission duration are different.
  • the time-domain resource further includes a third time-domain resource, the second time-domain resource is separated from the third time-domain resource by a second interval, and the time-domain length of the third time-domain resource is the same as The first transmission duration is related, and the second interval duration is different from the first interval duration.
  • the starting time domain position of the first time domain resource is an offset position or a starting position of the communication, and the offset position is determined by the offset and the starting position of the communication.
  • the offset location is equal to the sum of the offset and the starting location of the communication.
  • the transceiving unit 820 is further configured to: receive configuration information sent by the second device, where the configuration information includes the first transmission duration and/or the first interval duration.
  • the configuration information further includes: the second transmission duration.
  • the configuration information further includes a second interval duration, which is different from the first interval duration.
  • the configuration information further includes an offset, and the offset is used to determine the starting time domain position of the first time domain resource.
  • both the first time domain resource and the second time domain resource include at least one of uplink time slot, uplink symbol, flexible time slot, and flexible symbol
  • the first time domain resource and the second time domain resource include at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols
  • both the first time domain resources and the second time domain resources include downlink time slots, At least one of downlink symbols, flexible time slots, and flexible symbols
  • the resources spaced between the first time domain resource and the second time domain resource include uplink time slots, uplink symbols, flexible time slots, and flexible symbols at least one.
  • the transceiving unit 820 is specifically configured to: receive the downlink data sent by the second device at the time domain resource and the first frequency domain resource; The device sends uplink data in a reflective communication manner; wherein there is a frequency domain interval between the first frequency domain resource and the second frequency domain resource.
  • the time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols on the first frequency domain resources, and the time domain resources on the second frequency domain resources Including at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols; or, the time domain resource includes downlink time slots, downlink symbols, flexible time slots, and flexible symbols on the first frequency domain resource At least one, the time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols on the second frequency domain resources.
  • the transceiving unit 820 is further configured to: receive frequency domain interval information sent by the second device, where the frequency domain interval information is used to indicate the distance between the first frequency domain resource and the second frequency domain resource frequency domain spacing.
  • the processing unit 810 is further configured to: when the preset timer expires, determine that the configuration information is invalid; or, when the preset timer does not expire, determine that the configuration information is valid.
  • the transceiving unit 820 is further configured to: send capability information to the second device, where the capability information is used to indicate the maximum frequency between the first frequency domain resource and the second frequency domain resource supported by the first device. frequency domain spacing.
  • the transceiver unit 820 can be used to execute at least one of steps 430, 440, 420-1, and 420-1 in the method 500, and the processing unit 810 can be used to execute the method.
  • Step 410 in 500; when the device 800 is used to execute the method 600 in FIG. It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the communication apparatus 800 may correspond to the second device in the above method embodiment, for example, may be the second device, or a component configured in the second device (eg, a chip or a chip system, etc.).
  • the communication apparatus 800 may correspond to the second device in the method 400, method 500, or method 600 according to the embodiment of the present application, and the communication apparatus 800 may include a method for executing the method 400 in FIG. The units of the method executed by the second device in the method 500 of FIG. 10 or the method 600 in FIG. 10 . Moreover, each unit in the communication device 800 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding flow of the method 400 in FIG. 6 , the method 500 in FIG. 9 , or the method 600 in FIG. 10 .
  • the processing unit 810 can be used to determine the time domain resource starting from the starting position of the communication, and the time domain resource includes the first time domain resource and the second time domain resource.
  • domain resource, the first time domain resource and the second time domain resource are separated by a first interval length, the time domain length of the first time domain resource is related to the first transmission duration, and the time domain length of the second time domain resource The length is the second transmission duration; the transceiver unit 820 can be used to communicate with the first device in the time domain resource.
  • the first transmission duration is the same as the second transmission duration.
  • the first transmission duration and the second transmission duration are different.
  • the time-domain resource further includes a third time-domain resource, the second time-domain resource is separated from the third time-domain resource by a second interval, and the time-domain length of the third time-domain resource is the same as The first transmission duration is related, and the second interval duration is different from the first interval duration.
  • the starting time domain position of the first time domain resource is an offset position or a starting position of the communication, and the offset position is determined by the offset and the starting position of the communication.
  • the offset location is equal to the sum of the offset and the starting location of the communication.
  • the transceiving unit 820 is further configured to: send configuration information to the first device, where the configuration information includes the first transmission duration and/or the first interval duration.
  • the configuration information further includes: the second transmission duration.
  • the configuration information further includes a second interval duration, which is different from the first interval duration.
  • the configuration information further includes an offset, and the offset is used to determine the starting time domain position of the first time domain resource.
  • both the first time domain resource and the second time domain resource include at least one of uplink time slot, uplink symbol, flexible time slot, and flexible symbol
  • the first time domain resource and the second time domain resource include at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols
  • both the first time domain resources and the second time domain resources include downlink time slots, At least one of downlink symbols, flexible time slots, and flexible symbols
  • the resources spaced between the first time domain resource and the second time domain resource include uplink time slots, uplink symbols, flexible time slots, and flexible symbols at least one.
  • the transceiving unit 820 is specifically configured to: send downlink data to the first device in the time domain resource and the first frequency domain resource; receive the first data in the time domain resource and the second frequency domain resource The uplink data sent by the device in a reflective communication manner; wherein there is a frequency domain interval between the first frequency domain resource and the second frequency domain resource.
  • the time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols on the first frequency domain resources, and the time domain resources on the second frequency domain resources Including at least one of downlink time slots, downlink symbols, flexible time slots, and flexible symbols; or, the time domain resource includes downlink time slots, downlink symbols, flexible time slots, and flexible symbols on the first frequency domain resource At least one, the time domain resources include at least one of uplink time slots, uplink symbols, flexible time slots, and flexible symbols on the second frequency domain resources.
  • the transceiving unit 820 is further configured to: send frequency domain interval information to the first device, where the frequency domain interval information is used to indicate the frequency between the first frequency domain resource and the second frequency domain resource. domain interval.
  • the transceiving unit 820 is further configured to: receive capability information sent by the first device, where the capability information is used to indicate the relationship between the first frequency domain resource and the second frequency domain resource supported by the first device. Maximum frequency domain separation.
  • the transceiver unit 820 can be used to perform at least one of steps 430, 440, 420-1, and 420-1 in the method 500; when the communication device 800 is used to When executing the method 600 in FIG. 10 , the transceiver unit 820 may be configured to execute at least one of steps 610 , 620 , 630 , and 640 in the method 600 . It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • the transceiver unit 820 in the communication device 800 can be implemented by a transceiver, for example, it can correspond to the communication device 900 shown in FIG. 11
  • the transceiver 920 in the communication device 800 may be implemented by at least one processor, for example, it may correspond to the processor 910 in the communication device 900 shown in FIG. 11 .
  • the transceiver unit 820 in the communication device 800 can be implemented through an input/output interface, a circuit, etc.
  • the communication The processing unit 810 in the device 800 may be implemented by a processor, a microprocessor, or an integrated circuit integrated on the chip or the chip system.
  • FIG. 14 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 900 may include: a processor 910 , a transceiver 920 and a memory 930 .
  • the processor 910, the transceiver 920 and the memory 930 communicate with each other through an internal connection path, the memory 930 is used to store instructions, and the processor 910 is used to execute the instructions stored in the memory 930 to control the transceiver 920 to send signals and /or to receive a signal.
  • the communication apparatus 900 may correspond to the first device or the second device in the above method embodiments, and may be used to execute various steps and/or processes performed by the first device or the second device in the above method embodiments.
  • the memory 930 may include read-only memory and random-access memory, and provides instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 930 may be an independent device, or may be integrated in the processor 910 .
  • the processor 910 may be used to execute instructions stored in the memory 930, and when the processor 910 executes the instructions stored in the memory, the processor 910 is used to execute the above-mentioned method embodiments corresponding to the first device or the second device individual steps and/or processes.
  • the communications apparatus 900 is the first device in the foregoing embodiments.
  • the communications apparatus 900 is the second device in the foregoing embodiments.
  • the transceiver 920 may include a transmitter and a receiver.
  • the transceiver 920 may further include antennas, and the number of antennas may be one or more.
  • the processor 910, the memory 930 and the transceiver 920 may be devices integrated on different chips.
  • the processor 910 and the memory 930 may be integrated in a baseband chip, and the transceiver 920 may be integrated in a radio frequency chip.
  • the processor 910, the memory 930 and the transceiver 920 may also be devices integrated on the same chip. This application is not limited to this.
  • the communication apparatus 900 is a component configured in the first device, such as a chip, a chip system, and the like.
  • the communication apparatus 900 is a component configured in the second device, such as a chip, a chip system, and the like.
  • the transceiver 920 may also be a communication interface, such as an input/output interface, a circuit, and the like.
  • the transceiver 920, the processor 910, and the memory 920 may be integrated into the same chip, such as a baseband chip.
  • the present application also provides a processing device, including at least one processor, and the at least one processor is used to execute the computer program stored in the memory, so that the processing device executes the method performed by the test equipment in the above method embodiment, the first A method performed by a device or a method performed by a second device.
  • the embodiment of the present application also provides a processing device, including a processor and an input/output interface.
  • the input-output interface is coupled with the processor.
  • the input and output interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the processor is configured to execute a computer program, so that the processing device executes the method executed by the first device or the method executed by the second device in the above method embodiments.
  • the embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method executed by the first device or the method executed by the second device in the method embodiment above. method.
  • the above processing device may be one or more chips.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute the program shown in FIG. 6 , FIG. 9 or The method executed by the first device in the embodiment shown in FIG. 10 , or causing the computer to execute the method executed by the second device in the embodiment shown in FIG. 6 , FIG. 9 or FIG. 10 .
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores program code, and when the program code is run on the computer, the computer is made to execute the steps shown in Figure 6 and Figure 6. 9 or the method executed by the first device in the embodiment shown in FIG. 10 , or causing the computer to execute the method executed by the second device in the embodiment shown in FIG. 6 , FIG. 9 or FIG. 10 .
  • the present application further provides a communication system, where the communication system may include the foregoing first device and the second device.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、装置、设备以及存储介质。该方法包括:第一设备确定从通信的起始位置开始的时域资源,该时域资源包括第一时域资源和第二时域资源,该第一时域资源和该第二时域资源之间间隔第一间隔时长,该第一时域资源的时域长度与第一传输时长相关,该第二时域资源的时域长度为第二传输时长,该第一设备与第二设备在该时域资源进行通信。实现了第一设备和第二设备在各通信系统(例如NR通信系统)中进行通信。

Description

通信方法、装置、设备以及存储介质
本申请要求于2021年10月29日提交中国专利局、申请号为202111276280.5、申请名称为“通信方法、装置、设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、设备以及存储介质。
背景技术
随着机器型通信(machine-type communication,MTC)和物联(internet of things,IoT)通信的广泛应用。通过在有些通信系统中,如第五代移动通信系统(5th generation wireless system,5G)中,支持射频识别(radio frequency identification,RFID)和唤醒接收机/唤醒无线电(wake-up receiver or wake-up radio,WUR)等技术,来降低IoT应用成本和功耗的需求变得越来越强烈。为了满足这种需求,如何将RFID、WUR技术应用于各通信系统是当前亟待解决的问题。
发明内容
本申请实施例提供的一种通信方法、装置、设备以及存储介质,实现了RFID、WUR或其类似的技术与各通信系统的融合。
第一方面,本申请实施例提供一种通信方法,该方法包括:第一设备确定从通信的起始位置开始的时域资源,该时域资源包括第一时域资源和第二时域资源,该第一时域资源和该第二时域资源之间间隔第一间隔时长,该第一时域资源的时域长度与第一传输时长相关,该第二时域资源的时域长度为第二传输时长;该第一设备与第二设备在该时域资源进行通信。
通过第一方面提供的通信方法,第一设备确定从通信的起始位置开始的时域资源,并在该时域资源上与第二设备进行通信,使第一设备和第二设备能够在各通信系统(例如NR通信系统)中进行通信,也即实现了IoT与其他通信系统的融合。
进一步的,第一设备确定的时域资源包括第一时域资源和第二时域资源,且第一时域资源和第二时域资源之间间隔第一间隔时长,使得第一设备不需要维护定时信息(例如帧号、时隙号等),即可确定能够通信的时间段和不能通信的时间段,降低了第一设备的复杂度,进而降低第一设备的成本。
在一种可能的实施方式中,该第一传输时长和该第二传输时长相同。
通过该实施方式提供的通信方法,第一设备和第二设备在时域长度相同的多个存在时域间隔的时域资源上进行通信,可以适用于时隙配置为单周期的通信系统。
在一种可能的实施方式中,该第一传输时长和该第二传输时长不同。
在一种可能的实施方式中,该时域资源还包括第三时域资源,该第二时域资源和 该第三时域资源之间间隔第二间隔时长,该第三时域资源的时域长度与该第一传输时长相关,该第二间隔时长和该第一间隔时长不同。
通过该实施方式提供的通信方法,第一设备和第二设备在时域长度为第一传输时长的第一时域资源上和时域长度为第二传输时长的第二时域资源上进行通信,可以适用于时隙配置为双周期的通信系统。
在一种可能的实施方式中,第一时域资源的起始时域位置为偏移位置或该通信的起始位置,该偏移位置由该偏移量和该通信的起始位置确定。
通过该实施方式提供的通信方法,使得第一设备和第二设备之间进行传输时,可以不局限于从通信周期(例如TDD单周期或TDD双周期)的边界开始传输,提高了资源调度的灵活性。
在一种可能的实施方式中,该偏移位置等于该偏移量与该通信的起始位置之和。
在一种可能的实施方式中,该方法还包括:该第一设备接收该第二设备发送的配置信息,该配置信息包括该第一传输时长和/或该第一间隔时长。
通过该实施方式提供的通信方法,第一设备可以结合该配置信息确定可以用于传输的时域资源和不用于传输的时域资源,不需要时刻维护定时信息(如帧号、时隙号等),降低了第一设备的复杂度。
在一种可能的实施方式中,该配置信息还包括:该第二传输时长。
通过该实施方式提供的通信方法,使第一设备和第二设备之间的传输更好的适用于时隙配置为双周期的通信系统。
在一种可能的实施方式中,该配置信息还包括第二间隔时长,该第二间隔时长和该第一间隔时长不同。
通过该实施方式提供的通信方法,在第一传输时长和第二传输时长不同的情况下,第一间隔时长和第二间隔时长不同,使得第一传输时长和第一间隔时长与双周期的第一周期相同,第二传输时长和第二间隔时长与双周期的第二周期相同,适用于时隙配置为双周期的通信系统。
在一种可能的实施方式中,该配置信息还包括偏移量,所偏移量用于确定该第一时域资源的起始时域位置。
通过该实施方式提供的通信方法,第一设备基于配置信息中的偏移量可以快速定位第一时域资源的起始位置,在确保资源调度灵活性的基础上,提高了确定时域资源的处理效率。
在一种可能的实施方式中,该第一时域资源和该第二时域资源均包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,且该第一时域资源和该第二时域资源之间间隔的资源包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该第一时域资源和该第二时域资源均包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,且该第一时域资源和该第二时域资源之间间隔的资源包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
通过该实施方式提供的通信方法,用于第一设备与第二设备通信的时域资源与通信系统中的时隙配置相应,降低了上下行传输的干扰。
在一种可能的实施方式中,该第一设备与第二设备在该时域资源进行通信,包括: 该第一设备在该时域资源和第一频域资源接收该第二设备发送的下行数据;该第一设备在该时域资源和第二频域资源向该第二设备以反射通信的方式发送上行数据;其中,该第一频域资源和该第二频域资源存在频域间隔。
通过该实施方式提供的通信方法,可以避免第一设备在相同的频率上既发送上行数据又接收下行数据,提高了传输的可靠性。
在一种可能的实施方式中,该时域资源在该第一频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,该时域资源在该第二频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该时域资源在该第一频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,该时域资源在该第二频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
通过该实施方式提供的通信方法,可以避免第一设备和第二设备之间的传输与通信系统(例如NR系统)的数据传输不同向带来的干扰,提高了传输的可靠性。
在一种可能的实施方式中,该方法还包括:该第一设备接收该第二设备发送的频域间隔信息,该频域间隔信息用于指示该第一频域资源和该第二频域资源之间的频域间隔。
通过该实施方式提供的通信方法,实现第一设备和第二设备之间对频域间隔的同步,以使第一设备和第二设备能够基于相同的频域间隔,确定用于通信的第一频域资源或第二频域资源。
在一种可能的实施方式中,该方法还包括:在预设定时器超时时,该第一设备确定该配置信息无效;或者,在预设定时器未超时时,该第一设备确定该配置信息有效。
通过该实施方式提供的通信方法,实现对配置信息有效性的校验。
在一种可能的实施方式中,该方法还包括:该第一设备向该第二设备发送能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
通过该实施方式提供的通信方法,第二设备基于该最大频域间隔确定第一频域资源和第二频域资源之间的频域间隔,避免向第一设备配置的频域间隔超出第一设备的能力范围。
第二方面,本申请实施例提供一种通信方法,该方法包括:第二设备确定从通信的起始位置开始的时域资源,该时域资源包括第一时域资源和第二时域资源,该第一时域资源和该第二时域资源之间间隔第一间隔时长,该第一时域资源的时域长度与第一传输时长相关,该第二时域资源的时域长度为第二传输时长;该第二设备与第一设备在该时域资源进行通信。
在一种可能的实施方式中,该第一传输时长和该第二传输时长相同。
在一种可能的实施方式中,该第一传输时长和该第二传输时长不同。
在一种可能的实施方式中,该时域资源还包括第三时域资源,该第二时域资源和该第三时域资源之间间隔第二间隔时长,该第三时域资源的时域长度与该第一传输时长相关,该第二间隔时长和该第一间隔时长不同。
在一种可能的实施方式中,第一时域资源的起始时域位置为偏移位置或该通信的起始位置,该偏移位置由该偏移量和该通信的起始位置确定。
在一种可能的实施方式中,该偏移位置等于该偏移量与该通信的起始位置之和。
在一种可能的实施方式中,该方法还包括:该第二设备向该第一设备发送配置信息,该配置信息包括该第一传输时长和/或该第一间隔时长。
在一种可能的实施方式中,该配置信息还包括:该第二传输时长。
在一种可能的实施方式中,该配置信息还包括第二间隔时长,该第二间隔时长和该第一间隔时长不同。
在一种可能的实施方式中,该配置信息还包括偏移量,所偏移量用于确定该第一时域资源的起始时域位置。
在一种可能的实施方式中,该第一时域资源和该第二时域资源均包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,且该第一时域资源和该第二时域资源之间间隔的资源包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该第一时域资源和该第二时域资源均包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,且该第一时域资源和该第二时域资源之间间隔的资源包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
在一种可能的实施方式中,该第二设备与第一设备在该时域资源进行通信,包括:该第二设备在该时域资源和第一频域资源向该第一设备发送的下行数据;该第二设备在该时域资源和第二频域资源接收该第一设备以反射通信的方式发送的上行数据;其中,该第一频域资源和该第二频域资源存在频域间隔。
在一种可能的实施方式中,该时域资源在该第一频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,该时域资源在该第二频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该时域资源在该第一频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,该时域资源在该第二频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
在一种可能的实施方式中,该方法还包括:在预设定时器超时时,该第二设备确定该配置信息无效;或者,在预设定时器未超时时,该第二设备确定该配置信息有效。
在一种可能的实施方式中,该方法还包括:该第二设备向该第一设备发送频域间隔信息,该频域间隔信息用于指示该第一频域资源和该第二频域资源之间的频域间隔。
在一种可能的实施方式中,该方法还包括:该第二设备接收该第一设备发送的能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
上述第二方面以及上述第二方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第三方面,本申请实施例提供一种通信方法,包括:第一设备接收第二设备发送的第一时频资源配置信息和第二时频资源配置信息;其中,该第一时频资源配置信息用于配置第一频域资源和该第一频域资源对应的时域资源;该第二时频资源配置信息用于配置第二频域资源和/或该第二频域资源对应的时域资源;该第一设备和该第二设备,在该第一频域资源及该第一频域资源对应的时域资源,和/或,该第二频域资源及该第二频域资源对应的时域资源上,以反射通信的方式进行通信;该第一频域资源对 应的时域资源和该第二频域资源对应的时域资源均包括至少一个第一时间单元,该第一时间单元在该第一频域资源对应的时域资源上为第一资源类型,该第一时间单元在该第二频域资源对应的时域资源上为第二资源类型;该第一资源类型下的该第一时间单元包括上行时隙、灵活时隙、上行符号或灵活符号,该第二资源类型下的该第一时间单元包括下行时隙、灵活时隙、下行符号或灵活符号。
在一种可能的实施方式中,该第一频域资源和该第二频域资源分别对应的第一比例相同,该第一比例为相同时长内该第一资源类型对应的时间单元的个数与该第二资源类型对应的时间单元的个数的比;或者,该第一频域资源和该第二频域资源分别对应的第一比例互为倒数;或者,该第一频域资源对应的全部时间单元均为该第一资源类型,该第二频域资源对应的全部时间单元均为该第二资源类型;或者,该第一频域资源对应的全部时间单元为同一资源类型,该第二频域资源对应的全部时间单元非同一资源类型;或者,该第一频域资源对应的全部时间单元非同一资源类型,该第二频域资源对应的全部时间单元为同一资源类型。
在一种可能的实施方式中,在该第二时频资源配置信息用于配置第二频域资源时,该方法还包括:该第一设备根据该第一频域资源对应的时域资源确定该第二频域资源对应的时域资源。
在一种可能的实施方式中,该第二时频资源配置信息包括频域间隔信息或第二频域资源的配置信息,该频域间隔信息用于指示该第二频域资源与该第一频域资源之间的频域间隔。
在一种可能的实施方式中,该方法还包括:该第一设备向该第二设备发送能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
在一种可能的实施方式中,任一时频资源配置信息包括第一传输时长和/或第一间隔时长,该时频资源配置信息配置的时域资源包括第一时域资源和第二时域资源,该第一时域资源和该第二时域资源之间间隔该第一间隔时长,该第一时域资源的时域长度和该第二时域资源的时域长度均为该第一传输时长。
在一种可能的实施方式中,该时频资源配置信息还包括第二传输时长,该第二时域资源的时域长度为该第二传输时长。
在一种可能的实施方式中,该时频资源配置信息还包括第二间隔时长,该时频资源配置信息配置的时域资源还包括第三时域资源,该第二时域资源和该第三时域资源之间间隔该第二间隔时长。
在一种可能的实施方式中,该时频资源配置信息还包括偏移量,该偏移量用于确定该第一时域资源的起始时域位置。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信方法,包括:第二设备向第一设备发送第一时频资源配置信息和第二时频资源配置信息;其中,该第一时频资源配置信息用于配置第一频域资源和该第一频域资源对应的时域资源;该第二时频资源配置信息用于 配置第二频域资源和/或该第二频域资源对应的时域资源;该第二设备和该第一设备,在该第一频域资源及该第一频域资源对应的时域资源,和/或,该第二频域资源及该第二频域资源对应的时域资源上,以反射通信的方式进行通信;该第一频域资源对应的时域资源和该第二频域资源对应的时域资源均包括至少一个第一时间单元,该第一时间单元在该第一频域资源对应的时域资源上为第一资源类型,该第一时间单元在该第二频域资源对应的时域资源上为第二资源类型;该第一资源类型下的该第一时间单元包括上行时隙、灵活时隙、上行符号或灵活符号,该第二资源类型下的该第一时间单元包括下行时隙、灵活时隙、下行符号或灵活符号。
在一种可能的实施方式中,该第一频域资源和该第二频域资源分别对应的第一比例相同,该第一比例为相同时长内该第一资源类型对应的时间单元的个数与该第二资源类型对应的时间单元的个数的比;或者,该第一频域资源和该第二频域资源分别对应的第一比例互为倒数;或者,该第一频域资源对应的全部时间单元均为该第一资源类型,该第二频域资源对应的全部时间单元均为该第二资源类型;或者,该第一频域资源对应的全部时间单元为同一资源类型,该第二频域资源对应的全部时间单元非同一资源类型;或者,该第一频域资源对应的全部时间单元非同一资源类型,该第二频域资源对应的全部时间单元为同一资源类型。
在一种可能的实施方式中,在该第二时频资源配置信息用于配置第二频域资源时,该方法还包括:该第二设备根据该第一频域资源对应的时域资源确定该第二频域资源对应的时域资源。
在一种可能的实施方式中,该第二时频资源配置信息包括频域间隔信息或第二频域资源的配置信息,该频域间隔信息用于指示该第二频域资源与该第一频域资源之间的频域间隔。
在一种可能的实施方式中,该方法还包括:该第二设备接收该第一设备发送能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
在一种可能的实施方式中,任一时频资源配置信息包括第一传输时长和/或第一间隔时长,该时频资源配置信息配置的时域资源包括第一时域资源和第二时域资源,该第一时域资源和该第二时域资源之间间隔该第一间隔时长,该第一时域资源的时域长度和该第二时域资源的时域长度均为该第一传输时长。
在一种可能的实施方式中,该时频资源配置信息还包括第二传输时长,该第二时域资源的时域长度为该第二传输时长。
在一种可能的实施方式中,该时频资源配置信息还包括第二间隔时长,该时频资源配置信息配置的时域资源还包括第三时域资源,该第二时域资源和该第三时域资源之间间隔该第二间隔时长。
在一种可能的实施方式中,该时频资源配置信息还包括偏移量,该移量用于确定该第一时域资源的起始时域位置。
上述第四方面以及上述第四方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第五方面,本申请实施例提供一种通信方法,包括:第一设备向第二设备发送能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源的最大频域间隔;该第一设备在该第一频域资源接收该第二设备发送的下行数据;该第一设备在该第二频域资源向该第二设备以反射通信的方式发送上行数据;其中,该第一频域资源和该第二频域资源之间的频域间隔小于或者等于该最大频域间隔。
在一种可能的实施方式中,该方法还包括:该第一设备接收该第二设备发送的配置信息,该配置信息包括频域间隔信息,该频域间隔信息用于指示该第一频域资源和该第二频域资源时间的频域间隔。
上述第五方面以及上述第五方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第六方面,本申请实施例提供一种通信方法,包括:第二设备接收第一设备发送的能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源的最大频域间隔;该第二设备在该第一频域资源向该第一设备发送下行数据;该第二设备在该第二频域资源接收该第一设备以反射通信的方式发送的上行数据;其中,该第一频域资源和该第二频域资源之间的频域间隔小于或者等于该最大频域间隔。
在一种可能的实施方式中,该方法还包括:该第二设备向该第一设备发送配置信息,该配置信息包括频域间隔信息,该频域间隔信息用于指示该第一频域资源和该第二频域资源时间的频域间隔。
上述第六方面以及上述第六方面的各可能的实施方式所提供的通信方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第七方面,本申请实施例提供一种通信装置,包括:处理单元,用于确定从通信的起始位置开始的时域资源,该时域资源包括第一时域资源和第二时域资源,该第一时域资源和该第二时域资源之间间隔第一间隔时长,该第一时域资源的时域长度与第一传输时长相关,该第二时域资源的时域长度为第二传输时长;收发单元,用于与第二设备在该时域资源进行通信。
在一种可能的实施方式中,该第一传输时长和该第二传输时长相同。
在一种可能的实施方式中,该第一传输时长和该第二传输时长不同。
在一种可能的实施方式中,该时域资源还包括第三时域资源,该第二时域资源和该第三时域资源之间间隔第二间隔时长,该第三时域资源的时域长度与该第一传输时长相关,该第二间隔时长和该第一间隔时长不同。
在一种可能的实施方式中,第一时域资源的起始时域位置为偏移位置或该通信的起始位置,该偏移位置由该偏移量和该通信的起始位置确定。
在一种可能的实施方式中,该偏移位置等于该偏移量与该通信的起始位置之和。
在一种可能的实施方式中,该收发单元还用于:接收该第二设备发送的配置信息,该配置信息包括该第一传输时长和/或该第一间隔时长。
在一种可能的实施方式中,该配置信息还包括:该第二传输时长。
在一种可能的实施方式中,该配置信息还包括第二间隔时长,该第二间隔时长和 该第一间隔时长不同。
在一种可能的实施方式中,该配置信息还包括偏移量,所偏移量用于确定该第一时域资源的起始时域位置。
在一种可能的实施方式中,该第一时域资源和该第二时域资源均包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,且该第一时域资源和该第二时域资源之间间隔的资源包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该第一时域资源和该第二时域资源均包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,且该第一时域资源和该第二时域资源之间间隔的资源包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
在一种可能的实施方式中,该收发单元具体用于:在该时域资源和第一频域资源接收该第二设备发送的下行数据;在该时域资源和第二频域资源向该第二设备以反射通信的方式发送上行数据;其中,该第一频域资源和该第二频域资源存在频域间隔。
在一种可能的实施方式中,该时域资源在该第一频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,该时域资源在该第二频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该时域资源在该第一频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,该时域资源在该第二频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
在一种可能的实施方式中,该收发单元还用于:接收该第二设备发送的频域间隔信息,该频域间隔信息用于指示该第一频域资源和该第二频域资源之间的频域间隔。
在一种可能的实施方式中,该处理单元还用于:在预设定时器超时时,确定该配置信息无效;或者,在预设定时器未超时时,确定该配置信息有效。
在一种可能的实施方式中,该收发单元还用于:向该第二设备发送能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
上述第七方面以及上述第七方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第八方面,本申请实施例提供一种通信装置,包括:处理单元,用于确定从通信的起始位置开始的时域资源,该时域资源包括第一时域资源和第二时域资源,该第一时域资源和该第二时域资源之间间隔第一间隔时长,该第一时域资源的时域长度与第一传输时长相关,该第二时域资源的时域长度为第二传输时长;收发单元,用于与第一设备在该时域资源进行通信。
在一种可能的实施方式中,该第一传输时长和该第二传输时长相同。
在一种可能的实施方式中,该第一传输时长和该第二传输时长不同。
在一种可能的实施方式中,该时域资源还包括第三时域资源,该第二时域资源和该第三时域资源之间间隔第二间隔时长,该第三时域资源的时域长度与该第一传输时长相关,该第二间隔时长和该第一间隔时长不同。
在一种可能的实施方式中,第一时域资源的起始时域位置为偏移位置或该通信的起始位置,该偏移位置由该偏移量和该通信的起始位置确定。
在一种可能的实施方式中,该偏移位置等于该偏移量与该通信的起始位置之和。
在一种可能的实施方式中,该收发单元还用于:向该第一设备发送配置信息,该配置信息包括该第一传输时长和/或该第一间隔时长。
在一种可能的实施方式中,该配置信息还包括:该第二传输时长。
在一种可能的实施方式中,该配置信息还包括第二间隔时长,该第二间隔时长和该第一间隔时长不同。
在一种可能的实施方式中,该配置信息还包括偏移量,所偏移量用于确定该第一时域资源的起始时域位置。
在一种可能的实施方式中,该第一时域资源和该第二时域资源均包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,且该第一时域资源和该第二时域资源之间间隔的资源包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该第一时域资源和该第二时域资源均包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,且该第一时域资源和该第二时域资源之间间隔的资源包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
在一种可能的实施方式中,该收发单元具体用于:在该时域资源和第一频域资源向该第一设备发送的下行数据;在该时域资源和第二频域资源接收该第一设备以反射通信的方式发送的上行数据;其中,该第一频域资源和该第二频域资源存在频域间隔。
在一种可能的实施方式中,该时域资源在该第一频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,该时域资源在该第二频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该时域资源在该第一频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,该时域资源在该第二频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
在一种可能的实施方式中,该收发单元还用于:向该第一设备发送频域间隔信息,该频域间隔信息用于指示该第一频域资源和该第二频域资源之间的频域间隔。
在一种可能的实施方式中,该收发单元还用于:接收该第一设备发送的能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
上述第八方面以及上述第八方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第九方面,本申请实施例提供一种通信装置,包括:收发单元,用于接收第二设备发送的第一时频资源配置信息和第二时频资源配置信息;其中,该第一时频资源配置信息用于配置第一频域资源和该第一频域资源对应的时域资源;该第二时频资源配置信息用于配置第二频域资源和/或该第二频域资源对应的时域资源;该收发单元和该第二设备,在该第一频域资源及该第一频域资源对应的时域资源,和/或,该第二频域资源及该第二频域资源对应的时域资源上,以反射通信的方式进行通信;该第一频域资源对应的时域资源和该第二频域资源对应的时域资源均包括至少一个第一时间单元,该第一时间单元在该第一频域资源对应的时域资源上为第一资源类型,该第一时间单元在该第二频域资源对应的时域资源上为第二资源类型;该第一资源类型下的该第一 时间单元包括上行时隙、灵活时隙、上行符号或灵活符号,该第二资源类型下的该第一时间单元包括下行时隙、灵活时隙、下行符号或灵活符号。
在一种可能的实施方式中,该第一频域资源和该第二频域资源分别对应的第一比例相同,该第一比例为相同时长内该第一资源类型对应的时间单元的个数与该第二资源类型对应的时间单元的个数的比;或者,该第一频域资源和该第二频域资源分别对应的第一比例互为倒数;或者,该第一频域资源对应的全部时间单元均为该第一资源类型,该第二频域资源对应的全部时间单元均为该第二资源类型;或者,该第一频域资源对应的全部时间单元为同一资源类型,该第二频域资源对应的全部时间单元非同一资源类型;或者,该第一频域资源对应的全部时间单元非同一资源类型,该第二频域资源对应的全部时间单元为同一资源类型。
在一种可能的实施方式中,该处理单元具体用于:根据该第一频域资源对应的时域资源确定该第二频域资源对应的时域资源。
在一种可能的实施方式中,该第二时频资源配置信息包括频域间隔信息或第二频域资源的配置信息,该频域间隔信息用于指示该第二频域资源与该第一频域资源之间的频域间隔。
在一种可能的实施方式中,该收发单元还用于:向该第二设备发送能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
在一种可能的实施方式中,任一时频资源配置信息包括第一传输时长和/或第一间隔时长,该时频资源配置信息配置的时域资源包括第一时域资源和第二时域资源,该第一时域资源和该第二时域资源之间间隔该第一间隔时长,该第一时域资源的时域长度和该第二时域资源的时域长度均为该第一传输时长。
在一种可能的实施方式中,该时频资源配置信息还包括第二传输时长,该第二时域资源的时域长度为该第二传输时长。
在一种可能的实施方式中,该时频资源配置信息还包括第二间隔时长,该时频资源配置信息配置的时域资源还包括第三时域资源,该第二时域资源和该第三时域资源之间间隔该第二间隔时长。
在一种可能的实施方式中,该时频资源配置信息还包括偏移量,该偏移量用于确定该第一时域资源的起始时域位置。
上述第九方面以及上述第九方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第十方面,本申请实施例提供一种通信装置,包括:收发单元,用于向第一设备发送第一时频资源配置信息和第二时频资源配置信息;其中,该第一时频资源配置信息用于配置第一频域资源和该第一频域资源对应的时域资源;该第二时频资源配置信息用于配置第二频域资源和/或该第二频域资源对应的时域资源;该收发单元还用于和该第一设备,在该第一频域资源及该第一频域资源对应的时域资源,和/或,该第二频域资源及该第二频域资源对应的时域资源上,以反射通信的方式进行通信;该第一频域资源对应的时域资源和该第二频域资源对应的时域资源均包括至少一个第一时间单 元,该第一时间单元在该第一频域资源对应的时域资源上为第一资源类型,该第一时间单元在该第二频域资源对应的时域资源上为第二资源类型;该第一资源类型下的该第一时间单元包括上行时隙、灵活时隙、上行符号或灵活符号,该第二资源类型下的该第一时间单元包括下行时隙、灵活时隙、下行符号或灵活符号。
在一种可能的实施方式中,该第一频域资源和该第二频域资源分别对应的第一比例相同,该第一比例为相同时长内该第一资源类型对应的时间单元的个数与该第二资源类型对应的时间单元的个数的比;或者,该第一频域资源和该第二频域资源分别对应的第一比例互为倒数;或者,该第一频域资源对应的全部时间单元均为该第一资源类型,该第二频域资源对应的全部时间单元均为该第二资源类型;或者,该第一频域资源对应的全部时间单元为同一资源类型,该第二频域资源对应的全部时间单元非同一资源类型;或者,该第一频域资源对应的全部时间单元非同一资源类型,该第二频域资源对应的全部时间单元为同一资源类型。
在一种可能的实施方式中,该处理单元具体用于:根据该第一频域资源对应的时域资源确定该第二频域资源对应的时域资源。
在一种可能的实施方式中,该第二时频资源配置信息包括频域间隔信息或第二频域资源的配置信息,该频域间隔信息用于指示该第二频域资源与该第一频域资源之间的频域间隔。
在一种可能的实施方式中,该收发单元还用于:接收该第一设备发送能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
在一种可能的实施方式中,任一时频资源配置信息包括第一传输时长和/或第一间隔时长,该时频资源配置信息配置的时域资源包括第一时域资源和第二时域资源,该第一时域资源和该第二时域资源之间间隔该第一间隔时长,该第一时域资源的时域长度和该第二时域资源的时域长度均为该第一传输时长。
在一种可能的实施方式中,该时频资源配置信息还包括第二传输时长,该第二时域资源的时域长度为该第二传输时长。
在一种可能的实施方式中,该时频资源配置信息还包括第二间隔时长,该时频资源配置信息配置的时域资源还包括第三时域资源,该第二时域资源和该第三时域资源之间间隔该第二间隔时长。
在一种可能的实施方式中,该时频资源配置信息还包括偏移量,该偏移量用于确定该第一时域资源的起始时域位置。
上述第十方面以及上述第十方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第十一方面,本申请实施例提供一种通信装置,包括:收发单元,用于向第二设备发送能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源的最大频域间隔;该收发单元在该第一频域资源接收该第二设备发送的下行数据;该收发单元在该第二频域资源向该第二设备以反射通信的方式发送上行数据;其中,该第一频域资源和该第二频域资源之间的频域间隔小于或者等于该最大频域间隔。
在一种可能的实施方式中,该收发单元还用于:接收该第二设备发送的配置信息,该配置信息包括频域间隔信息,该频域间隔信息用于指示该第一频域资源和该第二频域资源时间的频域间隔。
上述第十一方面以及上述第十一方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第十二方面,本申请实施例提供一种通信装置,包括:收发单元,用于接收第一设备发送的能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源的最大频域间隔;该收发单元在该第一频域资源向该第一设备发送的下行数据;该收发单元在该第二频域资源接收该第一设备以反射通信的方式发送的上行数据;其中,该第一频域资源和该第二频域资源之间的频域间隔小于或者等于该最大频域间隔。
在一种可能的实施方式中,该收发单元还用于:向该第一设备发送配置信息,该配置信息包括频域间隔信息,该频域间隔信息用于指示该第一频域资源和该第二频域资源时间的频域间隔。
上述第十二方面以及上述第十二方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第十三方面,本申请实施例提供一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行如第一方面、第二方面、第三方面、第四方面、第五方面、第六方面或各可能的实现方式中的方法。
第十四方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如第一方面、第二方面、第三方面、第四方面、第五方面、第六方面或各可能的实现方式中的方法。
第十五方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如第一方面、第二方面、第三方面、第四方面、第五方面、第六方面或各可能的实现方式中的方法。
第十六方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如第一方面、第二方面、第三方面、第四方面、第五方面、第六方面或各可能的实现方式中的方法。
第十七方面,本申请实施例提供一种装置,包括逻辑电路和输入输出接口,其中,该输入输出接口用于接收来自该装置之外的其他通信装置的信号并传输至该逻辑电路或将来自该逻辑电路的信号发送给该装置之外的其他通信装置,该逻辑电路用于执行代码指令以实现如第一方面、第二方面、第三方面、第四方面、第五方面、第六方面或各可能的实现方式中的方法。
第十八方面,本申请实施例提供一种终端,包括如第七方面、第八方面、第九方面、第十方面、第十一方面、第十二方面或各可能的实现方式中的装置。
附图说明
图1示出了适用于本申请实施例的一种通信系统;
图2a为本申请提供的一种RFID通信系统的示意图;
图2b为本申请提供的一种分离式架构的RFID通信系统的示意图;
图2c为本申请提供的一种集中式架构的RFID通信系统的示意图;
图3a为本申请提供的一种WUR通信的示意图;
图3b为本申请提供的另一种WUR通信的示意图;
图4为本申请提供的一种包络检波示意图;
图5为本申请提供的一种反射通信的示意图;
图6为本申请实施例提供的一种通信方法400的示意性交互流程示意图;
图7a为本申请实施例提供的一种时域资源的示意图;
图7b为本申请实施例提供的另一种时域资源的示意图;
图8a为本申请实施例提供的另一种时域资源的示意图;
图8b为本申请实施例提供的另一种时域资源的示意图;
图9为本申请实施例提供的一种通信方法500的示意性交互流程示意图;
图10为本申请实施例提供的一种通信方法600的示意性交互流程示意图;
图11a为本申请实施例提供的一种时频资源的示意图;
图11b为本申请实施例提供的另一种时频资源的示意图;
图11c为本申请实施例提供的另一种时频资源的示意图;
图11d为本申请实施例提供的另一种时频资源的示意图;
图12为本申请实施例提供的一种盘存流程示意图;
图13为本申请实施例提供的通信装置的示意性框图;
图14为本申请实施例提供的通信装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的通信方法可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水 域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,本申请对于网络设备和终端设备的具体形式均不做限定。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的通信方法的通信系统的示意图。如图1所示,通信系统100可以包括网络设备和终端设备,网络设备和终端设备的数量均可以是一个或者多个,例如图1中所示的网络设备111和112、终端设备121至128,在该通信系统100中,网络设备111可以与终端设备121至126中的一个或多个终端设备通过无线空口通信,网络设备111可以通过网络设备112与终端设备127和128中的一个或多个终端设备进行通信。此外,终端设备124至126可以组成通信系统101,在该通信系统101中,终端设备124可以与终端设备125和126中的一个或多个终端设备通过无线空口通信、网络设备112与终端设备127和128可以组成通信系统102,在该通信系统102中,网络设备112可以与终端设备127和128中的一个或多个终端设备通过无线空口通信。
应理解,通信系统101可以是通信系统100的子系统,或者独立于通信系统100的通信系统;通信系统102可以是通信系统100的子系统,或者独立于通信系统100的通信系统。
还应理解,图1仅为示例,示出了通信系统100中两个网络设备和八个终端设备,通信系统101中的三个终端设备,通信系统102中的一个网络设备和两个终端设备。但这不应对本申请构成任何限定。上述任一通信系统可以包括更多或更少的网络设备,或者包括更多或更少的终端设备。本申请实施例对此不做限定。
随着5G NR系统MTC和物联(internet of things,IoT)通信的普及,越来越多的IoT设备已经部署在人们的生活中。例如:智能水表、共享单车,以及智慧城市、环境监测、智能家居、森林防火等以传感和数据采集为目标的设备等等。而未来,IoT设备将是无处不在的,可能会嵌入每一件衣服、每一个包裹、每一把钥匙,几乎所有的离线物品都将在物联网技术的赋能下实现在线。但与此同时,由于IoT设备分布范围广泛、数量众多,所以实现万物互联的过程也给产业界带来了不小的挑战,首当其冲的便是供电问题。目前,IoT仍然主要由运营商推动,IoT模块需要使用标准蜂窝协议与基站通讯。由于基站需要覆盖尽可能大的面积,因此IoT模块需要能做到在距离基站很远时仍能进行通信,这就使得IoT设备在无线通信时仍然需要消耗高达30mA的电流,所以目前的IoT模块仍然需要使用较高容量的电池才能工作,这也导致了IoT模块的尺寸很难做小,增加了IoT设备的成本。
此外,一些低功耗终端在医疗、智能家居、工业传感器、可穿戴设备等物联网应用中发挥着重要作用。然而,由于这类终端尺寸大小有限,如果要延长这些设备的运 行时间,很难通过简单的提高电池容量来实现。因此,要实现延长终端续航时间,需降低无线通信的功耗,其中,无线电收发器则是最耗电的组件之一。
因此,为了能进一步普及IoT,把IoT模块植入人体内,或者更小的物件中,则不可能再搭配较高容量的电池,而必须使用更小的电池甚至彻底摆脱电池的限制,或者是设计一种降低无线电收发器功耗的方法,进而来克服IoT设备的成本、尺寸、功耗等的限制问题。因此,2021年6月,在3GPP在组织R18潜在研究方向讨论会中,讨论了物联网增强技术,且披露了5G演进(5G-Advanced)将从R18开始,在5G NR系统中引入无源(Passive)IoT和WUR。Passive IoT是从目前大量且成熟使用RFID技术中得出启发后应运而生。因为省去了电源模块,所以无源RFID产品的体积可以达到厘米量级甚至更小,而且自身结构简单,成本低,故障率低,使用寿命较长。
下面首先对RFID技术和WUR技术进行说明。
一、RFID技术:是一种非接触式的自动识别技术,其可以通过射频信号自动识别目标对象并获取相关数据。
通常情况下,RFID系统由阅读器(reader)和标签(tag)组成。结合图2a所示,阅读器通过向标签发送激励信号为标签进行充能,标签接收阅读器发送的信令,并以反射通信的方式向阅读器发送反射信号。通过这种方式,阅读器可以识别标签的标识(identity document,ID),以及对标签进行读写等操作。
需要说明的是,阅读器向标签发送的激励信号可以是下文中的下行数据或下行数据中的一种,反射信号可以是下文中的上行数据或上行数据中的一种。该下行数据为连续载波,标签以反射通信的方式向阅读器发送反射信号,具体可以是,标签利用下行数据提供的载波进行上行数据的传输。
目前,为了扩展RFID的有效工作距离,通常采用以下两种方式:
方式1、分离式架构:结合图2b所示,分离式的阅读器包括辅助器(helper)和接收器(receiver)。helper通过前向链路向标签发送激励信号,receiver通过反向链路从标签接收反射信号,另外receiver生成RFID相关的下行信令,并通过前传链路向helper发送下行信令,再由helper在前向链路上进行转发。
方式2、集中式或一体式架构:结合图2c所示,除了阅读器与标签间通过前向链路和反向链路进行信号的激励和反射之外,阅读器还与集中控制单元(如基站)进行通信,集中控制单元可以对阅读器使用的前向链路的资源和发送行为进行的调度、控制等。
本申请实施例中,为了实现在NR系统中支持RFID,上述方式1中的helper和receiver之间,以及上述方式2中的阅读器和集中控制单元之间可以通过NR技术进行通信。
二、WUR技术:功耗大的主连接无线电(primary connection radio,PCR),也可以称作主接收机,进入休眠状态后,通过功耗低的伴连接无线电(Companion Radio),也称作唤醒接收机(WUR)监听AP发送的唤醒帧,在监听到唤醒帧后对PCR进行唤醒。
结合图3a所示,接收端设备310中部署有主接收机311和唤醒接收机312。在发射端设备320(例如AP或者终端设备)未发送数据时,主接收机关闭,也称作处于休 眠状态,唤醒接收机开启;结合图3b所示,在发射端设备320发送数据时,首先发送唤醒数据(例如上述唤醒帧),接收端设备310通过唤醒接收机311接收到唤醒数据后激活主接收机312,使主接收机开启,也称作处于激活状态,此时接收端设备310通过主接收机311接收发射端设备320在唤醒数据后发送的数据。
需要说明的是,唤醒机的信息比特被调制成开关键(on-off keying,OOK)符号,发射端设备利用这些OOK符号来屏蔽生成的窄带正交频分复用(orthogonal frequency division multiplexing,OFDM)波形(即OOK波形),从而进一步优化OOK波形,OOK符号承载在13个子载波上,在电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)定义的无线局域网标准IEEE 802.11ba中称为多载波(multicarrier,MC)OOK。在接收端设备侧,OOK解调不需要频域和时域上的任何信道均衡,因此接收端设备通过唤醒接收机进行非相干检测(如包络检测)进行监听。使用非相干检测,接收端设备不需要保持/跟踪高精度的振荡速率。因此,可以避免锁相环,进一步降低接收侧功耗。
应理解的是,OOK符号仅为WUR唤醒帧的一种示例,并不对本申请构成任何限定。
针对NR系统中应用的RFID技术,例如可以称作无源(Passive)IoT。本申请提供的Passive IoT与RFID的传输机制类似。在Passive IoT中,Passive IoT设备(例如标签)可以是无源(Batter Free)的,即Passive IoT设备自身不配备或不主要依赖于电池或者有线电源来供电。但是,Passive IoT设备不具备电源模块并不意味着不需要用电,Passive IoT设备可以从环境光、热量、射频中获取能量,从而支撑起物联网数据的感知、无线传输和分布式的计算等等。Passive IoT设备也可以是储能无源的,还可以是半无源的。储能无源设备有储能设备。半无源设备有电池,但电池供电仅对标签内要求供电维持数据的电路或者标签芯片工作所需电压的辅助支持,本身耗电很少的标签电路供电,电池尺寸也相对较小。
参考图4和图5,图4和图5示例性示出Passive IoT通信中的上下行通信方法示意图。
如图4所示,图4示例性示出Passive IoT下行通信方法示意图。
标签通过下行链路向阅读器发送调幅信号,标签接收该调幅信号,可以采用包络检波器,对该调幅信号进行包络检波,获取其中的低频信号。包络检波器的主要组成部分包括图4所示的二极管和电阻-电容电路(resistor-capacitance circuit,RC),也即振荡电路。
上述包络检波是指:从调幅信号中将低频信号解调出来的过程,广义的检波通常称为解调,是调制的逆过程,即从已调信号提取调制信号的过程。对调幅信号来说,包络检波就是从它的振幅变化中提取调制信号的过程。其中,包络是反映一个高频信号的幅度变化曲线,当用一个低频信号对一个高频信号进行幅度调制时,低频信号就成了高频信号的包络线。
可以理解的是,图4所示出的包络检波电路为最传统的基础电路结构示意图,关于包络检波电路的演进结构,在此在暂不赘述。本申请实施例对标签采用的包络检波电路结构不作限制。
如图5所示,图5示例性示出Passive IoT上行通信方法示意图。
标签自身无法提供电源,也无条件连接有线电源,来供标签进行数据传输。所以标签需要从外接环境中获取能量,进而提供标签进行数据传输,以及数据处理等其他操作。
具体的,当标签接收阅读器发出的载波信号,可以利用空间中产生的电磁场得到的能量,驱动芯片将自身存储的信息传送出去。
在上述实现方法中,阅读器和标签的关系为“电磁反向散射耦合”关系,“电磁反向散射耦合”是指利用电磁波的空间传播规律,当发射的电磁波接触到被测物体后,携带着被测物体的信息被反射回来。这种耦合适合用在高频、微波工作的远距离射频识别系统。
可以理解的是,图5所示的Passive IoT通信中上行通信方法仅为示例,在本申请另一些实施例中,标签还可以通过获取环境光、热等能量,来驱动芯片将自身存储的信息传送出去。如前所述,标签也可以是储能无源设备或者半无源设备。
上述Passive IoT设备在NR系统中进行通信存在的问题包括至少以下两个方面:
一方面,在NR中,网络设备(例如基站)会周期性广播定时信息,终端设备可以随时获取定时信息(比如帧号,时隙号等),而且终端设备晶振同步精度高,能较好维持定时,因此NR系统中终端设备可以根据当前时隙号和从网络设备接收的时隙配置(例如时分双工(time division duplexing,TDD)的时隙配置、频分双工(frequency division duplex,FDD)的时隙配置等)确定当前的时隙为下行时隙还是上行时隙。对于PassiveIoT来说,阅读器按需(on demand)向标签发送下行信令,标签获取定时机会较少,此外标签的同步能力较弱,维持定时能力较差,因此对于Passive IoT,采用阅读器直接通知时隙配置的方式,无法使标签基于与阅读器同步的定时,确定收发资源,进而无法与阅读器在NR系统中进行通信。
另一方面,在NR中,终端设备利用自身生成的载波进行上行传输,而Passive IoT中,标签的上行传输是反射通信,即标签自身不产生载波,是采用阅读器的下行数据提供的载波,标签对接收到的载波进行调制和反射以传输数据。
应理解,Passive IoT仅为一种示例性的名称,当其替换为其他表述时也属于本申请保护范围。
还应理解,上述Passive IoT场景下的信息交互流程、信令格式仅为一种示例,而非限制性的说明。
针对NR系统中应用的WUR技术,需要说明的是:
在NR中,网络设备(例如基站)会周期性广播定时信息,终端设备,包括终端设备中的主接收机,可以随时获取定时信息(比如帧号,时隙号等),而且终端设备有比较好的同步能力,能比较好维持定时,因此终端设备可以根据当前时隙号和从网络设备接收的时隙配置(例如TDD的时隙配置、FDD的时隙配置等)确定当前的时隙为下行时隙还是上行时隙。然而,对于唤醒机来说,网络设备按需(on demand)向开启WUR的终端设备发送下行信令,开启WUR的终端设备获取定时机会较少,并且唤醒机的同步能力较弱,维持定时能力较差,因此对于WUR,采用网络设备直接通知时隙配置的方式,无法使唤醒机基于与网络设备同步的定时,确定收发资源,进而无法与 网络设备在NR系统中进行通信。
由此可见,第一设备(例如标签、唤醒机等)与第二设备(例如阅读器、AP、发射侧终端设备)之间,如何在NR系统中确定传输资源,并在该传输资源上进行上行数据和/或下行数据的传输是当前亟待解决的问题。
针对上述问题,本申请实施例提供一种传输资源的确定方案,使第一设备与第二设备之间能够在NR系统中进行数据传输。
为便于理解本申请实施例,做出如下几点说明:
第一,在下文示出的实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的设备、时域资源、频域资源、间隔时长、传输时长等。
第二,“预定义”可以通过在设备(例如,包括第一设备和第二设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
“预配置”可以通过在设备(例如,包括第一设备和第二设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,也可以通过信令预配置,比如网络设备通过信令预配置等方式来实现,本申请对于其具体的实现方式不做限定。
第三,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第四,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。
第五,在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备(如,第一设备或者第二设备)会做出相应的处理,并非是限定时间,且也不要求设备(如,第一设备或者第二设备)在实现时一定要有判断的动作,也不意味着存在其它限定。
第六,本申请实施例中第一设备确定时域资源,也即选择时域资源。下文中“确定”和“选择”交替使用,其所表达的含义是相同的。
下面将结合附图对本申请实施例提供的侧行传输方法做详细说明。
应理解,下文仅为便于理解和说明,以第一设备与第二设备之间的交互为例详细说明本申请实施例所提供的方法。
其中,第一设备例如可以是上述标签,或者部署有标签的终端设备;第二设备可以是上述阅读器,或者部署有阅读器的终端设备,或者部署有阅读器的网络设备。当第一设备是部署有标签的终端设备,第二设备是部署有阅读器的终端设备时,该第一设备可以是图1中的终端设备125或126,第二设备可以是图1中的终端设备124;当第一设备是部署有标签的终端设备,第二设备是部署有阅读器的网络设备时,该第一设备可以是图1中的终端设备121至123中的任意一个,第二设备可以是图1中的网络设备111,或者第一设备可以是图1中的终端设备127或128,第二设备可以是图1中的网络设备112。
第一设备例如可以是上述唤醒机,或者部署有唤醒机的终端设备,第二设备例如可以是网络设备(例如基站、AP等)或者终端设备。当第一设备是部署有唤醒机的终端设备,第二设备是终端设备时,该第一设备可以是图1中的终端设备125或126,第二设备可以是图1中的终端设备124;当第一设备是部署有唤醒机的终端设备,第二设备是网络设备时,该第一设备可以是图1中的终端设备121至123中的任意一个,第二设备可以是图1中的网络设备111,或者第一设备可以是图1中的终端设备127或128,第二设备可以是图1中的网络设备112。
但应理解,这不应对本申请提供的方法的执行主体构成任何限定。只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法,便可以作为本申请实施例提供的方法的执行主体。例如,下文实施例所示的第一设备也可以替换为该第一设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块。第二设备也可以替换为该第二设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块等。
图6为本申请实施例提供的一种通信方法400的示意性交互流程示意图。如图6所示,该方法400可以包括S410和S420。下面对方法200中的各个步骤做详细说明。
S410,第一设备确定从通信的起始位置开始的时域资源,该时域资源包括第一时域资源和第二时域资源,第一时域资源和第二时域资源之间间隔第一间隔时长,该第一时域资源的时域长度与第一传输时长相关,该第二时域资源的时域长度为第二传输时长;
S420-1,第二设备在该时域资源上发送下行数据,相应的,第一设备在该时域资源上接收第二设备发送的下行数据;
S420-2,第一设备在该时域资源上发送上行数据,相应的,第二设备在该时域资源上接收第一设备发送的上行数据。
上述S420-1和上述S420-2可以择一执行,或者依次执行,例如第一设备接收第二设备发送的下行数据后,向第二设备发送上行数据。以实现第一设备与第二设备通过该时域资源进行通信。
示例性的,第二设备确定从通信的起始位置开始的时域资源,并通过该时域资源向第一设备发送下行数据,第一设备确定从通信的起始位置开始的时域资源,并在该时域资源接收第二设备发送的下行数据;和/或,第一设备确定从通信的起始位置开始的时域资源,并在该时域资源向第二设备发送上行数据,第二设备确定从通信的起始位置开始的时域资源,并在该时域资源接收第一设备发送的上行数据。
可以理解的是,第二设备与第一设备的实现方式相同或者相似,下文中仅以第一设备确定从通信的起始位置开始的时域资源为例进行说明。
需要说明的是,在第一设备接收第二设备发送的下行数据时,该下行数据由帧头和数据部分组成,通信的起始位置例如可以是下行数据的帧头携带的指示信息指示的;或者,该下行数据由前导序列和数据部分组成,第二设备可以根据前导序列获取时间和/或频率同步,也可以确定时间单元的边界,时间单元可以为符号或时隙或子帧或帧,其中,前导序列位于数据部分之前,前导序列和数据部分在时域上可以是连续的,也可以是不连续的。通信的起始位置可以根据前导序列的起始位置,或者,通信的起始 位置可以根据前导序列的结束位置确定,或者,通信的起始位置可以根据数据部分的起始位置确定,比如,通信的起始位置为前导序列的起始位置或者为前导序列的结束位置或者为根据数据部分的起始位置。
需要说明的是,在第一设备向第二设备发送上行数据时,该上行数据由帧头和数据部分组成,通信的起始位置例如可以是上行数据的帧头携带的指示信息指示的;或者,该上行数据由前导序列和数据部分组成,第二设备可以根据前导序列获取时间和/或频率同步,也可以确定时间单元的边界,时间单元可以为符号或时隙或子帧或帧,其中,前导序列位于数据部分之前,前导序列和数据部分在时域上可以是连续的,也可以是不连续的。通信的起始位置可以根据前导序列的起始位置,或者,通信的起始位置可以根据前导序列的结束位置确定,或者,通信的起始位置可以根据数据部分的起始位置确定,比如,通信的起始位置为前导序列的起始位置或者为前导序列的结束位置或者为根据数据部分的起始位置。通信的起始位置可以由第一设备确定,或者由第二设备通知给第一设备。
其中,第一传输时长可以是第一设备和/或第二设备中预定义的;或者第一传输时长可以是预配置的,例如当第一传输时长仅在第一设备中预定义时,第一设备可以向第二设备发送信令配置该第一传输时长,当第一传输时长仅在第二设备中预定义时,第二设备可以向第一设备发送信令配置该第一传输时长;或者第一传输时长可以是协议中定义的。
与第一传输时长类似的,第二传输时长和第一间隔时长也可以是预定义的、预配置的或者协议中定义的,此处不再赘述。
应理解,第一传输时长和第二传输时长可以相同也可以不同。
本申请实施例可以适用于任一双工模式,尤其适用于TDD模式。下面以应用于TDD模式进行示例性的说明。应理解,TDD模式中,时隙配置可以包括单周期时隙配置和双周期时隙配置。
在上述单周期时隙配置中,第一传输时长和第二传输时长可以相同。结合图7a所示,TDD的每个周期包括3个下行时隙,1个上行时隙和1个灵活时隙,例如TDD的周期P=2.5ms,第一传输时长和第二传输时长相同,均为3个时隙,也即第一时域资源和第二时域资源的时域长度相同。
示例性的,时域资源还包括第三时域资源,结合图7a所示,该第三时域资源与第二时域资源之间间隔第一间隔时长,且该第三时域资源的时域长度为第一传输时长。
换言之,时域资源可以以P周期内的图案(pattern)进行重复。
应理解,图7a所示的TDD模式下单周期的时隙配置为一种示例,但不对单周期的时隙配置构成任何限定,例如其中至少一个时隙可以不仅为一种类型的时隙,如图7a中的第4、9、14个时隙可以由上行符号、灵活符号、下行符号中的至少两种组成。相应的,第一传输时长和第二传输时长的单位可以是时隙或者符号,也即第一时域资源、第二时域资源、第三时域资源均可以包括n1个时隙加m1个符号、n2个时隙或m2个符号,其中n1、m1、n2、m2均为正整数。
在上述双周期时隙配置中,第一传输时长和第二传输时长一般不同。结合图7b所示,TDD的周期包括第一周期P1和第二周期P2,第一周期P1包括3个下行时隙、1 个灵活时隙、1个上行时隙,第二周期P2包括2个下行时隙、1个灵活时隙和2个上行时隙,例如第一周期P1=5ms,第二周期P2=5ms。第一传输时长为3个时隙,第二传输时长为2个时隙,也即第一时域资源和第二时域资源的时域长度不同。
示例性的,时域资源还包括第三时域资源,结合图7b所示,该第三时域资源与第二时域资源之间间隔第二间隔时长,且该第三时域资源的时域长度为第一传输时长。可以理解的是,第三时域资源之后还可以包括第四时域资源,第四时域资源与第三时域资源之间间隔第一间隔时长,且该第四时域资源的时域长度为第二传输时长。
换言之,时域资源可以以P1和P2周期内的图案进行重复。
应理解,图7b所示的TDD模式下双周期的时隙配置为一种示例,但不对双周期的时隙配置构成任何限定,例如其中至少一个时隙可以不仅为一种类型的时隙,如图7b中的第4、8、14个时隙可以由上行符号、灵活符号、下行符号中的至少两种组成。相应的,第一传输时长和第二传输时长的单位可以是时隙或者符号,也即第一时域资源、第二时域资源、第三时域资源均可以包括n3个时隙加m3个符号、n4个时隙或m4个符号,其中n3、m3、n4、m4均为正整数。
可以理解的是,当第一设备在第一时域资源接收完全部下行数据时,该时域资源仅包括该第一时域资源,当第一设备在第一时域资源未接收完全部下行数据时,第一设备在第二时域资源上继续接收下行数据,该时域资源包括第一时域资源和第二时域资源,以此类推,直至第一设备接收完全部下行数据时结束。
第一设备向第二设备发送上行数据的过程与此类似,依次在第一时域资源、第二时域资源、第三时域资源……上发送上行数据,直至完成上行数据的发送,时域资源包括第一设备发送上行数据实际占用的时域资源。
在一些实施例中,时域资源中的第一时域资源、第二时域资源、第三时域资源……,均包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,且时域资源中的第一时域资源、第二时域资源、第三时域资源……中相邻两个之间间隔的资源包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,时域资源中的第一时域资源、第二时域资源、第三时域资源……,均包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,且时域资源中的第一时域资源、第二时域资源、第三时域资源……中相邻两个之间间隔的资源包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
例如,在第一设备接收第二设备发送的下行数据时,时域资源中的第一时域资源、第二时域资源、第三时域资源……均为下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;在第一设备向第二设备发送上行数据时,时域资源中的第一时域资源、第二时域资源、第三时域资源……均为上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,此种情况下,用于第一设备与第二设备通信的时域资源与NR系统中TDD的时隙配置相应,降低了上下行传输的干扰。
进一步的,保证时域资源的边界与现有时间单元(时隙/符号)的边界对齐,避免造成现有网络无法调度的时域资源碎片(如半个符号),减少对现有网络时域资源调度的影响。
可选的,时域资源中第一传输时长和第二传输时长对应的第一时域资源、第二时 域资源、第三时域资源……与任一间隔时长对应的时域资源也可以为同类型的时域资源,例如第一传输时长和第二传输时长对应的时域资源和任一间隔时长对应的时域资源均包括上行传输资源(例如至少一个上行时隙和/或至少一个上行符号),或者第一传输时长和第二传输时长对应的时域资源和任一间隔时长对应的时域资源均包括下行传输资源(例如至少一个下行时隙和/或至少一个上行符号)。
可选的,时域资源中第一传输时长和第二传输时长对应的第一时域资源、第二时域资源、第三时域资源……中的任一资源可以即包括上行传输资源又包括下行传输资源(例如包括1个上行时隙和1个下行时隙),与此类似的,任一间隔时长对应的时域资源也可以即包括上行传输资源又包括下行传输资源。
需要说明的是,时域资源的起始位置,也即第一时域资源的起始位置可以是上述通信的起始位置,例如时图7a中周期P的起始位置或者图7b中第一周期P1的起始位置。然而,在一些实施例中,第一时域资源的起始位置也可以不是通信的起始位置,其与通信的起始位置之间存在偏移量,此时第一时域资源的时域长度可以小于或者大于第一传输时长,该偏移量可以为时隙数、符号数等。示例性的,结合图8a和图8b所示,第一设备可以将通信的起始位置与偏移量的和确定为第一时域资源的起始位置,假设偏移量为1个时隙加2个符号,图8a和图8b中第一时域资源的起始位置向后移动至图示位置,假设偏移量为负值,则第一时域资源的起始位置向前移动至对应的时隙位置。
可选的,第一设备可以将通信的起始位置和偏移量的乘积或者商确定为第一时域资源的起始位置。
在一些实施例中,第一设备可以在不同的频域资源上分别接收第二设备发送的下行数据,以及向第二设备发送上行数据。例如,第一设备可以在上述时域资源和第一频域资源上接收第二设备发送的下行数据,第一设备可以在上述时域资源和第二频域资源上向第二设备发送上行数据。其中,第一频域资源和第二频域资源之间存在频域间隔。此种情况下,可以避免第一设备在相同的频率上既发送上行数据又接收下行数据,提高了传输的可靠性。
该第一频域资源可以是第一设备和/或第二设备中预定义的;或者可以是预配置的,例如当第一频域资源仅在第一设备中预定义时,第一设备可以向第二设备发送信令配置该第一频域资源,当第一频域资源仅在第二设备中预定义时,第二设备可以向第一设备发送信令配置该第一频域资源;或者第一频域资源可以是协议中定义的。
与第一频域资源类似的,第二频域资源也可以是预定义的、预配置的或者协议中定义的,此处不再赘述。
在另一些实施例中,还可以以上述预定义、预配置或协议定义的方式预设频域间隔。此种情况下,第一设备和第二设备可以根据第一频域资源和频域间隔,确定第二频域资源,或者根据第二频域资源和频域间隔,确定第一频域资源。
假设第一设备为标签,第二设备为阅读器,第二设备在时域资源和第一频域资源向第一设备发送的下行数据,可以是连续载波,该连续载波可以是给定频率下的正弦波或余弦波,或者,连续载波对应的波形没有经过幅度和/或相位调制,或者,连续载波对应的波形经过幅度和/或相位调制,但整体的幅度不足以被第一设备解释为传输数 据。
第一设备在时域资源和第二频域资源向第二设备发送上行数据,具体可以是第一设备在时域资源和第二频域资源向第二设备以反射通信的方式发送上行数据。例如,第一设备通过对接收的连续载波进行调制,作为上行数据的载波,将上行数据反射给第二设备。
可选的,时域资源在第一频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,该时域资源在第二频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该时域资源在第一频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,该时域资源在第二频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。当时域资源在第一频域资源上包括下行传输资源,在第二频域资源上包括上行传输资源时,可以避免第一设备和第二设备之间的传输与NR系统的数据传输不同向带来的干扰,提高了传输的可靠性。
需要说明的是,时域资源可以包括上述第一时域资源、第二时域资源、第三时域资源……,或者时域资源可以是配置信息配置的任一段时域资源。
图9为本申请实施例提供的一种通信方法500的示意性交互流程示意图。如图9所示,该方法500还可以包括S430和S440中至少之一。
S440,第二设备向第一设备发送配置信息,相应的,第一设备接收第二设备发送的配置信息。
需要说明的是,该配置信息可以包括前述第一传输时长和/或第一间隔时长。
在一些实施例中,第一传输时长和第二传输时长不同,则配置信息还可以包括第二传输时长。
在一些实施例中,配置信息还可以包括第二间隔时长。
在一些实施例中,配置信息还可以包括前述偏移量。
在一些实施例中,配置信息还可以包括频域间隔信息,该频域间隔信息用于指示第一频域资源和第二频域资源之间的频域间隔。
应理解,上述配置信息中的全部信息均可以独立发送,也可以一同发送。例如第二设备可以将频域间隔信息可以作为独立的信息发送至第一设备进行配置。
假设第一设备为部署有唤醒接收机的终端设备,第一设备可以通过主接收机接收第二设备(例如网络设备)发送的配置信息,该配置信息可以通过无线资源控制(radio resource control,RRC)释放(Release)消息携带。
在一些实施例中,第一设备可以将接收到的配置信息进行存储。
可选的,第一设备可以对接收到的配置信息设置对应的预设定时器,在预设定时器超时时,第一设备确定该配置信息无效,在预设定时器未超时时,确定该配置信息有效。
示例性的,第二设备向第一设备发送频域间隔信息之前,可以执行如下S430:
S430,第一设备向第二设备发送能力信息,相应的,第二设备接收该第一设备发送的能力信息,该能力信息用于指示第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
进一步的,第二设备基于该最大频域间隔确定第一频域资源和第二频域资源之间 的频域间隔,避免向第一设备配置的频域间隔超出第一设备的能力范围。
假设第一设备为部署有唤醒接收机的终端设备,第一设备向第二设备发送的能力信息还可以包括指示是否支持唤醒接收机的信息。
假设第一设备为部署有唤醒接收机的终端设备,第一设备还可以向第二设备发送辅助信息,该辅助信息可以包括终端设备的节能等级、终端设备偏好的寻呼接收方式或者请求开启唤醒接收机等信息中的至少一个。其中,终端设备偏好的寻呼接收方式可以包括通过主接收机接收寻呼、通过唤醒接收机接收寻呼,或者通过唤醒接收机和主接收机接收寻呼。
可选的,上述能力信息和辅助信息均可以通过四步随机接入过程中的消息一或消息三携带,或者,通过两步随机接入过程中的消息A,或者通过终端能力信息(UECapabilityInformation)或终端辅助信息(UEAssistanceInformation)携带。对于NR系统,四步随机接入过程和两步随机接入过程的具体描述见TS 3GPP 38.300 V16.7.0中9.2.6节。
一般来说,上述S430和S440在S410之前执行。
因此,本申请实施例中第一设备确定从通信的起始位置开始的时域资源,并在该时域资源上与第二设备进行通信,使第一设备和第二设备能够在各通信系统(例如NR通信系统)中进行通信,也即实现了IoT与其他通信系统的融合。
进一步的,第一设备确定的时域资源包括第一时域资源和第二时域资源,且第一时域资源和第二时域资源之间间隔第一间隔时长,使得第一设备不需要维护定时信息(例如帧号、时隙号等),即可确定能够通信的时间段和不能通信的时间段,降低了第一设备的复杂度,进而降低第一设备的成本。
图10为本申请实施例提供的一种通信方法600的示意性交互流程示意图。如图10所示,该方法600可以包括S610至S640中的部分或者全部过程。下面对S610至S640进行解释。
S610,第一设备向第二设备发送能力信息,相应的,第二设备接收该第一设备发送的能力信息,该能力信息用于指示第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔;
S620,第二设备向第一设备发送配置信息,相应的,第一设备接收第二设备发送的配置信息;
S630,第二设备在第二频域资源以及第二频域资源对应的时域资源发送下行数据,相应的,第一设备在第二频域资源以及第二频域资源对应的时域资源接收下行数据;
S640,第一设备在第一频域资源以及第一频域资源对应的时域资源发送上行数据,相应的,第二设备在第一频域资源以及第一频域资源对应的时域资源接收上行数据。
上述S630和上述S640可以择一执行,或者依次执行,例如第一设备接收第二设备发送的下行数据后,向第二设备发送上行数据。以实现第一设备与第二设备通过该时域资源进行通信。
需要说明的是,第一频域资源对应的时域资源和第二频域资源对应的时域资源均包括至少一个第一时间单元,该第一时间单元在第一频域资源对应的时域资源上为第一资源类型,该第一时间单元在第二频域资源对应的时域资源上为第二资源类型。
其中,第一资源类型下的第一时间单元包括上行时隙、灵活时隙、上行符号或灵活符号,第二资源类型下的第一时间单元包括下行时隙、灵活时隙、下行符号或灵活符号。
需要说明的是,第一频域资源、第二频域资源、第一频域资源对应的时域资源、第二频域资源对应的时间资源均可以为预定义的、预配置的或者协议定义的。
在一种可能的实现方式中,第一频域资源、第二频域资源、第一频域资源对应的时域资源、第二频域资源对应的时间资源中的至少之一可以由S620中,第二设备向第一设备发送的配置信息进行配置。
可选的,第一频域资源对应的时域资源和第二频域资源对应的时域资源均可以包括上述第一时域资源、第二时域资源、第三时域资源……,或者时域资源均可以是配置信息配置的任一段时域资源。
图11a至图11d示出了几种可能的时频资源,图11a至图11d中任一图中虚线框标注的资源包括至少一个第一时间单元,第一设备和第二设备可以选择其中的虚线框内的一个或多个时频资源进行通信。
结合图11a和图11b所示,将相同时长内第一资源类型对应的时间单元的个数与所述第二资源类型对应的时间单元的个数的比作为第一比例,例如第一资源类型下的时间单元可以包括上行时隙、灵活时隙、上行符号或灵活符号中的至少一种,第二资源类型下的时间单元可以包括下行时隙、灵活时隙、下行符号或灵活符号中的至少一种。在图11a中,第一频域资源和第二频域资源分别对应的第一比例相同,例如第一比例均为2比8。其中,相同时长可以是一个周期或者是约定值;在图11b中,第一频域资源和第二频域资源分别对应的第一比例互为倒数,例如第一频域资源对应的第一比例为2比8,第二频域资源对应的第一比例为8比2。
结合图11c所示,第一频域资源对应的全部时间单元均为第一资源类型,例如均为上行时隙,第二频域资源对应的全部时间单元均为第二资源类型,例如均为下行时隙。
可选的,时间单元为时域单位,但不一定是最小的时域单元,例如可以是时隙、符号等。
结合图11d所示,第一频域资源对应的全部时间单元为同一资源类型,例如均为上行时隙,第二频域资源对应的全部时间单元非同一资源类型;或者,(图中未示出)第一频域资源对应的全部时间单元非同一资源类型,第二频域资源对应的全部时间单元为同一资源类型。
针对上述S620需要说明的是,第二设备可以向第一设备发送第一时频资源配置信息和第二时频资源配置信息。其中,第一时频资源配置信息用于配置第一频域资源和第一频域资源对应的时域资源;第二时频资源配置信息用于配置第二频域资源和/或第二频域资源对应的时域资源。
当第二时频资源配置信息不用于配置第二频域资源对应的时域资源时,第一设备和/或第二设备可以根据第一频域资源对应的时域资源确定第二频域资源对应的时域资源,例如第一设备和/或第二设备确定第一频域资源对应的时域资源和第二频域资源对应的时域资源为相同的时域资源。
当第二时频资源配置信息用于配置第二频域资源时,第二时频资源配置信息可以包括频域间隔信息或第二频域资源的配置信息。其中,第二频域资源的配置信息可以直接指示第二频域资源,频域间隔信息则用于指示第二频域资源与第一频域资源之间的频域间隔。示例性的,当第二时频资源配置信息包括频域间隔信息时,第一设备和/或第二设备可以根据第一频域资源和频域间隔信息确定第二频域资源。
应理解的是,上述第一时频配置信息和第二时频配置信息中的至少一个,可以包括图9所示实施例中任一示例的配置信息。
针对上述S610需要说明的是,该能力信息用于指示第一频域资源和第二频域资源之间的最大频域间隔。通过该最大频域间隔可以约束第一频域资源与第二频域资源之间的频域间隔,例如,约束第一频域资源与第二频域资源之间的频域间隔小于或等于最大频域间隔。
示例性的,能力信息对第一频域资源和第二频域资源之间的频域间隔的约束力,可以通过第二设备实现,例如第二设备基于第一设备上报的能力信息,确定第一频域资源和第二频域资源之间的频域间隔,使该频域间隔小于或等于能力信息指示的最大频域间隔,并将该频域间隔通过配置信息发送给第一设备,使第一设备确定用于通信的第一频域资源和第二频域资源。
可以理解的是,S610中的能力信息还可以包括前述图9中S430中所示例的一种或多种能力信息。
图12为本申请实施例提供的一种盘存流程示意图。结合图11所示,下面将以第一设备为标签、第二设备为阅读器为例,对本申请实施例提供的通信方法进行说明。
需要说明的是,如下盘存过程适用于统计任意部署或者携带有标签的物品的数量。例如在汽车上部署标签,可以通过阅读器对某一路段的车辆数进行统计;在库存的衣服、鞋子、饰品上携带标签,可以对库存中各类物品的数量进行统计;在牛、羊上携带标签,可以对牧区的牛或羊的数量进行统计。
可选的,盘存操作中阅读器可以读取标签的产品电子码(electronic product code,EPC)
下面通过阅读器和标签之间的信息交互,对盘存过程进行说明。
S710,阅读器向标签发送选择(select)命令;
S720,阅读器向标签发送查询(query)命令;
S730,标签生成随机数;
S740,阅读器向标签发送重复查询(queryrep)命令;
S750,标签向阅读器发送反馈标识(如16位随机数RN16);
S760,阅读器向标签发送应答命令(如确认字符(acknowledge character,ACK)命令或否定确认(negative acknowledgment,NAK)命令);
S770,标签向阅读器发送EPC。
针对上述S710,需要说明的是:在盘存之前,阅读器可以使用一个或多个Select命令选择一个特定的标签群。select命令可以连续使用多次,符合多次Select命令的标签才响应,可以实现类似哈希(hash)或布隆(bloom)滤波的操作,降低碰撞概率、提高盘存标签的效率。
针对上述S720,需要说明的是:在初始化链路参数,设置标签内部随机时隙计数器后,query命令开启一轮盘存周期,并初始化下行数据率、上行数据率和编码方式、会话(session)、目标(target)、Q值等参数。
在上述S730中,符合Sel和target的标签生成随机数,其中Sel为query命令中的字段的名称,并将随机数置入时隙计数器,标签状态由准备(ready)状态转为仲裁(arbitrate)状态。
标签在时隙计数器的值为0时,返回16位随机数RN16,标签状态由arbitrate转为reply;否则保持静默,维持arbitrate状态。
应理解,标签通过在时隙计数器的值为0时反馈RN16,可以避免多个标签同时向阅读器发送反馈标识,带来的数据冲突(或数据碰撞)的问题。
在标签为返回RN16时,阅读器执行S740,直至接收到标签发送的RN16。需要说明的是,RN16仅为一种示例,标签还可以向阅读器发送任一反馈标识,以实现阅读器对该标识的识别。
针对S740需要说明的是,queryrep命令用于递减标签的时隙计数器,每个选中标签的时隙计数器-1。如果时隙计数器的值为0,则标签返回RN16;否则保持静默。
针对S760需要说明的是,阅读器若成功接收到RN16,则返回包含该RN16的ACK命令;阅读器若接收RN16失败,则可返回NAK命令,此时标签进入Arbitrate状态,且盘存标志位不改变。
针对S770需要说明的是,标签收到ACK命令后,返回EPC信息;阅读器收到EPC后即完成对该标签的盘存。返回EPC后的标签处于确认(acknowledged)状态,当收到query、调节查询(queryadjust)、queryrep命令后会回到ready状态,且盘存标志会翻转,避免在此次盘存周期内重复响应。其中EPC是产品电子代码,用于标识所附着的物品。
上述S710至S770中,select命令、query命令、queryrep命令、queryadjust命令、应答命令中的至少一个命令中,可以携带配置信息,该配置信息可以包括前已述及的任意一种或者多种可被配置的信息,例如配置信息可以包括第一传输时长、第二传输时长、第一间隔时长、第二间隔时长、频域间隔信息、第一时频资源配置信息、第二时频资源配置信息中的至少一种,各配置信息的解释如前所述。
此外,上述配置信息中还可以包括预编码变换的使能信息,通过预编码变换的使能信息,阅读器可以向标签指示是否使能(enable)预编码变换(transform precoder),如果使能预编码变换,则数据传输的波形为基于傅立叶变换扩展的正交频分复用(DFT-S-OFDM),如果去使能预编码变换,则数据传输的波形为循环前缀正交频分复用(CP-OFDM)。
可选的,上述S710中的select命令为阅读器与标签之间首次传输的信令,select命令在传输时使用的时域资源中可以没有第一间隔时长和/或第二间隔时长对应的资源,即阅读器尽量在连续的下行时间单元内发送完select命令,或者,阅读器按照一个预设的图案发送select命令,比如select命令每传输一个第一传输时长后,间隔一个第一间隔时长,第一传输时长和第一间隔时长可以为约定值,该约定值阅读器和标签均可获知。
以上,结合图6至图12详细说明了本申请实施例提供的方法。以下,结合图13和图14详细说明本申请实施例提供的装置。
图13为本申请实施例提供的通信装置的示意性框图。如图13所示,该装置800可以包括:处理单元810和收发单元820。
可选地,该通信装置800可对应于上文方法实施例中的第一设备,例如,可以为第一设备,或者配置于第一设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置800例如可对应于根据本申请实施例的方法400、方法500或方法600中的第一设备,该通信装置800可以包括用于执行图6中的方法400、图9中的方法500或图10中的方法600中第一设备执行的方法的单元。并且,该通信装置800中的各单元和上述其他操作和/或功能分别为了实现图6中的方法400、图9中的方法500或图10中的方法600的相应流程。
其中,当该通信装置800用于执行图6中的方法400时,处理单元810可用于确定从通信的起始位置开始的时域资源,该时域资源包括第一时域资源和第二时域资源,该第一时域资源和该第二时域资源之间间隔第一间隔时长,该第一时域资源的时域长度与第一传输时长相关,该第二时域资源的时域长度为第二传输时长;收发单元820可用于与第二设备在该时域资源进行通信。
在一些实施例中,该第一传输时长和该第二传输时长相同。
在一些实施例中,该第一传输时长和该第二传输时长不同。
在一些实施例中,该时域资源还包括第三时域资源,该第二时域资源和该第三时域资源之间间隔第二间隔时长,该第三时域资源的时域长度与该第一传输时长相关,该第二间隔时长和该第一间隔时长不同。
在一些实施例中,第一时域资源的起始时域位置为偏移位置或该通信的起始位置,该偏移位置由该偏移量和该通信的起始位置确定。
在一些实施例中,该偏移位置等于该偏移量与该通信的起始位置之和。
在一些实施例中,该收发单元820还用于:接收该第二设备发送的配置信息,该配置信息包括该第一传输时长和/或该第一间隔时长。
在一些实施例中,该配置信息还包括:该第二传输时长。
在一些实施例中,该配置信息还包括第二间隔时长,该第二间隔时长和该第一间隔时长不同。
在一些实施例中,该配置信息还包括偏移量,所偏移量用于确定该第一时域资源的起始时域位置。
在一些实施例中,该第一时域资源和该第二时域资源均包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,且该第一时域资源和该第二时域资源之间间隔的资源包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该第一时域资源和该第二时域资源均包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,且该第一时域资源和该第二时域资源之间间隔的资源包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
在一些实施例中,该收发单元820具体用于:在该时域资源和第一频域资源接收该第二设备发送的下行数据;在该时域资源和第二频域资源向该第二设备以反射通信 的方式发送上行数据;其中,该第一频域资源和该第二频域资源存在频域间隔。
在一些实施例中,该时域资源在该第一频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,该时域资源在该第二频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该时域资源在该第一频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,该时域资源在该第二频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
在一些实施例中,该收发单元820还用于:接收该第二设备发送的频域间隔信息,该频域间隔信息用于指示该第一频域资源和该第二频域资源之间的频域间隔。
在一些实施例中,该处理单元810还用于:在预设定时器超时时,确定该配置信息无效;或者,在预设定时器未超时时,确定该配置信息有效。
在一些实施例中,该收发单元820还用于:向该第二设备发送能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
当该通信装置800用于执行图9中的方法500时,收发单元820可用于执行方法500中的步骤430、440、420-1、420-1中的至少一个,处理单元810可用于执行方法500中的步骤410;当该想装置800用于执行图10中的方法600时,收发单元820可用于执行方法600中的步骤610、620、630、640中的至少一个。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选地,该通信装置800可对应于上文方法实施例中的第二设备,例如,可以为第二设备,或者配置于第二设备中的部件(如,芯片或芯片系统等)。
应理解,该通信装置800例如可对应于根据本申请实施例的方法400、方法500或方法600中的第二设备,该通信装置800可以包括用于执行图6中的方法400、图9中的方法500或图10中的方法600中第二设备执行的方法的单元。并且,该通信装置800中的各单元和上述其他操作和/或功能分别为了实现图6中的方法400、图9中的方法500或图10中的方法600的相应流程。
其中,当该通信装置800用于执行图6中的方法400时,处理单元810可用于确定从通信的起始位置开始的时域资源,该时域资源包括第一时域资源和第二时域资源,该第一时域资源和该第二时域资源之间间隔第一间隔时长,该第一时域资源的时域长度与第一传输时长相关,该第二时域资源的时域长度为第二传输时长;收发单元820可用于与第一设备在该时域资源进行通信。
在一些实施例中,该第一传输时长和该第二传输时长相同。
在一些实施例中,该第一传输时长和该第二传输时长不同。
在一些实施例中,该时域资源还包括第三时域资源,该第二时域资源和该第三时域资源之间间隔第二间隔时长,该第三时域资源的时域长度与该第一传输时长相关,该第二间隔时长和该第一间隔时长不同。
在一些实施例中,第一时域资源的起始时域位置为偏移位置或该通信的起始位置,该偏移位置由该偏移量和该通信的起始位置确定。
在一些实施例中,该偏移位置等于该偏移量与该通信的起始位置之和。
在一些实施例中,该收发单元820还用于:向该第一设备发送配置信息,该配置 信息包括该第一传输时长和/或该第一间隔时长。
在一些实施例中,该配置信息还包括:该第二传输时长。
在一些实施例中,该配置信息还包括第二间隔时长,该第二间隔时长和该第一间隔时长不同。
在一些实施例中,该配置信息还包括偏移量,所偏移量用于确定该第一时域资源的起始时域位置。
在一些实施例中,该第一时域资源和该第二时域资源均包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,且该第一时域资源和该第二时域资源之间间隔的资源包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该第一时域资源和该第二时域资源均包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,且该第一时域资源和该第二时域资源之间间隔的资源包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
在一些实施例中,该收发单元820具体用于:在该时域资源和第一频域资源向该第一设备发送的下行数据;在该时域资源和第二频域资源接收该第一设备以反射通信的方式发送的上行数据;其中,该第一频域资源和该第二频域资源存在频域间隔。
在一些实施例中,该时域资源在该第一频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种,该时域资源在该第二频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种;或者,该时域资源在该第一频域资源上包括下行时隙、下行符号、灵活时隙、灵活符号中的至少一种,该时域资源在该第二频域资源上包括上行时隙、上行符号、灵活时隙、灵活符号中的至少一种。
在一些实施例中,该收发单元820还用于:向该第一设备发送频域间隔信息,该频域间隔信息用于指示该第一频域资源和该第二频域资源之间的频域间隔。
在一些实施例中,该收发单元820还用于:接收该第一设备发送的能力信息,该能力信息用于指示该第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
当该通信装置800用于执行图9中的方法500时,收发单元820可用于执行方法500中的步骤430、440、420-1、420-1中的至少一个;当该想装置800用于执行图10中的方法600时,收发单元820可用于执行方法600中的步骤610、620、630、640中的至少一个。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置800为通信设备(如第一设备或第二设备)时,该通信装置800中的收发单元820可以通过收发器实现,例如可对应于图11中所示的通信装置设备900中的收发器920,该通信装置800中的处理单元810可通过至少一个处理器实现,例如可对应于图11中示出的通信装置900中的处理器910。
当该通信装置800为配置于通信设备(如第一设备或第二设备)中的芯片或芯片系统时,该通信装置800中的收发单元820可以通过输入/输出接口、电路等实现,该通信装置800中的处理单元810可以通过该芯片或芯片系统上集成的处理器、微处理 器或集成电路等实现。
图14为本申请实施例提供的通信装置的另一示意性框图。如图14所示,该装置900可以包括:处理器910、收发器920和存储器930。其中,处理器910、收发器920和存储器930通过内部连接通路互相通信,该存储器930用于存储指令,该处理器910用于执行该存储器930存储的指令,以控制该收发器920发送信号和/或接收信号。
应理解,该通信装置900可以对应于上述方法实施例中的第一设备或第二设备,并且可以用于执行上述方法实施例中第一设备或第二设备执行的各个步骤和/或流程。可选地,该存储器930可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器930可以是一个单独的器件,也可以集成在处理器910中。该处理器910可以用于执行存储器930中存储的指令,并且当该处理器910执行存储器中存储的指令时,该处理器910用于执行上述与第一设备或第二设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置900是前文实施例中的第一设备。
可选地,该通信装置900是前文实施例中的第二设备。
其中,收发器920可以包括发射机和接收机。收发器920还可以进一步包括天线,天线的数量可以为一个或多个。该处理器910和存储器930与收发器920可以是集成在不同芯片上的器件。如,处理器910和存储器930可以集成在基带芯片中,收发器920可以集成在射频芯片中。该处理器910和存储器930与收发器920也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置900是配置在第一设备中的部件,如芯片、芯片系统等。
可选地,该通信装置900是配置在第二设备中的部件,如芯片、芯片系统等。
其中,收发器920也可以是通信接口,如输入/输出接口、电路等。该收发器920与处理器910和存储器920都可以集成在同一个芯片中,如集成在基带芯片中。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中测试设备执行的方法、第一设备执行的方法或第二设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和输入输出接口。所述输入输出接口与所述处理器耦合。所述输入输出接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述方法实施例中第一设备执行的方法或第二设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中第一设备执行的方法或第二设备执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device, PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图6、图9或图10所示实施例中的第一设备执行的方法,或,使得该计算机执行图6、图9或图10所示实施例中第二设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图6、图9或图10所示实施例中的第一设备执行的方法,或,使得该计算机执行图6、图9或图10所示实施例中第二设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统可以包括前述的第一设备和第二设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任 何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一设备确定从通信的起始位置开始的时域资源,所述时域资源包括第一时域资源和第二时域资源,所述第一时域资源和所述第二时域资源之间间隔第一间隔时长,所述第一时域资源的时域长度与第一传输时长相关,所述第二时域资源的时域长度为第二传输时长;
    所述第一设备与第二设备在所述时域资源进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述第一传输时长和所述第二传输时长相同。
  3. 根据权利要求1所述的方法,其特征在于,所述第一传输时长和所述第二传输时长不同。
  4. 根据权利要求3所述的方法,其特征在于,所述时域资源还包括第三时域资源,所述第二时域资源和所述第三时域资源之间间隔第二间隔时长,所述第三时域资源的时域长度与所述第一传输时长相关,所述第二间隔时长和所述第一间隔时长不同。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,第一时域资源的起始时域位置为偏移位置或所述通信的起始位置,所述偏移位置由所述偏移量和所述通信的起始位置确定。
  6. 根据权利要求5所述的方法,其特征在于,所述偏移位置等于所述偏移量与所述通信的起始位置之和。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一设备与第二设备在所述时域资源进行通信,包括:
    所述第一设备在所述时域资源和第一频域资源接收所述第二设备发送的下行数据;
    所述第一设备在所述时域资源和第二频域资源向所述第二设备以反射通信的方式发送上行数据;
    其中,所述第一频域资源和所述第二频域资源存在频域间隔。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的频域间隔信息,所述频域间隔信息用于指示所述第一频域资源和所述第二频域资源之间的频域间隔。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送能力信息,所述能力信息用于指示所述第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
  10. 一种通信方法,其特征在于,所述方法包括:
    第二设备确定从通信的起始位置开始的时域资源,所述时域资源包括第一时域资源和第二时域资源,所述第一时域资源和所述第二时域资源之间间隔第一间隔时长,所述第一时域资源的时域长度与第一传输时长相关,所述第二时域资源的时域长度为第二传输时长;
    所述第二设备与第一设备在所述时域资源进行通信。
  11. 根据权利要求10所述的方法,其特征在于,所述第一传输时长和所述第二传 输时长相同。
  12. 根据权利要求10所述的方法,其特征在于,所述第一传输时长和所述第二传输时长不同。
  13. 根据权利要求12所述的方法,其特征在于,所述时域资源还包括第三时域资源,所述第二时域资源和所述第三时域资源之间间隔第二间隔时长,所述第三时域资源的时域长度与所述第一传输时长相关,所述第二间隔时长和所述第一间隔时长不同。
  14. 根据权利要求10至13任一项所述的方法,其特征在于,第一时域资源的起始时域位置为偏移位置或所述通信的起始位置,所述偏移位置由所述偏移量和所述通信的起始位置确定。
  15. 根据权利要求14所述的方法,其特征在于,所述偏移位置等于所述偏移量与所述通信的起始位置之和。
  16. 根据权利要求10至15任一项所述的方法,其特征在于,所述第二设备与第一设备在所述时域资源进行通信,包括:
    所述第二设备在所述时域资源和第一频域资源向所述第一设备发送的下行数据;
    所述第二设备在所述时域资源和第二频域资源接收所述第一设备以反射通信的方式发送的上行数据;
    其中,所述第一频域资源和所述第二频域资源存在频域间隔。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送频域间隔信息,所述频域间隔信息用于指示所述第一频域资源和所述第二频域资源之间的频域间隔。
  18. 根据权利要求10至17任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的能力信息,所述能力信息用于指示所述第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
  19. 一种通信装置,其特征在于,包括:
    处理单元,用于确定从通信的起始位置开始的时域资源,所述时域资源包括第一时域资源和第二时域资源,所述第一时域资源和所述第二时域资源之间间隔第一间隔时长,所述第一时域资源的时域长度与第一传输时长相关,所述第二时域资源的时域长度为第二传输时长;
    收发单元,用于与第二设备在所述时域资源进行通信。
  20. 根据权利要求19所述的装置,其特征在于,所述第一传输时长和所述第二传输时长相同。
  21. 根据权利要求19所述的装置,其特征在于,所述第一传输时长和所述第二传输时长不同。
  22. 根据权利要求21所述的装置,其特征在于,所述时域资源还包括第三时域资源,所述第二时域资源和所述第三时域资源之间间隔第二间隔时长,所述第三时域资源的时域长度与所述第一传输时长相关,所述第二间隔时长和所述第一间隔时长不同。
  23. 根据权利要求19至22任一项所述的装置,其特征在于,第一时域资源的起始时域位置为偏移位置或所述通信的起始位置,所述偏移位置由所述偏移量和所述通信的起始位置确定。
  24. 根据权利要求23所述的装置,其特征在于,所述偏移位置等于所述偏移量与所述通信的起始位置之和。
  25. 根据权利要求19至24任一项所述的装置,其特征在于,所述收发单元具体用于:
    在所述时域资源和第一频域资源接收所述第二设备发送的下行数据;
    在所述时域资源和第二频域资源向所述第二设备以反射通信的方式发送上行数据;
    其中,所述第一频域资源和所述第二频域资源存在频域间隔。
  26. 根据权利要求25所述的装置,其特征在于,所述收发单元还用于:
    接收所述第二设备发送的频域间隔信息,所述频域间隔信息用于指示所述第一频域资源和所述第二频域资源之间的频域间隔。
  27. 根据权利要求19至26任一项所述的装置,其特征在于,所述收发单元还用于:
    向所述第二设备发送能力信息,所述能力信息用于指示所述通信装置支持的第一频域资源和第二频域资源之间的最大频域间隔。
  28. 一种通信装置,其特征在于,包括:
    处理单元,用于确定从通信的起始位置开始的时域资源,所述时域资源包括第一时域资源和第二时域资源,所述第一时域资源和所述第二时域资源之间间隔第一间隔时长,所述第一时域资源的时域长度与第一传输时长相关,所述第二时域资源的时域长度为第二传输时长;
    收发单元,用于与第一设备在所述时域资源进行通信。
  29. 根据权利要求28所述的装置,其特征在于,所述第一传输时长和所述第二传输时长相同。
  30. 根据权利要求28所述的装置,其特征在于,所述第一传输时长和所述第二传输时长不同。
  31. 根据权利要求30所述的装置,其特征在于,所述时域资源还包括第三时域资源,所述第二时域资源和所述第三时域资源之间间隔第二间隔时长,所述第三时域资源的时域长度与所述第一传输时长相关,所述第二间隔时长和所述第一间隔时长不同。
  32. 根据权利要求28至31任一项所述的装置,其特征在于,第一时域资源的起始时域位置为偏移位置或所述通信的起始位置,所述偏移位置由所述偏移量和所述通信的起始位置确定。
  33. 根据权利要求32所述的装置,其特征在于,所述偏移位置等于所述偏移量与所述通信的起始位置之和。
  34. 根据权利要求28至33任一项所述的装置,其特征在于,所述收发单元具体用于:
    在所述时域资源和第一频域资源向所述第一设备发送的下行数据;
    在所述时域资源和第二频域资源接收所述第一设备以反射通信的方式发送的上行数据;
    其中,所述第一频域资源和所述第二频域资源存在频域间隔。
  35. 根据权利要求34所述的装置,其特征在于,所述收发单元还用于:
    向所述第一设备发送频域间隔信息,所述频域间隔信息用于指示所述第一频域资 源和所述第二频域资源之间的频域间隔。
  36. 根据权利要求28至35任一项所述的装置,其特征在于,所述收发单元还用于:
    接收所述第一设备发送的能力信息,所述能力信息用于指示所述第一设备支持的第一频域资源和第二频域资源之间的最大频域间隔。
  37. 一种通信装置,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至18中任一项所述的方法。
  38. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有所述芯片的设备执行如权利要求1至18中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2022/125890 2021-10-29 2022-10-18 通信方法、装置、设备以及存储介质 WO2023071863A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111276280.5A CN116095644A (zh) 2021-10-29 2021-10-29 通信方法、装置、设备以及存储介质
CN202111276280.5 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023071863A1 true WO2023071863A1 (zh) 2023-05-04

Family

ID=86159143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125890 WO2023071863A1 (zh) 2021-10-29 2022-10-18 通信方法、装置、设备以及存储介质

Country Status (2)

Country Link
CN (1) CN116095644A (zh)
WO (1) WO2023071863A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109525377A (zh) * 2017-09-18 2019-03-26 上海朗帛通信技术有限公司 一种被用于窄带通信的用户设备、基站中的方法和装置
WO2021008416A1 (zh) * 2019-07-12 2021-01-21 华为技术有限公司 确定资源分配的方法和装置
CN112399600A (zh) * 2019-08-15 2021-02-23 华为技术有限公司 确定上行传输时域资源的方法和装置
US20210136753A1 (en) * 2017-01-05 2021-05-06 Nec Corporation Method and device for indicating resource allocation
CN112929958A (zh) * 2016-12-14 2021-06-08 Oppo广东移动通信有限公司 传输方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112929958A (zh) * 2016-12-14 2021-06-08 Oppo广东移动通信有限公司 传输方法和装置
US20210136753A1 (en) * 2017-01-05 2021-05-06 Nec Corporation Method and device for indicating resource allocation
CN109525377A (zh) * 2017-09-18 2019-03-26 上海朗帛通信技术有限公司 一种被用于窄带通信的用户设备、基站中的方法和装置
WO2021008416A1 (zh) * 2019-07-12 2021-01-21 华为技术有限公司 确定资源分配的方法和装置
CN112399600A (zh) * 2019-08-15 2021-02-23 华为技术有限公司 确定上行传输时域资源的方法和装置

Also Published As

Publication number Publication date
CN116095644A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US11601885B2 (en) Channel access for multi-user (MU) wake-up signal transmission by using FDMA scheme
WO2023071864A1 (zh) 发送信号的方法和装置
EP3577912B1 (en) Determining access slot for communications on radio interface
WO2023151045A1 (zh) 反向散射通信的方法及设备
WO2023071863A1 (zh) 通信方法、装置、设备以及存储介质
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023159484A1 (zh) 信道侦听方法和通信设备
WO2023071870A1 (zh) 通信方法、系统及相关装置
WO2024065267A1 (zh) 无线通信的方法和设备
WO2023142831A1 (zh) 通信方法、装置、设备以及存储介质
WO2023279325A1 (zh) 一种通信方法及装置、终端设备、网络设备
WO2023004583A1 (zh) 无线通信的方法和终端设备
WO2023168687A1 (zh) 无线通信方法、终端设备及载波发送设备
WO2023173438A1 (zh) 数据传输方法、第一设备和第二设备
WO2023225788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024012369A1 (zh) 一种数据传输的方法和通信装置
WO2023236144A1 (zh) 无线通信的方法和设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2023283758A1 (zh) 无线通信方法、终端设备和通信设备
WO2023141974A1 (zh) 通讯状态的指示方法、终端设备和网络设备
US20240137194A1 (en) Method and device for wireless communication
WO2023097502A1 (zh) 信息获取方法、装置、设备及存储介质
WO2024082267A1 (zh) 无线通信的方法和设备
WO2024098403A1 (zh) 无线通信的方法及设备
WO2023010341A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885741

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022885741

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022885741

Country of ref document: EP

Effective date: 20240508