WO2023071870A1 - 通信方法、系统及相关装置 - Google Patents

通信方法、系统及相关装置 Download PDF

Info

Publication number
WO2023071870A1
WO2023071870A1 PCT/CN2022/125937 CN2022125937W WO2023071870A1 WO 2023071870 A1 WO2023071870 A1 WO 2023071870A1 CN 2022125937 W CN2022125937 W CN 2022125937W WO 2023071870 A1 WO2023071870 A1 WO 2023071870A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
resource
duration
indication information
time domain
Prior art date
Application number
PCT/CN2022/125937
Other languages
English (en)
French (fr)
Inventor
罗之虎
吴毅凌
金哲
陈俊
曲韦霖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071870A1 publication Critical patent/WO2023071870A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0241Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where no transmission is received, e.g. out of range of the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method, system and related devices.
  • mMTC massive Machine-Type Communication
  • 3GPP 3rd Generation Partnership Project
  • Passive IoT passive IoT
  • wake-up receiver or wake-up radio wake-up receiver or wake-up
  • the embodiment of the present application provides a communication method, system and related devices, which can prevent the second device from occupying channel resources for a long time, so as to achieve the purpose of releasing channel resources for the cellular communication system.
  • the first device can use the released channel resources to schedule other than the second device.
  • Other terminal equipment improve data transmission efficiency.
  • an embodiment of the present application provides a communication method, the method includes: the first device determines first indication information, the first indication information is used by the second device to determine a first resource, and the first resource is not used for the The second device performs data transmission; the first device sends first indication information to the second device; the first indication information includes a first duration, and the channel resource within the first duration after the first indication information is the first indication information a resource.
  • the first indication information includes a second duration and a third duration
  • the starting position of the third duration is a time domain position that is N second durations away from the reference time domain position; every two second durations interval of one third duration; wherein, N and M are positive integers, and the channel resources within the N second durations are used for data transmission corresponding to the second device; the first resource is composed of the M third durations The channel resources in it are composed.
  • the first device can instruct the second device not to perform data transmission in the reserved channel resource, so as to prevent the second device from occupying the channel resource for a long time, thereby achieving the purpose of releasing the channel resource for the cellular communication system,
  • the first device can use the released channel resources to schedule terminal devices other than the second device, so as to improve data transmission efficiency.
  • the method further includes: the first device sends data to the second device in the second resource; when the second resource overlaps with the first resource, the first device discards the The data in the first resource, or the first device delays the data mapped in the first resource to a third resource for transmission, and the third resource does not overlap with the first resource.
  • the first device can further implement not to transmit data to the second device within the reserved resources, so as to achieve the purpose of releasing channel resources for the cellular communication system.
  • the method further includes: the first device sending downlink data to the second device;
  • the reference time domain position is the time domain start position corresponding to the downlink data.
  • the downlink data includes a first sequence and first data, the first sequence is located before the first data, and the reference time domain position is based on the starting time domain position of the first sequence, or the The end time domain position of the first sequence is determined, or determined according to the starting position of the first data.
  • the method further includes: the first device receiving first capability information sent by the second device; the first capability information includes any one or more of the following: whether the second device supports Reserve resources; the second device supports the maximum duration of reserved resources.
  • the first device can determine an appropriate reserved resource according to the capability of the second device, so that the reserved resource can be supported by the second device.
  • the method further includes: the first device sends one or more of the following to the second device: a second sequence, The third sequence or the fourth sequence; the second sequence is used for the second device to obtain energy or carrier; the third sequence is used for the second device to determine the start position of downlink data transmission; the fourth sequence is used for the first
  • the two devices perform time and/or frequency tracking synchronization.
  • the method further includes: the first device sends the following one to the second device One or more items: second sequence, third sequence or fourth sequence; the second sequence is used for the second device to obtain energy or carrier; the third sequence is used for the second device to determine the start position of downlink data transmission ; The fourth sequence is used for the second device to perform time and/or frequency tracking synchronization.
  • the first device can provide the second device with energy, a delimiter for transmitting data, and information for time or frequency synchronization, especially when the resources reserved by the second device are too long, which can improve The data transfer efficiency of the second device.
  • the method further includes: the first device sends timer configuration information to the second device; when the timer After timeout, the first resource can be used by the second device to transmit data.
  • the first device can indicate the time limit for reserving resources for the second device, thereby more reasonably instructing the duration of reserving resources for the second device.
  • the method further includes: the first device sends second indication information to the second device; the second indication information It is used for the second device to determine a fourth resource, and the fourth resource is not used for data transmission corresponding to the second device;
  • the first device may update the resources indicated to be reserved for the second device according to service requirements.
  • the embodiment of the present application provides a communication method, the method includes: the first device sends downlink data to the second device on the fifth resource, or receives uplink data from the second device; the first device The device sends downlink data to the third device on the sixth resource, or receives uplink data from the third device; in the frequency domain, the fifth resource is located in the sixth resource, and the bandwidth corresponding to the fifth resource is smaller than that of the sixth resource.
  • the maximum bandwidth supported by the second device is smaller than the maximum bandwidth supported by the second device.
  • the offset value between the high-frequency boundaries of the fifth resource and the sixth resource in the frequency domain is less than a threshold, or the offset value between the low-frequency boundaries of the fifth resource and the sixth resource in the frequency domain is less than a threshold threshold.
  • the channel resources occupied by the second device for uplink and downlink data transmission can be located near the low-frequency boundary of the carrier specified in the 4G LTE or 5G NR communication system or near the high-frequency boundary of the carrier, or located at the carrier In the guard band, to solve the impact of Passive IoT transmission, WUR data transmission or other data transmission on the channel resources of cellular data transmission when the first device does not configure reserved resources, or when the second device does not support reserved resources.
  • the embodiment of the present application provides a communication method, the method includes: the second device receives the first indication information sent by the first device; the second device determines the first resource according to the first indication information, the The first resource is not used for data transmission by the second device; the first indication information includes a first duration, and the channel resource within the first duration after the first indication information is the first resource.
  • the first indication information includes a second duration and a third duration
  • the starting position of the third duration is a time domain position that is N times away from the reference time domain position; every two of the second durations There is one third duration between the two durations; wherein, N and M are positive integers, and the N channel resources within the second duration are used for data transmission corresponding to the second device; the first resource is composed of the M The composition of channel resources within the third duration.
  • the second device can not perform data transmission in the reserved channel resource according to the instruction of the first device, so as to prevent the second device from occupying the channel resource for a long time, so as to release the channel resource for the cellular communication system
  • the first device can use the released channel resources to schedule terminal devices other than the second device, so as to improve data transmission efficiency.
  • the method further includes: the second device receiving the data sent by the first device in the second resource; when the second resource overlaps with the first resource, the second device discards the mapping The data in the first resource, or the second device delays the data mapped in the first resource to a third resource for transmission, and the third resource does not overlap with the first resource.
  • the second device can further implement not to transmit data to the second device within the reserved resources, so as to achieve the purpose of releasing channel resources for the cellular communication system.
  • the method further includes: the second device receiving the downlink data sent by the first device;
  • the reference time domain position is the time domain start position corresponding to the downlink data.
  • the downlink data includes a first sequence and first data, the first sequence is located before the first data, and the reference time domain position is based on the starting time domain position of the first sequence, or the The end time domain position of the first sequence is determined, or determined according to the starting position of the first data.
  • the method further includes: the second device sends first capability information to the first device; the first capability information includes any one or more of the following: whether the second device supports reservation Resources; the maximum duration that the second device supports to reserve resources.
  • the first device can determine an appropriate reserved resource according to the capability of the second device, that is, the reserved resource can be supported by the second device, which further improves the implementability of the solution.
  • the method further includes: the second device receives one or more of the following sent by the first device: the second sequence, The third sequence or the fourth sequence; the second sequence is used for the second device to obtain energy or carrier; the third sequence is used for the second device to determine the start position of downlink data transmission; the fourth sequence is used for the first
  • the two devices perform time and/or frequency tracking synchronization.
  • the method when the first resource satisfies the preset condition, after the second device receives the first indication information sent by the first device, the method further includes: the second device receives the first indication information sent by the first device One or more of the following: a second sequence, a third sequence or a fourth sequence; the second sequence is used for the second device to obtain energy or obtain a carrier; the third sequence is used for the second device to determine the start of downlink data transmission The starting position; the fourth sequence is used for the second device to perform time and/or frequency tracking synchronization.
  • the second device can receive the energy provided by the first device, the delimiter used to transmit data, and the information used for time or frequency synchronization, especially when the resources reserved by the second device are too long, this can Improve the data transfer efficiency of the second device.
  • the method further includes: the second device receives timer configuration information sent by the first device; when the timer expires Afterwards, the second device transmits data within the first resource.
  • the second device can further determine the timeliness of reserving resources, so as to reserve resources with an appropriate duration.
  • the method further includes: the second device receives second indication information sent by the first device; the second indication information is used for the The second device determines a fourth resource, and the fourth resource is not used by the second device for data transmission.
  • the first device may update the resources indicated to be reserved for the second device according to service requirements.
  • the embodiment of the present application provides a communication method, the second device receives the downlink data sent by the first device in the fifth resource, or sends uplink data to the first device; the third device receives the downlink data sent by the first device; Receive the first device to send downlink data in six resources, or send uplink data to the first device; in the frequency domain, the fifth resource is located in the sixth resource, and the bandwidth corresponding to the fifth resource is smaller than the sixth resource Corresponding to the bandwidth, the maximum bandwidth supported by the second device is smaller than the maximum bandwidth supported by the second device.
  • the offset value between the high-frequency boundaries of the fifth resource and the sixth resource in the frequency domain is smaller than a threshold, or the offset value between the low-frequency boundaries of the fifth resource and the sixth resource in the frequency domain is smaller than the threshold.
  • the channel resource position occupied by the second device for uplink and downlink data transmission can be located near the low-frequency boundary of the carrier specified in the 4G LTE or 5G NR communication system or near the high-frequency boundary of the carrier, or located at the carrier In the guard band, to solve the impact of Passive IoT transmission, WUR data transmission or other data transmission on the channel resources of cellular data transmission when the first device does not configure reserved resources, or when the second device does not support reserved resources.
  • the embodiment of the present application provides a first device, including a communication unit and a processing unit; wherein: the processing unit is used to determine first indication information, and the first indication information is used by the second device to determine the first resource, the first resource is not used for data transmission by the second device; the communication unit is used to send the first indication information to the second device; the first indication information includes a first duration, after the first indication information The channel resource within the first duration is the first resource.
  • the first indication information includes a second duration and a third duration
  • the starting position of the third duration is a time domain position that is N second durations away from the reference time domain position; every two second durations interval of one third duration; wherein, N and M are positive integers, and the channel resources within the N second durations are used for data transmission corresponding to the second device; the first resource is composed of the M third durations The channel resources in it are composed.
  • the first device can instruct the second device not to perform data transmission in the reserved channel resource, so as to avoid other long-term occupation of channel resources, thereby achieving the purpose of releasing channel resources for the cellular communication system , the first device can use the released channel resources to schedule terminal devices other than the second device, so as to improve data transmission efficiency.
  • the communication unit is further configured to send data to the second device in the second resource; when the second resource overlaps with the first resource, the communication unit discards the data mapped in the second resource.
  • the data in a resource, or the communication unit delays the data mapped in the first resource to a third resource for transmission, and the third resource does not overlap with the first resource.
  • the first device can further implement not to transmit data to the second device within the reserved resources, so as to achieve the purpose of releasing channel resources for the cellular communication system.
  • the communication unit is further configured to send downlink data to the second device;
  • the reference time domain position is a time domain start position corresponding to the downlink data.
  • the downlink data includes a first sequence and first data, the first sequence is located before the first data, and the reference time domain position is based on a starting time domain position of the first sequence, Or the end time domain position of the first sequence is determined, or determined according to the starting position of the first data.
  • the communication unit is further configured to receive first capability information sent by the second device; the first capability information includes any one or more of the following: whether the second device supports Reserve resources; the second device supports the maximum duration of reserved resources.
  • the second device can determine an appropriate reserved resource according to the capability of the first device, so that the reserved resource can be supported by the second device.
  • the communication unit is further configured to send one or more of the following to the second device: the second sequence, the second The third sequence or the fourth sequence; the second sequence is used for the second device to obtain energy or carrier; the third sequence is used for the second device to determine the start position of downlink data transmission; the fourth sequence is used for the second Devices perform time and/or frequency tracking synchronization.
  • the first device when the first resource satisfies the preset condition, after the communication unit sends the first resource to the second device, the first device is further configured to send the following to the second device One or more items: second sequence, third sequence or fourth sequence; the second sequence is used for the second device to obtain energy or carrier; the third sequence is used for the second device to determine the start of downlink data transmission Location; the fourth sequence is used by the second device to perform time and/or frequency tracking synchronization.
  • the first device can provide the second device with energy, a delimiter for transmitting data, and information for time or frequency synchronization, especially when indicating that the resource reserved by the second device is too long, so Data transmission efficiency of the second device can be improved.
  • the method further includes: the first device sends timer configuration information to the second device; when the timer After the timer times out, the first resource can be used by the second device to transmit data.
  • the first device can indicate the time limit for reserving resources for the second device, thereby more reasonably instructing the duration of reserving resources for the second device.
  • the method further includes: the communication unit is further configured to send second indication information to the second device;
  • the second indication information is used by the second device to determine a fourth resource, and the fourth resource is not used for data transmission corresponding to the second device;
  • the first device may update the resources indicated to be reserved for the second device according to service requirements.
  • the embodiment of the present application provides a first device, including a communication unit; wherein: the communication unit of the first device is used to send downlink data to the second device on the fifth resource, or to send downlink data from the first device The second device receives uplink data;
  • the communication unit of the second device is configured to send downlink data to the third device on the sixth resource, or receive uplink data from the third device; the fifth resource is located in the sixth resource in the frequency domain, and the The bandwidth corresponding to the fifth resource is smaller than the bandwidth corresponding to the sixth resource, and the maximum bandwidth supported by the first device is smaller than the maximum bandwidth supported by the second device.
  • the offset value between the high-frequency boundaries of the fifth resource and the sixth resource in the frequency domain is less than a threshold, or the offset value between the low-frequency boundaries of the fifth resource and the sixth resource in the frequency domain is less than a threshold threshold.
  • the channel resource position occupied by the uplink and downlink data transmission of the second device may be located near the low-frequency boundary of the carrier specified in the 4G LTE or 5G NR communication system or near the high-frequency boundary of the carrier, or It is located in the guard band of the carrier to solve the problem of channel resources for cellular data transmission during Passive IoT transmission, WUR data transmission or other data transmission when the first device does not configure reserved resources, or when the second device does not support reserved resources. Influence.
  • the embodiment of the present application provides a second device, including a communication unit and a processing unit; wherein:
  • the communication unit is configured to receive the first indication information sent by the first device; the processing unit is configured to determine a first resource according to the first indication information, and the first resource is not used for data transmission by the second device; the The first indication information includes a first duration, and the channel resource within the first duration after the first indication information is the first resource; or, the first indication information includes a second duration and a third duration, and the third duration
  • the starting position is a time domain position that is N second time lengths away from the reference time domain position; every two second time lengths are separated by a third time length; wherein, N and M are positive integers, and the N time lengths
  • the channel resources within the second duration are used for data transmission corresponding to the second device; the first resource consists of the M channel resources within the third duration.
  • the second device can not perform data transmission in the reserved channel resource according to the instruction of the first device, so as to avoid the long-term occupation of the channel resource by the second device, so as to achieve the purpose of freeing the channel resource for the cellular communication system.
  • the first device can use the released channel resources to schedule terminal devices other than the second device, so as to improve data transmission efficiency.
  • the communication unit is further configured to receive the data sent by the first device in the second resource; when the second resource overlaps with the first resource, the communication unit discards the The data in the first resource, or the communication unit postpones the data mapped in the first resource to a third resource for transmission, and the third resource does not overlap with the first resource.
  • the second device can further implement not to transmit data to the second device within the reserved resources, so as to achieve the purpose of releasing channel resources for the cellular communication system.
  • the method further includes: the communication unit is further configured to receive downlink data sent by the first device; the reference time domain position is a time domain start position corresponding to the downlink data.
  • the downlink data includes a first sequence and first data, the first sequence is located before the first data, and the reference time domain position is based on a starting time domain position of the first sequence, Or the end time domain position of the first sequence is determined, or determined according to the starting position of the first data.
  • the communication unit is further configured to send first capability information to the first device; the first capability information includes any one or more of the following: whether the second device supports reservation Resources; the second device supports the maximum duration of reserved resources.
  • the first device can determine an appropriate reserved resource according to the capability of the second device, that is, the reserved resource can be supported by the second device, which further improves the implementability of the solution.
  • the communication unit is further configured to receive one or more of the following sent by the first device: the second sequence, The third sequence or the fourth sequence; the second sequence is used for the second device to obtain energy or carrier; the third sequence is used for the second device to determine the start position of downlink data transmission; the fourth sequence is used for the first
  • the two devices perform time and/or frequency tracking synchronization.
  • the communication unit when the first resource satisfies the preset condition, after the communication unit receives the first indication information sent by the first device, the communication unit is further configured to receive the following information sent by the first device: One or more items: second sequence, third sequence or fourth sequence; the second sequence is used for the second device to obtain energy or carrier; the third sequence is used for the second device to determine the start of downlink data transmission Location; the fourth sequence is used by the second device to perform time and/or frequency tracking synchronization.
  • the second device can receive the energy provided by the first device, the delimiter used to transmit data, and the information used for time or frequency synchronization, especially when the resources reserved by the second device are too long, this can Improve the data transfer efficiency of the second device.
  • the communication unit after the communication unit receives the first indication information sent by the first device, the communication unit is further configured to receive timer configuration information sent by the first device; when the timer expires Afterwards, the second device transmits data within the first resource.
  • the second device can further determine the timeliness of reserving resources, so as to reserve resources with an appropriate duration.
  • the communication unit after the communication unit receives the first indication information sent by the first device, the communication unit is further configured to receive second indication information sent by the first device; the second indication information is used to The second device determines a fourth resource, and the fourth resource is not used for data transmission by the second device.
  • the first device may update the resources indicated to be reserved for the second device according to service requirements.
  • the embodiment of the present application provides a second device, including a communication unit; wherein:
  • the communication unit of the second device is configured to receive downlink data sent by the first device within the fifth resource, or send uplink data to the first device;
  • the communication unit of the other second device is configured to receive the downlink data sent by the first device within the sixth resource, or send uplink data to the first device;
  • the fifth resource is located within the sixth resource, the bandwidth corresponding to the fifth resource is smaller than the bandwidth corresponding to the sixth resource, and the maximum bandwidth supported by the one second device is smaller than the maximum bandwidth supported by the other second device. bandwidth.
  • the offset value between the high-frequency boundaries of the fifth resource and the sixth resource in the frequency domain is smaller than a threshold, or the offset value between the low-frequency boundaries of the fifth resource and the sixth resource in the frequency domain is smaller than the threshold.
  • the channel resources occupied by the uplink and downlink data transmission of the second device can be configured to be located near the low-frequency boundary of the carrier specified in the 4G LTE or 5G NR communication system or near the high-frequency boundary of the carrier, or It is located in the guard band of the carrier to solve the problem of channel resources for cellular data transmission during Passive IoT transmission, WUR data transmission or other data transmission when the first device does not configure reserved resources, or when the second device does not support reserved resources. Influence.
  • the embodiment of the present application provides a communication method, the method includes: the first device determines first indication information, the first indication information is used by the second device to determine a first resource, and the first resource is not used for the The second device performs data transmission; the first device sends first indication information to the second device; the first indication information includes a second duration and a third duration, and the starting position of the third duration is a distance reference time domain position is the time domain position of N second time lengths; every two second time lengths are separated by one of the third time lengths; wherein, N and M are positive integers, and the channel resources in the N second time lengths are used for the Data transfer corresponding to the second device.
  • the first indication information also includes first information, and the first information is used to indicate whether the M channel resources within the third duration are used for data transmission corresponding to the second device; when the first information indicates that the When the M channel resources within the third duration are not used for data transmission corresponding to the second device, the first resource consists of the M channel resources within the third duration.
  • the first device may instruct the second device not to perform data transmission in the reserved channel resource, so as to prevent the second device from occupying the channel resource for a long time, thereby achieving the purpose of releasing the channel resource for the cellular communication system,
  • the first device can use the released channel resources to schedule terminal devices other than the second device, so as to improve data transmission efficiency.
  • the method further includes: the first device sends data to the second device in the second resource; when the second resource overlaps with the first resource, the first device discards the data mapped in the second resource.
  • the data in the first resource, or the first device delays the data mapped in the first resource to a third resource for transmission, and the third resource does not overlap with the first resource.
  • the first device can further implement not to transmit data to the second device within the reserved resources, so as to achieve the purpose of releasing channel resources for the cellular communication system.
  • the method further includes: the first device sends downlink data to the second device;
  • the reference time domain position is the time domain start position corresponding to the downlink data.
  • the downlink data includes a first sequence and first data, the first sequence is located before the first data, and the reference time domain position is based on the starting time domain position of the first sequence, or the The end time domain position of the first sequence is determined, or determined according to the starting position of the first data.
  • the method further includes: the first device receiving first capability information sent by the second device; the first capability information includes any one or more of the following: whether the second device supports Reserve resources; the second device supports the maximum duration of reserved resources.
  • the first device can determine an appropriate reserved resource according to the capability of the second device, so that the reserved resource can be supported by the second device.
  • the method further includes: the first device sends one or more of the following to the second device: a second sequence, The third sequence or the fourth sequence; the second sequence is used for the second device to obtain energy or carrier; the third sequence is used for the second device to determine the start position of downlink data transmission; the fourth sequence is used for the first
  • the two devices perform time and/or frequency tracking synchronization.
  • the method further includes: the first device sends the following one to the second device One or more items: second sequence, third sequence or fourth sequence; the second sequence is used for the second device to obtain energy or carrier; the third sequence is used for the second device to determine the start position of downlink data transmission ; The fourth sequence is used for the second device to perform time and/or frequency tracking synchronization.
  • the first device can provide the second device with energy, a delimiter for transmitting data, and information for time or frequency synchronization, especially when the resources reserved by the second device are too long, which can improve The data transfer efficiency of the second device.
  • the method further includes: the first device sends timer configuration information to the second device; when the timer After timeout, the first resource can be used by the second device to transmit data.
  • the first device can indicate the time limit for reserving resources for the second device, thereby more reasonably instructing the duration of reserving resources for the second device.
  • the method further includes: the first device sends second indication information to the second device; the second indication information It is used for the second device to determine a fourth resource, and the fourth resource is not used for data transmission corresponding to the second device;
  • the first device may update the resources indicated to be reserved for the second device according to service requirements.
  • the embodiment of the present application provides a computer-readable storage medium, including instructions, and when the instructions are run on the first device, the first device executes the first aspect, the second aspect and the ninth aspect. method described in.
  • the embodiment of the present application provides a computer-readable storage medium, including instructions, which is characterized in that, when the instructions are run on the second device, the second device is made to execute the third aspect, Methods are described in the fourth aspect.
  • the embodiment of the present application provides a chip, the chip is applied to a first device, and the chip includes one or more processors, and the processors are used to invoke computer instructions so that the first device Perform the method as described in the first aspect, the second aspect and the ninth aspect.
  • the embodiment of the present application provides a chip, the chip is applied to a second device, and the chip includes one or more processors, and the processors are used to call computer instructions so that the second device Execute the method as described in the third aspect and the fourth aspect.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2A is a schematic diagram of a downlink communication method provided by an embodiment of the present application.
  • FIG. 2B is a schematic diagram of an uplink communication method provided by an embodiment of the present application.
  • FIG. 2C is a schematic flow chart of a communication method provided in an embodiment of the present application.
  • FIG. 3A is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 3B is a schematic diagram of another communication method provided by the embodiment of the present application.
  • FIG. 4A is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 4B is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 4C is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 4D is a schematic flow chart of another communication method provided by the embodiment of the present application.
  • FIG. 5A is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 5B is a schematic diagram of a channel resource configuration provided by an embodiment of the present application.
  • FIG. 5C is a schematic diagram of another channel resource configuration provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of another channel resource configuration provided by the embodiment of the present application.
  • FIG. 7A is a schematic structural diagram of a first device provided in the embodiment of the present application.
  • FIG. 7B is a schematic structural diagram of another first device provided by the embodiment of the present application.
  • Fig. 8A is a schematic structural diagram of a second device provided by the embodiment of the present application.
  • FIG. 8B is a schematic structural diagram of another second device provided by the embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as implying or implying relative importance or implicitly specifying the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • IoT With the popularity of IoT, more and more IoT devices have been deployed in people's lives. For example: smart water meters, shared bicycles, and smart cities, environmental monitoring, smart homes, forest fire prevention and other devices aimed at sensing and data acquisition, etc.
  • IoT devices will be ubiquitous, and may be embedded in every piece of clothing, every package, and every key. Almost all offline items will be brought online under the empowerment of IoT technology.
  • the process of realizing the Internet of Everything has also brought a lot of challenges to the industry. The first is the problem of power supply.
  • IoT is still mainly driven by operators, and IoT modules need to communicate with base stations using standard cellular protocols.
  • the IoT module Since the base station needs to cover as large an area as possible, the IoT module needs to be able to communicate even when it is far away from the base station, which makes the IoT device still need to consume up to 30mA of current during wireless communication, so the current IoT module It is still necessary to use a higher-capacity battery to work, which also makes it difficult to reduce the size of the IoT module and increases the cost of the IoT device.
  • this embodiment of the application proposes a communication method.
  • the communication method is applied in a communication system including a first device and a second device.
  • the first device can instruct the second device to reserve channel resources, and the second device does not perform data transmission in the reserved channel resources, so as to prevent the second device from occupying channel resources for a long time, so as to achieve the purpose of freeing the channel resources for the cellular communication system.
  • the first device can use the released channel resources to schedule terminal devices other than the second device.
  • the cellular communication system includes but is not limited to: 4G, 4G evolution, 5G, 5G evolution and other communication systems;
  • the first device is a network device and or terminal device, and the first device includes but is not limited to: a base station or a powerful terminal device;
  • the second device is a terminal device, and the second device includes but is not limited to: Passive IoT device, WUR device, etc.
  • system architecture and/or application scenario of the communication method will be described below first. It can be understood that the system architecture and/or application scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the communication method provided in this application is mainly applied to a long term evolution (Long term evolution, LTE) system or an advanced long term evolution (LTE advanced, LTE-A) system or a 5G NR system.
  • the communication method can also be applied to other communication systems, as long as there are entity devices in the communication system that can send information, and there are other entities in the communication system that can receive information.
  • the embodiment of the present application does not limit the type of the communication system.
  • FIG. 1 exemplarily shows a communication system 10 to which the communication method provided by the present application is applied.
  • the communication system 10 includes one or more first devices and one or more second devices.
  • the base station 100-1, the base station 100-2, and the terminals 200-1 to 200-9 form a communication system 10.
  • the base station 100-1 can directly send information to the terminals 200-1 to 200-7
  • the base station 100-1 may also send information to one or more terminal devices in the terminal 200-8 and the terminal 200-9 through the base station 100-2.
  • terminal 200-1 ⁇ terminal 200-3 can also form a sub-communication system 10-1.
  • terminal 200-1 can send information to terminal 200-2 and terminal 200-3. one or more terminal devices.
  • the base station 100-2, the terminal 200-8 and the terminal 200-9 can also form another sub-communication system 10-2.
  • the base station 100-2 can send information to the terminal 200-8 and the terminal 200-8.
  • the number and type of terminal equipment included in the communication system 10 shown in FIG. 1 is only an example, and in other embodiments of the present application, the communication system may also include Fig. 1 shows fewer or more sub-communication systems, terminal equipment or base stations and the like. The embodiment of the present application does not limit the architecture of the communication system.
  • the base station 100-1 and the base station 100-2 may be collectively referred to as the base station 100; the terminals 200-1 to 200-9 may be collectively referred to as the terminal 200.
  • the first device is the base station 100-1, the base station 100-2 or; the second device is the terminal 200-1, the terminal 200-2 ⁇ Terminal 200-9.
  • terminal 200-1 has better coverage conditions than other terminals 200-2 to 200-9, that is, between terminal 200-1 and the base station.
  • the communication distance is relatively short, and in addition, the functions of the terminal 200-1 are more powerful than those of the other terminals 200-2 to 200-9. Therefore, the communication method provided by this application can not only solve the coexistence problem between NR UE and Passive IoT UE/WUR UE, that is, not only avoid the impact of Passive IoT/WUR data transmission on NR continuous resource allocation.
  • the communication method provided by this application can also solve the competition problem of data transmission between two Passive IoT UEs.
  • the first UE is a Passive IoT UE with good coverage conditions, and the transmission time is short
  • the second UE is a Passive IoT UE with poor coverage conditions.
  • a large amount of time-domain repetition or spread spectrum is required to improve the signal-to-noise ratio.
  • the transmission time corresponding to the second UE is usually longer. If the second UE transmits continuously and occupies the channel for a long time, the first UE needs to wait until the second UE completes the transmission before it can transmit, which will increase the first UE transmission delay. At this time, for the second UE, the communication method provided by this application can be used. Reserved resources are set during the transmission process of the second UE.
  • the second UE cannot transmit within the reserved resources, but the network device can Scheduling of the first UE is performed. In this way, the transmission opportunity of the first UE is increased, so that the problem of increased transmission delay of the first UE waiting for the second UE to finish transmission can be improved.
  • the first device is the first device, and the types of devices that the first device can implement include any one or more of the following: base station, gateway-type node device, or powerful user terminal.
  • the base station is a physical device on the network side for sending or receiving signals.
  • base stations may have different names.
  • the base station in LTE mobile communication is called eNodeB
  • the base station in 5G NR is called gNB.
  • the base station can be a macro base station, a micro base station, a small base station, or a pole station.
  • the first device may support receiving data sent by the second device to the first device through reflection communication; or, the first device may also support sending a wake-up signal to the second device.
  • the second device is a user equipment (user equipment, UE), which may also be called a terminal device.
  • the types of devices that can be implemented by the second device include any one or more of the following: smart wearable devices such as mobile phones, watches, bracelets, etc.; smart pet wearable devices such as collars, etc.; Plug, smart kitchen and bathroom, etc.; smart office equipment such as smart printers, smart copiers, smart lighting systems, etc.; monitoring equipment for urban roads; medical care equipment; terminal equipment for sensing the atmosphere, soil, forests, water resources, etc. .
  • the second device includes: a user equipment supporting passive communication and large-scale machine type communication; or, it may be a terminal device that supports wake-up of the receiver; or, the second device may also be a device that supports reflective communication user equipment. That is to say, the second device includes a terminal supporting passive IoT data transmission, or may further include a terminal supporting WUR data transmission.
  • the RFID system consists of a reader and a tag.
  • the reader charges the tag by sending an excitation signal to the tag, that is to say, the tag receives the microwave signal sent by the reader and excites the electromagnetic induction coil in the tag to obtain energy through the microwave signal to drive the tag in the tag.
  • the chip works, and sends data to the reader through the reflected signal.
  • the reader can identify the identification (Identification, ID) of the tag, and perform operations such as reading and writing the tag. Thereby completing reading and writing data on the tag.
  • the power module is omitted, the volume of passive RFID products can reach the order of centimeters or even smaller, and its own structure is simple, low cost, low failure rate, and long service life.
  • Passive IoT devices can be passive (Batter Free), that is, Passive IoT devices are not equipped with themselves or do not mainly rely on batteries or wired power sources for power supply. However, the fact that Passive IoT devices do not have a power module does not mean that no electricity is required. Passive IoT devices can obtain energy from ambient light, heat, and radio frequency, thereby supporting IoT data perception, wireless transmission, and distributed computing. wait. Passive IoT devices can also be passive or semi-passive. Energy storage passive devices have energy storage devices. Semi-passive devices have batteries, but the objects powered by the batteries are some low-power electronic circuits in the device that need to maintain data, or low-power chips.
  • FIG. 2A-FIG. 2B exemplarily show a schematic diagram of an uplink and downlink communication method in Passive IoT communication.
  • FIG. 2A exemplarily shows a schematic diagram of a Passive IoT downlink communication method.
  • the first device sends an AM signal to the second device through a downlink
  • the second device receives the AM signal, and may use an envelope detector to perform envelope detection on the AM signal to obtain a low-frequency signal therein.
  • the above-mentioned envelope detection refers to the process of demodulating the low-frequency signal from the AM signal.
  • the generalized detection is usually called demodulation, which is the inverse process of modulation, that is, the process of extracting the modulated signal from the modulated signal.
  • envelope detection is the process of extracting the modulating signal from its amplitude variation.
  • the envelope reflects the amplitude change curve of a high-frequency signal.
  • the main components of an envelope detector include the diode and RC oscillator circuit shown in Figure 2A.
  • the common method of envelope detection is to use diodes for one-way filtering and then low-pass filtering.
  • the low-pass filter is the RC oscillator circuit shown in Figure 2A.
  • the role of the diode is to prevent the positive and negative envelopes from canceling out during low-pass filtering, so that low-frequency signals cannot be detected.
  • the envelope detection circuit shown in FIG. 2A is a schematic diagram of the most traditional basic circuit structure, and the evolution structure of the envelope detection circuit will not be repeated here.
  • the embodiment of the present application does not limit the structure of the envelope detection circuit adopted by the second device.
  • FIG. 2B exemplarily shows a schematic diagram of a Passive IoT uplink communication method.
  • the second device is a Passive IoT device.
  • the passive IoT device is taken as an example.
  • the second device itself cannot provide power, and it is unconditionally connected to a wired power source for the Passive IoT device to transmit data. Therefore, the second device needs to obtain energy from the external environment, and then provide Passive IoT devices for data transmission, data processing and other operations.
  • the second device when it receives the carrier signal sent by the first device, it can use the energy obtained from the electromagnetic field generated in the space to drive the chip to transmit the information stored by itself.
  • the relationship between the first device and the second device is the relationship of "electromagnetic backscatter coupling".
  • Electromagnetic backscatter coupling refers to the use of the spatial propagation law of electromagnetic waves.
  • the information carrying the measured object is reflected back. This coupling is suitable for long-distance radio frequency identification systems that work at high frequencies and microwaves.
  • the uplink communication method in Passive IoT communication shown in FIG. 2B is only an example.
  • the second device that is, the Passive IoT device, can also be driven by acquiring energy such as ambient light and heat.
  • the chip transmits the information stored by itself.
  • the second device may also be an energy storage passive device or a semi-passive device.
  • FIG. 2C exemplarily shows a schematic diagram of a Passive IoT communication flow. Specifically include the following steps:
  • the first device broadcasts first signaling, where the first signaling carries relevant parameters of a matching condition.
  • the relevant parameters of the matching condition are used to select a specific device meeting the matching condition.
  • devices whose communication distance with the first device satisfies a certain condition such as the second device and the third device, will all receive the first signaling.
  • the first device may broadcast the first signaling multiple times, so as to screen qualified specific devices multiple times.
  • the first device broadcasts the second signaling, wherein the second signaling carries a first parameter, and the first parameter includes any one or more of the following: downlink data rate, uplink data rate, encoding method, Q value, Target index etc.
  • the downlink data rate, the uplink data rate, and the encoding method are used to initialize the communication link.
  • the Q value is used to determine the counter value of the device.
  • the Target indicator is used to further filter devices.
  • devices whose communication distance with the first device satisfies a certain condition will all receive the second signaling.
  • the second device After receiving the first signaling and the second signaling, the second device detects that the matching condition in the first signaling is met and the Target indicator in the second signaling is met, then the second device responds to the second signaling , determining the value of the counter according to the Q value in the second signaling, specifically, a random number may be generated within the range of 0 ⁇ 2 Q ⁇ 1 as the value of the counter.
  • the third device receives the first signaling and the second signaling, it detects that it does not meet any one or more of the following: the matching condition in the first signaling and the Target indicator in the second signaling; then The third device does not respond.
  • the preset condition means, for example, that the counter value is 0.
  • the value can be adjusted by receiving the third signaling sent by the first device.
  • the second device receives the When the third signaling is issued, the second device decrements the counter value by one until it is reduced to 0.
  • RN16 is a random number generated by the second device. This reduces the probability of collisions when multiple devices respond to the first device.
  • step S104 the first device sends a confirmation message carrying the RN16.
  • step S103 and step S104 can be understood as a handshake process between the two parties.
  • the first device performs an operation of reading and writing data on the second device.
  • the operation of reading data is specifically, the second device backscatters the data to the first device.
  • the site equipment In a wireless communication system, most of the energy of the station equipment is wasted in channel monitoring, that is, when the station does not send and receive messages, if the station equipment continues to monitor the channel, a large amount of energy will be consumed. In order to reduce the waste of energy and prevent the site equipment from being in a dormant state for too long and cause slow operation, the site equipment must be able to operate in a state of low power consumption and low latency.
  • the WUR architecture came into being, and its core idea is: In addition to the traditional main transceiver module (mainradio, mr for short), the receiver device also adds a low-power wakeup receiver (wurx for short). The transceiver module is the 802.11 main radio (mainradio, mr for short). Because the power consumption of wurx is several orders of magnitude lower than traditional low power consumption, wurx can run all the time.
  • the mr in the second device enters deep sleep, and the low-power wurx starts to work, and the wurx is used to monitor the channel. In this case mr remains in deep sleep or shutdown mode until wurx wakes it up.
  • the first device when there is data to be transmitted between the first device and the second device, the first device first sends a wakeup packet (wup packet, referred to as wup) to wurx, and the wurx that has been turned on correctly receives the message sent to itself.
  • wup packet referred to as wup
  • an interrupt is generated to mr's microcontroller to switch it from sleep to active mode, so as to wake up mr of the second device.
  • the mr's microcontroller then turns on the main radio transceiver to communicate with the first device in a conventional manner.
  • Random access is a basic and important process in cellular communication systems such as 4G LTE systems and 5G NR systems. Its main purposes are as follows: 1It is used to establish a wireless link between the terminal and the network device; 2Establish a unique terminal identifier C-RNTI, Request the network to allocate uplink resources to the terminal. Therefore, random access is not only used for initial access, but also can be used for new cell access during handover, access after wireless link failure, restoration of uplink synchronization and UL-SCH when there is uplink/downlink data transmission resource requests, etc.
  • contention-based and non-contention-based There are two types of random access: contention-based and non-contention-based. The difference is that the manner of selecting the random access prefix in the random access process is different.
  • Contention-based random access is for the terminal side to randomly select a random prefix from collision-based random access prefixes according to a certain algorithm. Based on non-contention, the network side assigns a non-conflicting random access prefix to the terminal device through downlink dedicated signaling.
  • FIG. 4A exemplarily shows a schematic diagram of a contention-based four-step random access process. Specifically include the following steps:
  • the second device sends a random access preamble to the first device.
  • the preamble randomly selects a preamble sequence for the second device, that is, the terminal device, and sends it to the network device, that is, the first device, on the RACH channel. S202.
  • the first device sends a random access response to the second device.
  • the network device After the network device detects that there is a preamble, it sends a random access response downlink, and the random access response should at least include any one or more of the following: the number of the received preamble, timing adjustment information, The uplink resource location indication information allocated by the second device, and the temporarily allocated terminal identifier (C-RNTI).
  • the random access response should at least include any one or more of the following: the number of the received preamble, timing adjustment information, The uplink resource location indication information allocated by the second device, and the temporarily allocated terminal identifier (C-RNTI).
  • the second device sends a connection establishment request to the first device.
  • the second device receives the random access response, and judges whether the random access response is sent to itself according to the number of the received preamble sequence, and if so, sends an uplink message on the allocated uplink resource, that is, sends a message to establish a connection
  • the request carries the identification (UE-ID) of the second device or carries a random number generated according to a preset rule.
  • the first device sends a conflict resolution message to the second device.
  • the conflict resolution message is the same as the UE-ID or the random number reported by the second device to the first device in step S203, the conflict is resolved successfully and the random access process is completed.
  • FIG. 4B exemplarily shows a schematic diagram of a non-contention-based four-step random access process. Specifically include the following steps:
  • the first device sends a random access assignment message to the second device, and assigns a non-collision random access preamble.
  • the first device may notify the second device through RRC signaling; for downlink data arrival and assisted positioning scenarios, the first device may notify the second device through the PDCCH;
  • the second device sends the received non-collision random access preamble to the first device.
  • the second device uses the specified preamble on the specified PRACH to initiate random access according to the instruction of the first device.
  • the first device sends a conflict resolution message to the second device.
  • FIG. 4C exemplarily shows a schematic diagram of a contention-based two-step random access process. Specifically include the following steps:
  • the second device sends a message A to the first device, where the message A includes a random access preamble and a payload carried on a PUSCH.
  • the preamble randomly selects a preamble sequence for the second device, that is, the terminal device, and sends it to the network device, that is, the first device, on the RACH channel.
  • the first device sends a message B, including a conflict resolution message, to the second device.
  • FIG. 4D exemplarily shows a schematic diagram of a contention-based two-step random access process. Specifically include the following steps:
  • the first device sends a random access assignment message to the second device, and assigns a non-collision random access preamble and PUSCH resources.
  • the second device sends a message A to the first device, where the message A includes a random access preamble and a payload carried on a PUSCH.
  • the preamble randomly selects a preamble sequence for the second device, that is, the terminal device, and sends it to the network device, that is, the first device, on the RACH channel.
  • the first device sends a message B, including a conflict resolution message, to the second device.
  • the second device randomly selects a preamble sequence to initiate a random access process to the first device side, so If multiple second devices use the same preamble sequence to initiate a random access process at the same moment, conflicts will occur, which may lead to access failure.
  • the contention-free random access uses the preamble sequence allocated by the eNodeB to initiate a random access process, so the access success rate is higher.
  • the eNodeB can know in advance that the second device needs to initiate a random access process only in the two scenarios of handover or downlink data transmission, so the contention-free random access can only be used in these two scenarios. For other application scenarios , only contention-based random access can be used.
  • FIG. 5A exemplarily shows a flow chart of the communication method provided by the present application.
  • step S401 the first device determines first indication information, and sends the first indication information to a second device.
  • the second device receives the first message.
  • the second device will not transmit data within the first resource.
  • the first indication information is used by the second device to determine the first resource, and the first resource is not used by the second device for data transmission.
  • the first indication information includes a first duration, and channel resources within the first duration after the first indication information are the first resources.
  • FIG. 5B exemplarily shows the mapping of the first resource in the channel resource.
  • the data transmission mapped in the channel resource refers to that the second device occupies the channel resource for data transmission within the period of time, such as transmitting Passive IoT data, WUR data, and the like.
  • the indication information mapped in the channel resource refers to that the second device occupies the channel resource within the period of time to receive the first indication information issued by the first device.
  • the reserved resource mapped in the channel resource means that the second device will not occupy the channel resource for data transmission within the period of time.
  • the first indication information can be located at the start position of the data transmission of the second device, can be located at the end position of the data transmission of the second device, or can be located at the start position of the data transmission of the second device and the second device Any time position in the middle of the end position of the data transmission.
  • the first indication information includes a second duration and a third duration
  • the starting position of the third duration is a time domain position that is N times away from the reference time domain position by the second duration; every two second durations There is a third duration between the two durations; where N and M are positive integers, and the channel resources within N second durations are used for data transmission corresponding to the second device; the first resource consists of M channels within the third duration resource composition.
  • the reference time domain position may be, when the first device sends downlink data to the second device, the time domain start position corresponding to the downlink data.
  • the downlink data includes the first sequence and the first data
  • the second device can obtain time and/or frequency synchronization according to the first sequence, and can also determine the boundary of a time unit, and the time unit can be a symbol or a time slot or a subframe or a frame, wherein the first sequence is located before the first data, and the first sequence and the first data may be continuous or discontinuous in the time domain.
  • the start position of the communication may be determined according to the start position of the first sequence, or the reference time domain position may be determined according to the end position of the first sequence, or the reference time domain position may be determined according to the start position of the first data, for example,
  • the reference time domain position is the start position of the first sequence or the end position of the first sequence or the start position of the first data.
  • the first sequence may also be referred to as a leading sequence.
  • FIG. 5C which exemplarily shows the mapping of the first resource in the channel resource.
  • the data transmission mapped in the channel resource refers to that the second device occupies the channel resource for data transmission within the period of time, such as transmitting Passive IoT data, WUR data, and the like.
  • the reserved resource mapped in the channel resource means that the second device will not occupy the channel resource for data transmission within the period of time. Among them, data transmission and reserved resources appear. In some embodiments, the duration of each segment of data transmission and the duration of reserved resources can be fixed or can be increased or decreased proportionally, etc., specifically issued by the first device.
  • the first indication information is determined, which is not limited in this embodiment of the present application.
  • the first device determines the first indication information, when the first device sends data to the second device within the second resource; when the second resource overlaps with the first resource, the The first device discards the data mapped in the first resource, or the first device postpones the data mapped in the first resource to a third resource for transmission, and the third resource and the The first resource has no overlap.
  • the method flow shown in FIG. 5A may also include the following steps:
  • the first device sends second indication information to the second device, for updating reserved resources.
  • the first device may continue to send second indication information to the second device; the second indication information is used by the second device to determine The fourth resource, the fourth resource is not used for the data transmission corresponding to the second device; it is worth noting that when the second device receives the updated reserved resource indication information, it receives the above-mentioned For the fourth resource, it is considered that the reserved resource indication information received last time is invalid, that is, the first resource confirmed last time is invalid, that is, the second device can transmit data in the first resource but not in the fourth resource. transfer data.
  • the network device when the first resource and the fourth resource do not overlap, the network device sends downlink data to the first device on the first resource.
  • the first device may receive capability information of the second device sent by the second device.
  • the first capability information includes any one or more of the following: whether the second device supports resource reservation; the second device supports a maximum duration of resource reservation.
  • the first device may determine the first indication information according to the capability information.
  • step S403 may be before or after step S401, that is to say, before or after the first device determines the first indication information, the first device may receive the capability information sent by the second device.
  • the application does not limit this, but in some embodiments, the execution sequence of step S403 is taken as a preferred embodiment before step S401, so that the first device can determine the appropriate reserved resource based on the capabilities of the second device. 1. Instructions.
  • the first device sends the following one or more items to the second device: the second sequence, the third sequence, or the fourth sequence.
  • the first device may also send the foregoing one or more sequences to the second device.
  • the indication signals for reserved resources include: a first indication signal, a second indication signal, and more indication signals for reserving resources or for updating reserved resources.
  • the second sequence is used for the second device to obtain energy or carrier; the third sequence is used for the second device to determine the start position of downlink data transmission; the fourth sequence is used for the second device Perform time and/or frequency tracking synchronization.
  • the second sequence may be called a capability signal or a carrier, the second signal may be called a delimiter, and the third signal may be called a pilot sequence.
  • the first device only when the reserved resource satisfies the first condition (here, the first reserved resource indicated by the first indication information is taken as an example), the first device sends the following item to the second device or more: the second sequence, the third sequence or the fourth sequence.
  • the first resource specifically refers to: when the second duration, the third duration, or the M third durations are greater than or equal to the preset duration; the first device may also send The second device sends one or more of the following: a second sequence, a third sequence, or a fourth sequence; wherein, the second duration, the third duration, or the M third durations correspond to Same or different preset durations.
  • step S401 when the first device sends the first indication information to the second device, the first device may also send timer configuration information to the second device.
  • the first resource can be used by the second device to transmit data. That is to say, the first device can send timer configuration information to the second device, and the timer configuration information indicates the life cycle of the first resource.
  • the timer exceeds the time limit, the first resource will no longer In effect, the second device may transmit data within the first resource.
  • the first indication information in step S401 may further include first information, and the first information is used to indicate whether the M channel resources within the third duration are used for the second Device-corresponding data transmission.
  • the first information indicates that the M channel resources within the third duration are not used for data transmission corresponding to the second device
  • the first resource is allocated by the M channel resources within the third duration Composition of channel resources;
  • the second device may Data is transmitted in the channel resources within the third duration.
  • the information used to indicate reserved resources in this application can be reversed or obtained by repeated spreading.
  • the bit sequence corresponding to the leading sequence is [0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,0,1,0,1,0,1,1, 0,1,1,0]
  • the bit sequence of the indication information is [1,1,0,0,1,1,1,0,0,0,0,0,0,0,1,0,1,0 ,1,0 ,1,0,0,1].
  • the indication information if it is misdetected or missed, it will cause a problem of inconsistent understanding between the first device side and the second device side.
  • the first device side sends indication information, which carries information about reserved resources, but the second device does not receive it correctly. At this time, the first device side and the second device do not reach an agreement on whether to reserve resources.
  • the instruction information can be designed to consider at least one of the following:
  • the indication information carries information for error correction, and uses a very low coding rate.
  • the indication information carries 1 bit information, which is used to indicate whether there are reserved resources in the subsequent data transmission process, or whether there are reserved resources during data transmission. . In this way, the reliability of the indication information can be improved, and the possibility of inconsistency of understanding between the two communicating parties can be reduced.
  • Instructions are generated with a cyclic redundancy check (CRC) appended.
  • CRC cyclic redundancy check
  • the second device After receiving the indication information, the second device sends feedback information to the first device.
  • the first device can judge whether the second device has correctly received the indication information through the feedback information, and if the reception is wrong, the first device can retransmit the indication information. In turn, the possibility of inconsistency in understanding between the two communicating parties can be reduced.
  • step S401 There are three specific implementation manners of step S401, which will be described respectively below.
  • the first device may carry the first indication information in the downlink data in the communication method shown in FIG. 2C .
  • step S101 shown in FIG. 2C may carry the first indication information in step S401.
  • step S101 can be repeated multiple times, that is, the first device can repeatedly send the first signaling to the second device multiple times, and each time the first signaling is sent, it can carry the indication information of reserved resources That is, the first indication information in step S401; or when the first signaling is not sent for the first time, it may also carry indication information for updating reserved resources, that is, the second indication information in step S402.
  • the first device may carry the first indication information in the downlink data in the contention-based four-step random access process shown in FIG. 4A or the contention-based two-step random access process shown in FIG. 4C . That is to say, the first indication information in step S401 may be carried in step S202 shown in FIG. 4A or in S502 shown in FIG. 4C . Alternatively, the first device may also carry the first indication information through an RRC Release message (not shown in FIG. 4A ).
  • the first device may use the non-contention-based four-step random access procedure shown in FIG. Instructions. That is to say, steps S300 and S302 shown in FIG. 4B or steps S601 and S603 shown in FIG. 4D may carry the first indication information in step S401. Alternatively, the first device may also carry the first indication information through an RRC Release message (not shown in FIG. 4A ).
  • step S402 There are three specific implementation manners of step S402, which will be described respectively below.
  • the first device may carry the second indication information in the downlink data in the communication method shown in FIG. 2C .
  • the second indication information in step S402 may be carried in step S102 shown in FIG. 2C, and when the first signaling is not sent for the first time in step S101, the indication information for updating reserved resources may also be carried, that is, the indication information in step S402. Second instruction message.
  • the downlink data in step S104, step S105, etc. may carry indication information for updating reserved resources. After receiving the latest indication information, the responding second device will perform corresponding operations based on the reserved resources indicated by the latest indication information.
  • the first device may use the contention-based four-step random access process shown in Figure 4A or the contention-based two-step random access process shown in Figure 4C to carry the second indication information in the downlink data . That is to say, the second indication information in step S402 may be carried in step S204 shown in FIG. 4A or in S502 shown in FIG. 4C .
  • the first device may use the non-contention-based four-step random access process shown in FIG. Instructions. That is to say, the second indication information in step S402 may be carried in step S302 shown in FIG. 4B or in S601 and S603 shown in FIG. 4D .
  • step S403 There are three specific implementation manners of step S403, which will be described respectively below.
  • the first device may use the bearer capability information in the uplink data in the communication method shown in FIG. 2C .
  • the capability information in step S403 may be carried in step S103 shown in FIG. 2C .
  • the first device may use the contention-based four-step random access process shown in FIG. 4A or the contention-based two-step random access process shown in FIG. 4C to carry capability information in uplink data. That is to say, the capability information in step S403 may be carried in step S201 and step S203 shown in FIG. 4A or in S501 shown in FIG. 4C .
  • the first device may use the non-contention-based four-step random access process shown in FIG. 4B or the non-contention-based two-step random access process shown in FIG. 4D to carry capability information in uplink data.
  • the capability information in step S403 may be carried in step S301 shown in FIG. 4B or in S602 shown in FIG. 4D .
  • step S404 There are three specific implementation manners of step S404, which will be described respectively below.
  • the first device may use information carried in the next data in the communication method shown in FIG. 2C .
  • the information in step S404 may be carried in step S101 , step S102 or step S104 shown in FIG. 2C .
  • the first device may use the contention-based four-step random access process shown in FIG. 4A or the contention-based two-step random access process shown in FIG. 4C to carry information in downlink data. That is to say, the information in step S404 may be carried in step S202 and step S204 shown in FIG. 4A or in S502 shown in FIG. 4C .
  • the first device may use the non-contention-based four-step random access process shown in FIG. 4B or the non-contention-based two-step random access process shown in FIG. 4D to carry information in downlink data. That is to say, the information in step S404 may be carried in step S300 and step S302 shown in FIG. 4B or in S601 and S603 shown in FIG. 4D .
  • the communication method shown in FIG. 5A also includes some optional steps, and the communication information in these optional steps can also be correspondingly carried in the uplink data or downlink data shown in FIG. 2C, FIG. 4A, and FIG. 4B. transmission.
  • step S401 when the first device sends the first indication information to the second device, the first device may also send timer configuration information to the second device.
  • the configuration information of the timer in this optional step can specifically be carried in the downlink data transmission such as step S101, step S102 or step S104 shown in FIG. 2C; or it can also be carried in step S202 or step S204 shown in FIG. 4A, etc.
  • step S300 or step S302 shown in FIG. 4B may also be carried in downlink data transmission such as step S300 or step S302 shown in FIG. 4B .
  • the second device sends feedback information to the first device after receiving the indication information.
  • the feedback in this optional step may specifically be carried in uplink data transmission such as step S103 shown in FIG. 2C ; or may also be carried in uplink data transmission such as step S201 or step S203 shown in FIG. 4A ; or may also be carried in Step S301 shown in FIG. 4B is in progress of data transmission.
  • This embodiment considers how to alleviate the impact of Passive IoT transmission, WUR data transmission or other data transmission on the channel resources of cellular data transmission when the first device does not configure reserved resources, or when the second device does not support reserved resources.
  • another communication method provided by this application is introduced.
  • the uplink and downlink data transmission of the second device occupies
  • the channel resource location of 4G LTE or 5G NR communication system is located near the low-frequency boundary of the carrier or near the high-frequency boundary of the carrier, or within the guard band of the carrier.
  • the resource occupied by the data transmission of the second device is set near the high frequency boundary of the subcarrier.
  • the second device in order to ensure that the NR carrier boundary has sufficient resources for the second device to perform data transmission, including the transmission of Passive IoT data or WUR wake-up data packets, etc.
  • the first device when configuring the air interface resources in the cellular communication system, the first device configures the frequency domain resources of the PUCCH/PRACH at a frequency domain position that is a certain PRB offset away from the carrier boundary.
  • the first device when configuring the common PUCCH of NR, the first device configures the resource communication of the PUCCH through the cell pucch-ResourceCommon, the value range of the common resource number of the pucch-ResourceCommon is 0 to 15, and the configuration value of the pucch-ResourceCommon is ⁇ 2, 5, 6, 9, 10, 13, 14 ⁇ , it can ensure that there is a certain PRB offset between the starting position of the PUCCH and the NR carrier boundary.
  • the PRB offset can be used for the second device to transmit Passive IoT data or WUR wake-up data packets.
  • the first device configures the frequency domain resource of PRACH
  • the starting position of the frequency domain resource of PRACH is configured through the information element msg1-FreqencyStart, and msg1-FreqencyStart is configured as a value greater than 0, which can guarantee
  • msg1-FreqencyStart is configured as a value greater than 0, which can guarantee
  • There is a certain PRB offset between the starting position of the PRACH and the NR carrier boundary and the transmission of Passive IoT or WUR wake-up data packets can be performed within the PRB offset.
  • the channel resource occupied by the second device to transmit downlink data includes Passive IoT downlink transmission, or the resource location occupied by WUR wake-up data packet transmission, which may specifically be located at a distance from the NR SSB greater than the threshold.
  • NR SSB is used for the second device, that is, the terminal to obtain time and frequency synchronization, obtain system information, and RRM measurement.
  • the configuration method of NR SSB please refer to the existing configuration method in the 4G LTE communication system or the 5G NR communication system, and will not go into details here.
  • FIG. 6 only exemplarily shows a method of configuring the channel resource for data transmission of the second device at the high-frequency boundary of the subcarrier.
  • channel resources for data transmission of the second device may also be configured within a guard band range or at a subcarrier low-frequency boundary.
  • the second device since the second device includes: for Passive IoT devices and WUR devices, when Passive IoT devices and WUR devices are introduced into the cellular communication system at the same time, the channel resources for data transmission by Passive IoT devices and the channel for data transmission by WUR devices can be specifically Resources are configured as different resources.
  • the resources occupied by Passive IoT data transmission are configured on the low-frequency boundary of the NR carrier, and the resources occupied by WUR data transmission are configured near the high-frequency boundary of the NR carrier, or within the guard band of the NR carrier.
  • the first device and the second device include corresponding hardware structures and/or software modules for performing respective functions.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the technical solutions of the embodiments of the present application.
  • the functional units of the first device may be divided according to the above method example.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units. It should be noted that the division of units in the embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner in actual implementation.
  • FIG. 7A shows a possible structural schematic diagram of the first device involved in the above embodiment.
  • the first device includes: a storage unit 701 , a processing unit 702 and a communication unit 703 .
  • the storage unit 701 is used for storing program codes and data of the first device.
  • the processing unit 702 is used to control and manage the actions of the first device.
  • the processing unit 702 is used to support the first device to execute S101 and S105 shown in FIG. 2C, S300 in FIG. 4B, S502 in FIG. 4C, and S601 in FIG. 4D , S603 and S401 in FIG. 5A , and/or other steps for performing the techniques described herein.
  • the communication unit 703 is used to support the communication between the first device and the second device.
  • the communication unit 703 is used to support the first device to perform steps S101-S105 in FIG. 2C, S201-S204 in FIG. 4A, S300- S302, S502 in FIG. 4C, S601, S603 in FIG. 4D, S401-S404 in FIG. 5A, and/or other steps for performing the techniques described herein.
  • the processing unit 702 can be a processor or a controller, such as a central processing unit (English: Central Processing Unit, CPU), a general-purpose processor, a digital signal processor (English: Digital Signal Processor, DSP), an application-specific integrated circuit (English: Application-Specific Integrated Circuit, ASIC), Field Programmable Gate Array (English: Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the communication unit 703 may be a communication interface, a transceiver, a transceiver circuit, etc., where a communication interface is a general term and may include one or more interfaces, such as an interface between a first device and a second device.
  • the storage unit 701 may be a memory.
  • the first device described in the embodiment of the present application may be implemented by a general bus architecture.
  • the processing unit 702 is a processor
  • the communication unit 703 is a communication interface
  • the storage unit 701 is a memory
  • the first device involved in this embodiment of the present application may be the first device shown in FIG. 7B .
  • the first device includes: the first device includes a processor 1001 and a transceiver 1002 internally connected and communicating with the processor.
  • the processor 1001 is a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute computer programs, process Data for Computer Programs.
  • the transceiver 1002 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1002 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the first device may further include an antenna 1003 and/or a radio frequency unit (not shown in the figure).
  • the antenna 1003 and/or the radio frequency unit may be located inside the first device, or may be separated from the first device, that is, the antenna 1003 and/or the radio frequency unit may be remotely deployed or distributed.
  • the first device may include one or more memories 1004, on which instructions may be stored, the instructions may be computer programs, and the computer programs may be run on the first device, so that the first device executes the above-mentioned Methods described in the Methods Examples.
  • data may also be stored in the memory 1004 .
  • the first device and the storage 1004 may be set separately or integrated together.
  • the processor 1001, the transceiver 1002, and the memory 1004 may be connected through a communication bus.
  • the processor 1001 may be configured to execute steps S101 and S105 shown in FIG. 2C, step S300 in FIG. 4B and S401 in FIG. 5A, S502 in FIG. 4C, S601 and S603 in FIG. 4D and/or for Additional steps of the techniques described herein are performed.
  • the processor 1001 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 1001 may store an instruction, and the instruction may be a computer program, and the computer program runs on the processor 1001 to cause the first device to execute the method described in the above method embodiment.
  • the computer program may be fixed in the processor 1001, and in this case, the processor 1001 may be implemented by hardware.
  • the first device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), p-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the scope of the first device described in this application is not limited thereto, and the structure of the first device may not be limited by FIG. 7B.
  • the first device may be a stand-alone device or may be part of a larger device.
  • the first device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the embodiment of the present application also provides a computer-readable storage medium, where computer program code is stored, and when the above-mentioned processor executes the computer program code, the electronic device executes the method in any one of the above-mentioned embodiments.
  • An embodiment of the present application further provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any one of the preceding embodiments.
  • the embodiment of the present application also provides an electronic device, which can exist in the product form of a chip.
  • the structure of the device includes a processor and an interface circuit.
  • the processor is used to communicate with other devices through a receiving circuit, so that the device executes The method in any of the preceding embodiments.
  • the embodiment of the present application also provides a wireless communication system, including AP MLD and non-AP MLD, and the AP MLD and non-AP MLD can execute the method in any of the foregoing embodiments.
  • the steps of the methods or algorithms described in connection with the disclosure of this application can be implemented in the form of hardware, or can be implemented in the form of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, erasable programmable read-only memory (Erasable Programmable ROM, EPROM), electrically erasable Programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist in the core network interface device as discrete components.
  • FIG. 8A shows a possible structural schematic diagram of the second device involved in the above embodiment.
  • the second device includes: a storage unit 801 , a processing unit 802 and a communication unit 803 .
  • the storage unit 801 is configured to store program codes and data of the second device.
  • the processing unit 802 is used to control and manage the actions of the second device.
  • the processing unit 802 is used to support the second device to execute S104 in FIG. 2C, S201 and S203 in FIG. 4A, S301 in FIG. 4B, and S501 in FIG. 4C.
  • S602 in FIG. 4D and/or other steps for performing the techniques described herein.
  • the communication unit 803 is used to support the communication between the second device and the first device, for example, the communication unit 803 is used to support S104 in FIG. 2C , S201 and S203 in FIG. 4A , S301 in FIG. 4B , S501 in FIG. 4C , and S602 in FIG. 4D .
  • the processing unit 802 can be a processor or a controller, such as a central processing unit (English: Central Processing Unit, CPU), a general-purpose processor, a digital signal processor (English: Digital Signal Processor, DSP), an application-specific integrated circuit (English: Application-Specific Integrated Circuit, ASIC), Field Programmable Gate Array (English: Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the communication unit 803 may be a communication interface, a transceiver, a transceiver circuit, etc., where a communication interface is a general term and may include one or more interfaces, for example, an interface between the second device and the first device.
  • the storage unit 801 may be a memory.
  • the second device involved in this embodiment of the present application may be the second device shown in FIG. 8B .
  • the second device may be a mobile phone, a tablet computer, a desktop computer, a laptop computer, a handheld computer, a notebook computer, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a netbook, and a cellular phone.
  • Telephone personal digital assistant (PDA), augmented reality (augmented reality, AR) device, virtual reality (virtual reality, VR) device, artificial intelligence (artificial intelligence, AI) device, wearable device, vehicle-mounted device , smart home devices and/or smart city devices, etc.
  • PDA personal digital assistant
  • AR augmented reality
  • VR virtual reality
  • AI artificial intelligence
  • wearable device wearable device
  • vehicle-mounted device smart home devices and/or smart city devices
  • smart home devices and/or smart city devices etc.
  • the second device includes: a processor 812 , a communication interface 813 , and a memory 811 .
  • the second device may further include a bus 814 .
  • the communication interface 813, the processor 812, and the memory 811 can be connected to each other through the bus 814;
  • the bus 814 can be a Peripheral Component Interconnect (English: Peripheral Component Interconnect, referred to as PCI) bus or an extended industry standard structure (English: Extended Industry Standard Architecture, referred to as EISA) bus and so on.
  • the bus 814 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 8B , but it does not mean that there is only one bus or one type of bus.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a Solid State Disk).
  • the processes can be completed by computer programs to instruct related hardware.
  • the programs can be stored in computer-readable storage media.
  • When the programs are executed may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random access memory RAM, magnetic disk or optical disk, and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出了一种通信方法、系统及相关装置,该通信方法应用于包含第一设备和第二设备的通信系统中。在该通信方法中,第一设备可以指示第二设备预留信道资源,第二设备不在该预留的信道资源内进行数据传输,避免第二设备长期占用信道资源,从而达到为蜂窝通信系统释放信道资源的目的,第一设备可以利用释放的信道资源调度除了第二设备之外的终端设备,提高数据传输效率。

Description

通信方法、系统及相关装置
本申请要求于2021年10月29日提交中国专利局、申请号为202111276142.7、申请名称为“通信方法、系统及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、系统及相关装置。
背景技术
在第五代(5th Generation Mobile Communication Technology,5G)移动通信技术应用场景中,海量机器型通信(massive Machine-Type Communication,mMTC)的应用也愈加广泛。mMTC主要面向以传感器和数据采集为目标的应用场景,即指大规模物联网(Internet of Things,IoT)业务。随着海量的IoT设备的接入。考虑到降低IoT设备的成本和功耗等问题。第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)在5G新空口(new radio,NR)系统中支持无源物联网(Passive IoT)和唤醒接收机或者唤醒无线电(wake-up receiver or wake-up radio,WUR)的通信技术,以满足IoT应用成本和功耗的需求。
然而在5G NR系统中引入Passive IoT和WUR后,Passive IoT数据传输或者WUR数据传输会占用5G NR信道资源,如何调度信道资源使得Passive IoT数据传输和WUR数据传输不影响5GNR数据传输则是亟待解决的问题。
发明内容
本申请实施例提供了通信方法、系统及相关装置,能够避免第二设备长期占用信道资源,从而达到为蜂窝通信系统释放信道资源的目的,第一设备可以利用释放的信道资源调度除了第二设备之外的终端设备,提高数据传输效率。
第一方面,本申请实施例提供了一种通信方法,该方法包括:第一设备确定第一指示信息,该第一指示信息用于第二设备确定第一资源,该第一资源不用于该第二设备进行数据传输;该第一设备向该第二设备发送第一指示信息;该第一指示信息包括第一时长,该第一指示信息之后的该第一时长内的信道资源为该第一资源。或者,该第一指示信息包括第二时长和第三时长,该第三时长的起始位置为距离参考时域位置为N个第二时长的时域位置;每两个该第二时长之间间隔一个该第三时长;其中,N和M为正整数,该N个该第二时长内的信道资源用于该第二设备对应的数据传输;该第一资源由该M个该第三时长内的信道资源组成。
实施第一方面提供的方法后,第一设备可以指示第二设备不在该预留的信道资源内进行数据传输,避免第二设备长期占用信道资源,从而达到为蜂窝通信系统释放信道资源的目的,第一设备可以利用释放的信道资源调度除了第二设备之外的终端设备,提高数据传输效率。
结合第一方面提供的方法,该方法还包括:该第一设备在第二资源内向该第二设备发送数据;当该第二资源和该第一资源有重叠,该第一设备丢弃映射在该第一资源内的数据,或者,该第一设备将映射在该第一资源内的数据推迟到第三资源内进行传输,该第三资源和该第一资源没有重叠。
这样,第一设备可以进一步实现,不在预留资源内向第二设备传输数据,以达到为蜂窝通信系统释放信道资源的目的。
结合第一方面提供的方法,该方法还包括:该第一设备向该第二设备发送下行数据;
该参考时域位置为该下行数据对应的时域起始位置。
结合第一方面提供的方法,该下行数据包括第一序列和第一数据,该第一序列位于该第一数据之前,该参考时域位置根据该第一序列的起始时域位置,或者该第一序列的结束时域位置确定,或者根据第一数据的起始位置确定。
结合第一方面提供的方法,该方法还包括:该第一设备接收该第二设备发送的第一能力信息;该第一能力信息包括以下任意一项或多项:该第二设备是否支持预留资源;该第二设备支持预留资源的最大时长。
这样,第一设备可以根据第二设备的能力确定合适的预留资源,使得该预留资源时第二设备能够支持的。
结合第一方面提供的方法,该第一设备向该第二设备发送该第一资源之后,该方法还包括:该第一设备向该第二设备发送以下一项或多项:第二序列、第三序列或者第四序列;该第二序列用于该第二设备获取能量或获取载波;该第三序列用于该第二设备确定下行数据传输起始位置;该第四序列用于该第二设备进行时间和/或频率的跟踪同步。
结合第一方面提供的方法,第一资源满足预设条件时,该第一设备向该第二设备发送该第一资源之后,该方法还包括:该第一设备向该第二设备发送以下一项或多项:第二序列、第三序列或者第四序列;该第二序列用于该第二设备获取能量或获取载波;该第三序列用于该第二设备确定下行数据传输起始位置;该第四序列用于该第二设备进行时间和/或频率的跟踪同步。
这样,第一设备可以为第二设备提供能量、用于传输数据的定界符、以及用于时间或频率同步的信息,特别是在第二设备预留的资源时长过长时,这样可以提高第二设备的数据传输效率。
结合第一方面提供的方法,该第一设备向该第二设备发送该第一指示信息之后,该方法还包括:该第一设备向该第二设备发送定时器的配置信息;当该定时器超时后,该第一资源可用于该第二设备传输数据。
这样,第一设备可以指示为第二设备预留资源的时效,从而更加合理的指示第二设备预留资源的时长。
结合第一方面提供的方法,该第一设备向该第二设备发送该第一指示信息之后,该方法还包括:该第一设备向该第二设备发送第二指示信息;该第二指示信息用于该第二设备确定第四资源,该第四资源不用于该第二设备对应的数据传输;
这样,第一设备可以根据业务需要更新指示为第二设备预留的资源。
第二方面,本申请实施例提供了一种通信方法,该方法包括:该第一设备在第五资源上向第二设备发送下行数据,或者,从该第二设备接收上行数据;该第一设备在第六资源上向第三设备发送下行数据,或者,从该第三设备接收上行数据;在频域上该第五资源位于该第六资源内,该第五资源对应的带宽小于该第六资源对应的带宽,该第二设备支持的最大带宽小于该第二设备支持的最大带宽。在频域上该第五资源和第六资源的高频边界之间的偏移值小于一个阈值,或者在频域上该第五资源和第六资源的低频边界之间的偏移值小于一个阈值。
实施第二方面提供的方法后,可以通过配置第二设备上行、下行数据传输占用的信道资源位置位于4G LTE或者5G NR通信系统规定的载波的低频边界附近或载波高频边界附近,或者位于载波的保护带内,来解决第一设备没有配置预留资源,或者,第二设备不支持预留资源时,Passive IoT传输、WUR数据传输或者其他数据传输时对蜂窝数据传输的信道资源的 影响。
第三方面,本申请实施例提供了一种通信方法,该方法包括:第二设备接收第一设备发送的该第一指示信息;该第二设备根据该第一指示信息确定第一资源,该第一资源不用于该第二设备进行数据传输;该第一指示信息第一指示信息包括第一时长,该第一指示信息第一指示信息之后的该第一时长内的信道资源为该第一资源。或者,该第一指示信息第一指示信息包括第二时长和第三时长,该第三时长的起始位置为距离参考时域位置为N个第二时长的时域位置;每两个该第二时长之间间隔一个该第三时长;其中,N和M为正整数,该N个该第二时长内的信道资源用于该第二设备对应的数据传输;该第一资源由该M个该第三时长内的信道资源组成。
实施第三方面提供的方法后,第二设备可以根据第一设备的指示,不在该预留的信道资源内进行数据传输,避免第二设备长期占用信道资源,从而达到为蜂窝通信系统释放信道资源的目的,第一设备可以利用释放的信道资源调度除了第二设备之外的终端设备,提高数据传输效率。
结合第三方面提供的方法,该方法还包括:该第二设备在第二资源内接收该第一设备发送的数据;当该第二资源和该第一资源有重叠,该第二设备丢弃映射在该第一资源内的数据,或者,该第二设备将映射在该第一资源内的数据推迟到第三资源内进行传输,该第三资源和该第一资源没有重叠。
这样,第二设备可以进一步实现,不在预留资源内向第二设备传输数据,以达到为蜂窝通信系统释放信道资源的目的。
结合第三方面提供的方法,该方法还包括:该第二设备接收该第一设备发送的下行数据;
该参考时域位置为该下行数据对应的时域起始位置。
结合第三方面提供的方法,该下行数据包括第一序列和第一数据,该第一序列位于该第一数据之前,该参考时域位置根据该第一序列的起始时域位置,或者该第一序列的结束时域位置确定,或者根据第一数据的起始位置确定。
结合第三方面提供的方法,该方法还包括:该第二设备向该第一设备发送第一能力信息;该第一能力信息包括以下任意一项或多项:该第二设备是否支持预留资源;第二设备支持预留资源的最大时长。
这样,可以使得第一设备根据第二设备的能力确定合适的预留资源,即该预留资源时第二设备能够支持的,进一步提高本方案的可实施性。
结合第三方面提供的方法,第二设备接收第一设备发送的第一指示信息之后,该方法还包括:该第二设备接收该第一设备发送的以下一项或多项:第二序列、第三序列或者第四序列;该第二序列用于该第二设备获取能量或获取载波;该第三序列用于该第二设备确定下行数据传输起始位置;该第四序列用于该第二设备进行时间和/或频率的跟踪同步。
结合第三方面提供的方法,当该第一资源满足预设条件时,第二设备接收第一设备发送的第一指示信息之后,该方法还包括:该第二设备接收该第一设备发送的以下一项或多项:第二序列、第三序列或者第四序列;该第二序列用于该第二设备获取能量或获取载波;该第三序列用于该第二设备确定下行数据传输起始位置;该第四序列用于该第二设备进行时间和/或频率的跟踪同步。
这样,第二设备可以接收第一设备提供的能量、用于传输数据的定界符、以及用于时间或频率同步的信息,特别是在第二设备预留的资源时长过长时,这样可以提高第二设备的数据传输效率。
结合第三方面提供的方法,第二设备接收第一设备发送的第一指示信息之后,该方法还包括:该第二设备接收该第一设备发送的定时器的配置信息;当该定时器超时后,该第二设备在该第一资源内传输数据。
这样,第二设备可以进一步确定预留资源的时效,从而预留合适时长的资源。
结合第三方面提供的方法,第二设备接收第一设备发送的第一指示信息之后,该方法还包括:第二设备接收第一设备发送的第二指示信息;该第二指示信息用于该第二设备确定第四资源,该第四资源不用于该第二设备进行数据传输。
这样,第一设备可以根据业务需要更新指示为第二设备预留的资源。
第四方面,本申请实施例提供了一种通信方法,该第二设备在第五资源内接收第一设备发送的下行数据,或者,向该第一设备发送上行数据;该第三设备在第六资源内接收该第一设备发送下行数据,或者,向该第一设备发送上行数据;在频域上该第五资源位于该第六资源内,该第五资源对应的带宽小于该第六资源对应的带宽,该第二设备支持的最大带宽小于该第二设备支持的最大带宽。在频域上该第五资源和第六资源的高频边界之间的偏移值小于阈值,或者在频域上该第五资源和第六资源的低频边界之间的偏移值小于阈值。
实施第四方面提供的方法后,可以通过配置第二设备上行、下行数据传输占用的信道资源位置位于4G LTE或者5G NR通信系统规定的载波的低频边界附近或载波高频边界附近,或者位于载波的保护带内,来解决第一设备没有配置预留资源,或者,第二设备不支持预留资源时,Passive IoT传输、WUR数据传输或者其他数据传输时对蜂窝数据传输的信道资源的影响。
第五方面,本申请实施例提供了一种第一设备,包括通信单元、处理单元;其中:该处理单元用于,确定第一指示信息,该第一指示信息用于第二设备确定第一资源,该第一资源不用于该第二设备进行数据传输;该通信单元用于,向该第二设备发送该第一指示信息;该第一指示信息包括第一时长,该第一指示信息之后的该第一时长内的信道资源为该第一资源。
或者,该第一指示信息包括第二时长和第三时长,该第三时长的起始位置为距离参考时域位置为N个第二时长的时域位置;每两个该第二时长之间间隔一个该第三时长;其中,N和M为正整数,该N个该第二时长内的信道资源用于该第二设备对应的数据传输;该第一资源由该M个该第三时长内的信道资源组成。
采用第五方面提供的第一设备后,该第一设备可以指示第二设备不在该预留的信道资源内进行数据传输,避免其他长期占用信道资源,从而达到为蜂窝通信系统释放信道资源的目的,该第一设备可以利用释放的信道资源调度除了第二设备之外的终端设备,提高数据传输效率。
结合第五方面提供的第一设备,该通信单元还用于,在第二资源内向该第二设备发送数据;当该第二资源和该第一资源有重叠,该通信单元丢弃映射在该第一资源内的数据,或者,该通信单元将映射在该第一资源内的数据推迟到第三资源内进行传输,该第三资源和该第一资源没有重叠。
这样,该第一设备可以进一步实现,不在预留资源内向第二设备传输数据,以达到为蜂窝通信系统释放信道资源的目的。
结合第五方面提供的第一设备,该通信单元还用于,向该第二设备发送下行数据;该参考时域位置为该下行数据对应的时域起始位置。
结合第五方面提供的第一设备,该下行数据包括第一序列和第一数据,该第一序列位于该第一数据之前,该参考时域位置根据该第一序列的起始时域位置,或者该第一序列的结束时域位置确定,或者根据第一数据的起始位置确定。
结合第五方面提供的第一设备,该通信单元还用于,接收该第二设备发送的第一能力信息;该第一能力信息包括以下任意一项或多项:该第二设备是否支持预留资源;该第二设备支持预留资源的最大时长。
这样,第二设备可以根据该第一设备的能力确定合适的预留资源,使得该预留资源时第二设备能够支持的。
结合第五方面提供的第一设备,该通信单元向该第二设备发送该第一资源之后,该通信单元还用于,向该第二设备发送以下一项或多项:第二序列、第三序列或者第四序列;该第二序列用于该第二设备获取能量或获取载波;该第三序列用于该第二设备确定下行数据传输起始位置;该第四序列用于该第二设备进行时间和/或频率的跟踪同步。
结合第五方面提供的第一设备,当第一资源满足预设条件时,该通信单元向该第二设备发送该第一资源之后,该第一设备还用于,向该第二设备发送以下一项或多项:第二序列、第三序列或者第四序列;该第二序列用于该第二设备获取能量或获取载波;该第三序列用于该第二设备确定下行数据传输起始位置;该第四序列用于该第二设备进行时间和/或频率的跟踪同步。
这样,该第一设备可以为第二设备提供能量、用于传输数据的定界符、以及用于时间或频率同步的信息,特别是在指示第二设备预留的资源时长过长时,这样可以提高第二设备的数据传输效率。
结合第五方面提供的第一设备,该通信单元向该第二设备发送该第一指示信息之后,该方法还包括:该第一设备向该第二设备发送定时器的配置信息;当该定时器超时后,该第一资源可用于该第二设备传输数据。
这样,该第一设备可以指示为第二设备预留资源的时效,从而更加合理的指示第二设备预留资源的时长。
结合第五方面提供的第一设备,该第一设备向该第二设备发送该第一指示信息之后,该方法还包括:该通信单元还用于,向该第二设备发送第二指示信息;该第二指示信息用于该第二设备确定第四资源,该第四资源不用于该第二设备对应的数据传输;
这样,第一设备可以根据业务需要更新指示为第二设备预留的资源。
第六方面,本申请实施例提供了一种第一设备,包括通信单元;其中:该第一设备的通信单元用于,在第五资源上向第二设备发送下行数据,或者,从该第二设备接收上行数据;
该第二设备的通信单元用于,在第六资源上向第三设备发送下行数据,或者,从该第三设备接收上行数据;在频域上该第五资源位于该第六资源内,该第五资源对应的带宽小于该第六资源对应的带宽,该第一设备支持的最大带宽小于该第二设备支持的最大带宽。在频域上该第五资源和第六资源的高频边界之间的偏移值小于一个阈值,或者在频域上该第五资源和第六资源的低频边界之间的偏移值小于一个阈值。
采用第六方面提供的第一设备后,可以通过配置第二设备上行、下行数据传输占用的信道资源位置位于4G LTE或者5G NR通信系统规定的载波的低频边界附近或载波高频边界附近,或者位于载波的保护带内,来解决第一设备没有配置预留资源,或者,第二设备不支持预留资源时,Passive IoT传输、WUR数据传输或者其他数据传输时对蜂窝数据传输的信道资源的影响。
第七方面,本申请实施例提供了一种第二设备,包括通信单元、处理单元;其中:
该通信单元用于,接收第一设备发送的该第一指示信息;该处理单元用于,根据该第一指示信息确定第一资源,该第一资源不用于该第二设备进行数据传输;该第一指示信息包括 第一时长,该第一指示信息之后的该第一时长内的信道资源为该第一资源;或者,该第一指示信息包括第二时长和第三时长,该第三时长的起始位置为距离参考时域位置为N个第二时长的时域位置;每两个该第二时长之间间隔一个该第三时长;其中,N和M为正整数,该N个该第二时长内的信道资源用于该第二设备对应的数据传输;该第一资源由该M个该第三时长内的信道资源组成。
采用第七方面提供的第二设备后,第二设备可以根据第一设备的指示,不在该预留的信道资源内进行数据传输,避免第二设备长期占用信道资源,从而达到为蜂窝通信系统释放信道资源的目的,第一设备可以利用释放的信道资源调度除了第二设备之外的终端设备,提高数据传输效率。
结合第七方面提供的第二设备,该通信单元还用于,在第二资源内接收该第一设备发送的数据;当该第二资源和该第一资源有重叠,该通信单元丢弃映射在该第一资源内的数据,或者,该通信单元将映射在该第一资源内的数据推迟到第三资源内进行传输,该第三资源和该第一资源没有重叠。
这样,第二设备可以进一步实现,不在预留资源内向第二设备传输数据,以达到为蜂窝通信系统释放信道资源的目的。
结合第七方面提供的第二设备,该方法还包括:该通信单元还用于,接收该第一设备发送的下行数据;该参考时域位置为该下行数据对应的时域起始位置。
结合第七方面提供的第二设备,该下行数据包括第一序列和第一数据,该第一序列位于该第一数据之前,该参考时域位置根据该第一序列的起始时域位置,或者该第一序列的结束时域位置确定,或者根据第一数据的起始位置确定。
结合第七方面提供的第二设备,该通信单元还用于,向该第一设备发送第一能力信息;该第一能力信息包括以下任意一项或多项:该第二设备是否支持预留资源;该第二设备支持预留资源的最大时长。
这样,可以使得第一设备根据第二设备的能力确定合适的预留资源,即该预留资源时第二设备能够支持的,进一步提高本方案的可实施性。
结合第七方面提供的第二设备,该通信单元接收第一设备发送的第一指示信息之后,该通信单元还用于,接收该第一设备发送的以下一项或多项:第二序列、第三序列或者第四序列;该第二序列用于该第二设备获取能量或获取载波;该第三序列用于该第二设备确定下行数据传输起始位置;该第四序列用于该第二设备进行时间和/或频率的跟踪同步。
结合第七方面提供的第二设备,当第一资源满足预设条件时,该通信单元接收第一设备发送的第一指示信息之后,该通信单元还用于,接收该第一设备发送的以下一项或多项:第二序列、第三序列或者第四序列;该第二序列用于该第二设备获取能量或获取载波;该第三序列用于该第二设备确定下行数据传输起始位置;该第四序列用于该第二设备进行时间和/或频率的跟踪同步。
这样,第二设备可以接收第一设备提供的能量、用于传输数据的定界符、以及用于时间或频率同步的信息,特别是在第二设备预留的资源时长过长时,这样可以提高第二设备的数据传输效率。
结合第七方面提供的第二设备,该通信单元接收第一设备发送的第一指示信息之后,该通信单元还用于,接收该第一设备发送的定时器的配置信息;当该定时器超时后,该第二设备在该第一资源内传输数据。
这样,第二设备可以进一步确定预留资源的时效,从而预留合适时长的资源。
结合第七方面提供的第二设备,该通信单元接收第一设备发送的第一指示信息之后,该通信单元还用于,接收第一设备发送的第二指示信息;该第二指示信息用于该第二设备确定第四资源,该第四资源不用于该第二设备进行数据传输。
这样,第一设备可以根据业务需要更新指示为第二设备预留的资源。
第八方面,本申请实施例提供了一种第二设备,包括通信单元;其中:
该一个第二设备的通信单元用于,在第五资源内接收第一设备发送的下行数据,或者,向该第一设备发送上行数据;
该另一个第二设备的通信单元用于,在第六资源内接收该第一设备发送下行数据,或者,向该第一设备发送上行数据;
在频域上该第五资源位于该第六资源内,该第五资源对应的带宽小于该第六资源对应的带宽,该一个第二设备支持的最大带宽小于该另一个第二设备支持的最大带宽。在频域上该第五资源和第六资源的高频边界之间的偏移值小于阈值,或者在频域上该第五资源和第六资源的低频边界之间的偏移值小于阈值。
采用第八方面提供的第二设备后,可以通过配置第二设备上行、下行数据传输占用的信道资源位置位于4G LTE或者5G NR通信系统规定的载波的低频边界附近或载波高频边界附近,或者位于载波的保护带内,来解决第一设备没有配置预留资源,或者,第二设备不支持预留资源时,Passive IoT传输、WUR数据传输或者其他数据传输时对蜂窝数据传输的信道资源的影响。
第九方面,本申请实施例提供了一种通信方法,该方法包括:第一设备确定第一指示信息,该第一指示信息用于第二设备确定第一资源,该第一资源不用于该第二设备进行数据传输;该第一设备向该第二设备发送第一指示信息;该第一指示信息包括第二时长和第三时长,该第三时长的起始位置为距离参考时域位置为N个第二时长的时域位置;每两个该第二时长之间间隔一个该第三时长;其中,N和M为正整数,该N个该第二时长内的信道资源用于该第二设备对应的数据传输。此外,该第一指示信息还包括第一信息,该第一信息用于指示该M个该第三时长内的信道资源是否用于该第二设备对应的数据传输;当该第一信息指示该M个该第三时长内的信道资源不用于该第二设备对应的数据传输时,该第一资源由该M个该第三时长内的信道资源组成。
实施第九方面提供的方法后,第一设备可以指示第二设备不在该预留的信道资源内进行数据传输,避免第二设备长期占用信道资源,从而达到为蜂窝通信系统释放信道资源的目的,第一设备可以利用释放的信道资源调度除了第二设备之外的终端设备,提高数据传输效率。
结合第九方面提供的方法,该方法还包括:该第一设备在第二资源内向该第二设备发送数据;当该第二资源和该第一资源有重叠,该第一设备丢弃映射在该第一资源内的数据,或者,该第一设备将映射在该第一资源内的数据推迟到第三资源内进行传输,该第三资源和该第一资源没有重叠。
这样,第一设备可以进一步实现,不在预留资源内向第二设备传输数据,以达到为蜂窝通信系统释放信道资源的目的。
结合第九方面提供的方法,该方法还包括:该第一设备向该第二设备发送下行数据;
该参考时域位置为该下行数据对应的时域起始位置。
结合第九方面提供的方法,该下行数据包括第一序列和第一数据,该第一序列位于该第一数据之前,该参考时域位置根据该第一序列的起始时域位置,或者该第一序列的结束时域位置确定,或者根据第一数据的起始位置确定。
结合第九方面提供的方法,该方法还包括:该第一设备接收该第二设备发送的第一能力信息;该第一能力信息包括以下任意一项或多项:该第二设备是否支持预留资源;该第二设备支持预留资源的最大时长。
这样,第一设备可以根据第二设备的能力确定合适的预留资源,使得该预留资源时第二设备能够支持的。
结合第九方面提供的方法,该第一设备向该第二设备发送该第一资源之后,该方法还包括:该第一设备向该第二设备发送以下一项或多项:第二序列、第三序列或者第四序列;该第二序列用于该第二设备获取能量或获取载波;该第三序列用于该第二设备确定下行数据传输起始位置;该第四序列用于该第二设备进行时间和/或频率的跟踪同步。
结合第九方面提供的方法,第一资源满足预设条件时,该第一设备向该第二设备发送该第一资源之后,该方法还包括:该第一设备向该第二设备发送以下一项或多项:第二序列、第三序列或者第四序列;该第二序列用于该第二设备获取能量或获取载波;该第三序列用于该第二设备确定下行数据传输起始位置;该第四序列用于该第二设备进行时间和/或频率的跟踪同步。
这样,第一设备可以为第二设备提供能量、用于传输数据的定界符、以及用于时间或频率同步的信息,特别是在第二设备预留的资源时长过长时,这样可以提高第二设备的数据传输效率。
结合第九方面提供的方法,该第一设备向该第二设备发送该第一指示信息之后,该方法还包括:该第一设备向该第二设备发送定时器的配置信息;当该定时器超时后,该第一资源可用于该第二设备传输数据。
这样,第一设备可以指示为第二设备预留资源的时效,从而更加合理的指示第二设备预留资源的时长。
结合第九方面提供的方法,该第一设备向该第二设备发送该第一指示信息之后,该方法还包括:该第一设备向该第二设备发送第二指示信息;该第二指示信息用于该第二设备确定第四资源,该第四资源不用于该第二设备对应的数据传输;
这样,第一设备可以根据业务需要更新指示为第二设备预留的资源。
第十方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当该指令在第一设备上运行时,使得该第一设备执行如第一方面、第二方面和第九方面中描述方法。
第十一方面,本申请实施例提供了一种计算机可读存储介质,包括指令,其特征在于,当所述指令在第二设备上运行时,使得所述第二设备执行如第三方面、第四方面中描述方法。
第十二方面,本申请实施例提供了一种芯片,所述芯片应用于第一设备,所述芯片包括一个或多个处理器,所述处理器用于调用计算机指令以使得所述第一设备执行如第一方面、第二方面和第九方面中描述方法。
第十三方面,本申请实施例提供了一种芯片,所述芯片应用于第二设备,所述芯片包括一个或多个处理器,所述处理器用于调用计算机指令以使得所述第二设备执行如第三方面、第四方面中描述方法。
附图说明
图1为本申请实施例提供的通信系统示意图;
图2A为本申请实施例提供的一种下行通信方法示意图;
图2B为本申请实施例提供的一种上行通信方法示意图;
图2C为本申请实施例提供的一种通信方法流程示意图;
图3A为本申请实施例提供的一种通信方法示意图;
图3B为本申请实施例提供的一种另一种通信方法示意图;
图4A为本申请实施例提供的一种通信方法流程示意图;
图4B为本申请实施例提供的另一种通信方法流程示意图;
图4C为本申请实施例提供的另一种通信方法流程示意图;
图4D为本申请实施例提供的另一种通信方法流程示意图;
图5A为本申请实施例提供的一种通信方法流程示意图;
图5B为本申请实施例提供的一种信道资源配置示意图;
图5C为本申请实施例提供的另一种信道资源配置示意图;
图6为本申请实施例提供的另一种信道资源配置示意图;
图7A为本申请实施例提供的一种第一设备结构示意图;
图7B为本申请实施例提供的另一种第一设备结构示意图;
图8A为本申请实施例提供的一种第二设备结构示意图;
图8B为本申请实施例提供的另一种第二设备结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
随着IoT的普及,越来越多的IoT设备已经部署在人们的生活中。例如:智能水表、共享单车,以及智慧城市、环境监测、智能家居、森林防火等以传感和数据采集为目标的设备等等。而未来,IoT设备将是无处不在的,可能会嵌入每一件衣服、每一个包裹、每一把钥匙,几乎所有的离线物品都将在物联网技术的赋能下实现在线。但与此同时,由于IoT设备分布范围广泛、数量众多,所以实现万物互联的过程也给产业界带来了不小的挑战,首当其冲的便是供电问题。目前,IoT仍然主要由运营商推动,IoT模块需要使用标准蜂窝协议与基站通讯。由于基站需要覆盖尽可能大的面积,因此IoT模块需要能做到在距离基站很远时仍能进行通信,这就使得IoT设备在无线通信时仍然需要消耗高达30mA的电流,所以目前的IoT模块仍然需要使用较高容量的电池才能工作,这也导致了IoT模块的尺寸很难做小,增加了IoT设备的成本。
此外,一些低功耗终端在医疗、智能家居、工业传感器、可穿戴设备等物联网应用中发 挥着重要作用。然而,由于这类终端尺寸大小有限,如果要延长这些设备的运行时间,很难通过简单的提高电池容量来实现。因此,要实现延长终端续航时间,需降低无线通信的功耗,其中,无线电收发器则是最耗电的组件之一。
因此,为了能进一步普及IoT,把IoT模块植入人体内,或者更小的物件中,则不可能再搭配较高容量的电池,而必须使用更小的电池甚至彻底摆脱电池的限制,或者是设计一种降低无线电收发器功耗的方法,进而来克服IoT设备的成本、尺寸、功耗等的限制问题。因此,2021年6月,在3GPP在组织R18潜在研究方向讨论会中,讨论了物联网增强技术,且披露了5G演进(5G-Advanced)将从R18开始,在5G NR系统中引入Passive IoT和WUR。然而,在5G NR系统中引入Passive IoT和WUR后,5G NR系统中不仅有支持NR数据传输的终端、也有支持Passive IoT数据传输的终端,还会有支持WUR数据传输的终端。而这些终端在传输Passive IoT数据或者传输WUR数据会占用5G NR信道资源,在时域上连续传输的Passive IoT数据和WUR数据会影响NR信道资源的连续分配,如何调度信道资源使得Passive IoT数据传输和WUR数据传输不影响5G NR数据传输则是亟待解决的问题。
为了解决5G NR系统中引入Passive IoT和WUR后,带来的上述共存问题,本申请实施例提出一种通信方法。该通信方法应用于包含第一设备和第二设备的通信系统中。在该通信方法中,第一设备可以指示第二设备预留信道资源,第二设备不在该预留的信道资源内进行数据传输,避免第二设备长期占用信道资源,从而达到为蜂窝通信系统释放信道资源的目的,第一设备可以利用释放的信道资源调度除了第二设备之外的终端设备。
其中,蜂窝通信系统包括但不限于:4G、4G演进、5G、5G演进等通信系统;第一设备为网络设备和或终端设备,第一设备包括但不限于:基站或者功能强大的终端设备;第二设备为终端设备,第二设备包括但不限于:Passive IoT设备、WUR设备等。
为了便于理解本申请实施例的提供的通信方法,下面先对该通信方法的系统架构和/或应用场景进行说明。可理解的,本申请实施例描述的系统架构和/或应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请提供的通信方法主要应用于长期演进(Long term evolution,LTE)系统或高级的长期演进(LTE advanced,LTE-A)系统或5G NR系统。在本申请另一些实施例中,该通信方法也可以应用于其它的通信系统,只要该通信系统中存在实体设备可以发送信息,该通信系统也存在其它实体可以接收信息即可。本申请实施例对通信系统的类型不作限制。
参考图1,图1示例性示出本申请提供的通信方法所应用的通信系统10。
如图1所述,该通信系统10包括一个或多个第一设备和一个或多个第二设备。
基站100-1和基站100-2,终端200-1~终端200-9组成一个通信系统10,在该通信系统10中,基站100-1可以直接发送信息给终端200-1~终端200-7中的一个或多个终端设备,或者,基站100-1还可以通过基站100-2发送信息给终端200-8和终端200-9中的一个或多个终端设备。此外,终端200-1~终端200-3也可以组成一个子通信系统10-1,在该子通信系统10-1中,终端200-1可以发送信息给终端200-2和终端200-3中的一个或多个终端设备。此外,基站100-2,终端200-8和终端200-9也可以组成另一个子通信系统10-2,该子通信系统10-2中,基站100-2可以发送信息给终端200-8和终端200-9中的一个或多个终端设备。
可以理解的是,图1示出的通信系统10所包含的终端设备的数量、类型,以及基站的数量、类型仅为一种示例,在本申请另一些实施例中,通信系统还可包括比图1示出的更少或 者更多的子通信系统、终端设备或者基站等等。本申请实施例对通信系统的架构不作限制。
在本申请以下实施例中,基站100-1和基站100-2可以统称为基站100;终端200-1~终端200-9可以统称为终端200。
仅以图1给出的通信系统10为例,在本申请实施例中,第一设备即基站100-1、基站100-2或者;第二设备则是终端200-1、终端200-2~终端200-9。
特殊的,终端200-1相对于其他终端200-2~终端200-9来说,终端200-1的覆盖条件优于其他终端200-2~终端200-9即终端200-1与基站之间的通信距离较近,此外,终端200-1的功能相对于其他终端200-2~终端200-9来说更加强大。因此,本申请提供的通信方法不仅可以解决了NR UE和Passive IoT UE/WUR UE之间的共存问题,即不仅避免Passive IoT/WUR数据传输对NR连续资源分配的影响。本申请提供的通信方法还可以解决两种Passive IoT UE之间数据传输的竞争问题。具体的,例如第一UE为覆盖条件好的Passive IoT UE,传输时间短,第二UE为覆盖条件差的Passive IoT UE,由于需要进行大量时域重复或者扩频以提升信噪比,从而保证能够和网络设备进行正常通信,第二UE对应的传输时间通常较长,如果第二UE连续传输,长时间占据信道,第一UE需要等到第二UE传输完成之后才能进行传输,会增加第一UE的传输时延。此时,针对第二UE来说,可以采用本申请提供的通信方法,第二UE传输过程中设置预留资源,预留资源内第二UE不能进行传输,但是网络设备可以在预留资源内进行第一UE的调度。如此增加了第一UE的传输机会,从而可以改善第一UE为等待第二UE传输结束传输时延增加的问题。
接下来介绍本申请实施例的第一设备和第二设备的可能的产品形态。
第一设备为第一设备,第一设备可以实现的设备类类型包括以下任意一项或多项:基站,网关类节点设备,或者功能强大的用户终端等。其中,基站是网络侧的一种用来发送或接收信号的实体设备。在不同的移动通信系统下,基站可能有不同的名称。例如,LTE移动通信中的基站被称为eNodeB,5G NR中的基站称为gNB。基站可以是宏基站,也可以微基站,小基站,或者杆站。
在本申请实施例中,第一设备可以支持接收,第二设备通过反射通信向第一设备发送的数据;或者,第一设备还可以支持向第二设备发送唤醒信号。
第二设备为用户设备(user equipment,UE),也可以称为终端设备。第二设备可以实现的设备类型包括以下任意一项或多项:智能穿戴设备例如手机、手表、手环等;智能宠物穿戴设备例如项圈等;智能家居例如智能空气净化器,扫地机器人,智能排插,智能厨卫等;智能办公设备例如智能打印机,智能复印机,智能照明系统等;城市道路的监控设备;医疗保健设备;用于感知大气、土壤、森林、水资源等方面的终端设备等等。
在本申请实施例中,第二设备包含:支持无源通信的大规模机器类通信的用户设备;或者,可以是支持唤醒接收机的终端设备;或者,第二设备还可以是支持反射通信的用户设备。也就是说,第二设备中包含支持passive IoT数据传输的终端,或者还可以包含支持WUR数据传输的终端。
接下来,简单介绍本申请实施例提供的通信方法中涉及的Passive IoT、WUR以及蜂窝通信。
1、Passive IoT。
Passive IoT是从目前大量且成熟使用无源射频识别(Radio Frequency Identification,RFID) 技术中得出启发后应运而生。通常情况下RFID系统有阅读器(reader)和标签(tag)组成。在无源RFID中,阅读器通过向标签发送激励信号为标签充能,也就是说标签通过接收阅读器发送的微波信号,通过微波信号激励标签中的电磁感应线圈获取能量,来驱动标签中的芯片工作,并通过反射信号向阅读器发送数据,通过这种方式阅读器可以识别标签的身份标识(Identification,ID),以及对标签进行读写等操作。从而完成对标签进行读写数据。因为省去了电源模块,所以无源RFID产品的体积可以达到厘米量级甚至更小,而且自身结构简单,成本低,故障率低,使用寿命较长。
本申请提供的Passive IoT与无源RFID的传输机制类似。在Passive IoT中,Passive IoT设备可以是无源(Batter Free)的,即Passive IoT设备自身不配备或不主要依赖于电池或者有线电源来供电。但是,Passive IoT设备不具备电源模块并不意味着不需要用电,Passive IoT设备可以从环境光、热量、射频中获取能量,从而支撑起物联网数据的感知、无线传输和分布式的计算等等。Passive IoT设备也可以是储能无源的,还可以是半无源的。储能无源设备有储能设备。半无源设备有电池,但电池供电对象为设备中部分需要维持数据的低功耗电子电路,或者低功耗芯片等。
参考图2A-图2B,图2A-图2B示例性示出Passive IoT通信中的上下行通信方法示意图。
如图2A所示,图2A示例性示出Passive IoT下行通信方法示意图。
第一设备通过下行链路向第二设备发送调幅信号,第二设备接收该调幅信号,可以采用包络检波器,对该调幅信号进行包络检波,获取其中的低频信号。
上述包络检波是指:从调幅信号中将低频信号解调出来的过程,广义的检波通常称为解调,是调制的逆过程,即从已调信号提取调制信号的过程。对调幅信号来说,包络检波就是从它的振幅变化中提取调制信号的过程。其中,包络是反映一个高频信号的幅度变化曲线,当用一个低频信号对一个高频信号进行幅度调制时,低频信号就成了高频信号的包络线。
包络检波器的主要组成部分包括图2A所示的二极管和RC振荡电路。包络检波常用的方法是采用二极管进行单向过滤后再进行低通滤波。低通滤波器即图2A所示的RC振荡电路。其中,二极管的作用是,以防在低通滤波时,会使正、负包络线抵消,从而检测不出低频信号。
可以理解的是,图2A所示出的包络检波电路为最传统的基础电路结构示意图,关于包络检波电路的演进结构,在此在暂不赘述。本申请实施例对第二设备采用的包络检波电路结构不作限制。
如图2B所示,图2B示例性示出Passive IoT上行通信方法示意图。
第二设备为Passive IoT设备,这里以passive IoT设备为无源设备为例,第二设备自身无法提供电源,也无条件连接有线电源,来供Passive IoT设备进行数据传输。所以第二设备需要从外接环境中获取能量,进而提供Passive IoT设备进行数据传输,以及数据处理等其他操作。
具体的,当第二设备接收第一设备发出的载波信号,可以利用空间中产生的电磁场得到的能量,驱动芯片将自身存储的信息传送出去。
在上述实现方法中,第一设备和第二设备的关系为“电磁反向散射耦合”关系,“电磁反向散射耦合”是指利用电磁波的空间传播规律,当发射的电磁波接触到被测物体后,携带着被测物体的信息被反射回来。这种耦合适合用在高频、微波工作的远距离射频识别系统。
可以理解的是,图2B所示的Passive IoT通信中上行通信方法仅为示例,在本申请另一些实施例中,第二设备即Passive IoT设备还可以通过获取环境光、热等能量,来驱动芯片将 自身存储的信息传送出去。如前所述,第二设备也可以是储能无源设备或者半无源设备。
参考图2C,图2C示例性示出了Passive IoT通信流程示意图。具体包括以下步骤:
S101,第一设备广播第一信令,其中第一信令携带有匹配条件的相关参数。
其中,匹配条件的相关参数用于选择符合匹配条件的特定设备。相应的,与第一设备之间的通信距离满足一定条件的设备例如第二设备和第三设备都会接收到该第一信令。
可以理解的是,第一设备可以多次广播该第一信令,用以多次筛选符合条件的特定设备。
S102,第一设备广播第二信令,其中第二信令携带第一参数,该第一参数包括以下任意一项或多项:下行数据率、上行数据率、编码方式、Q值、Target指标等等。
其中:下行数据率、上行数据率、编码方式用以初始化通信链路。Q值用于确定设备的计数器数值。Target指标用于进一步筛选设备。
相应的,与第一设备之间的通信距离满足一定条件的设备例如第二设备和第三设备都会接收到该第二信令。其中第二设备接收到第一信令和第二信令后,检测到符合第一信令中的匹配条件、并且符合第二信令中的Target指标,则第二设备响应于第二信令,根据第二信令中的Q值确定计数器的数值,具体可以在0~2 Q-1范围内生成随机数作为计数器的数值。其中第三设备接收到第一信令和第二信令后,检测到不符合以下任意一项或多项:第一信令中的匹配条件、并且符合第二信令中的Target指标;则第三设备不作响应。
S103,当第二设备的计数器值满足预设条件时,向第一设备发送RN16。
其中,预设条件例如是指计数器数值为0,当第二设备的计数器数值为非零时,可以通过接收到第一设备发送的第三信令来调整数值,每当第二设备接收一次该第三信令时,第二设备便将计数器数值减一,直至减为0。其中RN16为第二设备生成的随机数。这样便可以减少多个设备响应第一设备时发生碰撞的概率。
S104,第一设备发送确认消息,并携带上述RN16。其中,步骤S103和步骤S104可以理解为双方握手过程。
S105,第一设备对第二设备执行读写数据的操作。其中读数据的操作具体为,第二设备向第一设备反向散射数据。
2、WUR。
在无线通信系统中,站点设备大部分能量浪费在信道监听,即当站点无消息收发时,若站点设备持续监听信道,则会消耗大量的能量。为了减少能量的浪费,同时避免站点设备处于休眠状态太长导致运行缓慢,因此,站点设备必须能够在低功耗、低延迟状态下运行。WUR架构应运而生,其核心思想是:接收端设备除包含传统的主收发模块即主无线电(mainradio,简称mr)外,新增低功耗唤醒接收机(wakeupreceiver,简称wurx)部分,该传统的收发模块即为802.11主无线电(mainradio,简称mr)。因为wurx的功耗比传统的低功耗还要低几个数量级,因此wurx可以一直运行。
如图3A所示,当第一设备和第二设备之间无数据进行传输时,第二设备中的mr进入深度休眠,低功耗的wurx开始工作,wurx用于监听信道。在这种情况下,mr保持在深睡眠或关闭模式,直到wurx唤醒它为止。
如图3B所示,当第一设备和第二设备之间有数据进行传输时,第一设备首先给wurx发送唤醒数据分组(wakeuppacket,简称wup),一直开启的wurx正确收到发给自己的wup后,对mr的微控制器产生一个中断将它从睡眠切换到主动模式,从而达到唤醒第二设备的mr。随后,mr的微控制器打开主无线电收发机,以常规方式与第一设备进行通信。
当mr与第一设备通信完成后将重新进入休眠,同时wurx又开始侦听是否有发送给自己的wup,以便再次唤醒mr。该技术采用了低功耗的wurx代替主收发模块侦听信道,有效降低了设备在监听时能量的浪费。
3、蜂窝通信系统中随机接入过程。
随机接入是蜂窝通信系统例如4G LTE系统、5G NR系统中一个基本且重要的过程,其主要目的如下:①用于终端与网络设备建立无线链路;②建立一个唯一终端标识C-RNTI,请求网络分配给终端上行链路资源。所以随机接入不仅用于初始化接入,而且还可以用于切换过程中的新小区接入、无线链路失败后的接入、在有上/下行数据传输时重新恢复上行同步以及UL-SCH资源请求等。
随机接入的种类分为两种:基于竞争和基于非竞争。其区别为随机接入过程中选择的随机接入前缀的方式不同。基于竞争的随机接入为终端侧从基于冲突的随机接入前缀中依照一定算法随机选择一个随机前缀。基于非竞争则是网络侧通过下行专用信令给终端设备指派非冲突的随机接入前缀。
参考图4A,图4A示例性示出了基于竞争的四步随机接入流程示意图。具体包括以下步骤:
S201,第二设备向第一设备发送随机接入前导码。
具体的,前导码为第二设备即终端设备随机选择一个前导序列,在RACH信道上发送至网络设备即第一设备。S202,第一设备向第二设备发送随机接入响应。
具体的,网络设备在检测到有前导码后,下行发送随机接入响应,随机接入响应中至少应包含以下任意一项或多项:所收到的前导序列的编号、定时调整信息、为第二设备分配的上行资源位置指示信息、临时分配的终端标识(C-RNTI)。
S203,第二设备向第一设备发送建立连接的请求。
第二设备接收到该随机接入响应,根据收到的前导序列的编号判断该随机接入响应是否是发送给自己的,若是,则在分配的上行资源上发送上行消息,即发送建立连接的请求,并携带第二设备的标识(UE-ID)或者携带根据预设规则生成的随机数。
S204,第一设备向第二设备发送冲突解决消息。
具体的,如果冲突解决消息包含的标识或者随机数和步骤S203中第二设备向第一设备上报的UE-ID或随机数相同,则冲突解决成功,随机接入过程完成。
参考图4B,图4B示例性示出了基于非竞争的四步随机接入流程示意图。具体包括以下步骤:
S300,第一设备向第二设备发送随机接入指派消息,指派非冲突随机接入前导码。
具体的,对于切换场景,第一设备可以通过RRC信令通知第二设备;对于下行数据到达和辅助定位场景,第一设备可以通过PDCCH通知第二设备;
S301,第二设备向第一设备发送接收到的非冲突随机接入前导码。
具体的,第二设备根据第一设备的指示,在指定的PRACH上使用指定的前导码发起随机接入。
S302,第一设备向第二设备发送冲突解决消息。
随机接入响应,成功建立连接。
参考图4C,图4C示例性示出了基于竞争的两步随机接入流程示意图。具体包括以下步骤:
S501,第二设备向第一设备发送消息A,消息A包括随机接入前导码和承载在PUSCH上的一个载荷(payload)。
具体的,前导码为第二设备即终端设备随机选择一个前导序列,在RACH信道上发送至网络设备即第一设备。
S502,第一设备向第二设备发送消息B,包括冲突解决消息。
参考图4D,图4D示例性示出了基于竞争的两步随机接入流程示意图。具体包括以下步骤:
S601,第一设备向第二设备发送随机接入指派消息,指派非冲突随机接入前导码及PUSCH资源。
S602,第二设备向第一设备发送消息A,消息A包括随机接入前导码和承载在PUSCH上的一个载荷(payload)。
具体的,前导码为第二设备即终端设备随机选择一个前导序列,在RACH信道上发送至网络设备即第一设备。
S603,第一设备向第二设备发送消息B,包括冲突解决消息。
以4G LTE系统为例,每个小区中有64个可用的前导序列,对于基于竞争的随机接入过程来说,第二设备随机选择一个前导序列向第一设备侧发起随机接入过程,因此如若同一时刻多个第二设备使用同一个前导序列发起随机接入过程,就会发生冲突,有可能导致接入失败。而无竞争的随机接入使用eNodeB所分配的前导序列发起随机接入过程,故接入成功率较高。但考虑到仅在切换或有下行数据发送两个场景下,eNodeB能够事先知道第二设备需要发起随机接入过程,所以仅在这两个场景可以使用无竞争的随机接入,对于其他应用场景,只能使用基于竞争的随机接入。
对于NR系统,四步随机接入和两步随机接入过程的具体描述见TS 3GPP 38.300V16.7.0中9.2.6节,本申请实施例在此暂不赘述。
下面结合图5A所示的方法流程图来介绍本申请实施例提供的通信方法。
如图5A所示,图5A示例性示出本申请提供的通信方法流程图。
步骤S401,第一设备确定第一指示信息,向第二设备发送第一指示信息。
相应地,第二设备接收该第一消息。第二设备将不在第一资源内传输数据。其中:上述第一指示信息用于第二设备确定第一资源,该第一资源不用于所述第二设备进行数据传输。
在一种可实施的方式中,第一指示信息包括第一时长,第一指示信息之后的第一时长内的信道资源为第一资源。具体可以参考图5B,图5B示例性示出第一资源在信道资源中的映射。其中,在信道资源中的映射的数据传输是指,第二设备在该段时长内占用信道资源进行数据传输,例如传输Passive IoT数据、WUR数据等等。在信道资源中的映射的指示信息是指,第二设备在该段时长内占用信道资源接收第一设备下发的第一指示信息。在信道资源中的映射的预留资源是指,第二设备在该段时长内不会占用信道资源进行数据传输。第一指示信息在时域上可以位于第二设备的数据传输的起始位置,可以位于第二设备的数据传输的结束位置,也可以位于第二设备的数据传输的起始位置和第二设备的数据传输的结束位置中间的任一个时间位置。
在一种可实施的方式中,第一指示信息包括第二时长和第三时长,第三时长的起始位置为距离参考时域位置为N个第二时长的时域位置;每两个第二时长之间间隔一个第三时长;其中,N和M为正整数,N个第二时长内的信道资源用于第二设备对应的数据传输;第一资源由M个第三时长内的信道资源组成。此外,参考时域位置可以是,第一设备向所述第二设 备发送下行数据时,该下行数据对应的时域起始位置。具体的,该下行数据包括第一序列和第一数据,第二设备可以根据第一序列获取时间和/或频率同步,也可以确定时间单元的边界,时间单元可以为符号或时隙或子帧或帧,其中,第一序列位于第一数据之前,第一序列和第一数据在时域上可以是连续的,也可以是不连续的。通信的起始位置可以根据第一序列的起始位置,或者,参考时域位置可以根据第一序列的结束位置确定,或者,参考时域位置可以根据第一数据的起始位置确定,比如,参考时域位置为第一序列的起始位置或者为第一序列的结束位置或者为第一数据的起始位置。其中,第一序列还可以称为前导序列。具体可以参考图5C,图5C示例性示出第一资源在信道资源中的映射。其中,在信道资源中的映射的数据传输是指,第二设备在该段时长内占用信道资源进行数据传输,例如传输Passive IoT数据、WUR数据等等。在信道资源中的映射的预留资源是指,第二设备在该段时长内不会占用信道资源进行数据传输。其中数据传输与预留资源出现,在一些实施例中,每段数据传输的时长以及预留资源的时长可以固定不变亦可以等比增加等比减少等等,具体由第一设备下发的第一指示信息来确定,本申请实施例对此不做限制。
值得注意的是,在第一设备确定第一指示信息之后,当第一设备在第二资源内向所述第二设备发送数据;当所述第二资源和所述第一资源有重叠,所述第一设备丢弃映射在所述第一资源内的数据,或者,所述第一设备将映射在所述第一资源内的数据推迟到第三资源内进行传输,所述第三资源和所述第一资源没有重叠。
下面介绍本申请实施例涉及的一些可选实施例。也就是说图5A所示的方法流程还可以包含以下步骤:
S402,第一设备向第二设备发送第二指示信息,用于更新预留资源。
具体的第一设备还可以在向所述第二设备发送所述第一指示信息之后,继续向所述第二设备发送第二指示信息;所述第二指示信息用于所述第二设备确定第四资源,所述第四资源不用于所述第二设备对应的数据传输;值得注意的是,当第二设备接受到更新后的预留资源指示信息后,即接收到上文所述的第四资源,则认为前一次接受到的预留资源指示信息失效,即前一次确认的第一资源失效,也就是说,第二设备可以在第一资源内传输数据但不能在第四资源内传输数据。前述实施例中第一资源和所述第四资源不重叠时,网络设备在所述第一资源上向所述第一设备发送下行数据。
S403,第一设备可以接收第二设备发送的第二设备的能力信息。
具体的,所述第一能力信息包括以下任意一项或多项:所述第二设备是否支持预留资源;所述第二设备支持预留资源的最大时长。相应的,第一设备接收到该能力信息之后,可以根据该能力信息确定第一指示信息。
可以理解的是,步骤S403的执行顺序可以在步骤S401之前或者之后,也就是说在第一设备在确定第一指示信息之前或者之后,第一设备可以接收到第二设备发送的能力信息,本申请对此不作限制,但在部分实施例中,以步骤S403的执行顺序在步骤S401之前作为优选实施例,从而便于第一设备可以在第二设备的能力基础上确定合适的预留资源的第一指示信息。
S404,第一设备向第二设备发送以下一项或多项:第二序列、第三序列或者第四序列。
具体的,在第一设备发送预留资源的指示信号后,第一设备还可以向第二设备发送上述一个或多个序列。这里的预留资源的指示信号包括:第一指示信号、第二指示信号以及更多 的用于预留资源或者用于更新预留资源的指示信号。其中,第二序列用于所述第二设备获取能量或获取载波;所述第三序列用于所述第二设备确定下行数据传输起始位置;所述第四序列用于所述第二设备进行时间和/或频率的跟踪同步。其中,第二序列可以称为能力信号或者载波,第二信号可以称为定界符,第三信号可以称为中导序列。
可以理解的是,在一些实施例中,只有当预留资源满足第一条件(这里以第一指示信息指示的第一预留资源为例),第一设备才向第二设备发送以下一项或多项:第二序列、第三序列或者第四序列。其中第一资源满足第一条件时具体是指:所述第二时长、所述第三时长或所述M个所述第三时长大于或者等于预设时长时;所述第一设备还可以向所述第二设备发送以下一项或多项:第二序列、第三序列或者第四序列;其中,所述第二时长、所述第三时长或所述M个所述第三时长分别对应相同或者不同的预设时长。
在可选实施例中,在步骤S401中,第一设备向第二设备发送第一指示信息时,所述第一设备还可以向所述第二设备发送定时器的配置信息。当定时器超时,所述第一资源可用于所述第二设备传输数据。也就是说,第一设备可以向像第二设备发送定时器的配置信息,该定时器的配置信息指示了该第一资源的生命周期,当定时器超出定时时间时,第一资源则不再生效,第二设备可以在第一资源内传输数据。
在可选实施例中,步骤S401中的第一指示信息还可以包括第一信息,所述第一信息用于指示所述M个所述第三时长内的信道资源是否用于所述第二设备对应的数据传输。当所述第一信息指示所述M个所述第三时长内的信道资源不用于所述第二设备对应的数据传输时,所述第一资源由所述M个所述第三时长内的信道资源组成;当所述第一信息指示所述M个所述第三时长内的信道资源用于所述第二设备对应的数据传输时,所述第二设备可以在所述M个所述第三时长内的信道资源内传输数据。
在可选实施例中,本申请中的用于指示预留资源的信息例如第一指示信息、第二指示信息、第一信息等可以通过前导序列、中导序列或后导序列经过取反或者重复扩频得到。例如,前导序列对应的比特序列为[0,0,1,1,0,0,0,1,1,1,1,1,1,0,1,0,1,0,1,1,0,1,1,0],则指示信息的比特序列为[1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0,0,1,0,0,1]。
在可选实施例中,指示信息如果出现错检或者漏检,会造成第一设备侧和第二设备侧理解不一致的问题。例如,第一设备侧发送指示信息,指示信息携带有预留资源的相关信息,但是第二设备没正确接收到,此时第一设备侧和第二设备关于是否预留资源没有达成一致。针对为了避免问题,指示信息在设计上可以考虑以下至少一项:
指示信息承载用于纠错的信息,采用极低的编码码率,比如,指示信息承载1比特信息,用于指示后续的是否有预留资源,或者,指示数据传输过程中是否有预留资源。这样可以提升指示信息的可靠性,进而可以降低通信双方出现理解不一致问题的可能性。
指示信息在生成时附加循环冗余校验(cyclic redundancy check,CRC)。第二设备接收指示信息时,通过CRC判断是否正确接收指示信息,提升接收端的指示信息的可靠性,进而可以降低通信双方出现理解不一致问题的可能性。
第二设备在接收到指示信息后,向第一设备发送反馈信息。第一设备设备可以通过反馈信息判断第二设备是否正确接收指示信息,若接收有误,则第一设备可以重传该指示信息。进而可以降低通信双方出现理解不一致问题的可能性。
下面介绍本图5A所示的通信方法的具体实现方法:
步骤S401具体有三种实施方式,下面分别进行阐述。
第一种实施方式,第一设备可以采用图2C所示的通信方法中的下行数据中承载第一指示信息。具体的,图2C所示的步骤S101中可以携带步骤S401中的第一指示信息。
特别的是,由于步骤S101可以重复执行多次,即第一设备可以重复多次向第二设备发送第一信令,在每次发送第一信令时,都可以携带预留资源的指示信息即步骤S401中的第一指示信息;或者在非首次发送第一信令时,还可以携带更新预留资源的指示信息即步骤S402中的第二指示信息。
第二种实施方式,第一设备可以采用图4A所示的基于竞争的四步随机接入过程或图4C所示的基于竞争的两步随机接入过程中的下行数据中承载第一指示信息。也就是说,图4A所示的步骤S202或图4C所示的S502中可以携带步骤S401中的第一指示信息。或者,第一设备还可以通过RRC Release消息(图4A未示出)携带第一指示信息。
第三种实施方式,第一设备可以采用图4B所示的基于非竞争的四步随机接入过程或图4D所示的基于非竞争的两步随机接入过程中的下行数据中承载第一指示信息。也就是说,图4B所示的步骤S300、S302或图4D所示的S601、S603中可以携带步骤S401中的第一指示信息。或者,第一设备还可以通过RRC Release消息(图4A未示出)携带第一指示信息。
步骤S402具体有三种实施方式,下面分别进行阐述。
第一种实施方式,第一设备可以采用图2C所示的通信方法中的下行数据中承载第二指示信息。具体的,图2C所示的步骤S102中可以携带步骤S402中的第二指示信息,以及步骤S101中非首次发送第一信令时,同样可以携带更新预留资源的指示信息即步骤S402中的第二指示信息。可选的,步骤S104、步骤S105等下行数据中都可以携带用于更新预留资源的指示信息。响应的第二设备接收到最新的指示信息之后,将以最新的指示信息所指示的预留资源为准,执行相应的操作。
第二种实施方式,第一设备可以采用图4A所示的基于竞争的四步随机接入过程或图4C所示的基于竞争的两步随机接入过程中的下行数据中承载第二指示信息。也就是说,图4A所示的步骤S204或图4C所示的S502中可以携带步骤S402中的第二指示信息。
第三种实施方式,第一设备可以采用图4B所示的基于非竞争的四步随机接入过程或图4D所示的基于非竞争的两步随机接入过程中的下行数据中承载第二指示信息。也就是说,图4B所示的步骤S302或图4D所示的S601、S603中可以携带步骤S402中的第二指示信息。
步骤S403具体有三种实施方式,下面分别进行阐述。
第一种实施方式,第一设备可以采用图2C所示的通信方法中的上行数据中承载能力信息。具体的,图2C所示的步骤S103中可以携带步骤S403中的能力信息。
第二种实施方式,第一设备可以采用图4A所示的基于竞争的四步随机接入过程或图4C所示的基于竞争的两步随机接入过程中的上行数据中承载能力信息。也就是说,图4A所示的步骤S201、步骤S203或图4C所示的S501中可以携带步骤S403中的能力信息。
第三种实施方式,第一设备可以采用图4B所示的基于非竞争的四步随机接入过程或图4D所示的基于非竞争的两步随机接入过程中的上行数据中承载能力信息。也就是说,图4B所示的步骤S301或图4D所示的S602中可以携带步骤S403中的能力信息。
步骤S404具体有三种实施方式,下面分别进行阐述。
第一种实施方式,第一设备可以采用图2C所示的通信方法中的下数据中承载信息。具体的,图2C所示的步骤S101、步骤S102或步骤S104中都可以携带步骤S404中的信息。
第二种实施方式,第一设备可以采用图4A所示的基于竞争的四步随机接入过程或图4C 所示的基于竞争的两步随机接入过程中的下行数据中承载信息。也就是说,图4A所示的步骤S202、步骤S204或图4C所示的S502中可以携带步骤S404中的信息。
第三种实施方式,第一设备可以采用图4B所示的基于非竞争的四步随机接入过程或图4D所示的基于非竞争的两步随机接入过程中的下行数据中承载信息。也就是说,图4B所示的步骤S300、步骤S302或图4D所示的S601、S603中可以携带步骤S404中的信息。
此外,关于图5A示出的通信方法中还包括一些可选步骤,这些可选步骤中的通信信息同样可以对应的承载在图2C、图4A、图4B所示的上行数据或者下行数据中进行传输。
以其中一个可选步骤为例,在步骤S401中,第一设备向第二设备发送第一指示信息时,所述第一设备还可以向所述第二设备发送定时器的配置信息。该可选步骤中的定时器的配置信息具体可以承载在图2C所示的步骤S101、步骤S102或者步骤S104等下行数据传输中;或者还可以承载在图4A所示的步骤S202或者步骤S204等下行数据传输中;或者还可以承载在图4B所示的步骤S300或者步骤S302等下行数据传输中。
以另一个可选步骤为例,第二设备在接收到指示信息后,向第一设备发送反馈信息。该可选步骤中的反馈具体可以承载在图2C所示的步骤S103等上行数据传输中;或者还可以承载在图4A所示的步骤S201或者步骤S203等上行数据传输中;或者还可以承载在图4B所示的步骤S301等上数据传输中。
本实施例考虑到,第一设备没有配置预留资源,或者,第二设备不支持预留资源时,如何缓解Passive IoT传输、WUR数据传输或者其他数据传输时对蜂窝数据传输的信道资源的影响。接下来介绍本申请提供的另一种通信方法,在该方法中,对于第二设备的数据传输,包括Passive IoT数据传输、WUR数据传输例如唤醒数据包等,第二设备上行、下行数据传输占用的信道资源位置位于4G LTE或者5G NR通信系统规定的载波的低频边界附近或载波高频边界附近,或者位于载波的保护带内。
接下来,结合图6所示的信道资源配置图,来详细介绍本申请提供的另一种通信方法。
如图6所示,以5G NR的一个子载波的频率资源为例,将第二设备数据传输占用的资源设置在子载波的高频边界附近。
可选的,为了保证NR载波边界有足够资源提供给第二设备进行数据传输,包括进行Passive IoT数据,或者WUR唤醒数据包的传输等。还可以配置PRB offset(物理资源块偏移),PRB offset内则可以用来第二设备进行Passive IoT数据或者WUR唤醒数据包的传输。
具体的,第一设备在配置蜂窝通信系统中的空口资源时,将PUCCH/PRACH的频域资源配置在距离载波边界有一定PRB offset的频域位置处。具体的,第一设备在配置NR的公共PUCCH时,通过信元pucch-ResourceCommon进行配置PUCCH的资源通,pucch-ResourceCommon公共资源编号的取值范围为0~15,将pucch-ResourceCommon配置值为{2,5,6,9,10,13,14}中的任意一个时,即可保证PUCCH的起始位置和NR载波边界之间有一定的PRB offset。PRB offset内则可以用来第二设备进行Passive IoT数据或者WUR唤醒数据包的传输。此外,第一设备在配置PRACH的频域资源时,在NR现有技术中PRACH频域资源起始位置通过信元msg1-FreqencyStart进行配置,将msg1-FreqencyStart配置为大于0的数值,即可保证PRACH的起始位置和NR载波边界之间有一定的PRB offset,PRB offset内可以进行Passive IoT或者WUR唤醒数据包的传输。
可选地,针对第二设备传输下行数据占用的信道资源,包括Passive IoT下行传输,或者,WUR唤醒数据包传输占用的资源位置,具体可以位于与NR SSB的距离大于阈值的处。其中 NR SSB用于第二设备即终端获取时间和频率同步,获取系统消息,以及RRM测量等。关于NR SSB的配置方法具体可以参考4G LTE通信系统或者5G NR通信系统中的现有配置方法,在此暂不赘述。
可以理解的是,图6仅示例性示出将第二设备的数据传输的信道资源配置在子载波高频边界处这一种方法。除此以外,还可以将第二设备的数据传输的信道资源配置在保护带范围内、或者子载波低频边界处。并且,由于第二设备包括:对于Passive IoT设备、WUR设备,当把Passive IoT设备、WUR设备同时引进蜂窝通信系统时,具体可以将Passive IoT设备传输数据的信道资源,与WUR设备传输数的信道资源配置为不同的资源,例如将Passive IoT数据传输占用的资源配置在NR载波的低频边界,将WUR数据传输占用的资源配置在NR载波的高频边界附近,或者位于NR载波的保护带内。
可见,实施本发明提供的通信方法后,解决了在蜂窝通信系统中引入Passive IoT/WUR后,带来的共存问题,针对Passive IoT/WUR,采用预留资源,使得预留资源内不可以用于Passive IoT/WUR唤醒数据包传输,但可以用于蜂窝数据传输。或者,将Passive IoT/WUR数据传输配置在子载波边界处或者保护带范围内进行传输。通过这种方式,可以避免对4G、5G蜂窝通信系统连续资源分配的影响,进而可以提高数据传输效率。
上述主要从第一设备和第二设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,第一设备和第二设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本发明中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对第一设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图7A示出了上述实施例中所涉及的第一设备的一种可能的结构示意图。第一设备包括:存储单元701、处理单元702和通信单元703。存储单元701用于存储第一设备的程序代码和数据。处理单元702用于对第一设备的动作进行控制管理,例如,处理单元702用于支持第一设备执行图2C所示的S101、S105,图4B中S300,图4C中S502、图4D中S601、S603和图5A中S401,和/或用于执行本文所描述的技术的其它步骤。通信单元703用于支持第一设备与第二设备的通信,例如,通信单元703用于支持第一设备执行图2C中的步骤S101-S105,图4A中S201-S204、图4B中的S300-S302,图4C中S502、图4D中S601、S603,图5A中S401-S404,和/或用于执行本文所描述的技术的其它步骤。
其中,处理单元702可以是处理器或控制器,例如可以是中央处理器(英文:Central Processing Unit,CPU),通用处理器,数字信号处理器(英文:Digital Signal Processor,DSP),专用集成电路(英文:Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(英文:Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬 件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元703可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口,例如第一设备和第二设备之间的接口。存储单元701可以是存储器。
以上介绍了本申请实施例的第一设备的结构示意图,以下介绍所述第一设备可能的产品形态。应理解,但凡具备上述图7A所述的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的第一设备的产品形态。
作为一种可能的产品形态,本申请实施例所述的第一设备,可以由一般性的总线体系结构来实现。当处理单元702为处理器,通信单元703为通信接口,存储单元701为存储器时,本申请实施例所涉及的第一设备可以为图7B所示的第一设备。
参阅图7B所示,该第一设备包括:该第一设备包括处理器1001和与所述处理器内部连接通信的收发器1002。其中,处理器1001是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。收发器1002可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1002可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。可选的,第一设备还可以包括天线1003和/或射频单元(图未示意)。所述天线1003和/或射频单元可以位于所述第一设备内部,也可以与所述第一设备分离,即所述天线1003和/或射频单元可以是拉远或分布式部署的。
可选的,第一设备中可以包括一个或多个存储器1004,其上可以存有指令,该指令可为计算机程序,所述计算机程序可在第一设备上被运行,使得第一设备执行上述方法实施例中描述的方法。可选的,所述存储器1004中还可以存储有数据。第一设备和存储器1004可以单独设置,也可以集成在一起。
其中,处理器1001、收发器1002、以及存储器1004可以通过通信总线连接。
一种设计中,处理器1001可以用于执行执行图2C所示的步骤S101、S105,图4B中步骤S300和图5A中S401,图4C中S502、图4D中S601、S603和/或用于执行本文所描述的技术的其它步骤。
在上述设计中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述设计中,处理器1001可以存有指令,该指令可为计算机程序,计算机程序在处理器1001上运行,可使得第一设备执行上述方法实施例中描述的方法。计算机程序可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,第一设备可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide  semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的第一设备的范围并不限于此,而且第一设备的结构可以不受图7B的限制。第一设备可以是独立的设备或者可以是较大设备的一部分。例如所述第一设备可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)基站、接收机等等;
应理解,上述各种产品形态的第一设备,具有上述方法实施例中第一设备的任意功能。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种电子设备,该电子设备可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
本申请实施例还提供一种无线通信系统,包括AP MLD和non-AP MLD,该AP MLD和non-AP MLD可以执行前述任一实施例中的方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
在采用集成的单元的情况下,图8A示出了上述实施例中所涉及的第二设备的一种可能的结构示意图。第二设备包括:存储单元801、处理单元802和通信单元803。存储单元801,用于存储第二设备的程序代码和数据。处理单元802用于对第二设备的动作进行控制管理,例如,处理单元802用于支持第二设备执行图2C中的S104,图4A中S201、S203,图4B中S301,图4C中S501,图4D中S602和/或用于执行本文所描述的技术的其它步骤。通信单元803用于支持第二设备与第一设备的通信,例如,通信单元803用于支持图2C中的S104,图4A中S201、S203,图4B中S301图4C中S501,图4D中S602。
其中,处理单元802可以是处理器或控制器,例如可以是中央处理器(英文:Central Processing Unit,CPU),通用处理器,数字信号处理器(英文:Digital Signal Processor,DSP), 专用集成电路(英文:Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(英文:Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元803可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口,例如第二设备和第一设备之间的接口。存储单元801可以是存储器。
当处理单元802为处理器,通信单元803为通信接口,存储单元801为存储器时,本申请实施例所涉及的第二设备可以为图8B所示的第二设备。
在本申请实施例中,第二设备可以是手机、平板电脑、桌面型计算机、膝上型计算机、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、人工智能(artificial intelligence,AI)设备、可穿戴式设备、车载设备、智能家居设备和/或智慧城市设备等等。本申请实施例对此不作限制。
参阅图8B所示,该第二设备包括:处理器812、通信接口813、存储器811。可选地,第二设备还可以包括总线814。其中,通信接口813、处理器812以及存储器811可以通过总线814相互连接;总线814可以是外设部件互连标准(英文:Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(英文:Extended Industry Standard Architecture,简称EISA)总线等。所述总线814可以分为地址总线、数据总线、控制总线等。为便于表示,图8B中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请的各实施方式可以任意进行组合,以实现不同的技术效果。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
总之,以上所述仅为本发明技术方案的实施例而已,并非用于限定本发明的保护范围。凡根据本发明的揭露,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围 之内。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (28)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一设备确定第一指示信息,所述第一指示信息用于第二设备确定第一资源,所述第一资源不用于所述第二设备进行数据传输;
    所述第一设备向所述第二设备发送所述第一指示信息;
    所述第一指示信息包括第一时长,所述第一指示信息之后的所述第一时长内的信道资源为所述第一资源;
    或者,
    所述第一指示信息包括第二时长和第三时长,所述第三时长的起始位置为距离参考时域位置为N个第二时长的时域位置;每两个所述第二时长之间间隔一个所述第三时长;其中,N和M为正整数,所述N个所述第二时长内的信道资源用于所述第二设备对应的数据传输;所述第一资源由所述M个所述第三时长内的信道资源组成。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送下行数据;
    所述参考时域位置为所述下行数据对应的时域起始位置。
  3. 根据权利要求2所述的方法,其特征在于,
    所述下行数据包括第一序列和第一数据,所述第一序列位于所述第一数据之前,所述参考时域位置根据所述第一序列的起始时域位置,或者所述第一序列的结束时域位置确定,或者根据第一数据的起始位置确定。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收所述第二设备发送的第一能力信息;
    所述第一能力信息包括以下任意一项或多项:
    所述第二设备是否支持预留资源;
    所述第二设备支持预留资源的最大时长。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一设备向所述第二设备发送所述第一资源之后,所述方法还包括:
    所述第一设备向所述第二设备发送以下一项或多项:第二序列、第三序列或者第四序列;
    所述第二序列用于所述第二设备获取能量或获取载波;
    所述第三序列用于所述第二设备确定下行数据传输起始位置;
    所述第四序列用于所述第二设备进行时间和/或频率的跟踪同步。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,第一资源满足预设条件时,所述第一设备向所述第二设备发送所述第一资源之后,所述方法还包括:
    所述第一设备向所述第二设备发送以下一项或多项:第二序列、第三序列或者第四序列;
    所述第二序列用于所述第二设备获取能量或获取载波;
    所述第三序列用于所述第二设备确定下行数据传输起始位置;
    所述第四序列用于所述第二设备进行时间和/或频率的跟踪同步。
  7. 一种通信方法,其特征在于,所述方法包括:
    第二设备接收第一设备发送的第一指示信息;
    所述第二设备根据所述第一指示信息确定第一资源,所述第一资源不用于所述第二设备进行数据传输;
    所述第一指示信息第一指示信息包括第一时长,所述第一指示信息第一指示信息之后的所述第一时长内的信道资源为所述第一资源;
    或者,
    所述第一指示信息包括第二时长和第三时长,所述第三时长的起始位置为距离参考时域位置为N个第二时长的时域位置;每两个所述第二时长之间间隔一个所述第三时长;其中,N和M为正整数,所述N个所述第二时长内的信道资源用于所述第二设备对应的数据传输;所述第一资源由所述M个所述第三时长内的信道资源组成。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的下行数据;
    所述参考时域位置为所述下行数据对应的时域起始位置。
  9. 根据权利要求8所述的方法,其特征在于,
    所述下行数据包括第一序列和第一数据,所述第一序列位于所述第一数据之前,所述参考时域位置根据所述第一序列的起始时域位置,或者所述第一序列的结束时域位置确定,或者根据第一数据的起始位置确定。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送第一能力信息;
    所述第一能力信息包括以下任意一项或多项:
    所述第二设备是否支持预留资源;
    所述第二设备支持预留资源的最大时长。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,第二设备接收第一设备发送的第一指示信息之后,所述方法还包括:
    所述第二设备接收所述第一设备发送的以下一项或多项:第二序列、第三序列或者第四序列;
    所述第二序列用于所述第二设备获取能量或获取载波;
    所述第三序列用于所述第二设备确定下行数据传输起始位置;
    所述第四序列用于所述第二设备进行时间和/或频率的跟踪同步。
  12. 根据权利要求7-11任一项所述的方法,其特征在于,当所述第一资源满足预设条件时,第二设备接收第一设备发送的第一指示信息之后,所述方法还包括:
    所述第二设备接收所述第一设备发送的以下一项或多项:第二序列、第三序列或者第四序列;
    所述第二序列用于所述第二设备获取能量或获取载波;
    所述第三序列用于所述第二设备确定下行数据传输起始位置;
    所述第四序列用于所述第二设备进行时间和/或频率的跟踪同步。
  13. 一种第一设备,其特征在于,包括通信单元、处理单元;其中:
    所述处理单元用于,确定第一指示信息,所述第一指示信息用于第二设备确定第一资源,所述第一资源不用于所述第二设备进行数据传输;
    所述通信单元用于,向所述第二设备发送所述第一指示信息;
    所述第一指示信息包括第一时长,所述第一指示信息之后的所述第一时长内的信道资源为所述第一资源;
    或者,
    所述第一指示信息包括第二时长和第三时长,所述第三时长的起始位置为距离参考时域位置为N个第二时长的时域位置;每两个所述第二时长之间间隔一个所述第三时长;其中,N和M为正整数,所述N个所述第二时长内的信道资源用于所述第二设备对应的数据传输;所述第一资源由所述M个所述第三时长内的信道资源组成。
  14. 根据权利要求13所述的第一设备,其特征在于,
    所述通信单元还用于,向所述第二设备发送下行数据;
    所述参考时域位置为所述下行数据对应的时域起始位置。
  15. 根据权利要求14所述的第一设备,其特征在于,
    所述下行数据包括第一序列和第一数据,所述第一序列位于所述第一数据之前,所述参考时域位置根据所述第一序列的起始时域位置,或者所述第一序列的结束时域位置确定,或者根据第一数据的起始位置确定。
  16. 根据权利要求13-15任一项所述的第一设备,其特征在于,
    所述通信单元还用于,接收所述第二设备发送的第一能力信息;
    所述第一能力信息包括以下任意一项或多项:
    所述第二设备是否支持预留资源;
    所述第二设备支持预留资源的最大时长。
  17. 根据权利要求13-16任一项所述的第一设备,其特征在于,所述通信单元向所述第二设备发送所述第一资源之后,
    所述通信单元还用于,向所述第二设备发送以下一项或多项:第二序列、第三序列或者第四序列;
    所述第二序列用于所述第二设备获取能量或获取载波;
    所述第三序列用于所述第二设备确定下行数据传输起始位置;
    所述第四序列用于所述第二设备进行时间和/或频率的跟踪同步。
  18. 根据权利要求13-16任一项所述的第一设备,其特征在于,当第一资源满足预设条件时,所述通信单元向所述第二设备发送所述第一资源之后,
    所述第一设备还用于,向所述第二设备发送以下一项或多项:第二序列、第三序列或者第四序列;
    所述第二序列用于所述第二设备获取能量或获取载波;
    所述第三序列用于所述第二设备确定下行数据传输起始位置;
    所述第四序列用于所述第二设备进行时间和/或频率的跟踪同步。
  19. 一种第二设备,其特征在于,包括通信单元、处理单元;其中:
    所述通信单元用于,接收第一设备发送的第一指示信息;
    所述处理单元用于,根据所述第一指示信息确定第一资源,所述第一资源不用于所述第二设备进行数据传输;
    所述第一指示信息包括第一时长,所述第一指示信息之后的所述第一时长内的信道资源为所述第一资源;
    或者,
    所述第一指示信息包括第二时长和第三时长,所述第三时长的起始位置为距离参考时域位置为N个第二时长的时域位置;每两个所述第二时长之间间隔一个所述第三时长;其中,N和M为正整数,所述N个所述第二时长内的信道资源用于所述第二设备对应的数据传输;所述第一资源由所述M个所述第三时长内的信道资源组成。
  20. 根据权利要求19所述的第二设备,其特征在于,所述方法还包括:
    所述通信单元还用于,接收所述第一设备发送的下行数据;
    所述参考时域位置为所述下行数据对应的时域起始位置。
  21. 根据权利要求20所述的第二设备,其特征在于,
    所述下行数据包括第一序列和第一数据,所述第一序列位于所述第一数据之前,所述参考时域位置根据所述第一序列的起始时域位置,或者所述第一序列的结束时域位置确定,或者根据第一数据的起始位置确定。
  22. 根据权利要求19-21任一项所述的第二设备,其特征在于,
    所述通信单元还用于,向所述第一设备发送第一能力信息;
    所述第一能力信息包括以下任意一项或多项:
    所述第二设备是否支持预留资源;
    所述第二设备支持预留资源的最大时长。
  23. 根据权利要求19-22任一项所述的第二设备,其特征在于,所述通信单元接收第一设备发送的第一指示信息之后,
    所述通信单元还用于,接收所述第一设备发送的以下一项或多项:第二序列、第三序列或者第四序列;
    所述第二序列用于所述第二设备获取能量或获取载波;
    所述第三序列用于所述第二设备确定下行数据传输起始位置;
    所述第四序列用于所述第二设备进行时间和/或频率的跟踪同步。
  24. 根据权利要求19-23任一项所述的第二设备,其特征在于,当第一资源满足预设条件时,所述通信单元接收第一设备发送的第一指示信息之后,
    所述通信单元还用于,接收所述第一设备发送的以下一项或多项:第二序列、第三序列或者第四序列;
    所述第二序列用于所述第二设备获取能量或获取载波;
    所述第三序列用于所述第二设备确定下行数据传输起始位置;
    所述第四序列用于所述第二设备进行时间和/或频率的跟踪同步。
  25. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在第一设备上运行时,使得所述第一设备执行如权利要求1-6中任一项所述的方法。
  26. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在第二设备上运行时,使得所述第二设备执行如权利要求7-12中任一项所述的方法。
  27. 一种芯片,所述芯片应用于第一设备,所述芯片包括一个或多个处理器,所述处理器用于调用计算机指令以使得所述第一设备执行如权利要求1-6中任一项所述的方法。
  28. 一种芯片,所述芯片应用于第二设备,所述芯片包括一个或多个处理器,所述处理器用于调用计算机指令以使得所述第二设备执行如权利要求7-12中任一项所述的方法。
PCT/CN2022/125937 2021-10-29 2022-10-18 通信方法、系统及相关装置 WO2023071870A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111276142.7 2021-10-29
CN202111276142.7A CN116095643A (zh) 2021-10-29 2021-10-29 通信方法、系统及相关装置

Publications (1)

Publication Number Publication Date
WO2023071870A1 true WO2023071870A1 (zh) 2023-05-04

Family

ID=86159149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125937 WO2023071870A1 (zh) 2021-10-29 2022-10-18 通信方法、系统及相关装置

Country Status (2)

Country Link
CN (1) CN116095643A (zh)
WO (1) WO2023071870A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867096A (zh) * 2019-04-26 2020-10-30 华为技术有限公司 通信方法、设备及系统
CN112153705A (zh) * 2019-06-29 2020-12-29 华为技术有限公司 一种通信方法及设备
CN113207179A (zh) * 2016-12-23 2021-08-03 Oppo广东移动通信有限公司 数据传输方法和装置
CN113316265A (zh) * 2021-06-11 2021-08-27 Oppo广东移动通信有限公司 上行调度任务处理方法、终端设备、存储介质及芯片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113207179A (zh) * 2016-12-23 2021-08-03 Oppo广东移动通信有限公司 数据传输方法和装置
CN111867096A (zh) * 2019-04-26 2020-10-30 华为技术有限公司 通信方法、设备及系统
CN112153705A (zh) * 2019-06-29 2020-12-29 华为技术有限公司 一种通信方法及设备
CN113316265A (zh) * 2021-06-11 2021-08-27 Oppo广东移动通信有限公司 上行调度任务处理方法、终端设备、存储介质及芯片

Also Published As

Publication number Publication date
CN116095643A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
TWI830734B (zh) 信號傳輸的方法、基地台和網路節點
JP6363086B2 (ja) 予定された省電力モードを伴う超低電力信号を使用した方法および装置
US11064437B2 (en) Power saving for wireless device
CN108616968B (zh) 传输帧的方法和设备
WO2017143856A1 (zh) 用于无线局域网的通信方法和装置
GB2508608A (en) Data delivery between access points and wireless stations in low power mode
WO2018068716A1 (zh) 传输唤醒帧的方法和设备
EP2823677A2 (en) Systems and methods for reducing collisions after traffic indication map paging
EP3577912B1 (en) Determining access slot for communications on radio interface
CN116248241A (zh) 一种通信方法及设备
US20130258932A1 (en) Method for power save mode operation in wireless local area network and apparatus for the same
US12010651B2 (en) Wireless communication method, terminal, and network device
WO2021147424A1 (zh) 无线通信方法、终端设备和网络设备
CN114286310A (zh) 一种通信方法、装置及系统
WO2019061115A1 (zh) 一种非授权频谱上的载波切换方法、基站及终端设备
WO2021147060A1 (zh) 一种通信方法及装置
WO2020181943A1 (zh) 一种请求系统信息的方法及设备
WO2023071870A1 (zh) 通信方法、系统及相关装置
WO2023173439A1 (zh) 通信方法、终端设备和网络设备
WO2022028267A1 (zh) 一种指示数据传输的方法、装置
WO2023071863A1 (zh) 通信方法、装置、设备以及存储介质
WO2023115466A1 (zh) 无线通信的方法和通信装置
WO2023098566A1 (zh) 一种通信方法及装置
WO2023207990A1 (zh) 信号传输的方法和通信装置
WO2022205182A1 (zh) 侧行链路通信方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022885748

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022885748

Country of ref document: EP

Effective date: 20240503

NENP Non-entry into the national phase

Ref country code: DE