WO2021147424A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021147424A1
WO2021147424A1 PCT/CN2020/124351 CN2020124351W WO2021147424A1 WO 2021147424 A1 WO2021147424 A1 WO 2021147424A1 CN 2020124351 W CN2020124351 W CN 2020124351W WO 2021147424 A1 WO2021147424 A1 WO 2021147424A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
carrier
message
time
pdcch
Prior art date
Application number
PCT/CN2020/124351
Other languages
English (en)
French (fr)
Inventor
邝奕如
薛祎凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20915704.9A priority Critical patent/EP4080929A4/en
Publication of WO2021147424A1 publication Critical patent/WO2021147424A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication, and more specifically, to a wireless communication method, terminal device, and network device.
  • the network equipment can configure the discontinuous reception (DRX) mechanism for the terminal equipment in the radio resource control (radio resource control, RRC) connection state, so that the terminal equipment can listen when it needs to monitor. Wake up in the dormant state and monitor the physical downlink control channel (PDCCH), and enter the dormant state when no monitoring is required.
  • DRX discontinuous reception
  • RRC radio resource control
  • Carrier aggregation (component aggregation, CA) is to aggregate two or more component carriers (component carrier, CC) together to support a larger transmission bandwidth.
  • the process of waking up a terminal device from a dormant state cannot effectively transmit signaling or data.
  • the terminal device In the carrier aggregation scenario, if the terminal device is in the active state on one carrier and in the dormant state on the other carrier, the terminal device needs to wake up from the dormant state on the other carrier.
  • the network device may schedule the terminal device, and it may happen that the terminal device cannot effectively transmit signaling or data during the process of waking up from the dormant state.
  • the present application provides a wireless communication method, terminal equipment and network equipment, which can improve the communication quality of the terminal equipment.
  • a wireless communication method which is characterized by comprising: a terminal device receiving a first message sent by a network device on a first carrier, and the first message is used to indicate that the terminal device is on a second carrier. Perform monitoring of at least one of the physical downlink control channel PDCCH and transmission data; in the case that the terminal device is in the dormant state on the second carrier, after the first length of time has elapsed, the terminal device is in the first At least one of PDCCH monitoring and data transmission is performed on the two carriers.
  • the terminal device when the terminal device receives the first message on the first carrier, it is in the dormant state on the second carrier. Since receiving the first message, the terminal device executes on the second carrier after the first period of time has elapsed. Monitor at least one of PDCCH and transmission data. In this way, the terminal device can not monitor the PDCCH and/or transmit data during the process of waking up from the dormant state, which can avoid that the terminal device may not be able to monitor the PDCCH sent by the network device or cannot receive the data sent by the network device during this process. It cannot effectively send and receive data, thereby improving the communication quality of the terminal equipment.
  • the first time length is used for the terminal device to wake up from the dormant state on the second carrier.
  • the action performed by the terminal device after the first length of time is consistent with the action of the terminal device on the second carrier indicated by the first message. For example, if the first message instructs the terminal device to monitor the PDCCH on the second carrier, the terminal device monitors the PDCCH on the second carrier after the first time period has elapsed. For another example, the first message instructs the terminal device to transmit data on the second carrier, and after the first length of time has elapsed, the terminal device transmits data on the second carrier.
  • terminal device being in the dormant state on the second carrier can be understood as the terminal device being in the dormant state in the DRX cycle on the second carrier.
  • the method further includes: after the first time length has elapsed, the terminal device starts a first timer, wherein, during the operation of the first timer, The terminal device can perform at least one of PDCCH monitoring and data transmission on the second carrier; or, when receiving the first message, the terminal device starts the first timer, wherein the The terminal device does not monitor the PDCCH or perform data transmission on the second carrier within the first time length.
  • the terminal device when the first length of time has elapsed, the terminal device starts a first timer, wherein, during the operation of the first timer, the terminal device can perform at least one of monitoring PDCCH and transmitting data on the second carrier.
  • the terminal device starts a first timer, wherein, during the operation of the first timer, the terminal device can perform at least one of monitoring PDCCH and transmitting data on the second carrier.
  • the terminal device can perform certain actions or actions during the running process of the first timer, such as monitoring the PDCCH and/or transmitting data.
  • the terminal device has woken up from the dormant state.
  • the terminal device starts the first timer, the terminal device is already in the active state, and the terminal device can monitor the PDCCH and PDCCH during the operation of the first timer.
  • transmit data, and wake up from the dormant state is completed outside the running period of the first timer, thereby avoiding the process of preparing for waking up during the running of the first timer and not being able to perform effective data transmission.
  • the terminal device starts the first timer when receiving the first message, and the terminal device does not monitor the PDCCH or perform data transmission on the second carrier within the first time period.
  • the terminal device When receiving the first message, the terminal device starts the first timer. During the operation of the first timer, the terminal device can perform certain actions on the second carrier, such as monitoring the PDCCH and/or transmitting data.
  • This embodiment of the application By limiting the behavior of the terminal device in the first time period (that is, the terminal device wakes up from the dormant state), the terminal device can avoid PDCCH monitoring and/or data transmission in the process of waking up from the dormant state, which can improve The communication quality of the terminal equipment in the carrier aggregation scenario.
  • the method further includes: after the first length of time, the terminal device starts a second timer; or, when the first message is received, the terminal device The device starts the second timer; wherein, during the operation of the second timer, the terminal device can perform at least one of PDCCH monitoring and data transmission on the first carrier.
  • the terminal device may start the second timer when receiving the first message, or start the second timer after the first length of time. That is, the terminal device may start the first timer and the second timer at the same time, or they may not start at the same time. When the terminal device starts the first timer and the second timer at the same time, the first timer and the second timer may be the same timer.
  • the first time length is greater than or equal to the state transition duration
  • the state transition duration is the time required for the terminal device to wake up from the sleep state.
  • the awakening of the terminal device from the dormant state can be understood as the process of the terminal device from the dormant state to be able to effectively perform a certain action or behavior, such as monitoring the PDCCH and/or transmitting data.
  • the process of waking up the terminal device from the dormant state can be understood as the process of the terminal device from the dormant state to being able to effectively monitor the PDCCH.
  • the process of waking up the terminal device from the dormant state can be understood as the process of the terminal device from the dormant state to being able to effectively transmit data.
  • the terminal device effectively monitors the PDCCH or effectively transmits data can be understood as the terminal device has completed the process of preparing to wake up, has turned on the hardware or completed the beam management and other processes, and is ready to transmit signaling or data NS.
  • the difference between the data and the first message is The time interval is greater than or equal to the first time length.
  • the terminal equipment can use the first carrier and the second carrier to implement cross-carrier scheduling.
  • the position of the data transmitted by the terminal equipment on the second carrier is the same as the position of the first message (such as DCI) received by the terminal equipment on the first carrier.
  • the time interval between should be greater than the first time length. In this way, it can be ensured that the terminal device completes the process of waking up from the dormant state within the first length of time, and can correctly transmit data after the first length of time, thereby improving the communication quality under cross-carrier scheduling.
  • the terminal device is configured with at least one sleep level
  • the method further includes: the terminal device receives configuration information sent by the network device, and the configuration information uses To indicate at least one time length, the at least one time length includes the first time length, and each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • the time required for the terminal device to wake up from the sleep state can be different.
  • the network device configures at least one length of time for the terminal device, and each sleep level in the at least one sleep level corresponds to one of the at least one time length. In this way, when the terminal device is in each sleep level, it can be in the corresponding sleep level.
  • the warm up is completed within the time period, that is, the wake-up from the sleep state is completed.
  • the terminal device is configured with multiple time lengths of the at least one time length and multiple sleep levels of the at least one sleep level, and the method further The method includes: the terminal device determines the first time length from the multiple time lengths according to the current sleep level.
  • the method further includes: in the case that the terminal device is configured with a sleep level, the terminal device sends the one sleep level relative to the network device.
  • the state transition duration corresponding to the sleep level, and the state transition duration is the time required for the terminal device to wake up from the dormant state.
  • the terminal device can report the time required for the terminal device to wake up from the sleep state to the network device, that is, the state transition time .
  • the terminal device is configured with multiple sleep levels, when the terminal device is in different sleep levels, the time for the terminal device to wake up from the sleep state may be different, that is, when the terminal device is in different sleep levels, the state transition time may be Is different. Therefore, the terminal device may report the corresponding relationship between the sleep level of the terminal device and the state transition duration to the network device, so that the network device configures the terminal device with a first time length corresponding to each sleep level.
  • the first message includes physical downlink control information DCI.
  • the first message is used to instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier. kind.
  • the preset condition includes: the first message includes indication information; or, the first message includes an indication field, and the indication field indicates the terminal device At least one of PDCCH monitoring and data transmission is performed on the second carrier; or, the timing of receiving the first message by the terminal device satisfies a preset rule.
  • the terminal device does not need to monitor the PDCCH and/or transmit data on the second carrier every time the first message is received on the first carrier, thereby saving the power consumption of the terminal device on the second carrier.
  • the frequency range of the first carrier is below 6 GHz
  • the frequency range of the second carrier is the millimeter wave frequency band.
  • a wireless communication method including: a network device sends a first message to a terminal device on a first carrier, the first message is used to instruct the terminal device to perform monitoring physical downlink control on a second carrier At least one of channel PDCCH and transmission data; in the case that the terminal device is in a dormant state on the second carrier, after a first period of time has elapsed, the network device performs routing on the second carrier
  • the terminal device sends at least one of PDCCH and transmission data.
  • the terminal device when the network device sends the first message on the first carrier, the terminal device is in the dormant state on the second carrier. Since receiving the first message, the network device is on the second carrier after the first period of time has elapsed. At least one of sending PDCCH and transmitting data to the network device is performed. In this way, the terminal device can not monitor the PDCCH and/or transmit data during the process of waking up from the dormant state, which can avoid that the terminal device may not be able to monitor the PDCCH sent by the network device or cannot receive the data sent by the network device during this process. It cannot do effective data transmission and reception, thereby improving the communication quality.
  • the first time length is greater than or equal to the state transition duration
  • the state transition duration is the time required for the terminal device to wake up from the sleep state.
  • the difference between the data and the first message is The time interval is greater than or equal to the first time length.
  • the terminal device is configured with at least one sleep level
  • the method further includes: the network device sends configuration information to the terminal device, and the configuration information is used for At least one time length is indicated, the at least one time length includes the first time length, and each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • the network device further includes: in the case that the terminal device is configured with a sleep level, the network device receives the information corresponding to the one sleep level sent by the terminal device. State transition duration; or, in the case that the terminal device is configured with multiple sleep levels, the network device receives the multiple sleep levels sent by the terminal device and is related to each sleep level of the multiple sleep levels.
  • the state transition duration corresponding to the level, and the state transition duration is the time required for the terminal device to transition from the dormant state to the active state.
  • the first message includes physical downlink control information DCI.
  • the first message is used to instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier. kind.
  • the preset condition includes: the first message includes indication information; or, the first message includes an indication field, and the indication field indicates the terminal device At least one of PDCCH monitoring and data transmission is performed on the second carrier; or, the time when the network device sends the first message satisfies a preset rule.
  • the frequency range of the first carrier is below 6 GHz
  • the frequency range of the second carrier is the millimeter wave frequency band.
  • a wireless communication method including: a terminal device receives a first message sent by a network device on a first carrier, and the first message is used to instruct the terminal device whether to enable the first message on a second carrier. Timer; the terminal device starts the first timer according to the first message, and during the operation of the first timer, the terminal device monitors the physical downlink control channel on the second carrier At least one of PDCCH and transmission data.
  • the terminal device receives the first message on the first carrier.
  • the first message is used to indicate whether the terminal device starts the first timer on the second carrier. Only the first message is used to indicate that the terminal device is on the second carrier.
  • the terminal device is turned on only when the first timer is started on the second carrier. This eliminates the need to monitor the PDCCH and/or transmit data on the second carrier every time the first message is received on the first carrier, thereby saving the terminal device on the second carrier. Power consumption on the second carrier.
  • the terminal device starts the first timer according to the first message, including: when the first message includes indication information, the terminal device starts The first timer; or, the first message includes an indication field, and when the indication field instructs to start the first timer, the terminal device starts the first timer; or, when the When the time when the terminal device receives the first message satisfies a preset rule, the terminal device starts the first timer.
  • the method further includes : Since receiving the first message, after the first time length has elapsed, the terminal device monitors at least one of the physical downlink control channel PDCCH and transmission data on the second carrier.
  • the method further includes: after the first length of time, the terminal device starts the first timer; or, when the first message is received, The terminal device starts the first timer, wherein the terminal device does not monitor the PDCCH or does not perform data transmission on the second carrier within the first time length.
  • the method further includes: starting from receiving the first message, after the first length of time, the terminal device starts a second timer; or, after receiving the first message In the first message, the terminal device starts the second timer; wherein, during the operation of the second timer, the terminal device can monitor PDCCH and transmit data on the first carrier At least one of them.
  • the first time length is greater than or equal to the state transition duration
  • the state transition duration is the time required for the terminal device to wake up from the sleep state.
  • the first message when the first message is also used to instruct the terminal device to transmit data on the second carrier, between the data and the first message
  • the time interval is greater than or equal to the first time length.
  • the terminal device is configured with at least one sleep level
  • the method further includes: the terminal device receives configuration information sent by the network device, and the configuration information uses To indicate at least one time length, the at least one time length includes the first time length, and each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • the terminal device is configured with multiple time lengths of the at least one time length and multiple sleep levels of the at least one sleep level, and the method further The method includes: the terminal device determines the first time length from the multiple time lengths according to the current sleep level.
  • the method further includes: in the case that the terminal device is configured with a sleep level, the terminal device sends the one sleep level relative to the network device.
  • the state transition duration corresponding to the sleep level, and the state transition duration is the time required for the terminal device to wake up from the dormant state.
  • the first message includes physical downlink control information DCI.
  • the frequency range of the first carrier is below 6 GHz
  • the frequency range of the second carrier is the millimeter wave frequency band.
  • a network communication method including: a network device sends a first message to a terminal device on a first carrier, the first message is used to instruct the terminal device whether to enable the first timing on the second carrier Wherein, during the operation of the first timer, the terminal device can perform at least one of monitoring the physical downlink control channel PDCCH and transmitting data on the second carrier.
  • the network device uses the first message sent on the first carrier to indicate whether the terminal device monitors the PDCCH or transmits data on the second carrier, so that the terminal device does not need to be on the second carrier every time it receives the first message on the first carrier.
  • the PDCCH and/or transmission data are monitored on the carrier, so as to save the power consumption of the terminal equipment on the second carrier.
  • the first message instructs the terminal device to start the first timer on the second carrier: the first message Including indication information; or, the first message includes an indication field, and the indication field instructs to start the first timer; or, the sending timing of the first message satisfies a preset rule.
  • the method further includes: starting from sending the first message, and after a first length of time, the network device is At least one of sending a PDCCH and transmitting data to the terminal device is performed on the second carrier.
  • the first time length is greater than or equal to the state transition duration
  • the state transition duration is the time required for the terminal device to wake up from the sleep state.
  • the terminal device is configured with at least one sleep level
  • the method further includes: the network device sends configuration information to the terminal device, and the configuration information is used for At least one time length is indicated, the at least one time length includes the first time length, and each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • it further includes: in the case that the terminal device is configured with a sleep level, the network device receives the information corresponding to the one sleep level sent by the terminal device. State transition duration; or, in the case that the terminal device is configured with multiple sleep levels, the network device receives the multiple sleep levels sent by the terminal device and is related to each sleep level of the multiple sleep levels.
  • the state transition duration corresponding to the level, and the state transition duration is the time required for the terminal device to transition from the dormant state to the active state.
  • the first message includes physical downlink control information DCI.
  • the frequency range of the first carrier is below 6 GHz
  • the frequency range of the second carrier is the millimeter wave frequency band.
  • a terminal device which includes a module or unit for executing the method in any one of the foregoing first aspect or the first aspect, or includes a module or unit for executing the third aspect or the third aspect. Any module or unit of the method in any possible implementation mode.
  • the module or unit can be a hardware circuit, software, or a hardware circuit combined with software.
  • a network device which includes a module or unit for executing the method in any one of the foregoing second aspect or the second aspect, or includes a module or unit for executing the foregoing fourth aspect or the fourth aspect Any module or unit of the method in any possible implementation mode.
  • the module or unit can be a hardware circuit, software, or a hardware circuit combined with software.
  • a communication device in a seventh aspect, includes: at least one processor and a communication interface.
  • the communication interface is used for information exchange between the communication device and other communication devices.
  • the communication device When executed in a processor, the communication device is caused to execute the method in the foregoing first aspect or any one of the possible implementation manners of the first aspect, or the communication device is caused to execute any of the foregoing third aspect or the third aspect.
  • the communication device may further include a memory, the memory is coupled to the processor, and the processor is configured to implement the foregoing first aspect or the method described in any one of the possible implementation manners of the first aspect, Or it is used to implement the method described in the foregoing third aspect or any one of the possible implementation manners of the third aspect.
  • the memory is used to store instructions and data, and when the processor executes the instructions stored in the memory, the method described in the first aspect or any one of the possible implementations of the first aspect can be implemented , Or implement the method described in the foregoing third aspect or any one of the possible implementation manners of the third aspect.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the communication apparatus of the seventh aspect may be a terminal device, or may be a component (for example, a chip or a circuit, etc.) used in a terminal device.
  • the other communication device may be a network device, or may be a component (for example, a chip or a circuit, etc.) for the network device.
  • a communication device in an eighth aspect, includes: at least one processor and a communication interface.
  • the communication interface is used for the communication device to exchange information with other communication devices.
  • the communication device When executed in a processor, the communication device is caused to execute the method in the foregoing second aspect or any one of the possible implementation manners of the second aspect, or the communication device is caused to execute any of the foregoing fourth aspect or the fourth aspect.
  • the communication device may further include a memory, the memory is coupled to the processor, and the processor is configured to implement the method described in the foregoing second aspect or any one of the possible implementation manners of the second aspect, Or used to implement the foregoing fourth aspect or the method described in any one of the possible implementation manners of the fourth aspect.
  • the memory is used to store instructions and data, and when the processor executes the instructions stored in the memory, the method described in the second aspect or any one of the possible implementations of the second aspect can be implemented , Or implement the method described in the foregoing fourth aspect or any one of the possible implementation manners of the fourth aspect.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the communication apparatus of the eighth aspect may be a network device, or may be a component (for example, a chip or a circuit, etc.) for the network device.
  • the other communication device may be a terminal device, or may be a component (for example, a chip or a circuit, etc.) for the terminal device.
  • a chip system in a ninth aspect, includes a processor for terminal equipment to implement the functions involved in the first aspect or any one of the possible implementations of the first aspect, or for terminal equipment Realize the aforementioned third aspect or the functions involved in any possible implementation of the third aspect, for example, generating, receiving, sending, or processing the data and/or information involved in the aforementioned methods.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a chip system in a tenth aspect, includes a processor for a network device to implement the functions involved in the second aspect or any one of the possible implementations of the second aspect, or for a terminal device
  • the function involved in the foregoing fourth aspect or any one of the possible implementation manners of the fourth aspect is implemented, for example, generating, receiving, sending, or processing the data and/or information involved in the foregoing method.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a computer-readable storage medium stores a computer program.
  • the computer program runs on a computer, the computer executes the first aspect or the first aspect.
  • the method described in any possible implementation manner of the aspect, or the computer is caused to execute the method described in the foregoing third aspect or any one of the possible implementation manners of the third aspect.
  • a computer-readable storage medium is provided, and a computer program is stored in the computer-readable storage medium.
  • the computer program runs on a computer, the computer executes the second aspect or the second aspect.
  • the method described in any possible implementation manner of the aspect, or the computer is caused to execute the method described in the foregoing fourth aspect or any one of the possible implementation manners of the fourth aspect.
  • a computer program product containing instructions when the computer program product runs on a computer, the computer executes the method described in the first aspect or any one of the possible implementations of the first aspect, Or make the computer execute the method described in the third aspect or any one of the possible implementation manners of the third aspect.
  • a fourteenth aspect provides a computer program product containing instructions, when the computer program product runs on a computer, the computer executes the method described in the second aspect or any one of the possible implementations of the second aspect, Or, the computer is caused to execute the method described in the foregoing fourth aspect or any one of the possible implementation manners of the fourth aspect.
  • a communication system which includes the terminal device described in the fifth aspect and the network device described in the sixth aspect; or the communication system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect.
  • Fig. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a schematic diagram of the state of the terminal device in the DRX mode in an embodiment of the present application
  • Figure 3 is a schematic diagram of DRX cycle configuration of component carriers in a carrier aggregation scenario
  • Figure 4 is a schematic diagram of DRX cycle configuration of component carriers in a carrier aggregation scenario
  • FIG. 5 is a schematic diagram of the timer configuration in the DRX cycle of the component carrier in the carrier aggregation scenario
  • Fig. 6 is a schematic diagram of the state transition of the terminal device
  • FIG. 7 is a schematic diagram of a timer configuration in a DRX cycle of a terminal device in the prior art
  • FIG. 8 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another wireless communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a state of a terminal device in a wireless communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a state of a terminal device in a wireless communication method provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a state of a terminal device in a wireless communication method provided by another embodiment of the present application.
  • FIG. 13 is a schematic diagram of a state of a terminal device in a wireless communication method provided by another embodiment of the present application.
  • FIG. 14 is a schematic diagram of a state of a terminal device in a wireless communication method provided by another embodiment of the present application.
  • FIG. 15 is a schematic diagram of a state of a terminal device in a wireless communication method provided by another embodiment of the present application.
  • FIG. 16 is a schematic diagram of a state of a terminal device in a wireless communication method provided by another embodiment of the present application.
  • FIG. 17 is a schematic diagram of a state of a terminal device in a wireless communication method provided by another embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a network device provided by another embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a communication device provided by another embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • time division duplex time division duplex
  • division duplex TDD
  • LTE-A advanced long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • 5G Fifth-generation
  • NR new radio
  • NB-IoT narrowband internet of things
  • eMTC enhanced machine-type communication
  • LTE-Machine-to-machine LTE-machine-to-machine, LTE-M
  • future sixth-generation mobile communication system etc.
  • the technical solutions of the embodiments of the present application can be applied to wireless communication between communication devices.
  • Communication devices can use air interface resources for wireless communication.
  • the communication device may include a network device and a terminal device.
  • the network device may also be called a network side device, and the terminal device may also be called a user equipment (UE).
  • the air interface resources may include at least one of time domain resources, frequency domain resources, code resources, and space resources.
  • at least one may also be described as one or more, and the multiple may be two, three, four or more, which is not limited in the present application.
  • transmission may include sending or receiving.
  • the transmission may be uplink transmission, for example, the terminal device may send a signal to the network device; the transmission may also be downlink transmission, for example, the network device may send a signal to the terminal device.
  • Physical downlink control channel used to carry scheduling and other control information, which can specifically include public control information and user-specific information, where public control information includes system information scheduling information and paging information
  • the user-specific information includes downlink resource allocation instructions, uplink scheduling grant (uplink grant, UL grant), uplink power control parameters, and uplink retransmission information.
  • DCI downlink control information
  • Different DCI formats can be used to indicate different control information, such as DCI used for scheduling data (including terminal device uplink data and terminal device downlink data), DCI used to indicate the slot format, and used to indicate interrupted transmission (interrupted transmission). ) DCI and so on.
  • the downlink control information DCI is carried on the physical downlink control channel PDCCH.
  • Idle state After a terminal device has completed camping in a cell, it can be said that the terminal device has entered the "idle state" or "IDLE state”.
  • the radio resource control of the terminal device in the idle state control (RRC) connection is not established, so the terminal device can be called a terminal device in an RRC idle state.
  • Connected state (CONNECTED state): If the terminal device subsequently completes the random access process and establishes an RRC connection with the network (network device), it can be said that the terminal device has entered the "connected state” or "connected state” , The terminal device in the connected state has an RRC connection established, so the terminal device can be referred to as the terminal device in the RRC connected state.
  • Discontinuous reception (DRX) mechanism Defined in the physical layer media access control (MAC), mainly introduced to save the power consumption of terminal equipment. Specifically, the DRX mechanism allows the terminal device to enter the dormant state at certain times (which can be defined as sleep time or inactive time), and does not monitor or receive PDCCH, but needs to be monitored (which can be defined as active time). (active time)), wake up from the sleep state and turn to the active state. The terminal device needs to monitor and receive the PDCCH when in the active state. In this way, the terminal device does not have to monitor the PDCCH all the time, which can reduce the number of terminal devices. Power consumption.
  • MAC physical layer media access control
  • the terminal device can choose to turn off communication devices such as the radio frequency transceiver (or receiver) and baseband processor based on the realization to reduce power consumption , Or although the radio frequency device is turned on, but only some low-power monitoring and detection processes, such as monitoring some terminal equipment must monitor messages such as paging messages, broadcast messages, system messages, etc.
  • the terminal equipment in the dormant state does not need to monitor the cell radio network temporary identity (C-RNTI), configure scheduling radio network temporary identity (configured scheduling RNTI, CS-RNTI), interrupt RNTI (interruption RNTI, INT- RNTI), slot format indicator-RNTI (slot format indicator-RNTI, SFI-RNTI), semi-persistent channel state indicator RNTI (semi-persistent channel state information RNTI, SP-CSI-RNTI), physical uplink control channel (physical) uplink control channel, PUCCH) transmit power control RNTI (transmit power control PUCCH RNTI, TPC-PUCCH-RNTI), physical uplink shared channel (physical uplink shared channel, PUSCH) transmit power control RNTI (transmit power control PUSCH RNTI, TPC-PUSCH) -RNTI) and sounding reference signal (sounding reference signal, SRS) transmit power control RNTI (transmit power control RNTI, TPC-SRS-RNTI) scrambled DCI
  • system messages RNTI system information RNTI, SI-RNTI
  • paging RNTI paging RNTI
  • P-RNTI paging RNTI
  • random access RNRI random access RNTI
  • RA-RNTI temporary cell radio network temporary identity
  • TC-RNTI Temporary cell radio network temporary identity
  • the terminal device in the sleep time only does not receive a type of DCI in the PDCCH, such as the DCI used to schedule new transmission data, but can receive other PDCCHs that are not affected by whether the terminal device is activated.
  • Time-affected DCI and data received from other physical channels such as physical downlink shared channel (PDSCH), acknowledgment (ACK) messages, negative-acknowledgment (NACK), and so on.
  • PDSCH physical downlink shared channel
  • ACK acknowledgment
  • NACK negative-acknowledgment
  • the terminal device receiving (or not receiving) DCI in the embodiment of the application can be understood as the terminal device receiving (or not receiving) a specific type of DCI, or the terminal device monitoring (or not monitoring) the PDCCH can be understood as the terminal device monitoring (Or not listening) PDCCH carrying a specific type of DCI.
  • the DRX mechanism can be divided into idle state DRX (idle-DRX) and connected state DRX (connected-DRX, C-DRX).
  • the embodiments of this application mainly discuss the connection state
  • the DXR mechanism and the PDCCH or DCI that are not affected by the DRX mechanism are not within the scope of this application.
  • the DRX mechanism in the embodiment of the present application can be understood as a DRX mechanism in a connected state.
  • Discontinuous reception cycle (discontinuous reception cycle, DRX cycle): also known as DRX cycle, it is the basic time unit in DRX state.
  • the state of a terminal device in a DRX cycle includes sleep state and active state, which will be introduced in conjunction with the drawings below , I will not go into details here.
  • the network device can configure a DRX cycle for the terminal device in the RRC connected state, where the DRX cycle can be a long DRX cycle (long DRX cycle for short) or a short DRX cycle (short DRX cycle for short).
  • the network device may also configure two DRX cycles for the terminal device, such as a long DRX cycle and a short DRX cycle.
  • the network device may configure at least one of the long DRX cycle and the short DRX cycle for the terminal device.
  • the long DRX cycle may be mandatory by default, and the short DRX cycle may be optional.
  • the terminal device can switch from a short DRX cycle to a long DRX cycle. It should be understood that the short DRX cycle and the long DRX cycle are relative terms.
  • the network device can configure at most two types of DRX cycles for the terminal device, the DRX cycle with the longer cycle can be called the long DRX cycle, and the cycle is shorter.
  • the DRX cycle can be called a short DRX cycle.
  • the network device can also configure at least three types of DRX cycles for the terminal device according to actual needs, so that the cycle lengths of the at least three types of DRX cycles are different.
  • the network device may also configure other long DRX cycles for the terminal device, which is not specifically limited in the embodiment of the present application.
  • a network device configures a terminal device with a DRX cycle, since there is only one type of DRX cycle, it does not matter whether the network device configures the terminal device with a long DRX cycle, a short DRX cycle, or other long cycles.
  • the DRX cycle is collectively referred to as the DRX cycle in the embodiments of this application.
  • Component aggregation Aggregation of 2 or more component carriers (CC) to support a larger transmission bandwidth. For example, when the maximum bandwidth of each component carrier is 20MHz, carrier aggregation Later, the maximum transmission bandwidth of 100MHz can be realized, which effectively improves the uplink and downlink transmission rate.
  • the terminal device can determine at most several component carriers can be used for uplink and downlink transmission at the same time according to its own capabilities. In this application, “component carrier” may be referred to as "carrier” for short.
  • multiple component carriers include a primary component carrier (primary component carrier, PCC), that is, the primary carrier, and one or more secondary component carriers (SCC), that is, secondary carrier.
  • PCC primary component carrier
  • SCC secondary component carriers
  • Each component carrier corresponds to an independent cell (cell), and there are the following types of cells in a carrier aggregation scenario.
  • Primary cell (primary cell, PCell), a primary cell is a cell working on a primary carrier.
  • the terminal device performs the initial connection establishment process in the cell, or starts the connection re-establishment process, or the cell is indicated as the primary cell during the handover process.
  • the primary carrier of the terminal device under the target network device may be the same or different from the primary carrier of the original network device.
  • Secondary cell (secondary cell, SCell), a secondary cell is a cell working on a secondary carrier. Once a radio resource control (RRC) connection is established, the secondary cell may be configured to provide additional radio resources.
  • RRC radio resource control
  • PCell and SCell are user-level concepts for CA users, and the carrier that the user initially accesses is the PCell of the CA user.
  • serving cell set terminal equipment in the radio resource control connection state, if CA is not configured, there is only one serving cell, namely PCell; if CA is configured, the serving cell set consists of PCell and all SCells.
  • the serving cell may refer to the primary cell PCell and may also refer to the secondary cell SCell.
  • Fig. 1 shows a schematic diagram of an application scenario of an embodiment of the present application.
  • the application scenario may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device used to communicate with the terminal device 120.
  • the network device 110 may be a base station used to connect the terminal device 120 to a radio access network (RAN).
  • RAN radio access network
  • a base station may sometimes be called an access network device or an access network node.
  • RAN radio access network
  • the names of devices with base station functions may be different.
  • a device that provides a terminal device with a wireless communication access function is collectively referred to as a base station.
  • the network device 110 may be an evolved node B (eNB) in a long term evolution (LTE), and may be a downlink device in the fifth generation (5G) system of mobile communications.
  • eNB evolved node B
  • LTE long term evolution
  • 5G fifth generation
  • the next generation node base station can also be a transmission and reception point (TRP), or a network device in the future 6G network.
  • the network device 110 may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • the coverage area of one network device 110 may include one cell or multiple cells.
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system.
  • the device used to implement the functions of the network equipment is the network equipment, and the network equipment is the base station as an example to describe the technical solutions provided by the embodiments of the present application.
  • the terminal device 120 may communicate with one or more core networks (core networks, CN) via an access network device.
  • the terminal device 120 can be a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as a ship, etc.); it can also be deployed in the air ( For example, airplanes, balloons, satellites, etc.).
  • the terminal device 120 may also be called User Equipment (UE), access terminal, terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless network equipment, User agent or user device.
  • UE User Equipment
  • the terminal device 120 can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a smart phone, a wireless local loop (wireless local loop, WLL) station, a personal digital processing ( personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices or other devices connected to wireless modems, in-vehicle devices, wearable devices, drone devices or the Internet of Things, terminals in the Internet of Vehicles, and future networks Any form of terminal, relay user equipment, or terminal in a future evolved public land mobile network (PLMN), etc., is not limited in the embodiment of the present application.
  • PLMN public land mobile network
  • the terminal device 120 may be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a terminal device in industrial control, a terminal device in unmanned driving, and a terminal device in telemedicine.
  • Terminal equipment terminal equipment in a smart grid, terminal equipment in a smart city, terminal equipment in a smart home, etc.
  • the device used to implement the function of the terminal device may be a terminal device, or may be a device capable of supporting the terminal device to implement the function, such as a chip system.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the device used to implement the functions of the terminal device is the terminal device, and the terminal device is the UE as an example to describe the technical solutions provided by the embodiments of the present application.
  • the network device 110 and the terminal device 120 can transmit uplink and downlink signals through the transmission link between the two.
  • the transmission link from the network device 110 to the terminal device 120 can be called a downlink, and the terminal device 120
  • the transmission link to the network device 110 may be referred to as an uplink (uplink).
  • the network device 110 and the terminal device 120 can perform uplink and downlink transmissions through a carrier 130.
  • signal transmission can be performed in the following two ways.
  • the terminal device 120 does not enable the carrier aggregation function, and the terminal device 120 can only access a certain carrier and communicate on this carrier, and its transmission rate is restricted by the bandwidth of a single carrier.
  • the terminal device 120 may access the carrier 131 or the carrier 132 shown in FIG. 1 or another separate carrier, and then perform data transmission on the accessed single carrier.
  • the other is that the terminal device 120 turns on the carrier aggregation function.
  • the terminal device 120 can access two or more carriers at the same time, and communicate on these two or more carriers at the same time, and the data transmission rate can be greatly improved.
  • the terminal device 120 can simultaneously access the carriers 131 and 132 shown in FIG. 1, or simultaneously access the carriers 131, 132, and 133 shown in FIG. Transmission to maximize resource utilization.
  • the serving cell 140 of the terminal device 120 may include multiple cells, one of which is a primary cell, and the other cells are secondary cells, and each cell corresponds to a component carrier.
  • the serving cell 140 includes a cell 141, a cell 142, and a cell 143, which may correspond to a carrier 131, a carrier 132, and a carrier 133, respectively.
  • the serving cell may also include more or fewer cells, each of which corresponds to a component carrier.
  • the location and coverage of the cell may also be different, which is not limited in this application.
  • the number of component carriers aggregated by the terminal device is not limited in this application.
  • carrier aggregation supports aggregation between different carriers. For example, multiple carriers in the same frequency band can be aggregated so that a user can perform data transmission on multiple carriers in the same frequency band.
  • the carrier aggregation in the same frequency band can also be divided into continuous and non-continuous carrier aggregation.
  • multiple carriers of different frequency bands can be aggregated, so that a user can perform data transmission on multiple carriers of different frequency bands.
  • multiple carriers of the same or different bandwidths can be aggregated.
  • the 5G spectrum can be divided into two frequency ranges (frequency range, FR), namely FR1 and FR2, where FR1 is the sub-6G frequency band, such as the frequency range from 450MHz to 6GHz, FR2 That is, the millimeter wave (millimeter wave, mmW) frequency band, such as the frequency range of 24 GHz to 52 GHz. Therefore, in 5G, the terminal device can aggregate multiple carriers in FR1, aggregate multiple carriers in FR2, or aggregate at least one FR1 carrier and at least one FR2 carrier.
  • FR1 is the sub-6G frequency band, such as the frequency range from 450MHz to 6GHz
  • FR2 That is, the millimeter wave (millimeter wave, mmW) frequency band, such as the frequency range of 24 GHz to 52 GHz. Therefore, in 5G, the terminal device can aggregate multiple carriers in FR1, aggregate multiple carriers in FR2, or aggregate at least one FR1 carrier and at least one FR2 carrier.
  • each carrier aggregated by terminal equipment is referred to as a component carrier (component carrier, CC), and may also be referred to as a carrier for short in some embodiments.
  • a terminal device configured with carrier aggregation is called a carrier aggregation terminal device. In other embodiments, it may also be called a CA terminal device or a CA user. It should be understood that the application scenario of the embodiment of the present application is a scenario where a terminal device performs carrier aggregation.
  • the terminal device 120 When there is data to be transmitted between the network device 110 and the terminal device 120, the terminal device 120 will monitor the physical downlink control channel PDCCH sent on the downlink, and send and receive the data according to the instruction message sent by the network device 110. Since the terminal device 120 does not always perform upload or download services, most of the time, there is no data interaction between the terminal device 120 and the network device 110. If the terminal device 120 continues to monitor the PDCCH at this time, it is obviously very power-intensive. of. Therefore, under the premise of ensuring the effective transmission of data, a discontinuous reception (DRX) period can be configured for the terminal device in the connected state, so that the terminal device only turns on the receiver (such as the antenna) to enter the active state during the necessary period of time. To monitor the PDCCH, and turn off the receiver during the remaining time and enter the dormant state without monitoring the PDCCH.
  • DRX discontinuous reception
  • Figure 2 shows a schematic diagram of the state of the terminal device under the DRX mechanism.
  • a DRX cycle includes a duration (on duration or on Duration) part and a sleep time (opportunity for DRX) part.
  • the terminal device needs to wake up and monitor the PDCCH within the "onDuration" time, and the terminal device is in the active state during this period of time.
  • the terminal device may not monitor or receive the PDCCH to reduce power consumption.
  • the terminal device is in the dormant state.
  • the DRX mechanism in the RRC connected state uses a combination of timers and DRX cycles.
  • the terminal device needs to start the onduration timer (onDurationTimer), and run onDurationTimer. (That is, the working period of onDurationTimer) monitors and receives the PDCCH. If the PDCCH sent to itself is not detected within the running time of onDurationTimer, the onDurationTimer times out (refer to the first C-DRX cycle shown in (b) in Figure 2), which means that the "on Duration" time is over.
  • the terminal The device enters the "opportunity for DRX" time and the terminal device is in the dormant state at this time.
  • the DRX cycle includes on duration, during which the terminal device needs to continuously monitor the PDCCH, and the duration timer onDurationTimer is a timer used to monitor the on duration time period.
  • the onDurationTimer is started at the beginning of each DRX cycle, and the onDurationTimer is longer than the preset value, the onduration ends, and the terminal device enters the sleep time.
  • the terminal device If the terminal device receives the PDCCH (refer to the second C-DRX cycle shown in (b) in Figure 2) sent to itself within the onDurationTimer running time, that is to say, the terminal device It is very likely to continue to be scheduled by the network device in the next time, so the terminal device needs to start an inactivity timer (InactivityTimer, InactivityTimer), and the terminal device needs to monitor and receive the PDCCH during the running time of the InactivityTimer. Next, if the terminal device does not receive the PDCCH sent to itself within the running time of onDurationTimer and InactivityTimer and the InactivityTimer times out, the terminal device will enter the "opportunity for DRX" time again.
  • InactivityTimer InactivityTimer
  • InactivityTimer InactivityTimer
  • the terminal device will restart the InactivityTimer and continue to monitor the PDCCH until the terminal device does not receive the PDCCH sent to itself and the InactivityTimer times out. Then the terminal device will enter the "opportunity for DRX" time again. After a period of time, the current DRX cycle ends, and the terminal device enters the next DRX cycle.
  • the inactivity timer InactivityTimer is used to monitor the period of time that the terminal device needs to continue to monitor the PDCCH after receiving the DCI. Timer. The InactivityTimer is started or restarted when the DCI is received, and the time length of the InactivityTimer exceeds the preset value, the terminal device stops monitoring the PDCCH and enters the sleep time.
  • the opening or restarting of the above-mentioned InactivityTimer is for the terminal device to have initial data transmission scheduled.
  • the network device may schedule retransmission of the terminal device. Therefore, the DRX mechanism also includes a retransmission timer (retransmission timer, Retransmission Timer).
  • the terminal device needs to monitor and receive the PDCCH during the running time of the RetransmissionTimer.
  • RetransmissionTimer can be specifically divided into uplink retransmission timer (retransmission timer, RetransmissionTimerUL) and uplink retransmission timer (downlink retransmission timer, RetransmissionTimerDL).
  • the terminal device starts a timer (for example, one or more of onDurationTimer, InactivityTimer, or RetransmissionTimer) within the running time of the timer (for example, one or more of onDurationTimer, InactivityTimer, or RetransmissionTimer) .
  • the network device considers that the terminal device enters the activation time, and the terminal device is in the activated state during the activation time, that is, the terminal device needs to monitor the PDCCH. In other words, the terminal device starts the timer.
  • the running time of the timer can be considered as the activation time of the terminal device.
  • the terminal device During the activation time, the terminal device is in the active state, so that the terminal device needs to monitor the PDCCH in the active state and can understand that the terminal device is activated. Need to monitor PDCCH within time.
  • the terminal device if the terminal device does not start the timer time, it is the non-running time of the timer.
  • the non-running time of the timer can be considered as the sleep time of the terminal device.
  • the terminal device is in the dormant state, so that the terminal device is in the dormant state. No need to monitor the PDCCH can also be understood as the terminal device does not need to monitor the PDCCH during the sleep time.
  • the network device can configure a long DRX cycle for the terminal device.
  • the network device can also configure a short DRX cycle for the terminal device.
  • the terminal device starts a short cycle timer (ShortCycleTimer) when using a short DRX cycle.
  • the unit of the ShortCycleTimer is the number of short DRX cycles and is used to control the duration of using the short DRX cycle. For example, when the ShortCycleTimer expires, it is implicitly converted to a long DRX cycle.
  • the network device may also configure a DRX cycle of other duration for the terminal device. Accordingly, the terminal device may include a timer for controlling the DRX cycle of other duration, which is not done in this embodiment of the application. limited.
  • a terminal device configured with a DRX cycle needs to monitor and receive PDCCH during the operation of timers such as onDurationTimer, InactivityTimer, RetransmissionTimerUL, RetransmissionTimerDL, etc. (or during operation time).
  • This time can be called the "activation of DRX”. "Active time”.
  • the terminal device needs to wake up and prepare to receive signaling and data.
  • the activation time is the time period during which the terminal device continuously monitors the PDCCH, which may specifically include, for example, the running time (ie duration) of onDurationTimer, the running time of InactivityTimer (ie inactive time), and the running time of RetransmissionTimer (ie, retransmission time). )Wait.
  • the various timers configured in the DRX mechanism can be used to control the length of time when the terminal device is in the active state within a certain period of time.
  • the terminal device can enter the sleep state without monitoring and receiving the PDCCH, and this time can be referred to as the sleep time of the DRX.
  • the power consumption of the terminal equipment during the DRX "active time” is higher than the power consumption during the DRX "sleep time”.
  • the terminal equipment mainly relies on not monitoring the PDCCH or transmitting data during the sleep time to achieve the purpose of saving power consumption.
  • the terminal equipment during the sleep time Based on the implementation, you can choose to turn off the radio frequency transmitter and receiver, turn off the baseband processing chip and memory, or just keep the crystal oscillator clock.
  • the terminal device needs to be in the "active time” or “sleep time” in some cases. This does not conflict with the DRX mechanism, but is a union. Therefore, whether the terminal device is actually in the "active time” or “sleep time” in the end needs to be determined as a whole from the various functions of the terminal device.
  • the carriers aggregated by the terminal device may all be configured with a DRX cycle, and the DRX timer duration corresponding to each component carrier may be the same or different.
  • the value of onDurationTimer configured for each component carrier may be the same or different; the value of InactivityTimer configured for each component carrier may be the same or different; and the value of ShortCycleTimer configured for each component carrier may be the same or different.
  • the values of corresponding timers configured for each carrier in the FR1 frequency band are the same.
  • the onDurationTimer values configured for each carrier in the FR1 frequency band are the same, the InactivityTimer value is the same, and the ShortCycleTimer value is the same.
  • the value of the corresponding timer configured for each carrier in the FR2 frequency band is the same.
  • the value of onDurationTimer configured for each carrier in the FR2 frequency band is the same, the value of InactivityTimer is the same, and the value of ShortCycleTimer is the same.
  • the value of the corresponding timer configured for the carrier in the FR1 frequency band and the carrier in the FR2 frequency band may be different.
  • the first carrier aggregated by the terminal equipment belongs to the FR1 frequency band
  • the second carrier aggregated by the terminal equipment belongs to the FR2 carrier.
  • the onDurationTimer values configured for the first carrier and the second carrier are different, or the InactivityTimer values are different, or the ShortCycleTimer values are different, or the values of the above timers are all different.
  • the detailed description will be given below in conjunction with FIG. 3 and FIG. 4. It should be understood that the value of the above timer can be understood as the running time of the timer.
  • Figures 3 and 4 show schematic diagrams of the DRX cycle configuration of component carriers in a carrier aggregation scenario.
  • the figures exemplarily show two component carriers, namely the first component carrier (ie, the first CC, which may also be referred to as the first carrier) and the second component carrier. (That is, the second CC may also be referred to as the second carrier).
  • the duration configuration of the timer on the component carrier is exemplified.
  • only onDurationTimer and InactivityTimer are configured on the carrier as an example.
  • other types of timers may be configured on the carrier, which is not limited in the embodiment of the present application.
  • the solid box represents the running time of onDurationTimer
  • the dashed box represents the running time of InactivityTimer.
  • the onDurationTimer value corresponding to the first CC is greater than the onDurationTimer value corresponding to the second CC as shown in the figure, and the InactivityTimer value corresponding to the first CC may be equal to or less than the InactivityTimer value corresponding to the second CC.
  • the embodiment is not limited. It should be understood that the onDurationTimer value refers to the running time or timing duration of onDurationTimer, and the InactivityTimer value refers to the running time or timing duration of InactivityTimer.
  • the first CC and the second CC are configured with a duration timer (onDurationTimer) and a short cycle timer (ShortCycleTimer) as an example, wherein the solid-line frame represents the running time of the onDurationTimer.
  • onDurationTimer a duration timer
  • ShortCycleTimer a short cycle timer
  • the solid-line frame represents the running time of the onDurationTimer.
  • the value of ShortCycleTimer configured on the first CC is greater than or equal to 6 short CDRX cycles
  • the value of ShortCycleTimer configured on the second CC is 2 short CDRX cycles.
  • the value of the short DRX cycle duration configured for the first CC and the second CC may be the same, but The value of the corresponding short-period timer is different.
  • the terminal device in the embodiment of this application is configured with a DRX cycle
  • the carriers that the terminal device can aggregate are not limited to two component carriers, but may also include three, four or more component carriers, which is not done in this embodiment of the application. limited.
  • the multiple component carriers aggregated by the terminal equipment at least one of the timers configured on at least two component carriers has different running durations.
  • the embodiment of the present application only uses the duration timer, Inactive timers and short-period timers are taken as examples for description.
  • the corresponding timers configured on each component carrier have the same starting time position. For example, the duration timer (onDurationTimer) configured on each component carrier is the same. ) The time position of turning on is the same, and the time position of turning on the inactivity timer (InactivityTimer) configured for each component carrier is the same. In this way, if the running duration of the timer configured for each component carrier is also the same, the state of the terminal device on each component carrier is the same, for example, the terminal device is in an active state or in a dormant state on each component carrier.
  • the running durations of the timers configured by the component carriers are not exactly the same, for example, the running duration of the timers configured for some component carriers is greater than the running duration of the corresponding timers configured for another part of the component carriers, so that the terminal equipment may be in some component carriers. In the active state, it is in the dormant state on another part of the component carrier.
  • Fig. 5 shows a schematic diagram of the timer configuration in the DRX cycle of the component carrier in the carrier aggregation scenario.
  • the first CC and the second CC are configured with a duration timer (onDurationTimer) and an inactivity timer (InactivityTimer) as an example for description.
  • the onDurationTimer corresponding to the first CC and the onDurationTimer corresponding to the second CC are turned on at the same time position, but the running time is different, and the terminal device is in an active state during the running of the onDurationTimer.
  • the InactivityTimer corresponding to the first CC and the InactivityTimer corresponding to the second CC are turned on at the same time position, but the running time is different, and the terminal device is in an active state during the running of the InactivityTimer.
  • the terminal device is in a dormant state during the non-running time of onDurationTimer and InactivityTimer. This period of time is the dormant time of the terminal device.
  • the figure only exemplarily marks the dormant time of the terminal device on the second CC.
  • the network device can know whether the terminal device starts the timer, when it starts the timer, and the running time of the timer. During the timer running time, the network device considers the terminal device to enter the activation time, which means that the terminal device is activated. Therefore, the network equipment can schedule the terminal equipment. If the running duration of the onDurationTimer corresponding to the first CC and the second CC is the same, when the terminal device receives the first message such as DCI during the onDurationTimer corresponding to the first CC, the terminal device will turn on the InactivityTimer and the second corresponding to the first CC. The InactivityTimer corresponding to the CC, at this time, the terminal device is in an active state on both the first CC and the second CC.
  • the terminal device when the terminal device receives the first message such as DCI during the onDurationTimer operation period corresponding to the first CC, The terminal device will turn on the InactivityTimer corresponding to the first CC and the InactivityTimer corresponding to the second CC. At this time, the terminal device is in an active state on the first CC, and may be in a dormant state on the second CC. The same applies to InactivityTimer.
  • the terminal device when the terminal device receives the first message such as DCI during the operation of the InactivityTimer corresponding to the first CC, the terminal device will restart the first CC.
  • the corresponding InactivityTimer and the InactivityTimer corresponding to the second CC at this time, the terminal device is in an active state on both the first CC and the second CC.
  • the terminal device receives the first message such as DCI during the operation of the InactivityTimer corresponding to the first CC, the terminal device The InactivityTimer corresponding to the first CC and the InactivityTimer corresponding to the second CC will be restarted. At this time, the terminal device is in an active state on the first CC, and may be in a dormant state on the second CC.
  • Fig. 6 shows a schematic diagram of the state transition of the terminal device. As shown in Figure 6, the terminal device is in the active state during the time period from t1 to t2.
  • the terminal device When the terminal device is ready to sleep from the active state, it needs to perform state transition in the time period from t2 to t3, that is, the terminal device is ready in the time period from t2 to t3. Rump down, such as turning off the radio frequency transmitter and receiver, turning off the baseband processing chip and memory, etc. After completing the dump down, the terminal device is completely dormant during the period t3 to t4, and the terminal device no longer monitors the PDCCH.
  • the terminal device When the terminal device is ready to wake up from the dormant state, it needs the time period t4 ⁇ t5 to perform state transition, that is, the terminal device is ready to wake up (rump up or warm up) in the time period t4 to t5, such as turning on the radio frequency or baseband hardware, Perform beam management (mainly for the FR2 frequency band), etc. After the warm up is completed, the terminal device can monitor the PDCCH or transmit data during the time period t5 to t6.
  • the terminal device preparing to wake up from the dormant state can also be understood as the terminal device waking up from the dormant state, that is, the process of the terminal device from the dormant state until the terminal device starts to monitor the PDCCH.
  • the terminal device waking up from the dormant state is usually completed before the timer is started, that is, it is completed within the non-running time of the timer, so that the terminal device is running on the timer when the timer is started. It is in the active state within the duration, that is, the terminal device can communicate directly within the running duration of the timer.
  • the terminal device can prepare to wake up in advance before the onDurationTimer is turned on.
  • the time-frequency offset synchronization is performed first, to prevent the terminal device from deviating from the clock and frequency domain of the network device due to long sleep caused by the system clock and operating frequency; or the terminal device can also try first Receive downlink synchronization signals and update system messages to prevent system messages from deviating after the terminal device moves from one cell to another.
  • the terminal equipment When the carriers aggregated by the terminal equipment have different timer duration configurations, as shown at position 1 and position 2 in Figure 7, when the terminal equipment receives the first message such as DCI within the running time of the onDurationTimer corresponding to the first CC, the terminal equipment The InactivityTimer corresponding to the first CC and the InactivityTimer corresponding to the second CC will be turned on, but at this time the terminal device is in the dormant state on the second CC. After the InactivityTimer corresponding to the second CC is turned on, the terminal device needs to sleep first during the running time of the InactivityTimer Wake up in the state, that is, the terminal device needs to warm up first.
  • the activation of the InactivityTimer is based on whether the terminal device receives the first message, such as DCI, which is dynamic and unpredictable when the terminal device receives the first message, such as DCI. Therefore, the terminal device cannot warm up in advance before the InactivityTimer is turned on. In this way, within a period of time when the InactivityTimer is just turned on, the terminal device cannot correctly receive the first message such as DCI and cannot perform effective data transmission and reception. However, at this time, the network device considers the terminal device to be in the active state according to the timer on the terminal device side. Signal transmission is possible. If the network device schedules the terminal device at this time, problems such as data loss may occur.
  • the terminal device monitors the PDCCH is used as an example to describe the terminal behavior of the terminal device during the active time and the sleep time.
  • the terminal Whether the device monitors the PDCCH actually refers to whether the terminal device monitors the preset type of PDCCH.
  • the DCI carried on the preset type of PDCCH may include C-RNTI, CS-RNTI, INT-RNTI, SFI-RNTI, SP-CSI-RNTI, TPC-PUCCH-RNTI, TPC-PUSCH-RNTI, and TPC-SRS-RNTI scrambled DCI.
  • the activation time and the sleep time include other terminal behaviors.
  • the terminal device can also send periodic or semi-static sounding reference signals (Sounding Reference Signal, SRS) or report the channel status during the activation time.
  • SRS Sounding Reference Signal
  • Information Channel State Information, CSI).
  • the embodiments of the present application provide a wireless communication method, which can improve the communication quality of terminal equipment in a carrier aggregation scenario.
  • the embodiments of the present application will be described in detail below in conjunction with FIG. 8.
  • FIG. 8 shows a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • the method shown in FIG. 8 can be executed by a terminal device.
  • the terminal device may be, for example, the terminal device 120 shown in FIG. 1.
  • the method 800 may include step S810 to step S820.
  • step S810 the terminal device receives the first message sent by the network device on the first carrier.
  • the network device sends the first message to the terminal device on the first carrier.
  • the first message is used to instruct the terminal device to monitor at least one of the physical downlink control channel PDCCH and transmission data on the second carrier, that is, the first message instructs the terminal device to monitor the physical downlink control channel PDCCH and transmission data on the second carrier. / Or transfer data.
  • the first message is used to instruct the terminal equipment to monitor the physical downlink control channel PDCCH on the second carrier, or to instruct to transmit data on the second carrier (for example, in a cross-carrier scheduling scenario), or to instruct to
  • data is transmitted according to the received PDCCH, or used to instruct to monitor the PDCCH on the second carrier and transmit data according to the received first message.
  • the first message indicates that the terminal device will perform a certain behavior or action on the second carrier.
  • the first message may be carried by the network device on the PDCCH and sent to the terminal device, it may be the downlink control information DCI sent by the network device to the terminal device, or it may be another message or a new message, which is not specifically described in the embodiment of this application. limited.
  • the DCI may be the DCI that is initially transmitted by the scheduling terminal device, and may be the aforementioned C-RNTI, CS-RNTI, INT-RNTI, SFI-RNTI, SP-CSI-RNTI, and TPC. -PUCCH-RNTI, TPC-PUSCH-RNTI, and TPC-SRS-RNTI scrambled DCI, etc.
  • the embodiments of the present application are not limited thereto.
  • the terminal device can receive the first message on the first carrier, that is, the terminal device is in the active state on the first carrier, because the terminal device can only transmit signaling and/or data when the terminal device is in the active state.
  • step S820 when the terminal device is in a dormant state on the second carrier, the terminal device performs at least one of PDCCH monitoring and data transmission on the second carrier after the first time period has elapsed.
  • the network device may perform at least one of sending the PDCCH to the terminal device and transmitting data on the second carrier.
  • the terminal device is a carrier aggregation terminal device, and the first carrier and the second carrier are carriers aggregated by the terminal device.
  • the terminal device When the terminal device is in the active state on the first carrier, the terminal device may be in the active state or in the dormant state on the second carrier.
  • the terminal device When the terminal device receives the first message on the first carrier, if the terminal device is active on the second carrier, when the first message instructs the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier , The terminal device can directly monitor the PDCCH and/or transmit data according to the instruction of the first message.
  • the terminal device When the terminal device receives the first message on the first carrier, if the terminal device is in the dormant state on the second carrier, when the first message instructs the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier Since the terminal device is in the dormant state on the second carrier, and the terminal device can monitor the PDCCH and/or transmit data only in the active state, in the embodiment of the present application, in this case, the terminal device passes the first time length Then monitor the PDCCH and/or transmit data on the second carrier.
  • the first time length in the embodiment of the present application is used for the terminal device to wake up from the dormant state.
  • the terminal device wakes up from the dormant state can be understood as the process of the terminal device from the dormant state to being able to monitor PDCCH and/or transmit data. That is to say, the terminal device first wakes up from the dormant state within the first length of time. This process may also be referred to as the warm-up process described above.
  • the terminal device is also unable to perform effective signaling and/or data transmission during the process of preparing to wake up.
  • the terminal device monitors the PDCCH and/or transmits data after the first period of time, that is, the terminal device may not monitor the PDCCH and/or transmit data within the first period of time.
  • the network device is in The PDCCH may not be sent and/or no data may be scheduled within the first time length.
  • step S810 the first message instructs the terminal device to monitor PDCCH and/or transmit data on the second carrier
  • step S820 after the first time length has elapsed, the network device is on the second carrier It is not necessary to send PDCCH or data to the terminal device, and the terminal device can also wake up from the dormant state, and then monitor the PDCCH on the second carrier or prepare to transmit data, but the terminal device may not be able to monitor the PDCCH or not transmit Data only.
  • the terminal device does not monitor the PDCCH and/or transmit data during the process of waking up from the dormant state, and the network device does not send the PDCCH and/or transmit data during the process of the terminal device waking up from the dormant state, which can prevent the terminal device from being in this process. It may not be able to monitor the PDCCH sent by the network device to itself or cannot receive the data sent by the network device, and cannot perform effective data transmission and reception, thereby improving the communication quality of the terminal device in the carrier aggregation scenario.
  • the action performed by the terminal device after the first length of time is consistent with the action of the terminal device on the second carrier indicated by the first message. For example, if the first message instructs the terminal device to monitor the PDCCH on the second carrier, then in step S820, the terminal device monitors the PDCCH on the second carrier after the first period of time has elapsed. For another example, if the first message instructs the terminal device to transmit data on the second carrier, then in step S820, after the first period of time has elapsed, the terminal device transmits data on the second carrier. That is, in step S820, the terminal device performs the behavior indicated by the first message on the second carrier.
  • the terminal device is in the dormant state on the second carrier, which can be understood as the terminal device is in the dormant state in the DRX cycle on the second carrier, and correspondingly, the terminal device is in the active state on the first carrier, which can be understood as The terminal device is in the active state in the DRX cycle on the first carrier.
  • the terminal device in the embodiment of the present application is configured with a DRX cycle on both the first carrier and the second carrier. When the terminal device is in an active state on the first carrier, the terminal device may be in a dormant state on the second carrier.
  • the frequency range of the first carrier wave may be below 6 GHz, and/or the frequency range of the second carrier wave may be a millimeter wave frequency band.
  • the terminal device monitors the PDCCH and/or transmits data on the second carrier after the first time length, and does not monitor the PDCCH and/or transmits data on the second carrier within the first time length.
  • the terminal device not to monitor the PDCCH and/or transmit data within the first time length.
  • the terminal device starts the first timer, wherein, during the operation of the first timer, the terminal device can perform at least one of monitoring PDCCH and transmitting data on the second carrier. kind.
  • the terminal device can perform certain actions or actions during the running process of the first timer, such as monitoring the PDCCH and/or transmitting data.
  • the network device can determine whether to send the PDCCH and/or transmit data to the terminal device according to whether the terminal device is in the running process of the first timer.
  • the terminal device has woken up from the dormant state.
  • the terminal device starts the first timer, and the terminal device is already in the active state.
  • the terminal device can monitor the PDCCH and PDCCH during the operation of the first timer. / Or transmit data, and wake up from the dormant state is completed outside the running period of the first timer, thereby avoiding the process of preparing for waking up during the running of the first timer and not being able to perform effective data transmission.
  • the terminal device when receiving the first message, starts the first timer. During the operation of the first timer, the terminal device can monitor PDCCH and transmit data on the second carrier. At least one type, wherein the terminal device does not monitor the PDCCH or does not perform data transmission on the second carrier within the first time length after starting the first timer.
  • the terminal device When receiving the first message, the terminal device starts the first timer. During the operation of the first timer, the terminal device can perform certain actions on the second carrier, such as monitoring the PDCCH and/or transmitting data, and the corresponding network device It is also possible to perform certain actions during the running process of the first timer. Since the terminal device starts the first timer when receiving the first message, the running time of the first timer includes the time required for the terminal device to wake up from the dormant state, and during this time the terminal device cannot Do effective data transmission. Therefore, in the embodiment of the present application, although the terminal device starts the first timer when receiving the first message, the terminal device does not monitor the PDCCH or perform data transmission on the second carrier within the first time period after the first timer is started. .
  • the terminal device may not perform certain actions or actions, such as monitoring the PDCCH and/or transmitting data, within the first time period.
  • the terminal device After the first period of time has elapsed, the terminal device has woken up from the dormant state, and then the terminal device monitors the PDCCH and/or transmits data again.
  • the network device does not send the PDCCH or transmit data to the terminal device within the first length of time.
  • by restricting the behavior of the network device and the terminal device during the first time period that is, the terminal device wakes up from the dormant state
  • it can avoid the terminal device from monitoring and monitoring the PDCCH during the wake-up process from the dormant state.
  • data transmission can improve the communication quality of the terminal equipment in the carrier aggregation scenario.
  • the terminal device can also start a second timer, wherein, during the operation of the second timer, the terminal device can monitor PDCCH and transmit data on the first carrier. At least one of them.
  • the terminal device starts the first timer, and the terminal device may also start the second timer.
  • the terminal device can monitor the PDCCH and/or transmit data on the second carrier.
  • the terminal device can monitor the PDCCH and/or transmit data on the first carrier. data. That is, the terminal device starts the first timer and the second timer at the same time after the first time length has elapsed, so that the first timer and the second timer can be the same timer, such as a MAC entity-level timer. It should be understood that the first The first timer and the second timer may also be the same timer.
  • the terminal device when the terminal device receives the first message, the terminal device starts the first timer, and the terminal device may also start the second timer.
  • the terminal device can monitor the PDCCH and/or transmission data on the first carrier.
  • the terminal device monitors on the second carrier after the first length of time.
  • the PDCCH and/or transmission data For the PDCCH and/or transmission data, the PDCCH and/or transmission data are not monitored on the second carrier within the first time length.
  • the terminal device can normally perform the corresponding behavior on the first carrier, and limit the behavior within the first time length on the second carrier.
  • the terminal device When receiving the first message, the terminal device starts the first timer and the second timer at the same time, so that the first timer and the second timer can be the same timer, such as a MAC entity-level timer. It should be understood that the first The first timer and the second timer may also be the same timer. It should be understood that when the terminal device starts the first timer and the second timer at the same time, the first timer and the second timer may also be different timers, that is, the first timer is used for timing the second carrier, The second timer is used to time the first carrier.
  • the terminal device when receiving the first message, starts the second timer, and after the first length of time has elapsed, the terminal device starts the first timer.
  • the terminal device can monitor the PDCCH and/or transmit data on the second carrier.
  • the terminal device can monitor the PDCCH and/or transmit data on the first carrier. data.
  • the terminal device starts the first timer and the second timer at different times.
  • the first timer and the second timer can be timers of different levels.
  • the first timer is a timer of the second carrier level and is used for For timing the second carrier
  • the second timer is a timer of the first carrier level for timing the first carrier.
  • the terminal device when receiving the first message, starts the first timer, and after the first length of time has elapsed, the terminal device starts the second timer.
  • the terminal device monitors the PDCCH and/or transmission data on the second carrier after the first time length, and does not monitor the PDCCH and/or transmission on the second carrier within the first time length data.
  • the terminal device can monitor the PDCCH and/or transmit data on the first carrier. That is, the terminal device normally performs corresponding behaviors on the first carrier and the second carrier after the first time length, but the behavior of the terminal device in the first time length is restricted on the second carrier.
  • the terminal device starts the first timer and the second timer at different times, so the first timer and the second timer may be timers of different levels.
  • the first timer and the second timer may be InactivityTimer.
  • the first time length in the embodiment of the present application is used for the terminal device to wake up from the dormant state on the second carrier.
  • the first time length is greater than or equal to the state transition duration
  • the state transition duration is the time required for the terminal device to wake up from the dormant state.
  • the process of waking up the terminal device from the dormant state can be understood as the process of the terminal device from the dormant state to being able to effectively monitor the PDCCH.
  • the process of waking up the terminal device from the dormant state can be understood as the process of the terminal device from the dormant state to being able to effectively transmit data.
  • the terminal device effectively monitors the PDCCH or effectively transmits data can be understood as the terminal device has completed the process of preparing to wake up, has turned on the hardware or completed the beam management and other processes, and is ready to transmit signaling or data NS.
  • the first time length is greater than or equal to the state transition time length, which can ensure that the terminal device wakes up from the dormant state on the second carrier, and then implements effective signaling or data transmission after the first time length.
  • the first time length mentioned above is used for the terminal device to wake up from the dormant state. It can be understood that the terminal device just wakes up from the dormant state within the first time length, or the terminal device completes from the dormant state within the first time length. In the process of waking up during the first period of time, it is in a state that can effectively monitor the PDCCH or effectively transmit data for a part of the first time length.
  • the time interval between the data and the first message is greater than or equal to the first time length.
  • the terminal device can implement cross-carrier scheduling by using the first carrier and the second carrier.
  • the time interval between the position of the data transmitted by the device on the second carrier and the position of the first message (for example, DCI) received by the terminal device on the first carrier should be greater than the first time length. In this way, it can be ensured that the terminal device completes the process of waking up from the dormant state within the first length of time, and can correctly transmit data after the first length of time, thereby improving the communication quality under cross-carrier scheduling.
  • the first time length may correspond to the sleep level of the terminal device on the second carrier. That is, the terminal device may be configured with at least one sleep level, and the terminal device may select the corresponding first time length according to the sleep level of the terminal device on the second carrier.
  • the terminal device can also be configured with at least one sleep level. Under different sleep levels, the sleep state of the terminal device is different, the degree of sleep is different, and the power consumption is also different. For example, when the terminal device is in deep sleep, the terminal device can turn off all communication devices such as the radio frequency transceiver and baseband processor, and only do some necessary communications with very low power consumption; when the terminal device is in shallow sleep, the terminal device can only turn off the power. Communication devices that consume a lot of money can complete more communications than those in deep sleep. Or for another example, when the terminal device is in a deep sleep, the terminal device can sleep longer and then wake up, while in a light sleep, the terminal device can wake up after a short sleep. In general, the deeper the sleep degree of the terminal device, the longer the terminal device sleeps, and the less work needs to be done during sleep, which can further reduce the power consumption of the terminal device.
  • the terminal device is configured with a sleep level, that is, the time required for the terminal device to wake up from the sleep state is approximately the same.
  • the network device can configure a time length for the terminal device, that is, the first time length. In this way, after the first length of time, the terminal device can complete the process of waking up from the dormant state.
  • the terminal device is configured with at least two sleep levels, that is, the time required for the terminal device to wake up from the sleep state can be different under different sleep levels.
  • the terminal device can be configured with two sleep levels, namely deep sleep and light sleep. When the terminal device is in a deep sleep state, the time required to wake up from the dormant state may be longer than when the terminal device is in a light sleep state. The time required to wake up in the state.
  • the network device may configure at least two time lengths for the terminal device, and each sleep level of the at least two sleep levels corresponds to one of the at least two time lengths.
  • the terminal device can determine the first time length corresponding to the current sleep level from at least two time lengths configured by the network device according to the current sleep level.
  • the current sleep level described in the embodiments of the present application can be understood as the sleep state that the terminal device is in on the second carrier when the terminal device receives the first message on the first carrier.
  • the terminal device is configured with at least one sleep level.
  • the method 800 further includes: the terminal device receives configuration information sent by the network device, where the configuration information is used to indicate at least one time length, and the at least one time length includes For the first time length, each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • the network device can configure one or more time lengths for the terminal device for the terminal device to wake up from the dormant state, and the terminal device can determine and select the corresponding time length as the first time length according to the current sleep level.
  • the current sleep level of the terminal device can be understood as the sleep state of the terminal device on the second carrier when the terminal device receives the first message on the first carrier.
  • Each sleep level in at least one sleep level corresponds to one of at least one length of time, that is, when the terminal device is in each sleep level, warm up can be completed within the length of time corresponding to the sleep level, that is, from the sleep state Wake up.
  • the terminal device is configured with at least one sleep level, and when the terminal device is in different sleep levels, the time required to wake up from the sleep state may be different.
  • the configuration information may be carried in a radio resource control RRC message, downlink control information DCI, or other messages, and sent by the network device to the terminal device.
  • the first time length may be configured by the network device to the terminal device through an RRC message, or may be indicated to the terminal device through DCI. In some other embodiments, the first time length may also be predefined in the standard. The embodiments of this application do not make specific limitations.
  • the method 800 further includes: the terminal device obtains data from the multiple sleep levels according to the current sleep level.
  • the first time length is determined in the time length.
  • the first time length corresponds to the current sleep level of the terminal device.
  • the current sleep level is the sleep state on the second carrier when the terminal device receives the first message on the first carrier.
  • the first time length corresponds to the current sleep level of the terminal device, and it can be understood that within the first time length, the terminal device can wake up from the sleep state corresponding to the current sleep level.
  • the method 800 further includes: when the terminal device is configured with a sleep level, the terminal device sends the state transition duration corresponding to the one sleep level to the network device; or the terminal device is configured with multiple sleep levels. In the case of a sleep level, the terminal device sends the multiple sleep levels and the state transition duration corresponding to each sleep level of the multiple sleep levels to the network device.
  • the state transition duration is the time required for the terminal device to wake up from the dormant state.
  • the state transition duration may be carried in a terminal device capability message (UE capability information), a terminal device assistance information message (UE assistance information), or other information, which is reported by the terminal device to the network device.
  • UE capability information a terminal device capability message
  • UE assistance information a terminal device assistance information message
  • other information which is reported by the terminal device to the network device.
  • the terminal device when the terminal device is configured with a sleep level, the time required for the terminal device to wake up from the sleep state is roughly the same. Therefore, the terminal device can report the time required for the terminal device to wake up from the sleep state to the network device. That is, the duration of state transition.
  • the terminal device when the terminal device is configured with multiple sleep levels, when the terminal device is in different sleep levels, the time for the terminal device to wake up from the sleep state may be different, that is, when the terminal device is in different sleep levels, the state transition time may be Is different. Therefore, the terminal device may report the corresponding relationship between the sleep level of the terminal device and the state transition duration to the network device, so that the network device configures the terminal device with a first time length corresponding to each sleep level.
  • the terminal device when the terminal device is configured with multiple sleep levels, the terminal device may also report to the network device the state corresponding to the sleep level that takes the longest time to wake up from the sleep state among the multiple sleep levels. Conversion time. In this way, no matter what sleep level the terminal device is in, it can wake up from the dormant state within the longest state transition period, so that the terminal device monitors the PDCCH and transmits data on the second carrier after the same length of time. At least one.
  • the multiple sleep levels and the state transition duration may have a one-to-one correspondence, that is, the state transition duration corresponding to each sleep level is different, that is, the terminal device sleeps in different sleep levels.
  • the time required to wake up from the sleep state is different under different levels.
  • the multiple sleep levels and the state transition durations may have a one-to-many relationship, that is, the state transition durations corresponding to at least two sleep levels of the multiple sleep levels are the same, that is, the terminal device is in the multiple sleep levels.
  • the time required to wake up from the hibernation state is the same in at least two sleep levels in the sleep level.
  • the multiple sleep levels and the length of time configured by the network device may have a one-to-one correspondence, that is, when the terminal device is at different sleep levels, in step S820
  • the terminal device monitors the PDCCH and/or transmits data on the second carrier for a different length of time.
  • the multiple sleep levels and the first time length configured by the network device may have a one-to-many relationship, that is, when the terminal device is in at least two sleep levels among the multiple sleep levels, in step S820
  • the middle terminal device monitors the PDCCH and/or transmits data on the second carrier after the same length of time has passed.
  • the terminal device When the terminal device is configured with multiple sleep levels, there are multiple ways for the terminal device to determine the current sleep level.
  • the terminal device may determine the current sleep level according to the relationship between the position where the first timer is started and the DRX cycle configured on the first carrier. Taking the terminal device configured with two sleep levels (such as deep sleep and light sleep) as an example, if the position where the terminal device starts the first timer and the position where the terminal device receives the first message are both in the current DRX cycle on the corresponding carrier, the terminal The sleep time of the device on the second carrier is within a DRX cycle configured on the first carrier, the terminal device can determine that the current sleep level of the terminal device is light sleep; if the position where the terminal device starts the first timer is located on the second carrier If the sleep time of the terminal device is within the multiple DRX cycles configured on the first carrier (that is, the terminal device starts the first timer across the DRX cycle), the terminal device can determine that the current sleep level is deep sleep.
  • two sleep levels such as deep sleep and light sleep
  • the terminal device may determine the current sleep level according to the sleep duration of the terminal device on the second carrier and the sleep level division threshold.
  • the sleep duration of the terminal device on the second carrier can be based on the position where the terminal device starts the first timer (or the position where the terminal device receives the first message on the first carrier) and the terminal device’s position on the second carrier.
  • the time difference between the end time position of a DRX cycle is determined.
  • the terminal device configured with two sleep levels (such as deep sleep and light sleep) as an example, if the location where the terminal device starts the first timer (or the location at which the terminal device receives the first message on the first carrier) is separated by the first The time difference between the end position of the last DRX cycle on the two carriers is longer than or equal to the first threshold (for example, 10ms), the terminal device can determine that the current sleep level is deep sleep; if the terminal device starts the first timer position (or the terminal device is in The position where the first message is received on the first carrier) and the end position of the last DRX cycle on the second carrier are shorter than the first threshold in time, and the terminal device may determine that the current sleep level is light sleep.
  • the first threshold for example, 10ms
  • the terminal may also determine that the current sleep level is light sleep.
  • the terminal device configured with three sleep levels as an example, if the sleep duration of the terminal device on the second carrier is greater than or equal to the first threshold (for example, 10ms), the terminal device determines that the current sleep level is deep sleep; if the terminal device is in The sleep duration on the second carrier is between the first threshold (for example, 10ms) and the second threshold (for example, 5ms), and the terminal device can determine that the current sleep level is moderate sleep; if the terminal device has been sleeping on the second carrier When the sleep duration is less than the second threshold (for example, 5 ms), the terminal device may determine that the current sleep level is light sleep.
  • the first threshold should be greater than the second threshold. For the case where the length of sleep has been equal to the level division threshold, it can be specified in the standard according
  • the above sleep level division threshold may be reported to the network device by the terminal device.
  • the sleep level division threshold can also be configured by the network device to the terminal device.
  • the terminal device when receiving the first message, may instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier.
  • the first message received by the terminal device instructs to perform at least one of PDCCH monitoring and data transmission on the second carrier. In this way, the terminal device does not need to monitor the PDCCH and/or transmit data on the second carrier every time the first message is received on the first carrier, thereby saving the power consumption of the terminal device on the second carrier.
  • the first message received by the terminal device on the first carrier is used to instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier.
  • the terminal device monitors the PDCCH and/or transmits data on the second carrier according to the first message; when the terminal device is in the dormant state on the second carrier, the terminal device After the first length of time has elapsed, monitoring the PDCCH and/or transmitting data on the second carrier according to the first message.
  • the first message received by the terminal device on the first carrier is not used to instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier, or to instruct the terminal device to perform on the second carrier.
  • the PDCCH is not monitored or data is not transmitted on the carrier.
  • the terminal device may not monitor the PDCCH and/or transmit data on the second carrier; when the terminal device is in the dormant state on the second carrier, the terminal device can continue In the dormant state, without waking up from the dormant state.
  • the foregoing preset condition includes: the first message includes indication information. That is, when the preset condition is met, that is, the first message includes the indication information, the first message is used to instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier.
  • the preset condition is not met, that is, the first message does not include indication information, the first message is not used to instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier, or the first message is used to indicate that the terminal device is in the second carrier.
  • the PDCCH is not monitored or data is not transmitted on the second carrier.
  • the foregoing preset condition includes: the first message includes an indication field that instructs the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier. That is to say, when the preset condition is met, that is, the first message includes an indication field, the indication field instructs the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier, the first message is used to indicate that the terminal device is in the first At least one of PDCCH monitoring and data transmission is performed on the two carriers. If the preset condition is not met, that is, the first message includes an indication field that indicates that the terminal device does not monitor the PDCCH or does not transmit data on the second carrier. The first message is used to instruct the terminal device not to monitor the PDCCH or the PDCCH on the second carrier. No data is transferred.
  • the foregoing preset condition includes: the timing of receiving the first message on the first carrier by the terminal device satisfies a preset rule. That is to say, when the preset condition is met, that is, when the terminal device receives the first message on the first carrier and the timing meets the preset rule, the first message is used to instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier. A sort of.
  • the first message is not used to instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier , Or the first message is used to instruct the terminal device not to monitor the PDCCH or not to transmit data on the second carrier.
  • the terminal device may receive multiple first messages in one DRX cycle on the first carrier, and the first message currently received by the terminal device on the first carrier is that the terminal device receives in one DRX cycle The first message currently received or the first message and subsequent first messages are used to instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier.
  • the foregoing preset condition includes: the timing of the network device to send the first message on the first carrier satisfies the preset rule.
  • the terminal device can monitor the PDCCH and/or transmit data on the second carrier only when the first timer is running. Therefore, when the preset condition is met, the first message can be used for Instruct the terminal device to start the first timer on the second carrier.
  • the embodiment of the present application also provides another wireless communication method, which can reduce the power consumption of the terminal device.
  • the embodiments of the present application will be described in detail below in conjunction with FIG. 9.
  • FIG. 9 shows a schematic flowchart of another wireless communication method provided by an embodiment of the present application.
  • the method shown in FIG. 9 can be executed by a terminal device.
  • the terminal device may be, for example, the terminal device 120 shown in FIG. 1.
  • the method 900 may include step S910 to step S920.
  • step S910 the terminal device receives the first message sent by the network device on the first carrier.
  • the first message is used to indicate whether the terminal device starts the first timer on the second carrier. That is, the first message may instruct the terminal device to start the first timer on the second carrier, or the first message may instruct the terminal device not to start the first timer on the second carrier.
  • step S920 the terminal device starts a first timer according to the first message.
  • the terminal device monitors at least one of the physical downlink control channel PDCCH and transmission data on the second carrier.
  • the terminal device when the first message instructs the terminal device to start the first timer, the terminal device starts the first timer. Accordingly, the terminal device can monitor the PDCCH and/or transmit data during the operation of the first timer. When the first message indicates that the terminal device does not start the first timer, the terminal device does not start the first timer. Accordingly, the terminal device can continue to maintain the previous state on the second carrier.
  • the terminal device can start the first timer according to the first message.
  • the terminal device when the first message includes the indication information, the terminal device starts the first timer. Correspondingly, when the first message does not include the indication information, the terminal device does not start the first timer.
  • the first message includes an indication field, and the indication field indicates that when the first timer is started, the terminal device starts the first timer. Correspondingly, when the indication field indicates not to start the first timer, the terminal device does not start the first timer.
  • the terminal device when the time when the terminal device receives the first message satisfies a preset rule, the terminal device starts the first timer. Correspondingly, when the time when the terminal device receives the first message does not meet the preset rule, the terminal device does not start the first timer.
  • the first message is used to instruct the terminal device to start the first timer.
  • the first message is used to instruct the terminal device not to start the first timer.
  • the first message instructs the terminal device to start the first timer. It can also be understood that the terminal device is used to instruct the terminal device to monitor at least one of the physical downlink control channel PDCCH and transmission data on the second carrier. A sort of.
  • the terminal device When the terminal device receives the first message on the first carrier, the terminal device may be in a dormant state on the second carrier. If the terminal device starts the first timer when receiving the first message, the terminal device needs to wake up from the dormant state on the second carrier. If the network device schedules the terminal device at this time, the above-mentioned problem of the terminal device not being able to effectively perform signaling or data transmission during the wake-up process from the dormant state will occur again. Therefore, in this case, after step S920, the terminal device may further execute the method 800 in FIG. 8.
  • the method 900 further includes: starting from receiving the first message, after the first length of time has elapsed, the terminal device At least one of monitoring the physical downlink control channel PDCCH and transmitting data is performed on the second carrier, wherein the first time length is used for the terminal device to wake up from the dormant state.
  • the first carrier belongs to FR1 and the second carrier belongs to FR2 as an example.
  • the embodiment of this application may also apply the first carrier and second carrier in other frequency ranges, as long as there is a terminal device on the first carrier. It is sufficient if the upper is in the active state, and it is in the dormant state on the second carrier.
  • the first carrier and the second carrier are configured with a duration timer (onDurationTimer) and/or an inactivity timer (InactivityTimer) as an example.
  • the first carrier and the second carrier are configured with a duration timer (onDurationTimer) and/or an inactivity timer (InactivityTimer) as an example.
  • the first carrier and the second carrier may also be configured with other types of timers.
  • the first message received by the terminal device on the first carrier is described as DCI as an example, but as described above, the terminal device in the embodiment of the present application receives on the first carrier.
  • the first message received may also be other messages such as a PDCCH or a new message, which is not specifically limited in the embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a state of a terminal device in a wireless communication method provided by an embodiment of the present application.
  • the first CC and the second CC are component carriers aggregated by the terminal equipment, and both the first CC and the second CC are configured with a DRX cycle.
  • the terminal device On the first CC, at the beginning of each DRX cycle, the terminal device needs to turn on the onDurationTimer corresponding to the first CC.
  • the terminal device On the second CC, at the beginning of each DRX cycle, the terminal device needs to turn on the onDurationTimer corresponding to the second CC.
  • the terminal device is in an active state on the second carrier.
  • the solid box in the figure represents the running time of onDurationTimer. It can be seen from the figure that the onDurationTimer value corresponding to the first CC is different from the onDurationTimer value corresponding to the second CC.
  • the terminal device At position 1, while the onDurationTimer corresponding to the first CC is running, the terminal device is in the active state on the first CC, and the onDurationTimer corresponding to the second CC has timed out, and the terminal device is in the dormant state on the second CC.
  • the terminal device receives the first message such as DCI sent by the network device at location 1, the terminal device starts the InactivityTimer corresponding to the first CC (that is, an example of the second timer described above), but does not immediately start the second CC
  • the corresponding InactivityTimer that is, an example of the first timer described above
  • the InactivityTimer corresponding to the second CC is started at position 2.
  • the time interval between the position 1 and the position 2 is the first time length, where the first time length is used for the terminal device to wake up from the sleep state on the second CC. It should be understood that the terminal device wakes up from the dormant state on the second CC, which can be understood as the terminal device prepares to wake up from the dormant state until it can monitor the PDCCH and/or transmit data on the second CC, that is, the first time length is used The warm up process is completed on the second CC on the terminal device.
  • the terminal device starts the InactivityTimer corresponding to the second CC at position 2, and the terminal device is in an active state on the second CC during the operation of the InactivityTimer corresponding to the second CC.
  • the terminal device has completed the warm up process before the InactivityTimer corresponding to the second CC runs. Therefore, the network device side knows when the terminal device side starts the InactivityTimer corresponding to the second CC.
  • the network device side communicates with the terminal device during the operation of the InactivityTimer corresponding to the second CC. Perform communication, such as sending PDCCH to terminal equipment or scheduling terminal equipment. Before the terminal device starts the InactivityTimer corresponding to the second CC, the network device knows that the terminal device is in a dormant state on the second CC, and the network device side will not communicate with the terminal device on the second CC.
  • the first message received by the terminal device on the first CC is used to instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second CC. Since the terminal device can perform corresponding actions on the second CC only during the operation of the InactivityTimer corresponding to the second CC, the first message can also be understood as instructing the terminal device to turn on the InactivityTimer corresponding to the second CC.
  • the embodiment of the present application specifies the time position at which the InactivityTimer corresponding to the second CC starts, so that the terminal device completes the warm up process on the second CC before starting the second corresponding InactivityTimer, which prevents the network device and the terminal device from being in the terminal.
  • the device communicates during the warm up process to improve the communication quality of the terminal device.
  • the sleep time and state transition time of the terminal device on the second CC are shown by way of example. It should be understood that the warm up process is required when the terminal device wakes up from the dormant state. Before the terminal device turns on the onDurationTimer corresponding to the first CC and the second CC respectively, the terminal device has completed the warm up process, which is concise and is not shown in the figure. Mark them all out. In addition, the terminal device is in the dormant state during the non-onDurationTimer operation period and the non-InactivityTimer operation period. This period of time is the dormant time of the terminal device on the corresponding carrier, which is also concise and not all marked in the figure.
  • the InactivityTimer corresponding to the first CC and the InactivityTimer corresponding to the second CC may be different timers, so that the terminal device can normally start or restart the InactivityTimer corresponding to the first CC according to the existing mechanism, and after the first length of time Start the InactivityTimer corresponding to the second CC. In this way, even if the terminal device cannot perform signaling or data transmission on the second CC within the first time length, it can still perform signaling or data transmission on the first CC, and communication resources can be fully utilized.
  • the first CC and the second CC may share an InactivityTimer.
  • the InactivityTimer may be a MAC entity-level timer.
  • the terminal device turns on the InactivityTimer corresponding to the first CC and the InactivityTimer corresponding to the second CC has the same time position, and both are from the terminal device on the first carrier. It starts to receive the first message and is turned on after the first length of time has elapsed. In this way, the time position at which the terminal device turns on the InactivityTimer on the first CC and the second CC can be made the same, which can be consistent with the existing mechanism, and the first CC and the second CC share a timer.
  • the foregoing first time length is determined according to the time required for the terminal device to wake up from the dormant state (that is, the state transition duration).
  • the first time length should be greater than or equal to the state transition time length to ensure that the terminal device completes warm-up within the first time length.
  • the terminal device accesses the network, it needs to report the state transition duration to the network device.
  • the state transition duration may be carried in a terminal device capability message, a terminal device assistance message, or other messages, which are reported by the terminal device to the network device.
  • the terminal device can wake up from the dormant state for a minimum time length, that is, within the minimum time length, the terminal device just wakes up from the dormant state.
  • what the terminal device reports to the network device may be the minimum length of time required for the terminal device to wake up from the dormant state, that is, the minimum length of time required for the terminal device to complete warm up.
  • the network device can configure the above-mentioned first time length for the terminal device according to the state transition time reported by the terminal device, where the first time length should be greater than or equal to the state transition time reported by the terminal device.
  • the network device may send configuration information to the terminal device, where the configuration information indicates the foregoing first time length.
  • the configuration information may be carried in the RRC message or the foregoing first message.
  • the configuration information sent by the network device to the terminal device may be in the following form:
  • the first message is carried on the PDCCH. If the PDCCH carrying the first message monitored by the terminal device on the first CC indicates that the terminal device has a new transmission on the second CC, the terminal device will receive the PDCCH after receiving the PDCCH. Start or restart the InactivityTimer corresponding to the second CC after the time T, where T is the aforementioned first time length.
  • the sleep degree of the terminal device when in the dormant state is different, so the time required for the terminal device to wake up from the dormant state (that is, the warm-up time) may be different.
  • the terminal device can report multiple sleep levels and the state transition duration corresponding to each of the multiple sleep levels to the network device.
  • the network device configures multiple terminal devices according to the multiple state transition durations reported by the terminal device. The first length of time. When the terminal device is in each sleep level, it corresponds to one of the multiple first time lengths.
  • the terminal device can determine the first time length corresponding to the current sleep level from multiple time lengths according to the current sleep level of the terminal device, and then perform a certain action or behavior after the first time length. It should be understood that the first time length corresponding to when the terminal device is in each sleep level should be greater than or equal to the state transition time corresponding to the sleep level.
  • the difference from FIG. 10 is that before position 1, the terminal device is in light sleep (light sleep for short) on the second CC, that is, the sleep time of the terminal device before position 1 is the light sleep time.
  • the terminal device Before the position 3, the terminal device is in deep sleep on the second CC (abbreviated as deep sleep), that is, the sleep time of the terminal device before the position 1 is the deep sleep time.
  • the terminal device can determine the length of the first time according to the current sleep level, which is configured from the network device
  • the first time length corresponding to the current sleep level is selected from the plurality of first time lengths. For example, after receiving a first message such as DCI on the first CC at location 1, the terminal device turns on the InactivityTimer corresponding to the second CC at location 2 after a short first time period; the terminal device is in the first location at location 3 After receiving the first message such as DCI on the CC, the InactivityTimer corresponding to the second CC is turned on at the position 4 after a long first time period.
  • the terminal can perform certain behaviors and actions after the first time length corresponding to the sleep level currently on the second CC, so that communication resources can be fully utilized.
  • the network device can also configure a first time length for the terminal device, so that no matter what sleep level the terminal device is in on the second CC, After receiving the first message on the first CC, certain behaviors and actions are performed after the same length of time has elapsed.
  • the terminal device determines the current sleep level of the terminal device on the second CC, and still refer to FIG. 12.
  • the terminal device can determine that it is in a light sleep state on the second CC. When waking up in the state, the terminal device starts the InactivityTimer corresponding to the second CC at the position 2 after a short first time period.
  • the terminal device can determine that it is in a deep sleep state on the second CC. When waking up in the deep sleep state, the terminal device turns on the InactivityTimer corresponding to the second CC at the position 4 after a long first time period.
  • the terminal device may be configured with three, four or more sleep levels, and the terminal device judges that the sleep level mode on the second CC is similar.
  • the terminal device with three sleep levels as an example, when the sleep time of the terminal device on the second CC is within one DRX cycle of the terminal device on the first CC, the terminal device determines that it is in light sleep on the second CC; The sleep time of the terminal device on the second CC is within two to four DRX cycles of the terminal device on the first CC, and the terminal device determines that it is in a moderate sleep on the second CC; when the terminal device is on the second CC The sleep time is within at least five DRX cycles of the terminal device on the first CC, and the terminal device determines that it is in deep sleep on the second CC.
  • the embodiments of the present application are not limited to this.
  • the terminal device determines that it is in a light sleep state on the second CC.
  • the terminal device starts the InactivityTimer corresponding to the second CC at the position 2 after a short first time period.
  • the terminal device can determine that it is in a deep sleep state on the second CC.
  • the terminal device When waking up from a deep sleep state, the terminal device turns on the InactivityTimer corresponding to the second CC at the position 4 after a long first time period. It should be understood that the terminal device may be configured with three, four or more sleep levels, and the terminal device judges that the sleep level mode on the second CC is similar. Taking the configuration of three sleep levels for the terminal device as an example, when the time position of the terminal device receiving the first message is longer than or equal to the first threshold, the terminal device determines that it is in the second CC.
  • the terminal device is in deep sleep; when the time position at which the terminal device receives the first message is different from the end time of the last DRX cycle on the second CC, and the position difference is between the first threshold and the second threshold, the terminal device determines that it is on the second CC. Moderate sleep, where the first threshold is greater than the second threshold; when the time position at which the terminal device receives the first message is less than the second threshold from the end time of the last DRX cycle on the second CC, the terminal device determines that it is at the second threshold.
  • Light sleep on CC The embodiments of the present application are not limited to this.
  • the difference between the time position at which the terminal device receives the first message and the end time of the last DRX cycle on the second CC can be understood as the sleep duration of the terminal device. That is, from the end time position of the last DRX cycle of the second CC to the time the terminal device has been dormant on the second CC when the terminal device receives the first message on the first carrier.
  • the network device side Since the start of the timer on the network device side needs to be synchronized with the start of the corresponding timer on the terminal device side, the network device side needs to know which first time length is selected by the terminal device side, that is to say, the network device side also needs to know the current time of the terminal device Sleep level. Optionally, the network device side determines the current sleep level of the terminal device in the same manner as the terminal device. Therefore, in addition to reporting the state transition time corresponding to each sleep level of the terminal device to the network device, the terminal device also needs to report the sleep level division threshold to the network device, such as the number of DRX cycles listed in the above example or the first threshold, The second threshold is equivalent.
  • the network device may also divide the threshold according to the sleep level reported by the terminal device, and then configure the sleep level division threshold for the terminal device.
  • the network device defaults the sleep level division threshold reported by the terminal device to a preset configuration. The embodiments of the present application are not limited to this.
  • the reporting of the state transition duration and the configuration of the first time length are similar to those of the terminal device configured with a sleep level in Figure 10 and Figure 11.
  • Figure 10 and Figure 11 for details. The description will not be repeated here.
  • FIG. 13 shows a schematic diagram of a state of a terminal device in a wireless communication method provided by another embodiment.
  • the difference from Fig. 10 is that when the terminal device receives the first message such as DCI at location 1, it starts the InactivityTimer corresponding to the second CC, but the network device will not be in the second CC for the first time period from location 1.
  • the terminal device does not need to perform certain actions or actions on the second CC within the first time length, such as monitoring the PDCCH, or sending sounding reference signals (SRS), channel state information reports ( channel state information report, CSI report), or data transmission, etc.
  • SRS sounding reference signals
  • channel state information reports channel state information report, CSI report
  • data transmission etc.
  • the first time length should be greater than or equal to the state transition time length.
  • the reporting of the state transition duration, the configuration of the first time duration, and the activation of the InactivityTimer corresponding to the first CC in the embodiment of the present application are similar to the manner in FIG. 10. For details, please refer to the related descriptions of FIG. 10 and FIG. 11, here No longer.
  • the terminal device in the embodiment of the present application may also be configured with multiple sleep levels.
  • multiple sleep levels please refer to the related description of FIG. 12, which will not be repeated here.
  • the configuration information sent by the network device to the terminal device may be in the following form:
  • the terminal device does not perform data scheduling within the first time period after the InactivityTimer corresponding to the second CC is turned on.
  • the terminal device since the terminal device starts the InactivityTimer corresponding to the second CC when receiving the first message, the process of waking up the terminal device from the sleep state on the second CC is completed during the operation of the InactivityTimer corresponding to the second CC . From the perspective of the network device, as long as the InactivityTimer corresponding to the second CC is in the running state, the network device considers the terminal device to be in the active state and can perform scheduling.
  • the terminal device and the network device can be prevented from communicating with the network device in the process of waking up from the sleep state of the terminal device, thereby Improve the communication quality of terminal equipment.
  • Cross-carrier scheduling means that a terminal device monitors and receives PDCCH on one carrier, but receives data scheduled by PDCCH on another carrier (for example, physical downlink shared channel (PDSCH) or physical uplink shared channel). , PUSCH)).
  • Cross-carrier scheduling can be used in carrier aggregation scenarios to optimize power consumption on a certain carrier. For example, in a 5G communication system, terminal equipment can use FR1 and FR2 for carrier aggregation, and cross-carrier scheduling can optimize power consumption on FR2 carriers.
  • FR1CC can schedule FR2CC data across carriers, that is, the terminal device only monitors and receives the PDCCH on the FR1CC. At this time, the terminal device can be in a dormant state in the FR2CC and does not need to monitor the PDCCH (low power consumption).
  • the data scheduling in FR2CC is determined by the PDCCH received on FR1CC. At this time, the terminal device needs to wake up on FR2CC and receive PDSCH or PUSCH.
  • the first message received by the terminal device on the first CC is used to instruct the terminal device to transmit data on the second CC.
  • the first message may indicate the location of the data on the second CC.
  • the terminal device is in the dormant state on the second CC, if the terminal device wants to perform data transmission, it needs to wake up from the dormant state first.
  • the interval between the time position of the data indicated in the first message, such as the PDSCH or PUSCH, and the time position of the terminal device receiving the first message, such as the PDCCH should be greater than or equal to the first time length.
  • the first time length is greater than or equal to the time required for the terminal device to wake up from the dormant state.
  • position 1 such as PDCCH
  • the terminal device For another example, if the first message received by the terminal device at position 3, such as PDCCH, instructs the terminal device to transmit PUSCH on the second CC, then the cross-carrier scheduling time interval between the first CC and the second CC (that is, the first message such as the PDCCH distance The PUSCH duration) needs to be greater than or equal to the first duration. That is, the terminal device receives the PUSCH on the second CC at the position 4, where the time interval between the position 3 and the position 4 is greater than the first time length, and the process of waking up the terminal device from the dormant state is completed before the position 4.
  • the first message received by the terminal device at position 3, such as PDCCH instructs the terminal device to transmit PUSCH on the second CC
  • the cross-carrier scheduling time interval between the first CC and the second CC that is, the first message such as the PDCCH distance
  • the PUSCH duration needs to be greater than or equal to the first duration. That is, the terminal device receives the PUSCH
  • the cross-carrier scheduling time interval of the first CC and the second CC can also be set to satisfy the state greater than or equal to
  • the conversion duration is the time required for the terminal device to wake up from the dormant state, or the time required for the terminal device to complete the warm up process.
  • the terminal device can also be configured with multiple sleep levels, so that the time interval of the first CC and the second CC cross-carrier scheduling can be based on the time interval of the second CC when the terminal device receives the first message.
  • the sleep level on CC is determined.
  • the terminal device is provided with onDurationTimer and InactivityTimer on the second CC, the terminal device does not need to monitor the PDCCH during the operation of these timers on the second CC, which can save the power consumption of the terminal device.
  • the relevant description above please refer to the relevant description above, and will not repeat them.
  • the position where the terminal device transmits data on the second CC can prevent the terminal device from transmitting data in the process of waking up from the dormant state after the terminal device completes the process of waking up from the dormant state , Improve communication quality.
  • the terminal device after receiving the first message on the first CC, instructs the terminal device to monitor the PDCCH and/or transmit data on the second CC.
  • the embodiment of the present application also provides another wireless network communication method.
  • the first message instructs the terminal device to monitor the PDCCH and/or transmit data on the second CC.
  • the difference from FIG. 10 to FIG. 14 is that when the preset condition is met, the first message received by the terminal device on the first CC instructs the terminal device to turn on the InactivityTimer corresponding to the second CC.
  • the terminal device receives the first message on the first CC, for example, the DCI does not meet the preset conditions. Therefore, the terminal device does not turn on the InactivityTimer corresponding to the second CC on the second CC, and cannot be in the first CC.
  • the second CC monitors the PDCCH and/or transmits data.
  • the terminal device receives the first message on the first CC, such as DCI that meets the preset condition, so the terminal device turns on the InactivityTimer corresponding to the second CC, and then the terminal device is running in the InactivityTimer corresponding to the second CC Monitor PDCCH and/or transmit data within time.
  • the first message on the first CC such as DCI that meets the preset condition
  • the terminal device receives the first message on the first CC.
  • DCI does not include indication information
  • the terminal device receives the first message on the first CC
  • DCI includes indication information. Therefore, the terminal device does not turn on the InactivityTimer corresponding to the second CC in the position 1 and the position 3, and turns on the InactivityTimer corresponding to the second CC in the position 2 and the position 4.
  • the terminal device receives a first message on the first CC, for example, the PDCCH carries an indication field, which indicates to turn on the InactivityTimer corresponding to the second CC or affect the InactivityTimer corresponding to the second CC, and in In position 2 and position 4, the terminal device receives the first message on the first CC, such as the PDCCH, and the indication field indicates that the InactivityTimer corresponding to the second CC is not turned on or the InactivityTimer corresponding to the second CC is not affected. Therefore, the terminal device does not turn on the InactivityTimer corresponding to the second CC in the position 1 and the position 3, and turns on the InactivityTimer corresponding to the second CC in the position 2 and the position 4.
  • the terminal device does not turn on the InactivityTimer corresponding to the second CC in the position 1 and the position 3, and turns on the InactivityTimer corresponding to the second CC in the position 2 and the position 4.
  • the terminal device receives the first message on the first CC.
  • DCI is the Nth first message received by the terminal device in a DRX cycle configured on the first CC, and the Nth first message is used for Instruct to start the InactivityTimer corresponding to the second CC; or, the first message after the Nth first message is used to instruct to start the InactivityTimer corresponding to the second CC.
  • the terminal device receives the first message on the first CC.
  • DCI is the second first message received by the terminal device in a DRX cycle configured on the first CC, so the second The first message is used to instruct to start the InactivityTimer corresponding to the second CC.
  • the terminal device when the time when the terminal device receives the first message satisfies the preset rule, it can be instructed to start the InactivityTimer corresponding to the second CC.
  • the preset rule can be set according to actual needs, which is not limited in the embodiment of the present application.
  • the terminal device when the terminal device receives the first message on the first CC, the terminal device is in the active state on the second CC, and the terminal device can directly monitor the PDCCH and PDCCH during the running time of the InactivityTimer corresponding to the second CC. / Or transfer data.
  • the terminal device when the terminal device receives the first message on the first CC, the terminal device is in the dormant state on the second CC, so the terminal device wants to monitor the PDCCH and/or transmission during the running time of the InactivityTimer corresponding to the second CC For data, you need to wake up from the sleep state first (refer to Figure 16).
  • this application provides another wireless communication method.
  • the difference from FIG. 16 is that only the InactivityTimer corresponding to the second CC can be configured on the second CC, and the onDurationTimer corresponding to the second CC is cancelled.
  • the terminal device does not monitor the PDCCH on the second CC by default, and only when the first message received by the terminal device on the first CC meets the preset condition, the terminal device starts the InactivityTimer corresponding to the second CC.
  • the terminal device monitors the PDCCH and/or transmits data during the running time of the InactivityTimer corresponding to the second CC. Since the onDurationTimer corresponding to the second CC is cancelled in FIG.
  • the terminal device when the terminal device combines the first message on the first CC, the terminal device is in the dormant state on the second CC. Similar to the problem in FIG. 16, the terminal device needs to wake up from the sleep state if it wants to monitor the PDCCH and/or transmit data during the running time of the InactivityTimer corresponding to the second CC. If it is carried out according to the existing mechanism, there will be a problem that the terminal device cannot effectively transmit signaling and data during the process of waking up from the dormant state.
  • the methods described in FIG. 10 to FIG. 14 can be further applied to the method described in FIG. 17. For details, reference may be made to the above description, and details are not described herein again.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 1800 in FIG. 18 may be a specific example of the terminal device 120 in FIG. 1.
  • the terminal device shown in FIG. 18 may be used to execute the method 800 in FIG. 8 or the method 900 in FIG. 9, and may specifically implement the embodiments shown in FIG. 10 to FIG. 17, in order to avoid redundancy, no longer Repeat description.
  • the terminal device 1800 shown in FIG. 18 includes a transceiving unit 1810 and a processing unit 1820.
  • the transceiving unit 1810 is configured to receive a first message sent by a network device on a first carrier, and the first message is used to instruct the terminal device to perform at least one of monitoring the physical downlink control channel PDCCH and transmitting data on the second carrier. A sort of.
  • the processing unit 1820 is configured to perform PDCCH monitoring and data transmission on the second carrier after the first time period has elapsed when the terminal device is in the dormant state on the second carrier At least one of.
  • the processing unit 1820 is further configured to start a first timer after the first length of time has elapsed, wherein, during the operation of the first timer, the terminal device can operate on the second carrier At least one of monitoring the PDCCH and transmitting data is performed on it.
  • processing unit 1820 is further configured to start the first timer when receiving the first message, wherein the terminal device does not listen on the second carrier within the first time length PDCCH or no data transmission.
  • the processing unit 1820 is further configured to start a second timer after the first time length has elapsed; or, when the first message is received, start the second timer; wherein, in the first time During the operation of the second timer, the terminal device can perform at least one of PDCCH monitoring and data transmission on the first carrier.
  • the first time length is greater than or equal to the state transition time length, and the state transition time length is the time required for the terminal device to wake up from the dormant state.
  • the time interval between the data and the first message is greater than or equal to the first time length.
  • the first message is used to instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier.
  • the preset condition includes: the first message includes indication information; or, the first message includes an indication field, and the indication field instructs the terminal device to perform PDCCH monitoring on the second carrier And at least one of transmitting data; or, the time when the terminal device receives the first message satisfies a preset rule.
  • the frequency range of the first carrier is below 6 GHz, and/or the frequency range of the second carrier is a millimeter wave frequency band.
  • FIG. 19 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication apparatus 1900 in FIG. 19 may be a specific example of the terminal device 120 in FIG. 1.
  • the communication device shown in FIG. 19 may be used to execute the method 800 in FIG. 8 or the method 900 in FIG. 9. To avoid redundancy, the description will not be repeated.
  • the communication device may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the communication device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1900 includes at least one processor 1920, which is configured to implement the method provided in the embodiment of the present application. For details, refer to the detailed description in the method example, which will not be repeated here.
  • the function of the processor 1920 is the same as the function of the processing unit 1820.
  • the communication device 1900 may also include at least one memory 1910 for storing program instructions and/or data.
  • the memory 1910 and the processor 1920 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1910 may operate in cooperation with the memory 1920.
  • the processor 1910 may execute program instructions stored in the memory 1920. At least one of the at least one memory may be included in the processor.
  • the communication device 1900 may further include a communication interface 1930 for communicating with other devices through a transmission medium, so that the device used in the communication device 1900 can communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the communication device 1900 is a terminal device, and the other device is a network device.
  • the processor 1920 uses the communication interface 1930 to send and receive data, and is used to implement the method executed by the terminal device in the embodiment corresponding to FIG. 8 or FIG. 9.
  • the embodiment of the present application does not limit the specific connection medium between the aforementioned communication interface 1930, the processor 1920 and the memory 1910.
  • the memory 1910, the processor 1920, and the communication interface 1930 are connected by a bus 1940.
  • the bus is represented by a thick line in FIG. 19, and the connection modes between other components are merely illustrative. , Is not limited.
  • the bus may be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used to represent in FIG. 19, but it does not mean that there is only one bus or one type of bus.
  • FIG. 20 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 2000 in Fig. 20 may be a specific example of the network device 110 in Fig. 1.
  • the network device shown in FIG. 20 may be used to execute the method 800 in FIG. 8 or the method 900 in FIG. 9, and may specifically implement the embodiments shown in FIG. 10 to FIG. 17, in order to avoid redundancy, no longer Repeat description.
  • the network device 2000 shown in FIG. 20 includes a transceiver unit 2010 and a processing unit 2020.
  • the transceiver unit 1010 is configured to send a first message to the terminal device on the first carrier, and the first message is used to instruct the terminal device to monitor the physical downlink control channel PDCCH and transmit data on the second carrier. At least one.
  • the processing unit 2020 is configured to send PDCCH and PDCCH to the terminal device on the second carrier after a first time period has elapsed when the terminal device is in the dormant state on the second carrier. At least one of the transmission data.
  • the first time length is greater than or equal to the state transition time length, and the state transition time length is the time required for the terminal device to wake up from the dormant state.
  • the time interval between the data and the first message is greater than or equal to the first time length.
  • the first message is used to instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier.
  • the preset condition includes: the first message includes indication information; or, the first message includes an indication field, and the indication field instructs the terminal device to perform PDCCH monitoring on the second carrier And at least one of transmission data; or, the time when the network device sends the first message satisfies a preset rule.
  • the frequency range of the first carrier is below 6 GHz, and/or the frequency range of the second carrier is a millimeter wave frequency band.
  • FIG. 21 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 2100 in FIG. 21 may be a specific example of the network device 110 in FIG. 1.
  • the communication device shown in FIG. 21 can be used to execute the method in FIG. 8 or FIG. 9. In order to avoid redundancy, the description will not be repeated.
  • the communication device may be a network device, a device in a network device, or a device that can be used in matching with the network device.
  • the communication device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication device 2100 includes at least one processor 2120, which is configured to implement the method provided in the embodiment of the present application. For details, refer to the detailed description in the method example, which is not repeated here.
  • the function of the processor 2120 is the same as the function of the processing unit 2020.
  • the communication device 2100 may further include at least one memory 2110 for storing program instructions and/or data.
  • the memory 2110 and the processor 2120 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 2110 may operate in cooperation with the memory 2120.
  • the processor 2110 may execute program instructions stored in the memory 2120. At least one of the at least one memory may be included in the processor.
  • the communication device 2100 may further include a communication interface 2130 for communicating with other devices through a transmission medium, so that the device used in the communication device 2100 can communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, pin, or other type of communication interface.
  • the communication device 2100 is a terminal device, and the other device is a network device.
  • the processor 2120 uses the communication interface 2130 to send and receive data, and is used to implement the method executed by the network device described in the embodiment corresponding to FIG. 8 or FIG. 9.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 2130, the processor 2120 and the memory 2110.
  • the memory 2110, the processor 2120, and the communication interface 2130 are connected by a bus 2140.
  • the bus is represented by a thick line in FIG. 21.
  • the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus may be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 21 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the embodiments of the present application provide a wireless communication method, terminal device, and network device.
  • a wireless communication method is provided, which is characterized by comprising: a terminal device receiving a first message sent by a network device on a first carrier, the first message being used to instruct the terminal device to perform monitoring physical downlink on a second carrier At least one of the control channel PDCCH and transmission data; when the terminal device is in a dormant state on the second carrier, after a first time period has elapsed, the terminal device executes on the second carrier Monitor at least one of PDCCH and transmission data.
  • the method according to the first embodiment is characterized in that it further includes: after the first length of time, the terminal device starts a first timer, wherein During operation, the terminal device can perform at least one of PDCCH monitoring and data transmission on the second carrier; or, when receiving the first message, the terminal device starts the first timer , Wherein the terminal device does not monitor the PDCCH or does not perform data transmission on the second carrier within the first time length.
  • the method according to the first embodiment is characterized in that it further includes: after the first time length has elapsed, the terminal device starts a second timer; or, when the first message is received The terminal device starts the second timer; wherein, during the operation of the second timer, the terminal device can perform at least one of monitoring PDCCH and transmitting data on the first carrier .
  • the first time length is greater than or equal to the state transition duration
  • the state transition duration is the time required for the terminal device to wake up from the dormant state .
  • the data and the first The time interval between messages is greater than or equal to the first time length.
  • the terminal device is configured with at least one sleep level
  • the method further includes: the terminal device receives the configuration information sent by the network device, and The configuration information is used to indicate at least one time length, the at least one time length includes the first time length, and each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • the terminal device is configured with multiple time lengths of the at least one time length and multiple sleep levels of the at least one sleep level
  • the method further includes: the terminal device determines the first time length from the multiple time lengths according to the current sleep level.
  • the method further includes: in the case that the terminal device is configured with a sleep level, the terminal device sends the network device to the network device.
  • the state transition duration corresponding to each sleep level in the level, and the state transition duration is the time required for the terminal device to wake up from the dormant state.
  • the first message includes physical downlink control information DCI.
  • the first message is used to instruct the terminal device to monitor PDCCH and transmit data on the second carrier At least one of them.
  • the preset condition includes: the first message includes indication information; or, the first message includes an indication field, and the indication field indicates The terminal device performs at least one of monitoring PDCCH and transmitting data on the second carrier; or, the timing of receiving the first message by the terminal device satisfies a preset rule.
  • the frequency range of the first carrier is below 6 GHz, and/or the frequency range of the second carrier is the millimeter wave frequency band.
  • a wireless communication method is provided, which is characterized by comprising: a network device sending a first message to a terminal device on a first carrier, the first message being used to instruct the terminal device to perform monitoring physical downlink control on a second carrier At least one of channel PDCCH and transmission data; in the case that the terminal device is in a dormant state on the second carrier, after a first period of time has elapsed, the network device performs routing on the second carrier The terminal device sends at least one of PDCCH and transmission data.
  • the first time length is greater than or equal to the state transition duration
  • the state transition duration is the time required for the terminal device to wake up from the dormant state .
  • the data and the first The time interval between messages is greater than or equal to the first time length.
  • the terminal device is configured with at least one sleep level
  • the method further includes: the network device sends configuration information to the terminal device, and the The configuration information is used to indicate at least one time length, the at least one time length includes the first time length, and each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • the method according to the second embodiment is characterized in that it further includes: in the case that the terminal device is configured with a sleep level, the network device receiving the one sleep level sent by the terminal device The state transition duration corresponding to the level; or, when the terminal device is configured with multiple sleep levels, the network device receives the multiple sleep levels and the multiple sleep levels sent by the terminal device.
  • the state transition duration corresponding to each sleep level in, the state transition duration is the time required for the terminal device to transition from the dormant state to the active state.
  • the first message includes physical downlink control information DCI.
  • the first message is used to instruct the terminal device to monitor PDCCH and transmit data on the second carrier when a preset condition is met At least one of them.
  • the preset condition includes: the first message includes indication information; or, the first message includes an indication field, and the indication field indicates The terminal device performs at least one of monitoring PDCCH and transmitting data on the second carrier; or, the timing of sending the first message by the network device satisfies a preset rule.
  • the frequency range of the first carrier is below 6 GHz, and/or the frequency range of the second carrier is the millimeter wave frequency band.
  • a wireless communication method is provided, which is characterized by comprising: a terminal device receiving a first message sent by a network device on a first carrier, and the first message is used to instruct the terminal device whether to enable the first message on a second carrier. Timer; the terminal device starts the first timer according to the first message, and during the operation of the first timer, the terminal device monitors the physical downlink control channel on the second carrier At least one of PDCCH and transmission data.
  • the terminal device starts the first timer according to the first message, including: when the first message includes indication information, The terminal device starts the first timer; or, the first message includes an indication field, and when the indication field indicates to start the first timer, the terminal device starts the first timer; or When the time when the terminal device receives the first message satisfies a preset rule, the terminal device starts the first timer.
  • the terminal device when the terminal device receives the first message, the terminal device is in a dormant state on the second carrier, The method further includes: starting from receiving the first message and after a first length of time has elapsed, the terminal device performs at least one of monitoring the physical downlink control channel PDCCH and transmitting data on the second carrier.
  • the method further includes: after the first time length has elapsed, the terminal device starts the first timer; or, after receiving the first timer When sending a message, the terminal device starts the first timer, wherein the terminal device does not monitor the PDCCH or does not perform data transmission on the second carrier within the first time length.
  • the method according to the third embodiment is characterized in that it further comprises: starting from receiving the first message and after the first length of time has elapsed, the terminal device starts a second timer; or , When receiving the first message, the terminal device starts the second timer; wherein, during the operation of the second timer, the terminal device can perform monitoring on the first carrier At least one of PDCCH and transmission data.
  • the first time length is greater than or equal to the state transition duration
  • the state transition duration is the time required for the terminal device to wake up from the dormant state .
  • the first message when the first message is also used to instruct the terminal device to transmit data on the second carrier, the data and the second carrier
  • the time interval between a message is greater than or equal to the first time length.
  • the terminal device is configured with at least one sleep level
  • the method further includes: the terminal device receives the configuration information sent by the network device, and The configuration information is used to indicate at least one time length, the at least one time length includes the first time length, and each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • the terminal device is configured with multiple time lengths of the at least one time length and multiple sleep levels of the at least one sleep level
  • the method further includes: the terminal device determines the first time length from the multiple time lengths according to the current sleep level.
  • the method further includes: in the case that the terminal device is configured with a sleep level, the terminal device sends the The state transition duration corresponding to one sleep level; or, when the terminal device is configured with multiple sleep levels, the terminal device sends the multiple sleep levels and the multiple sleep levels to the network device.
  • the state transition duration corresponding to each sleep level in the level, and the state transition duration is the time required for the terminal device to wake up from the dormant state.
  • the first message includes physical downlink control information DCI.
  • the frequency range of the first carrier is below 6 GHz, and/or the frequency range of the second carrier is the millimeter wave frequency band.
  • a wireless communication method which is characterized in that it includes: a network device sends a first message to a terminal device on a first carrier, the first message is used to indicate whether the terminal device starts a first timing on a second carrier Wherein, during the operation of the first timer, the terminal device can perform at least one of monitoring the physical downlink control channel PDCCH and transmitting data on the second carrier.
  • the first message instructs the terminal device to start the first timer on the second carrier when the following conditions are met:
  • the first message includes indication information; or, the first message includes an indication field, and the indication field instructs to start the first timer; or, the sending timing of the first message satisfies a preset rule.
  • the method according to the fourth embodiment is characterized in that, when the terminal device is in a dormant state, the method further includes: starting from sending the first message, and after a first length of time has elapsed, The network device performs at least one of sending a PDCCH and transmitting data to the terminal device on the second carrier.
  • the first time length is greater than or equal to the state transition duration
  • the state transition duration is the time required for the terminal device to wake up from the dormant state .
  • the terminal device is configured with at least one sleep level
  • the method further includes: the network device sends configuration information to the terminal device, the The configuration information is used to indicate at least one time length, the at least one time length includes the first time length, and each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • the method according to the fourth embodiment is characterized in that it further comprises: in the case that the terminal device is configured with a sleep level, the network device receiving the one sleep level sent by the terminal device The state transition duration corresponding to the level; or, when the terminal device is configured with multiple sleep levels, the network device receives the multiple sleep levels and the multiple sleep levels sent by the terminal device.
  • the state transition duration corresponding to each sleep level in, the state transition duration is the time required for the terminal device to transition from the sleep state to the active state.
  • the first message includes physical downlink control information DCI.
  • the frequency range of the first carrier is below 6 GHz, and/or the frequency range of the second carrier is the millimeter wave frequency band.
  • a terminal device which is characterized by comprising: a transceiver for receiving a first message sent by a network device on a first carrier, the first message being used for instructing the terminal device to perform monitoring on a second carrier At least one of the physical downlink control channel PDCCH and transmission data; a processor, configured to: when the terminal device is in a dormant state on the second carrier, after a first period of time has elapsed, perform the At least one of PDCCH monitoring and data transmission is performed on the carrier.
  • the processor is further configured to start a first timer after the first length of time has elapsed, wherein, at the first timing During the operation of the device, the terminal device can perform at least one of monitoring PDCCH and transmitting data on the second carrier; or, when receiving the first message, start the first timer, where The terminal device does not monitor the PDCCH or does not perform data transmission on the second carrier within the first time length.
  • the processor is further configured to start a second timer after the first length of time has elapsed; or, after receiving the first When sending a message, start the second timer; wherein, during the operation of the second timer, the terminal device can perform at least one of PDCCH monitoring and data transmission on the first carrier.
  • the first time length is greater than or equal to the state transition duration, and the state transition duration is required for the terminal device to wake up from the dormant state. time.
  • the terminal device is characterized in that when the first message is used to instruct the terminal device to transmit data on the second carrier, the data and the first carrier The time interval between a message is greater than or equal to the first time length.
  • the terminal device is configured with at least one sleep level
  • the transceiver is further configured to receive configuration information sent by the network device, and the The configuration information is used to indicate at least one time length, the at least one time length includes the first time length, and each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • the terminal device is characterized in that the terminal device is configured with multiple time lengths in the at least one time length and multiple sleep levels in the at least one sleep level
  • the processor is further configured to determine the first time length from the multiple time lengths according to the current sleep level.
  • the transceiver is further configured to send the one to the network device when the terminal device is configured with a sleep level.
  • the state transition duration corresponding to the sleep level or, in the case that the terminal device is configured with multiple sleep levels, send the multiple sleep levels and the corresponding sleep levels to each of the multiple sleep levels to the network device.
  • the state transition duration corresponding to the level, and the state transition duration is the time required for the terminal device to wake up from the dormant state.
  • the first message includes physical downlink control information DCI.
  • the terminal device is characterized in that, when a preset condition is met, the first message is used to instruct the terminal device to perform PDCCH monitoring and transmission on the second carrier At least one of the data.
  • the preset condition includes: the first message includes indication information; or, the first message includes an indication field, and the indication field Instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier; or, the timing of receiving the first message by the terminal device satisfies a preset rule.
  • the terminal device is characterized in that the frequency range of the first carrier is below 6 GHz, and/or the frequency range of the second carrier is the millimeter wave frequency band.
  • a network device which is characterized by comprising: a transceiver, configured to send a first message to a terminal device on a first carrier, and the first message is used to instruct the terminal device to perform monitoring on a second carrier. At least one of the downlink control channel PDCCH and transmission data; a processor, configured to: when the terminal device is in a dormant state on the second carrier, after a first period of time has elapsed, perform the operation on the second carrier The above is executed to send at least one of a PDCCH and transmission data to the terminal device.
  • the first time length is greater than or equal to the state transition duration, and the state transition duration is required for the terminal device to wake up from the dormant state. time.
  • the data and the second carrier when the first message is used to instruct the terminal device to transmit data on the second carrier, the data and the second carrier The time interval between a message is greater than or equal to the first time length.
  • the terminal device is configured with at least one sleep level
  • the transceiver is further configured to send configuration information to the terminal device, and the configuration The information is used to indicate at least one time length, the at least one time length includes the first time length, and each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • the transceiver is further configured to receive the terminal device sent by the terminal device when the terminal device is configured with a sleep level.
  • the state transition duration corresponding to one sleep level; or, in the case that the terminal device is configured with multiple sleep levels, receive the multiple sleep levels sent by the terminal device and each of the multiple sleep levels A state transition duration corresponding to a sleep level, where the state transition duration is the time required for the terminal device to transition from the dormant state to the active state.
  • the first message includes physical downlink control information DCI.
  • the network device is characterized in that, when a preset condition is met, the first message is used to instruct the terminal device to perform PDCCH monitoring and transmission on the second carrier At least one of the data.
  • the preset condition includes: the first message includes indication information; or, the first message includes an indication field, and the indication field Instruct the terminal device to perform at least one of PDCCH monitoring and data transmission on the second carrier; or, the timing of the network device to send the first message satisfies a preset rule.
  • the frequency range of the first carrier is below 6 GHz
  • the frequency range of the second carrier is the millimeter wave frequency band.
  • a terminal device which is characterized by comprising: a transceiver, configured to receive a first message sent by a network device on a first carrier, the first message being used to indicate whether the terminal device is turned on on a second carrier A first timer; a processor, configured to start the first timer according to the first message, and during the operation of the first timer, the terminal device performs monitoring physical on the second carrier At least one of the downlink control channel PDCCH and transmission data.
  • the processor is specifically configured to: when the first message includes indication information, start the first timer; or, the The first message includes an indication field, and when the indication field instructs to start the first timer, the first timer is started; or, when the time when the terminal device receives the first message satisfies a preset rule , Start the first timer.
  • the terminal device is characterized in that when the terminal device receives the first message, the terminal device is in a dormant state on the second carrier, The processor is further configured to perform at least one of monitoring the physical downlink control channel PDCCH and transmitting data on the second carrier after a first length of time has elapsed since receiving the first message.
  • the processor is specifically configured to start the first timer after the first length of time has elapsed; or, after receiving the For the first message, the first timer is started, wherein the terminal device does not monitor the PDCCH or does not perform data transmission on the second carrier within the first time length.
  • the processor is further configured to start a second timer after the first time period has elapsed since receiving the first message Or, when receiving the first message, start the second timer; wherein, during the operation of the second timer, the terminal device can perform monitoring PDCCH and monitoring on the first carrier At least one of the transmission data.
  • the first time length is greater than or equal to the state transition duration, and the state transition duration is required for the terminal device to wake up from the dormant state. time.
  • the terminal device is characterized in that, when the first message is also used to instruct the terminal device to transmit data on the second carrier, the data and the The time interval between the first messages is greater than or equal to the first time length.
  • the terminal device is configured with at least one sleep level
  • the transceiver is further configured to receive configuration information sent by the network device, and the The configuration information is used to indicate at least one time length, the at least one time length includes the first time length, and each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • the terminal device is characterized in that the terminal device is configured with multiple time lengths in the at least one time length and multiple sleep levels in the at least one sleep level
  • the processor is further configured to determine the first time length from the multiple time lengths according to the current sleep level.
  • the transceiver is further configured to send the one to the network device when the terminal device is configured with a sleep level.
  • the state transition duration corresponding to the sleep level or, in the case that the terminal device is configured with multiple sleep levels, send the multiple sleep levels and the corresponding sleep levels to each of the multiple sleep levels to the network device.
  • the state transition duration corresponding to the level, and the state transition duration is the time required for the terminal device to wake up from the dormant state.
  • the first message includes physical downlink control information DCI.
  • the terminal device is characterized in that the frequency range of the first carrier is below 6 GHz, and/or the frequency range of the second carrier is the millimeter wave frequency band.
  • a network device which is characterized by comprising: a transceiver for sending a first message to a terminal device on a first carrier, and the first message is used for instructing the terminal device whether to enable the second carrier on the second carrier A timer, wherein, during the operation of the first timer, the terminal device can perform at least one of monitoring the physical downlink control channel PDCCH and transmitting data on the second carrier.
  • the first message instructs the terminal device to start the first timer on the second carrier when the following conditions are met:
  • the first message includes indication information; or, the first message includes an indication field, and the indication field instructs to start the first timer; or, the sending timing of the first message satisfies a preset rule.
  • the network device further includes a processor, and when the terminal device is in a dormant state, the processor is configured to self-transmit the The first message starts, and after the first time length has elapsed, at least one of sending a PDCCH and transmitting data to the terminal device is performed on the second carrier.
  • the first time length is greater than or equal to the state transition duration, and the state transition duration is required for the terminal device to wake up from the dormant state. time.
  • the terminal device is configured with at least one sleep level
  • the transceiver is further configured to send configuration information to the terminal device, and the configuration The information is used to indicate at least one time length, the at least one time length includes the first time length, and each sleep level in the at least one sleep level corresponds to one of the at least one time length.
  • the transceiver is further configured to receive the terminal device sent by the terminal device when the terminal device is configured with a sleep level.
  • the first message includes physical downlink control information DCI.
  • the frequency range of the first carrier is below 6 GHz, and/or the frequency range of the second carrier is the millimeter wave frequency band.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请提供了一种无线通信方法、终端设备和网络设备。该方法包括:终端设备在第一载波上接收网络设备发送的第一消息,第一消息用于指示终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种;在终端设备在第二载波上处于休眠态的情况下,经过第一时间长度之后,终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种。上述技术方案中,终端设备可以在接收第一消息开始,经过第一时间长度后在第二载波上执行一定的行为,在该第一时间长度内,终端设备可以完成从休眠态唤醒的过程,这样在终端设备从休眠态中醒来的过程可以不监听PDCCH和/或传输数据,可以提高终端设备的通信质量。

Description

无线通信方法、终端设备和网络设备
本申请要求于2020年01月22日提交中国专利局、申请号为202010074661.4、申请名称为“无线通信方法、终端设备和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种无线通信方法、终端设备和网络设备。
背景技术
为节省终端设备的功耗,网络设备可以为处于无线资源控制(radio resource control,RRC)连接态的终端设备配置非连续接收(discontinuous reception,DRX)机制,使得终端设备在需要监听的时候能够从休眠态中唤醒而监听物理下行控制信道(physical downlink control channel,PDCCH),不需要监听的时候则进入休眠态。
载波聚合(component aggregation,CA)是将两个或更多的成员载波(component carrier,CC)聚合在一起以支持更大的传输带宽。
一般情况下,终端设备从休眠态中唤醒的过程是不能够有效地进行信令或者数据的传输的。而在载波聚合场景中,如果终端设备在一个载波上处于激活态,在另一个载波上处于休眠态时,终端设备在该另一个载波上有从休眠态中唤醒的需要。但在该过程中网络设备可能会对终端设备进行调度,则有可能出现终端设备在从休眠态中唤醒的过程不能有效传输信令或数据。
发明内容
本申请提供一种无线通信方法、终端设备和网络设备,能够提高终端设备的通信质量。
第一方面,提供一种无线通信方法,其特征在于,包括:终端设备在第一载波上接收网络设备发送的第一消息,所述第一消息用于指示所述终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种;在所述终端设备在所述第二载波上处于休眠态的情况下,经过第一时间长度之后,所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
本申请实施例中,终端设备在第一载波上接收到第一消息时,在第二载波上处于休眠态,自接收第一消息开始,经过第一时间长度后终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种。这样在终端设备从休眠态中醒来的过程可以不监听PDCCH和/或传输数据,能够避免终端设备在这个过程中可能监听不到网络设备发送给自己的PDCCH或者不能接收网络设备发送的数据,而不能做有效的数据收发,从而提高了终端设备的通信质量。
应理解,第一时间长度用于终端设备在第二载波上从休眠态中唤醒。
应理解,终端设备在第一时间长度之后执行的动作与第一消息指示的终端设备在第二载波上的动作是一致的。例如,第一消息指示终端设备在第二载波上监听PDCCH,则经过第一时间长度后终端设备在第二载波上监听PDCCH。又如,第一消息指示终端设备在第二载波上传输数据,则经过第一时间长度之后,终端设备在第二载波上进行传输数据。
还应理解,终端设备在第二载波上处于休眠态,可以理解为终端设备在第二载波上处于DRX周期中的休眠态。
结合第一方面,在一种可能的实现方式中,还包括:经过所述第一时间长度后,所述终端设备开启第一定时器,其中,在所述第一定时器的运行过程中,所述终端设备能够在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,在接收所述第一消息时,所述终端设备开启所述第一定时器,其中所述终端设备在所述第一时间长度内,在所述第二载波上不监听PDCCH或不进行数据传输。
可选地,当经过第一时间长度后,终端设备开启第一定时器,其中,在该第一定时器的运行过程中,终端设备能够在第二载波上执行监听PDCCH和传输数据中的至少一种。
也就是说,终端设备在第一定时器的运行过程中能够执行一定行为或动作,例如监听PDCCH和/或传输数据。这样,经过第一时间长度后,终端设备已经从休眠态中唤醒,此时终端设备开启第一定时器,终端设备已经处于激活态,终端设备能够在第一定时器的运行过程中监听PDCCH和/或传输数据,而在第一定时器运行期间之外完成从休眠态中唤醒,从而避免了终端设备在第一定时器运行过程中做准备醒来的过程而不能做有效的数据传输,可以提高终端设备在载波聚合场景下的通信质量。
可选地,在接收第一消息时终端设备开启第一定时器,终端设备在第一时间长度内,在第二载波上不监听PDCCH或不进行数据传输。
终端设备在接收第一消息时,开启第一定时器,在第一定时器运行过程中,终端设备在第二载波上可以执行一定的行为,例如监听PDCCH和/或传输数据,本申请实施例通过限制终端设备在第一时间长度内(即终端设备从休眠态中唤醒的过程中)的行为,可以避免终端设备在从休眠态唤醒的过程中进行PDCCH的监听和/或数据传输,可以提高终端设备在载波聚合场景下的通信质量。
结合第一方面,在一种可能的实现方式中,还包括:经过所述第一时间长度后,所述终端设备开启第二定时器;或者,在接收所述第一消息时,所述终端设备开启所述第二定时器;其中,在所述第二定时器的运行过程中,所述终端设备能够在所述第一载波上执行监听PDCCH和传输数据中的至少一种。
终端设备可以在接收第一消息时开启第二定时器,也可以在第一时间长度后开启第二定时器。也就是终端设备可以同时开启第一定时器和第二定时器,也可以不同时开启。当终端设备同时开启第一定时器和第二定时器时,第一定时器和第二定时器可以是同一个定时器。
结合第一方面,在一种可能的实现方式中,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
应理解,终端设备从休眠态中唤醒可以理解为终端设备从休眠态到能够有效执行一定动作或行为的过程,例如监听PDCCH和/或传输数据。具体地,当第一消息指示终端设备在第二载波上监听PDCCH时,终端设备从休眠态中唤醒的过程可以理解为终端设备从休 眠态到能够有效监听PDCCH的过程。当第一消息指示终端设备在第二载波上传输数据时,终端设备从休眠态中唤醒的过程可以理解为终端设备从休眠态到能够有效传输数据的过程。本申请实施例中,终端设备有效监听PDCCH或者有效传输数据可以理解为,终端设备已经完成了准备醒来warm up的过程,已打开硬件或者做完波束管理等过程,准备好传输信令或数据了。
结合第一方面,在一种可能的实现方式中,当所述第一消息用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
终端设备使用第一载波和第二载波可以实现跨载波调度,这时终端设备在第二载波上所传输的数据的位置与终端设备在第一载波上接收的第一消息(例如DCI)的位置之间的时间间隔应大于第一时间长度。这样可以保证终端设备在第一时间长度内完成从休眠态中唤醒的过程,在第一时间长度后可以正确传输数据,提高跨载波调度下的通信质量。
结合第一方面,在一种可能的实现方式中,所述终端设备配置有至少一个睡眠等级,所述方法还包括:所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于指示至少一个时间长度,所述至少一个时间长度包括所述第一时间长度,所述至少一个睡眠等级中的每个睡眠等级对应所述至少一个时间长度中的一个。
终端设备在不同的睡眠等级下,从休眠态中唤醒所需的时间可以是不同的。网络设备为终端设备配置至少一个时间长度,至少一个睡眠等级中的每个睡眠等级对应至少一个时间长度中的一个,这样,终端设备处于每个睡眠等级下时,可以在与睡眠等级相对应的时间长度内完成warm up,即完成从休眠态中唤醒。
结合第一方面,在一种可能的实现方式中,所述终端设备配置有所述至少一个时间长度中的多个时间长度和所述至少一个睡眠等级中的多个睡眠等级,所述方法还包括:所述终端设备根据当前睡眠等级,从所述多个时间长度中确定所述第一时间长度。
结合第一方面,在一种可能的实现方式中,所述方法还包括:在所述终端设备配置有一个睡眠等级的情况下,所述终端设备向所述网络设备发送所述一个睡眠等级相对应的状态转换时长;或者,在所述终端设备配置有多个睡眠等级的情况下,所述终端设备向所述网络设备发送所述多个睡眠等级和与所述多个睡眠等级中每个睡眠等级相对应的状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
当终端设备配置有一个睡眠等级的时候,终端设备从休眠态中唤醒所需的时间大致相同,因此,终端设备可以向网络设备上报终端设备从休眠态中唤醒所需的时间,即状态转换时长。当终端设备配置有多个睡眠等级的时候,终端设备处于不同的睡眠等级的时候,终端设备从休眠态中唤醒的时间可能是不同的,即终端设备处于不同的睡眠等级时,状态转换时长可能是不同的。因此,终端设备可以向网络设备上报终端设备的睡眠等级和状态转换时长的对应关系,以用于网络设备为终端设备配置与每个睡眠等级相对应的第一时间长度。
结合第一方面,在一种可能的实现方式中,所述第一消息包括物理下行控制信息DCI。
结合第一方面,在一种可能的实现方式中,当满足预设条件时,所述第一消息用于指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
结合第一方面,在一种可能的实现方式中,所述预设条件包括:所述第一消息包括指 示信息;或者,所述第一消息包括指示域,所述指示域指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,所述终端设备接收所述第一消息的时机满足预设规则。
这样终端设备可以不用每次在第一载波上接收到第一消息时都在第二载波上监听PDCCH和/或传输数据,从而节省终端设备在第二载波上的功耗。
结合第一方面,在一种可能的实现方式中,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
第二方面,提供一种无线通信方法,包括:网络设备在第一载波上向终端设备发送第一消息,所述第一消息用于指示所述终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种;在所述终端设备在所述第二载波上处于休眠态的情况下,经过第一时间长度之后,所述网络设备在所述第二载波上执行向所述终端设备发送PDCCH和传输数据中的至少一种。
本申请实施例中,网络设备在第一载波上发送第一消息时,终端设备在第二载波上处于休眠态,自接收第一消息开始,经过第一时间长度后网络设备在第二载波上执行向网络设备发送PDCCH和传输数据中的至少一种。这样在终端设备从休眠态中醒来的过程可以不监听PDCCH和/或传输数据,能够避免终端设备在这个过程中可能监听不到网络设备发送给自己的PDCCH或者不能接收网络设备发送的数据,而不能做有效的数据收发,从而提高了通信质量。
结合第二方面,在一种可能的实现方式中,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
结合第二方面,在一种可能的实现方式中,当所述第一消息用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
结合第二方面,在一种可能的实现方式中,所述终端设备配置有至少一个睡眠等级,所述方法还包括:所述网络设备向所述终端设备发送配置信息,所述配置信息用于指示至少一个时间长度,所述至少一个时间长度包括所述第一时间长度,所述至少一个睡眠等级中的每个睡眠等级对应所述至少一个时间长度中的一个。
结合第二方面,在一种可能的实现方式中,还包括:在所述终端设备配置有一个睡眠等级的情况下,所述网络设备接收所述终端设备发送的所述一个睡眠等级相对应的状态转换时长;或者,在所述终端设备配置有多个睡眠等级的情况下,所述网络设备接收所述终端设备发送的所述多个睡眠等级和与所述多个睡眠等级中每个睡眠等级相对应的状态转换时长,所述状态转换时长为所述终端设备从休眠态转换为激活态时所需的时间。
结合第二方面,在一种可能的实现方式中,所述第一消息包括物理下行控制信息DCI。
结合第二方面,在一种可能的实现方式中,当满足预设条件时,所述第一消息用于指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
结合第二方面,在一种可能的实现方式中,所述预设条件包括:所述第一消息包括指示信息;或者,所述第一消息包括指示域,所述指示域指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,所述网络设备发送所述第一消息的时机满足预设规则。
结合第二方面,在一种可能的实现方式中,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
第三方面,提供一种无线通信方法,包括:终端设备在第一载波上接收网络设备发送的第一消息,所述第一消息用于指示所述终端设备在第二载波上是否开启第一定时器;所述终端设备根据所述第一消息开启所述第一定时器,在所述第一定时器的运行过程中,所述终端设备在所述第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
本申请实施例中,终端设备在第一载波上接收第一消息,第一消息用于指示终端设备在第二载波上是否开启第一定时器,只有在第一消息用于指示终端设备在第二载波上开启第一定时器时终端设备才开启,这样可以不用每次在第一载波上接收到第一消息时都在第二载波上监听PDCCH和/或传输数据,从而节省终端设备在第二载波上的功耗。
结合第三方面,在一种可能的实现方式中,所述终端设备根据所述第一消息开启所述第一定时器,包括:当所述第一消息包括指示信息时,所述终端设备开启所述第一定时器;或者,所述第一消息包括指示域,当所述指示域指示开启所述第一定时器时,所述终端设备开启所述第一定时器;或者,当所述终端设备接收所述第一消息的时机满足预设规则时,所述终端设备开启所述第一定时器。
结合第三方面,在一种可能的实现方式中,在所述终端设备接收所述第一消息时,所述终端设备在所述第二载波上处于休眠态的情况下,所述方法还包括:自接收所述第一消息开始,经过第一时间长度之后,所述终端设备在所述第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
结合第三方面,在一种可能的实现方式中,还包括:经过所述第一时间长度后,所述终端设备开启所述第一定时器;或者,在接收所述第一消息时,所述终端设备开启所述第一定时器,其中,所述终端设备在所述第一时间长度内,在所述第二载波上不监听PDCCH或不进行数据传输。
结合第三方面,在一种可能的实现方式中,还包括:自接收所述第一消息开始,经过所述第一时间长度之后,所述终端设备开启第二定时器;或者,在接收所述第一消息时,所述终端设备开启所述第二定时器;其中,在所述第二定时器的运行过程中,所述终端设备能够在所述第一载波上执行监听PDCCH和传输数据中的至少一种。
结合第三方面,在一种可能的实现方式中,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
结合第三方面,在一种可能的实现方式中,当所述第一消息还用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
结合第三方面,在一种可能的实现方式中,所述终端设备配置有至少一个睡眠等级,所述方法还包括:所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于指示至少一个时间长度,所述至少一个时间长度包括所述第一时间长度,所述至少一个睡眠等级中的每个睡眠等级对应所述至少一个时间长度中的一个。
结合第三方面,在一种可能的实现方式中,所述终端设备配置有所述至少一个时间长度中的多个时间长度和所述至少一个睡眠等级中的多个睡眠等级,所述方法还包括:所述 终端设备根据当前睡眠等级,从所述多个时间长度中确定所述第一时间长度。
结合第三方面,在一种可能的实现方式中,所述方法还包括:在所述终端设备配置有一个睡眠等级的情况下,所述终端设备向所述网络设备发送所述一个睡眠等级相对应的状态转换时长;或者,在所述终端设备配置有多个睡眠等级的情况下,所述终端设备向所述网络设备发送所述多个睡眠等级和与所述多个睡眠等级中每个睡眠等级相对应的状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
结合第三方面,在一种可能的实现方式中,所述第一消息包括物理下行控制信息DCI。
结合第三方面,在一种可能的实现方式中,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
第四方面,提供一种网络通信方法,包括:网络设备在第一载波上向终端设备发送第一消息,所述第一消息用于指示所述终端设备在第二载波上是否开启第一定时器,其中,在所述第一定时器的运行过程中,所述终端设备能够在所述第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
网络设备通过在第一载波上发送的第一消息来指示终端设备是否在第二载波上监听PDCCH或传输数据,这样终端设备不用每次在第一载波上接收到第一消息时都在第二载波上监听PDCCH和/或传输数据,从而节省终端设备在第二载波上的功耗。
结合第四方面,在一种可能的实现方式中,当满足以下条件时,所述第一消息指示所述终端设备在所述第二载波上开启所述第一定时器:所述第一消息包括指示信息;或者,所述第一消息包括指示域,所述指示域指示开启所述第一定时器;或者,所述第一消息的发送时机满足预设规则。
结合第四方面,在一种可能的实现方式中,在所述终端设备处于休眠态的情况下,还包括:自发送所述第一消息开始,经过第一时间长度之后,所述网络设备在所述第二载波上执行向所述终端设备发送PDCCH和传输数据中的至少一种。
结合第四方面,在一种可能的实现方式中,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
结合第四方面,在一种可能的实现方式中,所述终端设备配置有至少一个睡眠等级,所述方法还包括:所述网络设备向所述终端设备发送配置信息,所述配置信息用于指示至少一个时间长度,所述至少一个时间长度包括所述第一时间长度,所述至少一个睡眠等级中的每个睡眠等级对应所述至少一个时间长度中的一个。
结合第四方面,在一种可能的实现方式中,还包括:在所述终端设备配置有一个睡眠等级的情况下,所述网络设备接收所述终端设备发送的所述一个睡眠等级相对应的状态转换时长;或者,在所述终端设备配置有多个睡眠等级的情况下,所述网络设备接收所述终端设备发送的所述多个睡眠等级和与所述多个睡眠等级中每个睡眠等级相对应的状态转换时长,所述状态转换时长为所述终端设备从休眠态转换为激活态时所需的时间。
结合第四方面,在一种可能的实现方式中,所述第一消息包括物理下行控制信息DCI。
结合第四方面,在一种可能的实现方式中,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
第五方面,提供一种终端设备,包括用于执行上述第一方面或第一方面中任一种可能实现方式中方法的模块或单元,或者包括用于执行上述第三方面或第三方面中任一种可能 实现方式中方法的模块或单元。该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
第六方面,提供一种网络设备,包括用于执行上述第二方面或第二方面中任一种可能实现方式中方法的模块或单元,或者包括用于执行上述第四方面或第四方面中任一种可能实现方式中方法的模块或单元。该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
第七方面,提供一种通信装置,所述通信装置包括:至少一个处理器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述通信装置执行上述第一方面或第一方面中任一种可能实现方式中的方法,或者使得所述通信装置执行上述上述第三方面或第三方面中任一种可能实现方式中的方法。
可选地,所述通信装置还可以包括存储器,所述存储器与所述处理器耦合,所述处理器用于实现上述第一方面或第一方面的任一种可能的实现方式中描述的方法,或者用于实现上述第三方面或第三方面的任一种可能的实现方式中描述的方法。示例性地,所述存储器用于存储指令和数据,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面或第一方面的任一种可能的实现方式中描述的方法,或者实现上述第三方面或第三方面的任一种可能的实现方式中描述的方法。
可选地,所述通信接口可以为收发器、电路、总线、模块、管脚或其它类型的通信接口。
可选地,第七方面的通信装置可以为终端设备,或者可以为用于终端设备的部件(例如芯片或者电路等)。其他通信装置可以为网络设备,或者可以为用于网络设备的部件(例如芯片或者电路等)。
第八方面,提供一种通信装置,所述通信装置包括:至少一个处理器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述通信装置执行上述第二方面或第二方面中任一种可能实现方式中的方法,或者使得所述通信装置执行上述上述第四方面或第四方面中任一种可能实现方式中的方法。
可选地,所述通信装置还可以包括存储器,所述存储器与所述处理器耦合,所述处理器用于实现上述第二方面或第二方面的任一种可能的实现方式中描述的方法,或者用于实现上述第四方面或第四方面的任一种可能的实现方式中描述的方法。示例性地,所述存储器用于存储指令和数据,所述处理器执行所述存储器中存储的指令时,可以实现上述第二方面或第二方面的任一种可能的实现方式中描述的方法,或者实现上述第四方面或第四方面的任一种可能的实现方式中描述的方法。
可选地,所述通信接口可以为收发器、电路、总线、模块、管脚或其它类型的通信接口。
可选地,第八方面的通信装置可以为网络设备,或者可以为用于网络设备的部件(例如芯片或者电路等)。其他通信装置可以为终端设备,或者可以为用于终端设备的部件(例如芯片或者电路等)。
第九方面,提供了一种芯片系统,该芯片系统包括处理器,用于终端设备实现上述第 一方面或第一方面的任一种可能的实现方式中所涉及的功能,或者用于终端设备实现上述第三方面或第三方面的任一种可能的实现方式中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,提供了一种芯片系统,该芯片系统包括处理器,用于网络设备实现上述第二方面或第二方面的任一种可能的实现方式中所涉及的功能,或者用于终端设备实现上述第四方面或第四方面的任一种可能的实现方式中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或第一方面的任一种可能的实现方式所述的方法,或者使得计算机执行上述第三方面或第三方面的任一种可能的实现方式所述的方法。
第十二方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第二方面或第二方面的任一种可能的实现方式所述的方法,或者使得计算机执行上述第四方面或第四方面的任一种可能的实现方式所述的方法。
第十三方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式所述的方法,或者使得计算机执行上述第三方面或第三方面的任一种可能的实现方式所述的方法。
第十四方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第二方面或第二方面的任一种可能的实现方式所述的方法,或者使得计算机执行上述第四方面或第四方面的任一种可能的实现方式所述的方法。
第十五方面,提供一种通信系统,包括上述第五方面描述的终端设备和第六方面描述网络设备;或者该通信系统包括上述第七方面描述的通信装置和第八方面描述的通信装置。
附图说明
图1是本申请实施例的应用场景的示意图;
图2是本申请实施例中在DRX模式下终端设备的状态示意图;
图3是载波聚合场景中成员载波的DRX周期配置的示意图;
图4是载波聚合场景中成员载波的DRX周期配置的示意图;
图5是载波聚合场景中成员载波的DRX周期中定时器配置的示意图;
图6是终端设备状态转换时的示意图;
图7是现有技术中终端设备的DRX周期中定时器配置的示意图;
图8是本申请实施例提供的一种无线通信方法的示意性流程图;
图9是本申请实施例提供的另一种无线通信方法的示意性流程图;
图10是本申请一个实施例提供的无线通信方法中终端设备的状态示意图;
图11是本申请一个实施例提供的无线通信方法中终端设备的状态示意图;
图12是本申请另一个实施例提供的无线通信方法中终端设备的状态示意图;
图13是本申请另一个实施例提供的无线通信方法中终端设备的状态示意图;
图14是本申请又一个实施例提供的无线通信方法中终端设备的状态示意图;
图15是本申请再一个实施例提供的无线通信方法中终端设备的状态示意图;
图16是本申请再一个实施例提供的无线通信方法中终端设备的状态示意图;
图17是本申请再一个实施例提供的无线通信方法中终端设备的状态示意图;
图18是本申请一个实施例提供的终端设备的示意性结构图;
图19是本申请一个实施例提供的通信装置的示意性结构图;
图20是本申请另一个实施例提供的网络设备的示意性结构图;
图21是本申请另一个实施例提供的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,包括但不限于长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th-generation,5G)移动通信系统(也称新空口(new radio,NR)系统)、窄带物联网(narrow band internet of things,NB-IoT)系统、增强型机器类型通信(enhanced machine-type communication,eMTC)系统或LTE-机器到机器(LTE-machine-to-machine,LTE-M)系统以及未来的第六代移动通信系统等。
本申请实施例的技术方案可以应用于通信设备间的无线通信。通信设备间可以利用空口资源进行无线通信。其中,通信设备可以包括网络设备和终端设备,网络设备还可以称为网络侧设备,终端设备还可以称为用户设备(user equipment,UE)。空口资源可以包括时域资源、频域资源、码资源和空间资源中至少一个。在本申请实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。需要说明的是,在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信号传输”、“信息传输”或“传输”等。在本申请实施例中,传输可以包括发送或接收。示例性地,传输可以是上行传输,例如可以是终端设备向网络设备发送信号;传输也可以是下行传输,例如可以是网络设备向终端设备发送信号。
为方便理解,下面首先介绍本申请中涉及的相关概念。
物理下行控制信道(physical downlink control channel,PDCCH):用于承载调度以及其他控制信息,具体可以包括公共控制信息和用户专属信息,其中公共控制信息包括系统信息的调度信息、寻呼(paging)信息的调度信息等,用户专属信息包括下行资源分配指示、上行调度许可(uplink grant,UL grant)、上行功率控制参数以及上行重传信息等。基于上述用途,设计了多种下行控制信息(downlink control information,DCI)格式。不同的DCI格式可以用于指示不同的控制信息,例如用于调度数据(包括终端设备上行数据 和终端设备下行数据)的DCI、用于指示时隙格式的DCI、用于指示中断传输(interrupted transmission)的DCI等。下行控制信息DCI承载于物理下行控制信道PDCCH上。
空闲态(IDLE态):当终端设备在某个小区完成了驻留之后,可以称该终端设备进入了“空闲态”或“IDLE态”,处于空闲态的终端设备的无线资源控制(radio resource control,RRC)连接未建立,因此该终端设备可称为处于RRC空闲态的终端设备。
连接态(CONNECTED态):如果该终端设备后续又完成了随机接入过程,并和网络(网络设备)之间建立了RRC连接,可以称该终端设备进入了“连接态”或“CONNECTED态”,处于连接态的终端设备其RRC连接建立,因此该终端设备可称为处于RRC连接态的终端设备。
非连续接收(discontinuous reception,DRX)机制:定义在物理层媒体访问控制(media access control,MAC),主要为节省终端设备的功耗引入。具体而言,DRX机制可以让终端设备在某些时候(可定义为休眠时间或非激活时间(inactive time)进入休眠态,不去监听或接收PDCCH,而需要监听的时候(可定义为激活时间(active time)),则从睡眠状态中唤醒(wake up)而转为激活态,终端设备在激活态时需要监听并接收PDCCH。这样一来,终端设备不用一直监听PDCCH,从而可以降低终端设备功耗。
例如,对于NR来说,连接状态的DRX(connected DRX,C-DRX)机制休眠时间内,终端设备可以基于实现选择关闭射频收发器(或接收机)和基带处理器等通信器件以降低功耗,或者虽然打开了射频器件,但是只做一些功耗较低的监听检测过程,例如监听一些终端设备必须监听的消息如寻呼消息、广播消息、系统消息等。处于休眠态的终端设备不需要监听小区无线网络临时标识(cell radio network temporary identity,C-RNTI)、配置调度无线网络临时标识(configured scheduling RNTI,CS-RNTI)、中断RNTI(interruption RNTI,INT-RNTI)、时隙格式指示RNTI(slot format indicator-RNTI,SFI-RNTI)、半持续信道状态指示RNTI(semi-persistent channel state information RNTI,SP-CSI-RNTI)、物理上行链路控制信道(physical uplink control channel,PUCCH)发射功率控制RNTI(transmit power control PUCCH RNTI,TPC-PUCCH-RNTI)、物理上行共享信道(physical uplink shared channel,PUSCH)发射功率控制RNTI(transmit power control PUSCH RNTI,TPC-PUSCH-RNTI)和探测参考信号(sounding reference signal,SRS)发射功率控制RNTI(transmit power control RNTI,TPC-SRS-RNTI)加扰的DCI,而在激活时间则需要监听这些RNTI加扰的DCI。对于NR系统,系统消息RNTI(system information RNTI,SI-RNTI)、寻呼RNTI(paging RNTI,P-RNTI)、随机接入RNRI(random access RNTI,RA-RNTI)和临时小区无线网络临时标识(temporary cell radio network temporary identity,TC-RNTI)加扰的DCI的发送不受C-DRX机制的影响。
需要说明的是,处于休眠时间的终端设备,只是不接收PDCCH中的一类DCI例如用于调度新传(new transmission)数据的DCI等,但是可以接收PDCCH中的其他不受终端设备是否处于激活时间影响的DCI以及接收来自其他物理信道的数据例如物理下行共享信道(physical downlink shared channel,PDSCH)、确认(acknowledgment,ACK)消息、否定应答(negative-acknowledgment,NACK)等。为方便说明,本申请实施例中终端设备接收(或不接收)DCI可以理解为终端设备接收(或不接收)特定类型的DCI,或者终端设备监听(或不监听)PDCCH可以理解为终端设备监听(或不监听)承载有特定类型 的DCI的PDCCH。
按照终端设备所处的状态,如果配置了DRX机制,DRX机制可以分为空闲状态DRX(idle-DRX)和连接状态DRX(connected-DRX,C-DRX),本申请实施例主要讨论连接状态的DXR机制,且不受DRX机制影响的PDCCH或DCI不在本申请的讨论范围之内。为方便说明,本申请实施例中的DRX机制可以理解为是连接状态的DRX机制。
非连续接收周期(discontinuous reception cycle,DRX cycle):也称DRX周期,是DRX状态下的基本时间单位,终端设备在一个DRX周期内的状态包括休眠态和激活态,下面将结合附图进行介绍,在此暂不详述。网络设备可以为处于RRC连接态的终端设备配置一个DRX周期,其中DRX周期可以是长的DRX周期(简称长DRX周期),也可以是短的DRX周期(简称短DRX周期)。网络设备也可以为终端设备配置两个DRX周期,例如长DRX周期和短DRX周期。也就是说,网络设备可以为终端设备配置长DRX周期和短DRX周期中的至少一个,例如长的DRX周期可以是默认必须配置的,短的DRX周期可以是可选配置的。终端设备可以从短DRX周期转换为长DRX周期。应理解,短DRX周期与长DRX周期是相对而言的,当网络设备最多能给终端设备配置两种类型的DRX周期时,则周期较长的DRX周期可以称为长DRX周期,周期较短的DRX周期可以称为短DRX周期。在一些其他实施例中,根据实际需要网络设备也能够为终端设备配置至少三种类型的DRX周期,这样该至少三种类型的DRX周期的周期长度是不同的。例如在上述长DRX周期和短DRX周期基础上,网络设备还可以为终端设备配置其他周期长的DRX周期,本申请实施例不做具体限定。还应理解,当网络设备给终端设备配置了一种DRX周期时,由于只有一种类型的DRX周期,因此不论网络设备给终端设备配置的是长DRX周期还是短DRX周期或者是其他周期长的DRX周期,本申请实施例中都统称为DRX周期。
载波聚合(component aggregation,CA):是将2个或更多的成员载波(component carrier,CC)聚合在一起以支持更大的传输带宽,例如每个成员载波的最大带宽为20MHz时,载波聚合后可以实现最大100MHz的传输带宽,有效地提高了上下行传输速率。终端设备可以根据自己的能力大小决定最多可以同时利用几个成员载波进行上下行传输。本申请中“成员载波”可以简称为“载波”。
载波聚合中,多个成员载波中包括一个主成员载波(primary component carrier,PCC),即主载波,和一个或多个辅成员载波(secondary component carrier,SCC),即辅载波。终端设备接入网络后,终端设备在一个网络设备例如基站下将一直保持主载波上的通信,同时网络设备可以根据业务情况添加一个或多个辅载波。
每个成员载波对应一个独立的小区(cell),在载波聚合场景有以下几种类型的小区。
主小区(primary cell,PCell),主小区是工作在主载波上的小区。终端设备在该小区进行初始连接建立过程,或开始连接重建立过程,或在切换过程中该小区被指示为主小区。当终端设备从原网络设备切换到目标网络设备后,终端设备在目标网络设备下主载波与原网络设备下的主载波可能相同,可能不同。
辅小区(secondary cell,SCell),辅小区是工作在辅载波上的小区。一旦无线资源控制(radio resource control,RRC)连接建立,辅小区就可能被配置以提供额外的无线资源。PCell和SCell是针对CA用户的用户级概念,用户初始接入的载波就是该CA用户的PCell。
服务小区(serving cell)集合,处于无线资源控制连接态的终端设备,如果没有配置CA,则只有一个服务小区,即PCell;如果配置了CA,则服务小区集合由PCell和所有SCell组成。服务小区可指代主小区PCell,也可以指代辅小区SCell。
图1示出了本申请实施例的应用场景的示意图。如图1所示,该应用场景中可以包括网络设备110和终端设备120。
网络设备110可以是用于与终端设备120通信的设备,例如网络设备110可以是用于将终端设备120接入无线接入网络(radio access network,RAN)的基站。基站有时也可称为接入网设备或接入网节点。可以理解的是,采用不同无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。为方便描述,本申请实施例将为终端设备提供无线通信接入功能的装置统称为基站。示例性的,网络设备110可以是长期演进(long term evolution,LTE)中的演进型节点B(evolved node B,eNB),可以是第五代移动通信(the fifth generation,5G)系统中的下一代基站节点(next generation node basestation,gNB),也可以是传输接收点(transmission and reception point,TRP),或者是未来6G网络中的网络设备等。网络设备110可以有多种形式,比如宏基站、微基站、中继站和接入点等。一个网络设备110的覆盖范围内可以包括一个小区,也可以包括多个小区。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。在本申请实施例的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
终端设备120,可以经接入网设备与一个或多个核心网(core network,CN)进行通信。终端设备120可以是一种具有无线收发功能的设备,可以被部署在陆地上,包括室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备120也可以称为用户设备(User Equipment,UE)、接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线网络设备、用户代理或用户装置。终端设备120可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话(smart phone)、无线本地环路(wireless localloop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、无人机设备或物联网、车联网中的终端以及未来网络中的任意形态的终端、中继用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,本申请实施例对此并不限定。示例性的,终端设备120可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的终端设备、无人驾驶中的终端设备、远程医疗中的终端设备、智能电网中的终端设备、智慧城市(smart city)中的终端设备、智慧家庭(smart home)中的终端设备等等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统。芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例的技术方案中,以用于实现终端设备的功能的装置是终端设备,以终端设备是UE为例,描述本申请实施例提供的技术方案。
网络设备110与终端设备120可以通过二者之间的传输链路进行上下行信号的传输,其中,网络设备110到终端设备120的传输链路可以称为下行链路(downlink),终端设 备120到网络设备110的传输链路可以称为上行链路(uplink)。如图1所示,网络设备110与终端设备120之间可以通过载波130进行上下行传输。
对于支持载波聚合的终端设备120来说,可以通过以下两种方式进行信号传输。
一种是终端设备120未打开载波聚合功能,终端设备120只能接入某一个载波,在该载波上进行通信,其传输速率受到单载波带宽的约束。例如,终端设备120可以接入图1中所示的载波131或载波132或其他的单独的载波,然后在接入的单载波上进行数据传输等。
另外一种是终端设备120打开载波聚合功能,终端设备120可以同时接入两个或者更多的载波,并同时在这两个或更多载波上进行通信,数据传输速率可以大大提高。例如,终端设备120可以同时接入图1所示的载波131和132,或者同时接入图1所示的载波131、132和133,然后同时利用其接入的多个载波上的资源进行数据传输,以实现资源利用率的最大化。
终端设备120的服务小区140可以包括多个小区,其中一个小区为主小区,其他小区为辅小区,每个小区对应一个成员载波。例如图1所示,服务小区140包括小区141、小区142和小区143,可以分别对应载波131、载波132和载波133。需要说明的是,上述对终端设备120的服务小区、主小区、辅小区的说明仅作为一个示例,在具体实现中,服务小区还可以包括更多或更少的小区,每个成员载波对应的小区的位置、覆盖范围也可以不同,本申请对此并不限定。终端设备聚合的成员载波的个数,本申请也不做任何限定。
为了更高效的利用零碎的载波频谱,载波聚合支持不同载波之间的聚合。例如可以将同频带内的多个载波聚合,使一个用户可以在同频带的多个载波进行数据传输,其中同频带内的载波聚合还可以分为连续的和非连续的载波聚合。又如可以将不同频带的多个载波聚合,使一个用户在不同频带的多个载波进行数据传输。再如还可以将相同或不同带宽的多个载波聚合。以5G通信系统为例,5G频谱可以分为两个频率范围(frequency range,FR),分别是FR1和FR2,其中FR1即6GHz以下(Sub-6G)频段,如频率范围为450MHz到6GHz,FR2即毫米波(millimeter wave,mmW)频段,如频率范围为24GHz到52GHz。因此,在5G中,终端设备可以聚合FR1内的多个载波,可以聚合FR2内的多个载波,也可以聚合至少一个FR1载波和至少一个FR2载波。
在本申请实施例中,将终端设备聚合的每个载波称为成员载波(component carrier,CC),在一些实施例中也可以简称为载波。将配置了载波聚合的终端设备称为载波聚合终端设备,在其他实施例中,还可以称为CA终端设备、CA用户。应理解,本申请实施例的应用场景为终端设备进行载波聚合的场景。
当网络设备110和终端设备120之间有数据需要传输时,终端设备120会监听下行链路发送的物理下行控制信道PDCCH,并根据网络设备110发送的指示消息对数据进行收发。由于终端设备120不会总是执行上传或者下载业务,大多数的时间,终端设备120和网络设备110是没有数据交互的,如果这个时候终端设备120还去持续的监听PDCCH,显然是很费电的。因而,在保证数据能有效传输的前提下,可以为连接态的终端设备配置非连续接收(discontinuous reception,DRX)周期,使终端设备仅在必要的时间段打开接收机(例如天线)进入激活态来监听PDCCH,而在剩余时间关闭接收机进入休眠态,不监听PDCCH。
图2示出了DRX机制下终端设备的状态示意图。
如图2中(a)所示,一个DRX周期包括持续时间(on duration或on Duration)部分和休眠时间(opportunity for DRX)部分。终端设备需要在“on Duration”时间内唤醒并监听PDCCH,在该段时间内终端设备处于激活态。在“opportunity for DRX”时间内终端设备可以不监听或不接收PDCCH以减少功耗,在该段时间内终端设备处于休眠态。
在RRC连接态下的DRX机制是采用定时器与DRX周期结合的工作方式。如图2中(b)所示,在每个DRX周期的开始,即每个DRX周期的on Duration的开始,终端设备需要开启持续时间定时器(on duration timer,onDurationTimer),并在onDurationTimer运行时间(即onDurationTimer的工作时段)内监听并接收PDCCH。如果在onDurationTimer运行时间内没有检测到发送给自己的PDCCH,onDurationTimer超时(参考图2中的(b)中所示的第一个C-DRX周期),表示“on Duration”时间结束,此时终端设备进入“opportunity for DRX”时间此时终端设备处于休眠态。DRX周期包括on duration,在该段时间内终端设备需要持续监听PDCCH,其中持续时间定时器onDurationTimer即是用于监控on duration时间段的定时器。onDurationTimer在每个DRX周期开始的时候启动,onDurationTimer计时的时长超过预设值,则on duration结束,终端设备进入休眠时间。
如果终端设备在onDurationTimer运行时间内接收到发送给自己的指示初传(new transmission)的PDCCH(参考图2中的(b)中所示的第二个C-DRX周期),也就是说终端设备很有可能在接下来的时间内继续被网络设备调度,因此终端设备需要开启非激活定时器(inactivity timer,InactivityTimer),在InactivityTimer运行时间内终端设备需要监听并接收PDCCH。接下来若终端设备在onDurationTimer和InactivityTimer运行时间内没有接收到发送给自己的PDCCH并且InactivityTimer超时,则终端设备会再次进入“opportunity for DRX”时间。若终端设备在onDurationTimer和InactivityTimer运行时间内接收到发送给自己的PDCCH以调度新的数据传输,终端设备会重启InactivityTimer,并继续监听PDCCH,直到终端设备没有接收到发送给自己的PDCCH且InactivityTimer超时,则终端设备会再次进入“opportunity for DRX”时间。经过一段时间后当前DRX周期结束,终端设备进入下一个DRX周期。终端设备接收到发送自己的DCI时,在接下来的一段时间内需要持续监听PDCCH,其中非激活定时器InactivityTimer即是用于监控终端设备在接收到DCI后的一段需要持续监听PDCCH的时间段的定时器。InactivityTimer在接收到DCI时被启动或重启,InactivityTimer计时的时长超过预设值,则终端设备停止监听PDCCH并进入休眠时间。
上述InactivityTimer的开启或重启针对的是终端设备有初传数据被调度,在一些实施例中,网络设备可能调度终端设备的重传,因此DRX机制还包括重传定时器(retransmission timer,RetransmissionTimer),在RetransmissionTimer运行时间内终端设备需要监听并接收PDCCH。RetransmissionTimer具体可以分为上行重传定时器(uplink retransmission timer,RetransmissionTimerUL)和上行重传定时器(downlink retransmission timer,RetransmissionTimerDL)。应理解,本申请实施例中,终端设备开启定时器(例如onDurationTimer、InactivityTimer或RetransmissionTimer中的一个或多个),在定时器(例如onDurationTimer、InactivityTimer或RetransmissionTimer中的一个或多个)运行的时间内,网络设备认为终端设备进入激活时间,在激活时间内终端设备处于激活态,即终端设 备需要监听PDCCH。换句话说,终端设备开启定时器,定时器的运行时间可以认为是终端设备的激活时间,在激活时间内终端设备处于激活态,这样终端设备在激活态需要监听PDCCH也可以理解终端设备在激活时间内需要监听PDCCH。相应地,终端设备没有开启定时器时间即是定时器的非运行时间,定时器的非运行时间可以认为是终端设备的休眠时间,在休眠时间内终端设备处于休眠态,这样终端设备在休眠态不需要监听PDCCH也可以理解为终端设备在休眠时间内不需要监听PDCCH。
网络设备可以为终端设备配置长的DRX周期。可选地,网络设备还可以为终端设备配置短的DRX周期。终端设备会在使用短的DRX周期的时候开启短周期定时器(short cycle timer,ShortCycleTimer),ShortCycleTimer的单位为短的DRX周期的个数,用于控制使用短DRX周期的时长。例如当ShortCycleTimer超时则隐式转换为长的DRX周期。当然,在一些其他实施例中,网络设备还可以为终端设备配置其他时长的DRX周期,相应地,终端设备可以包括用于控制其他时长的DRX周期的定时器,本申请实施例对此不做限定。
因此,综上可知,配置了DRX周期的终端设备需要在onDurationTimer、InactivityTimer以及RetransmissionTimerUL、RetransmissionTimerDL等定时器的运行过程中(或者称运行时间内)监听并接收PDCCH,该时间可以称为DRX的“激活时间”(active time),在激活时间内,终端设备需要醒来准备接收信令和数据。也就是说,激活时间为终端设备持续监听PDCCH的时间段,具体可包括例如onDurationTimer的运行时间(即持续时间)、InactivityTimer的运行时间(即非激活时间)、RetransmissionTimer的运行时间(即重传时间)等。换句话说,DRX机制中所配置的各种定时器可以用于控制当终端设备在某时间段内处于激活态时的时长。
而不在上述定时器的运行期间,终端设备可以进入睡眠状态,不用监听并接收PDCCH,该时间可以称为DRX的休眠时间。终端设备在DRX“激活时间”的功耗高于在DRX“休眠时间”的功耗,终端设备主要依靠在休眠时间不监听PDCCH或不传输数据来达到节省功耗的目的,在休眠时间终端设备基于实现可以选择关闭射频发送接收机以及关闭基带处理芯片和内存,或者只保留晶振时钟等。应理解,在DRX机制之外的另一些功能中,可能限定某些情况下终端设备需要处于“激活时间”或“休眠时间”,这与DRX机制并不冲突、而是取并集的关系,因此终端设备最终实际处于“激活时间”还是“休眠时间”还需要从终端设备的各个功能整体地确定。
在载波聚合场景中,终端设备所聚合的载波可以均配置有DRX周期,其中各个成员载波对应的DRX的定时器时长可以相同,也可以不同。例如各个成员载波配置的onDurationTimer值可以相同,可以不同;各个成员载波配置的InactivityTimer值可以相同,可以不同;各个成员载波配置的ShortCycleTimer值可以相同,可以不同。以5G通信系统为例,一般FR1频段内的各个载波所配置的对应的定时器的值是相同的,例如FR1频段内的各个载波所配置的onDurationTimer值相同,InactivityTimer值相同,ShortCycleTimer值相同。FR2频段内的各个载波所配置的对应的定时器的值是相同的,例如FR2频段内的各个载波所配置的onDurationTimer值相同,InactivityTimer值相同,ShortCycleTimer值相同。但FR1频段内的载波与FR2频段内的载波所配置的对应的定时器的值可以是不同的,例如终端设备聚合的第一载波属于FR1频段,终端设备聚合的第二载波属于FR2载波, 则第一载波与第二载波所配置的onDurationTimer值不同,或者InactivityTimer值不同,或者ShortCycleTimer值不同,或者上述定时器的值均不同。下面将结合图3和图4进行详细介绍。应理解,上述定时器的值可以理解为定时器的运行时间。
图3和图4示出了载波聚合场景中成员载波的DRX周期配置的示意图。如图3和图4所示,为方便理解,图中示例性示出了两个成员载波,分别为第一成员载波(即第一CC,也可称为第一载波)和第二成员载波(即第二CC,也可称为第二载波),同时示例性示出了成员载波上定时器的时长配置。图中仅以载波上配置onDurationTimer和InactivityTimer为例,在本申请其他实施例中,载波上可以配置有其他类型的定时器,本申请实施例不做限定。
参考图3,以第一CC和第二CC配置有持续时间定时器(onDurationTimer)和非激活定时器(InactivityTimer)为例,其中实线框表示onDurationTimer的运行时间,虚线框表示InactivityTimer的运行时间。从图中可以看出,第一CC和第二CC上配置的onDurationTimer的值不同,其中第一CC对应的onDurationTimer值大于第二CC对应的onDurationTimer值;第一CC和第二CC上配置的InactivityTimer的值不同,其中第一CC对应的InactivityTimer值大于第二CC对应的InactivityTimer值。在一些其他实施例中,第一CC对应的onDurationTimer值如图所示为大于第二CC对应的onDurationTimer值,而第一CC对应的InactivityTimer值可以等于或小于第二CC对应的InactivityTimer值,本申请实施例不做限定。应理解,onDurationTimer值即onDurationTimer的运行时间或定时时长,InactivityTimer值即InactivityTimer的运行时间或定时时长。
参考图4,以第一CC和第二CC配置有持续时间定时器(onDurationTimer)和短周期定时器(ShortCycleTimer)为例,其中实线框表示onDurationTimer的运行时间。从图中可以看出,第一CC和第二CC上配置的onDurationTimer的值不同,其中第一CC对应的onDurationTimer值大于第二CC对应的onDurationTimer值;第一CC和第二CC上配置的ShortCycleTimer值不同,其中第一CC对应的ShortCycleTimer值大于第二CC对应的ShortCycleTimer值。如图中所示,第一CC上配置的ShortCycleTimer值为大于或等于6个短CDRX周期,第二CC上配置的ShortCycleTimer值为2个短CDRX周期。当ShortCycleTimer超时后,终端设备在第二CC上由短CDRX周期转为长CDRX周期。这样当终端设备在第二CC上的激活态功耗高于在第一CC上的激活态的功耗时,通过缩短ShortCycleTimer的值,可以使终端设备在第二CC上更多时间处于休眠态,从而节省终端设备在第二CC上的功耗。由于终端设备聚合第一CC和第二CC进行通信,为保证通信质量和方便管理,本申请实施例中,第一CC和第二CC所配置的短DRX周期时长的值可以是相同的,只是相应的短周期定时器的值不同。
应理解,本申请实施例中的终端设备配置有DRX周期,终端设备能够聚合的载波不限于两个成员载波,还可以包括三个、四个或者更多的成员载波,本申请实施例不做限定。在终端设备聚合的多个成员载波中,至少两个成员载波的上所配置的定时器中至少一个相应的定时器的运行时长不同,为方便理解,本申请实施例仅以持续时间定时器、非激活定时器和短周期定时器为例进行说明。
在载波聚合场景中,若终端设备所聚合的成员载波均配置DRX周期时,各个成员载波上配置的相应的定时器的开启的时间位置相同,例如各个成员载波所配置的持续时间定 时器(onDurationTimer)开启的时间位置相同,各个成员载波所配置的非激活定时器(InactivityTimer)开启的时间位置相同等。这样,如果各个成员载波配置的定时器的运行时长也相同,则终端设备在各个成员载波上所处的状态是相同的,例如终端设备在各个成员载波上均处于激活态或者均处于休眠态。但如果成员载波配置的定时器的运行时长不完全相同,例如部分成员载波配置的定时器的运行时长大于另一部分成员载波配置的相应定时器的运行时长,这样终端设备可能在部分成员载波上处于激活态时,在另一部分成员载波上处于休眠态。
图5示出了载波聚合场景中成员载波的DRX周期中定时器配置的示意图。如图5所示,以第一CC和第二CC配置持续时间定时器(onDurationTimer)和非激活定时器(InactivityTimer)为例进行说明。第一CC对应的onDurationTimer和第二CC对应的onDurationTimer开启的时间位置相同,但运行时长不同,终端设备在onDurationTimer运行期间处于激活态。第一CC对应的InactivityTimer和第二CC对应的InactivityTimer开启的时间位置相同,但运行时长不同,终端设备在InactivityTimer运行期间处于激活态。终端设备在onDurationTimer和InactivityTimer的非运行时间内处于休眠态,这段时间为终端设备的休眠时间,图中仅示例性的标注了终端设备在第二CC上的休眠时间。当终端设备在激活态时可以与网络设备进行通信,例如接收网络设备发送的消息或者向网络设备发送消息,或者与网络设备进行数据传输等。换句话说,网络设备能够获知终端设备是否开始定时器、何时开始定时器以及定时器的运行时长,在定时器运行时间内,网络设备认为终端设备进入激活时间,也即认为终端设备处于激活态,因而网络设备可以对终端设备进行调度。如果第一CC和第二CC对应的onDurationTimer运行时长相同,则当终端设备在第一CC对应的onDurationTimer运行期间接收到第一消息例如DCI时,终端设备将开启第一CC对应的InactivityTimer和第二CC对应的InactivityTimer,此时终端设备在第一CC和第二CC上均处于激活态。但如果第一CC和第二CC的onDurationTimer运行时长不同,如图5中位置①和位置②处所示,则当终端设备在第一CC对应的onDurationTimer运行期间接收到第一消息例如DCI时,终端设备将开启第一CC对应的InactivityTimer和第二CC对应的InactivityTimer,此时终端设备在第一CC上处于激活态,在第二CC上可能处于休眠态。对于InactivityTimer同理,如果第一CC和第二CC的对应的InactivityTimer运行时长相同,则当终端设备在第一CC对应的InactivityTimer运行期间接收到第一消息例如DCI时,终端设备将重启第一CC对应的InactivityTimer和第二CC对应的InactivityTimer,此时终端设备在第一CC和第二CC上均处于激活态。但如果第一CC和第二CC对应的InactivityTimer运行时长不同,如图5中位置③处所示,则当终端设备在第一CC对应的InactivityTimer运行期间接收到第一消息例如DCI时,终端设备将重启第一CC对应的InactivityTimer和第二CC对应的InactivityTimer,此时终端设备在第一CC上处于激活态,在第二CC上可能处于休眠态。
上文提到,当终端设备侧的定时器开启或重启后,网络设备就认为终端设备进入激活时间、处于激活态,网络设备侧就可能对终端设备进行调度。一般情况下,终端设备从休眠态中准备醒来或者从激活态中准备休眠时,终端设备需要一定的时间进行准备以完成状态转换。图6示出了终端设备状态转换时的示意图。如图6所示,终端设备在t1~t2时间段内处于激活态,当终端设备从激活态中准备休眠时,需要t2~t3时间段进行状态转换, 即终端设备在t2~t3时间段准备休眠(rump down),例如关闭射频发送接收机、关闭基带处理芯片和内存等。完成rump down后,终端设备在t3~t4时间段内完全处于休眠态,终端设备不再监听PDCCH。当终端设备要从休眠态中准备醒来时,需要t4~t5时间段进行状态转换,即终端设备在t4~t5时间段准备醒来(rump up或warm up),例如打开射频或基带硬件、进行波束管理(主要针对FR2频段)等。完成warm up后,终端设备在t5~t6时间段内能够监听PDCCH或传输数据。本申请实施例中,终端设备从休眠态中准备醒来也可以理解为终端设备从休眠态中唤醒,也就是终端设备从休眠态到终端设备开始监听PDCCH的过程。
为了不影响网络设备对终端设备的调度,终端设备从休眠态中唤醒通常在定时器开启之前完成,也就是在定时器的非运行时间内完成,这样当定时器开启后终端设备在定时器运行时长内就处于激活态,即终端设备就可以直接在定时器的运行时长内进行通信。当终端设备聚合的载波具有相同的定时器时长配置,那么目前终端设备warm up的过程一般只存在于持续时间定时器(onDurationTimer)开启之前,onDurationTimer的起始位置可由终端设备提前计算得出,这样终端设备可以在onDurationTimer开启之前提前准备醒来(warm up)。例如终端设备在warm up时接收下行参考信号先进行时频偏同步,防止终端设备因为长时间睡眠造成系统的时钟和工作频率与网络设备的时钟和频域出现偏差;或者终端设备也可以先尝试接收下行同步信号和更新系统消息,以防止终端设备从一个小区移动到另一个小区后系统消息出现偏差。
当终端设备聚合的载波具有不同的定时器时长配置,如图7中位置①和位置②处所示,当终端设备在第一CC对应的onDurationTimer运行时间内接收到第一消息例如DCI,终端设备将开启第一CC对应的InactivityTimer和第二CC对应的InactivityTimer,但此时终端设备在第二CC上处于休眠态,开启第二CC对应的InactivityTimer后,终端设备在InactivityTimer运行时间内需要先从休眠态中唤醒,即终端设备需要先做warm up。也就是说InactivityTimer的开启是根据终端设备是否接收到第一消息例如DCI,而终端设备接收第一消息例如DCI时是动态的、不可预测的,因此终端设备无法在InactivityTimer开启之前提前进行warm up。这样在InactivityTimer刚开启的一段时间内,终端设备无法正确地接收第一消息例如DCI以及无法做有效的数据收发,但此时网络设备根据终端设备侧定时器开启,认为终端设备已处于激活态,能够进行信号传输,如果此时网络设备调度该终端设备,则有可能出现数据丢失等问题。
需要说明的是,图7以及以下的附图中,仅在图中的第二CC上示例性标注了warm up时间段和部分休眠时间段,与第二CC上终端设备所处状态类似,对于终端设备在第一CC上的warm up时间段和第一CC上的休眠时间段可根据上述定义容易获得,为简洁,图中未标注。
还需要说明的是,为方便理解,本申请实施例中在描述DRX机制时,示例性的使用终端设备是否监听PDCCH来描述终端设备处于激活时间和休眠时间的终端行为,然而应理解所述终端设备是否监听PDCCH实际是指终端设备是否监听预设类型的PDCCH。不失一般性,预设类型的PDCCH上承载的DCI可以包括C-RNTI、CS-RNTI、INT-RNTI、SFI-RNTI、SP-CSI-RNTI、TPC-PUCCH-RNTI、TPC-PUSCH-RNTI和TPC-SRS-RNTI加扰的DCI。另外,除了监听预设类型的PDCCH,激活时间和休眠时间包括其他终端行为, 例如终端设备在激活时间时还可以发送周期或半静态的探测参考信号(Sounding Reference Signal,SRS)、或者上报信道状态信息(Channel State Information,CSI)。
因此,本申请实施例提供一种无线通信方法,能够提高终端设备在载波聚合场景下的通信质量。下面结合图8对本申请实施例进行详细描述。
图8示出了本申请实施例提供的无线通信方法的示意性流程图。图8所示的方法可以由终端设备执行。该终端设备例如可以是图1所示终端设备120。该方法800可以包括步骤S810至步骤S820。
在步骤S810,终端设备在第一载波上接收网络设备发送的第一消息。
相应地,网络设备在第一载波上向终端设备发送第一消息。
该第一消息用于指示终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种,即第一消息指示终端设备在第二载波上执行监听物理下行控制信道PDCCH和/或传输数据。换句话说,该第一消息用于指示终端设备在第二载波上监听物理下行控制信道PDCCH,或者用于指示在第二载波上传输数据(例如跨载波调度场景),或者用于指示在第二载波上监听PDCCH后再根据接收到的PDCCH来进行传输数据,或者用于指示在第二载波上监听PDCCH和根据接收到的第一消息进行传输数据。总而言之,终端设备在第一载波上接收到第一消息后,该第一消息指示终端设备在第二载波上将会执行一定的行为或动作。
该第一消息可以是网络设备承载在PDCCH上发送给终端设备的,可以是网络设备发送给终端设备的下行控制信息DCI,还可以是其他的消息或者是新消息,本申请实施例不做具体限定。当第一消息为DCI时,该DCI可以是调度终端设备初传的DCI,可以是上文提到的C-RNTI、CS-RNTI、INT-RNTI、SFI-RNTI、SP-CSI-RNTI、TPC-PUCCH-RNTI、TPC-PUSCH-RNTI和TPC-SRS-RNTI加扰的DCI等,本申请实施例不限于此。
应理解,终端设备在第一载波上能够接收第一消息,即终端设备在第一载波上处于激活态,因为只有终端设备处于激活态时才能够传输信令和/或数据。
在步骤S820中,在终端设备在第二载波上处于休眠态的情况下,经过第一时间长度后,终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种。
相应地,经过第一时间长度后,网络设备可以在第二载波上执行向终端设备发送PDCCH和传输数据中的至少一种。应理解,终端设备为载波聚合终端设备,第一载波和第二载波为终端设备聚合的载波。当终端设备在第一载波上处于激活态时,终端设备在第二载波上可以处于激活态,也可以处于休眠态。
当终端设备在第一载波上接收第一消息时,若终端设备在第二载波上处于激活态,当第一消息指示终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种时,终端设备可以直接根据第一消息的指示监听PDCCH和/或传输数据。
当终端设备在第一载波上接收第一消息时,若终端设备在第二载波上处于休眠态,当第一消息指示终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种时,由于终端设备在第二载波上处于休眠态,而终端设备只有在激活态下才能监听PDCCH和/或传输数据,因此本申请实施例中,在这种情况下,终端设备经过第一时间长度后在第二载波上监听PDCCH和/或传输数据。
本申请实施例中的第一时间长度用于终端设备从休眠态中唤醒。本申请实施例中“终 端设备从休眠态中唤醒”可以理解为终端设备从休眠态到能够监听PDCCH和/或传输数据的过程。也就是说,终端设备在第一时间长度内,先从休眠态中醒过来,这个过程也可以称为上文中所述的准备醒来(warm up)过程。终端设备在准备醒来的过程也是不能够做有效的信令和/或数据传输的。本申请实施例中终端设备在第一时间长度后监听PDCCH和/或传输数据,也就是终端设备在第一时间长度内是可以不进行监听PDCCH和/或传输数据的,相应的,网络设备在第一时间长度内是可以不发送PDCCH和/或不调度数据的。
应理解,当在步骤S810中,第一消息指示终端设备在第二载波上执行监听PDCCH和/或传输数据,但在步骤S820中,在经过第一时间长度后,网络设备在第二载波上可以不向终端设备发送PDCCH或数据,而终端设备也可以在从休眠态中唤醒,然后在第二载波上监听PDCCH或者做好传输数据的准备,只是终端设备可能监听不到PDCCH或者不会传输数据而已。
这样终端设备在从休眠态中醒来的过程不监听PDCCH和/或传输数据,网络设备在终端设备从休眠态中醒来的过程不发送PDCCH和/或传输数据,能够避免终端设备在这个过程中可能监听不到网络设备发送给自己的PDCCH或者不能接收网络设备发送的数据,而不能做有效的数据收发,从而提高了终端设备在载波聚合场景下的通信质量。
应理解,终端设备在第一时间长度之后执行的动作与第一消息指示的终端设备在第二载波上的动作是一致的。例如,第一消息指示终端设备在第二载波上监听PDCCH,则在步骤S820中,经过第一时间长度后终端设备在第二载波上监听PDCCH。又如,第一消息指示终端设备在第二载波上传输数据,则在步骤S820中,经过第一时间长度之后,终端设备在第二载波上进行传输数据。也即,在步骤S820中,终端设备在第二载波上执行第一消息所指示的行为。
还应理解,终端设备在第二载波上处于休眠态,可以理解为终端设备在第二载波上处于DRX周期中的休眠态,相应地,终端设备在第一载波上处于激活态,可以理解为终端设备在第一载波上处于DRX周期中的激活态。本申请实施例中的终端设备在第一载波和第二载波上均配置了DRX周期,其中终端设备在第一载波上处于激活态时,终端设备在第二载波上可能处于休眠态。
示例性的,第一载波的频率范围可以为6GHz以下,和/或第二载波的频率范围可以为毫米波频段。
上文中描述终端设备在第一时间长度后在第二载波上监听PDCCH和/或传输数据,在第一时间长度内在第二载波上不监听PDCCH和/或传输数据。
终端设备在第一时间长度内不监听PDCCH和/或传输数据的实现方式有多种。
作为一个示例,经过第一时间长度后,终端设备开启第一定时器,其中,在该第一定时器的运行过程中,终端设备能够在第二载波上执行监听PDCCH和传输数据中的至少一种。
也就是说,终端设备在第一定时器的运行过程中能够执行一定行为或动作,例如监听PDCCH和/或传输数据。相应地,网络设备可以根据终端设备是否在第一定时器的运行过程中,来确定是否向终端设备发送PDCCH和/或传输数据。
这样,经过第一时间长度后,终端设备已经从休眠态中唤醒,此时终端设备开启第一定时器,终端设备已经处于激活态,终端设备能够在第一定时器的运行过程中监听PDCCH 和/或传输数据,而在第一定时器运行期间之外完成从休眠态中唤醒,从而避免了终端设备在第一定时器运行过程中做准备醒来的过程而不能做有效的数据传输,可以提高终端设备在载波聚合场景下的通信质量。
作为另一个示例,在接收第一消息时,终端设备开启第一定时器,在第一定时器的运行过程中,所述终端设备能够在所述第二载波上执行监听PDCCH和传输数据中的至少一种,其中,终端设备在开启第一定时器开始的所述第一时间长度内,在第二载波上不监听PDCCH或不进行数据传输。
终端设备在接收第一消息时,开启第一定时器,在第一定时器运行过程中,终端设备在第二载波上可以执行一定的行为,例如监听PDCCH和/或传输数据,相应的网络设备也可以在第一定时器的运行过程中可以执行一定的行为。由于终端设备是在接收第一消息时开启第一定时器,这样第一定时器的运行时长包括了终端设备从休眠态中唤醒的过程所需要的时间,而在这段时间内终端设备是不能做有效的数据传输的。因此本申请实施例中,终端设备虽然在接收第一消息时开启第一定时器,但终端设备在开启第一定时器开始的第一时间长度内在第二载波上不监听PDCCH或不进行数据传输。也就是终端设备在第一定时器开启后,在第一时间长度内,是可以不执行一定行为或动作,例如监听PDCCH和/或传输数据。而在经过第一时间长度后,终端设备已经从休眠态中唤醒,然后终端设备再进行监听PDCCH和/或传输数据。相应地,网络设备在第一时间长度内不向终端设备发送PDCCH或传输数据。本申请实施例通过限制网络设备和终端设备在第一时间长度内(即终端设备从休眠态中唤醒的过程中)的行为,可以避免终端设备在从休眠态唤醒的过程中进行PDCCH的监听和/或数据传输,可以提高终端设备在载波聚合场景下的通信质量。
可选地,在经过第一时间长度后,终端设备还可以开启第二定时器,其中,在第二定时器的运行过程中,终端设备能够在所述第一载波上执行监听PDCCH和传输数据中的至少一种。
终端设备在开启第一定时器和第二定时器时可以有多种实现方式。
例如,经过第一时间长度后,终端设备开启第一定时器,终端设备还可以开启第二定时器。在第一定时器的运行过程中,终端设备能够在第二载波上监听PDCCH和/或传输数据,在第二定时器的运行过程中,终端设备能够在第一载波上监听PDCCH和/或传输数据。即终端设备经过第一时间长度后同时开启第一定时器和第二定时器,这样第一定时器和第二定时器可以是同一个定时器,例如MAC实体级别的定时器,应理解,第一定时器和第二定时器也可以是同一个定时器。
又如,终端设备在接收第一消息时,终端设备开启第一定时器,终端设备还可以开启第二定时器。在第二定时器的运行过程中,终端设备能够在第一载波上监听PDCCH和/或传输数据,在第一定时器的运行过程中,终端设备在第一时间长度之后在第二载波上监听PDCCH和/或传输数据,在第一时间长度内,在第二载波上不监听PDCCH和/或传输数据。终端设备可以在第一载波上正常执行相应的行为,在第二载波上限制在第一时间长度内的行为。终端设备在接收第一消息时,同时开启第一定时器和第二定时器,这样第一定时器和第二定时器可以是同一个定时器,例如MAC实体级别的定时器,应理解,第一定时器和第二定时器也可以是同一个定时器。应理解,在终端设备同时开启第一定时器和第二定时器的情况下,第一定时器和第二定时器也可以是不同的定时器,即第一定时器用于 为第二载波计时,第二定时器用于为第一载波计时。
再如,在接收第一消息时,终端设备设备开启第二定时器,经过第一时间长度后,终端设备开启第一定时器。在第一定时器的运行过程中,终端设备能够在第二载波上监听PDCCH和/或传输数据,在第二定时器的运行过程中,终端设备能够在第一载波上监听PDCCH和/或传输数据。终端设备开启第一定时器和第二定时器的时间不同,这样第一定时器和第二定时器可以是不同级别的定时器,例如第一定时器是第二载波级别的定时器,用于为第二载波计时,第二定时器是第一载波级别的定时器,用于为第一载波计时。
再如,在接收第一消息时,终端设备设备开启第一定时器,经过第一时间长度后,终端设备开启第二定时器。在第一定时器的运行过程中,终端设备在第一时间长度之后在第二载波上监听PDCCH和/或传输数据,在第一时间长度内,在第二载波上不监听PDCCH和/或传输数据。在第二定时器的运行过程中,终端设备能够在第一载波上监听PDCCH和/或传输数据。即终端设备在第一时间长度后在第一载波和第二载波上正常执行相应的行为,但在第二载波上限制终端设备在第一时间长度内的行为。终端设备开启第一定时器和第二定时器的时间不同,这样第一定时器和第二定时器可以是不同级别的定时器。
可选地,第一定时器和第二定时器可以是InactivityTimer。
本申请实施例中的第一时间长度用于终端设备在第二载波上从休眠态中唤醒。可选地,第一时间长度大于或等于状态转换时长,该状态转换时长为终端设备从休眠态中唤醒所需的时间。终端设备从休眠态中唤醒可以理解为终端设备从休眠态到能够有效执行一定动作或行为的过程,例如监听PDCCH和/或传输数据。具体地,当第一消息指示终端设备在第二载波上监听PDCCH时,终端设备从休眠态中唤醒的过程可以理解为终端设备从休眠态到能够有效监听PDCCH的过程。当第一消息指示终端设备在第二载波上传输数据时,终端设备从休眠态中唤醒的过程可以理解为终端设备从休眠态到能够有效传输数据的过程。本申请实施例中,终端设备有效监听PDCCH或者有效传输数据可以理解为,终端设备已经完成了准备醒来warm up的过程,已打开硬件或者做完波束管理等过程,准备好传输信令或数据了。
第一时间长度大于或等于状态转换时长,可以保证终端设备在第二载波上从休眠态中唤醒,然后在第一时间长度之后实现有效的信令或数据传输。上文所述第一时间长度用于终端设备从休眠态中唤醒,可以理解为终端设备在第一时间长度结束内恰好从休眠态中唤醒,或者终端设备在第一时间长度内完成从休眠态中唤醒的过程,并且在第一时间长度内的部分时间内处于能够有效监听PDCCH或者有效传输数据的状态。
可选地,当第一消息用于指示所述终端设备在第二载波上传输数据时,该数据与该第一消息之间的时间间隔大于或等于所述第一时间长度。
换句话说,当终端设备在第一载波上接收的第一消息用于指示终端设备在第二载波上进行数据传输,终端设备使用第一载波和第二载波可以实现跨载波调度,这时终端设备在第二载波上所传输的数据的位置与终端设备在第一载波上接收的第一消息(例如DCI)的位置之间的时间间隔应大于第一时间长度。这样可以保证终端设备在第一时间长度内完成从休眠态中唤醒的过程,在第一时间长度后可以正确传输数据,提高跨载波调度下的通信质量。
可选地,本申请实施例中,第一时间长度可以与终端设备在第二载波上所处的睡眠等 级对应。也就是终端设备可以配置有至少一个睡眠等级,终端设备可以根据终端设备在第二载波上所处的睡眠等级,选择相应的第一时间长度。
与人的睡眠状态有深睡、浅睡类似,终端设备也可以配置至少一个睡眠等级。在不同的睡眠等级下,终端设备所处的睡眠状态有所不同,睡眠的程度不同,功耗也不同。例如终端设备处于深度睡眠时,终端设备可以关闭所有射频收发器和基带处理器等通信器件,只做一些功耗非常低的必要的通信;终端设备处于浅度睡眠时,终端设备可以只关闭功耗比较大的通信器件,能完成比处于深度睡眠多的一些通信。或者再如,终端设备处于深度睡眠时,终端设备可以睡得久一些再醒来,而处于浅度睡眠时,终端设备则可以睡一会就醒来。一般情况下,终端设备的睡眠程度越深,终端设备睡得时间越长,在睡眠期间需要做的工作越少,这样可以进一步减少终端设备的功耗。
具体而言,例如,终端设备配置有一个睡眠等级,即终端设备从休眠态中唤醒所需的时间大致相同。相应地,网络设备可以为终端设备配置一个时间长度,即第一时间长度。这样经过第一时间长度后,终端设备都可以完成从休眠态中唤醒的过程。
又如,终端设备配置有至少两个睡眠等级,即终端设备在不同的睡眠等级下,从休眠态中唤醒所需的时间可以是不同的。例如终端设备可以配置有两个睡眠等级,即深睡和浅睡,则当终端设备处于深睡的状态时从休眠态中唤醒所需的时间可能会长于终端设备处于浅睡的状态时从休眠态中唤醒所需的时间。相应地,网络设备可以为终端设备配置至少两个时间长度,所述至少两个睡眠等级中的每个睡眠等级对应所述至少两个时间长度中的一个。也就是终端设备可以根据当前所处的睡眠等级,从网络设备配置的至少两个时间长度中确定与当前睡眠等级对应的第一时间长度。应理解,本申请实施例中所述的当前的睡眠等级可以理解为终端设备在第一载波上接收第一消息时,在第二载波上所处的睡眠状态。
可选地,终端设备配置有至少一个睡眠等级,在步骤S810之前,方法800还包括:终端设备接收网络设备发送的配置信息,该配置信息用于指示至少一个时间长度,该至少一个时间长度包括上述第一时间长度,该至少一个睡眠等级中的每个睡眠等级对应该至少一个时间长度中的一个。
也就是说,网络设备可以为终端设备配置一个或多个时间长度用于终端设备从休眠态中唤醒,终端设备可以根据当前的睡眠等级来确定选择相应的时间长度为第一时间长度。应理解,终端设备当前的睡眠等级可以理解为终端设备在第一载波上接收到第一消息时,终端设备在第二载波上所处的睡眠状态。至少一个睡眠等级中的每个睡眠等级对应至少一个时间长度中的一个,即终端设备处于每个睡眠等级下时,可以在与睡眠等级相对应的时间长度内完成warm up,即完成从休眠态中唤醒。
应理解,终端设备配置有至少一个睡眠等级,当终端设备处于不同的睡眠等级下时,从休眠态中唤醒所需的时间可以是不同的。
可选地,该配置信息可以承载于无线资源控制RRC消息、下行控制信息DCI或者其他的消息中,由网络设备发送给终端设备。
也就是说,第一时间长度可以由网络设备通过RRC消息配置给终端设备,也可以通过DCI指示给终端设备。在一些其他实施例中,第一时间长度还可以是标准中预定义好的。本申请实施例不做具体限定。
可选地,当终端设备配置有上述至少一个时间长度中的多个时间长度和上述至少一个 睡眠等级中的多个睡眠等级时,方法800还包括:终端设备根据当前睡眠等级,从该多个时间长度中确定所述第一时间长度。该第一时间长度与终端设备当前的睡眠等级相对应。
当前睡眠等级即终端设备在第一载波上接收第一消息时,在第二载波上的睡眠状态。第一时间长度与终端设备当前的睡眠等级相对应,可以理解为在第一时间长度内,终端设备可以从当前睡眠等级对应的休眠态中唤醒。
可选地,方法800还包括:在所述终端设备配置有一个睡眠等级的情况下,终端设备向网络设备发送该一个睡眠等级相对应的状态转换时长;或者在所述终端设备配置有多个睡眠等级的情况下,终端设备向网络设备发送该多个睡眠等级和与该多个睡眠等级中每个睡眠等级相对应的状态转换时长。该状态转换时长为终端设备从休眠态中唤醒所需的时间。
可选地,该状态转换时长可以承载于终端设备能力消息(UE capability information)、终端设备辅助信息消息(UE assistance information)或者其他信息中,由终端设备上报给网络设备。
换句话说,当终端设备配置有一个睡眠等级的时候,终端设备从休眠态中唤醒所需的时间大致相同,因此,终端设备可以向网络设备上报终端设备从休眠态中唤醒所需的时间,即状态转换时长。当终端设备配置有多个睡眠等级的时候,终端设备处于不同的睡眠等级的时候,终端设备从休眠态中唤醒的时间可能是不同的,即终端设备处于不同的睡眠等级时,状态转换时长可能是不同的。因此,终端设备可以向网络设备上报终端设备的睡眠等级和状态转换时长的对应关系,以用于网络设备为终端设备配置与每个睡眠等级相对应的第一时间长度。
在本申请一些其他实施例中,当终端设备配置有多个睡眠等级时,终端设备也可以向网络设备上报该多个睡眠等级中从休眠态中唤醒所需时间最长的睡眠等级对应的状态转换时长。这样终端设备不论处于何种睡眠等级,都能够在该最长的状态转换时长内从休眠态中唤醒,这样终端设备均是在相同时间长度之后在第二载波上执行监听PDCCH和传输数据中的至少一种。
应理解,当终端设备配置有多个睡眠等级时,该多个睡眠等级与状态转换时长可以是一一对应的关系,即每个睡眠等级对应的状态转换时长不同,即终端设备在不同的睡眠等级下从休眠态中唤醒所需的时间不同。在一些其他实施例中,该多个睡眠等级与状态转换时长可以是一对多的关系,即多个睡眠等级中的至少两个睡眠等级对应的状态转换时长相同,即终端设备在该多个睡眠等级中的至少两个睡眠等级下从休眠态中唤醒所需的时间相同。
还应理解,当终端设备配置有多个睡眠等级时,该多个睡眠等级与网络设备配置的时间长度可以是一一对应的关系,即终端设备处于不同的睡眠等级下时,在步骤S820中终端设备在第一载波上接收第一消息后经过不同的时间长度在第二载波上监听PDCCH和/或传输数据。在一些其他实施例中,该多个睡眠等级与网络设备配置的第一时间长度可以是一对多的关系,即终端设备处于多个睡眠等级中的至少两个睡眠等级下时,在步骤S820中终端设备接收第一消息后经过相同的时间长度后在第二载波上监听PDCCH和/或传输数据。
当终端设备配置有多个睡眠等级时,终端设备确定当前睡眠等级的方式有多种。
作为一个示例,终端设备可以根据开启第一定时器的位置与第一载波上配置的DRX周期的关系确定当前睡眠等级。以终端设备配置有两个睡眠等级(例如深睡和浅睡)为例,若终端设备开启第一定时器的位置与终端设备接收第一消息的位置均位于相应载波上的当前DRX周期,终端设备在第二载波上的休眠时间位于第一载波上配置的一个DRX周期内,则终端设备可以确定终端设备当前的睡眠等级为浅睡;若终端设备开启第一定时器的位置位于第二载波上的当前DRX周期,终端设备的休眠时间位于第一载波上配置的多个DRX周期内(即终端设备跨DRX周期开启第一定时器),则终端设备可以确定当前的睡眠等级为深睡。
作为另一个示例,终端设备可以根据终端设备在第二载波上的已睡眠时长与睡眠等级划分门限确定当前睡眠等级。其中终端设备在第二载波上的已睡眠时长可以根据终端设备开启第一定时器的位置(或者是终端设备在第一载波上接收第一消息的位置)与终端设备在第二载波上的上一个DRX周期结束时间位置所相差的时间来确定。仍以终端设备配置有两个睡眠等级(例如深睡和浅睡)为例,若终端设备开启第一定时器的位置(或者是终端设备在第一载波上接收第一消息的位置)相距第二载波上的上一个DRX周期结束位置的时间差长于或等于第一门限(例如10ms),终端设备可以确定当前睡眠等级为深睡;若终端设备开启第一定时器的位置(或者是终端设备在第一载波上接收第一消息的位置)相距第二载波上的上一个DRX周期结束位置的时间差短于第一门限,终端设备可以确定当前睡眠等级为浅睡。在一些实施例中,当终端设备开启第一定时器的位置相距第二载波上的上一个DRX周期结束位置的时间差等于第一门限时,终端也可以确定当前睡眠等级为浅睡。以终端设备配置有三个睡眠等级为例,若终端设备在第二载波上的已睡眠时长大于或等于第一门限(例如10ms)时,终端设备确定当前的睡眠等级为深度睡眠;若终端设备在第二载波上的已睡眠时长位于第一门限(例如10ms)与第二门限(例如5ms)之间,终端设备可以确定当前的睡眠等级为中度睡眠;若终端设备在第二载波上的已睡眠时长小于第二门限(例如5ms)时,终端设备可以确定当前的睡眠等级为浅度睡眠。应理解,第一门限应大于第二门限。对于已睡眠时长等于等级划分门限的情况,可以根据实际需求在标准中规定好,将其划分到相邻的两个睡眠等级中的某一个睡眠等级中。
可选地,上述睡眠等级划分门限可以由终端设备上报给网络设备。相应地,该睡眠等级划分门限也可以由网络设备配置给终端设备。
在本申请一些实施例中,终端设备可以在接收到第一消息时,即指示终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种。在另一些实施例中,当满足预设条件时,终端设备接收到的第一消息才指示在第二载波上执行监听PDCCH和传输数据中的至少一种。这样终端设备可以不用每次在第一载波上接收到第一消息时都在第二载波上监听PDCCH和/或传输数据,从而节省终端设备在第二载波上的功耗。
也就是说,当满足预设条件时,终端设备在第一载波上接收到的第一消息用于指示终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种。这样,当终端设备在第二载波上处于激活态时,终端设备根据第一消息在第二载波上进行监听PDCCH和/或传输数据;当终端设备在第二载波上处于休眠态时,终端设备可以经过第一时间长度之后,根据第一消息在第二载波上进行监听PDCCH和/或传输数据。
当不满足预设条件时,终端设备在第一载波上接收到的第一消息不用于指示终端设备 在第二载波上执行监听PDCCH和传输数据中的至少一种,或者指示终端设备在第二载波上不监听PDCCH或不传输数据。这样,当终端设备在第二载波上处于激活态时,终端设备在第二载波上也可以不监听PDCCH和/或传输数据;当终端设备在第二载波上处于休眠态时,终端设备可以继续处于休眠态,而无需从休眠态中唤醒。
在一种实现方式中,上述预设条件包括:第一消息包括指示信息。也就是说,满足预设条件即第一消息包括指示信息时,第一消息用于指示终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种。不满足预设条件即第一消息不包括指示信息,第一消息不用于指示终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种,或者第一消息用于指示终端设备在第二载波上不监听PDCCH或不传输数据。
在另一种实现方式中,上述预设条件包括:第一消息包括指示域,该指示域指示终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种。也就是说,满足预设条件即第一消息包括指示域,该指示域指示终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种时,第一消息用于指示终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种。不满足预设条件即第一消息包括指示域,该指示域指示终端设备在第二载波上不监听PDCCH或不传输数据时,第一消息用于指示终端设备在第二载波上不监听PDCCH或不传输数据。
在又一种实现方式中,上述预设条件包括:终端设备在第一载波上接收第一消息的时机满足预设规则。也就是说,满足预设条件即终端设备在第一载波上接收第一消息的时机满足预设规则时,第一消息用于指示终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种。不满足预设条件即终端设备在第一载波上接收第一消息的时机不满足预设规则时,第一消息不用于指示终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种,或者第一消息用于指示终端设备在第二载波上不监听PDCCH或不传输数据。示例性的,例如终端设备可以在第一载波上的一个DRX周期接收到多个第一消息,而终端设备在第一载波上当前接收到的第一消息是终端设备在一个DRX周期内接收到的第N个,则该当前接收到的第一消息或者该第一消息及之后的第一消息用于指示终端设备在第二载波上执行监听PDCCH和传输数据中的至少一种。相应地,对于网络设备来说,上述预设条件包括:网络设备在第一载波上发送第一消息的时机满足预设规则。
应理解,由上文描述可知,终端设备在第一定时器的运行过程中,才能在第二载波上监听PDCCH和/或传输数据,因此,当满足预设条件时,第一消息可以用于指示终端设备在第二载波上开启第一定时器。
因此,本申请实施例还提供另一种无线通信方法,能够减少终端设备功耗。下面结合图9对本申请实施例进行详细描述。
图9示出了本申请实施例提供的另一种无线通信方法的示意性流程图。图9所示的方法可以由终端设备执行。该终端设备例如可以是图1所示终端设备120。该方法900可以包括步骤S910至步骤S920。
在步骤S910,终端设备在第一载波上接收网络设备发送的第一消息。
该第一消息用于指示终端设备在第二载波上是否开启第一定时器。即该第一消息可以指示终端设备在第二载波上开启第一定时器,或者该第一消息可以指示终端设备在第二载波上不开启第一定时器。
在步骤S920,终端设备根据第一消息开启第一定时器,在第一定时器的运行过程中,终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
换句话说,当第一消息指示终端设备开启第一定时器时,终端设备开启第一定时器,相应地,终端设备在第一定时器的运行过程中可以监听PDCCH和/或传输数据。当第一消息指示终端设备不开启第一定时器时,终端设备则不开启第一定时器,相应地,终端设备在第二载波上可以继续保持之前的状态。
终端设备根据第一消息开启第一定时器的方式有多种。
作为一个示例,第一消息包括指示信息时,终端设备开启第一定时器。相应地,第一消息不包括指示信息时,终端设备不开启第一定时器。
作为另一个示例,第一消息包括指示域,该指示域指示开启第一定时器时,终端设备开启第一定时器。相应地,该指示域指示不开启第一定时器时,终端设备不开启第一定时器。
作为又一个示例,当终端设备接收第一消息的时机满足预设规则时,终端设备开启第一定时器。相应地,终端设备接收该第一消息的时机不满足预设规则时,终端设备不开启第一定时器。
简而言之,当满足预设条件时,第一消息用于指示终端设备开启第一定时器。当不满足预设条件时,第一消息用于指示终端设备不开启第一定时器。
在满足预设条件的情况下,第一消息指示终端设备开启第一定时器,也可以理解为终端设备用于指示终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
当终端设备在第一载波上接收第一消息时,终端设备在第二载波上可能处于休眠态。如果终端设备在接收到第一消息时就开启第一定时器,则终端设备在第二载波上需要先从休眠态中唤醒。若此时网络设备对终端设备进行调度,则又会出现上述提到的终端设备在从休眠态中唤醒过程中不能有效进行信令或数据传输问题。因此,在这种情况下,在步骤S920之后,终端设备可以进一步执行图8中的方法800。
具体地,在终端设备接收所述第一消息时,终端设备在第二载波上处于休眠态的情况下,方法900还包括:自接收第一消息开始,经过第一时间长度之后,终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种,其中所述第一时间长度用于终端设备从休眠态中唤醒。具体实现方式可参考上文关于方法800的相关描述,为简洁,不再赘述。
为方便理解,下面结合将附图10-17,更加详细地描述本申请实施例的一些具体的非限制性的例子。图10-17中以第一载波属于FR1,第二载波属于FR2为例进行描述,但是本申请实施例也可以应用其他频率范围的第一载波和第二载波,只要存在终端设备在第一载波上处于激活态,在第二载波上处于休眠态的场景即可。另外,图10-17中以第一载波和第二载波配置有持续时间定时器(onDurationTimer)和/或非激活定时器(InactivityTimer)为例,但如上面所描述的,本申请实施例中第一载波和第二载波也可以配置有其他类型的定时器。还需要说明的是,图10-17中以终端设备在第一载波上接收的第一消息为DCI为例进行描述,但如上面所述,本申请实施例中终端设备在第一载波上接收到的第一消息还可以是其他消息例如PDCCH或新消息,本申请实施例不做特殊限定。
图10示出了本申请一个实施例提供的无线通信方法中终端设备的状态示意图。
如图10所示,第一CC和第二CC为终端设备聚合的成员载波,第一CC和第二CC均配置有DRX周期。在第一CC上,在每个DRX周期开始的时候,终端设备需要开启第一CC对应的onDurationTimer,其中,在第一CC对应的onDurationTimer运行过程中,终端设备在第一载波上处于激活态。在第二CC上,在每个DRX周期开始的时候,终端设备需要开启第二CC对应的onDurationTimer,其中,在第二CC对应的onDurationTimer运行过程中,终端设备在第二载波上处于激活态。图中实线框即表示onDurationTimer的运行时间。从图中可以看出,第一CC对应的onDurationTimer值与第二CC对应的onDurationTimer值不同。
在位置①处,第一CC对应的onDurationTimer运行中,终端设备在第一CC上处于激活态,而第二CC对应的onDurationTimer超时已定时结束,终端设备在第二CC上处于休眠态。当终端设备在位置①处接收网络设备发送的第一消息例如DCI时,终端设备开启第一CC对应的InactivityTimer(即上文所述的第二定时器的一例),但不立即启动第二CC对应的InactivityTimer(即上文所述的第一定时器的一例),而是经过第一时间长度后,在位置②处启动第二CC对应的InactivityTimer。位置①和位置②之间的时间间隔为第一时间长度,其中该第一时间长度用于终端设备在第二CC上从休眠态中唤醒。应理解,终端设备在第二CC上从休眠态中唤醒,可以理解为终端设备从休眠态中准备醒来,到能够在第二CC上监听PDCCH和/或传输数据,即第一时间长度用于终端设备在第二CC上完成warm up过程。
终端设备在位置②处开启第二CC对应的InactivityTimer,终端设备在第二CC对应的InactivityTimer运行期间,在第二CC上处于激活态。终端设备在第二CC对应的InactivityTimer运行之前已经完成warm up过程,因此网络设备侧知道终端设备侧何时开启第二CC对应的InactivityTimer,网络设备侧在第二CC对应的InactivityTimer运行期间与终端设备进行通信,例如向终端设备发送PDCCH或调度终端设备等。在终端设备启动第二CC对应的InactivityTimer前,网络设备知道终端设备在第二CC上处于休眠态,网络设备侧也不会与终端设备在第二CC上通信。
需要说明的是,终端设备在第一CC上接收到的第一消息,用于指示终端设备在第二CC上执行监听PDCCH和传输数据中的至少一种。由于只有在第二CC对应的InactivityTimer运行期间,终端设备在第二CC上才能执行相应的动作,因此第一消息也可以理解为用于指示终端设备开启第二CC对应的InactivityTimer。
应理解,在网络设备看来,只要第二CC对应的InactivityTimer处于运行状态,网络设备就认为终端设备处于激活态(即激活时间),就可以进行调度。因此,本申请实施例通过规定第二CC对应的InactivityTimer启动的时间位置,使终端设备在开启第二对应的InactivityTimer之前完成在第二CC上的warm up过程,避免了网络设备与终端设备在终端设备进行warm up过程中进行通信,提高终端设备的通信质量。
图10中所示的位置③与位置④的情况与位置①和位置②的情况类似,不再赘述。
图10中以及以下的附图中,仅示例性的示出了终端设备在第二CC上的休眠时间和状态转换时间。应理解,终端设备从休眠态中唤醒时均需要进行warm up过程,其中在终端设备开启第一CC和第二CC分别对应的onDurationTimer之前,终端设备已经完成warm  up过程,为简洁,图中未全部标示出来。另外,终端设备在非onDurationTimer运行期间和非InactivityTimer运行期间,终端设备处于休眠态,该段时间为终端设备在相应载波上的休眠时间,同样为简洁,图中未全部标示出来。
参考图10,第一CC对应的InactivityTimer和第二CC对应的InactivityTimer可以是不同的定时器,这样终端设备可以按照现有机制正常启动或重启第一CC对应的InactivityTimer,而在第一时间长度之后启动第二CC对应的InactivityTimer。这样,即使终端设备在第一时间长度内在第二CC上不能进行信令或数据的传输,但是仍可以在第一CC上进行信令或数据的传输,可以充分利用通信资源。
在一些其他实施例中,第一CC和第二CC可以共用一个InactivityTimer,例如该InactivityTimer可以是MAC实体级别的定时器。参考图11,与图10所示的无线通信方法不同的是,图11中终端设备开启第一CC对应的InactivityTimer和开启第二CC对应的InactivityTimer时间位置相同,均是自终端设备在第一载波上接收第一消息开始,经过第一时间长度之后开启的。这样,可以使得终端设备在第一CC和第二CC上开启InactivityTimer的时间位置相同,可以与现有机制保持一致,第一CC和第二CC共用一个定时器。
上述第一时间长度是根据终端设备从休眠态中唤醒所需的时间(即状态转换时长)确定的。第一时间长度应大于或等于状态转换时长,以保证终端设备在第一时间长度内完成warm up。
因此,终端设备接入网络后,需要向网络设备上报该状态转换时长。可选地,该状态转换时长可以承载于终端设备能力消息、终端设备辅助消息或其他消息中,由终端设备上报给网络设备。
终端设备从休眠态中唤醒可以有一个最小时间长度,即在该最小时间长度内,终端设备恰好从休眠态中唤醒。可选地,终端设备向网络设备上报的可以是终端设备从休眠态中唤醒所需的最小时间长度,即终端设备完成warm up所需的最小时间长度。
相应地,网络设备可以根据终端设备上报的状态转换时长为终端设备配置上述第一时间长度,其中第一时间长度应大于或等于终端设备上报的状态转换时长。
网络设备可以向终端设备发送配置信息,该配置信息指示上述第一时间长度。可选地,该配置信息可以承载于RRC消息、上述第一消息中。
示例性的,网络设备给终端设备发送的配置信息可以为如下形式:
2>if the PDCCH indicates a new transmission(DL or UL):
3>start or restart drx-InactivityTimer in the first symbol after a time period T after the end of the PDCCH reception.
换句话说,第一消息承载于PDCCH,如果终端设备在第一CC上监听的承载第一消息的PDCCH指示终端设备在第二CC上有新的传输时,则终端设备在接收完PDCCH之后的T时间后启动或重启第二CC对应的InactivityTimer,其中T即为上述第一时间长度。
当终端设备配置有多个睡眠等级时,终端设备处于休眠态时的睡眠程度不同,因此终端设备从休眠态中唤醒所需的时间(即warm up的时间)可以不同。这样,终端设备可以向网络设备上报多个睡眠等级和与多个睡眠等级中每个睡眠等级所对应的状态转换时长,网络设备根据终端设备上报的多个状态转换时长,为终端设备配置多个第一时间长度。该 终端设备处于每个睡眠等级时对应多个第一时间长度中的一个。这样终端设备可以根据终端设备当前的睡眠等级从多个时间长度中确定与当前睡眠等级对应的第一时间长度,然后在第一时间长度之后再执行一定的动作或行为。应理解,终端设备处于每个睡眠等级时所对应的第一时间长度应大于或等于该睡眠等级所对应的状态转换时长。
下面结合图12进行详细描述。如图12所示,与图10不同的是,在位置①之前,终端设备在第二CC上处于浅度睡眠(简称浅睡),即终端设备在位置①之前的休眠时间为浅睡时间。在位置③之前,终端设备在第二CC上处于深度睡眠(简称深睡),即终端设备在位置①之前的休眠时间为深睡时间。由于终端设备从浅睡状态中唤醒所需的时间与从深睡状态中唤醒所需的时间不同,因此终端设备可以根据当前的睡眠等级确定第一时间的长度,也就是从网络设备所配置的多个第一时间长度中选择与当前睡眠等级相对应的第一时间长度。例如终端设备在位置①处在第一CC上接收第一消息例如DCI后,经过较短的第一时间度后在位置②处开启第二CC对应的InactivityTimer;终端设备在位置③处在第一CC上接收第一消息例如DCI后,经过较长的第一时间度后在位置④处开启第二CC对应的InactivityTimer。
通过为终端设备配置多个第一时间长度,使得终端能够在与当前在第二CC上的睡眠等级对应的第一时间长度后执行一定的行为和动作,能够充分利用通信资源。
当然,在一些其他实施例中,当终端设备配置有多个睡眠等级时,网络设备也可以为终端设备配置一个第一时间长度,这样不论终端设备在第二CC上处于何种睡眠等级,都在第一CC上接收第一消息开始,经过相同时间长度后执行一定的行为和动作。
终端设备确定终端设备在第二CC上所处的当前睡眠等级的方式可以有以下几种,仍然参考图12。
例如,在位置①之前,终端设备在第二CC上的休眠时间位于终端设备在第一CC上的一个DRX周期内,则终端设备可以确定在第二CC上处于浅睡状态,当从浅睡状态中唤醒时,终端设备经过较短的第一时间长度后在位置②处开启第二CC对应的InactivityTimer。类似地,在位置③之前,终端设备在第二CC上的休眠时间位于终端设备在第一CC上的多个DRX周期内,则终端设备可以确定在第二CC上处于深睡状态,当从深睡状态中唤醒时,终端设备经过较长的第一时间长度后在位置④处开启第二CC对应的InactivityTimer。应理解,终端设备可以配置有三个、四个或更多个睡眠等级,终端设备判断在第二CC上所处的睡眠等级方式类似。以终端设备配置三个睡眠等级为例,当终端设备在第二CC上的休眠时间位于终端设备在第一CC上的一个DRX周期内,终端设备确定在第二CC上处于浅度睡眠;当终端设备在第二CC上的休眠时间位于终端设备在第一CC上的两个至四个DRX周期内,终端设备确定在第二CC上处于中度睡眠;当终端设备在第二CC上的休眠时间位于终端设备在第一CC上的至少五个DRX周期内,终端设备确定在第二CC上处于深度睡眠。本申请实施例不限于此。
再如,终端设备接收第一消息的位置①相距第二CC上的上一个DRX周期结束时间位置差短于第一门限时,终端设备确定在第二CC上处于浅睡状态。当从浅睡状态中唤醒时,终端设备经过较短的第一时间长度后在位置②处开启第二CC对应的InactivityTimer。类似地,终端设备接收第一消息的位置③相距第二CC上的上一个DRX周期结束时间位置差长于或等于第一门限时,则终端设备可以确定在第二CC上处于深睡状态,当从深睡 状态中唤醒时,终端设备经过较长的第一时间长度后在位置④处开启第二CC对应的InactivityTimer。应理解,终端设备可以配置有三个、四个或更多个睡眠等级,终端设备判断在第二CC上所处的睡眠等级方式类似。以终端设备配置三个睡眠等级为例,当终端设备接收第一消息的时间位置相距第二CC上的上一个DRX周期结束时间位置差长于或等于第一门限时,终端设备确定在第二CC上处于深度睡眠;当终端设备接收第一消息的时间位置相距第二CC上的上一个DRX周期结束时间位置差介于第一门限和第二门限之间,终端设备确定在第二CC上处于中度睡眠,其中第一门限大于第二门限;当终端设备接收第一消息的时间位置相距第二CC上的上一个DRX周期结束时间位置差短于第二门限时,终端设备确定在第二CC上处于浅度睡眠。本申请实施例不限于此。
本申请实施例中,终端设备接收第一消息的时间位置相距第二CC上的上一个DRX周期结束时间位置差可以理解为是终端设备的已睡眠时长。即从第二CC的上一个DRX周期结束时间位置开始,截止到终端设备在第一载波上接收第一消息时,终端设备在第二CC上已经休眠的时间。
简而言之,根据终端设备的在第二CC上的已睡眠时长位于终端设备的睡眠等级划分门限的哪个区间,来确定终端设备在第一CC上接收第一消息时,终端设备第二CC上的睡眠等级。
由于网络设备侧定时器的开启需要与终端设备侧相应定时器的开启同步,因此网络设备侧需要知道终端设备侧选择了哪个第一时间长度,也就是说网络设备侧也需要知道终端设备的当前睡眠等级。可选地,网络设备侧确定终端设备当前睡眠等级的方式与终端设备相同。因此终端设备除了向网络设备上报终端设备处于每个睡眠等级所对应的状态转换时长,还需要向网络设备上报睡眠等级划分门限,例如上述示例中所列举的DRX周期个数或者上述第一门限、第二门限等值。
可选地,网络设备还可以根据终端设备上报的睡眠等级划分门限,再为终端设备配置该睡眠等级划分门限。或者,网络设备将终端设备上报的睡眠等级划分门限默认为预设配置。本申请实施例不限于此。
当终端设备配置有多个睡眠等级时,状态转换时长的上报,第一时间长度的配置方式等与图10和图11中终端设备配置有一个睡眠等级类似,具体参考图10和图11的相关描述,在此不再赘述。
图13示出了另一个实施例提供的无线通信方法中终端设备的状态示意图。与图10不同的是,终端设备在位置①处接收第一消息例如DCI时,即开启第二CC对应的InactivityTimer,但自位置①起的第一时间长度内,网络设备不会在第二CC上进行数据调度,终端设备不需要在第一时间长度内,在第二CC上执行一定的行为或动作,例如监听PDCCH,或发送探测参考信号(sounding reference signal,SRS)、信道状态信息报告(channel state information report,CSI report),或进行数据传输等。
本申请实施例中第一时间长度应大于或等于状态转换时长。本申请实施例中状态转换时长的上报、第一时间长度的配置、第一CC对应的InactivityTimer的开启等与图10中的方式类似,具体可参考有关图10和图11的相关描述,在此不再赘述。
另外,本申请实施例中终端设备也可以配置有多个睡眠等级,具体可参考图12的相关描述,在此不再赘述。
示例性的,网络设备给终端设备发送的配置信息可以为如下形式:
Data scheduling within an a time period T from start of InactivityTimer is not expected.
换句话说,终端设备在第二CC对应的InactivityTimer开启后的第一时间长度内,不进行数据调度。
应理解,由于终端设备在接收到第一消息时就开启了第二CC对应的InactivityTimer,因此终端设备在第二CC上从休眠态中唤醒的过程是在第二CC对应的InactivityTimer运行期间完成的。在网络设备看来,只要第二CC对应的InactivityTimer处于运行状态,网络设备就认为终端设备处于激活态,就可以进行调度。本申请实施例通过限制网络设备和终端设备在开启第二CC对应的InactivityTimer时在第一时间长度内的行为,可以避免终端设备与网络设备在终端设备从休眠态中唤醒的过程进行通信,从而提高终端设备的通信质量。
上述图10至图13所示的无线通信方法可以应用于跨载波调度场景。跨载波调度即终端设备在一个载波上监听并接收PDCCH,但在另一个载波上接收PDCCH调度的数据(例如物理下行共享信道(physical downlink shared channel,PDSCH)或物理下行共享信道(physical uplink shared channel,PUSCH))。跨载波调度可以用于载波聚合场景中,在某个载波上的功耗优化。例如在5G通信系统中,终端设备可以采用FR1和FR2做载波聚合,跨载波调度可以做FR2载波上的功耗优化。例如FR1CC可以跨载波调度FR2CC的数据,即终端设备只在FR1CC上监听并接收PDCCH,此时终端设备在FR2CC可处于休眠状态不需要监听PDCCH(低功耗)。当有数据需要在FR2CC上传输时,通过在FR1CC接收到的PDCCH确定在FR2CC的数据调度,此时终端设备才需要在FR2CC上唤醒,而接收PDSCH或PUSCH。
在跨载波调度场景中,参考图14,终端设备在第一CC上接收的第一消息例如PDCCH用于指示终端设备在第二CC上传输数据。第一消息中可以指示数据在第二CC上的位置。考虑到终端设备在第二CC上处于休眠态,若终端设备想要进行数据传输,需要先从休眠态中唤醒。本申请实施例中,第一消息中指示的数据例如PDSCH或PUSCH的时间位置与终端设备接收第一消息例如PDCCH的时间位置之间的间隔应大于或等于第一时间长度。该第一时间长度大于或等于终端设备从休眠态中唤醒所需的时间。
如图14所示,例如终端设备在位置①处接收到的第一消息例如PDCCH指示终端设备在第二CC上传输PDSCH,则第一CC和第二CC跨载波调度的时间间隔(即第一消息如PDCCH距PDSCH的时长)需要满足大于或等于第一时间长度。也就是终端设备在位置②处在第二CC上接收PDSCH,其中位置①距位置②的时间间隔大于第一时间长度,终端设备从休眠态中唤醒的过程在位置②之前完成。又如,终端设备在位置③处接收到的第一消息例如PDCCH指示终端设备在第二CC上传输PUSCH,则第一CC和第二CC跨载波调度的时间间隔(即第一消息如PDCCH距PUSCH的时长)需要满足大于或等于第一时间长度。也就是终端设备在位置④处在第二CC上接收PUSCH,其中位置③距位置④的时间间隔大于第一时间长度,终端设备从休眠态中唤醒的过程在位置④之前完成。
在一些其他实施例中,第一CC和第二CC跨载波调度的时间间隔(第一消息如PDCCH距PDSCH的时长或第一消息如PDCCH距PUSCH的时长)也可以设置为满足大于或等于状态转换时长,即终端设备从休眠态中唤醒所需的时间,或者说终端设备完成warm up 过程所需的时间。
应理解,在跨载波调度的场景中,终端设备也可以配置多个睡眠等级,这样第一CC和第二CC跨载波调度的时间间隔可以根据终端设备在接收到第一消息时,在第二CC上所处的睡眠等级确定。还应理解,虽然终端设备在第二CC上设置有onDurationTimer和InactivityTimer,但终端设备在第二CC上在这些定时器的运行过程中不需要监听PDCCH,可以节省终端设备的功耗。其他未详细描述之处,均可参考上文相关描述,不再赘述。
本申请实施例中的跨载波调度场景中,终端设备在第二CC上传输数据的位置在终端设备完成从休眠态中唤醒的过程之后,可以避免终端设备在从休眠态中唤醒的过程传输数据,提高通信质量。
上述实施例中,终端设备在第一CC上接收到第一消息后,即指示终端设备在第二CC上监听PDCCH和/或传输数据。为了进一步节省终端设备的功耗,本申请实施例还提供了又一种无线网络通信方法,当满足预设条件后,第一消息才指示终端设备在第二CC上监听PDCCH和/或传输数据。下面结合附图进行详细介绍。
参考图15,与图10至图14不同的是,当满足预设条件时,终端设备在第一CC上接收的第一消息才指示终端设备开启第二CC对应的InactivityTimer。例如在位置①和位置③,终端设备在第一CC上接收到第一消息例如DCI不满足预设条件,因此终端设备在第二CC上没有开启第二CC对应的InactivityTimer,也就无法在第二CC上监听PDCCH和/或传输数据。在位置②和位置④,终端设备在第一CC上接收到第一消息例如DCI满足预设条件,因此终端设备开启第二CC对应的InactivityTimer,然后终端设备在在第二CC对应的InactivityTimer的运行时间内监听PDCCH和/或传输数据。
具体地,例如在位置①和位置③,终端设备在第一CC上接收到第一消息例如DCI不包括指示信息,而在位置②和位置④,终端设备在第一CC上接收到第一消息例如DCI包括指示信息。所以终端设备在位置①和位置③不开启第二CC对应的InactivityTimer,在位置②和位置④开启第二CC对应的InactivityTimer。
再如,在位置①和位置③,终端设备在第一CC上接收到第一消息例如PDCCH携带指示域,该指示域指示开启第二CC对应的InactivityTimer或者影响第二CC对应的InactivityTimer,而在位置②和位置④,终端设备在第一CC上接收到第一消息例如PDCCH中,指示域指示不开启第二CC对应的InactivityTimer或者不影响第二CC对应的InactivityTimer。所以终端设备在位置①和位置③不开启第二CC对应的InactivityTimer,在位置②和位置④开启第二CC对应的InactivityTimer。
又如,终端设备在第一CC上接收到第一消息例如DCI是终端设备在第一CC上配置的一个DRX周期中接收到的第N个第一消息,该第N个第一消息用于指示开启第二CC对应的InactivityTimer;或者,该第N个第一消息之后的第一消息用于指示开启第二CC对应的InactivityTimer。参考图15,在位置④,终端设备在第一CC上接收到第一消息例如DCI是终端设备在第一CC上配置的一个DRX周期中接收到的第二个第一消息,所以该第二个第一消息用于指示开启第二CC对应的InactivityTimer。当然,当终端设备接收第一消息的时机满足预设规则时,均可以指示开启第二CC对应的InactivityTimer。该预设规则可以根据实际需要进行设定,本申请实施例对此不做限定。
仍参考图15,在位置④,终端设备在第一CC上接收第一消息时,终端设备在第二 CC上处于激活态,终端设备可以直接在第二CC对应的InactivityTimer运行时间内监听PDCCH和/或传输数据。但在位置②,终端设备在第一CC上接收第一消息时,终端设备在第二CC上处于休眠态,所以终端设备想要在第二CC对应的InactivityTimer运行时间内监听PDCCH和/或传输数据,需要先从休眠态中唤醒(参考图16)。如果按照现有机制进行,又会出现终端设备在从休眠态中唤醒的过程中无法有效进行信令和数据的传输问题。上述图10至图14所述的方法可以进一步应用于图15和图16中所述的方法中,具体参考上文描述,在此不再赘述。
为进一步节省终端设备在第二CC上的功耗,本申请提供了又一种无线通信方法。参考图17,与图16不同的是,第二CC上可以只配置第二CC对应的InactivityTimer,而取消第二CC对应的onDurationTimer。这样终端设备在第二CC上默认不监听PDCCH,只有当终端设备在第一CC上接收的第一消息满足预设条件时,终端设备才开启第二CC对应的InactivityTimer。终端设备在第二CC对应的InactivityTimer的运行时间内,监听PDCCH和/或传输数据。由于图17中取消了第二CC对应的onDurationTimer,所以终端设备在第一CC上结合第一消息时,终端设备在第二CC上均处于休眠态。与图16中存在的问题类似,所以终端设备想要在第二CC对应的InactivityTimer运行时间内监听PDCCH和/或传输数据,需要先从休眠态中唤醒。如果按照现有机制进行,又会出现终端设备在从休眠态中唤醒的过程中无法有效进行信令和数据的传输问题。上述图10至图14所述的方法可以进一步应用于图17中所述的方法中,具体参考上文描述,在此不再赘述。
上文结合图1至图17详细的描述了本申请实施例的方法实施例,下面结合图18至图21,详细描述本申请实施例的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图18是本申请实施例提供的终端设备的示意性结构图。图18中的终端设备1800可以是图1中的终端设备120的一个具体的例子。图18所示的终端设备可以用于执行图8中的方法800或用于执行图9中的方法900,并且可以具体实现图10至图17所示的实施例,为避免冗余,不再重复描述。
图18所示的终端设备1800包括收发单元1810和处理单元1820。
收发单元1810,用于在第一载波上接收网络设备发送的第一消息,所述第一消息用于指示所述终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
处理单元1820,用于在所述终端设备在所述第二载波上处于休眠态的情况下,经过第一时间长度之后,所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
可选地,处理单元1820还用于经过所述第一时间长度后,开启第一定时器,其中,在所述第一定时器的运行过程中,所述终端设备能够在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
可选地,处理单元1820还用于在接收所述第一消息时,开启所述第一定时器,其中所述终端设备在所述第一时间长度内,在所述第二载波上不监听PDCCH或不进行数据传输。
可选地,处理单元1820还用于经过所述第一时间长度后,开启第二定时器;或者, 在接收所述第一消息时,开启所述第二定时器;其中,在所述第二定时器的运行过程中,所述终端设备能够在所述第一载波上执行监听PDCCH和传输数据中的至少一种。
可选地,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,当所述第一消息用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
可选地,当满足预设条件时,所述第一消息用于指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
可选地,所述预设条件包括:所述第一消息包括指示信息;或者,所述第一消息包括指示域,所述指示域指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,所述终端设备接收所述第一消息的时机满足预设规则。
可选地,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
图19是本申请实施例提供的通信装置的示意性结构图。图19中的通信装置1900可以是图1中的终端设备120一个具体的例子。图19所示的通信装置可以用于执行图8中的方法800或用于执行图9中的方法900,为避免冗余,不再重复描述。
该通信装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。通信装置1900包括至少一个处理器1920,用于实现本申请实施例提供的方法,具体参见方法示例中的详细描述,此处不做赘述。可选地,处理器1920的功能同处理单元1820的功能。
通信装置1900还可以包括至少一个存储器1910,用于存储程序指令和/或数据。存储器1910和处理器1920耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1910可能和存储器1920协同操作。处理器1910可能执行存储器1920中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置1900还可以包括通信接口1930,用于通过传输介质和其它设备进行通信,从而用于通信装置1900中的装置可以和其它设备进行通信。示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。示例性地,通信装置1900是终端设备,该其它设备是为网络设备。处理器1920利用通信接口1930收发数据,并用于实现图8或图9对应的实施例中所述终端设备所执行的方法。
本申请实施例中不限定上述通信接口1930处理器1920以及存储器1910之间的具体连接介质。本申请实施例在图19中以存储器1910、处理器1920以及通信接口1930之间通过总线1940连接,总线在图19中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图19中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图20是本申请实施例提供的网络设备的示意性结构图。图20中的网络设备2000可 以是图1中的网络设备110的一个具体的例子。图20所示的网络设备可以用于执行图8中的方法800或用于执行图9中的方法900,并且可以具体实现图10至图17所示的实施例,为避免冗余,不再重复描述。
图20所示的网络设备2000包括收发单元2010和处理单元2020。
收发单元1010,用于用于在第一载波上向终端设备发送第一消息,所述第一消息用于指示所述终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
处理单元2020,用于用于在所述终端设备在所述第二载波上处于休眠态的情况下,经过第一时间长度之后,在所述第二载波上执行向所述终端设备发送PDCCH和传输数据中的至少一种。
可选地,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,当所述第一消息用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
可选地,当满足预设条件时,所述第一消息用于指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
可选地,所述预设条件包括:所述第一消息包括指示信息;或者,所述第一消息包括指示域,所述指示域指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,所述网络设备发送所述第一消息的时机满足预设规则。
可选地,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
图21是本申请实施例提供的通信装置的示意性结构图。图21中的通信装置2100可以是图1中的网络设备110一个具体的例子。图21所示的通信装置可以用于执行图8或图9的方法,为避免冗余,不再重复描述。
该通信装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。通信装置2100包括至少一个处理器2120,用于实现本申请实施例提供的方法,具体参见方法示例中的详细描述,此处不做赘述。可选地,处理器2120的功能同处理单元2020的功能。
通信装置2100还可以包括至少一个存储器2110,用于存储程序指令和/或数据。存储器2110和处理器2120耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器2110可能和存储器2120协同操作。处理器2110可能执行存储器2120中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
通信装置2100还可以包括通信接口2130,用于通过传输介质和其它设备进行通信,从而用于通信装置2100中的装置可以和其它设备进行通信。示例性的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。示例性地,通信装置2100是终端设备,该其它设备是为网络设备。处理器2120利用通信接口2130收发数据,并用于实现图8或图9对应的实施例中所述所述的网络设备所执行的方法。
本申请实施例中不限定上述通信接口2130处理器2120以及存储器2110之间的具体连接介质。本申请实施例在图21中以存储器2110、处理器2120以及通信接口2130之间通过总线2140连接,总线在图21中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图21中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
综上,本申请实施例提供一种无线通信方法、终端设备和网络设备。
实施例一
提供一种无线通信方法,其特征在于,包括:终端设备在第一载波上接收网络设备发送的第一消息,所述第一消息用于指示所述终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种;在所述终端设备在所述第二载波上处于休眠态的情况下,经过第一时间长度之后,所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
可选地,根据实施例一中所述的方法,其特征在于,还包括:经过所述第一时间长度后,所述终端设备开启第一定时器,其中,在所述第一定时器的运行过程中,所述终端设备能够在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,在接收所述第一消息时,所述终端设备开启所述第一定时器,其中所述终端设备在所述第一时间长度内,在所述第二载波上不监听PDCCH或不进行数据传输。
可选地,根据实施例一中所述的方法,其特征在于,还包括:经过所述第一时间长度后,所述终端设备开启第二定时器;或者,在接收所述第一消息时,所述终端设备开启所述第二定时器;其中,在所述第二定时器的运行过程中,所述终端设备能够在所述第一载波上执行监听PDCCH和传输数据中的至少一种。
可选地,根据实施例一中所述的方法,其特征在于,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,根据实施例一中所述的方法,其特征在于,当所述第一消息用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
可选地,根据实施例一中所述的方法,其特征在于,所述终端设备配置有至少一个睡眠等级,所述方法还包括:所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于指示至少一个时间长度,所述至少一个时间长度包括所述第一时间长度,所述至少一个睡眠等级中的每个睡眠等级对应所述至少一个时间长度中的一个。
可选地,根据实施例一中所述的方法,其特征在于,所述终端设备配置有所述至少一个时间长度中的多个时间长度和所述至少一个睡眠等级中的多个睡眠等级,所述方法还包括:所述终端设备根据当前睡眠等级,从所述多个时间长度中确定所述第一时间长度。
可选地,根据实施例一中所述的方法,其特征在于,所述方法还包括:在所述终端设备配置有一个睡眠等级的情况下,所述终端设备向所述网络设备发送所述一个睡眠等级相对应的状态转换时长;或者,在所述终端设备配置有多个睡眠等级的情况下,所述终端设备向所述网络设备发送所述多个睡眠等级和与所述多个睡眠等级中每个睡眠等级相对应 的状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,根据实施例一中所述的方法,其特征在于,所述第一消息包括物理下行控制信息DCI。
可选地,根据实施例一中所述的方法,其特征在于,当满足预设条件时,所述第一消息用于指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
可选地,根据实施例一中所述的方法,其特征在于,所述预设条件包括:所述第一消息包括指示信息;或者,所述第一消息包括指示域,所述指示域指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,所述终端设备接收所述第一消息的时机满足预设规则。
可选地,根据实施例一中所述的方法,其特征在于,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
实施例二
提供一种无线通信方法,其特征在于,包括:网络设备在第一载波上向终端设备发送第一消息,所述第一消息用于指示所述终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种;在所述终端设备在所述第二载波上处于休眠态的情况下,经过第一时间长度之后,所述网络设备在所述第二载波上执行向所述终端设备发送PDCCH和传输数据中的至少一种。
可选地,根据实施例二中所述的方法,其特征在于,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,根据实施例二中所述的方法,其特征在于,当所述第一消息用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
可选地,根据实施例二中所述的方法,其特征在于,所述终端设备配置有至少一个睡眠等级,所述方法还包括:所述网络设备向所述终端设备发送配置信息,所述配置信息用于指示至少一个时间长度,所述至少一个时间长度包括所述第一时间长度,所述至少一个睡眠等级中的每个睡眠等级对应所述至少一个时间长度中的一个。
可选地,根据实施例二中所述的方法,其特征在于,还包括:在所述终端设备配置有一个睡眠等级的情况下,所述网络设备接收所述终端设备发送的所述一个睡眠等级相对应的状态转换时长;或者,在所述终端设备配置有多个睡眠等级的情况下,所述网络设备接收所述终端设备发送的所述多个睡眠等级和与所述多个睡眠等级中每个睡眠等级相对应的状态转换时长,所述状态转换时长为所述终端设备从休眠态转换为激活态时所需的时间。
可选地,根据实施例二中所述的方法,其特征在于,所述第一消息包括物理下行控制信息DCI。
可选地,根据实施例二中所述的方法,其特征在于,当满足预设条件时,所述第一消息用于指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
可选地,根据实施例二中所述的方法,其特征在于,所述预设条件包括:所述第一消息包括指示信息;或者,所述第一消息包括指示域,所述指示域指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,所述网络设备发送所述第 一消息的时机满足预设规则。
可选地,根据实施例二中所述的方法,其特征在于,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
实施例三
提供一种无线通信方法,其特征在于,包括:终端设备在第一载波上接收网络设备发送的第一消息,所述第一消息用于指示所述终端设备在第二载波上是否开启第一定时器;所述终端设备根据所述第一消息开启所述第一定时器,在所述第一定时器的运行过程中,所述终端设备在所述第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
可选地,根据实施例三中所述的方法,其特征在于,所述终端设备根据所述第一消息开启所述第一定时器,包括:当所述第一消息包括指示信息时,所述终端设备开启所述第一定时器;或者,所述第一消息包括指示域,当所述指示域指示开启所述第一定时器时,所述终端设备开启所述第一定时器;或者,当所述终端设备接收所述第一消息的时机满足预设规则时,所述终端设备开启所述第一定时器。
可选地,根据实施例三中所述的方法,其特征在于,在所述终端设备接收所述第一消息时,所述终端设备在所述第二载波上处于休眠态的情况下,所述方法还包括:自接收所述第一消息开始,经过第一时间长度之后,所述终端设备在所述第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
可选地,根据实施例三中所述的方法,其特征在于,还包括:经过所述第一时间长度后,所述终端设备开启所述第一定时器;或者,在接收所述第一消息时,所述终端设备开启所述第一定时器,其中,所述终端设备在所述第一时间长度内,在所述第二载波上不监听PDCCH或不进行数据传输。
可选地,根据实施例三中所述的方法,其特征在于,还包括:自接收所述第一消息开始,经过所述第一时间长度之后,所述终端设备开启第二定时器;或者,在接收所述第一消息时,所述终端设备开启所述第二定时器;其中,在所述第二定时器的运行过程中,所述终端设备能够在所述第一载波上执行监听PDCCH和传输数据中的至少一种。
可选地,根据实施例三中所述的方法,其特征在于,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,根据实施例三中所述的方法,其特征在于,当所述第一消息还用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
可选地,根据实施例三中所述的方法,其特征在于,所述终端设备配置有至少一个睡眠等级,所述方法还包括:所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于指示至少一个时间长度,所述至少一个时间长度包括所述第一时间长度,所述至少一个睡眠等级中的每个睡眠等级对应所述至少一个时间长度中的一个。
可选地,根据实施例三中所述的方法,其特征在于,所述终端设备配置有所述至少一个时间长度中的多个时间长度和所述至少一个睡眠等级中的多个睡眠等级,所述方法还包括:所述终端设备根据当前睡眠等级,从所述多个时间长度中确定所述第一时间长度。
可选地,根据实施例三中所述的方法,其特征在于,所述方法还包括:在所述终端设 备配置有一个睡眠等级的情况下,所述终端设备向所述网络设备发送所述一个睡眠等级相对应的状态转换时长;或者,在所述终端设备配置有多个睡眠等级的情况下,所述终端设备向所述网络设备发送所述多个睡眠等级和与所述多个睡眠等级中每个睡眠等级相对应的状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,根据实施例三中所述的方法,其特征在于,所述第一消息包括物理下行控制信息DCI。
可选地,根据实施例三中所述的方法,其特征在于,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
实施例四
提供一种无线通信方法,其特征在于,包括:网络设备在第一载波上向终端设备发送第一消息,所述第一消息用于指示所述终端设备在第二载波上是否开启第一定时器,其中,在所述第一定时器的运行过程中,所述终端设备能够在所述第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
可选地,根据实施例四中所述的方法,其特征在于,当满足以下条件时,所述第一消息指示所述终端设备在所述第二载波上开启所述第一定时器:所述第一消息包括指示信息;或者,所述第一消息包括指示域,所述指示域指示开启所述第一定时器;或者,所述第一消息的发送时机满足预设规则。
可选地,根据实施例四中所述的方法,其特征在于,在所述终端设备处于休眠态的情况下,还包括:自发送所述第一消息开始,经过第一时间长度之后,所述网络设备在所述第二载波上执行向所述终端设备发送PDCCH和传输数据中的至少一种。
可选地,根据实施例四中所述的方法,其特征在于,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,根据实施例四中所述的方法,其特征在于,所述终端设备配置有至少一个睡眠等级,所述方法还包括:所述网络设备向所述终端设备发送配置信息,所述配置信息用于指示至少一个时间长度,所述至少一个时间长度包括所述第一时间长度,所述至少一个睡眠等级中的每个睡眠等级对应所述至少一个时间长度中的一个。
可选地,根据实施例四中所述的方法,其特征在于,还包括:在所述终端设备配置有一个睡眠等级的情况下,所述网络设备接收所述终端设备发送的所述一个睡眠等级相对应的状态转换时长;或者,在所述终端设备配置有多个睡眠等级的情况下,所述网络设备接收所述终端设备发送的所述多个睡眠等级和与所述多个睡眠等级中每个睡眠等级相对应的状态转换时长,所述状态转换时长为所述终端设备从休眠态转换为激活态时所需的时间。
可选地,根据实施例四中所述的方法,其特征在于,所述第一消息包括物理下行控制信息DCI。
可选地,根据实施例四中所述的方法,其特征在于,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
实施例五
提供一种终端设备,其特征在于,包括:收发器,用于在第一载波上接收网络设备发送的第一消息,所述第一消息用于指示所述终端设备在第二载波上执行监听物理下行控制 信道PDCCH和传输数据中的至少一种;处理器,用于在所述终端设备在所述第二载波上处于休眠态的情况下,经过第一时间长度之后,在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
可选地,根据实施例五中所述的终端设备,其特征在于,所述处理器还用于,经过所述第一时间长度后,开启第一定时器,其中,在所述第一定时器的运行过程中,所述终端设备能够在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,在接收所述第一消息时,开启所述第一定时器,其中所述终端设备在所述第一时间长度内,在所述第二载波上不监听PDCCH或不进行数据传输。
可选地,根据实施例五中所述的终端设备,其特征在于,所述处理器还用于,经过所述第一时间长度后,启第二定时器;或者,在接收所述第一消息时,开启所述第二定时器;其中,在所述第二定时器的运行过程中,所述终端设备能够在所述第一载波上执行监听PDCCH和传输数据中的至少一种。
可选地,根据实施例五中所述的终端设备,其特征在于,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,根据实施例五中所述的终端设备,其特征在于,当所述第一消息用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
可选地,根据实施例五中所述的终端设备,其特征在于,所述终端设备配置有至少一个睡眠等级,所述收发器还用于,接收所述网络设备发送的配置信息,所述配置信息用于指示至少一个时间长度,所述至少一个时间长度包括所述第一时间长度,所述至少一个睡眠等级中的每个睡眠等级对应所述至少一个时间长度中的一个。
可选地,根据实施例五中所述的终端设备,其特征在于,所述终端设备配置有所述至少一个时间长度中的多个时间长度和所述至少一个睡眠等级中的多个睡眠等级,所述处理器还用于,根据当前睡眠等级,从所述多个时间长度中确定所述第一时间长度。
可选地,根据实施例五中所述的终端设备,其特征在于,所述收发器还用于,在所述终端设备配置有一个睡眠等级的情况下,向所述网络设备发送所述一个睡眠等级相对应的状态转换时长;或者,在所述终端设备配置有多个睡眠等级的情况下,向所述网络设备发送所述多个睡眠等级和与所述多个睡眠等级中每个睡眠等级相对应的状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,根据实施例五中所述的终端设备,其特征在于,所述第一消息包括物理下行控制信息DCI。
可选地,根据实施例五中所述的终端设备,其特征在于,当满足预设条件时,所述第一消息用于指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
可选地,根据实施例五中所述的终端设备,其特征在于,所述预设条件包括:所述第一消息包括指示信息;或者,所述第一消息包括指示域,所述指示域指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,所述终端设备接收所述第一消息的时机满足预设规则。
可选地,根据实施例五中所述的终端设备,其特征在于,所述第一载波的频率范围为 6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
实施例六
提供一种网络设备,其特征在于,包括:收发器,用于在第一载波上向终端设备发送第一消息,所述第一消息用于指示所述终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种;处理器,用于在所述终端设备在所述第二载波上处于休眠态的情况下,经过第一时间长度之后,在所述第二载波上执行向所述终端设备发送PDCCH和传输数据中的至少一种。
可选地,根据实施例六中所述的网络设备,其特征在于,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,根据实施例六中所述的网络设备,其特征在于,当所述第一消息用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
可选地,根据实施例六中所述的网络设备,其特征在于,所述终端设备配置有至少一个睡眠等级,所述收发器还用于,向所述终端设备发送配置信息,所述配置信息用于指示至少一个时间长度,所述至少一个时间长度包括所述第一时间长度,所述至少一个睡眠等级中的每个睡眠等级对应所述至少一个时间长度中的一个。
可选地,根据实施例六中所述的网络设备,其特征在于,所述收发器还用于,在所述终端设备配置有一个睡眠等级的情况下,接收所述终端设备发送的所述一个睡眠等级相对应的状态转换时长;或者,在所述终端设备配置有多个睡眠等级的情况下,接收所述终端设备发送的所述多个睡眠等级和与所述多个睡眠等级中每个睡眠等级相对应的状态转换时长,所述状态转换时长为所述终端设备从休眠态转换为激活态时所需的时间。
可选地,根据实施例六中所述的网络设备,其特征在于,所述第一消息包括物理下行控制信息DCI。
可选地,根据实施例六中所述的网络设备,其特征在于,当满足预设条件时,所述第一消息用于指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
可选地,根据实施例六中所述的网络设备,其特征在于,所述预设条件包括:所述第一消息包括指示信息;或者,所述第一消息包括指示域,所述指示域指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,所述网络设备发送所述第一消息的时机满足预设规则。
可选地,根据实施例六中所述的网络设备,其特征在于,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
实施例七
提供一种终端设备,其特征在于,包括:收发器,用于在第一载波上接收网络设备发送的第一消息,所述第一消息用于指示所述终端设备在第二载波上是否开启第一定时器;处理器,用于根据所述第一消息开启所述第一定时器,在所述第一定时器的运行过程中,所述终端设备在所述第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
可选地,根据实施例七中所述的终端设备,其特征在于,所述处理器具体用于,当所 述第一消息包括指示信息时,开启所述第一定时器;或者,所述第一消息包括指示域,当所述指示域指示开启所述第一定时器时,开启所述第一定时器;或者,当所述终端设备接收所述第一消息的时机满足预设规则时,开启所述第一定时器。
可选地,根据实施例七中所述的终端设备,其特征在于,在所述终端设备接收所述第一消息时,所述终端设备在所述第二载波上处于休眠态的情况下,所述处理器还用于,自接收所述第一消息开始,经过第一时间长度之后,在所述第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
可选地,根据实施例七中所述的终端设备,其特征在于,所述处理器具体用于,经过所述第一时间长度后,开启所述第一定时器;或者,在接收所述第一消息时,开启所述第一定时器,其中,所述终端设备在所述第一时间长度内,在所述第二载波上不监听PDCCH或不进行数据传输。
可选地,根据实施例七中所述的终端设备,其特征在于,所述处理器还用于,自接收所述第一消息开始,经过所述第一时间长度之后,开启第二定时器;或者,在接收所述第一消息时,开启所述第二定时器;其中,在所述第二定时器的运行过程中,所述终端设备能够在所述第一载波上执行监听PDCCH和传输数据中的至少一种。
可选地,根据实施例七中所述的终端设备,其特征在于,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,根据实施例七中所述的终端设备,其特征在于,当所述第一消息还用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
可选地,根据实施例七中所述的终端设备,其特征在于,所述终端设备配置有至少一个睡眠等级,所述收发器还用于,接收所述网络设备发送的配置信息,所述配置信息用于指示至少一个时间长度,所述至少一个时间长度包括所述第一时间长度,所述至少一个睡眠等级中的每个睡眠等级对应所述至少一个时间长度中的一个。
可选地,根据实施例七中所述的终端设备,其特征在于,所述终端设备配置有所述至少一个时间长度中的多个时间长度和所述至少一个睡眠等级中的多个睡眠等级,所述处理器还用于,根据当前睡眠等级,从所述多个时间长度中确定所述第一时间长度。
可选地,根据实施例七中所述的终端设备,其特征在于,所述收发器还用于,在所述终端设备配置有一个睡眠等级的情况下,向所述网络设备发送所述一个睡眠等级相对应的状态转换时长;或者,在所述终端设备配置有多个睡眠等级的情况下,向所述网络设备发送所述多个睡眠等级和与所述多个睡眠等级中每个睡眠等级相对应的状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,根据实施例七中所述的终端设备,其特征在于,所述第一消息包括物理下行控制信息DCI。
可选地,根据实施例七中所述的终端设备,其特征在于,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
实施例八
提供一种网络设备,其特征在于,包括:收发器,用于在第一载波上向终端设备发送第一消息,所述第一消息用于指示所述终端设备在第二载波上是否开启第一定时器,其中, 在所述第一定时器的运行过程中,所述终端设备能够在所述第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种。
可选地,根据实施例八中所述的网络设备,其特征在于,当满足以下条件时,所述第一消息指示所述终端设备在所述第二载波上开启所述第一定时器:所述第一消息包括指示信息;或者,所述第一消息包括指示域,所述指示域指示开启所述第一定时器;或者,所述第一消息的发送时机满足预设规则。
可选地,根据实施例八中所述的网络设备,其特征在于,所述网络设备还包括处理器,在所述终端设备处于休眠态的情况下,所述处理器用于,自发送所述第一消息开始,经过第一时间长度之后,在所述第二载波上执行向所述终端设备发送PDCCH和传输数据中的至少一种。
可选地,根据实施例八中所述的网络设备,其特征在于,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
可选地,根据实施例八中所述的网络设备,其特征在于,所述终端设备配置有至少一个睡眠等级,所述收发器还用于,向所述终端设备发送配置信息,所述配置信息用于指示至少一个时间长度,所述至少一个时间长度包括所述第一时间长度,所述至少一个睡眠等级中的每个睡眠等级对应所述至少一个时间长度中的一个。
可选地,根据实施例八中所述的网络设备,其特征在于,所述收发器还用于,在所述终端设备配置有一个睡眠等级的情况下,接收所述终端设备发送的所述一个睡眠等级相对应的状态转换时长;或者,在所述终端设备配置有多个睡眠等级的情况下,接收所述终端设备发送的所述多个睡眠等级和与所述多个睡眠等级中每个睡眠等级相对应的状态转换时长,所述状态转换时长为所述终端设备从休眠态转换为激活态时所需的时间。
可选地,根据实施例八中所述的网络设备,其特征在于,所述第一消息包括物理下行控制信息DCI。
可选地,根据实施例八中所述的网络设备,其特征在于,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备在第一载波上接收网络设备发送的第一消息,所述第一消息用于指示所述终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种;
    在所述终端设备在所述第二载波上处于休眠态的情况下,经过第一时间长度之后,所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    经过所述第一时间长度后,所述终端设备开启第一定时器,其中,在所述第一定时器的运行过程中,所述终端设备能够在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,
    在接收所述第一消息时,所述终端设备开启所述第一定时器,其中所述终端设备在所述第一时间长度内,在所述第二载波上不监听PDCCH或不进行数据传输。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    经过所述第一时间长度后,所述终端设备开启第二定时器;或者,
    在接收所述第一消息时,所述终端设备开启所述第二定时器;
    其中,在所述第二定时器的运行过程中,所述终端设备能够在所述第一载波上执行监听PDCCH和传输数据中的至少一种。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,当所述第一消息用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,当满足预设条件时,所述第一消息用于指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
  7. 根据权利要求6所述的方法,其特征在于,所述预设条件包括:
    所述第一消息包括指示信息;或者
    所述第一消息包括指示域,所述指示域指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,
    所述终端设备接收所述第一消息的时机满足预设规则。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
  9. 一种无线通信方法,其特征在于,包括:
    网络设备在第一载波上向终端设备发送第一消息,所述第一消息用于指示所述终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种;
    在所述终端设备在所述第二载波上处于休眠态的情况下,经过第一时间长度之后,所述网络设备在所述第二载波上执行向所述终端设备发送PDCCH和传输数据中的至少一 种。
  10. 根据权利要求9所述的方法,其特征在于,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
  11. 根据权利要求9或10所述的方法,其特征在于,当所述第一消息用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,当满足预设条件时,所述第一消息用于指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
  13. 根据权利要求12所述的方法,其特征在于,所述预设条件包括:
    所述第一消息包括指示信息;或者
    所述第一消息包括指示域,所述指示域指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,
    所述网络设备发送所述第一消息的时机满足预设规则。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
  15. 一种终端设备,其特征在于,包括:
    收发器,用于在第一载波上接收网络设备发送的第一消息,所述第一消息用于指示所述终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种;
    处理器,用于在所述终端设备在所述第二载波上处于休眠态的情况下,经过第一时间长度之后,在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
  16. 根据权利要求15所述的终端设备,其特征在于,所述处理器还用于:
    经过所述第一时间长度后,开启第一定时器,其中,在所述第一定时器的运行过程中,所述终端设备能够在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,
    在接收所述第一消息时,开启所述第一定时器,其中所述终端设备在所述第一时间长度内,在所述第二载波上不监听PDCCH或不进行数据传输。
  17. 根据权利要求16所述的终端设备,其特征在于,所述处理器还用于:
    经过所述第一时间长度后,开启第二定时器;或者,
    在接收所述第一消息时,开启所述第二定时器;
    其中,在所述第二定时器的运行过程中,所述终端设备能够在所述第一载波上执行监听PDCCH和传输数据中的至少一种。
  18. 根据权利要求15至17中任一项所述的终端设备,其特征在于,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
  19. 根据权利要求15至18中任一项所述的终端设备,其特征在于,当所述第一消息用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
  20. 根据权利要求15至19中任一项所述的终端设备,其特征在于,当满足预设条件时,所述第一消息用于指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据 中的至少一种。
  21. 根据权利要求20所述的终端设备,其特征在于,所述预设条件包括:
    所述第一消息包括指示信息;或者
    所述第一消息包括指示域,所述指示域指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,
    所述终端设备接收所述第一消息的时机满足预设规则。
  22. 根据权利要求15至21中任一项所述的终端设备,其特征在于,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
  23. 一种网络设备,其特征在于,包括:
    收发器,用于在第一载波上向终端设备发送第一消息,所述第一消息用于指示所述终端设备在第二载波上执行监听物理下行控制信道PDCCH和传输数据中的至少一种;
    处理器,用于在所述终端设备在所述第二载波上处于休眠态的情况下,经过第一时间长度之后,在所述第二载波上执行向所述终端设备发送PDCCH和传输数据中的至少一种。
  24. 根据权利要求23所述的网络设备,其特征在于,所述第一时间长度大于或等于状态转换时长,所述状态转换时长为所述终端设备从休眠态中唤醒所需的时间。
  25. 根据权利要求23或24所述的网络设备,其特征在于,当所述第一消息用于指示所述终端设备在所述第二载波上传输数据时,所述数据与所述第一消息之间的时间间隔大于或等于所述第一时间长度。
  26. 根据权利要求23至25中任一项所述的网络设备,其特征在于,当满足预设条件时,所述第一消息用于指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种。
  27. 根据权利要求26所述的网络设备,其特征在于,所述预设条件包括:
    所述第一消息包括指示信息;或者
    所述第一消息包括指示域,所述指示域指示所述终端设备在所述第二载波上执行监听PDCCH和传输数据中的至少一种;或者,
    所述网络设备发送所述第一消息的时机满足预设规则。
  28. 根据权利要求23至27中任一项所述的网络设备,其特征在于,所述第一载波的频率范围为6GHz以下,和/或所述第二载波的频率范围为毫米波频段。
  29. 一种计算机可读存储介质,其特征在于,存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至8中任一项所述的方法,或者使得所述计算机执行如权利要求9至14中任一项所述的方法。
PCT/CN2020/124351 2020-01-22 2020-10-28 无线通信方法、终端设备和网络设备 WO2021147424A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20915704.9A EP4080929A4 (en) 2020-01-22 2020-10-28 WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010074661.4 2020-01-22
CN202010074661.4A CN113163413B (zh) 2020-01-22 2020-01-22 无线通信方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2021147424A1 true WO2021147424A1 (zh) 2021-07-29

Family

ID=76881599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124351 WO2021147424A1 (zh) 2020-01-22 2020-10-28 无线通信方法、终端设备和网络设备

Country Status (3)

Country Link
EP (1) EP4080929A4 (zh)
CN (1) CN113163413B (zh)
WO (1) WO2021147424A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148193B (zh) * 2018-11-02 2021-09-07 华为技术有限公司 一种信息传输方法及通信装置
WO2023141997A1 (zh) * 2022-01-28 2023-08-03 北京小米移动软件有限公司 一种监听下行信道的方法、装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078365A1 (en) * 2008-12-30 2010-07-08 Interdigital Patent Holdings, Inc. Discontinuous reception for carrier aggregation
CN101932070A (zh) * 2009-06-19 2010-12-29 大唐移动通信设备有限公司 一种载波聚合系统中配置载波的方法及装置
CN109246826A (zh) * 2017-06-16 2019-01-18 华为技术有限公司 Drx配置方法、终端设备、网络设备和通信系统
CN110278564A (zh) * 2014-01-28 2019-09-24 华为技术有限公司 信道监听方法及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3338392B1 (en) * 2015-08-17 2019-08-07 Telefonaktiebolaget LM Ericsson (publ) Activation of cells
CA3011198C (en) * 2016-01-11 2022-09-20 Telefonaktiebolaget Lm Ericsson (Publ) Method for controlling connected mode drx operations
US10912026B2 (en) * 2018-03-21 2021-02-02 Mediatek Singapore Pte. Ltd. Power-efficient mechanism for multi-link operation in mobile communications
CN110351898B (zh) * 2018-04-04 2023-06-30 华为技术有限公司 非连续接收的通信方法、装置、通信设备和通信系统
CN109219116B (zh) * 2018-08-09 2022-05-31 华为技术有限公司 一种终端设备的休眠方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078365A1 (en) * 2008-12-30 2010-07-08 Interdigital Patent Holdings, Inc. Discontinuous reception for carrier aggregation
CN101932070A (zh) * 2009-06-19 2010-12-29 大唐移动通信设备有限公司 一种载波聚合系统中配置载波的方法及装置
CN110278564A (zh) * 2014-01-28 2019-09-24 华为技术有限公司 信道监听方法及设备
CN109246826A (zh) * 2017-06-16 2019-01-18 华为技术有限公司 Drx配置方法、终端设备、网络设备和通信系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "On the scope of serving cell configuration/activation/setup in the MR DC/CA enhancement work item", 3GPP DRAFT; R1-1906700 PDCCH MONITORING ADAPTATION_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 4 May 2019 (2019-05-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051708736 *
SAMSUNG: "PDCCH-based power saving signal/channel", 3GPP DRAFT; R1-1906980 ON PDCCH-BASED POWER SAVING SIGNAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 12, XP051709014 *

Also Published As

Publication number Publication date
EP4080929A4 (en) 2023-06-14
EP4080929A1 (en) 2022-10-26
CN113163413B (zh) 2023-09-01
CN113163413A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
EP2443899B1 (en) Method and system for discontinuous reception operation for long term evolution advanced carrier aggregation
JP6174249B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2020224552A1 (zh) 唤醒终端设备的方法、装置、网络设备和终端设备
WO2021204215A1 (zh) 一种drx控制方法及装置
CN113508566A (zh) 一种监听唤醒信号的方法、电子设备及存储介质
WO2020215332A1 (zh) 非连续接收的方法和设备
US20220053596A1 (en) Discontinuous reception control method, device and storage medium
WO2021147424A1 (zh) 无线通信方法、终端设备和网络设备
US20220095230A1 (en) Discontinuous reception method, electronic device and storage medium
CN114286429B (zh) 一种通信方法及设备
WO2022062685A1 (zh) 一种通信方法及设备
CN109644403A (zh) 无线通信的方法和设备
CN113950164B (zh) 控制多个无线电接口上的非连续接收行为的方法和设备
WO2020143751A1 (zh) 通信方法和通信装置
WO2023123241A1 (zh) 无线通信方法、终端设备和网络设备
EP4274295A1 (en) Sidelink discontinuous reception configuration method and apparatus, device, and readable storage medium
WO2023004637A1 (en) Methods and apparatuses for maintaining an uu interface associated timer with a sl drx scheme
WO2023098574A1 (zh) 一种传输指示方法及通信装置
WO2022033427A1 (zh) 副链路非连续接收的控制方法及装置
CN116614782A (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020915704

Country of ref document: EP

Effective date: 20220722

NENP Non-entry into the national phase

Ref country code: DE