WO2022077142A1 - 物理上行共享信道发送的方法和通信装置 - Google Patents

物理上行共享信道发送的方法和通信装置 Download PDF

Info

Publication number
WO2022077142A1
WO2022077142A1 PCT/CN2020/120301 CN2020120301W WO2022077142A1 WO 2022077142 A1 WO2022077142 A1 WO 2022077142A1 CN 2020120301 W CN2020120301 W CN 2020120301W WO 2022077142 A1 WO2022077142 A1 WO 2022077142A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
precoding
dci
layer signaling
time unit
Prior art date
Application number
PCT/CN2020/120301
Other languages
English (en)
French (fr)
Inventor
苏立焱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/120301 priority Critical patent/WO2022077142A1/zh
Priority to CN202080106091.0A priority patent/CN116325608A/zh
Publication of WO2022077142A1 publication Critical patent/WO2022077142A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of communications, and in particular, to a method and a communication device for sending a physical uplink shared channel.
  • the macro station downlink can use subband precoding
  • the micro user equipment (user equipment, UE) uplink can use wideband precoding.
  • DMRS downlink demodulation reference signal
  • the uplink DMRS of the micro UE collide on the time slot of the heterogeneous ratio, and the two use the same code division multiplexing (CDM) groups, they will interfere with each other.
  • CDM code division multiplexing
  • the present application provides a method and a communication device for sending a physical uplink shared channel, which can improve the uplink transmission performance of terminal equipment.
  • a first aspect provides a method for sending a physical uplink shared channel, comprising: a terminal device receiving first downlink control information DCI, where the first DCI is used to schedule the terminal device to perform uplink transmission on a first time unit, and instructing the terminal One or more first antenna ports used by the device for uplink transmission; the terminal device uses subband precoding or wideband precoding to perform uplink transmission in each of the one or more first antenna ports according to the first DCI
  • the data is precoded to generate the physical uplink shared channel PUSCH; the terminal device sends the PUSCH to the network device in the first time unit.
  • the terminal device can use subband precoding or wideband precoding to precode the uplink data, which improves the uplink transmission performance of the terminal device.
  • the terminal device receives first high-layer signaling, and the first high-layer signaling is used to configure subband precoding for the terminal device.
  • using high-layer signaling to configure precoding for the terminal can reduce the load of physical layer DCI and improve system reliability.
  • the first DCI further includes subband precoding indication information; and the terminal device uses subband precoding or wideband precoding to perform one or more subband precoding or wideband precoding according to the first DCI.
  • Precoding the uplink data transmitted in each of the first antenna ports includes: the terminal device precoding the uplink data transmitted in each antenna port according to the subband precoding indication information.
  • the terminal device only needs to precode the uplink data transmitted in each antenna port according to the DCI indication information of the network device, and does not need to judge by itself which encoding and precoding type to use, and the network device can be controlled flexibly and efficiently. It is easy to implement and improves the uplink transmission performance of the terminal device.
  • the terminal device receives the second higher layer signaling, the second higher layer signaling is used to configure the code division multiplexing CDM group set for the terminal device, and the second higher layer signaling Used to determine the set of time units for end devices.
  • the terminal device determines, according to the one or more first antenna ports, a CDM group to which each of the one or more first antenna ports belongs; and the terminal The device uses subband precoding or wideband precoding to precode the uplink data transmitted in each of the one or more first antenna ports, including: when the CDM group corresponding to the first antenna port belongs to the CDM group set, And when the first time unit belongs to the time unit set, the terminal device uses subband precoding in the first time unit to precode the uplink data carried on the first antenna port; when the CDM group corresponding to the first antenna port does not belong to the CDM When the first time unit belongs to the time unit set, the terminal device uses wideband precoding to precode the uplink data carried on the antenna port in the first time unit.
  • the network device instructs the terminal device to use subband precoding and broadband precoding respectively in different situations by means of an implicit instruction, which improves the uplink transmission performance of the terminal device.
  • the terminal device acquires the wideband precoding used for uplink transmission according to the first higher layer signaling or the first DCI.
  • the first DCI message further includes a phase rotation indication value;
  • the uplink data includes a demodulation reference signal DMRS, and the terminal device converts each preset corresponding to the DMRS according to the phase rotation indication value.
  • the phases of the different resource element RE groups in the encoded resource block PRG are rotated.
  • a method for sending a physical uplink shared channel including: a network device sending first downlink control information DCI to a terminal device, where the first DCI is used to schedule the terminal device to perform uplink transmission on a first time unit, And instruct one or more first antenna ports used by the terminal equipment for uplink transmission; the network equipment receives the physical uplink shared channel PUSCH sent by the terminal equipment in the first time unit, wherein the PUSCH is the terminal equipment according to the first DCI, using the sub-channel PUSCH
  • the band precoding or wideband precoding is generated by precoding the uplink data transmitted in each of the one or more first antenna ports.
  • the network device sends first high-layer signaling to the terminal device, where the first high-layer signaling is used to configure subband precoding for the terminal device.
  • the first DCI further includes subband precoding indication information.
  • the network device sends the second high layer signaling to the terminal device, and the second high layer signaling is used to configure the code division multiplexing CDM group set for the terminal device, and the second Higher layer signaling is used to determine the set of time units for the terminal device.
  • the first higher layer signaling or the first DCI includes wideband precoding used for uplink transmission.
  • the first DCI message further includes a phase rotation indication value.
  • a communication device in a third aspect, has a function of implementing the method in the first aspect or any possible implementation manner thereof.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the present application provides a communication device having a function of implementing the method in the second aspect or any possible implementation manner thereof.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the present application provides a communication device, comprising at least one processor, at least one processor coupled to at least one memory, at least one memory for storing computer programs or instructions, and at least one processor for calling from at least one memory And run the computer program or instructions to cause the communication device to perform the method in the first aspect or any possible implementations thereof.
  • the communication device may be a terminal device.
  • the present application provides a communication device, comprising at least one processor, at least one processor coupled to at least one memory, at least one memory for storing computer programs or instructions, and at least one processor for calling from at least one memory And running the computer program or instructions causes the communication device to perform the method of the second aspect or any possible implementations thereof.
  • the communication device may be a network device.
  • the present application provides a terminal device including a processor, a memory and a transceiver.
  • the memory is used to store the computer program
  • the processor is used to call and run the computer program stored in the memory, and control the transceiver to send and receive signals, so that the communication device executes the method in the first aspect or any possible implementation manner thereof.
  • the present application provides a network device including a processor, a memory and a transceiver.
  • the memory is used to store the computer program
  • the processor is used to call and run the computer program stored in the memory, and control the transceiver to send and receive signals, so that the communication device executes the method in the second aspect or any possible implementation manner thereof.
  • the present application provides a communication device, comprising a processor and a communication interface, wherein the communication interface is configured to receive a signal and transmit the received signal to the processor, and the processor processes the signal to
  • the communication apparatus is caused to perform a method as in the first aspect or any possible implementation thereof.
  • the present application provides a communication device, comprising a processor and a communication interface, wherein the communication interface is configured to receive a signal and transmit the received signal to the processor, and the processor processes the signal to
  • the communication device is caused to perform a method as in the second aspect or any possible implementation thereof.
  • the above-mentioned communication interface may be an interface circuit, an input/output interface, or the like
  • the processor may be a processing circuit, a logic circuit, or the like.
  • the communication device described in the ninth aspect or the tenth aspect may be a chip or an integrated circuit.
  • the present application provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on a computer, the first aspect or any possible implementations thereof are enabled. The method in is executed.
  • the present application provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on a computer, the second aspect or any possible implementation manner thereof is implemented. The method in is executed.
  • the present application provides a computer program product, the computer program product comprising computer program code, when the computer program code is run on a computer, the computer program code, as in the first aspect or any possible implementations thereof, is provided. method is executed.
  • the present application provides a computer program product, the computer program product comprising computer program code, when the computer program code is run on a computer, the computer program code, as in the second aspect or any possible implementations thereof, is provided. method is executed.
  • the present application provides a wireless communication system, including the terminal device described in the seventh aspect and/or the network device described in the eighth aspect.
  • FIG. 1 is an exemplary architecture diagram of a communication system 100 suitable for the embodiment of the present application.
  • FIG. 2 is a schematic diagram of an uplink DMRS pattern.
  • FIG. 3 is a schematic diagram of a factory macro-micro scene applicable to an embodiment of the present application.
  • FIG. 4 is a schematic interaction diagram of a method for sending a physical uplink shared channel proposed by the present application.
  • FIG. 5 is a schematic diagram of phase rotation of different "OCC-RE groups" of uplink DMRSs in a PRG with a frequency domain length of 2RB.
  • FIG. 6 is a schematic block diagram of a communication apparatus 1000 provided by the present application.
  • FIG. 7 is a schematic block diagram of a communication apparatus 2000 provided by the present application.
  • FIG. 8 is a schematic structural diagram of a communication device 10 provided by the present application.
  • FIG. 9 is a schematic structural diagram of a communication device 20 provided by the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • UMTS time division duplex
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • 5G fifth generation
  • 5G fifth generation
  • new radio new radio
  • NR new radio
  • vehicle-to-X V2X vehicle-to-X
  • V2X can include vehicle-to-network (V2N), vehicle-to-vehicle (V2V) ), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), etc.
  • long-term evolution-vehicle (LTE-V) Internet of Vehicles
  • machine-type communication machine type communication
  • IoT internet of things
  • LTE-M long term evolution-machine
  • M2M machine to machine
  • FIG. 1 is an exemplary architecture diagram of a communication system 100 applicable to this embodiment of the present application.
  • the network device 110 and the terminal devices 101 to 106 form a communication system 100 .
  • the network device 110 can send downlink data to the terminal device 101 to the terminal device 106
  • the terminal device 101 to the terminal device 106 can also send uplink data to the network device 110 .
  • the terminal device 104 to the terminal device 106 may also form a communication system.
  • the terminal device 105 can send downlink data to the terminal device 104 or the terminal device 106 .
  • terminal equipment in the embodiments of the present application may also be referred to as: user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), access terminal, subscriber unit, Subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment, etc.
  • FIG. 1 is only a simplified schematic diagram of an example, and the communication system 100 may further include more or less network devices or terminal devices.
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminal devices are: mobile phone (mobile phone), tablet computer, notebook computer, PDA, mobile internet device (MID), wearable device, virtual reality (VR) device, augmented Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grid wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, cellular phone, cordless phone, session initiation protocol protocol, SIP) telephones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices, or other processing devices connected to wireless modems, In-vehicle devices, wearable devices, terminal devices in 5G networks or in future evolving public land mobile networks (PLMN) and/or any other suitable device for communicating on wireless communication systems , which is not limited in the embodiments of the present
  • wearable devices can also be called wearable smart devices, which is a general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be a terminal device in the Internet of Things system.
  • IoT is an important part of the future development of information technology.
  • Machine interconnection the intelligent network of the interconnection of things and things.
  • the terminal device may also include sensors such as smart printers, train detectors, and gas stations, and the main functions include collecting data (part of terminal devices), receiving control information and downlink data of network devices, and sending electromagnetic waves. , to transmit uplink data to the network device.
  • sensors such as smart printers, train detectors, and gas stations
  • the main functions include collecting data (part of terminal devices), receiving control information and downlink data of network devices, and sending electromagnetic waves. , to transmit uplink data to the network device.
  • the network device in this embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a global system for mobile communications (GSM) system or code division multiple access (CDMA)
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • the base station (base transceiver station, BTS) in the LTE system can also be the base station B (nodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved base station B in the LTE system.
  • evolved nodeB evolved nodeB, eNB or eNodeB
  • it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or a radio network controller (RNC), base station controller (base station controller, BSC), home base station (for example, home evolved nodeB, or home nodeB, HNB), baseband unit (baseband unit, BBU), or the network device can be a relay station, an access point, an in-vehicle device, a wearable
  • the device and the network device in the 5G network or the network device in the future evolved PLMN network, etc. can be an access point (AP), a wireless relay node, a wireless backhaul node, and a transmission point in the WLAN.
  • AP access point
  • AP access point
  • wireless relay node a wireless backhaul node
  • a transmission point in the WLAN AP
  • TP transmission and reception point
  • transmission and reception point can be a gNB or transmission point (TRP or TP) in the NR system, or, one or a group of base stations in the 5G system (including multiple antennas Panel) antenna panel, or, may also be a network node that constitutes a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU), etc., which are not limited in the embodiments of the present application.
  • BBU baseband unit
  • DU distributed unit
  • communication can be classified into different types according to different types of transmitting nodes and receiving nodes.
  • sending information from a network device to a terminal device is called downlink (downlink, DL) communication
  • sending information from a terminal device to a network device is called uplink (uplink, UL) communication.
  • uplink uplink
  • NR system it can be divided into multiple radio frames in the time domain, and each radio frame is 10ms long; one radio frame includes multiple time slots.
  • One slot (slot) may include 14 orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the smallest resource granularity is one OFDM symbol
  • the smallest granularity is one subcarrier
  • a time-frequency resource element (RE) composed of an OFDM symbol and a subcarrier is the smallest transmission unit RE in the time-frequency domain of signal transmission.
  • the RE is the basic unit. of. All OFDM symbols in a time slot and 12 subcarriers in the frequency domain form a resource block (RB).
  • the transmission direction of the OFDM symbols in a time slot can be DL, UL, or flexible, and the combination of the transmission directions of the OFDM symbols in a time slot can be understood as the format of the time slot. For example, in the current TS 38.211 standard of NR, the formats of several time slots are specified, and the excerpts are shown in Table 1:
  • the slot format represented by format 27 is: the first 3 OFDM symbols are DL transmission, the last 3 OFDM symbols are UL transmission, and the middle 8 OFDM symbols are flexible, which may be Upstream, may be downstream, or may not be used for transmission.
  • a slot with a slot format type serial number of 0 is referred to as a downlink slot, and a slot with a slot format type serial number of 1 is referred to as an uplink slot.
  • slots in these two formats are mainly used.
  • the physical uplink shared channel (PUSCH) sent by the UE to the gNB in the uplink slot or the physical downlink shared channel (PDSCH) sent by the gNB to the UE in the downlink slot, it generally contains two parts: Data and DMRS.
  • the receiving end can demodulate the data only after correctly estimating the channel through the DMRS, so the DMRS is also an important part of the data transmission.
  • FIG. 2 (a) of FIG. 2 is a schematic diagram of an uplink DMRS pattern of type 1, and (b) of FIG. 2 is a schematic diagram of an uplink DMRS pattern of type 2.
  • the uplink and downlink transmission of NR support the same DMRS configuration.
  • the DMRS in an RB, whether it is PDSCH or PUSCH, the DMRS can be placed in the third and fourth (corresponding to the symbol number 2 in Figure 2). and 3) the transmission pattern of OFDM symbols.
  • the difference between the two types of DMRS patterns mainly lies in the number of supported CDM groups.
  • the uplink DMRS pattern of type 1 supports two CDM groups (two different filling grids in (a) of Figure 2 represent two CDM groups) and type 2.
  • the upstream DMRS pattern of 3 supports 3 CDM groups (3 different filling grids in Fig. 2(b) represent 3 CDM groups).
  • the present application uses the DMRS pattern of type 2 as an example, but the embodiments of the present application are all applicable to both type 1 and type 2, which is not specifically limited in the present application.
  • the DMRS pattern of type 2 is configured with "dual symbols" (symbols corresponding to serial numbers 2 and 3), that is, the DMRS consists of two consecutive symbols in the frequency domain, so the DMRS occupies a total of 24 REs in each RB.
  • the 24 REs are divided into three groups as shown in (b) of Figure 2, namely three CDM groups; each group includes 8 REs, and these 8 REs are divided into two discontinuous "time-frequency continuous 4RE groups" in the frequency domain ”, using the same orthogonal cover code (OCC) sequence to support 4 OCC orthogonal DMRS.
  • OCC orthogonal cover code
  • the OCC orthogonality refers to the same DMRS base sequence multiplied by different OCC sequences respectively, so as to achieve an orthogonal DMRS transmission scheme.
  • the same DMRS base sequence is recorded as [s1s2s3s4...]
  • the four sets of orthogonal OCCs are: [1,1,1,1], [1,-1,1,-1], [1,1, -1,-1], [1,-1,-1,1]
  • the four OCC orthogonal DMRS are: [s1,s2,s3,s4,...], [s1,-s2,s3 ,-s4,...], [s1,s2,-s3,-s4,...], [s1,-s2,-s3,s4,...].
  • the OCC sequences used by one DMRS in the "time-frequency continuous 4 RE groups" in different frequency domain locations are the same. Therefore, even if there are more “4RE groups", only 4 OCC orthogonal DMRSs can still be supported.
  • some non-ideal factors in the actual scene will affect the orthogonality of the above OCC.
  • OCC non-orthogonality caused by timing advance inaccuracy is considered.
  • the DMRSs between the CDM groups are still orthogonal, but the DMRSs that were originally orthogonal to the OCC in the group are no longer orthogonal.
  • the network device can implement TDD by alternately configuring the uplink slot and the downlink slot on the same carrier.
  • the ratio of downlink and uplink slots in the time domain is called the TDD uplink and downlink ratio.
  • 8:2 is a very common TDD uplink and downlink ratio scheme in the existing network, that is, every 10 slots contains 8 consecutive downlink slots, followed by 2 consecutive uplink slots.
  • the number of downlink slots in this ratio is much larger than that of uplink slots, because in general cells, downlink services are the main ones, but it does not rule out the existence of individual cells that mainly use uplink services, such as factory microcells in factory scenarios.
  • FIG. 3 is a schematic diagram of a factory macro-micro scene applicable to an embodiment of the present application.
  • This scenario includes two cells, a macro cell and a micro cell.
  • the key network elements involved in this scenario include: a macro base station (referred to as a macro cell), a macro UE, a micro base station (referred to as a micro cell), and a micro UE.
  • the key links involved include two: one is the uplink from the micro UE to the micro station represented by the solid line 1 in the micro area.
  • the micro UE On this link, the micro UE mainly sends uplink data to the micro station; the second is the dotted line 2
  • the downlink from the representative macro station to the micro station (here, the micro station can be regarded as a UE of the macro station, which is called downlink).
  • the macro station sends downlink data, and the micro station may receive Interference of the downlink data of the macro station.
  • each high-definition camera ie, an example of a micro-UE
  • the micro station may receive Interference of the downlink data of the macro station.
  • each high-definition camera ie, an example of a micro-UE
  • the main direction of business in the factory micro-cell is upstream, that is, the camera transmits real-time recorded video to the network device.
  • the uplink and downlink ratios of micro cells are mainly based on the uplink slots.
  • the macro station uses the conventional uplink and downlink ratio with more down and up and less (for example, the five outdoor slots in Figure 3 are DSUDD, S is a dedicated frame, which can be understood as D), and the micro station uses more up and down and less (for example, the five indoor slots in Figure 3 are USUUU).
  • DSUDD the five outdoor slots in Figure 3
  • S is a dedicated frame, which can be understood as D
  • the micro station uses more up and down and less (for example, the five indoor slots in Figure 3 are USUUU).
  • the same slot for example, the 1st, 4th, and 5th slots
  • slots such as the first, fourth, and fifth slots in the above example are referred to as macro-micro allometry slots, and may also be referred to as allotropy slots.
  • the macro station sends downlink data to the macro UE served by the macro UE in the heterogeneous allocation ratio slot, and this downlink data also happens to be received by the micro station that is about to receive the uplink data sent by the micro UE, causing adjacent cell interference.
  • the micro-station receives the co-channel interference level of the macro-station -50dBm, and it is necessary to use certain technical means to eliminate the co-channel interference of -50dBm to meet the expected interference level of the factory capacity of -90dBm.
  • the micro-station is It is necessary to accurately estimate the channel of the downlink data sent by the macro station at the transmitting end.
  • an iterative interference cancellation algorithm can be used to eliminate the co-channel interference caused by the downlink data of the macro station, and a better interference cancellation effect can be obtained.
  • the precoding at the transmitter and the channel estimation at the receiver can be divided into two types: subband and wideband.
  • the difference between subband and wideband is that the subband is based on a precoding resource group (PRG) granularity (for example: 1 in the NR standard).
  • PRGs 2 or 4 RBs), which operate independently within each PRG; while broadband is a unified operation within all scheduled resources.
  • PRGs 2 or 4 RBs
  • sub-band coding is a coding method based on the signal spectrum, that is, the signal is decomposed into different frequency band components to remove the signal correlation, and then the components are sampled, quantized and coded respectively, so as to obtain a set of mutually uncorrelated codes. The words are combined together for transmission.
  • the advantage of subband precoding is that the channel information on each PRG in the frequency-selective channel is fully utilized, and the precoding is independently designed for each PRG, so that the precoding performance is optimal.
  • the advantage of wideband precoding is that the receiver can use wideband channel estimation, and the channel estimation has a high anti-noise capability. It can be seen from the above analysis that the advantages of wideband precoding + subband channel estimation are not obvious, so usually in practical systems, precoding and channel estimation are both wideband or subband.
  • subband precoding is generally used; on the contrary, if the DMRS transmission energy is insufficient (UE) and the interference is single, the subband channel estimation performance will be too poor, and even consume all the gain of "subband precoding", so in this In this case, wideband precoding is generally used.
  • the macro station downlink can use subband precoding
  • the micro UE uplink can use wideband precoding.
  • the downlink DMRS of the macro station and the uplink DMRS of the micro UE collide on the hetero-matched slot, and the two use the same CDM group, they will interfere with each other.
  • the micro-UE wideband precoding no longer has the performance advantage due to the complex interference from the downlink of the macro station.
  • FIG. 4 is a schematic interaction diagram of a method for sending a physical uplink shared channel proposed by the present application.
  • the terminal device receives the first DCI sent by the network device.
  • the network device sends the first DCI to the terminal device.
  • the first DCI is used to schedule the terminal equipment to perform uplink transmission in the first time unit, and to indicate one or more antenna ports used by the terminal equipment for uplink transmission.
  • the network device and the terminal device in this embodiment are respectively illustrated by a micro station and a micro UE in a macro-micro scene of a factory.
  • the first time unit here is a time slot with different matching ratios in the same time slot period of the macro station and the micro station.
  • the terminal device uses subband precoding or wideband precoding to precode the uplink data transmitted in each of the one or more antenna ports according to the first DCI to generate a physical uplink shared channel PUSCH.
  • the uplink data includes DMRS.
  • the method further includes: the micro-station sends first high-layer signaling to the micro-UE, where the first high-layer signaling is used to configure coding parameters of subband precoding for the micro-UE.
  • the micro-station sends first high-layer signaling to the micro-UE, where the first high-layer signaling is used to configure coding parameters of subband precoding for the micro-UE.
  • higher layer signaling instead of physical layer signaling
  • the second part of the first high layer signaling is also divided into 25 parts in a one-to-one correspondence, and each part is used to configure the precoding on the corresponding PRG.
  • each precoding uses a 6-bit configuration
  • the wideband precoding may be indicated by the precoding matrix information (precoding matrix indicator, PMI) indication field in the first DCI as in the existing standard.
  • PMI precoding matrix indicator
  • the micro-station can control the micro-UE precoding more flexibly, and the micro-station can change the precoding of the micro-UE in time according to the specific multi-user multiplexing situation of the scheduling subframe, so as to avoid mutual interference between multiple micro-UEs, and improve the network total throughput.
  • the micro-UE since the micro-UE needs to know the exact number of bits of the DCI before acquiring the information in the first DCI, if the DCI corresponding to the wideband precoding contains the PMI indication field, the same is true in the DCI of the subband precoding.
  • This indication field is to be included to keep the length of the DCI constant in each case. Therefore, optional, in order not to waste this indication field in the subband precoding DCI.
  • Multiple sets of subband precoding may be configured for the micro UE in the first high layer signaling, and which set the micro UE uses may be indicated by the above-mentioned PMI indication field.
  • the wideband precoding may also be configured by the first higher layer signaling.
  • indicating precoding is completely unnecessary in the first DCI (that is, in either case, it is configured by the first high-layer signaling), thereby reducing the load of the DCI and improving the system reliability.
  • the first DCI further includes subband precoding indication information
  • the micro UE precodes uplink data transmitted in each of the one or more antenna ports according to the subband precoding indication information .
  • the subband precoding indication information is exemplified.
  • the subband precoding indication information includes a 1-bit precoding type indication field, and the value of the bit field is 0 or 1, respectively representing that all antenna ports use subband precoding or both use wideband precoding.
  • the subband precoding indication information includes N (N ⁇ 1) bits, where N is the maximum number of antenna ports supported by uplink transmission configured by higher layer signaling.
  • the i-th (1 ⁇ i ⁇ N) bit has a value of 0 or 1, indicating that the i-th antenna port uses subband precoding or uses wideband precoding.
  • the value of the first M bits of the subband precoding indication information is 0 or 1, indicating that the corresponding antenna port is used
  • Subband precoding or wideband precoding is used; the last N-M bits are set to zero, which is helpful for the UE to judge whether the DCI is correctly received.
  • the UE only needs to precode the uplink data transmitted in each antenna port according to the DCI indication information of the base station, and does not need to determine which type of coding and precoding to use, and the base station is flexible and easy to control. It is realized, and the uplink transmission performance of the micro UE is improved.
  • the micro UE receives the second high layer signaling sent by the micro station, the second high layer signaling is used to configure the CDM group set for the micro UE, and the second high layer signaling is used to determine the time unit for the micro UE gather.
  • the set of time units here is a set of time slots of different matching ratios of the macro station and the micro station.
  • an example will be given for how to determine the set of time slots with different allocation ratios through the second signaling.
  • Example 1 Through the information exchange between the micro station and the macro station, it is known that the macro station near the factory adopts an 8:2 uplink and downlink ratio (DDDDDDDDDUU).
  • the micro-station configures an uplink-downlink ratio of 2:3 (DDUUUDDUUU) for the micro-UE through the second-layer signaling, and notifies the macro-station near the micro-UE of the uplink-downlink ratio of the factory.
  • the micro UE determines, according to the uplink and downlink ratios of the macro station and the micro station in the second high-level signaling, a time unit set of time slots with different allocation ratios in the uplink and downlink cycles formed by every 10 time slots, and the time unit set includes the third, There are four time slots 4, 5, and 8.
  • the micro UE needs to determine whether subband precoding needs to be used in these time slot sets according to the antenna port.
  • Example 2 Through the information exchange between the micro station and the macro station, it is learned that the macro station near the factory adopts an 8:2 uplink and downlink ratio (DDDDDDDDDUU).
  • the micro-station configures the uplink and downlink ratio 2:3 (DDUUUDDUUU) for the micro-UE through the second-layer signaling, and the micro-station directly configures the micro-UE through the second-layer signaling within the uplink and downlink cycles consisting of every 10 time slots.
  • the time unit set of the time slot with different allocation ratio, the time unit set includes the 3rd, 4th, 5th, and 8th time slots, and the micro UE needs to judge whether it needs to use subband precoding according to the antenna port in these time slot sets .
  • the micro-UE needs to first determine the belonging of each scheduled antenna port according to the antenna port. For example, for any one antenna port X in one or more antenna ports (ie, an example of the first antenna port), the corresponding CDM group is denoted as CDM group Y.
  • the micro UE uses subband precoding to precode the uplink data carried on the antenna port X in the first time unit; when the CDM group Y does not belong to the CDM group set and the first time unit belongs to the time unit set, the micro UE uses wideband precoding to precode the uplink data carried on the antenna port X in the first time unit.
  • the micro-UE uplink transmission uses wideband precoding
  • the micro station configures the second CDM group set for the micro UE; when the CDM group Y belongs to the second CDM group set and the first time unit does not belong to the time unit set, the micro UE is in the first set of CDM groups.
  • Subband precoding is used in the time unit to precode the uplink data carried on the antenna port X; when the CDM group Y does not belong to the second CDM group set, and the first time unit does not belong to the time unit set, the micro UE is in the first time unit set.
  • broadband precoding is used to precode the uplink data carried on the antenna port X.
  • the following describes how to determine the precoding type when the micro UE uses different antenna ports for uplink transmission.
  • the micro station learns that the downlink data sent by the macro station near the factory on the antenna ports 1000 and 1001 and 1004 and 1005 has the greatest interference to the factory.
  • the micro-station finds out according to the standard that the antenna ports 1000 and 1001 and 1004 and 1005 belong to the CDM group 0 and the CDM group 2 respectively.
  • the micro-station configures a CDM group set A for the micro-UE through the second higher layer signaling, wherein the CDM group set includes CDM group 0 and CDM group 2.
  • the micro-station also determines the time slot set B of the heterogeneous allocation ratio for the micro-UE through the second high-layer signaling.
  • the micro-UE determines whether the scheduled first time unit is a time slot with a heterogeneous allocation ratio through the set B of the heterogeneous allocation ratio time slots.
  • the sub-band precoding is used in the unit to precode the uplink data carried on the antenna ports 1006 and 1007; otherwise, wideband precoding is used.
  • the micro-UE can learn that the micro-station schedules it to send the PUSCH on RB0 to RB19 according to the resource allocation indication field in the first DCI, and the micro-UE can learn the PRG size and For the precoding used on all PRGs, it is obtained that RB0 to 19 belong to PRG0 to 4, and then the subbands corresponding to PRG0 to 4 are used to precode the uplink data to be sent by the micro UE to obtain the PUSCH.
  • the micro UE determines that the antenna ports 1008 and 1009 belong to the CDM group 1, that is, the CDM group 1 does not belong to the CDM group set A. Therefore, the micro UE determines that the antenna ports 1008 and 1009 belong to the CDM group 1.
  • broadband precoding is used to precode the uplink data carried on the antenna ports 1008 and 1009 to obtain the PUSCH.
  • the micro UE uses wideband precoding or configures the precoding type (ie, subband precoding or wideband precoding) by high layer signaling.
  • the precoding type ie, subband precoding or wideband precoding
  • the first DCI also includes a phase rotation indication value ⁇ (0 ⁇ ), and the micro-UE performs the phase rotation of different "OCC-RE groups" of the uplink DMRS in each PRG according to the phase rotation indication value.
  • the "OCC-RE group” refers to a set composed of several REs in a PRG that carry DMRSs, where several DMRSs are weighted by an identical OCC sequence, and the OCC sequence includes a time domain OCC sequence and a frequency domain OCC The sequence is used to jointly estimate the channel of a certain port on the RE group, and is orthogonal to the code domain formed by the DMRS weighted by other OCC sequences in the OCC. Referring to Fig. 5, Fig.
  • FIG. 5(a) is a schematic diagram of phase rotation of different "OCC-RE groups" of uplink DMRS of type 1 in a PRG with a frequency domain length of 2RB
  • Fig. 5(b) is a frequency domain
  • the micro UE rotates the phase of the antenna port in different "OCC-RE groups" of the DMRS corresponding to each PRG according to the phase rotation indication value corresponding to each antenna port.
  • OCC-RE groups 2x REs with the same filling and continuous in time and frequency domains represent an "OCC-RE group", where x is the number of symbols for transmitting DMRS.
  • x is the number of symbols for transmitting DMRS.
  • the micro-station instructs the micro-UE to use subband precoding and wideband precoding respectively in different situations by means of an implicit indication, which improves the uplink transmission performance of the micro-UE.
  • the terminal device sends the PUSCH to the network device in the first time unit.
  • the precoding method provided by the present application has been described in detail above, and the communication device provided by the present application is described below.
  • FIG. 6 is a schematic block diagram of a communication apparatus 1000 provided in the present application.
  • the communication apparatus 1000 includes a receiving unit 1100 , a processing unit 1200 and a sending unit 1300 .
  • the receiving unit 1100 is configured to receive first downlink control information DCI, where the first DCI is used to schedule the terminal equipment to perform uplink transmission on the first time unit, and to indicate one or more uplink transmissions used by the terminal equipment for uplink transmission.
  • a first antenna port the processing unit 1200 is configured to, according to the first DCI, use sub-band precoding or wideband precoding to perform processing on uplink data transmitted in each of the one or more first antenna ports precoding to generate a physical uplink shared channel PUSCH;
  • the sending unit 1300 is configured to send the PUSCH to the network device in the first time unit.
  • the receiving unit 1100 is further configured to receive first higher layer signaling, where the first higher layer signaling is used to configure subband precoding for the terminal device.
  • the first DCI further includes subband precoding indication information; the processing unit is specifically configured to: according to the subband precoding indication information, perform a The transmitted uplink data is precoded.
  • the receiving unit 1100 is further configured to receive second higher layer signaling, where the second higher layer signaling is used to configure a code division multiplexing CDM group set for the terminal device, and The second higher layer signaling is used to determine a set of time units for the terminal device.
  • the processing unit 1200 is further configured to determine, according to the one or more first antenna ports, to which each antenna port of the one or more first antenna ports belongs CDM group; and the processing unit is specifically configured to: when the CDM group corresponding to the first antenna port belongs to the CDM group set, and the first time unit belongs to the time unit set, the first In the time unit, subband precoding is used to precode the uplink data carried on the first antenna port; when the CDM group corresponding to the first antenna port does not belong to the CDM group set, and the first time unit When belonging to the time unit set, use wideband precoding to precode the uplink data carried on the antenna port in the first time unit.
  • the receiving unit 1100 is further configured to acquire the wideband precoding used for uplink transmission according to the first higher layer signaling or the first DCI.
  • the first DCI message further includes a phase rotation indication value;
  • the uplink data includes a demodulation reference signal DMRS, and the processing unit 1200 is further configured to rotate the indication value according to the phase The phases of different resource element RE groups in each precoding resource block PRG corresponding to the DMRS are rotated.
  • the receiving unit 1100 and the sending unit 1300 may also be integrated into one transceiver unit, which has the functions of receiving and sending at the same time, which is not limited here.
  • the communication apparatus 1000 may be a terminal device in the method embodiment.
  • the receiving unit 1100 may be a receiver, and the sending unit 1300 may be a transmitter.
  • the receiver and transmitter can also be integrated into a transceiver.
  • the processing unit 2100 may be a processing device.
  • the communication apparatus 1000 may be a chip or an integrated circuit installed in a terminal device.
  • the receiving unit 1100 and the sending unit 1300 may be a communication interface or an interface circuit.
  • the receiving unit 1100 is an input interface or an input circuit
  • the transmitting unit 1300 is an output interface or an output circuit.
  • the processing unit 1200 may be a processing device.
  • the processing device may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the processing device may comprise at least one processor and at least one memory, wherein the at least one memory is used to store a computer program, the at least one processor reads and executes the computer program stored in the at least one memory such that The communication apparatus 1000 performs the operations and/or processes that need to be performed by the terminal device in each method embodiment.
  • the processing means may comprise only a processor, the memory for storing the computer program being located outside the processing means.
  • the processor is connected to the memory through circuits/wires to read and execute the computer program stored in the memory.
  • the processing device may be a chip or an integrated circuit.
  • FIG. 7 is a schematic block diagram of a communication apparatus 2000 provided in the present application. As shown in FIG. 7 , the communication apparatus 2000 includes a sending unit 2100 and a receiving unit 2200 .
  • the sending unit 2100 is configured to send the first downlink control information DCI to the terminal equipment, where the first DCI is used to schedule the terminal equipment to perform uplink transmission on the first time unit, and to indicate the terminal equipment used for uplink transmission one or more first antenna ports of the The first DCI is generated by precoding the uplink data transmitted in each of the one or more first antenna ports by using subband precoding or wideband precoding.
  • the sending unit 2100 is further configured to send first high-layer signaling to the terminal device, where the first high-layer signaling is used to configure subband precoding for the terminal device .
  • the first DCI further includes subband precoding indication information.
  • the sending unit 2100 is further configured to send a second high layer signaling to the terminal device, where the second high layer signaling is used to configure code division multiplexing for the terminal device A set of CDM groups, and the second higher layer signaling is used to determine a set of time units for the terminal device.
  • the first higher layer signaling or the first DCI includes the wideband precoding used for uplink transmission.
  • the first DCI further includes a phase rotation indication value.
  • the communication apparatus 2000 may further include a processing unit 2300 configured to perform processing actions performed by the network device.
  • the sending unit 2100 and the receiving unit 2200 may also be integrated into a transceiver unit, which has the functions of receiving and sending at the same time, which is not limited here.
  • the communication apparatus 2000 may be the network device in the method embodiment.
  • the receiving unit 2200 may be a receiver
  • the transmitting unit 2100 may be a transmitter.
  • the receiver and transmitter can also be integrated into a transceiver.
  • the communication apparatus 2000 may be a chip or an integrated circuit in a network device.
  • the transmitting unit 2100 and the receiving unit 2200 may be a communication interface or an interface circuit.
  • the receiving unit 2200 is an input interface or an input circuit
  • the sending unit 2100 is an output interface or an output circuit
  • the processing unit 2300 may be a processing device.
  • the processing unit 2300 may be a processing device.
  • the functions of the processing device may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the processing device may comprise at least one processor and at least one memory, wherein the at least one memory is used to store a computer program, the at least one processor reads and executes the computer program stored in the at least one memory such that The communication apparatus 2000 performs the operations and/or processing performed by the network device in each method embodiment.
  • the processing means may comprise only a processor, the memory for storing the computer program being located outside the processing means.
  • the processor is connected to the memory through circuits/wires to read and execute the computer program stored in the memory.
  • the processing device may also be a chip or an integrated circuit.
  • FIG. 8 is a schematic structural diagram of a communication device 10 provided by the present application.
  • the communication device 10 includes: one or more processors 11 , one or more memories 12 and one or more communication interfaces 13 .
  • the processor 11 is used to control the communication interface 13 to send and receive signals
  • the memory 12 is used to store a computer program
  • the processor 11 is used to call and run the computer program from the memory 12, so that the execution by the terminal device in each method embodiment of the present application is performed. Processes and/or operations are performed.
  • the processor 11 may have the function of the processing unit 1200 shown in FIG. 6
  • the communication interface 13 may have the function of the receiving unit 1100 and/or the transmitting unit 1300 shown in FIG. 6 .
  • the processor 11 may be configured to perform processing or operations performed by the terminal device in the above method embodiments
  • the communication interface 13 may be configured to perform the sending and/or receiving actions performed by the terminal device in the above method embodiments.
  • the communication interface 13 in the communication device 10 may be a transceiver.
  • a transceiver may include a receiver and a transmitter.
  • the processor 11 may be a baseband device, and the communication interface 13 may be a radio frequency device.
  • the communication device 10 may be a chip or an integrated circuit.
  • the communication interface 13 may be an interface circuit or an input/output interface.
  • FIG. 9 is a schematic structural diagram of a communication device 20 provided by the present application.
  • the communication device 20 includes: one or more processors 21 , one or more memories 22 and one or more communication interfaces 23 .
  • the processor 21 is used to control the communication interface 23 to send and receive signals
  • the memory 22 is used to store a computer program
  • the processor 21 is used to call and run the computer program from the memory 22, so that the network device in each method embodiment of the present application executes the computer program. Processes and/or operations are performed.
  • the processor 21 may have the function of the processing unit 2100 shown in FIG. 7
  • the communication interface 23 may have the function of the receiving unit 2200 and/or the sending unit 2100 shown in FIG. 7 .
  • the processor 21 may be configured to perform processing or operations performed internally by the network device in the foregoing method embodiments
  • the communication interface 23 may be configured to perform the sending and/or receiving actions performed by the network device in the foregoing method embodiments.
  • the communication apparatus 20 may be the network device in the method embodiment.
  • the communication interface 23 may be a transceiver.
  • a transceiver may include a receiver and a transmitter.
  • the processor 21 may be a baseband device, and the communication interface 23 may be a radio frequency device.
  • the communication apparatus 20 may be a chip or an integrated circuit installed in a network device.
  • the communication interface 23 may be an interface circuit or an input/output interface.
  • the memory and the processor in the foregoing apparatus embodiments may be physically independent units, or the memory may also be integrated with the processor, which is not limited herein.
  • the present application further provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on a computer, the operations performed by the terminal device in each method embodiment of the present application are made possible. and/or processes are executed.
  • the present application further provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are run on a computer, the operations performed by the network device in the method embodiments of the present application and/or or the process is executed.
  • the present application also provides a computer program product, the computer program product includes computer program codes or instructions, when the computer program codes or instructions are run on a computer, the operations performed by the terminal device in the method embodiments of the present application and/or or the process is executed.
  • the present application also provides a computer program product.
  • the computer program product includes computer program codes or instructions.
  • the operations and/or processes performed by the network device in each method embodiment of the present application are made possible. be executed.
  • the present application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is used for executing the computer program stored in the memory, so that the operations and/or processing performed by the terminal device in any one of the method embodiments are performed.
  • the chip may further include a communication interface.
  • the communication interface may be an input/output interface or an interface circuit or the like.
  • the chip may further include the memory.
  • the present application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is configured to execute the computer program stored in the memory, so that the operations and/or processing performed by the network device in any one of the method embodiments are performed.
  • the chip may further include a communication interface.
  • the communication interface may be an input/output interface or an interface circuit or the like.
  • the chip may further include the memory.
  • the present application also provides a communication system, including the terminal device and the network device in the embodiments of the present application.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has the capability of processing signals.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable Logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in the embodiments of the present application may be directly embodied as executed by a hardware coding processor, or executed by a combination of hardware and software modules in the coding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same functions and functions.
  • words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种预编码的方法和通信装置。微站指示微UE在异配比时隙中根据调度的天线端口所属的CDM组与宏站的调度的天线端口所属的CDM组是否相同,确定使用宽带预编码还是子带预编码,微UE根据时隙是否是异配比时隙,以及微站为微UE调度的天线端口所属的CDM组,决定使用宽带预编码还是子带预编码,进而提升UE的上行传输性能。

Description

物理上行共享信道发送的方法和通信装置 技术领域
本申请涉及通信领域,具体涉及一种物理上行共享信道发送的方法和通信装置。
背景技术
一般的,在工厂宏微场景下,宏站下行可以使用子带预编码,而微用户设备(user equipment,UE)上行可以使用宽带预编码。但如果宏站的下行解调参考信号(demodulation reference signal,DMRS)和微UE的上行DMRS在异配比时隙上发生碰撞,且两者使用相同的码分复用(code division multiplexing,CDM)组,则彼此之间会互相干扰。此时,微UE的宽带预编码由于受到宏站下行的复杂干扰,微UE的上行宽带预编码传输已经不再具有性能优势。
因此,微UE在工厂宏微干扰场景中的预编码成为的一个亟待解决的问题。
发明内容
本申请提供一种物理上行共享信道发送的方法和通信装置,可以提高终端设备的上行传输性能。
第一方面,提供了一种物理上行共享信道发送的方法,包括:终端设备接收第一下行控制信息DCI,第一DCI用于调度终端设备在第一时间单元上进行上行传输,以及指示终端设备上行传输所使用的一个或多个第一天线端口;终端设备根据第一DCI,使用子带预编码或宽带预编码对一个或多个第一天线端口中的每一个天线端口中传输的上行数据进行预编码,生成物理上行共享信道PUSCH;终端设备在第一时间单元中向网络设备发送PUSCH。
上述技术方案中,终端设备可以使用子带预编码或宽带预编码对上行数据进行预编码,提高了终端设备的上行传输性能。
结合第一方面,在第一方面的某些实现方式中,终端设备接收第一高层信令,第一高层信令用于为终端设备配置子带预编码。
上述技术方案中,使用高层信令为终端配置预编码可以降低物理层DCI的负载,提升系统可靠性。
结合第一方面,在第一方面的某些实现方式中,第一DCI还包括子带预编码指示信息;以及终端设备根据第一DCI,使用子带预编码或宽带预编码对一个或多个第一天线端口中的每一个天线端口中传输的上行数据进行预编码,包括:终端设备根据子带预编码指示信息,对每一个天线端口中传输的上行数据进行预编码。
上述技术方案中,终端设备只需要根据网络设备的DCI指示信息对每一个天线端口中传输的上行数据进行预编码即可,不需要自己判断需要使用哪种编码预编码类型,网络设备控制灵活且易于实现,提升了终端设备的上行传输性能。
结合第一方面,在第一方面的某些实现方式中,终端设备接收第二高层信令,第二高层信令用于为终端设备配置码分复用CDM组集合,以及第二高层信令用于为终端设备确定时间单元集合。
结合第一方面,在第一方面的某些实现方式中,终端设备根据一个或多个第一天线端口,确定一个或多个第一天线端口中的每一个天线端口所属的CDM组;以及终端设备使用子带预编码或宽带预编码对一个或多个第一天线端口中的每一个天线端口中传输的上行数据进行预编码,包括:当第一天线端口对应的CDM组属于CDM组集合,且第一时间单元属于时间单元集合时,终端设备在第一时间单元中使用子带预编码对第一天线端口上承载的上行数据进行预编码;当第一天线端口对应的CDM组不属于CDM组集合,且第一时间单元属于时间单元集合时,终端设备在第一时间单元中使用宽带预编码对天线端口上承载的上行数据进行预编码。
上述技术方案中,网络设备通过隐式指示的方式,指示终端设备在不同情况下分别使用子带预编码和宽带预编码,提升了终端设备的上行传输性能。
结合第一方面,在第一方面的某些实现方式中,终端设备根据第一高层信令或第一DCI,获取上行传输使用的宽带预编码。
结合第一方面,在第一方面的某些实现方式中,第一DCI消息还包括相位旋转指示值;上行数据包括解调参考信号DMRS,终端设备根据相位旋转指示值将DMRS对应的每个预编码资源块PRG中的不同的资源元素RE组的相位进行旋转。
上述技术方案中,通过对RE组的相位进行旋转,可以使系统可以支持的最大DMRS端口数成倍增长。
第二方面,提供了一种物理上行共享信道的发送方法,包括:网络设备向终端设备发送第一下行控制信息DCI,第一DCI用于调度终端设备在第一时间单元上进行上行传输,以及指示终端设备上行传输所使用的一个或多个第一天线端口;网络设备在第一时间单元中接收终端设备发送的物理上行共享信道PUSCH,其中,PUSCH是终端设备根据第一DCI,使用子带预编码或宽带预编码对一个或多个第一天线端口中的每一个天线端口中传输的上行数据进行预编码生成的。
结合第二方面,在第二方面的某些实现方式中,网络设备向终端设备发送第一高层信令,第一高层信令用于为终端设备配置子带预编码。
结合第二方面,在第一方面的某些实现方式中,第一DCI还包括子带预编码指示信息。
结合第二方面,在第二方面的某些实现方式中,网络设备向终端设备发送第二高层信令,第二高层信令用于为终端设备配置码分复用CDM组集合,以及第二高层信令用于为终端设备确定时间单元集合。
结合第二方面,在第二方面的某些实现方式中,第一高层信令或第一DCI包括上行传输使用的宽带预编码。
结合第二方面,在第二方面的某些实现方式中,第一DCI消息还包括相位旋转指示值。
关于第二方面或其任意可能的实现方式的技术效果,可以参考第一方面或其任意可能的实现方式的技术效果的介绍,这里不再赘述。
第三方面,提供一种通信装置,所述通信装置具有实现第一方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。 所述硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,本申请提供一种通信装置,所述通信装置具有实现第二方面或其任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第五方面,本申请提供一种通信设备,包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信设备执行第一方面或其任意可能的实现方式中的方法。
在一个示例中,该通信设备可以为终端设备。
第六方面,本申请提供一种通信设备,包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信设备执行第二方面或其任意可能的实现方式中的方法。
在一个示例中,该通信设备可以为网络设备。
第七方面,本申请提供一种终端设备,包括处理器、存储器和收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信设备执行如第一方面或其任意可能的实现方式中的方法。
第八方面,本申请提供一种网络设备,包括处理器、存储器和收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信设备执行如第二方面或其任意可能的实现方式中的方法。
第九方面,本申请提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收信号并将接收到的信号传输至所述处理器,所述处理器处理所述信号,以使所述通信装置执行如第一方面或其任意可能的实现方式中的方法。
第十方面,本申请提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收信号并将接收到的信号传输至所述处理器,所述处理器处理所述信号,以使所述通信装置执行如第二方面或其任意可能的实现方式中的方法。
可选地,上述通信接口可以为接口电路、输入/输出接口等,处理器可以为处理电路、逻辑电路等。
可选地,第九方面或第十方面所述的通信装置可以为芯片或集成电路。
第十一方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面或其任意可能的实现方式中的方法被执行。
第十二方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第二方面或其任意可能的实现方式中的方法被执行。
第十三方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第一方面或其任意可能的实现方式中的方法被执行。
第十四方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序 代码,当所述计算机程序代码在计算机上运行时,使得如第二方面或其任意可能的实现方式中的方法被执行。
第十五方面,本申请提供一种无线通信系统,包括如第七方面所述的终端设备和/或第八方面所述的网络设备。
附图说明
图1是适用于本申请实施例的通信系统100的示例性架构图。
图2上行DMRS图样的示意图。
图3是适用于本申请实施例的工厂宏微场景的示意图。
图4是本申请提出的一种物理上行共享信道发送的方法的示意性交互图。
图5是一个频域长度为2RB的PRG中,上行DMRS的不同“OCC-RE组”的相位旋转的示意图。
图6为本申请提供的通信装置1000的示意性框图。
图7为本申请提供的通信装置2000的示意性框图。
图8为本申请提供的通信装置10的示意性结构图。
图9为本申请提供的通信装置20的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR),以及其它未来演进的通信系统,车到其它设备(vehicle-to-X V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to-vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(internet of things,IoT)、机器间通信长期演进技术(long term evolution-machine,LTE-M),机器到机器(machine to machine,M2M)等。
参见图1,图1适用于本申请实施例的通信系统100的示例性架构图。在图1所示的通信系统100中,网络设备110和终端设备101~终端设备106组成一个通信系统100。在该通信系统100中,网络设备110可以向终端设备101~终端设备106发送下行数据,终端设备101~终端设备106也可以发送上行数据给网络设备110。此外,终端设备104~终端设备106也可以组成一个通信系统。在该通信系统中,终端设备105可以发送下行数据给终端设备104或终端设备106。应理解,本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。图1只是举例的简化示意图, 该通信系统100中还可以包括更多或更少的网络设备或终端设备。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备和/或用于在无线通信系统上通信的任意其它适合设备,本申请实施例对此并不限定。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站B(nodeB,NB),还可以是LTE系统中的演进型基站B(evolved nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,还可以是无线网络控制器(radio network controller,RNC)、基站控制器(base station controller,BSC)、家庭基站(例如,home evolved nodeB,或home nodeB,HNB)、基带单元(baseband unit,BBU),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,可以是WLAN中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,可以是NR系统中的gNB或 传输点(TRP或TP),或者,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等,本申请实施例并不限定。
在无线通信系统中,按照发送节点和接收节点种类的不同,可以将通信分为不同的类型。通常,将网络设备向终端设备发送信息称为下行(downlink,DL)通信,将终端设备向网络设备发送信息称为上行(uplink,UL)通信。在第五代无线通信系统—NR系统中,在时域上可以划分为多个无线帧,每个无线帧长10ms;一个无线帧又包括多个时隙。一个时隙(slot)可以包括14个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
在时域上,最小的资源粒度是一个OFDM符号,在频域上,最小的粒度是一个子载波。一个OFDM符号与一个子载波组成的一个时频资源单元(resource element,RE),为信号传输的时频域上最小的传输单位RE,物理层在进行资源映射的时候,是以RE为基本单位的。一个时隙内所有的OFDM符号与频域上12个子载波组成一个资源块(resource block,RB)。一个时隙中的OFDM符号的传输方向可以为DL,UL,或者灵活(flexible),而一个时隙中的OFDM符号的传输方向组合可以理解为该时隙的格式。例如,目前NR的TS 38.211标准中,规定了若干时隙的格式,摘录部分如表1所示:
表1
Figure PCTCN2020120301-appb-000001
表1中,D代表DL,U代表UL,X代表灵活。以时隙格式类型序号为27为例,格式27代表的时隙格式为:前3个OFDM符号进行DL传输,最后3个OFDM符号为UL传输,中间的8个OFDM符号为灵活,即可能为上行、可能为下行、也可能不用于传输。本申请中,将时隙格式类型序号为0的slot称为下行slot,将时隙格式类型序号为1的slot称为上行slot。一般实际通信中,主要使用这两种格式的slot。
无论UE在上行slot向gNB发送的物理上行共享信道(physical uplink shared channel,PUSCH),还是gNB在下行slot向UE发送的物理下行共享信道(physical downlink shared channel,PDSCH),一般都包含两部分:数据和DMRS。接收端只有通过DMRS正确估计出信道后,才能对数据进行解调,因此DMRS也是数据传输中的重要部分。
参见图2,图2的(a)是类型1的上行DMRS图样的示意图,图2的(b)是类型2的上行DMRS图样的示意图。NR的上、下行传输支持相同的DMRS配置,例如图2所示,在一个RB中,无论是PDSCH还是PUSCH,均可以采用将DMRS放置在第3,4个(对应图2中的符号序号2和3)OFDM符号的发送图样。
两种类型的DMRS图样差别主要在于支持的CDM组数不同,类型1的上行DMRS图样支持2个CDM组(图2的(a)中2种不同的填充格子代表2个CDM组)和类型2的上行DMRS图样支持3个CDM组(图2的(b)中3种不同的填充格子代表3个CDM组)。作为示例而非限定,本申请以类型2的DMRS图样进行举例说明,但本申请的实施例均同时适用于类型1和类型2,本申请对此不作具体限定。类型2的DMRS图样中配置了“双符号”(序号2和3对应的符号),即DMRS由频域上连续的两个符号组成,因此DMRS在每个RB内共占用24个RE。这24个RE如图2的(b)中分为三组,即三个CDM组;每组包括8个RE,这8个RE在频域上分成不连续的两个“时频连续4RE组”,使用相同的叠加正交码(orthogonal cover code,OCC)序列,支持4个OCC正交的DMRS。其中,OCC正交是指相同的DMRS基序列,分别乘以不同的OCC序列,从而达成正交的一种DMRS发送方案。例如:相同的DMRS基序列记为[s1s2s3s4……],四组正交OCC分别为:[1,1,1,1]、[1,-1,1,-1]、[1,1,-1,-1]、[1,-1,-1,1],则4个OCC正交的DMRS分别为:[s1,s2,s3,s4,……]、[s1,-s2,s3,-s4,……]、[s1,s2,-s3,-s4,……]、[s1,-s2,-s3,s4,……]。
需要说明的是,一个DMRS在不同频域位置的“时频连续4RE组”中使用的OCC序列相同。因此,即使有再多的“4RE组”,也仍然只能支持4个OCC正交DMRS。此外,实际场景中的一些非理想因素,会影响上述OCC的正交性。本申请中考虑时间提前量不准导致的OCC非正交。此时,CDM组间的DMRS依然是正交的,但组内原本OCC正交的DMRS变得不再正交。
NR支持TDD。具体来说,网络设备可以通过将上行slot和下行slot交替配置在相同的一个载波上实现TDD。时域下行、上行slot的比例,称为TDD上下行配比。例如8:2就是现网中一个非常常见的TDD上下行配比方案,即每10个slot中包含8个连续的下行slot,后面接着2个连续的上行slot。该配比中下行slot数量远大于上行slot,是因为一般蜂窝小区中主要以下行业务为主,但也不排除个别以上行业务为主的小区存在,例如适用于工厂场景中的工厂微小区。
参见图3,图3是适用于本申请实施例的工厂宏微场景的示意图。该场景中包含宏小区和微小区两个小区。该场景中涉及的关键网元包括:宏基站(简称宏站)、宏UE、微基站(简称微站)、微UE。涉及的关键链路包括两个:一是微小区内实线1代表的微UE到微站的上行链路,在该链路上,主要是微UE向微站发送上行数据;二是虚线2代表的宏站到微站的下行链路(这里可以把微站当做宏站的一个UE来看,称其为下行),在该链路上,宏站在发送下行数据,微站可能会受到宏站下行数据的干扰。作为一种示例,在工厂微小区中,每一个高清摄像头(即微UE的一例)对应一台机器进行录像监控,以判断机器是否正常运转。这使得工厂微小区中,业务的主要方向是上行,即摄像头向网络设备传输实时录制的视频。为满足上行业务需求,微小区的上下行配比以上行slot为主。
在这种场景下,宏站使用常规的下多上少的上下行配比(例如图3中室外5个slot为 DSUDD,S为专用帧,可以理解为D),微站使用上多下少的上下行配比(例如图3中室内5个slot为USUUU)。这就导致了对于同一slot(例如第1、4、5个slot),对于宏站来说是下行,但对于微站来说是上行。作为示例而非限定,本申请中称如上述示例中的第1、4、5个slot这样的slot为宏微异配比slot,也可以简称异配比slot。宏站在异配比slot向自己服务的宏UE发送下行数据,而这一下行数据也恰好会被正要接收微UE发送上行数据的微站所接收到,造成邻区干扰。典型工厂宏微场景中,微站受到宏站同频干扰的水平-50dBm,需要采用一定的技术手段进行同频干扰-50dBm的干扰消除来满足工厂容量的期望干扰水平-90dBm,此时微站需要对发射端宏站发送的下行数据的信道进行准确的估计。在微站接收端,可采用迭代干扰消除算法,消除宏站下行数据造成的同频干扰,可以获得较好的干扰消除效果。
发射端的预编码和接收端的信道估计可以分为子带和宽带两种,子带和宽带的区别在于子带是以预编码资源组(precoding resource group,PRG)为粒度(例如:NR标准中1个PRG=2或4个RB),在每个PRG内独立进行操作;而宽带是在被调度的全部资源内统一的操作。实际系统中可选以下三种预编码+信道估计的组合:子带预编码+子带信道估计,宽带预编码+子带信道估计或者宽带预编码+宽带信道估计。其中,子带编码是一种以信号频谱为依据的编码方法,即将信号分解成不同频带分量来去除信号相关性,再将分量分别进行取样、量化、编码,从而得到一组互不相关的码字合并在一起后进行传输,子带预编码的优势在于充分利用频选信道中每一个PRG上的信道信息,针对每个PRG独立设计预编码,使得预编码性能最优。宽带预编码的优势在于可以让接收端使用宽带信道估计,信道估计的抗噪声能力较高。从上面的分析中可以看到,宽带预编码+子带信道估计优势不明显,因此通常实际系统中,预编码和信道估计同为宽带或子带。
一般来说,如果DMRS发射能量充足(gNB一般满足这一条件),或者如果DMRS受到复杂(不同频率上的干扰不同)的干扰,子带信道估计的性能不会显著差于宽带,因此在这种情况,一般使用子带预编码;相反,如果DMRS发射能量不足(UE)且干扰单一,子带信道估计性能会过差,甚至消耗掉“子带预编码”的全部增益,因此在这种情况,一般使用宽带预编码。
由上可知,在工厂宏微场景下,宏站下行可以使用子带预编码,而微UE上行可以使用宽带预编码。但如果宏站下行DMRS和微UE上行DMRS在异配比slot上发生碰撞,且两者使用相同的CDM组,则彼此之间会互相干扰。此时,微UE宽带预编码由于受到宏站下行的复杂干扰,已经不再具有性能优势。
下面,介绍本申请的技术方案。
参见图4,图4是本申请提出的一种物理上行共享信道发送的方法的示意性交互图。
S410,终端设备接收网络设备发送的第一DCI。
对应的,网络设备向终端设备发送第一DCI。其中,第一DCI用于调度终端设备在第一时间单元上进行上行传输,以及指示终端设备上行传输所使用的一个或多个天线端口。
作为示例而非限定,本实施例中的网络设备和终端设备分别以工厂宏微场景中的微站和微UE进行举例说明。
可选的,这里的第一时间单元为宏站和微站在同一时隙周期内的异配比时隙。
S420,终端设备根据第一DCI,使用子带预编码或宽带预编码对一个或多个天线端口 中的每一个天线端口中传输的上行数据进行预编码,生成物理上行共享信道PUSCH。
应理解,上行数据包括DMRS。
可选的,在S420之前,所述方法还包括:微站向微UE发送第一高层信令,第一高层信令用于为微UE配置子带预编码的编码参数。使用高层信令(而非物理层信令通知)能够降低物理层DCI的负载,提升系统可靠性。
可选的,第一高层信令分为两部分,第一部分为微UE配置了PRG大小(例如:PRG=4RB),第二部分为微UE配置所有PRG上使用的预编码。假设系统总带宽为40MHz(100个RB),则PRG共有100/4=25个。第一高层信令的第二部分也就一一对应地分成25个部分,每个部分用来配置对应PRG上的预编码。假设每个预编码使用6bit配置,可选的,每个预编码使用的码本(即6bit信息和子带预编码的对应关系)是微UE和微站事先预定义好的,则第一高层信令的第二部分共占用25*6=150bit。
可选的,宽带预编码可以和现有标准一样,由第一DCI中的预编码矩阵信息(precoding matrix indicator,PMI)指示域指示。这样微站对微UE预编码的控制更为灵活,微站可以根据调度子帧具体的多用户复用情况,及时更改微UE的预编码,避免多个微UE之间互相干扰,从提升网络的总吞吐量。
需要说明的是,由于微UE在获取第一DCI中的信息之前,需要知道DCI的准确比特数,所以如果宽带预编码对应的DCI中包含了PMI指示域,则子带预编码的DCI中同样要包含该指示域,以保持各种情况下,DCI的长度是一个定值。因此,可选的,为了不浪费子带预编码DCI中的这一指示域。可以在第一高层信令中为微UE配置多套子带预编码,微UE具体用哪套,可以由上述PMI指示域来指示。
可选的,宽带预编码也可以由第一高层信令进行配置。这样,在第一DCI中将彻底不需要指示预编码(即无论是哪种情况,都由第一高层信令配置好了),从而降低了DCI的负载,提升系统可靠性。
在一种实现方式中,第一DCI还包括子带预编码指示信息,微UE根据子带预编码指示信息,对一个或多个天线端口中的每一个天线端口中传输的上行数据进行预编码。
下面,对于子带预编码指示信息进行举例说明。
举例1:子带预编码指示信息包含1bit的预编码类型指示域,该bit域的值为0或1,分别代表所有天线端口均使用子带预编码或均使用宽带预编码。
举例2:子带预编码指示信息包含N(N≥1)个比特(bit),其中N是由高层信令配置的上行传输所支持的最大天线端口数。第i(1≤i≤N)个bit的值为0或1,代表第i个天线端口使用子带预编码或使用宽带预编码。对于DCI没有调度到的天线端口,例如DCI仅调度上行传输使用M个天线端口,且M<N,则子带预编码指示信息的前M个比特的值为0或1,代表对应天线端口使用子带预编码或使用宽带预编码;后N-M个比特置零,这样有利于UE判断该DCI是否被正确接收。
在这种实现方式中,UE只需要根据基站的DCI指示信息对每一个天线端口中传输的上行数据进行预编码即可,不需要自己判断需要使用哪种编码预编码类型,基站控制灵活且易于实现,提升了微UE的上行传输性能。
在另一种实现方式中,微UE接收微站发送的第二高层信令,第二高层信令用于为微UE配置CDM组集合,以及第二高层信令用于为微UE确定时间单元集合。
应理解,这里的时间单元集合为宏站和微站的异配比时隙的集合。下面,对于如何通过第二信令确定异配比时隙的集合进行举例说明。
举例1:微站通过和宏站之间的信息交互,获知工厂附近的宏站采用8:2的上下行配比(DDDDDDDDUU)。微站通过第二高层信令,为微UE配置上下行配比2:3(DDUUUDDUUU),并且通知微UE工厂附近的宏站的上下行配比。微UE根据第二高层信令中宏站和微站上下行配比,确定每10个时隙组成的上下行周期内的异配比时隙的时间单元集合,该时间单元集合包括第3、4、5、8四个时隙,微UE需要在这些时隙集合中根据天线端口判断是否需要使用子带预编码。
举例2:微站通过和宏站之间的信息交互,获知工厂附近的宏站采用8:2的上下行配比(DDDDDDDDUU)。微站通过第二高层信令,为微UE配置上下行配比2:3(DDUUUDDUUU),并且微站通过第二高层信令,直接为微UE配置每10个时隙组成的上下行周期内的异配比时隙的时间单元集合,该时间单元集合包括第3、4、5、8四个时隙,微UE需要在这些时隙集合中根据天线端口判断自身是否需要使用子带预编码。
需要说明的是,由于微UE上行传输所使用的天线端口可能存在多个,且多个天线端口可能属于不同的CDM组,因此微UE需要先根据天线端口,确定被调度的每个天线端口所属的CDM组,例如:对于一个或多个天线端口中的任意一个天线端口X(即第一天线端口的一例),记其对应的CDM组为CDM组Y。
具体的,当CDM组Y属于CDM组集合,且第一时间单元属于时间单元集合时,微UE在第一时间单元中使用子带预编码对天线端口X上承载的上行数据进行预编码;当CDM组Y不属于CDM组集合,且第一时间单元属于时间单元集合时,微UE在第一时间单元中使用宽带预编码对天线端口X上承载的上行数据进行预编码。
在同配比的时隙中,即第一时间单元不属于时间单元集合时:
在一种实现方式中,微UE上行传输使用宽带预编码;
在另一种可能的实现方式中,微站为微UE配置第二CDM组集合;当CDM组Y属于第二CDM组集合,且第一时间单元不属于时间单元集合时,微UE在第一时间单元中使用子带预编码对天线端口X上承载的上行数据进行预编码;当CDM组Y不属于第二CDM组集合,且第一时间单元不属于时间单元集合时,微UE在第一时间单元中使用宽带预编码对天线端口X上承载的上行数据进行预编码。
下面对微UE进行上行传输使用不同的天线端口时,如何确定预编码类型进行举例说明。
例如:微站通过测量,和宏站之间的信息交互,获知工厂附近的宏站在天线端口1000和1001以及1004和1005上发送的下行数据,对工厂干扰最大。微站根据标准查得,天线端口1000和1001以及1004和1005分别属于CDM组0、CDM组2。微站通过第二高层信令为微UE配置CDM组集合A,其中,CDM组集合中包括CDM组0、CDM组2。另外,微站还通过第二高层信令为微UE确定异配比时隙集合B。
情况1
假设第一DCI中指示的微UE上行传输所使用的天线端口为1006和1007时,可知微UE使用的天线端口属于CDM组0,即CDM组0属于CDM组集合A。这种情况下,微UE通过异配比时隙集合B判断被调度的第一时间单元是否为异配比时隙,当第一时间单 元为异配比时隙时,微UE在第一时间单元中使用子带预编码对天线端口1006和1007上承载的上行数据进行预编码;否则使用宽带预编码。可选的,微UE可以根据第一DCI中的资源分配指示域,获知微站调度其在RB0~RB19上发送PUSCH,微UE根据第一高层信令中为子带预编码配置的PRG大小和所有PRG上使用的预编码,得到RB0~19属于PRG0~4,进而分别使用PRG0~4对应的子带预编码,对微UE需要发送的上行数据进行预编码,得到PUSCH。
情况2
假设第一DCI中指示的微UE上行传输所使用的天线端口为1008和1009时,微UE确定天线端口1008和1009属于CDM组1,即CDM组1不属于CDM组集合A,因此,微UE在第一时间单元中使用宽带预编码对天线端口1008和1009上承载的上行数据进行预编码,得到PUSCH。
可选的,当第一时间单元不属于时间单元集合时,微UE使用宽带预编码或者由高层信令配置预编码类型(即子带预编码或宽带预编码)。
可选的,第一DCI中还包括相位旋转指示值θ(0≤θ≤π),微UE根据该相位旋转指示值,将每个PRG中上行DMRS的不同“OCC–RE组”的相位进行旋转。所述“OCC-RE组”,是指一个PRG中的若干个承载着DMRS的RE组成的集合,这里的若干个DMRS被一个相同的OCC序列加权,OCC序列包括时域OCC序列和频域OCC序列,用于联合估计某一端口在该RE组上的信道,并与使用其他OCC序列加权的DMRS在OCC构成的码域正交。参见图5,图5的(a)是一个频域长度为2RB的PRG中,类型1的上行DMRS的不同“OCC-RE组”的相位旋转的示意图,图5的(b)是一个频域长度为2RB的PRG中,类型2的上行DMRS的不同“OCC-RE组”的相位旋转的示意图。具体的,如图5(b)所示,相同填充且连续的4个RE代表一个“OCC-RE组”,第k(k≥0)组“OCC-RE组”,旋转相位2πkθ,即表示在4个RE的发送信号上乘以exp(j2πkθ),其中j是虚数单位,j 2=-1。这样使得系统可以支持的最大DMRS端口数成倍增长,例如,为不同的DMRS配置θ=0、1/3、2/3,可使系统支持的最大DMRS数量增加三倍。
可选的,第一DCI中还包括相位旋转指示值集合Θ={θ 01,…,θ M-1},其中包含的M个相位旋转指示值,分别与微UE的M个天线端口一一对应。微UE根据每个天线端口对应的相位旋转指示值,将该天线端口在每个PRG对应的DMRS的不同“OCC–RE组”的相位进行旋转。具体的,如图5的(a)所示,相同填充且时、频域连续的2x个RE代表一个“OCC-RE组”,其中x是发送DMRS的符号个数。又如图5的(b)所示,相同填充且时域连续、频域位于符号4n+i和4n+i+2的2x个RE代表一个“OCC-RE组”,其中i=0或1,x是发送DMRS的符号个数。第k(k≥0)组“OCC-RE组”上承载的一个天线端口的DMRS,旋转相位2πkθ 0,即表示在2x个RE的发送信号上乘以exp(j2πkθ 0),其中j是虚数单位,j 2=-1。这样使得系统可以支持的最大DMRS端口数成倍增长,例如,为不同的DMRS配置θ 0=0、1/3、2/3,可使系统支持的最大DMRS数量增加三倍。
在这种实现方式中,微站通过隐式指示的方式,指示微UE在不同情况下分别使用子带预编码和宽带预编码,提升了微UE的上行传输性能。
S430,终端设备在第一时间单元中向网络设备发送PUSCH。
以上对本申请提供的预编码的方法进行了详细说明,下面介绍本申请提供的通信装 置。
参见图6,图6为本申请提供的通信装置1000的示意性框图。如图6,通信装置1000包括接收单元1100、处理单元1200和发送单元1300。
接收单元1100,用于接收第一下行控制信息DCI,所述第一DCI用于调度终端设备在第一时间单元上进行上行传输,以及指示所述终端设备上行传输所使用的一个或多个第一天线端口;处理单元1200,用于根据所述第一DCI,使用子带预编码或宽带预编码对所述一个或多个第一天线端口中的每一个天线端口中传输的上行数据进行预编码,生成物理上行共享信道PUSCH;发送单元1300,用于在所述第一时间单元中向网络设备发送所述PUSCH。
可选地,在一个实施例中,所述接收单元1100,还用于接收第一高层信令,所述第一高层信令用于为所述终端设备配置子带预编码。
可选地,在一个实施例中,所述第一DCI还包括子带预编码指示信息;所述处理单元具体用于:根据所述子带预编码指示信息,对所述每一个天线端口中传输的上行数据进行预编码。
可选地,在一个实施例中,所述接收单元1100,还用于接收第二高层信令,所述第二高层信令用于为所述终端设备配置码分复用CDM组集合,以及所述第二高层信令用于为所述终端设备确定时间单元集合。
可选地,在一个实施例中,所述处理单元1200,还用于根据所述一个或多个第一天线端口,确定所述一个或多个第一天线端口中的每一个天线端口所属的CDM组;以及所述处理单元具体用于:当所述第一天线端口对应的CDM组属于所述CDM组集合,且所述第一时间单元属于所述时间单元集合时,在所述第一时间单元中使用子带预编码对所述第一天线端口上承载的上行数据进行预编码;当所述第一天线端口对应的CDM组不属于所述CDM组集合,且所述第一时间单元属于所述时间单元集合时,在所述第一时间单元中使用宽带预编码对所述天线端口上承载的上行数据进行预编码。
可选地,在一个实施例中,所述接收单元1100,还用于根据所述第一高层信令或所述第一DCI,获取上行传输使用的所述宽带预编码。
可选地,在一个实施例中,所述第一DCI消息还包括相位旋转指示值;所述上行数据包括解调参考信号DMRS,所述处理单元1200,还用于根据所述相位旋转指示值将所述DMRS对应的每个预编码资源块PRG中的不同的资源元素RE组的相位进行旋转。
可选地,在以上各实现方式中,接收单元1100和发送单元1300也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
在一种实现方式中,通信装置1000可以为方法实施例中的终端设备,在这种实现方式中,接收单元1100可以为接收器,发送单元1300可以为发射器。接收器和发射器也可以集成为一个收发器。处理单元2100可以为处理装置。
在另一种实现方式中,通信装置1000可以为安装在终端设备中的芯片或集成电路。在这种实现方式中,接收单元1100和发送单元1300可以为通信接口或者接口电路。例如,接收单元1100为输入接口或输入电路,发送单元1300为输出接口或输出电路。处理单元1200可以为处理装置。
其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例 如,处理装置可以包括至少一个处理器和至少一个存储器,其中,所述至少一个存储器用于存储计算机程序,所述至少一个处理器读取并执行所述至少一个存储器中存储的计算机程序,使得通信装置1000执行各方法实施例中由终端设备需要执行的操作和/或处理。可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。又例如,处理装置可以芯片或集成电路。
参见图7,图7为本申请提供的通信装置2000的示意性框图。如图7,通信装置2000包括发送单元2100和接收单元2200。
发送单元2100,用于向终端设备发送第一下行控制信息DCI,所述第一DCI用于调度所述终端设备在第一时间单元上进行上行传输,以及指示所述终端设备上行传输所使用的一个或多个第一天线端口;接收单元2200,用于在所述第一时间单元中接收所述终端设备发送的物理上行共享信道PUSCH,其中,所述PUSCH是所述终端设备根据所述第一DCI,使用子带预编码或宽带预编码对所述一个或多个第一天线端口中的每一个天线端口中传输的上行数据进行预编码生成的。
可选地,在一个实施例中,所述发送单元2100,还用于向所述终端设备发送第一高层信令,所述第一高层信令用于为所述终端设备配置子带预编码。
可选地,在一个实施例中,所述第一DCI还包括子带预编码指示信息。
可选地,在一个实施例中,所述发送单元2100,还用于向所述终端设备发送第二高层信令,所述第二高层信令用于为所述终端设备配置码分复用CDM组集合,以及所述第二高层信令用于为所述终端设备确定时间单元集合。
可选地,在一个实施例中,所述第一高层信令或所述第一DCI包括上行传输使用的所述宽带预编码。
可选地,在一个实施例中,所述第一DCI还包括相位旋转指示值。
可选地,通信装置2000还可以包括处理单元2300,用于执行由网络设备执行的处理动作。
可选地,在以上各实现方式中,发送单元2100和接收单元2200也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
在一种实现方式中,通信装置2000可以为方法实施例中的网络设备。在这种情况下,接收单元2200可以为接收器,发送单元2100可以为发射器。接收器和发射器也可以集成为一个收发器。
在另一种实现方式中,通信装置2000可以为网络设备中的芯片或集成电路。在这种情况下,发送单元2100和接收单元2200可以为通信接口或者接口电路。例如,接收单元2200为输入接口或输入电路,发送单元2100为输出接口或输出电路,处理单元2300可以为处理装置。
处理单元2300可以为处理装置。其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括至少一个处理器和至少一个存储器,其中,所述至少一个存储器用于存储计算机程序,所述至少一个处理器读取并执行所述至少一个存储器中存储的计算机程序,使得通信装置2000执行各方法实施例中由网络设备执行的操作和/或处理。可选地,处理装置可以仅包括处理器,用于存储计算机程序 的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。又例如:处理装置还可以为芯片或集成电路。
参见图8,图8为本申请提供的通信装置10的示意性结构图。如图8,通信装置10包括:一个或多个处理器11,一个或多个存储器12以及一个或多个通信接口13。处理器11用于控制通信接口13收发信号,存储器12用于存储计算机程序,处理器11用于从存储器12中调用并运行该计算机程序,以使得本申请各方法实施例中由终端设备执行的流程和/或操作被执行。
例如,处理器11可以具有图6中所示的处理单元1200的功能,通信接口13可以具有图6中所示的接收单元1100和/或发送单元1300的功能。具体地,处理器11可以用于执行上述方法实施例中由终端设备内部执行的处理或操作,通信接口13用于执行上述方法实施例中由终端设备执行的发送和/或接收的动作。
在一种实现方式中,通信装置10中的通信接口13可以为收发器。收发器可以包括接收器和发射器。可选地,处理器11可以为基带装置,通信接口13可以为射频装置。在另一种实现中,通信装置10可以为芯片或者集成电路。在这种实现方式中,通信接口13可以为接口电路或者输入/输出接口。
参见图9,图9为本申请提供的通信装置20的示意性结构图。如图9,通信装置20包括:一个或多个处理器21,一个或多个存储器22以及一个或多个通信接口23。处理器21用于控制通信接口23收发信号,存储器22用于存储计算机程序,处理器21用于从存储器22中调用并运行该计算机程序,以使得本申请各方法实施例中由网络设备执行的流程和/或操作被执行。
例如,处理器21可以具有图7中所示的处理单元2100的功能,通信接口23可以具有图7中所示的接收单元2200和/或发送单元2100的功能。具体地,处理器21可以用于执行上述方法实施例中由网络设备内部执行的处理或操作,通信接口23用于执行上述方法实施例中由网络设备执行的发送和/或接收的动作。
在一种实现方式中,通信装置20可以为方法实施例中的网络设备。在这种实现方式中,通信接口23可以为收发器。收发器可以包括接收器和发射器。可选地,处理器21可以为基带装置,通信接口23可以为射频装置。在另一种实现中,通信装置20可以为安装在网络设备中的芯片或者集成电路。在这种实现方式中,通信接口23可以为接口电路或者输入/输出接口。
可选的,上述各装置实施例中的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起,本文不做限定。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由终端设备执行的操作和/或流程被执行。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由网络设备执行的操作和/或流程被执行。
此外,本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由终端设备 执行的操作和/或流程被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由网络设备执行的操作和/或流程被执行。
此外,本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由终端设备执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由网络设备执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
此外,本申请还提供一种通信系统,包括本申请实施例中的终端设备和网络设备。
本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以 硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,A、B以及C均可以为单数或者复数,不作限定。
在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种物理上行共享信道发送的方法,其特征在于,包括:
    终端设备接收第一下行控制信息DCI,所述第一DCI用于调度所述终端设备在第一时间单元上进行上行传输,以及指示所述终端设备上行传输所使用的一个或多个第一天线端口;
    所述终端设备根据所述第一DCI,使用子带预编码或宽带预编码对所述一个或多个第一天线端口中的每一个天线端口中传输的上行数据进行预编码,生成物理上行共享信道PUSCH;
    所述终端设备在所述第一时间单元中向网络设备发送所述PUSCH。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一高层信令,所述第一高层信令用于为所述终端设备配置子带预编码。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一DCI还包括子带预编码指示信息;以及
    所述终端设备根据所述第一DCI,使用子带预编码或宽带预编码对所述一个或多个第一天线端口中的每一个天线端口中传输的上行数据进行预编码,包括:
    所述终端设备根据所述子带预编码指示信息,对所述每一个天线端口中传输的上行数据进行预编码。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二高层信令,所述第二高层信令用于为所述终端设备配置码分复用CDM组集合,以及所述第二高层信令用于为所述终端设备确定时间单元集合。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述一个或多个第一天线端口,确定所述一个或多个第一天线端口中的每一个天线端口所属的CDM组;以及
    所述终端设备使用子带预编码或宽带预编码对所述一个或多个第一天线端口中的每一个天线端口中传输的上行数据进行预编码,包括:
    当所述第一天线端口对应的CDM组属于所述CDM组集合,且所述第一时间单元属于所述时间单元集合时,所述终端设备在所述第一时间单元中使用子带预编码对所述第一天线端口上承载的上行数据进行预编码;
    当所述第一天线端口对应的CDM组不属于所述CDM组集合,且所述第一时间单元属于所述时间单元集合时,所述终端设备在所述第一时间单元中使用宽带预编码对所述天线端口上承载的上行数据进行预编码。
  6. 根据权利要求2-5中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一高层信令或所述第一DCI,获取上行传输使用的所述宽带预编码。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述第一DCI消息还包括相位旋转指示值;
    所述上行数据包括解调参考信号DMRS,
    所述终端设备根据所述相位旋转指示值将所述DMRS对应的每个预编码资源块PRG中的不同的资源元素RE组的相位进行旋转。
  8. 一种物理上行共享信道的发送方法,其特征在于,包括:
    网络设备向终端设备发送第一下行控制信息DCI,所述第一DCI用于调度所述终端设备在第一时间单元上进行上行传输,以及指示所述终端设备上行传输所使用的一个或多个第一天线端口;
    所述网络设备在所述第一时间单元中接收所述终端设备发送的物理上行共享信道PUSCH,其中,
    所述PUSCH是所述终端设备根据所述第一DCI,使用子带预编码或宽带预编码对所述一个或多个第一天线端口中的每一个天线端口中传输的上行数据进行预编码生成的。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一高层信令,所述第一高层信令用于为所述终端设备配置子带预编码。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一DCI还包括子带预编码指示信息。
  11. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二高层信令,所述第二高层信令用于为所述终端设备配置码分复用CDM组集合,以及所述第二高层信令用于为所述终端设备确定时间单元集合。
  12. 根据权利要求9-11中任一项所述的方法,其特征在于,所述第一高层信令或所述第一DCI包括上行传输使用的所述宽带预编码。
  13. 根据权利要求8-12中任一项所述的方法,其特征在于,所述第一DCI消息还包括相位旋转指示值。
  14. 一种通信装置,其特征在于,包括:
    接收单元,用于接收第一下行控制信息DCI,所述第一DCI用于调度终端设备在第一时间单元上进行上行传输,以及指示所述终端设备上行传输所使用的一个或多个第一天线端口;
    处理单元,用于根据所述第一DCI,使用子带预编码或宽带预编码对所述一个或多个第一天线端口中的每一个天线端口中传输的上行数据进行预编码,生成物理上行共享信道PUSCH;
    发送单元,用于在所述第一时间单元中向网络设备发送所述PUSCH。
  15. 根据权利要求14所述的通信装置,其特征在于,所述接收单元,还用于接收第一高层信令,所述第一高层信令用于为所述终端设备配置子带预编码。
  16. 根据权利要求14或15所述的通信装置,其特征在于,所述第一DCI还包括子带预编码指示信息;
    所述处理单元具体用于:根据所述子带预编码指示信息,对所述每一个天线端口中传输的上行数据进行预编码。
  17. 根据权利要求14或15所述的通信装置,其特征在于,所述接收单元,还用于接 收第二高层信令,所述第二高层信令用于为所述终端设备配置码分复用CDM组集合,以及所述第二高层信令用于为所述终端设备确定时间单元集合。
  18. 根据权利要求17所述的通信装置,其特征在于,所述处理单元,还用于根据所述一个或多个第一天线端口,确定所述一个或多个第一天线端口中的每一个天线端口所属的CDM组;以及
    所述处理单元具体用于:
    当所述第一天线端口对应的CDM组属于所述CDM组集合,且所述第一时间单元属于所述时间单元集合时,在所述第一时间单元中使用子带预编码对所述第一天线端口上承载的上行数据进行预编码;
    当所述第一天线端口对应的CDM组不属于所述CDM组集合,且所述第一时间单元属于所述时间单元集合时,在所述第一时间单元中使用宽带预编码对所述天线端口上承载的上行数据进行预编码。
  19. 根据权利要求15-18中任一项所述的通信装置,其特征在于,所述接收单元,还用于根据所述第一高层信令或所述第一DCI,获取上行传输使用的所述宽带预编码。
  20. 根据权利要求14-19中任一项所述的通信装置,其特征在于,所述第一DCI消息还包括相位旋转指示值;
    所述上行数据包括解调参考信号DMRS,
    所述处理单元,还用于根据所述相位旋转指示值将所述DMRS对应的每个预编码资源块PRG中的不同的资源元素RE组的相位进行旋转。
  21. 一种物理上行共享信道的发送通信装置,其特征在于,包括:
    发送单元,用于向终端设备发送第一下行控制信息DCI,所述第一DCI用于调度所述终端设备在第一时间单元上进行上行传输,以及指示所述终端设备上行传输所使用的一个或多个第一天线端口;
    接收单元,用于在所述第一时间单元中接收所述终端设备发送的物理上行共享信道PUSCH,其中,
    所述PUSCH是所述终端设备根据所述第一DCI,使用子带预编码或宽带预编码对所述一个或多个第一天线端口中的每一个天线端口中传输的上行数据进行预编码生成的。
  22. 根据权利要求21所述的通信装置,其特征在于,所述发送单元,还用于向所述终端设备发送第一高层信令,所述第一高层信令用于为所述终端设备配置子带预编码。
  23. 根据权利要求21或22所述的通信装置,其特征在于,所述第一DCI还包括子带预编码指示信息。
  24. 根据权利要求21或22所述的通信装置,其特征在于,所述发送单元,还用于向所述终端设备发送第二高层信令,所述第二高层信令用于为所述终端设备配置码分复用CDM组集合,以及所述第二高层信令用于为所述终端设备确定时间单元集合。
  25. 根据权利要求22-24中任一项所述的通信装置,其特征在于,所述第一高层信令或所述第一DCI包括上行传输使用的所述宽带预编码。
  26. 根据权利要求21-25中任一项所述的通信装置,其特征在于,所述第一DCI消息还包括相位旋转指示值。
  27. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少 一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述通信装置执行如权利要求1至7中任一项所述的方法,或者,使得所述通信装置执行如权利要求8至13中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1至7中任一项所述的方法被执行,或者,如权利要求8至13中任一项所述的方法被执行。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,如权利要求1至7中任一项所述的方法被执行,或者,如权利要求8至13中任一项所述的方法被执行。
  30. 一种芯片系统,其特征在于,包括:逻辑电路,所述逻辑电路用于与输入/输出接口耦合,通过所述输入/输出接口传输数据,以执行如权利要求1至7中任一项所述的方法,或者,以执行如权利要求8至13中任一项所述的方法。
PCT/CN2020/120301 2020-10-12 2020-10-12 物理上行共享信道发送的方法和通信装置 WO2022077142A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/120301 WO2022077142A1 (zh) 2020-10-12 2020-10-12 物理上行共享信道发送的方法和通信装置
CN202080106091.0A CN116325608A (zh) 2020-10-12 2020-10-12 物理上行共享信道发送的方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120301 WO2022077142A1 (zh) 2020-10-12 2020-10-12 物理上行共享信道发送的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2022077142A1 true WO2022077142A1 (zh) 2022-04-21

Family

ID=81207516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120301 WO2022077142A1 (zh) 2020-10-12 2020-10-12 物理上行共享信道发送的方法和通信装置

Country Status (2)

Country Link
CN (1) CN116325608A (zh)
WO (1) WO2022077142A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216966A1 (zh) * 2022-05-09 2023-11-16 华为技术有限公司 通信方法及相关装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10491275B2 (en) * 2017-08-07 2019-11-26 Lg Electronics Inc. Codebook based signal transmission/reception method in multi-antenna wireless communication system and apparatus therefor
CN110582980A (zh) * 2017-04-03 2019-12-17 三星电子株式会社 用于移动通信系统中基于分集的数据传输的方法和装置
CN110945822A (zh) * 2017-12-01 2020-03-31 Lg 电子株式会社 在无线通信系统中的上行链路发送和接收方法及其装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582980A (zh) * 2017-04-03 2019-12-17 三星电子株式会社 用于移动通信系统中基于分集的数据传输的方法和装置
US10491275B2 (en) * 2017-08-07 2019-11-26 Lg Electronics Inc. Codebook based signal transmission/reception method in multi-antenna wireless communication system and apparatus therefor
CN110945822A (zh) * 2017-12-01 2020-03-31 Lg 电子株式会社 在无线通信系统中的上行链路发送和接收方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Additional simulation results related to the RS PAPR reduction", 3GPP DRAFT; R1-1813605 ADDITIONAL SIMULATION RESULTS RELATED TO THE RS PAPR REDUCTION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, United Sates; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051555661 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216966A1 (zh) * 2022-05-09 2023-11-16 华为技术有限公司 通信方法及相关装置

Also Published As

Publication number Publication date
CN116325608A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
EP3605977B1 (en) Method, apparatus and system for signal transmission
US11239970B2 (en) Reference signal sending method, reference signal receiving method, and communications apparatus
US10313073B2 (en) Transmission of reference signals
CN110891312B (zh) 一种信息发送方法,信息接收的方法和装置
EP4156811A1 (en) Sidelink feedback resource configuration method, terminal device, and network device
US11516777B2 (en) Data transmission method and apparatus and communications device
EP3592072B1 (en) Method for receiving data and apparatus thereof, and method for sending data and apparatus thereof
US20230048695A1 (en) Method and device for transmitting uplink channel in wireless communication system
EP4152639A1 (en) Systems and methods for enhancing efficient uplink mimo performance and implementation for o-ran-based radio access networks
TWI711325B (zh) 用於傳輸分集同時維持低峰均功率比的技術和裝置
CN112585885B (zh) 预编码的方法和通信设备
CN114828252A (zh) 多传输点数据传输的方法及装置
WO2022077142A1 (zh) 物理上行共享信道发送的方法和通信装置
WO2021207959A1 (zh) 重复传输方法、装置及可读存储介质
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
WO2020211767A1 (zh) 用于数据传输的方法和装置
CN114826524B (zh) 混合自动重传请求确认harq-ack资源确定方法
CN114698104A (zh) 一种指示天线端口的方法、装置与系统
CN111865517A (zh) 发送参考信号的方法和装置
WO2022253166A1 (zh) 一种通信的方法和装置
WO2022155824A1 (zh) 参考信号的传输方法和通信装置
CN115380498B (zh) 用于采用跳频时的正交序列传输的方法和装置
CN113852577B (zh) 无线通信方法和通信装置
US20230344601A1 (en) Wireless communication method, terminal device, and network device
WO2023045751A1 (zh) 一种解调参考信号dmrs端口的指示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956924

Country of ref document: EP

Kind code of ref document: A1