WO2023071355A1 - 一种废水吸附剂及其制备方法和应用 - Google Patents

一种废水吸附剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023071355A1
WO2023071355A1 PCT/CN2022/109232 CN2022109232W WO2023071355A1 WO 2023071355 A1 WO2023071355 A1 WO 2023071355A1 CN 2022109232 W CN2022109232 W CN 2022109232W WO 2023071355 A1 WO2023071355 A1 WO 2023071355A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonium
salt
carbon black
cobalt
manganese
Prior art date
Application number
PCT/CN2022/109232
Other languages
English (en)
French (fr)
Inventor
余海军
李爱霞
谢英豪
张学梅
钟应声
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112022002591.3T priority Critical patent/DE112022002591T5/de
Priority to HU2400070A priority patent/HUP2400070A1/hu
Priority to MX2023015290A priority patent/MX2023015290A/es
Priority to GB2318478.1A priority patent/GB2622157A/en
Publication of WO2023071355A1 publication Critical patent/WO2023071355A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/045Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing sulfur, e.g. sulfates, thiosulfates, gypsum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/048Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing phosphorus, e.g. phosphates, apatites, hydroxyapatites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the invention belongs to the technical field of wastewater treatment, and in particular relates to a wastewater adsorbent and its preparation method and application.
  • the synthesis method of ternary cathode materials is obtained by sintering lithium salts and ternary precursors.
  • the synthesis process of ternary precursors includes the following two types: 1. Dismantling and recycling waste lithium ions/electrodes to obtain battery powder, battery Powder roasting, acid oxygen leaching, extraction and purification to obtain nickel-cobalt-manganese mixed salt, nickel-cobalt-manganese mixed salt plus alkali, ammonia synthesis to obtain ternary precursor products; Nickel salt, cobalt salt, manganese salt, nickel salt, cobalt salt, manganese salt, alkali and ammonia are synthesized to obtain a ternary precursor product.
  • acid especially sulfuric acid as leaching agent, alkali as precipitant and regulator, ammonia as complexing agent, and organic extractant to extract nickel, cobalt and manganese metal ions in the above two synthesis processes of ternary precursors.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a kind of waste water adsorbent and its preparation method and application, the purpose one is to prepare a kind of waste water adsorbent, the purpose two is to provide the utilization of above-mentioned waste water treatment agent to carry out deep removal of ammonium salt, sulfate, organic extractant wastewater treatment methods.
  • a kind of preparation method of wastewater adsorbent comprising the following steps:
  • S1 Mix carbon black powder with ammonium salt solution, heat for hydrothermal reaction, then filter, and wash the obtained filter residue with acid to obtain ammonium salt modified carbon black; mix and grind nickel-cobalt-manganese mixed salt and sodium salt to obtain a mixture, The mixture is mixed with an organic acid solution, evaporated to remove water, heated and reacted under an inert atmosphere, and the reacted material is pickled to obtain a nickel-cobalt-manganese-sodium mixed salt;
  • step S2 Mix the nickel-cobalt-manganese-sodium mixed salt, the ammonium salt-modified carbon black, and a binder, and compact, dry, and heat to obtain a multi-metal-carbon-based adsorbent.
  • the heating in step S2 is performed under nitrogen atmosphere.
  • a certain shape such as flake shape, block shape, long stick shape, spherical shape and irregular polygon shape is obtained.
  • the carbon black powder in step S1, is obtained from battery powder recovered from lithium batteries through acid oxygen leaching. Further, the average particle size of the carbon black powder is ⁇ 0.1mm.
  • the ammonium salt solution is one of the solutions of ammonium sulfate, ammonium bisulfate, ammonium carbonate, ammonium bicarbonate, ammonium chloride, ammonium phosphate or ammonium dihydrogen phosphate or several; preferably, the ammonium salt solution is one or both of ammonium sulfate or ammonium bisulfate solutions.
  • the solid-liquid ratio of the carbon black powder and the ammonium salt solution is 10-500g/L, further, the solid-liquid ratio of the carbon black powder and the ammonium salt solution is 50-200g/L L.
  • the mass concentration of the ammonium salt solution is 0.1-30%, further, the mass concentration of the ammonium salt solution is 1-10%.
  • the temperature of the hydrothermal reaction is 100-400° C.; preferably, the time of the hydrothermal reaction is 1-10 h.
  • the sodium salt is sodium acetate, sodium hydroxide, sodium sulfate, sodium phosphate, sodium chloride, sodium nitrate, sodium oxalate, sodium citrate, sodium manganate or carbonic acid One or more of sodium.
  • the average particle size of the mixture is ⁇ 100 ⁇ m.
  • the acid in step S1, is one or more of sulfuric acid, nitric acid, phosphoric acid or hydrochloric acid; further, the concentration of the acid is 0.1-5 mol/L.
  • the nickel-cobalt-manganese mixed salt is prepared from battery recovery; preferably, the mass ratio of the sodium salt to the nickel-cobalt-manganese mixed salt is (1-10):( 0.1-30).
  • the organic acid solution is one or more of the solutions of oxalic acid, citric acid, acetic acid, formic acid or acetic acid; the solid-to-liquid ratio of the mixture to the organic acid solution is 10:(50-200) g/mL, further, the mass concentration of the organic acid solution is 1-40%.
  • the temperature of the heating reaction is 300-1100°C; preferably, the heating reaction time is 2-24h.
  • the binding agent is one or more of calcium silicate, calcium alginate, silicate clay, or sodium aluminosilicate; preferably, the nickel-cobalt-manganese
  • the mass ratio of sodium mixed salt, ammonium salt modified carbon black and binder is (10-50):(30-70):(0.1-8).
  • the heating temperature is 300-800°C, further, the heating time is 2-24h.
  • step S2 the compacted density is >1.8 g/cm 3 .
  • the invention also provides a waste water adsorbent prepared by the preparation method.
  • the present invention also provides the application of the wastewater adsorbent in the treatment of ternary precursor wastewater.
  • the method for treating ternary precursor wastewater includes: the ternary precursor wastewater is subjected to sedimentation, filtration, and strong oxidation to obtain primary treatment wastewater, and to the primary treatment wastewater Add the wastewater adsorbent for adsorption treatment.
  • the treated wastewater adsorbent is soaked in acid for desorption. After adsorption-desorption treatment for 2-6 times, the treated wastewater is sent to secondary treatment, and the wastewater adsorbent is reused. Adsorption treatment was carried out again.
  • the ternary precursor wastewater is the wastewater produced by acid leaching, precipitation and impurity removal, extraction and separation, alkali addition, ammonia addition, and aging in the ternary precursor production process.
  • the solid-to-liquid ratio of the wastewater adsorbent to the primary treated wastewater is (0.5-20): (30-200) kg/L.
  • the acid used for soaking and desorption is one or more of sulfuric acid, nitric acid, phosphoric acid or hydrochloric acid, and its concentration is further 0.01-3 mol/L.
  • the wastewater adsorbent of the present invention has high stability and various adsorption options. After the carbon black powder in the wastewater adsorbent is modified by hydrothermal ammonium salt, the polarity and acid-base properties of the carbon black powder are greatly changed, and the adsorption performance of ammonium is enhanced.
  • manganese Salt is the main material of the adsorbent polymetallic salt
  • the stability of the adsorbent is strengthened by adding cobalt salt/nickel salt
  • the carbon black powder is used as the base material of the adsorbent
  • the polymetallic-carbon-based adsorbent is synthesized by heating, which can be further developed Strengthen the inherent excellent properties of porous carbon in carbon black powder, improve its surface properties, help to enhance the interaction between adsorbents and ions, and improve adsorption performance.
  • the multi-metal-carbon-based adsorbent prepared in the present invention has specific adsorption capacity for sodium, ammonium and sulfate radicals, and carbon black powder can adsorb calcium, iron, manganese, cobalt and many other ions as the base carbon material at the same time. It has a variety of adsorption, moreover, the adsorbent can be used again after desorption treatment, and has the ability of repeated adsorption.
  • the raw material source of the multi-metal-carbon-based adsorbent synthesized by the present invention can be the product of waste battery recycling, wherein the carbon black powder can come from the negative electrode material of the waste battery, and the nickel-cobalt-manganese-sodium mixed salt can come from the positive electrode material of the waste battery, so the adsorption
  • the main material of the agent is the secondary utilization of waste materials.
  • the adsorbent synthesized by the present invention can be reused. After the primary treatment wastewater is subjected to adsorption treatment, the adsorbent can be placed in acid for desorption treatment and reused. Therefore, the recyclability of the material in the present invention is high.
  • Fig. 1 is the process flow chart of the embodiment of the present invention 1;
  • Figure 2 is a SEM image of the wastewater adsorbent prepared in Example 2 of the present invention.
  • a kind of preparation method of waste water adsorbent and waste water treatment method with reference to Fig. 1, concrete process is:
  • Nit-cobalt-manganese-sodium mixed salt The nickel-cobalt-manganese mixed salt prepared by battery recycling is mixed with sodium sulfate and ground to an average particle size of ⁇ 100 ⁇ m to obtain a mixture, which is uniformly mixed with 6.12wt% oxalic acid solution, separated from solid and liquid, evaporated Remove water, heat at 430°C under an inert atmosphere, keep the temperature for 3h44min, cool down, pickle with 0.34mol/L hydrochloric acid, wash and dry to obtain nickel-cobalt-manganese-sodium mixed salt.
  • the mass ratio of sodium sulfate to nickel-cobalt-manganese mixed salt is 3:12, and the solid-to-liquid ratio of the mixture to the oxalic acid solution is 10:50 g/mL.
  • Adsorbent adsorption wastewater treatment The wastewater produced by the preparation of ternary precursors is settled, filtered, and strongly oxidized to obtain primary treatment wastewater, and multi-metal-carbon-based adsorbents are added for adsorption treatment.
  • the treated adsorbents are at 0.34 mol/L hydrochloric acid for desorption, after adsorption-desorption treatment for 5 times, the treated wastewater is sent to secondary treatment, and the adsorbent is reused for adsorption treatment again.
  • the solid-liquid ratio of adsorbent to wastewater is 1:13g/mL.
  • a preparation method of a waste water adsorbent and a waste water treatment method is:
  • Nit-cobalt-manganese-sodium mixed salt The nickel-cobalt-manganese mixed salt prepared by battery recycling is mixed with sodium sulfate and ground to an average particle size of ⁇ 100 ⁇ m to obtain a mixture, which is uniformly mixed with 3.41wt% oxalic acid solution, separated from solid and liquid, evaporated Remove water, heat at 425°C under an inert atmosphere, keep the temperature for 3h54min, cool down, pickle with 0.34mol/L hydrochloric acid, wash, and dry to obtain nickel-cobalt-manganese-sodium mixed salt.
  • the mass ratio of sodium sulfate to nickel-cobalt-manganese mixed salt 5:17, and the solid-to-liquid ratio of the mixture to the oxalic acid solution is 10:65 g/mL.
  • the mass ratio of nickel-cobalt-manganese-sodium mixed salt, ammonium sulfate modified carbon black slag, and silicate clay is 35:70:2.3.
  • Adsorbent adsorption wastewater treatment The wastewater produced by the preparation of ternary precursors is settled, filtered, and strongly oxidized to obtain primary treatment wastewater, and multi-metal-carbon-based adsorbents are added for adsorption treatment.
  • the treated adsorbents are at 0.34 mol/L hydrochloric acid for desorption, after adsorption-desorption treatment for 5 times, the treated wastewater is sent to secondary treatment, and the adsorbent is reused for adsorption treatment again.
  • the solid-liquid ratio of adsorbent to waste water is 1:9kg/L.
  • Fig. 2 is the SEM picture of the wastewater adsorbent prepared in this example. It can be seen from the figure that the adsorbent has a rough surface and a structure with pores inside.
  • a preparation method of a waste water adsorbent and a waste water treatment method is:
  • Nit-cobalt-manganese-sodium mixed salt The nickel-cobalt-manganese mixed salt prepared by battery recycling is mixed with sodium sulfate and ground to an average particle size of ⁇ 100 ⁇ m to obtain a mixture, which is uniformly mixed with 6.33wt% oxalic acid solution, separated from solid and liquid, evaporated Remove water, heat at 430°C under an inert atmosphere, keep the temperature for 3h34min, cool down, pickle with 0.34mol/L hydrochloric acid, wash and dry to obtain nickel-cobalt-manganese-sodium mixed salt.
  • the mass ratio of sodium sulfate to nickel-cobalt-manganese mixed salt 4:13
  • the solid-to-liquid ratio of the mixture to the oxalic acid solution is 10:50 g/mL.
  • Adsorbent adsorption wastewater treatment The wastewater produced by the preparation of ternary precursors is settled, filtered, and strongly oxidized to obtain primary treatment wastewater, and multi-metal-carbon-based adsorbents are added for adsorption treatment.
  • the treated adsorbents are at 0.34 mol/L hydrochloric acid for desorption, after adsorption-desorption treatment for 5 times, the treated wastewater is sent to secondary treatment, and the adsorbent is reused for adsorption treatment again.
  • the solid-liquid ratio of adsorbent to waste water is 1:7kg/L.
  • a preparation method of a waste water adsorbent and a waste water treatment method is:
  • Nit-cobalt-manganese-sodium mixed salt The nickel-cobalt-manganese mixed salt prepared by battery recycling is mixed with sodium sulfate and ground to an average particle size of ⁇ 100 ⁇ m to obtain a mixture, which is uniformly mixed with 6.12wt% oxalic acid solution, separated from solid and liquid, evaporated Remove water, heat at 430°C under an inert atmosphere, keep the temperature for 3h17min, cool down, pickle with 0.34mol/L hydrochloric acid, wash, and dry to obtain nickel-cobalt-manganese-sodium mixed salt.
  • the mass ratio of sodium sulfate to nickel-cobalt-manganese mixed salt is 5:15, and the solid-to-liquid ratio of the mixture to the oxalic acid solution is 10:50 g/mL.
  • Adsorbent adsorption wastewater treatment The wastewater produced by the preparation of ternary precursors is settled, filtered, and strongly oxidized to obtain primary treatment wastewater, and multi-metal-carbon-based adsorbents are added for adsorption treatment.
  • the treated adsorbents are at 0.34 mol/L hydrochloric acid for desorption, after adsorption-desorption treatment for 5 times, the treated wastewater is sent to secondary treatment, and the adsorbent is reused for adsorption treatment again.
  • the solid-liquid ratio of adsorbent to wastewater is 1:10g/L.
  • step (3) does not add nickel-cobalt-manganese-sodium mixed salt.
  • step (3) does not add nickel-cobalt-manganese-sodium mixed salt.
  • Example 1 As can be seen from Table 1, compared with Comparative Example 1, the removal of ammonia nitrogen in the wastewater after modification by ammonium salts in Examples 1-4 has been significantly improved. On the other hand, compared with Comparative Example 2 and Comparative Example 3, Example 1 After adding nickel-cobalt-manganese-sodium mixed salt in -4, the removal of nickel and sodium in wastewater was significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种废水吸附剂及其制备方法和应用,包括将碳黑粉与铵盐溶液混合,加热进行水热反应,然后过滤,所得滤渣用酸洗涤,得到铵盐改性碳黑;将镍钴锰混合盐与钠盐混合研磨,得到混合物,混合物与有机酸溶液混合,再蒸发除水,在惰性气氛下加热反应,反应后物料经过酸洗,得到镍钴锰钠混合盐,将镍钴锰钠混合盐、铵盐改性碳黑和结合剂混合,经压实、干燥、加热,得到多金属-碳基吸附剂。本发明中制备得到的多金属-碳基吸附剂对钠、铵根、硫酸根具有特异性吸附能力,碳黑粉作为基底碳材料同时对钙、铁、锰、钴等诸多离子均能吸附,具有多样性吸附,再者,吸附剂脱附处理之后可以再次使用,具有重复性吸附的能力。

Description

一种废水吸附剂及其制备方法和应用 技术领域
本发明属于废水处理技术领域,具体涉及一种废水吸附剂及其制备方法和应用。
背景技术
目前,三元正极材料的合成方法通过锂盐与三元前驱体烧结得到,三元前驱体物合成工艺包括以下两种类型:1、废旧锂离子/极片拆解、回收得到电池粉,电池粉焙烧、酸氧浸出、萃取提纯得到镍钴锰混合盐,镍钴锰混合盐加碱、氨合成得到三元前驱体物产物;2、各类矿物酸浸、沉淀除杂、萃取提纯分别得到镍盐、钴盐、锰盐,将镍盐、钴盐、锰盐、碱以及氨合成得到三元前驱体物产物。上述合成三元前驱体的两种合成过程中都不可避免利用酸,尤其是硫酸当做浸出剂,碱当做沉淀剂和调节剂,氨当做络合剂,利用有机萃取剂来萃取镍钴锰金属离子,而为了防止铵盐、硫酸盐、有机萃取剂留在于镍钴锰盐溶液中,导致三元前驱体中铵盐、硫酸盐、有机萃取剂含量较高,导致产品超标,常以多次压滤和洗涤来除钠离子,因此一方面需要较多的纯水来多次冲洗掉铵盐、硫酸盐、有机萃取剂以及其他可溶性杂质,用水量加大,废水产生量多,增加废水处理成本,另一方面随着洗涤次数增加,产生的废水中铵盐、硫酸盐、有机萃取剂的浓度越来越低,处理难度大,无法进行深度除铵盐、硫酸盐、有机萃取剂。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种废水吸附剂及其制备方法和应用,目的一是制备一种废水吸附剂,目的二是提供利用上述的废水处理剂进行深度除铵盐、硫酸盐、有机萃取剂的废水处理方法。
根据本发明的一个方面,提出了一种废水吸附剂的制备方法,包括以下步骤:
S1:将碳黑粉与铵盐溶液混合,加热进行水热反应,然后过滤,所得滤渣用酸洗涤,得到铵盐改性碳黑;将镍钴锰混合盐与钠盐混合研磨,得到混合物,所述混合物与有机酸溶液混合,再蒸发除水,在惰性气氛下加热反应,反应后物料经过酸洗,得到镍钴锰钠混 合盐;
S2:将所述镍钴锰钠混合盐、铵盐改性碳黑和结合剂混合,经压实、干燥、加热,得到多金属-碳基吸附剂。步骤S2中所述加热在氮气气氛下进行。
其中,所述压实后得到一定形状如薄片状、块状、长棒状、球状、不规则多边状。
在本发明的一些实施方式中,步骤S1中,所述碳黑粉由锂电池回收的电池粉经过酸氧浸出得到。进一步地,所述碳黑粉的平均粒度<0.1mm。
在本发明的一些实施方式中,步骤S1中,所述铵盐溶液为硫酸铵、硫酸氢铵、碳酸铵、碳酸氢铵、氯化铵、磷酸铵或磷酸二氢铵的溶液中的一种或几种;优选的,所述铵盐溶液为硫酸铵或硫酸氢铵的溶液中的一种或两种。
在本发明的一些实施方式中,所述碳黑粉与铵盐溶液的固液比为10-500g/L,进一步地,所述碳黑粉与铵盐溶液的固液比为50-200g/L。
在本发明的一些实施方式中,所述铵盐溶液的质量浓度为0.1-30%,进一步地,所述铵盐溶液的质量浓度为1-10%。
在本发明的一些实施方式中,步骤S1中,所述水热反应的温度为100-400℃;优选的,所述水热反应的时间为1-10h。
在本发明的一些实施方式中,步骤S1中,所述钠盐为醋酸钠、氢氧化钠、硫酸钠、磷酸钠、氯化钠、硝酸钠、草酸钠、柠檬酸钠、锰酸钠或碳酸钠中的一种或几种。
在本发明的一些实施方式中,步骤S1中,所述混合物的平均粒度<100μm。
在本发明的一些实施方式中,步骤S1中,所述酸为硫酸、硝酸、磷酸或盐酸中的一种或几种;进一步地,所述酸的浓度为0.1-5mol/L。
在本发明的一些实施方式中,步骤S1中,所述镍钴锰混合盐由电池回收制备得到;优选的,所述钠盐和镍钴锰混合盐的质量比为(1-10):(0.1-30)。
在本发明的一些实施方式中,步骤S1中,所述有机酸溶液为草酸、柠檬酸、醋酸、甲酸或乙酸的溶液中的一种或几种;所述混合物与有机酸溶液的固液比为10:(50-200)g/mL,进一步地,所述有机酸溶液的质量浓度为1-40%。
在本发明的一些实施方式中,步骤S1中,所述加热反应的温度为300-1100℃;优选的,所述加热反应的时间为2-24h。
在本发明的一些实施方式中,步骤S2中,所述结合剂为硅酸钙、海藻酸钙、硅酸黏土或硅铝酸钠中的一种或几种;优选的,所述镍钴锰钠混合盐、铵盐改性碳黑和结合剂的质量比为(10-50):(30-70):(0.1-8)。
在本发明的一些实施方式中,步骤S2中,所述加热的温度为300-800℃,进一步地,所述加热的时间为2-24h。
在本发明的一些实施方式中,步骤S2中,所述压实后的密度>1.8g/cm 3
本发明还提供一种废水吸附剂,由所述的制备方法制得。
本发明还提供所述的废水吸附剂在三元前驱体废水处理中的应用。
在本发明的一些实施方式中,所述三元前驱体废水处理的方法包括:所述三元前驱体废水经沉降、过滤、强氧化后得到一级处理废水,向所述一级处理废水中加入所述废水吸附剂进行吸附处理,处理后的废水吸附剂置于酸中浸泡脱附,吸附-脱附处理2-6次后,处理后的废水送至二级处理,废水吸附剂回用再次进行吸附处理。需要注意的是,所述三元前驱体废水即为三元前驱体生产工艺中经酸浸、沉淀除杂、萃取分离、加碱、加氨、陈化产生的废水。
在本发明的一些实施方式中,所述废水吸附剂与一级处理废水的固液比为(0.5-20):(30-200)kg/L。
在本发明的一些实施方式中,所述浸泡脱附所用的酸为硫酸、硝酸、磷酸或盐酸中的一种或几种,其浓度进一步为0.01-3mol/L。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明的废水吸附剂稳定性高,吸附选择多样。废水吸附剂中的碳黑粉经过水热法铵盐改性后,极大地改变了碳黑粉的极性和酸碱性质,增强了对铵根的吸附性能,镍钴锰混合盐中,锰盐为吸附剂多金属盐的中主要材料,加钴盐/镍盐对吸附剂的稳定性进行强化,将碳黑粉作为吸附剂的基底材料,加热合成多金属-碳基吸附剂,可进一步强化碳黑粉中多孔碳固有的优异性能,改善其表面性质,有助于增强吸附剂与离子的相互作用,提升 吸附性能。本发明中制备得到的多金属-碳基吸附剂对钠、铵根、硫酸根具有特异性吸附能力,碳黑粉作为基底碳材料同时对钙、铁、锰、钴等诸多离子均能吸附,具有多样性吸附,再者,吸附剂脱附处理之后可以再次使用,具有重复性吸附的能力。
2、使用本发明的方法,生产成本显著降低。一方面,本发明合成的多金属-碳基吸附剂原料来源可以是废旧电池回收的产物,其中碳黑粉可来自废旧电池负极材料,镍钴锰钠混合盐可来自废旧电池正极材料,因此吸附剂的主材料均为废弃材料的二次利用,另一方面,本发明合成的吸附剂可重复使用,一级处理废水经吸附处理后,吸附剂可置于酸中脱附处理,再次使用,因此本发明中材料的循环利用性高。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程图;
图2为本发明实施例2制得的废水吸附剂的SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种废水吸附剂的制备方法及废水处理方法,参照图1,具体过程为:
(1)碳黑渣改性:锂电池回收得到的电池粉,经过酸氧浸出得到碳黑渣,碳黑渣洗涤、干燥、研磨至平均粒度<0.1mm,得到碳黑渣粉,34g碳黑渣粉与200mL 3.3%的硫酸铵溶液混合搅拌得到碳黑渣浆,碳黑渣浆送至密闭容器加热,在160℃下水热反应3h3min,降温后,过滤、滤渣用稀酸洗涤、干燥得到硫酸铵改性碳黑渣。
(2)制备镍钴锰钠混合盐:电池回收制备得到的镍钴锰混合盐与硫酸钠混合研磨至平均粒度<100μm,得到混合物,混合物与6.12wt%草酸溶液均匀混合、固液分离,蒸发除 水、在惰性气氛下430℃加热、恒温3h44min、降温,加0.34mol/L盐酸酸洗,洗涤、干燥,得到镍钴锰钠混合盐。
其中,硫酸钠与镍钴锰混合盐的质量比=3:12,混合物与草酸溶液的固液比为10:50g/mL。
(3)合成多金属-碳基吸附剂:将15.8g镍钴锰钠混合盐、34g硫酸铵改性碳黑渣、5g硅酸黏土混合,压实得到一定薄片状,压实密度为2.53g/cm 3,干燥、在氮气气氛下485℃加热、恒温2h12min、降温得到多金属-碳基吸附剂。
(4)吸附剂吸附废水处理:三元前驱体制备产生的废水经沉降、过滤、强氧化后得到一级处理废水,加多金属-碳基吸附剂进行吸附处理,处理后的吸附剂在0.34mol/L盐酸中浸泡脱附,吸附-脱附处理5次后,处理后的废水送至二级处理,吸附剂回用再次进行吸附处理。
其中,吸附剂与废水的固液比为1:13g/mL。
实施例2
一种废水吸附剂的制备方法及废水处理方法,具体过程为:
(1)碳黑渣改性:锂电池回收得到的电池粉,经过酸氧浸出得到碳黑渣,碳黑渣洗涤、干燥、研磨至平均粒度<0.1mm,得到碳黑渣粉,45g碳黑渣粉与280mL 3.7%的硫酸铵溶液混合搅拌得到碳黑渣浆,碳黑渣浆送至密闭容器加热,在185℃下水热反应2h13min,降温后,过滤、滤渣用稀酸洗涤、干燥得到硫酸铵改性碳黑渣。
(2)制备镍钴锰钠混合盐:电池回收制备得到的镍钴锰混合盐与硫酸钠混合研磨至平均粒度<100μm,得到混合物,混合物与3.41wt%草酸溶液均匀混合、固液分离,蒸发除水、在惰性气氛下425℃加热、恒温3h54min、降温,加0.34mol/L盐酸酸洗,洗涤、干燥,得到镍钴锰钠混合盐。
其中,硫酸钠与镍钴锰混合盐的质量比=5:17,混合物与草酸溶液的固液比为10:65g/mL。
(3)合成多金属-碳基吸附剂:将22g镍钴锰钠混合盐、45g硫酸铵改性碳黑渣、7硅酸黏土混合,压实得到一定薄片状,压实密度为2.23g/cm 3,干燥、在氮气气氛下485℃加 热、恒温2h12min、降温得到多金属-碳基吸附剂。
其中,镍钴锰钠混合盐、硫酸铵改性碳黑渣、硅酸黏土的质量比=35:70:2.3。
(4)吸附剂吸附废水处理:三元前驱体制备产生的废水经沉降、过滤、强氧化后得到一级处理废水,加多金属-碳基吸附剂进行吸附处理,处理后的吸附剂在0.34mol/L盐酸中浸泡脱附,吸附-脱附处理5次后,处理后的废水送至二级处理,吸附剂回用再次进行吸附处理。
其中,吸附剂与废水的固液比为1:9kg/L。
图2为本实施例制得的废水吸附剂的SEM图,从图中可见,吸附剂为表面粗糙,内有孔隙的结构。
实施例3
一种废水吸附剂的制备方法及废水处理方法,具体过程为:
(1)碳黑渣改性:锂电池回收得到的电池粉,经过酸氧浸出得到碳黑渣,碳黑渣洗涤、干燥、研磨至平均粒度<0.1mm,得到碳黑渣粉,36g碳黑渣粉与240mL的4.4%氯化铵溶液混合搅拌得到碳黑渣浆,碳黑渣浆送至密闭容器加热,在160℃下水热反应2h33min,降温后,过滤、滤渣用稀酸洗涤、干燥得到氯化铵改性碳黑渣。
(2)制备镍钴锰钠混合盐:电池回收制备得到的镍钴锰混合盐与硫酸钠混合研磨至平均粒度<100μm,得到混合物,混合物与6.33wt%草酸溶液均匀混合、固液分离,蒸发除水、在惰性气氛下430℃加热、恒温3h34min、降温,加0.34mol/L盐酸酸洗,洗涤、干燥,得到镍钴锰钠混合盐。
其中,硫酸钠与镍钴锰混合盐的质量比=4:13,混合物与草酸溶液的固液比为10:50g/mL。
(3)合成多金属-碳基吸附剂:将17g镍钴锰钠混合盐、36g氯化铵改性碳黑渣、5g硅酸黏土混合,压实得到一定块状,压实密度为2.07g/cm 3,干燥、在氮气气氛下485℃加热、恒温2h12min、降温得到多金属-碳基吸附剂。
(4)吸附剂吸附废水处理:三元前驱体制备产生的废水经沉降、过滤、强氧化后得 到一级处理废水,加多金属-碳基吸附剂进行吸附处理,处理后的吸附剂在0.34mol/L盐酸中浸泡脱附,吸附-脱附处理5次后,处理后的废水送至二级处理,吸附剂回用再次进行吸附处理。
其中,吸附剂与废水的固液比为1:7kg/L。
实施例4
一种废水吸附剂的制备方法及废水处理方法,具体过程为:
(1)碳黑渣改性:锂电池回收得到的电池粉,经过酸氧浸出得到碳黑渣,碳黑渣洗涤、干燥、研磨至平均粒度<0.1mm,得到碳黑渣粉,25g碳黑渣粉与200mL 5.3%的氯化铵溶液混合搅拌得到碳黑渣浆,碳黑渣浆送至密闭容器加热,在160℃下水热反应3h8min,降温后,过滤、滤渣用稀酸洗涤、干燥得到氯化铵改性碳黑渣。
(2)制备镍钴锰钠混合盐:电池回收制备得到的镍钴锰混合盐与硫酸钠混合研磨至平均粒度<100μm,得到混合物,混合物与6.12wt%草酸溶液均匀混合、固液分离,蒸发除水、在惰性气氛下430℃加热、恒温3h17min、降温,加0.34mol/L盐酸酸洗,洗涤、干燥,得到镍钴锰钠混合盐。
其中,硫酸钠与镍钴锰混合盐的质量比=5:15,混合物与草酸溶液的固液比为10:50g/mL。
(3)合成多金属-碳基吸附剂:将8g镍钴锰钠混合盐、25g氯化铵改性碳黑渣、3g硅酸黏土混合,压实得到一定块状,压实密度为2.47g/cm 3,干燥、在氮气气氛下485℃加热、恒温2h12min、降温得到多金属-碳基吸附剂。
(4)吸附剂吸附废水处理:三元前驱体制备产生的废水经沉降、过滤、强氧化后得到一级处理废水,加多金属-碳基吸附剂进行吸附处理,处理后的吸附剂在0.34mol/L盐酸中浸泡脱附,吸附-脱附处理5次后,处理后的废水送至二级处理,吸附剂回用再次进行吸附处理。
其中,吸附剂与废水的固液比为1:10g/L。
对比例1
本对比例与实施例1的区别在于步骤(1)的碳黑渣未进行改性处理。
对比例2
本对比例与实施例1的区别在于步骤(3)未加镍钴锰钠混合盐。
对比例3
本对比例与实施例3的区别在于步骤(3)未加镍钴锰钠混合盐。
表1实施例1-4与对比例1-3废水吸附处理前后的含杂情况
Figure PCTCN2022109232-appb-000001
Figure PCTCN2022109232-appb-000002
从表1可知,与对比例1相比,实施例1-4经铵盐改性后废水中氨氮去除量均有显著提升,另一方面,与对比例2、对比3相比,实施例1-4中加入镍钴锰钠混合盐后废水中镍、钠的去除量均有显著提升。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种废水吸附剂的制备方法,其特征在于,包括以下步骤:
    S1:将碳黑粉与铵盐溶液混合,加热进行水热反应,然后过滤,所得滤渣用酸洗涤,得到铵盐改性碳黑;将镍钴锰混合盐与钠盐混合研磨,得到混合物,所述混合物与有机酸溶液混合,再蒸发除水,在惰性气氛下加热反应,反应后物料经过酸洗,得到镍钴锰钠混合盐;
    S2:将所述镍钴锰钠混合盐、铵盐改性碳黑和结合剂混合,经压实、干燥、加热,得到多金属-碳基吸附剂。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述碳黑粉由锂电池回收的电池粉经过酸氧浸出得到。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述铵盐溶液为硫酸铵、硫酸氢铵、碳酸铵、碳酸氢铵、氯化铵、磷酸铵或磷酸二氢铵的溶液中的一种或几种;所述碳黑粉与铵盐溶液的固液比为10-500g/L,所述铵盐溶液的质量浓度为0.1-30%。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述水热反应的温度为100-400℃;优选的,所述水热反应的时间为1-10h。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述镍钴锰混合盐由电池回收制备得到;优选的,所述钠盐和镍钴锰混合盐的质量比为(1-10):(0.1-30)。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述有机酸溶液为草酸、柠檬酸、醋酸、甲酸或乙酸的溶液中的一种或几种;所述混合物与有机酸溶液的固液比为10:(50-200)g/mL,所述有机酸溶液的质量浓度为1-40%。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述加热反应的温度为300-1100℃;优选的,所述加热反应的时间为2-24h。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述结合剂为硅酸钙、海藻酸钙、硅酸黏土或硅铝酸钠中的一种或几种;优选的,所述镍钴锰钠混合盐、铵盐改性碳黑和结合剂的质量比为(10-50):(30-70):(0.1-8)。
  9. 一种废水吸附剂,其特征在于,由权利要求1-8中任一项所述的制备方法制得。
  10. 如权利要求9所述的废水吸附剂在三元前驱体废水处理中的应用。
PCT/CN2022/109232 2021-10-26 2022-07-29 一种废水吸附剂及其制备方法和应用 WO2023071355A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112022002591.3T DE112022002591T5 (de) 2021-10-26 2022-07-29 Abwasseradsorptionsmittel, verfahren zu seiner herstellung und seine verwendung
HU2400070A HUP2400070A1 (hu) 2021-10-26 2022-07-29 Szennyvíz adszorbens, elõállítási módszere és alkalmazása
MX2023015290A MX2023015290A (es) 2021-10-26 2022-07-29 Adsorbente de aguas residuales y metodo de preparacion para el mismo y uso del mismo.
GB2318478.1A GB2622157A (en) 2021-10-26 2022-07-29 Wastewater adsorbent, and preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111246459.6A CN114210303B (zh) 2021-10-26 2021-10-26 一种废水吸附剂及其制备方法和应用
CN202111246459.6 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023071355A1 true WO2023071355A1 (zh) 2023-05-04

Family

ID=80696199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109232 WO2023071355A1 (zh) 2021-10-26 2022-07-29 一种废水吸附剂及其制备方法和应用

Country Status (6)

Country Link
CN (1) CN114210303B (zh)
DE (1) DE112022002591T5 (zh)
GB (1) GB2622157A (zh)
HU (1) HUP2400070A1 (zh)
MX (1) MX2023015290A (zh)
WO (1) WO2023071355A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2815095C1 (ru) * 2023-05-11 2024-03-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный университет" Способ очистки водных растворов от сульфат-ионов

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210303B (zh) * 2021-10-26 2023-12-12 广东邦普循环科技有限公司 一种废水吸附剂及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269311A (ja) * 1988-09-02 1990-03-08 Osaka Gas Co Ltd 一酸化窒素吸着能を有する活性炭素繊維およびその製造方法
CN102847432A (zh) * 2012-09-24 2013-01-02 河北科技大学 一种金属改性抗生素菌渣活性炭吸附-催化氧化二氧化硫的方法
JP2015024405A (ja) * 2013-06-18 2015-02-05 東洋紡株式会社 酸性ガス吸着・除去剤およびそれを用いた吸着・除去フィルタ
CN104801272A (zh) * 2015-04-15 2015-07-29 南通职业大学 载钴活性炭的制备方法及用其吸附甲苯的条件与装置
CN104959110A (zh) * 2015-05-29 2015-10-07 浙江大学 一种表面改性吸附剂及其制备方法和应用
CN106311134A (zh) * 2015-06-24 2017-01-11 中国石油化工股份有限公司 固体净化剂及其制备方法
CN111266084A (zh) * 2020-01-08 2020-06-12 江苏大学 多孔性水生植物基生物质炭材料及其应用
CN114210303A (zh) * 2021-10-26 2022-03-22 广东邦普循环科技有限公司 一种废水吸附剂及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107262037B (zh) * 2017-07-28 2019-11-08 湖南科技大学 一种海泡石羟基氧化铁活性炭复合吸附剂的制备与应用
CN107376862B (zh) * 2017-08-30 2020-04-10 延安大学 一种废旧锌锰电池-生物质吸附剂的制备方法
JP6922989B2 (ja) * 2017-09-13 2021-08-18 株式会社大阪ソーダ 重金属処理剤の製造方法
CN110422891A (zh) * 2019-08-08 2019-11-08 中国科学院青海盐湖研究所 一种制备镍钴锰三元前驱体的方法、系统及应用
CN110813235A (zh) * 2019-11-21 2020-02-21 安徽工业大学 一种镍离子吸附剂及其制备方法
CN111261967A (zh) * 2020-01-22 2020-06-09 宁波容百新能源科技股份有限公司 一种废旧锂电池的回收方法及回收制备的电池级镍钴锰混合晶体
CN112553690A (zh) * 2020-12-31 2021-03-26 杨方宗 一种高压制备片状单晶高镍镍钴锰三元材料的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269311A (ja) * 1988-09-02 1990-03-08 Osaka Gas Co Ltd 一酸化窒素吸着能を有する活性炭素繊維およびその製造方法
CN102847432A (zh) * 2012-09-24 2013-01-02 河北科技大学 一种金属改性抗生素菌渣活性炭吸附-催化氧化二氧化硫的方法
JP2015024405A (ja) * 2013-06-18 2015-02-05 東洋紡株式会社 酸性ガス吸着・除去剤およびそれを用いた吸着・除去フィルタ
CN104801272A (zh) * 2015-04-15 2015-07-29 南通职业大学 载钴活性炭的制备方法及用其吸附甲苯的条件与装置
CN104959110A (zh) * 2015-05-29 2015-10-07 浙江大学 一种表面改性吸附剂及其制备方法和应用
CN106311134A (zh) * 2015-06-24 2017-01-11 中国石油化工股份有限公司 固体净化剂及其制备方法
CN111266084A (zh) * 2020-01-08 2020-06-12 江苏大学 多孔性水生植物基生物质炭材料及其应用
CN114210303A (zh) * 2021-10-26 2022-03-22 广东邦普循环科技有限公司 一种废水吸附剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANG, BINGCHUN ET AL.: "MOF-derived Co, Ni, Mn co-doped N-enriched hollow carbon for efficient", JOURNAL OF SOLID STATE CHEMISTRY, vol. 295, 23 December 2020 (2020-12-23), XP086484215, ISSN: 0022-4596, DOI: 10.1016/j.jssc.2020.121912 *
LI, ZIQING ET AL.: "Synthesis of Ni-doped Activated Carbon From Biomass for CrIV Catalytic Reduction", JOURNAL OF ENGINEERING THERMOPHYSICS, vol. 40, no. 10, 15 October 2019 (2019-10-15), pages 2432 - 2439, XP009545321, ISSN: 0253-231X *
ZHOU YAN, JIA ZIXIN, SHEN YITING, WEI LIYUAN, ZHAO SIYUAN, HAN YINGYING, CHEN PENG, XU CHANG, CUI XIANGMEI, SUN JINGWEN, OUYANG XI: "Ingenious construction of hierarchical spherical nanostructures by in-situ confining Ni–Co–Mn hydroxide nanosheets inside/outside hollow carbon nanospheres for high-performance hybrid supercapacitors", JOURNAL OF ENERGY STORAGE, ELSEVIER BV, NL, vol. 36, 1 April 2021 (2021-04-01), NL , pages 102380, XP093062472, ISSN: 2352-152X, DOI: 10.1016/j.est.2021.102380 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2815095C1 (ru) * 2023-05-11 2024-03-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный университет" Способ очистки водных растворов от сульфат-ионов

Also Published As

Publication number Publication date
CN114210303B (zh) 2023-12-12
HUP2400070A1 (hu) 2024-06-28
GB202318478D0 (en) 2024-01-17
CN114210303A (zh) 2022-03-22
DE112022002591T5 (de) 2024-02-29
GB2622157A (en) 2024-03-06
MX2023015290A (es) 2024-01-22

Similar Documents

Publication Publication Date Title
Tang et al. Preparation of H2TiO3–lithium adsorbent using low-grade titanium slag
CN109999750B (zh) 一种锆酸锂包覆锰系锂离子筛及其制备和应用
CN113277489A (zh) 利用磷铁废料制备高纯度磷酸铁的方法
WO2022213678A1 (zh) 利用选择性浸出回收废正极片中铝的方法及其应用
WO2023071355A1 (zh) 一种废水吸附剂及其制备方法和应用
WO2023024593A1 (zh) 镍钴锰酸锂和磷酸铁锂混合废料的回收方法
CN113073194A (zh) 一种废旧锂电池回收利用的除氟工艺
CN111129636A (zh) 废旧磷酸铁锂电池正极材料的再生方法
CN110563190A (zh) 一种电解锰渣渗滤液的处理方法
CN115582105B (zh) 一种含钛高炉渣改性制备co2捕集材料耦合矿化的方法
CN114272914B (zh) 一种锂吸附剂、膜元件、其制备方法及锂提取方法与装置
CN106179180B (zh) 一种硫酸锌溶液用除氟材料及制备方法
CN108063295B (zh) 从火法回收锂电池产生的炉渣中提取锂的方法
CN108554366B (zh) 一步法制备锰氧离子筛前驱体LixMn3-xO4的方法
WO2024060547A1 (zh) 一种废旧三元正极材料的再生方法
WO2024045515A1 (zh) 磷酸铁锂正极废液的回收方法及其回收生产线
CN112755981A (zh) 固溶体结构吸附剂与制备方法及在分离水体所含Cr(Ⅵ)中的应用
WO2024066182A1 (zh) 普鲁士类钠离子正极材料及其回收方法
CN112604647A (zh) 一种赤泥基锶磁性NaP沸石吸附材料的制备方法
CN115491527B (zh) 一种含铀废渣的预处理方法和铀的回收方法
CN112250090A (zh) 一种硫酸锂溶液深度除氟的生产方法
JP2008200609A (ja) 水溶液中のヒ素とクロムとを分離する方法
WO2024119629A1 (zh) 氟离子吸附剂的制备方法
CN116102073B (zh) 一种硫铁矿烧渣的再利用方法
WO2024037272A1 (zh) 一种三元电池粉浸出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202318478

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220729

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/015290

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: P202390238

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 112022002591

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: P2400070

Country of ref document: HU