WO2023070556A1 - 一种铅冶炼底吹炉烟灰浸出液除铊的方法 - Google Patents

一种铅冶炼底吹炉烟灰浸出液除铊的方法 Download PDF

Info

Publication number
WO2023070556A1
WO2023070556A1 PCT/CN2021/127581 CN2021127581W WO2023070556A1 WO 2023070556 A1 WO2023070556 A1 WO 2023070556A1 CN 2021127581 W CN2021127581 W CN 2021127581W WO 2023070556 A1 WO2023070556 A1 WO 2023070556A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
thallium
soot
lead smelting
reaction
Prior art date
Application number
PCT/CN2021/127581
Other languages
English (en)
French (fr)
Inventor
付高明
陈国兰
白成庆
阳自霖
Original Assignee
湖南水口山有色金属集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南水口山有色金属集团有限公司 filed Critical 湖南水口山有色金属集团有限公司
Publication of WO2023070556A1 publication Critical patent/WO2023070556A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B17/00Obtaining cadmium
    • C22B17/04Obtaining cadmium by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of lead smelting, in particular to a method for removing thallium from the soot leaching solution of a bottom-blown furnace for lead smelting.
  • Bottom-blown furnace soot for lead smelting contains valuable elements such as lead, zinc, gold, and silver, as well as elements harmful to lead smelting such as arsenic, cadmium, and thallium.
  • the conventional treatment method is to use it in combination with other lead-containing materials.
  • cadmium and thallium will be continuously enriched, and when the cadmium content in the soot accumulates to about 20%, it will be treated as an open circuit.
  • the process adopted in China to treat the soot of the bottom blowing furnace is generally wet recovery.
  • the cadmium and zinc in the soot are leached into the solution to separate them from lead, gold, silver, etc., and the leached slag is returned to the lead system for recovery.
  • the leaching solution enters the zinc system for recovery.
  • the leaching solution is replaced by zinc powder to recover cadmium; after the replacement solution is purified, it enters the zinc system to recover zinc.
  • harmful elements such as arsenic and thallium will also enter the cadmium-containing solution, which will have a certain impact on the recovery of cadmium.
  • the replacement method is used to recover cadmium, thallium will also be replaced, which not only affects product quality.
  • the scatter pollution of thallium will also be caused in the subsequent refining process of cadmium.
  • the purification and removal of thallium is not considered in the current soot recovery methods, but the thallium content in the cadmium-containing soot can reach 0.2-0.4%, and more than 50% of the thallium will enter the solution during the leaching of the soot, which must be paid attention to.
  • Thallium (Tl) is a rare dispersed metal and is a highly toxic heavy metal pollutant. Thallium poisoning can cause respiratory and digestive system disorders, and eventually lead to nervous system damage. Severe thallium poisoning is enough to cause death of humans and animals.
  • the purpose of the present invention is to overcome the above-mentioned deficiencies in the prior art and provide a method for removing thallium from the soot leaching solution of the bottom-blown furnace of lead smelting.
  • the method of the present invention is simple, the process is short, and the thallium in the cadmium solution can be effectively removed, and the cadmium loss rate is low.
  • the loss rate of cadmium is 3-4%
  • the removal rate of thallium is over 96%.
  • the technical scheme of the present invention is: a method for removing thallium from the soot leaching solution of a bottom-blown furnace for lead smelting, comprising the following steps:
  • polyferric sulfate is a commonly used inorganic polymer flocculant for water treatment, molecular formula [Fe 2 (OH) n (SO 4 ) 3-n/2 ]m
  • the hydrolysis of polyferric sulfate will generate a large number of macromolecular complexes and hydrophobic ferric hydroxide polymers, which have good adsorption effect, co-precipitate with high-priced thallium precipitates, and react with arsenic to form ferric arsenate at the same time, Arsenic is also effectively removed), stirred, and filtered after a period of reaction to separate solid and liquid to obtain purification slag and purification liquid.
  • the main components of the purification slag are iron arsenate, thallium hydroxide, manganese dioxide and iron hydroxide
  • the main component of the purification solution is a cadmium sulfate solution from which arsenic and thallium have been removed, and partly excess potassium permanganate;
  • step S3 manganese removal: in the purification liquid that step S2 obtains because potassium permanganate is excessive can show redness, add an amount of weak reducing agent (remove excessive potassium permanganate, ferrous sulfate is oxidized by potassium permanganate) in purification liquid It is ferric iron, ferric iron is hydrolyzed and entrained manganese ions are precipitated and removed together), and the color change of the purification solution is observed while adding. When the red color of the purification solution just turns colorless, stop adding the reducing agent, stir, and react for a period of time. Solid-liquid separation is carried out to obtain manganese removal slag and manganese removal solution. The obtained manganese removal solution is the solution after thallium removal, which can be followed up to recover cadmium.
  • weak reducing agent Remove excessive potassium permanganate, ferrous sulfate is oxidized by potassium permanganate
  • It ferric iron, ferric iron is hydrolyzed and entrained manga
  • the further technical solution of the present invention is: in the step S1, adjust the pH value of the water immersion liquid to be kept between 2.5 and 3.5. If the pH value of the initial water immersion liquid is not within the above range, pH adjustment is required to make it Within the above range, sulfuric acid is generally used to adjust the pH, and other ions will not be introduced to form complexes of thallium.
  • the amount of potassium permanganate in the step S1 is 1.1 to 1.3 times of the theoretical reaction amount of arsenic and thallium.
  • the amount of potassium permanganate should not be too little or too much. If there is too much, the concentration of manganese ions in the solution is too high, and new impurities are easily introduced.
  • step S1 the reaction temperature in step S1 is 50-60°C, and the reaction time is 20-40min.
  • the purpose of step S1 is to oxidize thallium to trivalent thallium, and then hydrolyze it into thallium hydroxide for removal.
  • the temperature range of 50-60°C It is determined through a large number of experiments that the oxidation of thallium is not complete and the removal rate is not high if the temperature is lower than this range, and it is unnecessary to increase the energy consumption if the temperature is higher than this range.
  • the amount of polyferric sulfate used in the step S2 is 0.9-1 times of the theoretical amount of ferric arsenate generated by the reaction with arsenic.
  • the reaction temperature in the step S2 is 50-60°C.
  • adjust the pH value to 4.5-5.5 and then carry out the stirring reaction for 20-40 minutes.
  • the pH value cannot be lower than the above range, nor can it be higher than In the above range, the removal rate of thallium will not be high if it is lower than the above range, and if it is too high, it will cause the loss of cadmium.
  • Cadmium ions are much more hydrolyzable. Adjusting the pH value to 4.5-5.5 is to allow as much thallium to precipitate and remove as much as possible. If the pH continues to rise, the hydrolysis of cadmium in the solution will also increase, resulting in excessive loss of cadmium.
  • the weak reducing agent in the step S3 is ferrous sulfate, and ferrous sulfate is used to convert high-valent manganese into precipitation and remove it, while iron can be oxidized and removed.
  • reaction in the step S3 is carried out at room temperature, and the reaction time is 20-40 minutes.
  • Reaction principle of the present invention is:
  • Ferrous sulfate reduces excess potassium permanganate, and at the same time, ferrous sulfate is oxidized to ferric sulfate, and ferric sulfate is hydrolyzed into precipitates to remove manganese entrainment.
  • the method of the present invention is simple, the process is short, and the use time is short, can effectively remove thallium in the cadmium solution, and utilize the initial pH difference of thallium and cadmium hydrolysis precipitation, thallium generation precipitation is removed from the cadmium sulfate solution, and the loss rate of cadmium is low , for high cadmium and high thallium solutions, the loss rate of cadmium is 3-4%, and the removal rate of thallium is over 96%;
  • the present invention recovers cadmium after removing thallium from the soot leach solution of the bottom blowing furnace, so as to reduce the scattered pollution of thallium and have obvious environmental protection benefits.
  • Fig. 1 is the process flow diagram of the embodiment of the present invention.
  • a kind of method for removing thallium from the soot leaching solution of lead smelting bottom-blown furnace comprises the following steps:
  • Oxidation Adjust the pH value of the water immersion solution to keep it between 2.5 and 3.5, and add excess potassium permanganate to the water immersion solution of soot from the bottom-blown furnace of lead smelting. 1.1 to 1.3 times the total amount of reaction, react at 50 to 60°C for 20 to 40 minutes, and generate reaction solution A;
  • Flocculation and precipitation and filtration add an appropriate amount of polymerized ferric sulfate to the reaction solution A, the amount of polymerized ferric sulfate is 0.9 to 1 times the theoretical amount of ferric arsenate generated by the reaction with arsenic, adjust the pH of the solution to 4.5 to 5.5, and stir , react at 50-60°C for 20-40 minutes and then filter to separate the solid and liquid to obtain the purified slag and purified liquid;
  • Manganese removal add an appropriate amount of ferrous sulfate to the purification solution, and observe the color change of the purification solution while adding it. When the color of the purification solution just becomes colorless, stop adding the reducing agent, stir, and react at room temperature for 20 ⁇ After 40 minutes, solid-liquid separation is carried out to obtain manganese removal slag and manganese removal solution, and the obtained manganese removal solution is the solution after thallium removal.
  • potassium permanganate to the soot water immersion solution of the bottom blowing furnace of lead smelting, the dosage of potassium permanganate is 1.2 times of the theoretical reaction amount of arsenic and thallium, control the reaction temperature at 500°C, and add polymeric sulfuric acid after the reaction time is 0.5h
  • the amount of iron and polyferric sulfate is 1 times of the theoretical amount of ferric arsenate produced by reacting with arsenic, adjust the pH to 4.8, continue the reaction time for 0.5h, and then carry out solid-liquid separation to obtain purified slag and purified liquid.
  • Manganese removal solution is the solution after thallium removal.
  • the dosage of potassium permanganate is 1.1 times of the theoretical reaction amount of arsenic and thallium.
  • Add an appropriate amount of ferrous sulfate solution to the purification solution stop adding when the red color of the purification solution just fades, and carry out solid-liquid separation after stirring for 0.5 hours to obtain manganese removal slag and manganese removal solution.
  • Manganese removal solution is the solution after thallium removal.
  • Manganese removal solution is the solution after thallium removal.
  • Table 1 The pH value and the main component content of the lead smelting bottom-blown furnace soot water immersion solution in the above-mentioned examples 1-3
  • Example 1 Lead smelting bottom blowing furnace soot water immersion solution 2.89 29.45 538 334
  • Example 2 Lead smelting bottom blowing furnace soot water immersion solution 3.42 31.82 264.3 297.5
  • Example 3 Lead smelting bottom blowing furnace soot water immersion solution 3.9 31.06 416.8 475.2
  • Embodiment one removes thallium liquid 5.1 28.38 0.0972 0.0468 Embodiment two removes thallium liquid 5.3 29.37 0.1043 0.111 Embodiment three removes thallium liquid 5.4 29.74 0.0010 0.0138

Abstract

一种铅冶炼底吹炉烟灰浸出液除铊的方法,包括如下操作步骤:S1、向铅冶炼底吹炉烟灰水浸液中加入过量的高锰酸钾,进行反应一段时间后,生成反应液A;S2、向反应液A中加入适量的聚合硫酸铁,搅拌,反应一段时间后进行过滤,使固液进行分离,得到净化渣和净化液;S3、向净化液中加入适量的弱还原剂,边加入边观察净化液的颜色变化,当净化液的颜色刚好变为无色时,停止加入还原剂,搅拌,反应一段时间后,进行固液分离,得到除锰渣和除锰液,所得除锰液即为除铊后的溶液。所述方法简单、流程短,可有效去除镉溶液中的铊,而且镉损失率低,底吹炉烟灰浸出液除铊后再进行镉回收,可有效减少铊的分散污染,环保效益明显。

Description

一种铅冶炼底吹炉烟灰浸出液除铊的方法 技术领域
本发明涉及铅冶炼技术领域,具体涉及一种铅冶炼底吹炉烟灰浸出液除铊的方法。
背景技术
铅冶炼底吹炉烟灰含有铅、锌、金、银等有价元素,也含有砷、镉、铊等对铅冶炼有害的元素,常规处理方法是与其他含铅物料搭配配料使用。烟灰在循环过程中,镉和铊会不断富集,当烟灰中的镉含量积累到20%左右时会做开路处理。当前国内处理该底吹炉烟灰采用的工艺一般是湿法回收,先将烟灰中的镉、锌浸出到溶液中与铅、金、银等分离,浸出渣返回铅系统回收,含镉、锌的浸出液进锌系统进行回收。浸出液采用锌粉置换回收镉;置换液净化后进锌系统回收锌。但是烟灰在浸出时,砷、铊等有害元素也会进入含镉溶液中,这就对镉的回收造成一定影响,在采用置换法回收镉时,铊也会被置换出来,不仅影响产品质量,再后续镉精炼过程中还会造成铊的分散污染。当前的烟灰回收方法中均未考虑铊的净化去除问题,但是含镉烟灰中铊含量可达到0.2~0.4%,烟灰在浸出时50%以上的铊会进入溶液中,必须引起重视。
铊(Tl)属于稀有分散金属,是剧毒的重金属污染物,铊中毒可引起呼吸系统、消化系统疾患,最终导致神经系统损害,严重铊中毒足以导致人和动物死亡。
当前分别去除镉和铊的技术有一些研究报道。文献中镉的去除主要采用氢氧化物沉淀法和硫化物沉淀法。铊去除的报道比较多,包括高锰酸钾氧化碱性沉淀法;高锰酸钾+次氯酸钠+臭氧氧化法;三氯化铁氧化,聚合氯化铝混凝沉淀,以及关于吸附去除铊的材料研究等。对于从镉溶液中去除铊的方法未见报道。因此,需要寻求一种从铅冶炼底吹炉烟灰浸出液中定向去除较多量镉的方法。
发明内容
本发明的目的是克服现有技术的上述不足而提供一种铅冶炼底吹炉烟灰浸出液除铊的方法,本发明方法简单、流程短,可有效去除镉溶液中的铊,而且镉损失率低,对于高镉、高铊溶液,镉损失率3~4%,铊去除率达96%以上,底吹炉烟灰浸出液除铊后再进行镉回收,可有效减少铊的分散污染,环保效益明显。
本发明的技术方案是:一种铅冶炼底吹炉烟灰浸出液除铊的方法,包括如下操作步骤:
S1、氧化:向铅冶炼底吹炉烟灰水浸液中加入过量的高锰酸钾,进行反应一段时间后,生成反应液A;
S2、絮凝沉淀并过滤:向反应液A中加入适量的聚合硫酸铁(聚合硫酸铁是水处理常用的无机高分子絮凝剂,分子式[Fe 2(OH) n(SO 4) 3-n/2]m,聚合硫酸铁水解会生成大量的大分子络合物及疏水性氢氧化铁聚合体,具有较好的吸附作用,与高价铊沉淀物一起共沉淀,同时与砷反应生成砷酸铁,使砷也有效去除),搅拌,反应一段时间后进行过滤,使固液进行分离,得到净化渣和净化液,净化渣的主要成分为砷酸铁、氢氧化铊、二氧化锰和氢氧化铁的混合沉淀物,净化液的主要成分为去除了砷、铊的硫酸镉溶液,还含有部分过量的高锰酸钾;
S3、除锰:步骤S2得到的净化液中由于高锰酸钾过量会显红色,向净化液中加入适量的弱还原剂(去除过量的高锰酸钾,硫酸亚铁被高锰酸钾氧化为三价铁,三价铁水解夹带锰离子一同沉淀去除),边加入边观察净化液的颜色变化,当净化液红色刚好变为无色时,停止加入还原剂,搅拌,反应一段时间后,进行固液分离,得到除锰渣和除锰液,所得除锰液即为除铊后的溶液,可以进行后续处理回收镉。
本发明进一步的技术方案是:所述步骤S1中调节水浸液的pH值保持在2.5~3.5之间,若起始水浸液的pH值不在上述范围内,需进行pH的调节,使其在上述范围内,一般使用硫酸来调节pH,不会引入其他离子使铊生成络合物。
进一步,所述步骤S1中高锰酸钾的用量为与砷、铊理论反应量总和的1.1~1.3倍,高锰酸钾的用量不可太少或太多,太少的话铊去除率不高,太多的话溶液中锰离子浓度太高,易引入新的杂质。
进一步,所述步骤S1中的反应温度为50~60℃,反应时间20~40min,步骤S1的目的是使铊氧化为三价铊,然后水解为氢氧化铊去除,50~60℃的温度范围是通过大量实验确定的,温度低于该范围铊氧化不完全,去除率不高,温度高于该范围没必要,额外增加能耗。
进一步,所述步骤S2中聚合硫酸铁用量为与砷反应生成砷酸铁理论量的0.9~1倍。
进一步,所述步骤S2中的反应温度为50~60℃,在加入聚合硫酸铁后,调节pH值为4.5~5.5后再进行搅拌反应20~40min,pH值不能低于上述范围,也不能高于上述范围,低于上述范围会导致铊的去除率不高,太高的话会导致镉的损失,这是因为:三价铊水解能力极强,在pH>1时便能水解,比溶液中镉离子水解性强得多,调节pH值为4.5~5.5,是为了让铊尽可能多的生成沉淀去除,如果pH继续升高,溶液中镉的水解也会增加,造成镉的过多损失。
进一步,所述步骤S3中的弱还原剂为硫酸亚铁,使用硫酸亚铁使高价锰转化为沉淀去除,同时铁可被氧化去除。
进一步,所述步骤S3中反应在常温下进行,反应时间为20~40min。
本发明的反应原理是:
S1:利用高锰酸钾的强氧化性,使硫酸镉溶液中的As 3+、Tl +氧化为高价的As 5+、Tl 3+
S2:加入聚合硫酸铁,调节pH,使Tl 3+水解生成Tl(OH) 3沉淀,砷以砷酸铁沉淀形式去除,同时利用聚合硫酸铁水解产生的胶状氢氧化铁胶状沉淀进一步混凝,使砷、铊去除的更彻底。
S3:硫酸亚铁将过量的高锰酸钾还原,同时硫酸亚铁氧化为硫酸铁,硫酸铁水解为沉淀将锰夹带一同去除。
本发明的有益效果:
(1)本发明的方法简单、流程短、用时短,可有效去除镉溶液中的铊,而且利用铊、镉水解沉淀的初始pH不同,铊生成沉淀从硫酸镉溶液中去除,镉损失率低,对于高镉、高铊溶液,镉损失率3~4%,铊去除率达96%以上;
(2)本发明将底吹炉烟灰浸出液除铊后再进行镉回收,减少铊的分散污染,环保效益明显。
附图说明
图1是本发明实施例的工艺流程图。
具体实施方式
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。
如附图1所示,一种铅冶炼底吹炉烟灰浸出液除铊的方法,包括如下操作步骤:
S1、氧化:调节水浸液的pH值保持在2.5~3.5之间,向铅冶炼底吹炉烟灰水浸液中加入过量的高锰酸钾,高锰酸钾的用量为与砷、铊理论反应量总和的1.1~1.3倍,50~60℃下进行反应20~40min后,生成反应液A;
S2、絮凝沉淀并过滤:向反应液A中加入适量的聚合硫酸铁,聚合硫酸铁用量为与砷反应生成砷酸铁理论量的0.9~1倍,调节溶液的pH值为4.5~5.5,搅拌,50~60℃下反应20~40min后进行过滤,使固液进行分离,得到净化渣和净化液;
S3、除锰:向净化液中加入适量的硫酸亚铁,边加入边观察净化液的颜色变化,当净化液的颜色刚好变为无色时,停止加入还原剂,搅拌,常温下反应20~40min后,进行固液分离,得到除锰渣和除锰液,所得除锰液即为除铊后的溶液。
实施例1:
向铅冶炼底吹炉烟灰水浸液中加入高锰酸钾,高锰酸钾用量为与砷、铊理论反应量总和 的1.2倍,控制反应温度500℃,反应时间0.5h后加入加入聚合硫酸铁,聚合硫酸铁用量为与砷反应生成砷酸铁理论量的1倍,调节pH=4.8,继续反应时间0.5h后进行固液分离,得到净化渣和净化液。向净化液中加入适量硫酸亚铁溶液,当净化液红色刚好退去时停止加入,搅拌反应0.5h后进行固液分离,得到除锰渣和除锰液。除锰液即为除铊后的溶液。
实施例2:
向铅冶炼底吹炉烟灰水浸液中加入高锰酸钾,高锰酸钾用量为与砷、铊理论反应量总和的1.1倍,控制反应温度55℃,反应时间0.5h后加入加入聚合硫酸铁,聚合硫酸铁用量为与砷反应生成砷酸铁理论量的0.9倍,调节pH=5.3,继续反应时间0.5h后进行固液分离,得到净化渣和净化液。向净化液中加入适量硫酸亚铁溶液,当净化液红色刚好退去时停止加入,搅拌反应0.5h后进行固液分离,得到除锰渣和除锰液。除锰液即为除铊后的溶液。
实施例3:
先回调铅冶炼底吹炉烟灰水浸液pH=3.2,再向水浸液中加入高锰酸钾,高锰酸钾用量为与砷、铊理论反应量总和的1.3倍,控制反应温度60℃,反应时间0.5h后加入加入聚合硫酸铁,聚合硫酸铁用量为与砷反应生成砷酸铁理论量的1倍,调节pH=5.1,继续反应时间0.5h后进行固液分离,得到净化渣和净化液。向净化液中加入适量硫酸亚铁溶液,当净化液红色刚好退去时停止加入,搅拌反应0.5h后进行固液分离,得到除锰渣和除锰液。除锰液即为除铊后的溶液。
表1 上述实施例1-3中铅冶炼底吹炉烟灰水浸液的pH值及其所含主要成分含量
  pH Cd(g/L) As(mg/L) Tl(mg/L)
实施例1铅冶炼底吹炉烟灰水浸液 2.89 29.45 538 334
实施例2铅冶炼底吹炉烟灰水浸液 3.42 31.82 264.3 297.5
实施例3铅冶炼底吹炉烟灰水浸液 3.9 31.06 416.8 475.2
表2 上述实施例1-3中所得净化液的pH及其所含主要成分含量
  pH Cd(g/L) As(mg/L) Tl(mg/L)
实施例一除铊液 5.1 28.38 0.0972 0.0468
实施例二除铊液 5.3 29.37 0.1043 0.111
实施例三除铊液 5.4 29.74 0.0010 0.0138
表3 上述实施例1-3中各主要成分的净化去除率
  Cd(%) As(%) Tl(%)
实施例一去除率 3.63 98.19 98.60
实施例二去除率 3.80 98.55 96.27
实施例二去除率 4.25 99.97 99.71
从表1-表3中的数据可以看出:采用本发明的除铊方法可是铊的去除率达96%以上,并且镉损失率较低。

Claims (8)

  1. 一种铅冶炼底吹炉烟灰浸出液除铊的方法,其特征在于,包括如下操作步骤:
    S1、氧化:向铅冶炼底吹炉烟灰水浸液中加入过量的高锰酸钾,进行反应一段时间后,生成反应液A;
    S2、絮凝沉淀并过滤:向反应液A中加入适量的聚合硫酸铁,搅拌,反应一段时间后进行过滤,使固液进行分离,得到净化渣和净化液;
    S3、除锰:向净化液中加入适量的弱还原剂,边加入边观察净化液的颜色变化,当净化液的颜色刚好变为无色时,停止加入还原剂,搅拌,反应一段时间后,进行固液分离,得到除锰渣和除锰液,所得除锰液即为除铊后的溶液。
  2. 根据权利要求1所述的铅冶炼底吹炉烟灰浸出液除铊的方法,其特征在于,步骤S1中调节水浸液的pH值保持在2.5~3.5之间。
  3. 根据权利要求1所述的铅冶炼底吹炉烟灰浸出液除铊的方法,其特征在于,所述步骤S1中高锰酸钾的用量为与砷、铊理论反应量总和的1.1~1.3倍。
  4. 根据权利要求1所述的铅冶炼底吹炉烟灰浸出液除铊的方法,其特征在于,所述步骤S1中的反应温度为50~60℃,反应时间20~40min。
  5. 根据权利要求1-4中任一项所述的铅冶炼底吹炉烟灰浸出液除铊的方法,其特征在于,所述步骤S2中聚合硫酸铁用量为与砷反应生成砷酸铁理论量的0.9~1倍。
  6. 根据权利要求1-4中任一项所述的铅冶炼底吹炉烟灰浸出液除铊的方法,其特征在于,所述步骤S2中的反应温度为50~60℃,在加入聚合硫酸铁后,调节pH值为4.5~5.5后再进行搅拌反应20~40min。
  7. 根据权利要求1-4中任一项所述的铅冶炼底吹炉烟灰浸出液除铊的方法,其特征在于,所述步骤S3中的弱还原剂为硫酸亚铁。
  8. 根据权利要求1-4中任一项所述的铅冶炼底吹炉烟灰浸出液除铊的方法,其特征在于,所述步骤S3中反应在常温下进行,反应时间为20~40min。
PCT/CN2021/127581 2021-10-28 2021-10-29 一种铅冶炼底吹炉烟灰浸出液除铊的方法 WO2023070556A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111261215.5A CN113981229A (zh) 2021-10-28 2021-10-28 一种铅冶炼底吹炉烟灰浸出液除铊的方法
CN202111261215.5 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023070556A1 true WO2023070556A1 (zh) 2023-05-04

Family

ID=79743187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127581 WO2023070556A1 (zh) 2021-10-28 2021-10-29 一种铅冶炼底吹炉烟灰浸出液除铊的方法

Country Status (2)

Country Link
CN (1) CN113981229A (zh)
WO (1) WO2023070556A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115432854A (zh) * 2022-09-06 2022-12-06 水口山有色金属有限责任公司 一种高卤素污酸优先富集除铊的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256068A (ja) * 2004-03-11 2005-09-22 Nippon Mining & Metals Co Ltd カドミウムの回収方法
JP2011011103A (ja) * 2009-06-30 2011-01-20 Sumitomo Osaka Cement Co Ltd 排水からのタリウムの除去回収方法及び除去回収装置
CN104060099A (zh) * 2014-06-23 2014-09-24 贵州顶效开发区宏达金属综合回收有限公司 一种从铅锌冶炼烟尘中提取Zn、In、Cd、Tl的方法
CN104310672A (zh) * 2014-10-27 2015-01-28 湖南净源环境工程有限公司 含铊废水强氧化混凝与吸附回收工艺
CN105060557A (zh) * 2015-07-31 2015-11-18 广州大学 一种同时高效去除冶炼废水中铊和砷的新方法
CN105200242A (zh) * 2015-10-27 2015-12-30 中南大学 一种从含砷炼铅氧气底吹炉烟灰中回收镉的方法
CN106148705A (zh) * 2016-07-20 2016-11-23 长沙华时捷环保科技发展股份有限公司 从酸性含砷溶液中去除砷的方法
CN111088433A (zh) * 2020-01-10 2020-05-01 河南豫光金铅股份有限公司 一种从铅冶炼系统中富集回收铊的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2657863B1 (fr) * 1990-02-05 1992-08-28 Metaleurop Sa Procede d'extraction de thallium.
JP3762047B2 (ja) * 1997-06-26 2006-03-29 日鉱金属株式会社 カドミウム、亜鉛を含む液の処理方法及び回収方法
CN101255502A (zh) * 2008-04-02 2008-09-03 河南豫光金铅股份有限公司 铅系统烟灰综合回收铟、镉、铊、锌工艺
CN112609081A (zh) * 2020-11-27 2021-04-06 郴州丰越环保科技有限公司 一种高铊氧化锌生产电锌的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256068A (ja) * 2004-03-11 2005-09-22 Nippon Mining & Metals Co Ltd カドミウムの回収方法
JP2011011103A (ja) * 2009-06-30 2011-01-20 Sumitomo Osaka Cement Co Ltd 排水からのタリウムの除去回収方法及び除去回収装置
CN104060099A (zh) * 2014-06-23 2014-09-24 贵州顶效开发区宏达金属综合回收有限公司 一种从铅锌冶炼烟尘中提取Zn、In、Cd、Tl的方法
CN104310672A (zh) * 2014-10-27 2015-01-28 湖南净源环境工程有限公司 含铊废水强氧化混凝与吸附回收工艺
CN105060557A (zh) * 2015-07-31 2015-11-18 广州大学 一种同时高效去除冶炼废水中铊和砷的新方法
CN105200242A (zh) * 2015-10-27 2015-12-30 中南大学 一种从含砷炼铅氧气底吹炉烟灰中回收镉的方法
CN106148705A (zh) * 2016-07-20 2016-11-23 长沙华时捷环保科技发展股份有限公司 从酸性含砷溶液中去除砷的方法
CN111088433A (zh) * 2020-01-10 2020-05-01 河南豫光金铅股份有限公司 一种从铅冶炼系统中富集回收铊的方法

Also Published As

Publication number Publication date
CN113981229A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
CN105753218B (zh) 一种去除三价砷的方法
US20130168314A1 (en) Method for Treating Wastewater Containing Copper Complex
CA2386940C (en) Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
KR100953289B1 (ko) 황산아연 용액으로부터 철을 적철석으로서 침전시키는 방법
CN103030233A (zh) 一种高浓度含砷废水的处理方法
CN109502811A (zh) 一种含氰废水中硫氰根离子的絮凝沉淀净化方法
CN109536720A (zh) 一种硫酸铜溶液中氯的脱除方法
CN111041227B (zh) 一种从氧化锌烟尘浸出液沉锗后的硫酸锌溶液中脱除砷铁和有机物的方法
CN106180138A (zh) 一种含砷废物的处理方法
CN110683676A (zh) 一种含铜印刷电路板废水处理方法
CN114314661B (zh) 一种钒原料深度除钴生产高纯偏钒酸铵的方法
WO2023070556A1 (zh) 一种铅冶炼底吹炉烟灰浸出液除铊的方法
CN1321200C (zh) 铜冶炼高砷烟尘硫酸浸出液分离铜砷锌的方法
CN111018212B (zh) 一种冶金企业污酸废水除砷除氯的方法
CN104556540B (zh) 一种含硒废水的处理方法
JP2001079565A (ja) 排水中のセレンの除去方法
JP4507267B2 (ja) 水処理方法
JP3813052B2 (ja) 重金属等を含有する飛灰の処理方法
CN110981004B (zh) 一种锌冶炼污水的处理方法
JP6213044B2 (ja) セレン含有水の処理方法及び処理装置
CN108754179B (zh) 一种氧化预处理含锌二次物料的方法
KR19980702729A (ko) 금속 함유 용액의 정제방법
JP2017136539A (ja) 高炉排水の処理方法
CN113526562B (zh) 一种臭氧微气泡氧化法处理含砷烟尘制备臭葱石的方法
JP4145431B2 (ja) セレン含有排水の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961911

Country of ref document: EP

Kind code of ref document: A1