WO2023067997A1 - サイリスタ及びその製造方法 - Google Patents

サイリスタ及びその製造方法 Download PDF

Info

Publication number
WO2023067997A1
WO2023067997A1 PCT/JP2022/036134 JP2022036134W WO2023067997A1 WO 2023067997 A1 WO2023067997 A1 WO 2023067997A1 JP 2022036134 W JP2022036134 W JP 2022036134W WO 2023067997 A1 WO2023067997 A1 WO 2023067997A1
Authority
WO
WIPO (PCT)
Prior art keywords
type semiconductor
semiconductor layer
thyristor
layer
junction
Prior art date
Application number
PCT/JP2022/036134
Other languages
English (en)
French (fr)
Inventor
可菜枝 遠藤
征 井上
行裕 柴田
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to US18/251,906 priority Critical patent/US20240006510A1/en
Priority to CN202280006881.0A priority patent/CN116391258A/zh
Publication of WO2023067997A1 publication Critical patent/WO2023067997A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66363Thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1012Base regions of thyristors
    • H01L29/1016Anode base regions of thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1012Base regions of thyristors
    • H01L29/102Cathode base regions of thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices

Definitions

  • the present invention relates to a thyristor and its manufacturing method.
  • a conventional thyristor is used in a protection circuit to prevent inrush current when an LED light is turned on.
  • gate sensitivity increases when changing to highly reliable passivation.
  • a protection circuit for preventing rush current using such a thyristor there is a possibility that an abnormal operation occurs or malfunction due to minute noise. Therefore, a thyristor with low gate sensitivity is required.
  • Patent Document 1 A technique related to this is disclosed in Patent Document 1.
  • An object of various aspects of the present invention is to provide a thyristor with desensitized gate sensitivity and a method for manufacturing the same.
  • a first P-type semiconductor layer a first N-type semiconductor layer disposed in contact with the first P-type semiconductor layer; a second P-type semiconductor layer arranged in contact with the first N-type semiconductor layer and separated from the first P-type semiconductor layer; a second N-type semiconductor layer disposed in contact with the second P-type semiconductor layer; a third P-type semiconductor layer disposed in contact with the second P-type semiconductor layer and having an impurity concentration higher than that of the second P-type semiconductor layer; a gate electrode electrically connected to the third P-type semiconductor layer; a cathode electrode electrically connected to the second N-type semiconductor layer; a fourth P-type semiconductor which is in contact with the second P-type semiconductor layer and the second N-type semiconductor layer, is arranged under the cathode electrode, and has an impurity concentration higher than that of the second P-type semiconductor layer; layer and has The third P-type semiconductor layer and the fourth P-type semiconductor layer are separated by the second P-type semiconductor layer, A thyristor, wherein
  • the ratio of the area of the fourth P-type semiconductor layer in contact with the second N-type semiconductor layer to the area of the second N-type semiconductor layer is 10% or more and 99% or less. and thyristor.
  • the third P-type semiconductor layer has an impurity concentration higher than that of the second P-type semiconductor layer
  • the fourth P-type semiconductor layer is formed under the cathode electrode and has an impurity concentration higher than that of the second P-type semiconductor layer, the third P-type semiconductor layer and the fourth P-type semiconductor layer are separated by the second P-type semiconductor layer; A method of manufacturing a thyristor, wherein the third P-type semiconductor layer and the second N-type semiconductor layer are separated by the second P-type semiconductor layer.
  • the fourth P-type semiconductor layer is arranged in contact with each of the two N-type semiconductor layers and under the cathode electrode, and has a higher impurity concentration than the second P-type semiconductor layer, so that the gate sensitivity of the thyristor is desensitized.
  • the fourth P-type semiconductor layer is arranged on the side of the third P-type semiconductor layer in plan view, thereby making the gate sensitivity of the thyristor less sensitive.
  • the first PN junction is positioned closer to the gate electrode than the second PN junction in plan view, so that the gate sensitivity of the thyristor can be further desensitized. .
  • the fourth P-type semiconductor layer is arranged so as to cover part of the bottom of the second N-type semiconductor layer and the side portion on the side of the gate electrode. , the gate sensitivity of the thyristor can be further desensitized.
  • FIG. 1 is a cross-sectional view showing a thyristor according to one aspect of the present invention
  • FIG. (A) is a plan view of a fourth P-type semiconductor layer (second 2nd base layer: P ++ ) 15b on the surface side of the thyristor shown in FIG. 1
  • FIG. (A) is a plan view of a fourth P-type semiconductor layer (second 2nd base layer: P ++ ) 15b on the surface side of the thyristor shown in FIG. 1
  • FIG. 2 is a plan view of a fourth P-type semiconductor layer (second 2nd base layer: P ++ ) 15b on the surface side of the thyristor shown in FIG. 3, and (B) is a surface side of the thyristor shown in FIG. 2 is a plan view showing a second N-type semiconductor layer (emitter layer: N + ) 14 of FIG.
  • FIG. 2 is a partial cross-sectional view enlarging the vicinity of an emitter layer (N + ) 14 for explaining the impurity concentration of a second N-type semiconductor layer (emitter layer: N + ) 14 of the thyristor shown in FIG. 1 ;
  • FIG. 4 is a diagram showing the dv/dt capability of samples of thyristors of Structure 1 of the present invention, Structure 2 of the present invention and a conventional structure.
  • FIG. 1 is a cross-sectional view showing a thyristor according to one aspect of the present invention.
  • FIG. 2A is a plan view of a fourth P-type semiconductor layer (second 2nd base layer: P ++ ) 15b on the surface side of the thyristor shown in FIG. 2 is a plan view showing a second N-type semiconductor layer (emitter layer: N + ) 14 on the surface side of the thyristor shown in FIG.
  • N + N-type semiconductor layer
  • the thyristor of [1] above comprises a first P-type semiconductor layer (P + ) 11, a first N-type semiconductor layer (N ⁇ ) 12 arranged in contact with the first P-type semiconductor layer (P + ) 11 and separated from the first P-type semiconductor layer (P + ) 11; a second P-type semiconductor layer (P + ) 13 arranged in contact with the first N-type semiconductor layer (N ⁇ ) 12; a second N-type semiconductor layer (N + ) 14 arranged in contact with the second P-type semiconductor layer 13; a third P-type semiconductor layer (P ++ ) 15a arranged in contact with the second P-type semiconductor layer (P + ) 13 and having an impurity concentration higher than that of the second P-type semiconductor layer ( P + ) 13; , a gate electrode G electrically connected to the third P-type semiconductor layer (P ++ ) 15a; a cathode electrode K electrically connected to the second N-type semiconductor layer (N + ) 11,
  • the thyristor shown in FIG. 1 has an N-type semiconductor wafer 9 which has a first P-type semiconductor layer (P + ) 11 .
  • 1 and 2 show one thyristor chip after the N-type semiconductor wafer 9 is cut by dicing.
  • a first N-type semiconductor layer (N ⁇ ) 12 is arranged on and in contact with the first P-type semiconductor layer (P + ) 11 .
  • a second P-type semiconductor layer (1st base layer: P + ) 13 is arranged in contact with the first N-type semiconductor layer (N ⁇ ) 12 .
  • the concentrations of the first P-type semiconductor layer (P + ) 11 and the second P-type semiconductor layer (P + ) 13 may be the same, or either may be higher. Further, the concentration range of each of the first P-type semiconductor layer (P + ) 11 and the second P-type semiconductor layer (P + ) 13 is 1 ⁇ 10 16 atoms ⁇ cm ⁇ 3 to 5 ⁇ 10 18 atoms ⁇ cm ⁇ 3 . cm ⁇ 3 .
  • a second N-type semiconductor layer (emitter layer: N + ) 14 is arranged on and in contact with the second P-type semiconductor layer (1st base layer: P + ) 13 .
  • the planar shape of the emitter layer (N + ) 14 is shown in FIG. 2(B).
  • a third P-type semiconductor layer (first 2nd base layer: P ++ ) 15a is arranged on and in contact with the second P-type semiconductor layer (1st base layer: P + ) 13.
  • the 2nd base layer (P ++ ) 15 a has a higher impurity concentration than the 1st base layer (P + ) 13 .
  • a gate electrode G is electrically connected to the third P-type semiconductor layer (P ++ ) 15a.
  • the gate electrode G is preferably made of Al.
  • a cathode electrode K is electrically connected to the second N-type semiconductor layer (N + ) 14 .
  • the cathode electrode K is preferably made of Al.
  • a fourth P-type semiconductor layer is in contact with the 1st base layer 13 and the second N-type semiconductor layer (emitter layer: N + ) 14 respectively.
  • (Second 2nd base layer: P ++ ) 15b is arranged.
  • This second 2nd base layer (P ++ ) 15b is arranged under the cathode electrode K (see FIGS. 2 and 3).
  • the second 2nd base layer (P ++ ) 15 b has a higher impurity concentration than the 1st base layer (P + ) 13 .
  • the planar shape of the second 2nd base layer (P ++ ) 15b is shown in FIG. 2(A).
  • the third P-type semiconductor layer (first 2nd base layer: P ++ ) 15a and the fourth P-type semiconductor layer (second 2nd base layer: P ++ ) 15b are connected to the second P-type semiconductor layer (1st Base layer: separated by P + ) 13 .
  • the first 2nd base layer (P ++ ) 15 a and the second N-type semiconductor layer (emitter layer: N + ) 14 are separated by the 1st base layer (P + ) 13 .
  • a SiO 2 film 21 is formed on the emitter layer (N + ) 14, the 1st base layer (P + ) 13, and the first 2nd base layer (P ++ ) 15a.
  • a cathode electrode K is formed on the emitter layer (N + ) 14 and the SiO 2 film 21 .
  • a gate electrode G is formed on the first 2nd base layer (P ++ ) 15 a and the SiO 2 film 21 .
  • a glass passivation film 22 is formed at each end of the first N-type semiconductor layer (N ⁇ ) 12, 1st base layer (P + ) 13, emitter layer (N + ) 14, and first 2nd base layer (P ++ ) 15a.
  • a glass passivation film 22 is formed at each end of the first N-type semiconductor layer (N ⁇ ) 12, 1st base layer (P + ) 13, emitter layer (N + ) 14, and first 2nd base layer (P ++ ) 15a.
  • a glass passivation film 22 is formed at each end of the first N-type semiconductor layer (N ⁇ ) 12, 1st base layer (P + ) 13, emitter layer (N + ) 14, and first 2nd base layer (P ++ ) 15a.
  • the first 2nd base layer (P ++ ) 15a connected to the gate electrode G and having a higher impurity concentration than the 1st base layer (P + ) 13, the 1st base layer (P + ) 13 and Since it has the second 2nd base layer (P ++ ) 15b which is in contact with each emitter layer (N + ) 14 and under the cathode electrode K and has a higher impurity concentration than the 1st base layer (P ++ ) 13, the thyristor can desensitize the gate sensitivity of As a result, even when this thyristor is used in a protective circuit for preventing inrush current when an LED lighting is turned on, for example, it is possible to suppress malfunction of the protective circuit for preventing inrush current or malfunction due to minute noise. . In addition to this, the critical off-voltage rise rate dv/dt capability also increases. Details of this will be described later.
  • the gate sensitivity of the thyristor can be further desensitized. .
  • a thyristor requires G (gate) current to turn on between A and K (between anode A and cathode K).
  • G gate
  • the depletion layer at the junction between the first N-type semiconductor layer (N ⁇ ) 12 and the 1st base layer (P + ) 13 shown in FIG. 2 expands. This is the capacitance C of the capacitor. Electrons move inside the thyristor to charge the capacitance C of the capacitor. This charge current behaves the same as the G current.
  • This current i is determined by the following equation.
  • FIG. 6 is a diagram showing the dv/dt capability of samples of thyristors of Structure 1 of the present invention, Structure 2 of the present invention, and a conventional structure.
  • Structure 1 of the present invention and structure 2 of the present invention are thyristors having the structure shown in FIG.
  • the structure 2 of the present invention contacts the emitter layer (N + ) 14 with respect to the area of the emitter layer (N + ) 14 shown in FIG. A) differs only in that the ratio of the area of the second 2nd base layer (P ++ ) 15b is larger than that of Structure 1 of the present invention, and in other respects both structures are the same.
  • the conventional structure differs from the structures 1 and 2 of the present invention in that there is no second 2nd base layer (P ++ ) 15b shown in FIG. 1, and the other points are the same.
  • the fourth P-type semiconductor layer (second 2nd base layer: P ++ ) 15b is arranged on the side of the third P-type semiconductor layer (first 2nd base layer: P ++ ) 15a. (see FIGS. 1-4). Thereby, the gate sensitivity of the thyristor can be further desensitized.
  • a first PN junction is formed.
  • a second PN junction is formed between the second P-type semiconductor layer (1st base layer: P + ) 13 and the bottom portion 14 c of the emitter layer (N + ) 14 other than the bottom portion 14 a.
  • the first PN junction is located closer to the gate electrode G than the second PN junction (see FIG. 1).
  • the gate sensitivity of the thyristor can be further desensitized.
  • this thyristor is used in a protective circuit for preventing inrush current when an LED lighting is turned on, for example, it is possible to suppress malfunction of the protective circuit for preventing inrush current or malfunction due to minute noise.
  • the critical off-voltage rise rate dv/dt capability also increases.
  • a fourth P-type semiconductor layer (second 2nd base layer: P ++ ) 15b includes a bottom portion 14a of the second N-type semiconductor layer (emitter layer: N + ) 14 and a side portion on the gate electrode G side. 14b.
  • the gate sensitivity of the thyristor can be further desensitized. Therefore, even if this thyristor is used in a protective circuit for preventing inrush current when an LED lighting is turned on, for example, it is possible to suppress malfunction of the protective circuit for preventing inrush current or malfunction due to minute noise.
  • the critical off-voltage rise rate dv/dt capability also increases.
  • FIG. 5 is a partial cross-sectional view enlarging the vicinity of the emitter layer (N + ) 14 for explaining the impurity concentration of the second N-type semiconductor layer (emitter layer: N + ) 14 of the thyristor shown in FIG. .
  • the impurity concentration of the second N-type semiconductor layer (emitter layer: N + ) 14 is higher in the portion in contact with the fourth P-type semiconductor layer (second 2nd base layer: P ++ ) 15b than in the portion not in contact with it. It can be expensive.
  • this semiconductor device includes a second N-type semiconductor layer (N ++ ) 14, a second 2nd base layer (P ++ ) 15b and a second P-type semiconductor layer ( 1st base layer: has a structure with an NPN-Tr at the junction of P + ) 13 and the first N-type semiconductor layer (N ⁇ ) 12 .
  • FIG. 3 is a cross-sectional view showing a thyristor according to one aspect of the present invention, the same parts as those in FIG.
  • a first PN junction is formed by the fourth P-type semiconductor layer (P ++ ) 15b and a bottom part (N ++ ) 14a of the second N-type semiconductor layer (N + ) 14 .
  • a second PN junction is formed between the second P-type semiconductor layer (P + ) 13 and the first bottom portion (N + ) 14 c other than the bottom portion 14 a of the second N-type semiconductor layer (N + ) 14 . is formed.
  • a third PN junction is formed between the second P-type semiconductor layer (P + ) 13 and the second bottom portion (N + ) 14d other than the bottom portion 14a of the second N-type semiconductor layer (N + ) 14. is formed.
  • the impurity concentration of a portion (N ++ ) 14a of the bottom portion of the second N-type semiconductor layer (N + ) 14 is introduced higher than that of each of the first and second bottom portions (N + ) 14c and 14d.
  • the first PN junction is located closer to the gate electrode G than the second PN junction
  • the third PN junction is located closer to the gate electrode G than the first PN junction.
  • a second PN junction is formed between the second P-type semiconductor layer (1st base layer: P + ) 13 and the first bottom portion (N + ) 14 c other than the bottom portion 14 a of the emitter layer (N + ) 14 . It is formed.
  • a third PN junction is formed between the 1st base layer (P + ) 13 and the second bottom portion (N + ) 14d other than the bottom portion 14a of the emitter layer (N + ) 14 .
  • the impurity concentration of a portion (N ++ ) 14a of the bottom portion of the second N-type semiconductor layer (N + ) 14 is higher than that of each of the first and second bottom portions (N + ) 14c, 14d (FIGS. 3 and 4). 5). This is because it is manufactured by the manufacturing method described in the third embodiment, which will be described later.
  • Reference numeral 15b in FIG. 5 has a shape corresponding to reference numeral 15b in FIG.
  • the first PN junction is located closer to the gate electrode G than the second PN junction (see FIG. 3). With such a structure, gate characteristics can be adjusted.
  • the second base layer (P ++ ) 15b covers the bottom part 14a of the emitter layer (N + ) 14, so that the gate sensitivity of the thyristor can be further desensitized. Therefore, even if this thyristor is used in a protective circuit for preventing inrush current when an LED lighting is turned on, for example, it is possible to suppress malfunction of the protective circuit for preventing inrush current or malfunction due to minute noise. In addition to this, the critical off-voltage rise rate dv/dt tolerance also increases.
  • the method for manufacturing a thyristor according to [9] above forms the first P-type semiconductor layer (P + ) 11 under the first N-type semiconductor layer (N ⁇ ) 12, forming a second P-type semiconductor layer (P + ) 13 on the first N-type semiconductor layer (N ⁇ ) 12; forming a third P-type semiconductor layer (P ++ ) 15a and a fourth P-type semiconductor layer (P ++ ) 15b on the surface side of the second P-type semiconductor layer (P + ) 13; On the surface side of the second P-type semiconductor layer (P + ) 13, second N-type semiconductor layers (N + , N ++ ) 14; forming a gate electrode G on the third P-type semiconductor layer (P ++ ) 15a and forming a cathode electrode K on the second N-type semiconductor layer (N + ) 14; have
  • an N-type semiconductor wafer 9 is prepared.
  • isolation regions regions on both sides of the first N-type semiconductor layer (N ⁇ ) 12 are formed to partition the N-type semiconductor wafer 9 into a plurality of thyristor forming regions.
  • 1 and 3 show one thyristor chip after the N-type semiconductor wafer 9 is cut by dicing. Note that the N-type semiconductor wafer 9 includes a first N-type semiconductor layer (N ⁇ ) 12 .
  • the method for forming the isolation region described above is that both surfaces of the N-type semiconductor wafer 9 (the surface on the side of the second N-type semiconductor layer (emitter layer: N + ) 14 and the surface on the opposite side thereof) are formed by a deposition method. ) to introduce and diffuse a P+ type impurity.
  • P + -type impurities are introduced and diffused from both sides of the N-type semiconductor wafer 9 by a deposition method.
  • a first P-type semiconductor layer (P + ) 11 is formed under the first N-type semiconductor layer (N ⁇ ) 12 and a A second P-type semiconductor layer (1st base layer: P + ) 13 is formed.
  • P-type impurities are introduced and diffused on both surfaces of the semiconductor wafer 9 by a deposition method.
  • a third P-type semiconductor layer (first 2nd base layer: P ++ ) 15a and a fourth P-type semiconductor layer (second 2nd base layer) are formed on the surface side of the 1st base layer (P + ) 13 .
  • P ++ ) 15 b are formed, and a fifth P-type semiconductor layer (P ++ ) 10 is formed on the back side of the first P-type semiconductor layer (P + ) 11 .
  • a mask (not shown) is formed on the surface of the 1st base layer (P + ) 13 .
  • This mask has an opening in the second 2nd base layer 15b except for the fourth P-type semiconductor layer (first 2nd base layer: P ++ ) 15a side.
  • an N-type impurity is introduced and diffused into the 1st base layer (P + ) 13 by a deposition method.
  • a second N-type semiconductor layer (emitter layer: N ++ ) 14 is formed on the surface side of the second 2nd base layer (P ++ ) 15b.
  • a second N-type semiconductor layer (N + , N ++ ) 14 can be formed on the surface side of the 1st base layer (P + ) 13 so as to partially overlap with the second 2nd base layer 15b.
  • the opposite conductivity type emitter layer (N ++ ) 14 in order to make the surface side of the second 2nd base layer (P ++ ) 15b the opposite conductivity type emitter layer (N ++ ) 14, The emitter layer (N ++ ) 14 on the surface side of the second 2nd base layer (P ++ ) 15b becomes a region with excessive N-type impurities, and the depth of this region is greater than that of the second 2nd base layer (P ++ ) 15b. Don't go too deep. That is, the boundary portion 14a between the emitter layer (N ++ ) 14 and the second 2nd base layer (P ++ ) 15b is slightly shallower than the second 2nd base layer (P ++ ) 15b (see FIG. 5).
  • a gate electrode G is formed on the third P-type semiconductor layer (first 2nd base layer: P ++ ) 15a. This gate electrode is electrically connected to the first 2nd base layer (P ++ ) 15a.
  • the first 2nd base layer (P ++ ) 15a and the second 2nd base layer (P ++ ) 15b are formed on the surface side of the 1st base layer (P + ) 13 in the same process. be able to.
  • the third P-type semiconductor layer (first 2nd base layer: P ++ ) 15 a has an impurity concentration higher than that of the second P-type semiconductor layer (P + ) 13 .
  • a fourth P-type semiconductor layer (second 2nd base layer: P ++ ) 15b is formed under the cathode electrode K and has an impurity concentration higher than that of the second P-type semiconductor layer (P + ) 13. .
  • the third P-type semiconductor layer (first 2nd base layer: P ++ ) 15a and the fourth P-type semiconductor layer (second 2nd base layer: P ++ ) 15b are the second P-type semiconductor layers.
  • the first 2nd base layer (P ++ ) 15a and the second N-type semiconductor layer (emitter layer: N + ) 14 are separated by the 1st base layer (P + ) 13 separated by
  • the first 2nd base layer (P ++ ) 15a connected to the gate electrode G and having a higher impurity concentration than the 1st base layer (P + ) 13, the 1st base layer (P + ) 13 and Since it has the second 2nd base layer (P ++ ) 15b which is in contact with each emitter layer (N + ) 14 and under the cathode electrode K and has a higher impurity concentration than the 1st base layer (P ++ ) 13, the thyristor can desensitize the gate sensitivity of

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thyristors (AREA)

Abstract

【課題】ゲート感度を鈍感度化させたサイリスタを提供する。 【解決手段】本発明は、第1のP型半導体層11と、第1のP型半導体層に接して配置された第1のN型半導体層12と、前記第1のN型半導体層に接して配置された第2のP型半導体層13と、前記第2のP型半導体層に接して配置された第2のN型半導体層14と、前記第2のP型半導体層に接して配置され、前記第2のP型半導体層より不純物濃度の高い第3のP型半導体層15aと、ゲート電極Gと、カソード電極Kと、前記第2のP型半導体層及び前記第2のN型半導体層それぞれに接し、前記第2のP型半導体層より不純物濃度の高い第4のP型半導体層15bを有し、前記第3のP型半導体層と前記第4のP型半導体層は前記第2のP型半導体層によって分離され、前記第3のP型半導体層と前記第2のN型半導体層は前記第2のP型半導体層によって分離されているサイリスタである。

Description

サイリスタ及びその製造方法
 本発明は、サイリスタ及びその製造方法に関する。
 従来のサイリスタがLED照明の点灯時の突入電流防止用保護回路内に使用されている。
 しかし、高信頼度のパッシベーションに変更した場合、ゲート感度が高くなってしまう事例がある。そのようなサイリスタを使用した突入電流防止用保護回路では、動作異常が発生したり、微小なノイズにより誤動作してしまう恐れがある。そのため、ゲート感度を低くしたサイリスタが必要となる。これに関連した技術が特許文献1に開示されている。
特開2005-142518号公報
 本発明の種々の態様は、ゲート感度を鈍感度化させたサイリスタ及びその製造方法を提供することを目的とする。
 以下に本発明の種々の態様について説明する。
[1]第1のP型半導体層と、
 第1のP型半導体層に接して配置された第1のN型半導体層と、
 前記第1のN型半導体層に接して配置され、前記第1のP型半導体層と分離された第2のP型半導体層と、
 前記第2のP型半導体層に接して配置された第2のN型半導体層と、
 前記第2のP型半導体層に接して配置され、前記第2のP型半導体層より不純物濃度の高い第3のP型半導体層と、
 前記第3のP型半導体層に電気的に接続されたゲート電極と、
 前記第2のN型半導体層に電気的に接続されたカソード電極と、
 前記第2のP型半導体層及び前記第2のN型半導体層それぞれに接し、且つ前記カソード電極の下に配置され、前記第2のP型半導体層より不純物濃度の高い第4のP型半導体層と、
を有し、
 前記第3のP型半導体層と前記第4のP型半導体層は、前記第2のP型半導体層によって分離されており、
 前記第3のP型半導体層と前記第2のN型半導体層は、前記第2のP型半導体層によって分離されていることを特徴とするサイリスタ。
[2]上記[1]において、
 平面視において前記第4のP型半導体層は、前記第3のP型半導体層の側に配置されていることを特徴とするサイリスタ。
[3]上記[1]又は[2]において、
 前記第4のP型半導体層と前記第2のN型半導体層の底部の一部とで第1のPN接合が形成され、
 前記第2のP型半導体層と前記第2のN型半導体層の底部の一部以外の第1の底部とで第2のPN接合が形成され、
 平面視において前記第1のPN接合は前記第2のPN接合よりゲート電極G側に位置していることを特徴とするサイリスタ。
[4]上記[1]から[3]のいずれか一項において、
 前記第4のP型半導体層は、前記第2のN型半導体層の底部の一部及び前記ゲート電極側の側部を覆うように配置されていることを特徴とするサイリスタ。
[5]上記[1]又は[2]において、
 前記第4のP型半導体層と前記第2のN型半導体層の底部の一部とで第1のPN接合が形成され、
 前記第2のP型半導体層と前記第2のN型半導体層の底部の一部以外の第1の底部とで第2のPN接合が形成され、
 前記第2のP型半導体層と前記第2のN型半導体層の底部の一部以外の第2の底部とで第3のPN接合が形成され、
 前記第2のN型半導体層の底部の一部の不純物濃度は、前記第1及び第2の底部の各々より高く、
 平面視において前記第1のPN接合は前記第2のPN接合よりゲート電極側に位置し、且つ前記第3のPN接合は前記第1のPN接合よりゲート電極側に位置することを特徴とするサイリスタ。
[6]上記[1]、[2]及び[5]のいずれか一項において、
 前記第4のP型半導体層は、前記第2のN型半導体層の底部の一部を覆い、且つ前記ゲート電極側の側部を覆わないように配置されていることを特徴とするサイリスタ。
[7]上記[1]から[6]のいずれか一項において、
 前記第2のN型半導体層の不純物濃度は、前記第4のP型半導体層と接触しない部分より接触する部分の方が高いことを特徴とするサイリスタ。
[8]上記[1]から[7]のいずれか一項において、
 平面視において、前記第2のN型半導体層の面積に対する前記第2のN型半導体層と接触する第4のP型半導体層の面積の比率は、10%以上99%以下であることを特徴とするサイリスタ。
[9]第1のN型半導体層の下に第1のP型半導体層を形成し、前記第1のN型半導体層の上に第2のP型半導体層を形成する工程と、
 前記第2のP型半導体層の表面側に第3のP型半導体層及び第4のP型半導体層を形成する工程と、
 前記第2のP型半導体層の表面側に、前記第4のP型半導体層と一部が重なるように第2のN型半導体層を形成する工程と、
 前記第3のP型半導体層上にゲート電極を形成するとともに、前記第2のN型半導体層上にカソード電極を形成する工程と、
を有することを特徴とするサイリスタの製造方法。
[10]上記[9]において、
 前記第3のP型半導体層は、前記第2のP型半導体層より高い不純物濃度を有し、
 前記第4のP型半導体層は、前記カソード電極の下に形成され、前記第2のP型半導体層より高い不純物濃度を有し、
 前記第3のP型半導体層と前記第4のP型半導体層は、前記第2のP型半導体層によって分離され、
 前記第3のP型半導体層と前記第2のN型半導体層は、前記第2のP型半導体層によって分離されることを特徴とするサイリスタの製造方法。
 本発明の種々の態様によれば、ゲート感度を鈍感度化させたサイリスタ及びその製造方法を提供することができる。
 以下に詳細に説明する。
 本発明の上記[1]のサイリスタによれば、ゲート電極に接続された、第2のP型半導体層より不純物濃度が高い第3のP型半導体層と、第2のP型半導体層及び第2のN型半導体層それぞれに接し、且つカソード電極の下に配置され、第2のP型半導体層より不純物濃度が高い第4のP型半導体層を有するため、サイリスタのゲート感度を鈍感度化させることができる。
 本発明の上記[2]のサイリスタによれば、平面視において、第4のP型半導体層は、第3のP型半導体層の側に配置されることで、サイリスタのゲート感度をより鈍感度化させることができる。
 本発明の上記[3]のサイリスタによれば、平面視において第1のPN接合は第2のPN接合よりゲート電極側に位置することで、サイリスタのゲート感度をより鈍感度化させることができる。
 本発明の上記[4]のサイリスタによれば、第4のP型半導体層は、第2のN型半導体層の底部の一部及びゲート電極側の側部を覆うように配置されることで、サイリスタのゲート感度をより鈍感度化させることができる。
本発明の一態様に係るサイリスタを示す断面図である。 (A)は、図1に示すサイリスタの表面側の第4のP型半導体層(第2の2ndベース層:P++)15bの平面図、(B)は、図1に示すサイリスタの表面側の第2のN型半導体層(エミッタ層:N)14を示す平面図である。 本発明の一態様に係るサイリスタを示す断面図である。 (A)は、図3に示すサイリスタの表面側の第4のP型半導体層(第2の2ndベース層:P++)15bの平面図、(B)は、図3に示すサイリスタの表面側の第2のN型半導体層(エミッタ層:N)14を示す平面図である。 図1に示すサイリスタの第2のN型半導体層(エミッタ層:N)14の不純物濃度を説明するためにエミッタ層(N)14の付近を拡大した部分断面図である。 本発明の構造1、本発明の構造2及び従来の構造の各々のサイリスタのサンプルのdv/dt耐量を示す図である。
 以下では、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 (第1の実施形態)
 図1は、本発明の一態様に係るサイリスタを示す断面図である。図2(A)は、図1に示すサイリスタの表面側の第4のP型半導体層(第2の2ndベース層:P++)15bの平面図であり、図2(B)は、図1に示すサイリスタの表面側の第2のN型半導体層(エミッタ層:N)14を示す平面図である。図1に示すサイリスタを上から視た平面図とすると複数の層が重なり合っているため、図2(A)、(B)を分かりやすくするために、特定の層を平面視した場合を図示している。
 本発明の一態様に係る上記[1]のサイリスタは、第1のP型半導体層(P)11と、
 第1のP型半導体層(P)11に接して配置され、第1のP型半導体層(P)11と分離された第1のN型半導体層(N)12と、
 前記第1のN型半導体層(N)12に接して配置された第2のP型半導体層(P)13と、
 前記第2のP型半導体層13に接して配置された第2のN型半導体層(N)14と、
 前記第2のP型半導体層(P)13に接して配置され、前記第2のP型半導体層(P)13より不純物濃度の高い第3のP型半導体層(P++)15aと、
 前記第3のP型半導体層(P++)15aに電気的に接続されたゲート電極Gと、
 前記第2のN型半導体層(N)14に電気的に接続されたカソード電極Kと、
 前記第2のP型半導体層(P)13及び前記第2のN型半導体層(N)14それぞれに接し、且つ前記カソード電極Kの下に配置され、前記第2のP型半導体層(P)13より不純物濃度の高い第4のP型半導体層(P++)15bと、
を有し、
 前記第3のP型半導体層(P++)15aと前記第4のP型半導体層(P++)15bは、前記第2のP型半導体層(P)13によって分離されており、
 前記第3のP型半導体層(P++)15aと前記第2のN型半導体層(N)14は、前記第2のP型半導体層(P)13によって分離されている。
 以下に詳細に説明する。
 図1に示すサイリスタはN型半導体ウェーハ9を有し、このN型半導体ウェーハ9は第1のP型半導体層(P)11を有している。なお、図1及び図2は、N型半導体ウェーハ9をダイシングカットした後の1つのサイリスタのチップを示している。
 図1に示すように、第1のP型半導体層(P)11上には第1のN型半導体層(N)12が接して配置されている。
 第1のN型半導体層(N)12上には第2のP型半導体層(1stベース層:P)13が接して配置されている。なお、第1のP型半導体層(P)11と第2のP型半導体層(P)13の濃度は、同じでもよいし、どちらが高くてもよい。また、第1のP型半導体層(P)11と第2のP型半導体層(P)13の各々の濃度範囲は、1×1016atoms・cm-3から5×1018atoms・cm-3までの間であるとよい。
 第2のP型半導体層(1stベース層:P)13上には第2のN型半導体層(エミッタ層:N)14が接して配置されている。エミッタ層(N)14の平面形状は、図2(B)に示されている。
 また第2のP型半導体層(1stベース層:P)13上には第3のP型半導体層(第1の2ndベース層:P++)15aが接して配置されており、第1の2ndベース層(P++)15aは1stベース層(P)13より不純物濃度が高い。
 第3のP型半導体層(P++)15a上にはゲート電極Gが電気的に接続されている。
ゲート電極GはAlにより形成されているとよい。
 第2のN型半導体層(N)14上にはカソード電極Kが電気的に接続されている。カソード電極KはAlにより形成されているとよい。
 第2のP型半導体層(1stベース層:P)13上には、1stベース層13及び第2のN型半導体層(エミッタ層:N)14それぞれに接する第4のP型半導体層(第2の2ndベース層:P++)15bが配置されている。この第2の2ndベース層(P++)15bはカソード電極Kの下に配置されている(図2及び図3参照)。また第2の2ndベース層(P++)15bは1stベース層(P)13より不純物濃度が高い。第2の2ndベース層(P++)15bの平面形状は図2(A)に示されている。
 第3のP型半導体層(第1の2ndベース層:P++)15aと第4のP型半導体層(第2の2ndベース層:P++)15bは、第2のP型半導体層(1stベース層:P)13によって分離されている。また第1の2ndベース層(P++)15aと第2のN型半導体層(エミッタ層:N)14は、1stベース層(P)13によって分離されている。
 また、図1に示すように、エミッタ層(N)14、1stベース層(P)13、及び第1の2ndベース層(P++)15aの上にはSiO膜21が形成されている。カソード電極Kは、エミッタ層(N)14及びSiO膜21の上に形成されている。ゲート電極Gは、第1の2ndベース層(P++)15a及びSiO膜21の上に形成されている。また、第1のN型半導体層(N)12、1stベース層(P)13、エミッタ層(N)14、及び第1の2ndベース層(P++)15aの各々の端にはガラスパッシベーション膜22が形成されている。また、カソード電極Kとゲート電極Gとの間にはガラスパッシベーション膜22aが形成されている。
 本実施形態によれば、ゲート電極Gに接続された、1stベース層(P)13より不純物濃度が高い第1の2ndベース層(P++)15aと、1stベース層(P)13及びエミッタ層(N)14それぞれに接し、且つカソード電極Kの下に配置され、1stベース層(P)13より不純物濃度が高い第2の2ndベース層(P++)15bを有するため、サイリスタのゲート感度を鈍感度化させることができる。その結果、このサイリスタを例えばLED照明の点灯時の突入電流防止用保護回路内に使用した場合でも、その突入電流防止用保護回路の動作異常や微小なノイズによる誤動作の発生を抑制することができる。これに加えて、臨界オフ電圧上昇率 dv/dt耐量も上昇する。この詳細は後述する。
 また、第1の2ndベース層(P++)15aと第2の2ndベース層(P++)15bを、1stベース層13によって分離することで、サイリスタのゲート感度をより鈍感度化させることができる。
 上記のdv/dt耐量も上昇する理由は以下のとおりである。
 サイリスタは、A-K間(アノードAとカソードK間)をオンさせるためにG(ゲート)電流が必要となる。サイリスタをオン動作させず、アノードAをプラスに印加した場合、図2に示す第1のN型半導体層(N)12と1stベース層(P)13の接合部の空乏層が広がる。これがコンデンサ容量Cである。このコンデンサ容量Cをチャージするためにサイリスタ内部に電子の動きが生じる。このチャージ電流がG電流と同じ振る舞いをする。この電流iは以下の式で決まる。
 i=C・(dv/dt)
 従って、dv/dt値が高いほど電流が大きくなり、G電流を流さなくてもオン動作(誤動作)しやすくなる。
 よって、ゲート感度を鈍感度化させることにより、dv/dt値が高く、大きなチャージ電流が流れてもオン動作しづらい構造とすることができる。
 図6は、本発明の構造1、本発明の構造2及び従来の構造の各々のサイリスタのサンプルのdv/dt耐量を示す図である。本発明の構造1及び本発明の構造2は、図1に示す構造のサイリスタである。本発明の構造2は、図1に示す本発明の一態様に係るサイリスタにおいて図2(B)に示すエミッタ層(N)14の面積に対するエミッタ層(N)14と接触する図2(A)に示す第2の2ndベース層(P++)15bの面積の比率が本発明の構造1のそれより大きい点のみが異なり、その他の点で両者は同一の構造である。従来の構造は、図1に示す第2の2ndベース層(P++)15bが無い点が本発明の構造1及び本発明の構造2と異なり、その他の点は同一の構造である。
 図6に示すように、第2の2ndベース層(P++)15bがあることによってdv/dt耐量が上昇することが確認され、エミッタ層(N)14と接触する第2の2ndベース層(P++)15bの面積が広いほど、dv/dt耐量が上昇することが確認された。
 また、平面視において、第4のP型半導体層(第2の2ndベース層:P++)15bは、第3のP型半導体層(第1の2ndベース層:P++)15aの側に配置されている(図1~図4参照)。これにより、サイリスタのゲート感度をより鈍感度化させることができる。
 図1に示すように、第4のP型半導体層(第2の2ndベース層:P++)15bと第2のN型半導体層(エミッタ層:N)14の底部の一部14aとで第1のPN接合が形成される。また第2のP型半導体層(1stベース層:P)13とエミッタ層(N)14の底部の一部14a以外の底部14cとで第2のPN接合が形成される。
 平面視において第1のPN接合は第2のPN接合よりゲート電極G側に位置している(図1参照)。これにより、サイリスタのゲート感度をより鈍感度化させることができる。その結果、このサイリスタを例えばLED照明の点灯時の突入電流防止用保護回路内に使用した場合でも、その突入電流防止用保護回路の動作異常や微小なノイズによる誤動作の発生を抑制することができる。これに加えて、臨界オフ電圧上昇率 dv/dt耐量も上昇する。
 第4のP型半導体層(第2の2ndベース層:P++)15bは、第2のN型半導体層(エミッタ層:N)14の底部の一部14a及びゲート電極G側の側部14bを覆うように配置されている。これにより、サイリスタのゲート感度をより鈍感度化させることができる。従って、このサイリスタを例えばLED照明の点灯時の突入電流防止用保護回路内に使用した場合でも、その突入電流防止用保護回路の動作異常や微小なノイズによる誤動作の発生を抑制することができる。これに加えて、臨界オフ電圧上昇率 dv/dt耐量も上昇する。
 図5は、図1に示すサイリスタの第2のN型半導体層(エミッタ層:N)14の不純物濃度を説明するためにエミッタ層(N)14の付近を拡大した部分断面図である。
 第2のN型半導体層(エミッタ層:N)14の不純物濃度は、第4のP型半導体層(第2の2ndベース層:P++)15bと接触しない部分より接触する部分の方が高くてもよい。詳細には、第2の2ndベース層(P++)15b上に位置する第2のN型半導体層(N++)14の不純物濃度は、第2の2ndベース層(P++)15bが下に存在しない第2のN型半導体層(N)14の不純物濃度より高い。また、図5に示すように、この半導体装置(サイリスタ)は、第2のN型半導体層(N++)14と第2の2ndベース層(P++)15b及び第2のP型半導体層(1stベース層:P)13と第1のN型半導体層(N)12の接合部のNPN-Trを備えた構造を有する。このような図5の構造とすることで、このNPN-Tr電流増幅率を変更することができ、ゲート感度を鈍感度化した上で更に感度調整が容易となる。
 平面視において、図2(A)、(B)に示すように、第2のN型半導体層(エミッタ層:N)14の面積に対する第2のN型半導体層(N)14と接触する第4のP型半導体層(第2の2ndベース層:P++)15bの面積の比率は、10%以上99%以下であるとよい。これにより、サイリスタのゲート感度をより鈍感度化させることができる。従って、このサイリスタを例えばLED照明の点灯時の突入電流防止用保護回路内に使用した場合でも、その突入電流防止用保護回路の動作異常や微小なノイズによる誤動作の発生を抑制することができる。これに加えて、臨界オフ電圧上昇率 dv/dt耐量も上昇する。
 (第2の実施形態)
 図3は、本発明の一態様に係るサイリスタを示す断面図であり、図1と同一部分には同一符号を付し、同一部分の説明は省略する。
 第4のP型半導体層(P++)15bと第2のN型半導体層(N)14の底部の一部(N++)14aとで第1のPN接合が形成されている。また第2のP型半導体層(P)13と第2のN型半導体層(N)14の底部の一部14a以外の第1の底部(N)14cとで第2のPN接合が形成されている。また第2のP型半導体層(P)13と第2のN型半導体層(N)14の底部の一部14a以外の第2の底部(N)14dとで第3のPN接合が形成されている。第2のN型半導体層(N)14の底部の一部(N++)14aの不純物濃度は、第1及び第2の底部(N)14c,14dの各々より高く導入されている。平面視において上記の第1のPN接合は上記の第2のPN接合よりゲート電極G側に位置し、且つ上記の第3のPN接合は上記の第1のPN接合よりゲート電極G側に位置している。
 以下に詳細に説明する。
 図3に示すように、第4のP型半導体層(第2の2ndベース層:P++)15bと第2のN型半導体層(エミッタ層:N)14の底部の一部(N++)14aとで第1のPN接合が形成される。また第2のP型半導体層(1stベース層:P)13とエミッタ層(N)14の底部の一部14a以外の第1の底部(N)14cとで第2のPN接合が形成される。また1stベース層(P)13とエミッタ層(N)14の底部の一部14a以外の第2の底部(N)14dとで第3のPN接合が形成される。
 第2のN型半導体層(N)14の底部の一部(N++)14aの不純物濃度は、第1及び第2の底部(N)14c,14dの各々より高い(図3,図5参照)。これは、後述する第3の実施形態で説明する製造方法によって製造されるためである。なお、図5の参照符号15bは、図1の参照符号15bに対応する形状となっている。
 本実施形態においても第1の実施形態と同様の効果を得ることができる。
 また、平面視において第1のPN接合は第2のPN接合よりゲート電極G側に位置している(図3参照)。このような構造とすることで、ゲート特性を調整することができる。
 図3に示す第4のP型半導体層(第2の2ndベース層:P++)15bは、第2のN型半導体層(エミッタ層:N)14の底部の一部14aを覆い、且つゲート電極G側の側部14bを覆わないように配置されている。
 本実施形態によれば、第2の2ndベース層(P++)15bがエミッタ層(N)14の底部の一部14aを覆うため、サイリスタのゲート感度をより鈍感度化させることができる。従って、このサイリスタを例えばLED照明の点灯時の突入電流防止用保護回路内に使用した場合でも、その突入電流防止用保護回路の動作異常や微小なノイズによる誤動作の発生を抑制することができる。これに加えて、臨界オフ電圧上昇率dv/dt耐量も上昇する。
 (第3の実施形態:サイリスタの製造方法)
 本発明の一態様に係る上記[9]のサイリスタの製造方法は、第1のN型半導体層(N)12の下に第1のP型半導体層(P)11を形成し、第1のN型半導体層(N)12の上に第2のP型半導体層(P)13を形成する工程と、
 第2のP型半導体層(P)13の表面側に第3のP型半導体層(P++)15a及び第4のP型半導体層(P++)15bを形成する工程と、
 第2のP型半導体層(P)13の表面側に、前記第4のP型半導体層(P++)15bと一部が重なるように第2のN型半導体層(N,N++)14を形成する工程と、
 第3のP型半導体層(P++)15a上にゲート電極Gを形成するとともに、第2のN型半導体層(N)14上にカソード電極Kを形成する工程と、
を有する。
 以下に詳細に説明する。
 まず、図1に示すように、N型半導体ウェーハ9を用意する。
 次に、N型半導体ウェーハ9を複数のサイリスタ形成領域に区画するアイソレーション領域(第1のN型半導体層(N)12の両側の領域)を形成する。なお、図1及び図3は、N型半導体ウェーハ9をダイシングカットした後の1つのサイリスタのチップを示している。なお、N型半導体ウェーハ9は第1のN型半導体層(N)12を含む。
 ここで、上記のアイソレーション領域の形成方法は、デポジション法により、N型半導体ウェーハ9の両面(第2のN型半導体層(エミッタ層:N)14側の面及びその逆側の面)からP+型の不純物を導入し拡散させるというものである。
 次に、上記のN型半導体ウェーハ9の両面からP型の不純物をデポジション法により導入し拡散させる。これにより、第1のN型半導体層(N)12の下には第1のP型半導体層(P)11が形成され、第1のN型半導体層(N)12の上には第2のP型半導体層(1stベース層:P)13が形成される。
 次に、第2のP型半導体層(P)13の上に図示せぬマスクを形成した後、半導体ウェーハ9の両面にデポジション法によりP型の不純物を導入し拡散させる。これにより、1stベース層(P)13の表面側には第3のP型半導体層(第1の2ndベース層:P++)15a及び第4のP型半導体層(第2の2ndベース層:P++)15bが形成され、第1のP型半導体層(P)11の裏面側には第5のP型半導体層(P++)10が形成される。
 次に、上記のマスクを除去し、第2のP型半導体層(1stベース層:P)13の表面に図示せぬマスクを形成した後、1stベース層(P)13にデポジション法によりN型の不純物を導入し拡散させる。これにより、1stベース層(P)13の表面側に、第4のP型半導体層(第2の2ndベース層:P++)15bと一部が重なるように第2のN型半導体層(エミッタ層:N)14が形成される。(図1及び図2(A)、(B)参照)。
 次に、上記のマスクを除去し、1stベース層(P)13の表面に図示せぬマスクを形成する。このマスクは第2の2ndベース層15bの第4のP型半導体層(第1の2ndベース層:P++)15a側を除く部分が開口されている。次いで、1stベース層(P)13にデポジション法によりN型の不純物を導入し拡散させる。これにより、図5に示すように、第2の2ndベース層(P++)15bの表面側に第2のN型半導体層(エミッタ層:N++)14を形成する。これにより、1stベース層(P)13の表面側に、第2の2ndベース層15bと一部が重なるように第2のN型半導体層(N,N++)14を形成できる。このように第2の2ndベース層(P++)15bを形成した後に、その第2の2ndベース層(P++)15bの表面側を逆導電型のエミッタ層(N++)14にするため、第2の2ndベース層(P++)15bの表面側のエミッタ層(N++)14はN型不純物が過多の領域となり、この領域の深さは第2の2ndベース層(P++)15bより深くならないようにする。つまり、エミッタ層(N++)14と第2の2ndベース層(P++)15bとの境界部分14aは、第2の2ndベース層(P++)15bよりわずかに浅い(図5参照)。
 次に、上記のマスクを除去し、第3のP型半導体層(第1の2ndベース層:P++)15a上にゲート電極Gを形成する。このゲート電極は第1の2ndベース層(P++)15aに電気的に接続される。
 本実施形態においても第1の実施形態と同様の効果を得ることができる。
 また、本実施形態によれば、1stベース層(P)13の表面側に第1の2ndベース層(P++)15a及び第2の2ndベース層(P++)15bを同一工程で形成することができる。
 また、第3のP型半導体層(第1の2ndベース層:P++)15aは、第2のP型半導体層(P)13より高い不純物濃度を有する。
 また、第4のP型半導体層(第2の2ndベース層:P++)15bは、カソード電極Kの下に形成され、第2のP型半導体層(P)13より高い不純物濃度を有する。
 また、第3のP型半導体層(第1の2ndベース層:P++)15aと第4のP型半導体層(第2の2ndベース層:P++)15bは、第2のP型半導体層(1stベース層:P)13によって分離され、第1の2ndベース層(P++)15aと第2のN型半導体層(エミッタ層:N)14は、1stベース層(P)13によって分離される。
 本実施形態によれば、ゲート電極Gに接続された、1stベース層(P)13より不純物濃度が高い第1の2ndベース層(P++)15aと、1stベース層(P)13及びエミッタ層(N)14それぞれに接し、且つカソード電極Kの下に配置され、1stベース層(P)13より不純物濃度が高い第2の2ndベース層(P++)15bを有するため、サイリスタのゲート感度を鈍感度化させることができる。
 11 第1のP型半導体層(P
 12 第1のN型半導体層(N
 13 第2のP型半導体層(1stベース層:P
 14 第2のN型半導体層(エミッタ層:N
 14a 第2のN型半導体層(N)の底部の一部(N++
 14b ゲート電極側の側部
 14c 第2のN型半導体層(N)の底部の一部以外の第1の底部(N
 14d 第2のN型半導体層の底部の一部以外の第2の底部(N
 15a 第3のP型半導体層(第1の2ndベース層:P++
 15b 第4のP型半導体層(第2の2ndベース層:P++
 G ゲート電極
 K カソード電極

Claims (10)

  1.  第1のP型半導体層と、
     第1のP型半導体層に接して配置された第1のN型半導体層と、
     前記第1のN型半導体層に接して配置され、前記第1のP型半導体層と分離された第2のP型半導体層と、
     前記第2のP型半導体層に接して配置された第2のN型半導体層と、
     前記第2のP型半導体層に接して配置され、前記第2のP型半導体層より不純物濃度の高い第3のP型半導体層と、
     前記第3のP型半導体層に電気的に接続されたゲート電極と、
     前記第2のN型半導体層に電気的に接続されたカソード電極と、
     前記第2のP型半導体層及び前記第2のN型半導体層それぞれに接し、且つ前記カソード電極の下に配置され、前記第2のP型半導体層より不純物濃度の高い第4のP型半導体層と、
    を有し、
     前記第3のP型半導体層と前記第4のP型半導体層は、前記第2のP型半導体層によって分離されており、
     前記第3のP型半導体層と前記第2のN型半導体層は、前記第2のP型半導体層によって分離されていることを特徴とするサイリスタ。
  2.  請求項1において、
     平面視において前記第4のP型半導体層は、前記第3のP型半導体層の側に配置されていることを特徴とするサイリスタ。
  3.  請求項1又は2において、
     前記第4のP型半導体層と前記第2のN型半導体層の底部の一部とで第1のPN接合が形成され、
     前記第2のP型半導体層と前記第2のN型半導体層の底部の一部以外の第1の底部とで第2のPN接合が形成され、
     平面視において前記第1のPN接合は前記第2のPN接合よりゲート電極G側に位置していることを特徴とするサイリスタ。
  4.  請求項1又は2において、
     前記第4のP型半導体層は、前記第2のN型半導体層の底部の一部及び前記ゲート電極側の側部を覆うように配置されていることを特徴とするサイリスタ。
  5.  請求項1又は2において、
     前記第4のP型半導体層と前記第2のN型半導体層の底部の一部とで第1のPN接合が形成され、
     前記第2のP型半導体層と前記第2のN型半導体層の底部の一部以外の第1の底部とで第2のPN接合が形成され、
     前記第2のP型半導体層と前記第2のN型半導体層の底部の一部以外の第2の底部とで第3のPN接合が形成され、
     前記第2のN型半導体層の底部の一部の不純物濃度は、前記第1及び第2の底部の各々より高く、
     平面視において前記第1のPN接合は前記第2のPN接合よりゲート電極側に位置し、且つ前記第3のPN接合は前記第1のPN接合よりゲート電極側に位置することを特徴とするサイリスタ。
  6.  請求項1又は2において、
     前記第4のP型半導体層は、前記第2のN型半導体層の底部の一部を覆い、且つ前記ゲート電極側の側部を覆わないように配置されていることを特徴とするサイリスタ。
  7.  請求項1又は2において、
     前記第2のN型半導体層の不純物濃度は、前記第4のP型半導体層と接触しない部分より接触する部分の方が高いことを特徴とするサイリスタ。
  8.  請求項1又は2において、
     平面視において、前記第2のN型半導体層の面積に対する前記第2のN型半導体層と接触する第4のP型半導体層の面積の比率は、10%以上99%以下であることを特徴とするサイリスタ。
  9.  第1のN型半導体層の下に第1のP型半導体層を形成し、前記第1のN型半導体層の上に第2のP型半導体層を形成する工程と、
     前記第2のP型半導体層の表面側に第3のP型半導体層及び第4のP型半導体層を形成する工程と、
     前記第2のP型半導体層の表面側に、前記第4のP型半導体層と一部が重なるように第2のN型半導体層を形成する工程と、
     前記第3のP型半導体層上にゲート電極を形成するとともに、前記第2のN型半導体層上にカソード電極を形成する工程と、
    を有することを特徴とするサイリスタの製造方法。
  10.  請求項9において、
     前記第3のP型半導体層は、前記第2のP型半導体層より高い不純物濃度を有し、
     前記第4のP型半導体層は、前記カソード電極の下に形成され、前記第2のP型半導体層より高い不純物濃度を有し、
     前記第3のP型半導体層と前記第4のP型半導体層は、前記第2のP型半導体層によって分離され、
     前記第3のP型半導体層と前記第2のN型半導体層は、前記第2のP型半導体層によって分離されることを特徴とするサイリスタの製造方法。
PCT/JP2022/036134 2021-10-20 2022-09-28 サイリスタ及びその製造方法 WO2023067997A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/251,906 US20240006510A1 (en) 2021-10-20 2022-09-28 Thyristor and method for manufacturing the same
CN202280006881.0A CN116391258A (zh) 2021-10-20 2022-09-28 晶闸管及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-171705 2021-10-20
JP2021171705 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023067997A1 true WO2023067997A1 (ja) 2023-04-27

Family

ID=86059119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036134 WO2023067997A1 (ja) 2021-10-20 2022-09-28 サイリスタ及びその製造方法

Country Status (4)

Country Link
US (1) US20240006510A1 (ja)
CN (1) CN116391258A (ja)
TW (1) TWI832486B (ja)
WO (1) WO2023067997A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4977585A (ja) * 1972-11-29 1974-07-26
JPS5595363A (en) * 1979-01-11 1980-07-19 Nec Corp Thyristor
JPS6252967A (ja) * 1985-08-31 1987-03-07 Fuji Electric Co Ltd Gtoサイリスタ
JP2000031483A (ja) * 1998-07-14 2000-01-28 Kansai Electric Power Co Inc:The 静電誘導半導体装置
JP2005142518A (ja) 2003-11-07 2005-06-02 Success International Kk プレーナ型サイリスタの製法
JP2010232564A (ja) * 2009-03-27 2010-10-14 Shindengen Electric Mfg Co Ltd 3端子サイリスタ
JP2019169563A (ja) * 2018-03-22 2019-10-03 新電元工業株式会社 半導体装置の製造方法、および半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716643B (zh) * 2015-09-18 2020-12-22 新电元工业株式会社 半导体装置、以及半导体装置的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4977585A (ja) * 1972-11-29 1974-07-26
JPS5595363A (en) * 1979-01-11 1980-07-19 Nec Corp Thyristor
JPS6252967A (ja) * 1985-08-31 1987-03-07 Fuji Electric Co Ltd Gtoサイリスタ
JP2000031483A (ja) * 1998-07-14 2000-01-28 Kansai Electric Power Co Inc:The 静電誘導半導体装置
JP2005142518A (ja) 2003-11-07 2005-06-02 Success International Kk プレーナ型サイリスタの製法
JP2010232564A (ja) * 2009-03-27 2010-10-14 Shindengen Electric Mfg Co Ltd 3端子サイリスタ
JP2019169563A (ja) * 2018-03-22 2019-10-03 新電元工業株式会社 半導体装置の製造方法、および半導体装置

Also Published As

Publication number Publication date
TWI832486B (zh) 2024-02-11
TW202318676A (zh) 2023-05-01
CN116391258A (zh) 2023-07-04
US20240006510A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
US7772669B2 (en) Semiconductor device having an improved structure for high withstand voltage
JP2011066121A (ja) 半導体装置およびその製造方法
JP2021141175A (ja) 半導体装置
US11114572B2 (en) Semiconductor device and method for manufacturing semiconductor device
WO2023067997A1 (ja) サイリスタ及びその製造方法
KR100214855B1 (ko) 정전기 방지용 트랜지스터 및 그의 제조방법
US4149177A (en) Method of fabricating conductive buried regions in integrated circuits and the resulting structures
US20220328617A1 (en) Field effect transistor and method for manufacturing the same
KR20050095787A (ko) 반도체 디바이스 및 그 제조 방법
TW202105723A (zh) 暫態電壓抑制元件
TWI755334B (zh) 齊納二極體及其製造方法
US5567978A (en) High voltage, junction isolation semiconductor device having dual conductivity tape buried regions and its process of manufacture
KR100625362B1 (ko) 과도 전압 억제 소자 및 그 제조 방법
CN109075195A (zh) 半导体装置
KR100537321B1 (ko) 반도체 장치 및 그 제조 방법
TWI708364B (zh) 半導體元件及其製造方法
JP3125401B2 (ja) 半導体集積回路装置
TWI742221B (zh) 溝槽金氧半導體元件及其製造方法
JP2022161434A (ja) 半導体装置
JPS63185040A (ja) 半導体装置
JPH0366157A (ja) 半導体集積回路装置
GB2413699A (en) Overvoltage protection device and manufacturing process
JPH0428144B2 (ja)
JPS6031105B2 (ja) 半導体装置
JPS62111459A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023525987

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18251906

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022877674

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022877674

Country of ref document: EP

Effective date: 20240521