JP2019169563A - 半導体装置の製造方法、および半導体装置 - Google Patents

半導体装置の製造方法、および半導体装置 Download PDF

Info

Publication number
JP2019169563A
JP2019169563A JP2018055178A JP2018055178A JP2019169563A JP 2019169563 A JP2019169563 A JP 2019169563A JP 2018055178 A JP2018055178 A JP 2018055178A JP 2018055178 A JP2018055178 A JP 2018055178A JP 2019169563 A JP2019169563 A JP 2019169563A
Authority
JP
Japan
Prior art keywords
diffusion region
region
resist
oxide film
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018055178A
Other languages
English (en)
Other versions
JP7051520B2 (ja
Inventor
高橋 功
Isao Takahashi
高橋  功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2018055178A priority Critical patent/JP7051520B2/ja
Publication of JP2019169563A publication Critical patent/JP2019169563A/ja
Application granted granted Critical
Publication of JP7051520B2 publication Critical patent/JP7051520B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thyristors (AREA)
  • Weting (AREA)

Abstract

【課題】歩留まり良く、特性に優れた半導体装置を製造可能な半導体装置の製造方法および半導体装置を提供する。【解決手段】半導体装置の製造方法は、主面10aに拡散領域14を形成し主面10bに拡散領域15を形成する工程と、レジスト溝部31および複数本のレジスト溝部32を有するレジストマスク30を主面10aの酸化膜11Cの上に形成する工程と、レジスト溝部31およびレジスト溝部32に露出した酸化膜11Cをエッチング液によりエッチングして酸化膜11Cに、レジスト溝部31に対応する第1の酸化膜溝部およびレジスト溝部32に対応する第2の酸化膜溝部を形成するエッチング工程とを備え、レジスト溝部31はゲート近傍領域A1に形成され、レジスト溝部32は周辺領域A2に形成され、レジスト溝部31は、その一端においてレジスト溝部32に接続するとともに当該一端から制御電極形成予定領域A0に向かって延在している。【選択図】図6

Description

本発明は、半導体装置の製造方法、および半導体装置に関する。
従来、特許文献1に記載のように、矩形状の半導体領域のコーナー部にゲート電極が形成されたコーナーゲート型のサイリスタが知られている。このサイリスタでは、P型のベース領域内にN型のエミッタ領域が形成されている。そして、エミッタ領域を貫通するP型の半導体領域(以下、本願において「ショートゲート」(Short Gate:SG)という。)が設けられる。ショートゲートはエミッタ領域と並列接続された抵抗とみなせる。
ショートゲートが設けられることにより、逆バイアスが印加されたサイリスタ内の接合容量を充電する電流(充電電流)がショートゲートを通ってカソード電極に流れるようになる。これにより、急激に変化する電圧が印加されてもサイリスタはオフ状態を維持できるようになる。すなわち、dv/dt耐量が増加する。
特許文献1に記載のように、ショートゲートとして、小径のショートゲートが正方格子状に配置される。ショートゲートは、サイリスタがオンの状態において主電流が流れない領域(不活性領域)であるため、できるだけ小面積に形成される。
特開2011−151063号公報
ところで、ゲートトリガ電圧やオン電圧等の特性を向上させるために、ショートゲートの上側領域(カソード電極と接する領域)にベース領域よりも高濃度のP型拡散領域(以下、単に「ショートゲートP+領域」ともいう。)が形成されたサイリスタがある。このようなサイリスタを製造するために、ショートゲートP+領域の形成予定位置に小径の開口部を有するレジストマスクを形成し、このレジストマスクを用いて半導体ウェーハ上の酸化膜に対するエッチングが行われる。より詳しくは、レジストマスクが形成された半導体ウェーハをエッチング液に浸けることによりエッチングが行われる。エッチング後、酸化膜に形成された開口部からP型不純物を導入することで、ショートゲートP+領域が形成される。
しかしながら、レジストマスクが設計通りの形状・寸法に形成されたとしても、エッチング液により酸化膜をエッチングする際にエッチング液内に発生した気泡がレジストマスクの小径の開口部内に滞留し、この滞留した気泡により酸化膜の正常なエッチングが阻害されるおそれがある。この結果、ショートゲートP+領域が設計通りに形成されず、所望の特性が得られないという課題がある。
そこで、本発明は、歩留まり良く、特性に優れた半導体装置を製造可能な半導体装置の製造方法および半導体装置を提供することを目的とする。
本発明に係る半導体装置の製造方法は、
第1の主面および前記第1の主面と反対側の第2の主面を有する第1導電型の半導体ウェーハを用意する工程と、
前記第1の主面に第2導電型の第1の拡散領域を形成し、前記第2の主面に第2導電型の第2の拡散領域を形成する工程と、
前記第1の主面の酸化膜の上に、底面に前記酸化膜が露出した少なくとも1本の第1のレジスト溝部と、底面に前記酸化膜が露出した複数本の第2のレジスト溝部を有するレジストマスクを形成する工程と、
前記第1のレジスト溝部および前記第2のレジスト溝部に露出した前記酸化膜をエッチング液によりエッチングして、前記酸化膜に、前記第1のレジスト溝部に対応する第1の酸化膜溝部と、前記第2のレジスト溝部に対応する第2の酸化膜溝部を形成するエッチング工程と、
前記第1の酸化膜溝部および前記第2の酸化膜溝部から第2導電型の不純物を導入して、前記第1の拡散領域内に前記第1の拡散領域よりも不純物濃度の高い第3の拡散領域を形成する工程と、を備え、
前記第1のレジスト溝部は、制御電極形成予定領域と隣り合うゲート近傍領域に形成され、前記第2のレジスト溝部は、前記ゲート近傍領域を挟んで前記制御電極形成予定領域の反対側に位置する周辺領域に形成され、前記第1のレジスト溝部は、その一端において前記第2のレジスト溝部に接続するとともに前記一端から前記制御電極形成予定領域に向かって延在していることを特徴とする。
また、前記半導体装置の製造方法において、
前記複数本の第2のレジスト溝部は、前記第1の拡散領域の中心領域から放射状に形成されているようにしてもよい。
また、前記半導体装置の製造方法において、
前記レジストマスクは、前記複数本の第2のレジスト溝部の端部同士を接続する第3のレジスト溝部をさらに有するようにしてもよい。
また、前記半導体装置の製造方法において、
前記第3のレジスト溝部は、前記複数本の第2のレジスト溝部を囲うように枠状に形成されるようにしてもよい。
また、前記半導体装置の製造方法において、
前記複数本の第2のレジスト溝部は、互いに並行に形成された複数本の第3のレジスト溝部と、前記第3のレジスト溝部と交わる方向に延伸し且つ各々が対応する前記第3のレジスト溝部に接続された複数本の第4のレジスト溝部とを有するようにしてもよい。
また、前記半導体装置の製造方法において、
前記レジストマスクは、前記複数本の第2のレジスト溝部同士を接続する第5のレジスト溝部をさらに有するようにしてもよい。
また、前記半導体装置の製造方法において、
前記第1のレジスト溝部の幅は、前記第2のレジスト溝部の幅よりも広いようにしてもよい。
また、前記半導体装置の製造方法において、
前記第1のレジスト溝部の他端と前記制御電極形成予定領域との間の距離は、基準値に基づく距離範囲内にあるようにしてもよい。
また、前記半導体装置の製造方法において、
前記第1の拡散領域は、平面視して前記制御電極形成予定領域が一隅を占める略正方形状に形成され、
互いに接続された前記第1のレジスト溝部と前記第2のレジスト溝部は、前記第1の拡散領域の対角線上に形成されるようにしてもよい。
また、前記半導体装置の製造方法において、
前記第1の主面に形成された酸化膜の上に、前記第3の拡散領域の直上の前記酸化膜を覆う第2のレジストマスクを形成する工程と、
前記第2のレジストマスクを用いて前記酸化膜をエッチングして前記酸化膜に底面に前記第1の拡散領域が露出した開口部を形成する工程と、
前記開口部から第1導電型の不純物を導入して、前記第1の拡散領域内に第1導電型の第4の拡散領域を形成する工程と、
前記第1の主面に、前記第4の拡散領域に電気的に接続する第1の主電極を形成する工程と、
前記第1の主面に、前記第1の拡散領域に電気的に接続する制御電極を形成する工程と、
前記第2の主面に、前記第2の拡散領域に電気的に接続する第2の主電極を形成する工程と、
をさらに備えてもよい。
本発明に係る半導体装置は、
第1の主面、および前記第1の主面の反対側の第2の主面を有する第1導電型の半導体基板と、
前記半導体基板の前記第1の主面に形成された第2導電型の第1の拡散領域と、
前記半導体基板の前記第2の主面に形成された第2導電型の第2の拡散領域と、
前記第1の拡散領域内に形成され、前記第1の拡散領域よりも不純物濃度が高い第2導電型の第3の拡散領域と、
前記第1の拡散領域内に形成された第1導電型の第4の拡散領域と、
前記第1の主面に形成され、前記第1の拡散領域に電気的に接続する制御電極と、
前記第1の主面に形成され、前記第4の拡散領域に電気的に接続する第1の主電極と、
前記第2の主面に形成され、前記第2の拡散領域に電気的に接続する第2の主電極と、
前記第1の主電極に接する領域が前記第3の拡散領域により構成され、前記第4の拡散領域を貫通する少なくとも1本の線状の第1のショートゲートと、
前記第1の主電極に接する領域が前記第3の拡散領域により構成され、前記第4の拡散領域を貫通する複数本の線状の第2のショートゲートと、
を備え、
前記少なくとも1本の第1のショートゲートは、前記第1の主電極が形成される領域のうち前記制御電極と隣り合う第1の領域に配置され、
前記複数本の第2のショートゲートは、前記第1の領域を挟んで前記制御電極の反対側に位置する第2の領域に配置され、
前記第1のショートゲートは、一端が前記第2のショートゲートに接続し、且つ前記一端から前記制御電極に向かって延在していることを特徴とする。
また、前記半導体装置において、
前記複数本の第2のショートゲートは、前記第1の主電極の中心領域から放射状に形成されていてもよい。
また、前記半導体装置において、
前記第1の主電極に接する領域が前記第3の拡散領域により構成され、前記第4の拡散領域を貫通する第3のショートゲートであって、前記複数本の第2のショートゲートの端部同士を接続する第3のショートゲートをさらに備えてもよい。
また、前記半導体装置において、
前記第1のショートゲートの先端と前記制御電極との間の距離は、基準値に基づく距離範囲内にあるようにしてもよい。
本発明では、半導体ウェーハの酸化膜上に形成されるレジストマスクに小径の開口部ではなく、第1および第2のレジスト溝部を設ける。これにより、エッチング工程におけるエッチング液の流動性が向上するため、エッチング液に気泡が発生した場合であっても、エッチング液が第1および第2のレジスト溝部に沿って流れることで、気泡は第1および第2のレジスト溝部内に留まることなく外部に流し出される。その結果、酸化膜の正常なエッチングが気泡によって阻害されることを抑制でき、酸化膜を正常にエッチングすることができる。その結果、本発明によれば、歩留まり良く、特性に優れた半導体装置を得ることができる。
本発明の実施形態に係る半導体装置の平面図である。 図1のA−A線に沿う断面図である。 図1をショートゲートSG1,SG2,SG3を中心に拡大した平面図である。 本発明の実施形態に係る半導体装置の製造方法を説明するためのフローチャートである。 図4Aに続く、本発明の実施形態に係る半導体装置の製造方法を説明するためのフローチャートである。 本発明の実施形態に係る半導体装置の製造方法を説明するための工程断面図である。 図5Aに続く、本発明の実施形態に係る半導体装置の製造方法を説明するための工程断面図である。 図5Bに続く、本発明の実施形態に係る半導体装置の製造方法を説明するための工程断面図である。 図5Cに続く、本発明の実施形態に係る半導体装置の製造方法を説明するための工程断面図である。 実施形態に係るレジストマスク30の平面図である。 実施形態の変形例1に係るレジストマスク30Aの平面図である。 実施形態の変形例2に係るレジストマスク30Bの平面図である。 実施形態の変形例3に係るレジストマスク30Cの平面図である。
以下、図面を参照しつつ本発明の実施形態について説明する。なお、各図においては、同等の機能を有する構成要素に同一の符号を付している。また、以下の説明における半導体領域の導電型(P型、N型)はそれぞれ逆にしてもよい。
本発明の実施形態に係る半導体装置1について、図1ないし図3を参照して説明する。なお、図3は、半導体装置1の中央領域を拡大した図であり、カソード電極3、ゲート電極4および保護膜6は図示していない。
本実施形態に係る半導体装置1はサイリスタである。
半導体装置1は、図1および図2に示すように、半導体基板2と、カソード電極(第1の主電極)3と、ゲート電極(制御電極)4と、アノード電極(第2の主電極)5と、保護膜6と、を備えている。
半導体装置1は、図2に示すように、半導体基板2内に形成されたP型の拡散領域15、N型のバルク領域20、P型の拡散領域14およびN型の拡散領域18からなるP−N−P−N構造を有している。カソード電極3とアノード電極5との間に逆バイアスが印加された状態でゲート電極4に閾値(ゲートトリガ電流)以上の電流を流すことにより、カソード電極3とアノード電極5間が導通し、主電流が流れる。
次に、半導体装置1の各構成要素について詳しく説明する。
半導体基板2は、図2に示すように、主面2a(第1の主面)、および主面2aの反対側の主面2b(第2の主面)を有するN型の半導体基板である。図2では、主面2aは半導体基板2の上面であり、主面2bは半導体基板2の下面である。なお、半導体基板2は、例えばシリコン基板であるが、その他の半導体基板(SiC基板等)であってもよい。
図2に示すように、半導体基板2には、アイソレーション領域13と、拡散領域14(第1の拡散領域)と、拡散領域15(第2の拡散領域)と、拡散領域16(第3の拡散領域)と、拡散領域17と、拡散領域(第4の拡散領域)18と、チャネルストッパー19と、バルク領域20とが設けられている。なお、半導体基板2には、ガードリングが設けられてもよい。
以下、半導体基板2に形成された各領域について説明する。なお、以下の説明で例示されるアイソレーション領域13、拡散領域14,15,16,17,18およびチャネルストッパー19の不純物濃度の数値は、半導体基板2の表面における濃度を示している。
アイソレーション領域13は、拡散領域15よりも高濃度のP型の半導体領域である。このアイソレーション領域13は、半導体基板2の周縁部に、主面2aと主面2bとの間にわたって形成されている。アイソレーション領域13の不純物濃度は、例えば1×1018cm−3〜1×1020cm−3である。なお、アイソレーション領域13は必須の構成ではなく、半導体基板2に設けられなくてもよい。
拡散領域14は、半導体基板2の主面2aに形成されたP型の半導体領域である。図3に示すように、この拡散領域14は、平面視して略正方形状に形成される。拡散領域14の不純物濃度は、例えば1×1017cm−3〜1×1019cm−3である。拡散領域14の厚みは、例えば30μm〜50μmである。なお、拡散領域14はベース領域とも呼ばれる。
拡散領域15は、半導体基板2の主面2bに形成されたP型の半導体領域である。この拡散領域15の不純物濃度は、例えば1×1017cm−3〜1×1019cm−3である。拡散領域15の厚みは、例えば30μm〜50μmである。なお、拡散領域15はエミッタ領域とも呼ばれる。
拡散領域16は、拡散領域14内に形成され、拡散領域14よりも不純物濃度の高いP型の半導体領域である。この拡散領域16は、図2に示すように、ショートゲートSG1,SG2,SG3の上側領域(カソード電極3に接する領域)を構成するショートゲートP+領域である。拡散領域16の不純物濃度は、例えば1×1019cm−3〜1×1020cm−3である。拡散領域16の厚みは、例えば10μmである。
拡散領域17は、拡散領域14内に形成されたP型の半導体領域であって、ゲート電極4の下方に位置する。この拡散領域17は、拡散領域14よりもP型不純物濃度の高い領域であり、不純物濃度は、例えば1×1019cm−3〜1×1020cm−3である。拡散領域17の厚みは、例えば10μmである。
拡散領域18は、拡散領域14内に形成されたN型の半導体領域である。この拡散領域18は、図2および図3に示すように、拡散領域16が形成されていない領域に形成されている。拡散領域18の不純物濃度は、例えば1×1019cm−3〜1×1020cm−3である。拡散領域18の厚みは、例えば20μmである。なお、拡散領域18はエミッタ領域とも呼ばれる。
チャネルストッパー19は、図1に示すように、半導体装置1を平面視してカソード電極3およびゲート電極4を囲うように環状に形成されている。このチャネルストッパー19は、バルク領域20よりも高濃度のN型の半導体領域(N+領域)である。チャネルストッパー19の不純物濃度は、例えば1×1019cm−3〜1×1020cm−3である。
バルク領域20は、半導体基板2内の領域のうち拡散領域が形成されていないN型の半導体領域である。バルク領域20の不純物濃度は、例えば1×1013cm−3〜1×1016cm−3である。バルク領域20の厚みは、例えば120μmである。
次に、半導体装置1が有する3つの電極について説明する。
カソード電極3は、図2に示すように、主面2aに形成され、拡散領域18に電気的に接続している。カソード電極3は、拡散領域18にオーミック接触する。
ゲート電極4は、図2に示すように、主面2aに形成され、拡散領域14に電気的に接続している。より詳しくは、ゲート電極4は、拡散領域14よりも不純物濃度が高い拡散領域17を介して拡散領域14に電気的に接続している。ゲート電極4は、拡散領域17にオーミック接触する。
アノード電極5は、主面2bに形成され、拡散領域15に電気的に接続している。このアノード電極5は、拡散領域15にオーミック接触する。
保護膜6は、半導体装置1の上面を保護するための絶縁膜である。この保護膜6は、例えば、半導体基板2上に形成された酸化膜と、この酸化膜の上に形成されたパッシベーション膜とからなる。酸化膜は、例えばシリコン酸化膜であり、パッシベーション膜は、例えばPSG(Phosho−Silicate Glass)である。
次に、ショートゲートSG1(第1のショートゲート)、ショートゲートSG2(第2のショートゲート)およびショートゲートSG3(第3のショートゲート)について説明する。
図1および図3に示すように、ショートゲートSG1,SG2,SG3は線状に形成されている。なお、ショートゲートSG1,SG2,SG3は、直線状に限られず、曲線状であってもよいし、断点を有する破線状であってもよい。
ショートゲートSG1,SG2,SG3は、カソード電極3に接する領域(上側領域)が拡散領域16により構成されている。また、ショートゲートSG1,SG2,SG3は、拡散領域18を貫通する。ショートゲートSG1およびショートゲートSG2はそれぞれ複数本設けられている。ショートゲートSG1,SG2,SG3の幅は、例えば0.1mm以下である。なお、図3に示すように、ショートゲートSG1の幅は、ショートゲートSG2よりも広くてもよい。
図3に示すように、ショートゲートSG1は、領域B1に配置されている。ここで、領域B1は、カソード電極3が形成される領域のうち、ゲート電極4と隣り合う領域である。ショートゲートSG2は、領域B2に配置されている。ここで、領域B2は、領域B1を挟んでゲート電極4の反対側に位置する領域である。ショートゲートSG3は、ショートゲートSG2の端部間を接続するように設けられている。なお、ショートゲートSG1は、複数本の場合に限られず、1本でもよい。また、ショートゲートSG3は必須の構成ではない。
図3に示すように、ショートゲートSG1は、一端がショートゲートSG2に接続し、且つ当該一端からゲート電極4に向かって延在している。図1に示すように、3本のショートゲートSG1のうち、対角線(A−A線)に沿うショートゲートは位置P1まで延在している。他の2本のショートゲートSG1はそれぞれ位置P2,P3まで延在している。
本実施形態では、位置P1,P2,P3は、従来のサイリスタにおいてゲート電極に最も近い小径のショートゲートが形成されていた位置である。このようにショートゲートSG1の先端の位置を従来のサイリスタにおけるゲート電極近傍のショートゲートと同じ位置とすることで、半導体装置1の特性(オン特性等)が大きく変化することを抑制できる。
図3に示す距離Zは、対角線に沿って延在するショートゲートSG1の先端と、ゲート電極4(拡散領域17)との間の最短距離である。距離Zは、従来のサイリスタにおけるトリガショートゲートとゲート電極間の距離とほぼ同じ長さに設定されている。ここで、トリガショートゲートは、対角線(図1のA−A線に相当)上に配置された小径のショートゲートのうち、ゲート電極の最も近傍に配置されたショートゲートである。トリガショートゲートは、半導体装置1のオン特性に最も大きな影響を与える。本実施形態では、距離Zを基準値に基づく距離範囲内に設定する。これにより、半導体装置1のオン特性(ゲートトリガ電流)が大きく変化することをより効果的に抑制できる。
ショートゲートSG1の先端(他端)とゲート電極4との間の距離が、基準値に基づく距離範囲内にあるようにしてもよい。この基準値は、例えば、半導体装置1の仕様値である。これにより、オン特性等の特性が仕様の範囲内から逸脱することを回避できる。
図1および図3に示すように、本実施形態では、半導体基板2の厚さ方向に見たときに、複数本のショートゲートSG2は、カソード電極3の中心領域から放射状に形成されている。これにより、ショートゲートSG2を線状としながらも、拡散領域18におけるショートゲートSG2の分布を均一にし、dv/dt耐量を増加させることができる。なお、放射状のショートゲートSG2は、半導体装置1の対角線(図1のA−A線に相当)に対して対称に形成されることが好ましい。
上記のように、本実施形態に係る半導体装置1では、ショートゲートSG1,SG2,SG3を設けることで、dv/dt耐量を増加させることができる。さらに、ショートゲートSG1,SG2,SG3の上側領域(カソード電極3と接触する領域)に、不純物濃度が拡散領域14よりも高い拡散領域16が形成されている。これにより、ゲートトリガ電圧(VGT)、定格ピークゲート損失(PFGM)、オン電圧(V)、ターンオフ時間(t)等の各種特性を向上させることができる。
<半導体装置の製造方法>
次に、上述した半導体装置1の製造方法について、図4Aおよび図4Bのフローチャート、図5A〜図5Dの工程断面図および図6を参照しつつ説明する。なお、以下の製造工程の説明における半導体領域の導電型(P型、N型)については逆であってもよい。
図5A(1)に示すように、N型の半導体ウェーハ10を用意する(ステップS1)。半導体ウェーハ10は、主面10a(第1の主面)、および主面10aと反対側の主面10b(第2の主面)を有する。本実施形態において、半導体ウェーハ10は、N型の不純物を含むシリコンウェーハ(例えば直径5インチ、厚さ200μm)である。なお、半導体ウェーハ10は、シリコン以外の半導体、例えば化合物半導体(SiC等)からなるものであってもよい。
次に、半導体ウェーハ10を複数の半導体装置形成領域Rに区画するアイソレーション領域13を形成する(ステップS2)。このアイソレーション領域13は、以下のようにして形成する。まず、図5A(1)に示すように、半導体ウェーハ10の主面10aに酸化膜11Aを形成し、反対側の主面10bに酸化膜12Aを形成する。酸化膜11A,12Aは、例えば熱酸化膜(SiO)であり、半導体ウェーハ10を酸化雰囲気中で加熱することにより形成される。
その後、図5A(2)に示すように、酸化膜11Aおよび酸化膜12A上にそれぞれレジスト膜21およびレジスト膜22を形成する。次いで、図5A(2)に示すように、レジスト膜21,22を露光、現像することにより開口部21h,22hを形成する。より詳しくは、レジスト膜21に開口部21hを形成し、レジスト膜22に開口部22hを形成する。その後、図5A(3)に示すように、レジスト膜21,22をエッチングマスクとして用いて、開口部21h,22hに露出した酸化膜11A,12Aを除去する。これにより、酸化膜11Aに開口部11Ahが形成され、酸化膜12Aに開口部12Ahが形成される。
その後、レジスト膜21,22を除去し、図5A(4)に示すように、デポジション法により、酸化膜11Aの開口部11Ahおよび酸化膜12Aの開口部12Ahから半導体ウェーハ10内にP型の不純物を導入する。導入する不純物は、例えばアルミニウム、ボロン等である。不純物導入後、加熱処理を行うことにより、導入された不純物が拡散し、アイソレーション領域13が形成される。
デポジション処理後の加熱処理により、図5A(4)に示すように、開口部11Ah,12Ahは塞がれ、酸化膜11B,12Bが形成される。図5A(4)において符号RDは、半導体ウェーハ10を複数の半導体装置形成領域Rに区画するための切断線を含むダイシング領域を示している。このダイシング領域は、ダイシングの際に全て除去される必要はない。このようにしてアイソレーション領域13を形成した後、各半導体装置形成領域Rにおいて以下に説明する半導体プロセスを行う。
図5B(1)〜図5B(3)に示すように、各半導体装置形成領域Rにおいて、主面10aにP型の拡散領域14(第1の拡散領域)を形成し、主面10bにP型の拡散領域15(第2の拡散領域)を形成する(ステップS3)。
本実施形態では、拡散領域14と拡散領域15は同一工程で形成される。すなわち、図5B(1)に示すように、酸化膜11Bの上にレジスト膜23を形成し、その後、このレジスト膜23に露光・現像処理を行って開口部23hを形成し、開口部23hが形成されたレジスト膜23をエッチングマスクとして用いて酸化膜11Bをエッチングする。これにより、酸化膜11Bに開口部11Bhが形成される。その後、図5B(2)に示すように、レジスト膜23を除去する。半導体ウェーハ10裏面の酸化膜12Bも除去する。
次いで、図5B(3)に示すように、デポジション法により、酸化膜11Bの開口部11Bhおよび主面10bから半導体ウェーハ10内にP型の不純物を導入する。導入する不純物は、例えば、アルミニウム、ボロン等である。不純物導入後、加熱処理を行うことにより、拡散領域14および拡散領域15が形成される。拡散領域14は、図6に示すように、平面視して、制御電極形成予定領域A0が一隅を占める略正方形状に形成される。
図5B(3)に示すように、デポジション処理後の加熱処理により、酸化膜11Bの開口部11Bhが塞がれて酸化膜11Cが形成されるとともに、半導体ウェーハ10の主面10bに酸化膜12Cが形成される。
なお、ステップS3においては、拡散領域14とともに、拡散領域14を取り囲むようにガードリング(図示せず)が形成されてもよい。また、拡散領域14と拡散領域15は、別々の工程で順次形成されてもよい。
拡散領域14,15を形成した後、図5C(1)および図6に示すように、主面10aの酸化膜11Cの上に、レジスト溝部31(第1のレジスト溝部),レジスト溝部32(第2のレジスト溝部),レジスト溝部33(第3のレジスト溝部)を有するレジストマスク30を形成する(ステップS4)。このレジストマスク30は、酸化膜11Cの上に形成されたレジスト膜を露光、現像することによりを形成される。レジスト溝部31,32,33はそれぞれ、ショートゲートSG1,SG2,SG3の形成予定位置に設けられている。
レジストマスク30は、少なくとも1本のレジスト溝部31、複数本のレジスト溝部32、レジスト溝部33、および開口部39を有する。
レジストマスク30には、図5C(1)に示すように、拡散領域16を形成するための開口部30h1と、拡散領域17を形成するための開口部30h2とが設けられている。図5C(1)の開口部30h1は、レジスト溝部31,32,33に対応し、開口部30h2は開口部39に対応する。レジスト溝部31,32,33および開口部39の底面には、酸化膜11Cが露出している。開口部30h1,30h2は、拡散領域14の上方に形成される。
ここで、レジスト溝部31,32の平面形状について図6を参照して説明する。半導体ウェーハ10の厚さ方向にレジストマスク30を見たとき、レジスト溝部31は、ゲート近傍領域A1に形成される。ゲート近傍領域A1は、半導体装置1のゲート電極4が形成されることとなる制御電極形成予定領域A0と隣り合う領域である。レジスト溝部32は、周辺領域A2に形成される。周辺領域A2は、ゲート近傍領域A1を挟んで制御電極形成予定領域A0の反対側に位置する領域である。図6に示すように、レジスト溝部31は、その一端においてレジスト溝部32,33に接続するとともに、当該一端から制御電極形成予定領域A0に向かって延在している。
なお、レジスト溝部31の他端(先端)と制御電極形成予定領域A0との間の距離は、前述したショートゲートSG1の先端とゲート電極4との間の距離を規定することとなる。したがって、レジスト溝部31の他端と制御電極形成予定領域A0との間の距離は、基準値に基づく距離範囲内にあることが好ましい。この基準値は、例えば、半導体装置1の仕様値である。これにより、オン特性等の特性が仕様の範囲内から逸脱することを回避できる。
本実施形態では、図6に示すように、互いに接続されたレジスト溝部31とレジスト溝部32は、拡散領域14の対角線上に形成される。さらに、半導体ウェーハ10の厚さ方向にレジストマスク30を見たときに、複数本のレジスト溝部32は、拡散領域14の中心領域から放射状に形成されている。このように放射状に形成されることで、後述のエッチング工程(ステップS5)において、レジスト溝部32中にエッチング液の気泡が滞留することを効果的に抑制することができる。
なお、図6に示すように、レジスト溝部31の幅は、レジスト溝部32よりも広いことが好ましい。これにより、レジスト溝部31におけるエッチング液の流動性が高まる。その結果、ショートゲートSG1,SG2,SG3の総面積の増大を抑制しつつ、サイリスタの特性に大きな影響を与えるショートゲートSG1を歩留まり良く形成することができる。
本実施形態では、図6に示すように、レジストマスク30は、複数本のレジスト溝部32の端部同士を接続するレジスト溝部33をさらに有する。このようなレジスト溝部33が設けられることにより、エッチング液がレジスト溝部32間を流動できるようになるため、レジスト溝部31,32内のエッチング液の流動性をさらに向上させることができる。
なお、レジスト溝部31は、図6では3本形成されているが、これに限られず、1本または2本でもよいし、あるいは4本以上であってもよい。
また、レジスト溝部31,32,33は、直線状に限られず、曲線状であってもよいし、断点を有する破線状であってもよい。
上記のレジストマスク30を形成した後、図5C(2)に示すように、レジストマスク30を用いて酸化膜11Cをエッチングして、酸化膜11Cに開口部11Ch1を形成する(ステップS5;エッチング工程)。より詳しくは、レジスト溝部31,32,33の底面に露出した酸化膜11Cをエッチング液によりエッチングして、酸化膜11Cに、レジスト溝部31に対応する第1の酸化膜溝部と、レジスト溝部32に対応する第2の酸化膜溝部と、レジスト溝部33に対応する第3の酸化膜溝部とを形成する。開口部11Ch1は、第1ないし第3の酸化膜溝部に対応する。また、本ステップにおいて、レジストマスク30の開口部39の底面に露出した酸化膜11Cも除去されて酸化膜11Cの開口部11Ch2が形成される。
なお、エッチング工程は、レジストマスク30が形成された半導体ウェーハ10をエッチング液に浸けて、半導体ウェーハ10を揺動させることにより行われる。レジストマスク30には、従来のように小径の開口部が形成されるのではなく、レジスト溝部31,32,33が形成されているため、レジストマスク30の開口部30h1におけるエッチング液の流動性が向上する。これにより、エッチング液に気泡が発生した場合であっても、エッチング液がレジスト溝部31,32,33に沿って流れることで、気泡はレジスト溝部31,32,33内に留まることなく外部に流し出される。その結果、エッチング液中の気泡により酸化膜11Cの正常なエッチングが阻害されることを抑制できる。
エッチング工程後、図5C(3)に示すように、酸化膜11Cに形成された開口部11Ch1からP型の不純物を導入して、拡散領域14内に、拡散領域14よりも不純物濃度の高い拡散領域16(第3の拡散領域)を形成する(ステップS6)。すなわち、本ステップでは、第1〜第3の酸化膜溝部からP型不純物を導入し、その後の加熱処理を経て、拡散領域16を形成する。導入する不純物は、例えば、アルミニウム、ボロン等である。なお、本ステップにおいては、開口部11Ch2からもP型不純物が導入される結果、拡散領域17も形成される。また、図5C(3)に示すように、デポジション処理後の加熱処理により、酸化膜11Cの開口部11Ch1,11Ch2が塞がれて酸化膜11Dが形成されるとともに、半導体ウェーハ10の主面10bの酸化膜12Cは厚みが増加した酸化膜12Dとなる。
拡散領域16,17を形成した後、図5D(1)に示すように、主面10aに形成された酸化膜11Dの上にレジストマスク40(第2のレジストマスク)を形成する(ステップS7)。このレジストマスク40は、拡散領域18およびチャネルストッパー19を形成するためのマスクであり、少なくとも拡散領域16,17の直上の酸化膜11Dを覆うように形成される。
図5D(1)に示すように、レジストマスク40は、底面に酸化膜11Dが露出した開口部40h1,40h2を有する。開口部40h1は、拡散領域16,17が形成されていない拡散領域14の上方に設けられる。また、開口部40h2は、拡散領域14を囲うようにバルク領域20の上方に設けられる。
レジストマスク40を形成した後、図5D(2)に示すように、レジストマスク40を用いて酸化膜11Dをエッチングして、酸化膜11Dに開口部11Dh1および開口部11Dh2を形成する(ステップS8)。開口部11Dh1の底面には拡散領域14が露出している。また、開口部11Dh2の底面にはバルク領域20が露出している。
酸化膜11Dに開口部11Dh1を形成した後、図5D(3)に示すように、開口部11Dh1からN型の不純物を導入して、拡散領域14内にN型の拡散領域18(第4の拡散領域)を形成する(ステップS9)。導入する不純物は、例えば、リン、ヒ素等である。本ステップにおいては、開口部11Dh2からN型不純物が導入される結果、チャネルストッパー19も形成される。図5D(3)に示すように、デポジション処理後の拡散処理における加熱により、酸化膜11Dの開口部11Dh1,11Dh2が塞がれて酸化膜11Eが形成されるとともに、主面10bの酸化膜12Dは厚みが増加した酸化膜12Eとなる。拡散領域18,19が形成された後、酸化膜11Eの上にパッシベーション膜(図示せず)を形成される。このパッシベーション膜は、例えばPSG(Phosho−Silicate Glass)である。このパッシベーション膜と酸化膜11Eが図2で説明した保護膜6に相当する。
その後、カソード電極3、ゲート電極4およびアノード電極5を形成する。すなわち、主面10aに拡散領域18に電気的に接続するカソード電極3を形成し(ステップS10)、主面10aに拡散領域14に拡散領域17を介して電気的に接続するゲート電極4を形成し(ステップS11)、主面10bに拡散領域15に電気的に接続するアノード電極5を形成する(ステップS12)。なお、ステップS10〜S12の順序は任意である。また、ステップS10とステップS11は一つのステップ内で実行されてもよい。
より具体的には、カソード電極3およびゲート電極4は、酸化膜11Eおよびパッシベーション膜を貫通するコンタクト窓を形成した後、当該コンタクト窓に導電材料(アルミニウム等)を充填することにより形成する。アノード電極5は、半導体ウェーハ10の主面10b上に導電材料を堆積することにより形成する。なお、アノード電極5を形成する前に、主面10bに対しサンドブラスト処理を施して主面10bを粗化しておくことが好ましい。これにより、アノード電極5の剥離を抑制できるとともに半導体装置1のオン電圧(VT)を低減することができる。
カソード電極3、ゲート電極4およびアノード電極5を形成した後、半導体ウェーハ10を半導体装置形成領域Rに沿ってダイシングする(ステップS13)。これにより、半導体ウェーハ10は個片化され、複数の半導体装置1が得られる。
上記の製造工程を経て、図1〜図3に示した半導体装置1が得られる。
上記のように、レジストマスク30は、ショートゲートSG1,SG2,SG3を形成するためのレジスト溝部31,32,33を有する。このため、本実施形態に係る半導体装置の製造方法によれば、エッチング工程の際に、エッチング液はレジスト溝部31,32,33に沿って流れることが可能になり流動性が向上する。すなわち、従来は小径のショートゲートを形成するためにレジストマスクに設けられた小径の開口部にエッチング液が滞留することがあったが、このようなエッチング液の滞留を抑制することができる。これにより、エッチング液に気泡が発生した場合であっても、気泡はレジスト溝部31,32,33内に留まることなく外部に流し出される。その結果、エッチング液中の気泡により酸化膜11Cの正常なエッチングが阻害されることを抑制できる。
なお、上記の製造方法では、拡散領域16を形成した後、拡散領域18を形成したが、形成順序を逆にしてもよい。すなわち、拡散領域18を先に拡散領域14内に形成し、その後、拡散領域16を形成してもよい。
次に、図7〜図8を参照して、レジストマスク30の変形例1〜変形例3について説明する。いずれの変形例によっても、上記の実施形態と同様の作用効果を奏する。
<変形例1>
本変形例に係るレジストマスク30Aは、図7に示すように、レジスト溝部33が、複数本のレジスト溝部32を囲うように枠状に形成されている。このように、複数本のレジスト溝部32を囲うレジスト溝部を設けることで、レジスト溝部31,32,33内のエッチング液の流動性をさらに向上させることができる。その結果、エッチング液中の気泡により酸化膜11Cの正常なエッチングが阻害されることをより効果的に抑制できる。
<変形例2>
本変形例に係るレジストマスク30Bは、図8に示すように、複数本のレジスト溝部32は、互いに並行に形成された複数本のレジスト溝部32a(第3のレジスト溝部)と、レジスト溝部32aと交わる方向に延伸し且つ各々が対応するレジスト溝部32aに接続された複数本のレジスト溝部32b(第4のレジスト溝部)とを有する。なお、図8では、レジスト溝部32aとレジスト溝部32bは直交しているが、これに限らず、斜交してもよい。
<変形例3>
本変形例に係るレジストマスク30Cは、図9に示すように、複数本のレジスト溝部32a,32b同士を接続するレジスト溝部34(第5のレジスト溝部)をさらに有する。これにより、エッチング液はレジスト溝部32a,32b間を流動することが可能となるため、エッチング液の流動性をさらに向上させることができる。その結果、エッチング液中の気泡により酸化膜11Cの正常なエッチングが阻害されることをより効果的に抑制できる。
以上、本発明の実施形態に係る半導体装置の製造方法および半導体装置について説明した。実施形態ではサイリスタについて説明したが、本発明は、相補的な2個のサイリスタを逆並列に接続した構成を有する双方向サイリスタ(トライアック)に適用することも可能である。
上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した個々の実施形態に限定されるものではない。異なる実施形態にわたる構成要素を適宜組み合わせてもよい。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。
1 半導体装置
2 半導体基板
2a,2b 主面
3 カソード電極
4 ゲート電極
5 アノード電極
6 保護膜
10 半導体ウェーハ
10a,10b 主面
11A,12A 酸化膜
13 アイソレーション領域
14,15,16,17,18 拡散領域
19 チャネルストッパー
20 バルク領域
21,22,23 レジスト膜
30,30A,30B,30C レジストマスク
31,32,32a,32b,33,34 レジスト溝部
39 開口部
40 レジストマスク
A0 制御電極形成予定領域
A1 ゲート近傍領域
A2 周辺領域
B1,B2 領域
P1,P2,P3 位置
R 半導体装置形成領域
RD ダイシング領域
SG1,SG2,SG3 ショートゲート

Claims (14)

  1. 第1の主面および前記第1の主面と反対側の第2の主面を有する第1導電型の半導体ウェーハを用意する工程と、
    前記第1の主面に第2導電型の第1の拡散領域を形成し、前記第2の主面に第2導電型の第2の拡散領域を形成する工程と、
    前記第1の主面の酸化膜の上に、底面に前記酸化膜が露出した少なくとも1本の第1のレジスト溝部と、底面に前記酸化膜が露出した複数本の第2のレジスト溝部を有するレジストマスクを形成する工程と、
    前記第1のレジスト溝部および前記第2のレジスト溝部に露出した前記酸化膜をエッチング液によりエッチングして、前記酸化膜に、前記第1のレジスト溝部に対応する第1の酸化膜溝部と、前記第2のレジスト溝部に対応する第2の酸化膜溝部を形成するエッチング工程と、
    前記第1の酸化膜溝部および前記第2の酸化膜溝部から第2導電型の不純物を導入して、前記第1の拡散領域内に前記第1の拡散領域よりも不純物濃度の高い第3の拡散領域を形成する工程と、を備え、
    前記第1のレジスト溝部は、制御電極形成予定領域と隣り合うゲート近傍領域に形成され、前記第2のレジスト溝部は、前記ゲート近傍領域を挟んで前記制御電極形成予定領域の反対側に位置する周辺領域に形成され、前記第1のレジスト溝部は、その一端において前記第2のレジスト溝部に接続するとともに前記一端から前記制御電極形成予定領域に向かって延在していることを特徴とする半導体装置の製造方法。
  2. 前記複数本の第2のレジスト溝部は、前記第1の拡散領域の中心領域から放射状に形成されていることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記レジストマスクは、前記複数本の第2のレジスト溝部の端部同士を接続する第3のレジスト溝部をさらに有することを特徴とする請求項2に記載の半導体装置の製造方法。
  4. 前記第3のレジスト溝部は、前記複数本の第2のレジスト溝部を囲うように枠状に形成されることを特徴とする請求項3に記載の半導体装置の製造方法。
  5. 前記複数本の第2のレジスト溝部は、互いに並行に形成された複数本の第3のレジスト溝部と、前記第3のレジスト溝部と交わる方向に延伸し且つ各々が対応する前記第3のレジスト溝部に接続された複数本の第4のレジスト溝部とを有することを特徴とする請求項1に記載の半導体装置の製造方法。
  6. 前記レジストマスクは、前記複数本の第2のレジスト溝部同士を接続する第5のレジスト溝部をさらに有することを特徴とする請求項5に記載の半導体装置の製造方法。
  7. 前記第1のレジスト溝部の幅は、前記第2のレジスト溝部の幅よりも広いことを特徴とする請求項1〜6のいずれかに記載の半導体装置の製造方法。
  8. 前記第1のレジスト溝部の他端と前記制御電極形成予定領域との間の距離は、基準値に基づく距離範囲内にあることを特徴とする請求項1〜7のいずれかに記載の半導体装置の製造方法。
  9. 前記第1の拡散領域は、平面視して前記制御電極形成予定領域が一隅を占める略正方形状に形成され、
    互いに接続された前記第1のレジスト溝部と前記第2のレジスト溝部は、前記第1の拡散領域の対角線上に形成されることを特徴とする請求項1〜8のいずれかに記載の半導体装置の製造方法。
  10. 前記第1の主面に形成された酸化膜の上に、前記第3の拡散領域の直上の前記酸化膜を覆う第2のレジストマスクを形成する工程と、
    前記第2のレジストマスクを用いて前記酸化膜をエッチングして前記酸化膜に底面に前記第1の拡散領域が露出した開口部を形成する工程と、
    前記開口部から第1導電型の不純物を導入して、前記第1の拡散領域内に第1導電型の第4の拡散領域を形成する工程と、
    前記第1の主面に、前記第4の拡散領域に電気的に接続する第1の主電極を形成する工程と、
    前記第1の主面に、前記第1の拡散領域に電気的に接続する制御電極を形成する工程と、
    前記第2の主面に、前記第2の拡散領域に電気的に接続する第2の主電極を形成する工程と、
    をさらに備えることを特徴とする請求項1〜9のいずれかに記載の半導体装置の製造方法。
  11. 第1の主面、および前記第1の主面の反対側の第2の主面を有する第1導電型の半導体基板と、
    前記半導体基板の前記第1の主面に形成された第2導電型の第1の拡散領域と、
    前記半導体基板の前記第2の主面に形成された第2導電型の第2の拡散領域と、
    前記第1の拡散領域内に形成され、前記第1の拡散領域よりも不純物濃度が高い第2導電型の第3の拡散領域と、
    前記第1の拡散領域内に形成された第1導電型の第4の拡散領域と、
    前記第1の主面に形成され、前記第1の拡散領域に電気的に接続する制御電極と、
    前記第1の主面に形成され、前記第4の拡散領域に電気的に接続する第1の主電極と、
    前記第2の主面に形成され、前記第2の拡散領域に電気的に接続する第2の主電極と、
    前記第1の主電極に接する領域が前記第3の拡散領域により構成され、前記第4の拡散領域を貫通する少なくとも1本の線状の第1のショートゲートと、
    前記第1の主電極に接する領域が前記第3の拡散領域により構成され、前記第4の拡散領域を貫通する複数本の線状の第2のショートゲートと、
    を備え、
    前記少なくとも1本の第1のショートゲートは、前記第1の主電極が形成される領域のうち前記制御電極と隣り合う第1の領域に配置され、
    前記複数本の第2のショートゲートは、前記第1の領域を挟んで前記制御電極の反対側に位置する第2の領域に配置され、
    前記第1のショートゲートは、一端が前記第2のショートゲートに接続し、且つ前記一端から前記制御電極に向かって延在していることを特徴とする半導体装置。
  12. 前記複数本の第2のショートゲートは、前記第1の主電極の中心領域から放射状に形成されていることを特徴とする請求項11に記載の半導体装置。
  13. 前記第1の主電極に接する領域が前記第3の拡散領域により構成され、前記第4の拡散領域を貫通する第3のショートゲートであって、前記複数本の第2のショートゲートの端部同士を接続する第3のショートゲートをさらに備えることを特徴とする請求項11または12に記載の半導体装置。
  14. 前記第1のショートゲートの先端と前記制御電極との間の距離は、基準値に基づく距離範囲内にあることを特徴とする請求項11〜13のいずれかに記載の半導体装置。
JP2018055178A 2018-03-22 2018-03-22 半導体装置の製造方法、および半導体装置 Active JP7051520B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018055178A JP7051520B2 (ja) 2018-03-22 2018-03-22 半導体装置の製造方法、および半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018055178A JP7051520B2 (ja) 2018-03-22 2018-03-22 半導体装置の製造方法、および半導体装置

Publications (2)

Publication Number Publication Date
JP2019169563A true JP2019169563A (ja) 2019-10-03
JP7051520B2 JP7051520B2 (ja) 2022-04-11

Family

ID=68106887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055178A Active JP7051520B2 (ja) 2018-03-22 2018-03-22 半導体装置の製造方法、および半導体装置

Country Status (1)

Country Link
JP (1) JP7051520B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161238A (zh) * 2021-04-20 2021-07-23 江苏韦达半导体有限公司 高温度特性门极灵敏型触发可控硅芯片的制作工艺
WO2023067997A1 (ja) * 2021-10-20 2023-04-27 新電元工業株式会社 サイリスタ及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137274A (en) * 1976-05-12 1977-11-16 Hitachi Ltd Thrystor
JPS5727060A (en) * 1980-07-25 1982-02-13 Toshiba Corp Manufacture of semiconductor device
JPS6423570A (en) * 1987-07-03 1989-01-26 Sgs Thomson Microelectronics Thyristor or triac with emitter short-circuit band
JP2002270820A (ja) * 2001-03-09 2002-09-20 Toshiba Corp サイリスタ及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137274A (en) * 1976-05-12 1977-11-16 Hitachi Ltd Thrystor
JPS5727060A (en) * 1980-07-25 1982-02-13 Toshiba Corp Manufacture of semiconductor device
JPS6423570A (en) * 1987-07-03 1989-01-26 Sgs Thomson Microelectronics Thyristor or triac with emitter short-circuit band
JP2002270820A (ja) * 2001-03-09 2002-09-20 Toshiba Corp サイリスタ及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161238A (zh) * 2021-04-20 2021-07-23 江苏韦达半导体有限公司 高温度特性门极灵敏型触发可控硅芯片的制作工艺
CN113161238B (zh) * 2021-04-20 2024-04-09 江苏韦达半导体有限公司 高温度特性门极灵敏型触发可控硅芯片的制作工艺
WO2023067997A1 (ja) * 2021-10-20 2023-04-27 新電元工業株式会社 サイリスタ及びその製造方法

Also Published As

Publication number Publication date
JP7051520B2 (ja) 2022-04-11

Similar Documents

Publication Publication Date Title
US10128230B2 (en) Semiconductor device
JP6150908B2 (ja) 電力用半導体装置
JP6165271B2 (ja) 電力用半導体装置
JP6334465B2 (ja) 半導体装置
JP2006319218A (ja) 半導体装置
JP2018120990A (ja) 半導体装置
US10181440B2 (en) Semiconductor device
US20190252374A1 (en) Semiconductor device
JP5920383B2 (ja) 半導体装置を製造する方法及び半導体装置
US10032866B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP7051520B2 (ja) 半導体装置の製造方法、および半導体装置
JP7201093B2 (ja) 半導体装置および半導体装置の製造方法
JP6407354B2 (ja) 電力用半導体装置
JP5810736B2 (ja) 半導体装置
KR101550798B1 (ko) 래치업 억제구조를 가지는 전력용 반도체 장치 및 그 제조방법
JP7146488B2 (ja) 半導体装置およびその製造方法
JP2006073626A (ja) 半導体装置およびその製造方法
JP7294097B2 (ja) 半導体装置の製造方法
JP6615291B2 (ja) 電力用半導体装置
JP4049971B2 (ja) 半導体素子、半導体素子の製造方法
CN107680933A (zh) Mos型功率器件及其制造方法
JP2825303B2 (ja) 絶縁ゲート付きgtoサイリスタの製造方法
CN115810629A (zh) 半导体装置
JP3846395B2 (ja) Mos型半導体装置
JP2603083B2 (ja) 高耐圧半導体素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220330

R150 Certificate of patent or registration of utility model

Ref document number: 7051520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150