WO2023060990A1 - 电池粉浸出渣回收制取活性负极材料的方法 - Google Patents

电池粉浸出渣回收制取活性负极材料的方法 Download PDF

Info

Publication number
WO2023060990A1
WO2023060990A1 PCT/CN2022/108663 CN2022108663W WO2023060990A1 WO 2023060990 A1 WO2023060990 A1 WO 2023060990A1 CN 2022108663 W CN2022108663 W CN 2022108663W WO 2023060990 A1 WO2023060990 A1 WO 2023060990A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode material
active negative
powder
temperature
Prior art date
Application number
PCT/CN2022/108663
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023060990A1 publication Critical patent/WO2023060990A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/215Purification; Recovery or purification of graphite formed in iron making, e.g. kish graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of lithium battery recycling, and in particular relates to a method for recycling battery powder leach slag to prepare active negative electrode materials.
  • lithium-ion batteries are booming in emerging fields such as new energy vehicles and large-scale industrial energy storage systems. According to estimates, the waste of power batteries used in new energy vehicles will reach 1.16 million tons in 2023. Waste lithium batteries contain a large amount of rare and precious metals and organic substances such as cobalt, nickel, manganese, and lithium. If they are not recycled effectively, they will not only pollute the environment, but also waste resources. At present, there are many researches on the recovery of positive electrode materials of waste lithium batteries, and more attention is paid to the separation and purification of lithium cobaltate and ternary materials.
  • the recycling methods of lithium batteries mainly include pyrometallurgy and hydrometallurgy.
  • Pyrometallurgy is to directly use high temperature treatment to extract the metal or metal oxide in the electrode.
  • the process is simple, but the purity of the recycled material is low.
  • the electrolyte, binder and other organic substances in the decommissioned battery will produce harmful gases due to the high temperature reaction, which needs to be installed
  • the supporting facilities carry out secondary waste gas treatment, and the graphite negative electrode of the battery is directly burned and scrapped due to high temperature, resulting in a waste of resources.
  • Hydrometallurgy has the advantages of less pollution and easy control, so a lot of research is currently focused on hydrometallurgy.
  • the general process of hydrometallurgy is to leach valuable metals first, then precipitate step by step according to the properties of different metals, and further purify to obtain the final product. Therefore, it is very important to choose an efficient and low-cost leaching method for the recovery of valuable metals in lithium batteries.
  • hydrometallurgy first disassembles the battery shell, crushes and sieves the electrode materials, and then leaches the valuable metals in the electrode materials in acid or biological solution, and then separates them to obtain the corresponding salts or oxides of each metal. . After the leaching was completed, the resulting leaching residue was treated as hazardous waste due to heavy metal impurities, and the graphite negative electrode was not recycled.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a method for recycling battery powder leach slag to prepare an active negative electrode material.
  • a method for reclaiming battery powder leach slag to prepare an active negative electrode material comprising the following steps:
  • the first organic solvent is N-methylpyrrolidone, N-dimethylacetamide, propylene carbonate, 1,3-dioxolane, dimethyl carbonate At least one of esters or ethyl methyl carbonate.
  • step S2 the temperature of the high temperature treatment is 300-600° C., and the treatment time is 0.5-2.0 h.
  • the mixed solution is a mixed solution of ferric sulfate and sulfuric acid.
  • the concentration of ferric ions in the mixed solution is 0.1-0.5 mol/L, and the concentration of hydrogen ions is 0.1-4.0 mol/L; preferably, the treatment
  • the volume ratio (i.e. solid-to-liquid ratio) of the mass of slag to the ferric salt mixed acid solution is 1g:(1-5)mL.
  • step S2 the soaking time is 1.0-4.0 hours.
  • the alkali washing uses a sodium hydroxide solution with a temperature of 45-80° C. and a concentration of 0.5-2.0 mol/L.
  • step S2 water washing is further included after the alkali washing, and the temperature of the water washing is 50-90°C.
  • step S2 the carbonylation reaction is carried out in two stages, wherein the temperature of the first stage reaction is 190-210° C., and the pressure is above 20 MPa.
  • the first stage reaction continues 0.5-1.0h; the temperature of the second-stage reaction is 38-93°C, and the pressure is above 0.1MPa.
  • the second-stage reaction lasts for 0.5-1.0h.
  • the second organic solvent is at least one of benzene, acetone, ether, tetrachlorinated naphthalene, ethanol, chloroform or carbon tetrachloride.
  • the pre-lithiation process is: mixing the graphite powder with lithium powder and N-methylpyrrolidone, heating and stirring, separating solid and liquid, and drying to obtain The active negative electrode material.
  • step S3 the heating temperature is 70-80° C., and the stirring time is 1.0-4.0 h.
  • the present invention performs a series of impurity removal and activation on the leach slag produced by leaching the crushed battery powder, and finally obtains an active negative electrode material, avoiding the problems of waste of resources and low disassembly efficiency of collecting negative electrode current collectors separately.
  • the battery powder leach slag is dissolved in a highly soluble organic solvent to remove residual electrolyte, binder and other organic impurities; then oxygen is isolated for high temperature treatment to further decompose the residual electrolyte and binder, and the metal Impurities are reduced to simple metals.
  • carbon absorbs oxygen in some metal oxides, which has a certain activity and is ready for the subsequent pre-lithiation.
  • ferric ions with stronger oxidation potential than hydrogen ions are used to convert Dissolution of metal element; washing with hot lye, and removing sulfate ions through the replacement of hydroxide ions, that is, using hydroxide ions to perform ion exchange with sulfate ions adsorbed in the interior/surface pores of the particles, so as to reduce the product
  • wash with pure water to remove the introduced sodium ions
  • use carbonylation treatment to react the residual metal with carbon monoxide to form metal carbonyls that are easily soluble in organic solvents, and further remove the residual metal ions.
  • the activated negative electrode material is obtained by pre-lithiation of the activated graphite powder.
  • the invention can be widely used in the recovery process of the waste ternary lithium battery, especially in the process of recycling the negative electrode material of the ternary lithium battery.
  • Fig. 1 is the process flow chart of embodiment 1 of the present invention.
  • the active negative electrode material is separated and prepared by the following steps:
  • a method for recycling battery powder leach slag to prepare active negative electrode materials is:
  • the active negative electrode is separated and prepared by the following steps:
  • a method for recycling battery powder leach slag to prepare active negative electrode materials is:
  • the active negative electrode is separated and prepared by the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开了一种电池粉浸出渣回收制取活性负极材料的方法,包括将电池粉浸出渣用第一有机溶剂浸泡除去有机杂质,固液分离得到处理渣,处理渣在隔绝氧气条件下经高温处理后,用三价铁盐与酸的混合溶液浸泡,再进行碱洗,洗涤完成后与一氧化碳进行羰基化反应,用第二有机溶剂纯化,固液分离得到石墨粉,将石墨粉进行预锂化后,制得活性负极材料。本发明将破碎后的电池粉浸出产生的浸出渣进行一系列的除杂、活化,最终制得活性负极材料,避免了资源浪费、单独收集负极集流体拆解效率低的问题。

Description

电池粉浸出渣回收制取活性负极材料的方法 技术领域
本发明属于锂电池回收技术领域,具体涉及一种电池粉浸出渣回收制取活性负极材料的方法。
背景技术
目前,锂离子电池在新能源汽车领域以及大规模工业储能系统等新兴领域蓬勃发展。据测算,新能源汽车所使用的动力电池报废量在2023年将达到116万吨。而废锂电池中含有大量的钴镍锰锂等稀贵重金属和有机物,若不进行有效的回收处理,不仅会对环境造成污染,同时也是一种资源浪费。目前,针对废锂电池正极材料的回收研究较多,且更关注钴酸锂以及三元材料的分离与提纯。
近些年来,锂电池的回收方法主要有火法冶金和湿法冶金。火法冶金是直接采用高温处理的方法提取电极中的金属或金属氧化物,工艺简单,但回收材料纯度低,退役电池中的电解液、黏结剂等有机物会由于高温反应产生有害气体,需要安装配套的设施进行二次废气处理,电池的石墨负极由于高温直接燃烧报废,造成了资源的浪费。而湿法冶金具有污染小、易控制的优点,因此目前大量研究集中在湿法冶金上。湿法冶金的一般过程是先将有价金属浸出,然后根据不同金属的性质差别分步沉淀,进一步纯化获得最终产物。因而选择高效低成本的浸出方法对于回收锂电池有价金属至关重要。
然而,湿法冶金是先拆解电池外壳,破碎、筛分后获取电极材料,电极材料中的有价金属在酸或生物溶液中浸取,再进行分离,获得各金属相应的盐或氧化物。浸出完成后,产生的浸出渣因含有重金属杂质被当成危废进行了报废处理,并没有对石墨负极进行回收。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种电池粉浸出渣回收制取活性负极材料的方法。
根据本发明的一个方面,提出了一种电池粉浸出渣回收制取活性负极材料的方法,包括以下步骤:
S1:将所述电池粉浸出渣用第一有机溶剂浸泡除去有机杂质,固液分离,得到处理渣;
S2:所述处理渣在隔绝氧气条件下经高温处理后,用三价铁盐与酸的混合溶液浸泡,再进行碱洗,洗涤完成后与一氧化碳进行羰基化反应,用第二有机溶剂纯化,固液分离,得到石墨粉;
S3:将所述石墨粉进行预锂化后,制得所述活性负极材料。
在本发明的一些实施方式中,步骤S1中,所述第一有机溶剂为N-甲基吡咯烷酮、N-二甲基乙酰胺、碳酸丙烯酯、1,3-二氧戊环、碳酸二甲酯或碳酸甲乙酯中的至少一种。
在本发明的一些实施方式中,步骤S2中,所述高温处理的温度为300-600℃,处理的时间为0.5-2.0h。
在本发明的一些实施方式中,步骤S2中,所述混合溶液为硫酸铁和硫酸的混合溶液。
在本发明的一些实施方式中,步骤S2中,所述混合溶液中三价铁离子的浓度为0.1-0.5mol/L,氢离子的浓度为0.1-4.0mol/L;优选的,所述处理渣的质量与三价铁盐混合酸溶液的体积比(即固液比)为1g:(1-5)mL。
在本发明的一些实施方式中,步骤S2中,所述浸泡的时间为1.0-4.0h。
在本发明的一些实施方式中,步骤S2中,所述碱洗采用温度为45-80℃、浓度为0.5-2.0mol/L的氢氧化钠溶液。
在本发明的一些实施方式中,步骤S2中,所述碱洗后还包括水洗,所述水洗的温度为50-90℃。
在本发明的一些实施方式中,步骤S2中,所述羰基化反应分两段进行,其中第一段反应的温度190-210℃,压力在20MPa以上,优选的,所述第一段反应持续0.5-1.0h;第二段反应的温度为38-93℃,压力在0.1MPa以上,优选的,所述第二段反应持续 0.5-1.0h。
在本发明的一些实施方式中,步骤S2中,所述第二有机溶剂为苯、丙酮、乙醚、四氯化萘、乙醇、三氯甲烷或四氯化碳中的至少一种。
在本发明的一些实施方式中,步骤S3中,所述预锂化的过程为:将所述石墨粉与锂粉、N-甲基吡咯烷酮混合,加热并搅拌,固液分离,干燥,即得所述活性负极材料。
在本发明的一些实施方式中,步骤S3中,所述加热的温度为70-80℃,搅拌的时间为1.0-4.0h。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
本发明将破碎后的电池粉浸出产生的浸出渣进行一系列的除杂、活化,最终制得活性负极材料,避免了资源浪费、单独收集负极集流体拆解效率低的问题。首先,将电池粉浸出渣使用溶解性较强的有机溶剂溶解去除残留的电解液、粘结剂等有机杂质;再隔绝氧气进行高温处理,进一步分解残留的电解液和粘结剂,并将金属杂质还原为金属单质,此过程碳吸收部分金属氧化物中的氧,具有一定的活性,为后续的预锂化做好了准备,再利用比氢离子更强氧化电位的三价铁离子,将金属单质溶解;采用热碱液进行洗涤,通过氢氧根离子的置换作用去除硫酸根离子,即利用氢氧根离子与颗粒内部/表面孔隙内吸附的硫酸根离子进行离子交换,从而达到降低产品中硫杂质含量的目的,再用纯水洗涤去除引入的钠离子;最后,采用羰基化处理,将残留的金属与一氧化碳反应生成易溶于有机溶剂的金属羰基物,进一步除去残留的金属离子,得到石墨粉。通过预锂化活化石墨粉,得到活性负极材料。本发明可广泛应用于废旧三元锂电池的回收工艺中,特别是三元锂电池负极材料再生利用的工艺中。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充 分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种电池粉浸出渣回收制取活性负极材料的方法,参照图1,具体过程为:
取100g电池粉浸出渣,检测各杂质元素含量如表1。
表1
元素 Ni Co Mn Fe Cu Na P Al S
ppm 1009 4363 601 435 88 5488 1515 398 71860
通过以下步骤分离制取活性负极材料:
(1)将收集的三元电池粉浸出渣用N-甲基吡咯烷酮溶解去除残留的电解液、粘结剂,固液分离后得到有机溶液和处理渣;
(2)处理渣隔绝氧气在600℃下反应时间0.5h后,用500mL浓度为0.05mol/L硫酸铁和0.05mol/L硫酸的混合溶液浸泡4.0h,先使用温度为80℃、浓度为0.5mol/L的氢氧化钠溶液洗涤,再使用温度为90℃的纯水洗涤,洗涤完成后,置于温度190-210℃的密闭容器中,通入一氧化碳气体,维持压力在20MPa以上,持续1.0h;降温泄压,控制温度为38℃,维持压力在0.1MPa以上,持续1.0h;反应结束后,加入苯浸泡1.0h,固液分离后得到石墨粉;
(3)将锂粉、石墨粉混合后加入N-甲基吡咯烷酮中,控制温度70-80℃,搅拌4.0h,固液分离,干燥,即得活性负极材料。
检测活性负极材料中,各杂质元素的含量如表2。
表2
元素 Ni Co Mn Fe Cu Na P Al S
ppm 18 23 15 63 ND 103 ND ND 560
实施例2
一种电池粉浸出渣回收制取活性负极材料的方法,具体过程为:
取100g电池粉浸出渣,检测各杂质元素含量如表3。
表3
元素 Ni Co Mn Fe Cu Na P Al S
ppm 1235 4103 586 501 76 5956 1233 263 80352
通过以下步骤分离制取活性负极:
(1)将收集的三元电池粉浸出渣用N-二甲基乙酰胺溶解去除残留的电解液、粘结剂,固液分离后得到有机溶液和处理渣;
(2)处理渣隔绝氧气在300℃下反应时间2.0h后,用100mL浓度为0.25mol/L硫酸铁和2.0mol/L硫酸的混合溶液浸泡4.0h,先使用温度为45℃、浓度为0.5mol/L的氢氧化钠溶液洗涤,再使用温度为50℃的纯水洗涤,洗涤完成后,置于温度190-210℃的密闭容器中,通入一氧化碳气体,维持压力在20MPa以上,持续0.5h;降温泄压,控制温度为93℃,维持压力在0.1MPa以上,持续0.5h;反应结束后,加入丙酮浸泡0.5h,固液分离后得到石墨粉;
(3)将锂粉、石墨粉混合后加入N-甲基吡咯烷酮中,控制温度70-80℃,搅拌1.0h,固液分离,干燥,即得活性负极材料。
检测活性负极材料中,各杂质元素的含量如表4。
表4
元素 Ni Co Mn Fe Cu Na P Al S
ppm 56 53 62 87 ND 162 ND ND 732
实施例3
一种电池粉浸出渣回收制取活性负极材料的方法,具体过程为:
取100g电池粉浸出渣,检测各杂质元素含量如表5。
表5
元素 Ni Co Mn Fe Cu Na P Al S
ppm 837 3266 452 232 97 4600 1718 463 61735
通过以下步骤分离制取活性负极:
(1)将收集的三元电池粉浸出渣用碳酸丙烯酯溶解去除残留的电解液、粘结剂,固液分离后得到有机溶液和处理渣;
(2)处理渣隔绝氧气在500℃下反应时间1.0h后,用300mL浓度为0.1mol/L硫酸铁和0.1mol/L硫酸的混合溶液浸泡2.0h,先使用温度为60℃、浓度为1.0mol/L的氢氧化钠溶液洗涤,再使用温度为70℃的纯水洗涤,洗涤完成后,置于温度190-210℃的密闭容器中,通入一氧化碳气体,维持压力在20MPa以上,持续1.0h;降温泄压,控制温度为50℃,维持压力在0.1MPa以上,持续1.0h;反应结束后,加入乙醚浸泡1.0h,固液分离后得到石墨粉;
(3)将锂粉、石墨粉混合后加入N-甲基吡咯烷酮中,控制温度70-80℃,搅拌2.0h,固液分离,干燥,即得活性负极材料。
检测活性负极材料中,各杂质元素的含量如表6。
元素 Ni Co Mn Fe Cu Na P Al S
ppm 21 19 17 71 ND 90 ND ND 892
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种电池粉浸出渣回收制取活性负极材料的方法,其特征在于,包括以下步骤:
    S1:将所述电池粉浸出渣用第一有机溶剂浸泡除去有机杂质,固液分离,得到处理渣;
    S2:所述处理渣在隔绝氧气条件下经高温处理后,用三价铁盐与酸的混合溶液浸泡,再进行碱洗,洗涤完成后与一氧化碳进行羰基化反应,用第二有机溶剂纯化,固液分离,得到石墨粉;
    S3:将所述石墨粉进行预锂化后,制得所述活性负极材料。
  2. 根据权利要求1所述的方法,其特征在于,步骤S1中,所述第一有机溶剂为N-甲基吡咯烷酮、N-二甲基乙酰胺、碳酸丙烯酯、1,3-二氧戊环、碳酸二甲酯或碳酸甲乙酯中的至少一种。
  3. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述高温处理的温度为300-600℃,处理的时间为0.5-2.0h。
  4. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述混合溶液为硫酸铁和硫酸的混合溶液。
  5. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述混合溶液中三价铁离子的浓度为0.1-0.5mol/L,氢离子的浓度为0.1-4.0mol/L;优选的,所述处理渣的质量与三价铁盐混合酸溶液的体积比为1g:(1-5)mL。
  6. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述碱洗采用温度为45-80℃、浓度为0.5-2.0mol/L的氢氧化钠溶液。
  7. 根据权利要求1所述的方法,其特征在于,步骤S2中,所述羰基化反应分两段进行,其中第一段反应的温度190-210℃,压力在20MPa以上,优选的,所述第一段反应持续0.5-1.0h;第二段反应的温度为38-93℃,压力在0.1MPa以上,优选的,所述第二段反应持续0.5-1.0h。
  8. 根据权利要求7所述的方法,其特征在于,步骤S2中,所述第二有机溶剂为苯、 丙酮、乙醚、四氯化萘、乙醇、三氯甲烷或四氯化碳中的至少一种。
  9. 根据权利要求1所述的方法,其特征在于,步骤S3中,所述预锂化的过程为:将所述石墨粉与锂粉、N-甲基吡咯烷酮混合,加热并搅拌,固液分离,干燥,即得所述活性负极材料。
  10. 根据权利要求9所述的方法,其特征在于,步骤S3中,所述加热的温度为70-80℃,搅拌的时间为1.0-4.0h。
PCT/CN2022/108663 2021-10-13 2022-07-28 电池粉浸出渣回收制取活性负极材料的方法 WO2023060990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111192752.9 2021-10-13
CN202111192752.9A CN113904018A (zh) 2021-10-13 2021-10-13 电池粉浸出渣回收制取活性负极材料的方法

Publications (1)

Publication Number Publication Date
WO2023060990A1 true WO2023060990A1 (zh) 2023-04-20

Family

ID=79191895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108663 WO2023060990A1 (zh) 2021-10-13 2022-07-28 电池粉浸出渣回收制取活性负极材料的方法

Country Status (2)

Country Link
CN (1) CN113904018A (zh)
WO (1) WO2023060990A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113904018A (zh) * 2021-10-13 2022-01-07 广东邦普循环科技有限公司 电池粉浸出渣回收制取活性负极材料的方法
CN116443950A (zh) * 2023-04-21 2023-07-18 厦门海辰储能科技股份有限公司 负极材料的除磁方法、极片、储能装置及用电设备
CN117604269A (zh) * 2023-11-07 2024-02-27 中山大学 一种锂电池负极材料的回收用浸取液及回收方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663775A (zh) * 2014-02-13 2017-05-10 罗克伍德锂有限责任公司 具有提高的容量的原电池和(部分)锂化的锂电池组阳极和制造合成石墨嵌入化合物的方法
CN109576498A (zh) * 2019-01-30 2019-04-05 北京科技大学 一种锂电池石墨负极材料的回收方法
WO2019150403A1 (en) * 2018-01-30 2019-08-08 Cobat, Consorzio Nazionale Raccolta E Riciclo Hydrometallurgical process for the treatment of lithium batteries and recovery of the metals contained therein
CN111285366A (zh) * 2020-03-03 2020-06-16 广东邦普循环科技有限公司 一种锂离子电池负极石墨的再生方法
CN111573662A (zh) * 2020-05-21 2020-08-25 北京蒙京石墨新材料科技研究院有限公司 一种利用回收石墨制备高容量负极材料的方法
WO2021191211A1 (en) * 2020-03-23 2021-09-30 Basf Se Battery recycling by reduction and carbonylation
CN113904018A (zh) * 2021-10-13 2022-01-07 广东邦普循环科技有限公司 电池粉浸出渣回收制取活性负极材料的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5859332B2 (ja) * 2011-02-15 2016-02-10 住友化学株式会社 電池廃材からの活物質の回収方法
CN106848471B (zh) * 2017-04-18 2021-11-09 中科过程(北京)科技有限公司 一种废旧锂离子电池正极材料的混酸浸出及回收方法
CN113061726B (zh) * 2021-03-15 2021-11-23 中国科学院化学研究所 一种从废旧电池中安全高效回收利用锂的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663775A (zh) * 2014-02-13 2017-05-10 罗克伍德锂有限责任公司 具有提高的容量的原电池和(部分)锂化的锂电池组阳极和制造合成石墨嵌入化合物的方法
WO2019150403A1 (en) * 2018-01-30 2019-08-08 Cobat, Consorzio Nazionale Raccolta E Riciclo Hydrometallurgical process for the treatment of lithium batteries and recovery of the metals contained therein
CN109576498A (zh) * 2019-01-30 2019-04-05 北京科技大学 一种锂电池石墨负极材料的回收方法
CN111285366A (zh) * 2020-03-03 2020-06-16 广东邦普循环科技有限公司 一种锂离子电池负极石墨的再生方法
WO2021191211A1 (en) * 2020-03-23 2021-09-30 Basf Se Battery recycling by reduction and carbonylation
CN111573662A (zh) * 2020-05-21 2020-08-25 北京蒙京石墨新材料科技研究院有限公司 一种利用回收石墨制备高容量负极材料的方法
CN113904018A (zh) * 2021-10-13 2022-01-07 广东邦普循环科技有限公司 电池粉浸出渣回收制取活性负极材料的方法

Also Published As

Publication number Publication date
CN113904018A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2023060990A1 (zh) 电池粉浸出渣回收制取活性负极材料的方法
CN111463475B (zh) 一种选择性回收废旧动力锂电池正极材料的方法
WO2022127117A1 (zh) 废旧锂电池正极材料处理方法
CN110783658B (zh) 一种退役动力三元锂电池回收示范工艺方法
CN110828926B (zh) 废旧锂离子电池正负极材料协同回收金属及石墨的方法
CN109256597B (zh) 一种从废旧钴酸锂电池中回收锂和钴的方法及系统
CN109207725B (zh) 一种从废旧锰酸锂电池中回收锂和锰的方法及系统
CN108832215A (zh) 一种选择性回收锂离子电池正极材料的方法
CN110643816A (zh) 一种从废旧三元锂电池中回收锂的方法
CN101969148A (zh) 一种回收废旧锂离子电池正极材料有价金属预处理的方法
CN111790728B (zh) 一种利用水蒸气高效还原回收废旧锂电池的处置方法
CN111392750A (zh) 一种从废旧锂离子电池中除杂回收锂的方法
WO2022267419A1 (zh) 一种回收废旧锂离子电池粉中单质铜的方法和应用
JP2024514966A (ja) 使用済みリチウムイオン電池からの有価金属の回収方法
CN106693983A (zh) 利用废旧三元锂电池正极材料制备甲苯降解催化剂的方法
CN114335781A (zh) 一种从废旧锂电池中提取贵金属的方法
CN112320794A (zh) 一种废旧电池负极回收退役石墨深度除杂方法
CN109609761A (zh) 一种废旧锂离子电池的回收方法
CN113206227B (zh) 一种废旧镍钴锰锂离子电池正负极材料同时回收制备碳基金属硫化物负极材料的方法
CN114015881A (zh) 一种原位热还原废旧锂电池正极材料回收有价金属的方法
CN108103323B (zh) 一种镍钴锰废旧电池的正极材料的回收方法
CN108306071A (zh) 一种废旧锂离子电池正极材料回收工艺
CN101792862B (zh) 用废氢镍电池净化烟气回收金属的方法
CN115181866A (zh) 一种联合浸出剂及其在正极浸出中的应用
CN114421042A (zh) 从废旧磷酸铁锂材料回收金属铝、碳酸锂和硝酸钠的方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022879937

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022879937

Country of ref document: EP

Effective date: 20240423